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Chapter 1: Introduction

Traveling wave tube (TWT) amplifiers (TWTAs) are microwave power amplifiers that convert the
energy of a DC electron beam into an amplified microwave signal. These amplifiers are used for
many applications from communications, radar, and microwave testing in commercial, military,
medical, and academic applications that require high-frequency and high-power sources [1].
Modern microwave and millimeter wave applications are continuously pushing the limits of
amplifier power, bandwidth, and operating frequency — for example, in communications
applications this supports increasing demands for faster data rates, multiple channels, and link

closure under all types of weather conditions.

Traveling wave tube amplifiers are a type of microwave vacuum electronic device in which the
electron beam continuously interacts with a traveling electromagnetic wave supported by a
slow-wave structure to create a broadband frequency response. A slow-wave structure (SWS) is
a periodic guiding structure that supports the transmission of electromagnetic power such that
the velocity of power propagation is much smaller than the speed of light. The two most
common types of SWS in microwave and millimeter wave TWTAs are helix and coupled-cavity
structures. Helix amplifiers provide very broadband frequency response, but at higher power
and frequencies they face many issues of thermal management related to the delicate helix
support rod configuration [2]. Coupled-cavity structures have been shown to strike a good

balance between high power and bandwidth.

In order to increase the microwave power produced by the amplifier we must either increase
the power of the DC electron beam, or increase the efficiency of the extraction of that beam
power. Further increases in the efficiency of power extraction in round-beam devices are
limited by space charge effects that de-bunch the beam. There is an implied limit to the beam
voltage due to the increase in power-supply size and hazards with increased voltage — a
reasonably achievable voltage limit for a compact system is 20 kV. Increased current in
cylindrical beams exacerbates the space-charge de-bunching effects, and becomes increasingly
difficult for increasing frequencies at a fixed voltage. To circumvent these limitations, devices
based on spatially distributed electron beams are now under consideration [3]. An electron
beam with a rectangular cross section (“sheet beam”), which increases the beam power by

distributing the beam current over an increased area, is one such topology.



In this thesis, we develop a qualified design for a sheet-beam coupled-cavity slow-wave
structure for use in a high-power millimeter wave TWTA. The main advance realized in the
design is the roughly ten-fold increase in power gained by utilizing a sheet, rather than
cylindrical, beam while at the same time employing mode-suppression techniques to suppress
competing modes that are introduced by the sheet geometry. The original contributions of the

research presented in this thesis are as follows:

* Simulated and experimental characterization of a sheet-beam coupled-cavity slow-wave
structure for use in a sheet-beam TWTA.

* Development of a broadband waveguide coupler for well-matched power transfer
through the proposed sheet-beam structure.

* Comparisons of simulated gain estimates for the sheet-beam structure.

* Development of stability analyses to account for the multiplicity of modes that might
interact with the electron beam within the sheet-beam structure.

* Modification of slow-wave structure parameters and application of mode-suppression

techniques to achieve increased power and suppress competing modes.

In this thesis, we develop and analyze a sheet beam coupled-cavity slow-wave structure capable
of moderate bandwidth and moderate gain and with an increase in power from a compact Ka-
band TWT. The present chapter provides an outline of the state of the art in TWTAs and current
research in the development of high-power millimeter wave amplifiers, as well as an outline of
the proposed device. Chapter 2 investigates the sheet-beam slow-wave structure and the
various simulation and experimental methods used to probe the structure and the effects of
geometric variations or errors. Chapter 3 outlines several gain analyses developed for sheet-
beam devices and provides comparisons of the results. Chapter 4 discusses the methods of
analyzing undesired interactions of the sheet electron beam with the structure, and methods of
suppressing these interactions and mitigating deleterious instabilities. Chapter 5 provides the

final design and the results of various supporting simulations.

1a) State of the Art Coupled-Cavity Devices

Coupled-cavity devices consist of a slow-wave structure of periodic electromagnetic cavities that
are each coupled to adjacent cavities via some coupling mechanism, and an electron beam that

propagates down a beam tunnel axially through the stack of cavities, interacting with the



electromagnetic fields in the cavities at discrete gaps in the beam tunnel [4] [5]. The cavities
and coupling mechanism are tuned to provide a moderately broadband frequency response and
strong interaction with the electron beam. Conventionally, the electron beam is cylindrical with
a round beam-tunnel, although the structure can be a complicated three-dimensional geometry.
Coupled-cavity devices are generally able to handle the thermal requirements of high-power
operation because their solid metal construction allows for good thermal conduction and

somewhat less delicate assemblies (compared to helix devices, for example).

For example, the current state-of-the-art in 10°
round beam coupled-cavity TWT performance /\
in Ka-band is about 500 W over 500 MHz g

©
instantaneous bandwidth with 40 dB gain [6]. S 1000 3
Other recent publications have presented %’

o
coupled cavity TWTs at 30 GHz, 500 W CW, % 100 e e

3 L i
2 GHz bandwidth (CPI) and at 35 GHz, 1kwW g """"""""""""""
peak, 500 W CW, 3 GHz bandwidth [7]. A plot
of compiled data of current state of the art peak 10 L L L L L

15 20 25 30 35 40 45

power broadband Ka-band amplifiers (both Frequency (GHz)

helix and coupled-cavity tubes) is provided in

Figure 1.1: Attainable peak power from current

state of the art helix and coupled-cavity tubes in

in dashed lines for helix and coupled-cavity Ka-band — rated output power (dashed lines),
and proposed sheet-beam simulations (solid blue

tubes (from lowest to highest: L-3 [ine).

Figure 1.1. The listed output powers are shown

Communications’ millimeter wave power

module [8], Thales helix TWTA [9], L-3 Communications’ helix TWTAs [10] [11], and CPI's
coupled-cavity TWTA [6]). The blue curve at the top represents data that are the results of
particle simulations of the proposed coupled-cavity structure (presented in Chapter 5), which

represents a roughly ten-fold increase in power over the listed powers of cylindrical devices.

The current state of the art devices have met a limit of the achievable output power. We have
already seen that the total microwave power is limited by the product of the beam current and
beam voltage. Since our desire is to keep the voltage reasonably low, the total beam current
must scale in proportion to the total microwave power. However, the current density is at the

limit of modern focusing and cathode technology. Thermionic cathode electron guns used in



these devices can produce a current density limited by the lifetime of the cathode (the common
M-type cathode can achieve 5-15 A/cm? with long lifetime [12]), and the area convergence of
the beam is limited by design complications even in round-beam guns. Furthermore, the
magnetic focusing of an increased current density is increasingly difficult, especially for periodic
magnetic focusing at low voltages. Combining these difficulties, there is currently a reasonable
limit to the transportable current density of some several hundreds of amperes per square
centimeter without overly loading the cathode and shortening the expected lifetime of the
amplifier. Furthermore, the electron beam diameter is set by the frequency operating point,
where the frequency determines the effectual radius of the beam tunnel. For a cylindrical-beam
device this leads to decreasing beam currents and available power at increasing frequencies. In
Ka-Band at the upper voltage limit of 20 kV, the most current you could reasonably expect in a
cylindrical beam might be 1 A with a current density of roughly 500 A/cm?, implying a 500 pm
diameter, which are all reasonable numbers for a high-power coupled-cavity device such as that

described in [6].

1b) Spatially-Distributed Electron Beam Technology

To overcome the power limitations of a conventional round-beam structure several different
spatially-distributed electron beam technologies have been studied that allow increased current
for a fixed voltage. Spatially-distributed beams can be realized by multiple, parallel round
beams or by a transversely-stretched beam, where one of the transverse dimensions is
stretched into either a rectangular (or elliptical) cross-section beam. Each of these technologies
requires a specific interaction structure adapted to the required beam tunnel, providing
maximal and uniform interaction. Some of these structures operate in the lowest mode
(fundamental mode), while others operate in a higher-order mode — all of these structures have

complications in dispersion and fields which must be addressed.
Spatially-distributed electron beam devices have a number of advantages, including [1]:

* Lower voltages are possible at a given output power due to the increased total beam
current — low voltage operation is critical for compact sources and their accompanying

power-supplies.



The increased beam current to voltage ratio (increased beam impedance) results in a
wider bandwidth, because the beam-wave interaction is stronger across the full
bandwidth of the structure (see the discussion in the chapters on gain and stability).
Higher efficiency results from using lower perveance beamlets due to decreased space-
charge de-bunching in the beam.

The increased transverse dimensions required for both the beam-tunnel(s) and the
slow-wave structure suggest that a larger surface area interacts with both the beam and
RF currents and possibly allows for more favorable distributions of both the beam and
circuit losses.

Reduced magnetic focusing field required with lower current density and therefore

reduced weight.

Multiple electron beams have been investigated in several different configurations, and in both

klystron and traveling-wave amplifiers [13]. Multiple beam klystrons have been manufactured

in Russia [14], France [15], the People’s Republic of China [16], and the USA [17]. Multiple

beams have been studied in traveling-wave amplifiers in a similar, klystron-like configuration

with parallel beams interacting with one structure [18] (Figure 1.2). This configuration of

parallel beams interacting with a single structure is similar to the sheet-beam case, but can also

use a higher-order mode field distribution in order to locate the field maxima near the individual

beams (for example in Figure 1.2a, if the
azimuthal order were three, then each outer
beam-tunnel could be at a field maximum,
although the central beam-tunnel would
necessarily be at a null in that example). There
are serious complications with multiple-beam
devices in traveling-wave structures at
millimeter-wave frequencies that are discussed

subsequently in the sheet-beam advantages.

Multiple beams have also been configured as
parallel beams interacting with multiple, power-
combined structures [19], and as series

structures powered by parallel beams [20]

Figure 1.2: Two different configurations of
multiple cylindrical beams passing through
multiple separate beam tunnels. These beams
generally interact with a single structure. (a) A
clustered set of beams. (b) A linear array of
beams.



(Figure 1.3). However, with power-combined
parallel structures there are concerns of the
effectiveness of the broadband match of the
power-combining input and output sections.
The series structure configuration does not
increase the effective beam-power inherently
because the final section only sees the final
beam, but it does promise increased efficiency

of extracting power from the electron beams

due to improved bunching of the beams.

Hollow electron beams are a form of sheet-
beam that has been curved into a hollow circle
allowing increased current to be transported
close to the walls of the interaction structure.

Hollow beams have been utilized in klystron
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Figure 1.3: Two different configurations of
parallel cylindrical beams passing through
multiple separate structures. (c) Power splitting/
combining design. (d) Series design.

amplifiers to produce high-perveance, high-efficiency, high-power devices [21] [22]. However,

since the fundamental mode of a traveling-wave structure has an increased backward-wave

interaction for larger beam radius, an alternative mode or geometry must be utilized for an

amplifying traveling-wave structure, and this configuration has not been pursued for TWT

amplifiers. Hollow beams are used in backward-wave oscillators to increase their beam-wave

interaction [2].

Sheet beam technology is an alternative

distributed beam concept that has been

discussed by various groups, but not until
recently has it been seriously investigated. A
sheet electron beam is an electron beam that is
elongated along one transverse dimension
creating a rectangular (or elliptical, or otherwise
elongated) current density distribution (Figure

1.4). As a comparison to a conventional round-

beam structure, we see that the beam-tunnel

(b)

Figure 1.4: Sheet beam pictured as a distributed
cylindrical beam with roughly equivalent
radii/heights.  (a) Cylindrical beam within a
cylindrical beam-tunnel. (b) Rectangular sheet
beam within a rectangular beam-tunnel.



radius, b, is restricted in size (inversely to the frequency) in order to keep the beam-wave
interaction large; but in the sheet-beam case, the beam-tunnel height is only restricted in one
dimension, while the other dimension can be elongated many times. The electron beam height,
a, is usually restricted to some fraction of the beam-tunnel height to minimize interception and
interaction with undesired modes, and with a reasonably achievable current density (due to
modern limits in cathode and focusing technology), the total transportable current is limited at
each frequency range of interest. The width of the sheet-beam, w, is often expressed as an N

times increase of the total beam height (i.e. w = N*2a).

The main advantage of the sheet beam technology over single-beam technology is the increased
beam current allowed with comparable current density, generated by the elongated beam
dimension. Two possible advantages of sheet beams over multiple beams are: 1) reduced
multiplicity of electron gun components, and 2) a more compact total cross-section of the beam
area suggests that the transverse dimension of the structure can remain smaller and the mode-
density will be minimal. These reasons are compounded by the manufacturing capabilities (and
expenses) available at millimeter wave frequencies, and were a determining factor in choosing a

sheet-beam configuration over multiple beams.

Inevitably, several complications arise from the elongated structure geometry required to
support the sheet electron beam. The first complication due to an elongated structure with an
elongated beam tunnel is in creating a uniform electric field with which the electron beam may
interact. The second complication due to an elongated structure is the increased mode-density
of the structure created by the elongated dimensions on the structure and beam tunnel. The
third complication that has been an obstacle for operation of sheet-beam devices is the
excitation of a transverse mode that is inherent to an elongated beam tunnel [23]. Further
discouraging the use of sheet beams has been the problem of the diocotron instability, which
leads to beam break-up and interception. Recently, there have been several technical advances
in the creation and focusing of sheet electron beams [24] [25] [26] [27], which makes sheet-
beam amplifier technology attainable. Finally, without modern 3-D modeling tools and the
concurrent computational advances that make them possible on a design time-scale, the

analysis of the three-dimensional beam-wave interactions would not be possible.

Sheet beams have also been discussed for use with grating structures [28] and orotrons [29].

These structures have elongated geometries that are appropriate for sheet electron beams, and



are especially interesting at high frequencies where the 2D structure geometries are amenable
to lithographic construction techniques. However, these structures are not interesting for

broadband applications, as they generally have poor bandwidth.

1c) Current Research and Challenges

Due to current technological advances in sheet-beam generation and transport, as well as three-
dimensional simulation capabilities, sheet-beam technology is being investigated concurrently
by several different groups. These research projects address various challenges and implications
of sheet-beam technology in various microwave vacuum electronic devices with different beam,
power, and frequency parameters. The following groups have worked on sheet-beam devices in

some fashion as described.

SLAC — W-band Sheet-Beam Klystron: The group of scientists and engineers at the Stanford
Linear Accelerator Center (SLAC) has developed, over the course of many years, a sheet-beam
klystron amplifier at W-band (94 GHz) with narrow-bandwidth and 100 kW peak power, 2 kW
average power (simulated results) [30] [31] [32] [33] [34]. The SLAC group is the most fully
documented design of a sheet-beam device and has many similar goals and obstacles as those
presented within this thesis, however, there are two main difference between the SLAC klystron
and the present research: first, their device is a narrowband klystron, while this thesis
investigates a broadband coupled-cavity device, and, second, their W-band klystron has a beam-
voltage of 74kV, while we utilize a modest 20kV that is favorable for modulator
cost/availability, and x-ray shielding. The SLAC device has been developed up to the point of
experimentally testing a periodically permanent magnet focused sheet beam, and separately
testing the RF-response of the klystron cavities at W-band. There has been an experimental test

with an X-band sheet-beam klystron reported in [35].

LANL — W-band Grating Amplifier: A group of scientists and engineers at the Los Alamos
National Laboratory (LANL) has developed a sheet-beam, and grating structure also at W-band
(94 GHz) with moderate bandwidth response and possibly 480 kW of peak power (according to
simulation) [36] [37] [38] [39] [40] [41]. The LANL group has documented their beam formation
and transport results, which they have thoroughly simulated and experimented (although using
non-conventional beam-shaping techniques in a bulky experiment chamber and a large 110 kV

beam voltage). The grating structure has been developed to varying degrees in design and



experiment, with an intermediate design being most recently tested with a cylindrical beam

exhibiting nominal gain, but also self-excited oscillations.

NRL - W-band Extended Interaction Klystron, Multiple-Beam Klystron, Transverse TWT
Amplifiers: The entire team of scientists and engineers at the Naval Research Laboratory’s (NRL)
Vacuum Electronics Branch is interested in distributed beam vacuum electronic devices and
their advantages [42]. The three mentioned topics are particularly interesting and relevant to
sheet-beam development. The W-band Sheet-Beam Extended Interaction Klystron (WSBEIK) is a
narrowband, high-power device that has been developed to the point of experimentally
demonstrating beam-transmission and testing the RF response of the WSBEIK cavities [43] [44].
The WSBEIK device is very similar in stature to the device investigated in this thesis, as we intend
to reuse the electron-gun and collector design in the present work. The Multiple-Beam Klystron
(MBK) device is a moderate-bandwidth high-power amplifier at S-band (3.2GHz) [17] [45] [46]
[47] [48] [49] [50]. This amplifier was the first distributed-beam amplifier built to completion
starting from NRL designs, and the highly-documented development addressed many technical
obstacles to distributed beam formation, transport, and interaction. Finally, Transverse TWT
Amplifiers are being studied as an alternative technique of interacting and extracting RF power
from an electron-beam (instead of the standard longitudinal interaction) [51] [52] [53] [54].
Transverse interactions were initially studied in cylindrical beams, but the elongated beam-
tunnel shape of the sheet-beam structure allows for the adjustment of the dispersion in strongly

transverse modes while also allowing for increased current as in longitudinal structures.

UC-Davis — Sheet Beam Offset Grating Structure: The researchers at the University of California
— Davis (UCD) are investigating a broadband sheet-beam structure that is comprised of opposing
grating structures with offset-alignment (teeth from one grating align with the gaps of the
opposite grating and the electron beam is transported between the two gratings) [55] [56] [57]
[58] [59] [60]. This configuration has an advantage of combining the lowest transverse and
longitudinal modes due to the offset gratings (the fields in the fundamental mode are directed
predominantly diagonally from tooth to tooth), yet the fields are very complicated in this simple
geometry and not at all uniform in the wide dimension. Further, because this is a simple grating
geometry the primary goal is to manufacture with lithographic techniques and operate at

terahertz frequencies (220 GHz). This group is similarly developing a sheet-beam gun and



transport section, and also has developed a moderate bandwidth coupler. There have been

scaled experiments on the novel RF structure, but there have been no beam experiments.

MIT - Elliptical Beam: A group from the Massachusetts Institute of Technology has been
working on elliptical-beam guns and beam transport for various size beams (dimension and
current density) [61] [62] [63] [64] [65]. There have been several experiments with successful
focusing of a moderate-density electron-beam at reasonable voltages. There is no vacuum
electronic amplifier associated with this research, yet their elliptical beam is similar in

construction to a TWTA sheet-beam.

Several other groups have investigated distributed beam structures and the design of a
corresponding amplifier. In addition to numerous examples of multiple-beam klystrons [13],
there have been a couple efforts at sheet-beam klystron design [66] [67] [68] [69] [70] [71] [72]
from S- to W-band. In the sub-millimeter range of traveling-wave structures, there have been
efforts to micro-fabricate circuits that power combine through a splitter/combiner [19] [73].
Also traveling-wave structures have been implemented with multiple-beam coupled-cavity
circuits [13] [18] — this is most pertinent because it has similar goals as the present research, but

has only been applied at lower frequencies.

1d) Proposed Sheet Beam Device Design Concept

The proposed device is a sheet-beam coupled-cavity traveling-wave tube amplifier with
increased current and, therefore, increased RF power capabilities. The center frequency of the
operating band has been selected in the upper part of the Ka-Band at 35 GHz. This represents a
region of the power-frequency parameter-space that can benefit from the advantages of a
sheet-geometry, yet is feasible to manufacture using conventional milling technology. The goal
of the project is to achieve 5 kW RF output power across a reasonable coupled-cavity bandwidth
(Af/fo ~ 20%). The gain of the device can be constrained modestly to simplify the design and

reduce the risk of undesired oscillations. The design parameters are listed in Table 1-1 for

reference. y
Design Frequency 35 GHz
Design Output Power | 5 kW
The structure we investigate for these purposes Design Bandwidth ~7 GHz

is a three-slot, doubly periodic, staggered-ladder
Table 1-I: Overview design parameters for use in

coupled-cavity slow-wave structure developed proposed device.
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at the U.S. Naval Research Laboratory [74], [75].
A generic design for one cell of the structure is
shown in Figure 1.5. It consists of two
rectangular half cavities separated by a septum
with a beam tunnel and three coupling slots.
The adjacent cells are rotated 180° around the
beam tunnel axis (which is the same as being
mirrored the long way) so that the beam tunnel
stays in the same position and Slot 2 of the next
cell is on the right side of the beam tunnel
(looking down along the direction of electron
travel). For the remainder of the thesis, the z-
axis is in the direction of propagation (the axial
direction), the x-axis is in the wide dimension of
the structure (horizontal), and the y-axis is in

the short dimension of the structure (vertical).

Throughout the rest of this document there will

Slot 1 (a) n
e
=)}
3 |3 Z
Beam Tunnel B E
Z |8 IS
> e =
S |[2F=E2
Slot 1 (b) Sib

Cavity Width

i (b)

Half Period

Figure 1.5: (a) Cut-away, isometric view of a 3D
model of a full-period (created by stacking two,
rotated unit cells). (b) Generic design for one cell
(half-period) of the three-slot SWS.

be several designs based off this generic configuration. These will be discussed to present the

various trials and modifications utilized in order to address the pertinent issue at hand and to

realize the best structure. The specific structure under discussion will be introduced and

referred to by number so that the various results can be matched to the exact structure

measurements.

A key enabling technology for this sheet-beam device is the recent development of a thermionic

sheet-beam electron gun with permanent magnet focusing, as described in [25]. These beam

source and transport sections have been experimentally tested with 98% transmission over a

distance of 1.9cm [26]. Although originally
designed for use in a W-band extended
interaction klystron (EIK), the same beam can
be used in a Ka-band traveling-wave device.

Table 1-1 summarizes the sheet beam

Beam Current 3.5amps
Beam Voltage 19.5 kV
Beam Width 4 mm
Beam Height 0.3 mm

Table 1-1l: Electron beam parameters for use in

proposed structure.
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parameters.

The total DC beam power for this device is 68 kW, so for a circuit efficiency of 7.5% there would
be more than 5 kW of RF power output — this would represent an order of magnitude increase
over the state of the art at Ka-band, and this peak power output is the main goal of the
experiment. The sheet-beam itself creates this power increase, as conventional traveling-wave
circuits can have efficiencies between 10-15%. With further enhancements the efficiency could
be increased in the sheet-beam device as well. The total bandwidth for the driven structure is
desired to be as large as possible. The slow-wave structure geometry is adjusted for optimal
bandwidth and interaction strength while maintaining stability — based on the design and
simulations described in Chapter 5, the predicted 3-dB bandwidth is 6.5 GHz (i.e. 18.6%), which

is commensurate with medium-power conventional coupled-cavity structures.

The proposed design consists of a roughly 5 cm length of slow-wave structure with waveguide
couplers on each end and has 18 dB of gain as predicted by 3D particle-in-cell simulations.
There are several techniques implemented to mitigate instabilities, and numerous simulations
to confirm the stability of the structure under experimental drive conditions. The remainder of
this thesis will outline and detail the various techniques used to probe the structure and thus

form a full characterization of the structure and proposed device.
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Chapter 2: Sheet-Beam Slow-Wave Structure Characterization

The slow-wave structure utilized in the design of the sheet beam device is a novel structure with
complicated modes, and needs to be fully characterized before it can successfully be integrated
with an electron beam. This structure was introduced in Section 1d, and pictured there in Figure
1.5. The structure will be thoroughly characterized here for the purpose of understanding the
geometric dependence of the first several modes in order to achieve the desired frequency and

interaction characteristics detailed in Chapter 1.

In this chapter we investigate a test structure with frequency centered at 30 GHz (not the final
device requirements) through simulation and experiment. The effects of varying parameters are
investigated for the dual purposes of achieving the required design and for studying the
sensitivity of the device to manufacturing errors. We discuss the issue of creating a well-
matched broadband waveguide coupler in order to transmit RF power through the slow-wave

structure circuit. Finally, we examine realistic fabrication tolerances and their implications.

2a) Slow-Wave Structure Analysis and Dispersion

In order to characterize the response of the structure we use numerical three-dimensional
finite-element electromagnetic simulations of the slow-wave structure geometry, obtaining
frequency and field data for a given slow-wave structure. The numerical simulation of the
electromagnetic fields of non-resonant, traveling-wave electromagnetic structures has been
accomplished for many structures both past and present [76] [77] [78] [79] [80] [75]. The
present structure has several symmetries that can be employed, and are investigated in detail in

Appendix Il.

3D electromagnetic simulations of a single structure period were performed for a wide variety
of parameters. These simulations were performed using a commercial eigenmode solver with
periodic boundaries (master/slave boundaries) for phase advances between 0 and 180 degrees.
We used both Ansoft’s HFSS [81] and AWR Corp.’s Analyst [82] to perform the eigenmode

simulations and found good agreement between the two codes.

An example of the simulated dispersive characteristics of a structure with parameters listed in
Table 2-I are presented in Figure 2.1, where frequency is plotted versus phase advance per cell.

The structure with parameters in Table 2-1 was intended as a test structure and will be the
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structure studied in depth in this chapter:
however, it does not meet the requirements of
the proposed design. Please note that this
structure is centered around 30 GHz, and with a
synchronous beam voltage close to 13.5 kV.
The interception of the beam line with the
symmetric mode near 3m/2 indicates operation
in the first forward space harmonic as in the
slow-wave

staggered-slot coupled-cavity

structure of [4].

The first thing to notice in the dispersion

diagram is the presence of several modes within

SWS Parameter [in] [mm]
period 0.0625 1.588
slot 1 & 2 width 0.035 0.889
slot 1 length 0.154 3.912
slot 2 length 0.151 3.835
cavity width 0.272 6.909
cavity height 0.151 3.835
beam tunnel

width 0.182 4.623

height 0.0375 0.953

Table 2-I: Parameters for the simulated slow-

wave structure.

the frequency range of interest (in a conventional coupled-cavity structure there are only two

modes — a cavity mode and a slot mode). The solid, bold curves have nearly the conventional

field structures of the cavity and slot modes (with some interaction near the stopband gap at

~1.75m). We refer to these as “symmetric” modes due to the approximate symmetry of the

axial electric field in the short-transverse dimension, centered within the beam tunnel.

One

main difference of this three-slot coupled-cavity structure from a conventional one- or two-slot

structure is that here the slot mode and cavity
mode couple in such a way as to form an
avoided crossing (i.e. these are nonorthogonal
modes and the two modes mix, forming a band
gap) [83].

unconventional mode supported by the wide

The thin, gray curves represent an

beam tunnel with an electric field that is

predominantly transverse (in the short
dimension) to the axis of the structure. We
refer to these as “antisymmetric” modes due to
the antisymmetric nature of the axial electric
dimension,

field in the short-transverse

centered within the beam tunnel. As an
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Figure 2.1: Dispersion diagram (frequency vs.
phase) with respect to one cavity-period.
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example, a beam line at 13.3 kV is drawn in the diagram that intersects the lowest symmetric
mode near 1.5m. As seen in Figure 2.1, there is a backward wave intersection with the
antisymmetric mode as well as intersections with the first and second symmetric modes near
band edges at 1.75m and 2, respectively. These intersections could lead to parasitic oscillations

and will be discussed in Sections 2c¢, and more fully in Chapter 4.

To conceptualize the dispersive behavior of the structure we can determine the resonance
frequencies associated with different parts of the structure using simple analytical models
similar to those of Curnow [84]; Carter and Shunkang [85]; and Christie, Kumar, and

Balakrishnan [86]. Using the dimensions in Table 2-1 and the dispersion diagram of Figure 2.1,
we find that the resonance for Slot 1 is approximately f;, zc/(2lem)=38.3GHZ, and the
resonance for the Slot 2 is S zc/(stlm2)= 39.1GHz. The cavity resonance is
fow» =40.8GHz as evaluated from a simple HFSS eigenmode simulation of a single cavity

where the coupling slots are terminated with conducting shorts. The resonance for the beam
tunnel iszT zc/(zLBT)=32,4GHz. These resonances can be seen to correspond to the

following points on the dispersion curve. The resonant frequency of the cavity lies at the 21
point of the second symmetric mode. The lowest slot resonance lies somewhere near the 2m
point of the first symmetric mode. The two different slot frequencies are related to the band
gap at the avoided crossing (near 1.75m). The slot dimensions (height and length) can be tuned
to eliminate the band gap near 1.75m. The beam-tunnel resonance affects the frequency range

of the first antisymmetric mode.

2b) Effects of Structure Parameters on Dispersion

Effect of varying beam-tunnel height to width ratio: In our basic structure design, the nominal
beam-tunnel width to height ratio is 4.8:1. To study the effect on the frequency behavior of the
structure, we reduced the tunnel width to height ratios to 4.0:1, 3.0:1, and 2.0:1. For each ratio,
the dispersion curves for the two lowest-order symmetric modes and first antisymmetric mode
are plotted in Figure 2.2. In Table 2-1l, we compare analytical results, similar to those calculated
earlier, to the simulated results (the grayed columns in the table). The first column of data is the
analytical resonance frequency for the beam tunnel determined by the length, which is
compared to the 2m-point frequency of the antisymmetric mode in the second column. The

third column contains data representing the first resonant frequency of a simple eigenmode
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simulation of one cavity where the slots are

terminated in conducting shorts (the cavity

mode), which is compared with the 2m -Mode
ype
frequency of the cavity mode in the fourth ¥ el
o, “Smo
column. The fifth column is the second z Ay
(IC.) -SymO0
. =1 - AntiSym
resonant frequency of the same simple g e
L - AntiSym
-Sym1

eigenmode cavity simulation, which s

compared with the © frequency of the second

1 1.25 1.5 1.75 2

symmetric mode in the sixth column. Phase / pi
Figure 2.2: Dispersion plots for varying beam-
tunnel width. The red, open-circle and green,
crossed curves represent the first two symmetric
modes, and the black, filled-circle curves
represent the antisymmetric mode. The dash of
In thelines corresponds to the beam-tunnel ratio as
indicated.

As seen in the last four columns of Table 2-II,
the resonant frequencies of the symmetric
modes change by only a modest amount (at
most 3% at the 2m cavity frequency).
contrast, the antisymmetric mode frequencies
(column two in Table 2-II) increase by 64%. Returning to the beam-tunnel resonance
calculation, we find that the resonance frequency varies inversely to the length, with values
reported in Table 2-II. These resonance frequency values correlate well with the 2m-frequency of
the antisymmetric curve over much of the range of the beam-tunnel ratios without any attempt
at accounting for fringing fields. It is evident that in the nominal case the antisymmetric mode
has a low frequency, comparable to that of the symmetric mode, due to the wide beam tunnel,
and it will be present in the design of any sheet-beam SWS. It is also clear that small

adjustments of the beam-tunnel width (when possible) can control the interaction with the

antisymmetric mode without greatly disturbing the symmetric mode.

Beam f BT f 2m-antisym. f cav f 2m-cav-sym. f cav f TT-sym.
Tunnel analytical simulation cav.-simul. simulation cav.-simul. simulation
Ratio [GHz] [GHz] [GHz] [GHz] [GHz] [GHz]
4.8:1 32.45 33.22 40.61 40.77 53.32 53.28
4.0:1 38.94 40.28 40.41 40.54 52.52 52.50
3.0:1 51.91 53.46 40.00 40.11 51.66 51.73
2.0:1 77.87 54.35 39.47 39.56 51.23 51.42
Table 2-ll: The effects on resonance frequencies of changing beam-tunnel width.

The data in the grayed cells are taken from the dispersion plots in Figure 2.2.

16



Effect of varying cavity height to width ratios: The next set of simulations is intended to
approach the familiar limit of a conventional round beam coupled-cavity SWS. While keeping

the beam tunnel aspect ratio a constant 1:1 60

Variation -Mode

(i.e., a round beam tunnel), we varied the cavity 55 [08 Number Type
width to height ratios by 1.8:1, 1.5:1 and 1.25:1, ¥ 50 wmym
while simultaneously decreasing the length of %45 ’“Sé”‘
2
Slot 1 (see Figure 1.5). The results are provided :3;40 ::f:
in Figure 2.3 and Table 2-Ill. The columns in this e . = y;mjm
table compare the analytic slot resonance % -
frequency with the simulated 2m slot-mode * 1.25 15 1.75 2

Phase / pi
frequency (columns 3 and 4, respectively), and
Figure 2.3: Dispersion plots for varying cavity
width and normalized slot length — see Table 2-lI
Simulated 21T cavity_mode frequency (Columnss for variation details. The dash of the line

corresponds to the variation number as
and 6, respectively). indicated.

the fundamental (f,,) cavity mode with the

Looking at the fundamental mode (modes marked with open-circles in Figure 2.3), we notice
that as the cavity width decreases the dispersion curve loses its unconventional band-edge at
~1.8T and has positive group velocity up to 2m. The unconventional band-edge shape reappears
as the slot length is further reduced in variation 7 (it appears at a slightly larger phase ~1.88).
It can be inferred that the cavity mode and slot mode resonance (frequencies at 2m phase
advance) are switching the curve with which they are associated. This is made evident in field
profiles (not pictured), where the cavity mode and slot mode have distinct field profiles,

although there is mode mixing near the avoided crossing.

Variation | Cavity | Normalized fs"’”. . fz"'s"’f fmf" . fz"'m'f
" Ratio Slot Length analytic simulation cav.-simul. simulation
& [GHz] [GHz] [GHz] [GHz]
5 1.8 1.0 38.32 34.52 38.76 38.96
6 1.5 1.0 38.32 39.06 39.76 39.96
7 1.5 0.855 44.81 39.74 40.79 41.02
8 1.25 0.855 44.81 44.04 42.49 42.75
9 1.25 0.732 52.35 45.46 43.49 43.76
Table 2-lll: The effects on resonance frequencies of changing cavity width and slot length.

The data in the grayed cells are found in the dispersion plots in Figure 2.3.
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2c) Field Profiles and Impedances

In general, the field profiles can be broken into the same two categories as the dispersive

characteristics: symmetric and antisymmetric.

The symmetric modes have an electric field

component along the axis of the structure, and the axial electric field is symmetric with respect

to the short transverse dimension. The
antisymmetric modes have a predominantly
transverse field along the axis, and the axial
electric field is antisymmetric (switches
direction) with respect to the short transverse

dimension.

The symmetric field is plotted on the cavity
midplane in Figure 2.4 a,b for the same set of
parameters from Table 2-I, and for a phase
advance near 1.5 for the fundamental mode
(lowest frequency mode). The characteristics of
this mode (besides those already discussed), are
very much like a cavity mode with the electric
field concentrating between the opposite walls
around the beam tunnel. Furthermore, the
field within the beam tunnel is reasonably
uniform across the wide dimension, and it
varies much like the hyperbolic cosine in the
short dimension. Finally, because there are no
ferrules and the beam tunnel is elongated there
is leakage of the fields through the beam tunnel
(where the fields diminish in intensity, but do
not disappear completely), although the fields

mostly couple through the slots.

complexMag(E2): Min=0
(a) complexMag(E2): Max = 9000

Trarsverse(®): Min=0
(b) Trarsverse(E): Max = 9000

complexMag(E): Min=0
(C) complexMag(Ez): Max = 9000

Trarsverse(E): Min =0
(d) Transverse(E): Max = 9000

2.4:
magnitude) for symmetric mode — longitudinal
(a), transverse (b) and antisymmetric mode —

Figure Field components (complex

longitudinal (c), transverse (d). The fields are
plotted at the midplane of the cavity at a phase
advance of 1.46m (symmetric) and 1.58m
(antisymmetric).

The antisymmetric field is plotted on the cavity midplane in Figure 2.4 c,d for the same set of

parameters and for a phase advance near 1.5m. The characteristics of this mode are that the

fields are transverse and localized within the beam tunnel. The transverse fields are roughly
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uniform in the short transverse dimension within the beam tunnel and have peak intensity near
the center of the long transverse dimension (varying as the half-wavelength of a cosine function,
as if the beam tunnel were a waveguide). In addition to the transverse fields in the beam tunnel
there is a small longitudinal component that varies much like the hyperbolic sine in the short

dimension (zero intensity on axis), and is similarly non-uniform in the wide dimension.

When one looks at the real and imaginary parts of the field (as opposed to just the complex
magnitude, which is plotted in Figure 2.4), for some structural parameters the field appears with
a phase shift across the long dimension of the structure. Specifically, for the case under study,
for increasing phase advance (near 2) in the fundamental mode, the real field is a maximum at
one end of the beam tunnel, whereas the imaginary field is maximum at the other end of the
beam tunnel. This will effectively cause a small tilt to the beam bunching, but will not
significantly affect the gain. The biggest effect that the phase variation will have is on coupling
into the structure, and this will be accounted for when designing the optimal coupler for the

given structure.

The interaction impedance of a slow-wave structure is a measure of the electric field affecting
an electron beam in the beam tunnel per unit power flowing through the structure. There are
several definitions of interaction impedance and we will consider two of them. Both of these
impedances are determined using the simulated field solutions and both are a function of phase

advance.

First, we find what is commonly called the Pierce Impedance [5]. This is defined as:

2/(2k22P) (2.1)

’

Z =|E.,

Pierce

where k; is the axial propagation constant (defined by the relation ¢ = k_L, with ¢ as the

phase advance across one period and L as the length of one period), P is the total power flowing
through the structure, and E,, is the spatial Fourier component of the axial electric field

corresponding to the axial propagation constant for the first spatial harmonic as:

E., =J;LEZe”‘szz/L [14]. (2.2)

19



The integration is generally accomplished on 10*

the axis of the structure as the integral over one 10°

period, but the impedance is often averaged

over the surface area of the beam.

Impedance [ohms]
S 9
>, S
)
5
’
v

10° H Z e /.
We provide some representative Pierce 1o ‘
107 H " 2 R
impedance data using simulated data for a || Z
10?
1 1.25 1.5 1.75 2

device with parameters as in Table 2-l. The Phase / pi

results of a calculation of Pierce impedance on- .

Figure 2.5: Zpierce and Zioa VS. phase for the
axis for the fundamental mode are presented in  fundamental mode evaluated on axis (Zpierce), and
evaluated at the beam-tunnel height, at the
center of the long edge (Zota)). The solid lines
represent sections of positive dispersion, wheras
the dashed lines represent sections of negative
lower than in a round-beam slow-wave dispersion. The band edge appears near 1.75m.

Figure 2.5 as a function of phase. The

magnitude of this impedance is somewhat

structure, but the increased current afforded by

the sheet beam topology more than compensates for this. Notice that there is a singularity in
the plot where the group velocity equals zero (refer to Figure 2.1). The solid line portion refers
to the positive dispersion section of the curve, and the dashed line refers to the negative
dispersion section. The behavior at the band edge is a cause of some concern and will be

discussed in Chapter 4.

The axial electric field of the fundamental mode varies as might be expected within the beam
tunnel, with good uniformity in the wide dimension and like a hyperbolic cosine in the short
dimension. We consider a sheet beam with a rectangular cross-sectional area that is 0.48 mm
tall (50% tunnel height) by 4 mm wide (87% tunnel width), and centered in the beam tunnel,
and consider a phase advance of 1.5m. The variation of E,; across the wide dimension is less than
five percent of the average. The variation of Zp across the short dimension is smooth with a
minimum at the center, such that the value at the edge is 23% larger than the minimum, and a
smooth symmetry exists about the midplane (hyperbolic cosine-like). Averaging Zpiece Over the
cross-sectional area produces a value of 1.230 Q (we will use this value in the chapter on gain

analysis).

Next, we find what is called the Total Impedance [4], [87], [88], which is defined as:

ZToml = Vz/(zp)' (2.3)
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where

+g/2
V = U EZdZ , (2.4)

-g/2

g is the length of the cavity gap, and P is, again, the total power flow through the structure. This
integration is generally accomplished at the beam-tunnel radius, which, in the case of a sheet-
beam structure would be the half-height (in the short direction) of the beam tunnel (i.e. the
voltage is meant to be a quasi-static representation of a potential difference between the
opposing faces of the cavity). Data evaluated from simulation results is presented in Figure 2.5,
along with the Pierce Impedance. Notice again that the singularity at 1.75m occurs when the

group velocity is zero.

2d) Slow-Wave Structure Experimental Results

An experimental Ka-band slow-wave structure was built using conventional computer numerical
controlled (CNC) milling techniques. The structure was made of copper, with some of the
coupling waveguides made of aluminum. The dimensions of this test structure are the same as
in Table 2-1. All measurements were performed with an Agilent E8364B network analyzer

calibrated with WR28 waveguide connectors (covering a frequency range of 26.5-40.0 GHz).

The experimental results presented here fall under two categories: 1) reflection of a shorted
structure, and 2) perturbation of the structure. The reflection measurements produce
guantitative experimental data representing the structure’s dispersion. The perturbation
measurements provide a qualitative measure of the field at the perturber’s location, and are
guantitatively compared with simulations, experimentally confirming the field profile of the

simulation.

The first experiment is a one-port reflection measurement to determine the dispersive
properties of the structure. It is well-known that a structure of N periods will set up N
resonances in the fundamental mode with evenly spaced phase between m/N and m (or m+1m/N
and 2m, as the structure is reciprocal and periodic) [4], [89]. The structure is stacked with 10
cavities, a solid conducting sheet is connected at the midplane of the 11" cavity, and a

conducting sheet with a specially shaped coupling iris is placed at the midplane of the first
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cavity. The shape of the coupling iris and the

orientation of the exciting waveguide

determine which mode is excited in the SWS.

For the symmetric mode, the coupling iris is a

slot in the vertical direction that is made
identical to the end slot in the structure, and
the waveguide is oriented so that the electric
field is symmetric across the length of the iris
and therefore will be symmetric across the
height of the SWS (see Figure 2.6 for a
schematic of the physical setup). A second set
of end-pieces was used that changed the
placement of the conducting sheets from the
midplane of the cavity to the midplane of the
slots, which increased the number of cavities
from 10 to 11, and changed the effective
to short-

terminations from open-circuits

circuits. The results are plotted in Figure 2.7,
where the experimental data are compared
with the simulated dispersive characteristics
with good agreement. Notice that a few points
are missing at the low end due to the
waveguide calibration starting at 26.5 GHz, and
a point was unresolvable at the high end of the

short-circuited case.

For the antisymmetric mode, the same

procedure is used, but the coupling iris is
adjusted to admit an antisymmetric electric
field. Specifically, the coupling iris is a slot in
the horizontal direction that is made identical

to the beam tunnel in the structure. In this

Figure 2.6: Resonance measurement
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case, the waveguide is oriented so the electric
field is pointed from the top of the beam tunnel
to the bottom, which is the natural orientation
of the antisymmetric mode. The experimental
data in Figure 2.8 indicates that the resonances
are closely spaced in the frequency range of the
antisymmetric pass-band. Due to the severely
overlapping nature of the frequency vs. phase
relationship, and the compact range of
frequencies, it is impractical to try to map these
resonance frequencies into a dispersion
relation, but it sufficiently confirms the

frequency response at this point.
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Figure 2.8: Resonance measurement -
antisymmetric mode.

The second experiment is intended to probe the electric field within the structure. This is

another one-port reflection measurement with a nearly identical setup to the first experiment,

but the solid conducting sheet in the 11" cavity is replaced by a sheet with an iris shaped like

the beam tunnel, in which the probe can be inserted. The probe is a 0.5 mm diameter, quartz

rod that extends the entire axial length of the structure and is experimentally positioned using a

two-axis stage controlled by micrometers. All measurable frequency resonances are monitored

as the horizontal position of the perturbing rod is varied from one end of the beam tunnel to the

other end. The data is then represented as the
frequency shift from the un-perturbed
resonances and the results are reported in
Figure 2.9 and Table 2-IV. The important points
that are drawn from these data are 1) the field
is relatively flat across the length of the beam
tunnel (no nulls are present), and 2) the
frequency deviation is small, as would be
expected for a longitudinal perturbation of a

mostly longitudinal field.

30.1 ;
f /= 30.035 GHz
N 30t { ]
5 Df = 0.227 GHz
= Dfff =0.76%
S 209 0
c
% l
o ——
L 298 4
df = 0.069 GHz
- 0,
297 | std. dev. =0.08%

-2 -1 0 2
Rod Position [mm]

Figure 2.9: Perturbed resonance frequency vs.
rod position - symmetric mode.
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Resonance Phase fo average f Df Df/f, df std. dev./f,

# [deg] [GHz] [GHz] [GHz] % [GHZz] %

3 220.91 27.386 27.195 0.191 0.70 0.034 0.04
4 237.27 28.567 28.364 0.203 0.71 0.051 0.05
5 253.64 30.035 29.808 0.227 0.76 0.059 0.08
6 270 31.655 31.399 0.257 0.81 0.059 0.07
7 286.36 33.242 32.964 0.277 0.83 0.076 0.08
8 302.73 34.743 34.410 0.334 0.96 0.110 0.09
10 335.45 35.738 35.553 0.185 0.52 0.127 0.12
11 351.82 35.503 35.317 0.186 0.52 0.059 0.05

Table 2-IV: Perturbation measurement data. Data for each resonance number are obtained from plots
such as Figure 2.9.

HFSS driven-frequency simulations confirm the results of this perturbation experiment. The
averaged Df/f, are compared (simulation vs. experiment) for each resonance frequency in Figure
2.10 — these values, although not identical, are good indicators that the simulation and
experiment are both producing results as expected, and any discrepancies are likely due to

cumulative, small-scale manufacturing errors.

1%

We thus have confidence to use the simulated

field results to compute any field-derived 08% [

structure characteristic (interaction impedance, 0.6%

etc.), as this requires no analytical .
0.4%

Experiment
—— Simulation

0.2% - .

approximations (only the finite element

Relative Shift (Df/f ) [%]

approximation), eliminates experimental error,

. . 0% L 1 L
and does not entail manufacturing of parts for "26 28 30 32 34 36

. Frequency (fo) [GHZ]
testing.

Figure 2.10: Relative shift in frequency vs.
unperturbed frequency - symmetric mode
pertubation experiment.

The same sort of perturbation experiment can
be repeated for the antisymmetric mode,
where the coupling iris and the waveguide are
oriented to excite a transverse field within the structure. The results of this analysis are shown
in Figure 2.11 and Table 2-V. The important points of these results are the following: 1) The field

varies in magnitude and peaks towards the center of the beam tunnel with nulls at the edges. 2)
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Resonance fO fmin Dfmax Dfmax/fo 36 T T

# [GHz] | [GHz] | [GHz] % f,=35.486 GHz
1 33.980 | 32.474 | 1.506 | 4.43 ¥ o T

O
2 34.628 | 34.234 | 0394 | 1.14 > /

C

(0]
3 34952 | 34.473 | 0.479 | 1.37 2

g 34 v
4 35.486 | 33.874 | 1.612 | 4.54 = Df__=1612GHz

= o,
5 36.236 | 35.005 | 1.231 | 3.40 . . Dl o |4'5“’
2 -1 0 1 2

6 36.560 | 35.655 | 0.905 | 2.48 Rod Position [mm]

Figure 2.11: Perturbed resonance frequency vs.

Table 2-V: Results of perturbation experiment - T ; )
rod position — antisymmetric mode.

antisymmetric mode.
The magnitude of the frequency shift is large (about five times larger shift than the symmetric
mode), as might be expected for a longitudinal perturber in a transverse field. 3) Probing the
resonance frequencies makes it easier to distinguish the individual frequencies (which are still
rather dense in frequency-space), but does not completely solve the problem of which

resonance belongs to which phase advance (the overlapping frequency problem).

2e) Waveguide Couplers and RF Transmission

A matched coupler is necessary to eliminate gain ripple and instabilities as is necessary in
conventional coupled-cavity tubes. The electromagnetic power that drives the structure is
coupled in starting from a standard Ka-band rectangular waveguide (size WR-28). The coupler is
designed to yield a good electrical match over the full frequency range of interaction, and yet be

simple, robust, and compact [90].

A coupler was developed for the experimental slow-wave structure using a waveguide
transformer into the short-edge of the input cavity (symmetrically exciting the field across the
edge slot). Much use was made of the optimization facilities in the Analyst EM simulation tool
with moderate success. A return loss of better than -15dB over 6 GHz was realized in a

transmission measurement on the network analyzer.

Subsequent to the development of this experimental waveguide coupler, an extensive design
study has been performed on the matching capabilities of a waveguide transformer into a given
sheet-beam SWS. The design process for the transformer can be labor intensive; however,

several techniques may be employed to limit the size of the problem and minimize the time
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required to achieve a successful broadband match. We briefly discuss the theory of matching a

finite length of SWS via waveguide couplers and then share simulation results of a successful

broadband match.

We start with simulations of a short, finite, uniform section of SWS with symmetric waveguide

couplers on input and output cavities. The geometry is illustrated for an example in Figure 2.12,

where the dashed black line represents the plane of symmetry created by using symmetric

couplers. This simple configuration is used to match the couplers even if the final geometry is

more complicated (due to severs, increased length, or changing cavity parameters) because it

isolates the input or output junction, and reduces the model complexity. Through the simple

conceptual analysis of this system we can understand the matched response and simplify the

simulation requirements.

The system represented in the geometry of
Figure 2.12 has a uniform, periodic section
surrounded by two input transmission lines
with characteristic impedance Z,. If we treat
the SWS as a uniform transmission line of
length L, and characteristic impedance Z;, then
within the passband of the SWS the overall
system can be conceptualized as a weakly
reflecting mirror cavity of inner length L and
Z1-Z,

reflection coefficient F1=m at each
1 0

identical junction. It should be mentioned that
the length L is an effective length that might

practically change with frequency, but to first

l

Figure 2.12: Back to back symmetric waveguide

couplers attached to a short section of SWS.

order will be assumed constant. With this model in place the total reflection experienced at the

input can be expressed as the following:

Iy T, exp(—j2BL)
1-T; 2exp(—j2BL)

I1[1 + exp(—j2BL)]

Iin = +1I

Q

(2.5)

(2.6)
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The approximation expression suggests that for S-parameters

a given length of structure the input response
2, ~ I',[dB]+6dB

N
o

will oscillate in frequency between a reflection

value of zero and a value twice that of the

S-parameter [dB]
)
o

single junction. Simulated results for a %0 ~T,
simulated matched-SWS are pictured in Figure
. -40 ' - . .
2.13 — the local maxima are marked and 30 32 34 36 38 40

Frequency [GHz]
connected, indicating twice the response of a

single junction (in black), and the hypothetical Figure 2.13: Simulation results for an example
matched-SWS.
response of a single junction (in grey) as the

6dB-reduced translation of the maxima.

The crux of this argument is that this simple, back-to-back configuration provides the necessary
information about the single junction reflection parameter, and it does so with as few structure
periods as possible. To investigate the effect of the number of structure periods (changing the
length L), we provide the results of a series of simulations and compare the S-parameter
response. The plots provided in Figure 2.14 represent the return loss (S1; in log magnitude) for
four different lengths of periodic SWS, but identical input/output couplers. The point of the
comparison is that even though the results are different for each specific number of cavities,
there are similar behaviors. The passband behavior of the SWS is exhibited in each plot, with a
more sharply defined cutoff exhibited for more cavities. As the number of cavities is increased,
we see an increasing number of maxima across the passband, but the exact locations are not
easily predicted outside of simulation. Finally, the overall shape of the envelope of the maxima
is consistent — we compare maxima from a complete set of simulations with number of cavities
varying from four to twenty in Figure 2.15. The plot confirms that the overall envelope shape of
the reflection seen at the input waveguide is dependent only on the reflection at the
input/output junctions — it also suggests that we can use only a few cavities to determine the
response necessary within the bandwidth of the fundamental cavity passband, however the

resolution of the curve is improved with increased number of cavities.
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Figure 2.14: Simulation results for an example matched-SWS with varying numbers of cavities as noted.

The match into the input cavity is created by
adjusting length of the coupling slot between
the input cavity and the remainder of the SWS,
and also by adding a capacitive post around the
beam-tunnel (see Figure 2.16). We use a single
input cavity to transition from the waveguide
transformer to the desired slow-wave structure
parameters in order to minimize structure
length and complexity in this experiment (as

opposed to multiple input cavity transitions
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Figure 2.15: Maxima for a set of matching
simulations including those in Figure 2.14.
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used in some broadband matches). Adjusting —
the coupling slot length is equivalent to the

filter concept of adjusting the input coupling of >

the filter to create a match; more precisely, the
adjusted input coupling in conjunction with the I

additional waveguide steps create a broadband

matching network through a precise sequence

of mismatches. The capacitive post is created

a3
within the input cavity by extruding a region (post height)

around the beam-tunnel (within the center of
the cavity) in order to provide additional
sensitive tuning of the match (i.e. directly tuned
cavity capacitance), and also assists in the

conversion of the fields from a waveguide TE

mode into the desired SWS mode (cf. Figure

2.4).
Figure 2.16: Geometry used in optimization
simulations  with  optimization parameters

We set up a numerical optimization problem
P P P labeled.

using a three-dimensional finite element

method (FEM) simulation using parameterized geometry variables for the input cavity and
waveguide transition. The geometry utilized in these FEM simulations is presented in Figure
2.16. The simulation utilizes a symmetry boundary that bisects the waveguide and the
structure, and it also employs a unique symmetry-like boundary at the midplane of the slots
(pictured on the right of Figure 2.16) — both symmetries allowing a reduced solution domain and
faster solution times. The labeled dimensions represent the parameterized variables that are

allowed for variation in the numerical optimization procedure.

One rule-of-thumb for a numerical optimization with computationally intensive function
evaluation is to limit the number of optimization parameters, and this is achieved in several
ways through this simulation. First, we see that using this back to back symmetric configuration
avoids a possible duplicity of optimization parameters, as the geometry is mirrored onto the
opposite waveguide coupler, and only one set of parameters requires changing. Second, we

start with the waveguide at some intermediate height that may require further waveguide
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transitioning to achieve the full, standard waveguide height — this reduces the number of
optimization parameters, eliminates any requirements of achieving the full waveguide height in
the geometry, and it again reduces the simulation domain (the final match from intermediate
height waveguide to standard waveguide height is a trivial waveguide impedance match). Third,
we eliminate parameters that do not have as much effect on the simulation results. The final
set of parameters is required to make a good broadband match, and represents those necessary

parameters of a waveguide match and a matching system within the first cavity.

The numerical optimization is coupled directly with the FEM simulation solver (e.g. Analyst), so
that the optimization parameters within the geometry are updated according to the numerical
optimization algorithm, and a user specified metric function is minimized through the software.
The metric function that we specify looks for the largest return loss magnitude across a
frequency band of interest and returns a scaled version of that number, i.e. Metric Function =
20 + max {S;;(33 —37GHz)}[dB]. The main points of this computationally intensive
numerical optimization are the following. First, it requires the simultaneous optimization of
both the waveguide transition and the input junction, because a mismatch at either part would
produce a sub-optimal response. Second, the metric function depends on the frequency spacing
of the maxima (occurring at discrete points across the bandwidth), therefore a longer length
may be required to obtain the maxima correctly across the solution bandwidth. And, although a
long optimization can become stuck due to local minima, computer issues, or otherwise, after a

completed optimization, there is generally a successful broadband match.

Three final, suggested points for the FEM optimization are as follows. First, if operating in the
higher frequency portion of a given waveguide band, prior to starting the optimization, find a
reduced waveguide width that has a cutoff frequency closer to the operating band of the SWS
and start at that intermediate width in order to better match the dispersive and impedance
characteristics of the waveguide and SWS. Second, whatever the method of frequency sweep
employed in the FEM simulation, use a limited frequency band even if the full region of interest
is much larger — the speedup is often significant, and the frequency response of the maxima is
slowly varying by nature, so the match will likely continue outside of the optimized frequency
range. Third, find a method of intelligently applying the mesh in such a way to obtain a single-

pass solution that does not require adaptive or iterative meshing, yet retains reasonable
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solution fidelity, for example, apply a resolved Return Loss Optimized with CASCADE
Comparison between HFSS and CASCADE

mesh in the input cavity and around the
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Figure 2.17: Optimized return loss over the

numerical optimization. The structure’s 3 .
frequency band of interest — comparison

scattering matrix data from input cavity to between FEM simulation and scattering matrix
cascading.

output cavity is exported from the FEM

software along with input terminal characteristics to create a frequency-dependent table for
cascading waveguide matrices. We use a commercially available scattering-matrix code such as
CASCADE [91] to manipulate and optimize the waveguide couplers through direct variation of
the lengths and heights of the sequence of waveguide steps. This technique has been applied to
optimize the bandwidth, match the waveguide height and width to standard waveguide sizes,
and to minimize the total length of the waveguide coupler. The results of a standard

optimization and subsequent comparison to a final FEM simulation are provided in Figure 2.17.

If further complications in the structure need to be addressed, such as severs, or transitioning
cavity sections with different cavity parameters, then the input junction and/or output junction
can be optimized in the above manner and kept fixed. Then the optimization process can be
applied to the sever or transition of interest with appropriately designated optimization

parameters at the junction of interest.

2f) Slow-Wave Structure Geometry and Fabrication

At Ka-band frequencies, the slow-wave structure can be manufactured using conventional
computer numerical controlled (CNC) milling techniques. The analysis of the inherent
manufacturing errors due to prescribed machining tolerances, fixture implementation, braze
processing, welding, tuning, and even thermal effects of the structure influence the
electromagnetic design in order that sensitivities of the structure might be diminished or

distributed as possible. Further, the complementary sensitivity analysis of the geometric
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dependence of the structure response depends on our knowledge of these realistic limitations

of the geometry’s accuracy.

The geometry pictured in Figure 1.5 can be manufactured from a set of uniform solid
rectangular plates of copper. These identically machined plates are then stacked and aligned
with alignment pins — the stack can be either held together by mechanical means or by brazing
the plates together to form a vacuum-tight circuit assembly. Manufacturing tolerances on the
order of 0.0005” (12.7 um) are achievable using state of the art milling techniques. The
geometry, manufacturing, and tolerancing are considered in the analysis of the structure in the

next section, and then, of course, in the design of the final experiment.

There are a couple complications that arise in the manufacturing and alignment of the structure
that are unique to the sheet-beam geometry. The main complications lie in the dimension and
alignment of the beam-tunnel height — all other parameter sensitivities and alignment
criticalities are similar to a single-beam, round-beam SWS. The height of the beam-tunnel most
directly impacts the strength of coupling between the electron beam and the various modes
supported by the SWS (similarly to a round beam device) — if the total height is too large the
coupling is weak and gain is reduced, however if the total height is too small the coupling is
increased for all modes and an unintended instability may arise. Additionally, the beam-tunnel
alignment must be critically controlled to suppress mode coupling and excitation, and also to
prevent beam interception. The alignment is controlled first at the machining-tolerance stage,
and then at the fixture alignment stage. In conventional structures, the alignment is usually
accomplished by registering the stack of individually milled pieces at the outer edges, but often
primarily aligned along the beam-tunnel with a precision mandrel [92]. In the sheet-beam
structure, the beam-tunnel is too small and elongated to use an alignment mandrel that would
meet both qualifications of providing increased alignment sensitivity and not becoming stuck
within the beam-tunnel during the braze process. We plan on using a precision fixture to align
the stack of individually milled pieces with fixture pins registering the outer edges of the plates,
and using precision-ground gauge-pins to check the beam-tunnel height clearance before and

after the braze process.

The braze process itself is well-understood, where a combination of temperature and pressure
will cause an alloy to melt, seamlessly connect larger pieces of metal, and upon cooling, form

one large metal structure. Brazing is an appropriate technology for microwave vacuum
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electronic devices, as it creates superb electrical and thermal connections, is vacuum compatible
(when using the right materials and correct brazing environment), and creates a vacuum seal
that allows the outer walls of the coupled-cavity SWS to act as the boundary between the high-
vacuum necessary for a high-quality electron beam and air outside of the SWS (a “vacuum-
jacket” or “vacuum-sleeve”). When brazing is necessary at other junctions (such as the
waveguide coupler), another braze alloy material with a lower melting temperature must be
used to maintain the integrity of the first braze. For example, when brazing copper pieces a
good choice of braze material is a gold/copper alloy, and the first braze step might use an alloy
of 35% Au / 65% Cu, while the second braze step might use an allow of 30% Au / 70% Cu with a

lower melting point.

The connection of the brazed SWS assembly to the gun and collector assemblies can be
accomplished in many ways, often using some precision alignment pins and a weld flange on
adjacent assemblies. The alignment of these assemblies is critical for beam-transport in a sheet-
beam device, but is achievable, as demonstrated [26] [93]. Further, since we plan on reusing
gun and collector assemblies from previously developed tests, the mating will be designed to

match those already in use.

2g) Sensitivity Analysis

As mentioned in the previous section, the complement to the analysis of manufacturing
tolerances is the analysis of the sensitivity of the electromagnetic properties of the structure to
small changes in the structure. Sensitivity analysis has been important for all microwave
devices, but is considered particularly important for millimeter-wave devices and also sheet-
beam structures. Millimeter-waves represent a challenge because the manufacturing tolerances
become a substantial fraction of the geometry scale as the frequency increases. Because sheet-
beam structures are novel constructs with complicated fields, they must be analyzed carefully in
this manner. In this section we study various SWS geometry perturbations and the associated

sensitivity of the electromagnetic response.

In the definition of the geometry model for the eigenmode simulations, we use seven
parameters (cf. Table 2-I, where the slot 2 length is the same as the cavity height) which we vary
systematically to either side of the nominal. In one study, reported below, the results were

obtained at 1° and 179° (corresponding to the two ends of the dispersion plots) for each of the
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lowest three modes. The data in Figure 2.18 45

180 deg - § = 540um

are an example of the results for a variation of

_. 40 - 0 deg- 8 =150pm
¥ |
. . . z |

the structure period (equal axial cavity and slot 3. 0 deg | 6= 50um

2 & —

. . . . v

extents) where the period variable is varied g —

g 180 deg - § = 80um

L 30 |
from 3.135 mm to 3.215 mm (+1.3% variation) 0 deg+ & =30um
— the units of the y-axis are all in GHz. For each 25 i
3.12 3.14 3.16 3.18 3.2 3.22

frequency measured, and for each variable period length [mm]

varied, we obtain a sensitivity parameter, 6 =
Figure 2.18: Variation in frequency of six
d[length]/df * 100MHz (i.e. the change needed  resonant modes vs. period length.
to shift the frequency by 100 MHz), which
provides a measure of the possible amount of insensitivity for the specific parameter when

constrained to a 100 MHz specification. The slope is obtained by doing a linear-least-squares

line-fit on the five data points in each set. A larger number means that there is less sensitivity.

The sensitivity parameters for all seven variables are presented in Table 2-VI. For comparison,
the 0.0005” value listed as a reasonable value of accuracy in conventional milling techniques is
equal to a 8jimir = 12.7 um. Clearly, the sensitive variables are the coupling slot lengths and the
cavity height (which also affects coupling between cavities). We feel confident that structures
we manufacture will match the cold-simulated behavior of the slow-wave structures that we

design, further confirmed by the successful cold-test experiment detailed above.

Measurement Mode 0 Mode 1&2 Mode 3 Mode 4 Mode 5
period 30 80 50 -150 540
slot 1 & 2 width -39 -75 420 -40 52
slot 1 length -13 -15 -39 -43 -140
cavity width 82 240 -36 -300 -41
cavity height -21 -23 -27 -12 -15
beam tunnel

width 430 650 230 600 213

height 54 43 500 29 233

Table 2-VI: Sensitivity parameters (um/100MHz) for each of the simulated SWS parameters.
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We also investigate the sensitivity of the RF -
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example, the return loss magnitude across the Figure 2.20: Example results of a variation of the
full bandwidth is displayed in Figure 2.20 for  post height for coupler sensitivity analysis.
variation in the height of the capacitive post in

the input cavity. The variation in the post-height is £0.0005”, while the nominal height of the
post is 0.011”, for a £+4.5% variation. Through qualitative comparison of these variations, we
find that the most sensitive parameters for the wellness of coupling are this capacitive post
height, and the length of the first coupling slot. These are the important parameters for
conventional coupled-cavity matching sections, so we continue to expect similar performance
with the sheet-beam configuration. As a final test of the sensitivity of the coupler design, we
allowed all the labeled parameters in Figure 2.19 to vary randomly with uniform probability
distribution over the range +0.0005” and compared the resulting return loss to the nominal
case. The results of this comparison are found in Figure 2.21, where it is seen that although a
noticeable change occurs in the return loss, the change is 12-15 dB down, which is a respectable

coupling even if below our goals.
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Several other investigations of sensitivity will
arise through the various topics in this thesis.
We investigate the coupling between
longitudinal mode and transverse mode by
coupler and random misalignments in the
elongated beam tunnels, and their effect on the
stability and excitation of transverse modes.
We also investigate gain interaction and
sensitivity to period length, beam-tunnel height
and offset, and beam dimensions, beam
voltage, and beam current. This will be
reported later once the methodology to

estimate gain has been established.

Ansoft LLC S-Parameter Comparison sws213_08cavities 4.
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Curve Info \ .2
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Figure 2.21: Return loss across entire frequency
band — nominal case and randomly varied case.
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Chapter 3: Sheet-Beam Gain Analysis

The amplifier operation of a coupled-cavity structure using a sheet electron beam can be
described analogously to conventional traveling wave structures. We have already
characterized the dispersion and fields of the structure, and found that the electric field is
mostly uniform over the cross-section of the beam for the lowest symmetric mode. For the
majority of the following analyses we will assume that field of the fundamental operating mode
is uniform and that the beam is of uniform rectangular cross-section. We postulate that this is a
good assumption due to the relative uniformity of the field and beam, and this assumption is
confirmed through simulations that take into account the exact electric fields of the structure

and realistic electron beam distributions.

The interaction of the beam with the electromagnetic fields of the structure will be separated
into the study of the symmetric and antisymmetric modes. It is assumed that in this device only
the symmetric mode is excited at the input cavity by a well-matched coupler and that any sever
does an equally good job at absorbing the symmetric and antisymmetric modes — this is a
beginning to our justification for ignoring the antisymmetric mode in this chapter, and we will

treat the antisymmetric mode as an instability to be discussed in Chapter 4.

The amplifier gain is estimated using several different methods to investigate various effects and
assumptions in the operation of a sheet-beam coupled-cavity amplifier. Many various analyses
have been developed and documented in the literature for round-beam devices [4] [5] [94]. We
have adopted several of these analyses to a sheet-beam configuration as detailed in the text.
The following analyses have been used directly in this work to estimate the gain and stability of
a given design, and through the course of explaining the analyses we will highlight necessary
assumptions or approximations and useful design rules. First we investigate an analytical, small-
signal theory developed for TWTAs and discuss the effects of the sheet-geometry. Then we use
two simulation tools to predict performance over a range of frequencies and drive powers and
to provide comparison to the analytic theory. Finally, we validate these models with fully 3D
particle simulations with very few simulation assumptions. In this chapter, we do not use the
parameters of the proposed device, but explore the properties of the structure through several

variations of geometry — the simulated results of the proposed device are included in Chapter 5.
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3a) Sheet-Beam Pierce Analysis

A sheet electron beam traveling axially through a coupled-cavity structure operates analogously
to conventional round-beam traveling wave structures. The beam interacts almost continuously
over the length of the structure, and the velocity modulation impressed upon the beam is in
synchronism with the impression of the bunched current on the slow-wave structure (SWS).
This continuous, synchronous interaction produces a convective, growing wave, which leads to

the amplified signal.

We start by assuming that an RF modulated signal exists in the structure with sufficiently small
amplitude such that the electron beam energy is not strongly perturbed by it (alternatively, the
bunched AC-current in the beam must be much smaller than the total DC-current). This
condition assumes that the device is operating stably, and that there is a very small input
microwave signal within the passband of the amplifier. Then the resulting signal at the output
of the device will be a linearly amplified copy of the input signal. Due to this linearity, and to
further simplify the analysis, we will assume a signal of a single frequency within the band of
interest such that the electric field, magnetic field, and current densities all contain an oscillating

component e "'¥t,

Pierce found a differential form for the interaction of a one-dimensional electron beam with a
slow-wave transmission line model [5] [2]. He developed an expression for the beam influence
on the circuit fields and the circuit field influence on the beam, and on combining the two
expressions, he developed a relation for the propagation and growth of an electromagnetic
wave interacting with the electron beam. The equivalent analysis for the small-signal gain of a
sheet-beam structure is, by the nature of the 1D approximation, the same as that of a round-
beam structure — the only difference entering when including factors for the average interaction
and factors to account for space-charge debunching effects in the beam, as derived in Appendix

Assuming that the fields are predominantly in the axial direction (which is appropriate for
symmetric modes in the sheet-beam structure), we may start by finding the gain per cavity of
the fundamental mode. Using the beam averaged Pierce Impedance computed with Equation
2.1 in Section 2e, we estimate the linear, small-signal gain following [2]. The gain is calculated

using the following simple formulas:
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Zpiercel,
CPierce3 = P4-V0 > (3.1)
kL
N = = (3.2)
G = —9.54 + 47.3CpiorceN (3.3)

where I, is the beam current, V, is the beam voltage, L is the length of the circuit, and k, is the
axial wavenumber corresponding to the frequency of interest. As an example, we use the SWS
parameters of Table 2-I of the previous chapter, Zpjee = 1.230Q, Vo =13.3kV, I[pb=1A,and L =
31.75 mm (20 cavities), and compute Cpierce = 0.0285, N = 15 wavelengths, and G = 10.7 dB. We
remark that the values in Table 2-1 are yet un-optimized values for the structure and beam
parameters, yet it is encouraging that we can obtain a modest (though respectable) gain from a

short, uniform section of 20 cavities.

In Table 3-I we find a new set of parameters for a slow-wave structure that has a center
frequency at 35 GHz, operates with an electron beam at 19.5 kV and 3.5 A of rectangular cross-
section 4 mm x 0.3 mm (which are the desired beam parameters), and has a stronger beam-
wave interaction. This structure represents one of the several test-structures with a rectangular

ferrule (an extruded nose within the cavities,

. . P i
which creates a concentrated electric field SWS Parameter [in] [mm]
eriod 0.068 1.727
near the beam-tunnel) surrounding the P
. slot 1 & 2 width 0.030 0.762
perimeter of the rectangular beam-tunnel —
slot 1 length 0.133 3.378
thus, a few extra parameters appear in the
slot 2 length 0.135 3.429
table. The additional variables introduced in
cavity width 0.245 6.223
Table 3-I represent the following: septum
P g sep cavity height 0.135 3.429
thickness is the axial thickness of the copper septum thickness 0.023 0.587
plot in which the slot and beam-tunnel holes ferrule height 0.009 0.228
are punched (34% of the period), ferrule ferrule thickness 0.004 0.102
height is the axial extent of each opposing beam tunnel
nose (the remaining gap length is calculated width 0.175 4.445
to be 39.6% of the period length), and ferrule height 0.030 0.762

thickness is the transverse extent of the

rectangular nose away from the rectangular

Table 3-I: Parameters for the simulated slow-

wave structure.
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beam-tunnel perimeter. The various test-structures including ferrules did not perform
significantly better than similar structures without noses, so these were not retained in later
iterations. We performed a full small-signal analysis of the structure in Table 3-1 using the

developed analysis and the following presents representative data of that analysis.

We solve the standard cubic Pierce equation allowing for space-charge reduction in a semi-
infinite laminar-sheet geometry using a numerical solution for frequencies across the
fundamental pass-band. The cubic equation solution provides the growing wavenumber, k,,

which is converted into gain per unit length. The total gain is calculated as:
Gtot[dB] = Alaunch + Gwavelength [dB/Wavelength] * N (3-4)

where Ajgunch is the launching 10ss, Guaverengts. is the gain per length, and N is, again, the number of
SWS wavelengths in the length of uniform structure under consideration. Guayelengtn. is cOmputed
as above for each frequency across the band, and Aju.c» is computed for each frequency using
the analysis in [95]. The results are plotted in Figure 3.1 along with some simulation results to

be subsequently discussed.

The analytical results in Figure 3.1 labeled Cubic 30 . : . .
CHRISTINE-1D
Pierce Eqn., represent the small-signal gain 25 b |~ chmisTINE-CC i
20 —— Cubic Pierce Eqgn.
experienced by a sweep of single-frequency g i
: : : . . = 15F
small-signal inputs acting on an axially uniform G
S 10}
structure of 12 identical cavities (a total length
5t i
of 2.06 cm). These results promise large gain 0 . . . .
30 32 34 36 38 40
per cavity and large bandwidth for this Frequency [GHz]

structure. However the high gain, large . . .
gh gain, & Figure 3.1: Small-signal gain plots for three

bandwidth, and increasing gain at the band- different analyses: two simulations, and one
analytical (computed numerically).

edges are all suggestive of oscillations at the m

and 2m points (near 30GHz and 40GHz) which turn out to be the case, and will be discussed in

detail later. There are further complications with the higher-order modes of this structure that

are not predicted by the small-signal analytical theory of this structure, and these will be

developed through alternate analyses and through 3-D particle simulations for which we will

refer back to this structure for an example, and to these results for comparison. The final

conclusion of this analysis is that the results are suggestive of small-signal gain and bandwidth,
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and also suggest at possible instabilities in the fundamental mode, however further analysis is

required.

3b) CHRISTINE-1D and CHRISTINE-CC Analysis

The previous analysis has several deficiencies that can be addressed by finding a numerical
solution for the beam-wave interaction. The first deficiency appears in the need to represent
finite and axially changing characteristics of realistic devices by axially varying the transmission
line model in dispersion, impedance, and attenuation. This is not included in the above analysis,
but is defined through the numerical simulation. Second, is the automatic inclusion of space-
charge effects that reduce the gain of a real device. The third deficiency is in the small-signal
nature of the above estimates, which does not allow for an estimate for the maximum, or

saturated, output power.

The above limitations of the Pierce analytical model are met by performing numerical
simulations. The simulations allow for axial variations in the structure parameters, include
space-charge effects through numerical techniques, and are compatible with nonlinear large-
signal drive powers. However, the 1-D numerical simulations retain limitations associated with

the rigid disc electron beam approximation (e.g. no transverse beam expansion or contraction).

The traveling-wave tube parametric design code CHRISTINE-1D [94] was designed and validated
for devices with cylindrical electron beams (helix structures [96] [97] [98], folded waveguide
SWS'’s [99] [100], and others), and has been adapted for sheet-beam interactions. Because the
beam-wave interaction is defined by a 1D axial expression, the only adaptations necessary for
sheet-beam analysis are the beam-averaging calculation of the interaction impedance, and the
space-charge reduction coefficients. An outline of the steps required for adjusting these

coefficients is presented in Appendix I.

The input parameters for the simulation are the dispersion and impedance values obtained from
the frequency-dependent electromagnetic simulations of the SWS geometry along with beam
voltage, current, and the transverse cross-sections of the beam and beam-tunnel. Therefore,
the gain simulations are not derived directly from the geometry, and require several
assumptions based off analysis and experience. The first assumption of the CHRISTINE-1D code
is that the interaction is continuous along the axial extent of the structure, whereas in a

coupled-cavity structure the interaction has disjoint gaps with varying levels of field strength. A
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periodic interaction structure may be analyzed as a continuous interaction by including a gap
coupling coefficient as derived in Appendix I. The second assumption is that the interaction is
1D and uniform across the cross-section of the electron beam — we account for this 1D
assumption by averaging the effect of the interaction over the cross-section of the beam. These
are the same two assumptions made in the analytical small-signal gain expression above. These
assumptions allow for fast calculation of the interaction from only the electromagnetic
simulations of the SWS geometry. Besides these two assumptions, the rest of the analytical
assumptions of an axially-infinite structure are not required — indeed only a short section of the
structure is used, although the example discussed presently is periodic in the axial direction

which produces the same effect as assuming a semi-infinite structure.

The results for the example case of the previous section are plotted in Figure 3.1, with the
CHRISTINE-1D results labeled as such. The simulation provides results for any frequency within
the interpolating range of the dispersion and impedance data that are provided to it. Although
simulations with large input powers are allowed, the results in Figure 3.1 are for a case with
small input power (P;, = 1 mW) in order to compare with the analytical results. The differences
are most likely due to the actual launching loss experienced by the beam, where launching loss
is the term used to suggest that power from the input signal is required to initiate the bunching

action that convectively grows to produce the amplified signal.

The second simulation tool that we use to estimate traveling-wave tube gain in coupled-cavity
structures is CHRISTINE-CC [101]. This code was also designed for cylindrical-beam devices, and
compared against experiment [102], with nearly identical adaptations for sheet-beam devices.
The two main differences with CHRISTINE-1D, are that the dispersion and impedance are
formulated specifically for a coupled-cavity structure (allowing forward and backward coupling
of cavities), and the fields are represented as separate cavity-fields of which the cumulative
phased response interacts with the beam. The dispersion and impedance are evaluated as a
function of frequency by implementing a circuit model appropriate to the response of a periodic
unit cell of the cavity structure [84] [103] — this produces an inherent backward wave that exists
on a real SWS. In contrast to CHRISTINE-1D, which assumes only a forward-wave interaction,
CHRISTINE-CC requires an iterative solution to simultaneously find the beam behavior and field

strength of each cavity. The beam-wave interaction still follows the 1D assumption, and
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therefore the interaction is automatically averaged over the beam cross-section within the

simulation code, keeping a standard 1D rigid-disc beam representation.

In CHRISTINE-CC the input parameters are defined in terms of a circuit model whose circuit
element values are computed to provide a best fit match of the dispersion and impedance
characteristics obtained from the electromagnetic simulations of the SWS. While the coupled-
cavity simulation does not directly compute the fields within the 3D cavity geometry, the
combination of the best fit circuit model for the dispersion and impedance, and the increased
fidelity due to the disjoint cavity-field definition (see Appendix | for a discussion of gap fields and
gap coupling coefficients) makes this an attractive alternative to the continuous interaction
models used previously. Further information on the circuit model and the simulation code can
be found in references [102] [103] [101]. The only additional points not found in the references
are regarding the sheet-beam implementation, which are identical to those for the prior 1D
simulation tool (i.e. the coefficients of the space-charge depression, and the beam-averaged
field for the interaction calculation). The final point addressed in the most recent paper by
Chernin, et al. [101] is that the CHRISTINE-CC and CHRISTINE-1D results should be similar for

small values of Cpicrce.

The results for the identical example case of the previous section are plotted in Figure 3.1, with
the CHRISTINE-CC results labeled as such. The value of equivalent Cpierece for this example varies
across the band, but is ~0.07 at midband, which is moderately large (and is good for gain and
bandwidth, although difficult for stability), but not unreasonably close to one so that most
approximations hold very well. The ripples present in the CHRISTINE-CC case are due to the
forward and backward waves supported by the structure and by mismatches at the input and
output junctions (the ripple-frequency spacing is the inverse of the round-trip transit time for a
signal from input to output back to the input), and this is a well-understood phenomenon [104]

[105].

The comparison between the CHRISTINE-1D and CHRISTINE-CC results is a further comparison
and validation of the analysis developed in the Appendix. CHRISTINE-1D assumes a continuous
interaction with an interaction impedance given including all relevant coupling factors. In
comparison, CHRISTINE-CC formulates the problems in terms of the actual field shapes and
requires an impedance with no coupling factors where this impedance represents the actual

voltage squared over power ratio for both the SWS gap and for the circuit model used in

43



simulations. The remainder of these simulations will utilize CHRISTINE-CC, as this shows what
we believe to be the most realistic results from the various analyses and design codes (not

including fully 3D particle codes).

As a fast design tool, these simulation codes are useful in studying parameter variations and
their effect on the gain and response of the amplifier device. Through the course of the
development of the sheet-beam coupled-cavity amplifier, we performed numerous variation
studies in order to understand the behavior, optimize performance, and quantify the sensitivity
of the device to perturbations. Some of these studies were performed in response to
instabilities, in order to investigate behavior with varying beam parameters, to apply optimal

techniques of instability suppression, or to weigh the relative merits of various strategies.

The most fundamental variation analyses to SWS Parameter [in] [mm]
perform with CHRISTINE-CC are variation of period 0.066 1.676
drive power and frequency, obtaining device | slot1&2width 0.035 0.889
gain for all levels of input power and frequency. slot 1 length 0.105 2.667
This analysis will demonstrate the maximum slot 1 offset 0.042 1.067
power (saturated power) attainable from the cavity width 0.290 7.366
cavity height 0.145 3.683
amplifier, the achievable power with a limited yhee
) ] ] septum thickness 0.047 1.190
drive power, and the total device bandwidth at
beam tunnel
a given power level. For example, in Table 3-II
width 0.190 4.826
we introduce another set of parameters for a .
height 0.035 0.889

slow-wave structure that has a center

Table 3-ll: Parameters for the CHRISTINE-CC
simulated SWS.

frequency at 35 GHz, operates with an electron
beam at 19.5 kV and 3.5 A of rectangular cross-
section 4 mm x 0.3 mm, and has a moderate beam-wave interaction. This structure does not
utilize a rectangular ferrule (or nose) around the rectangular beam-tunnel — thus, no extra
ferrule parameters appear in the table. The one additional variable introduced in Table 3-II, slot
1 offset, represents a transverse offset of the parallel coupling slots from the short cavity wall —
this allows for additional flexibility in the adjustment of the dispersion and coupling between

modes without unnecessarily reducing the bandwidth of the fundamental mode.

A full sweep of drive frequencies and powers was performed for a device with parameters as in

Table 3-Il and representative data are illustrated in Figure 3.2. These data represent normal
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operation of the amplifier with fixed structure a5

and beam parameters, and variable drive signal
Freq.
[GHz]

—32
—33

34

35
—36
—37
—38

over a broad range of possible drive frequencies

and powers. This plot is our first illustration of

the large-signal response of a finite length of a

TWTA with realistic beam parameters — note

A X 0 10 26 30 46
that for small drive powers the amplitude Prve [ABW]

response is linear, while for large drive powers Figure 3.2: CHRISTINE-CC drive curves at varying
frequencies. Device composed of 24 identical
cavities with parameters in Table 3-ll,
decreases somewhat. Vieam=19.5 kV, and lpeam=3.5 A.

the amplitude reaches a maximum and

During efforts to suppress instabilities, and yet retain suitable amplifier performance, several
cavity designs and device parameters were adjusted to find an optimal amplification. A set of
cavity data was obtained from 3D FEM simulations, and the cavities were allowed to change
axially in specific ways to suppress instability and increase interaction — specifically, the cavity-
to-cavity spacing was allowed to vary in a simple way, and the total length was increased in
order to obtain sufficient gain while maintaining bandwidth. The attenuation level was adjusted
for stability, with axial variation in attenuation in order to reduce total loss and improve
performance, and was thus simulated. In the investigation of band-edge oscillations, the beam
voltage and beam current were varied in order to find stability margins at the band-edges. All of
these points will be elaborated in the following chapter on stability analysis, but are
fundamentally just variation analyses of a stable amplifier for the purpose of optimizing the

device for increased gain and bandwidth.

In addition to the nominal variations used to probe the stable driven operation of a given device
and the investigations of optimizing device parameters within the constraints of stability, there
are several parameters for which we investigate their sensitivity due to manufacturing concerns
or due to their being unique to the sheet-beam geometry. The first parameter of concern is the
beam-tunnel height, which is a direct analog to the beam-tunnel radius in a round-beam CC-
TWT. Because there is no ferrule (or nose) around the beam tunnels extruding into the cavities,
the beam-tunnel height does not have a large effect on the cavity’s frequency response or
voltage at the beam tunnel, only the fields within the beam-tunnel cross-section [106] [107]

(confirmed with HFSS simulations). The beam-tunnel height was varied manually within the
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CHRISTINE-CC input file, and the Kosmahl- 30 1

Branch analytical field expansion used to 21

20 B.T. Height

automatically calculate the interacting field for I [mm]
—0.64

0.76
-—0.89
1.02
—1.14

any beam-tunnel height — the results are

OV SRm—
o

o

plotted in Figure 3.3. As a comparison of the

o

analytic gain approximations and field o ‘ ‘ ‘ A
30 32 34 36 38 40

expansions we compare the effective change in Frequency [GHz]

impedance with beam-tunnel height. Looking Figure 3.3: CHRISTINE-CC bandwidth curves at
varying beam-tunnel heights. Device composed
of 24 identical cavities with parameters in Table

the Pierce gain coefficient, and then Eqn. 3.1 to 31l Vbeam=19.5kV, and lpeam=3.5 A.

at the gain at mid-band, using Egn. 3.3 to find

find the effective impedance for each beam-

tunnel height, we find that the sensitivity of the impedance to change in height is -6.66 Q/mm —
whereas, if we assume only that the beam-tunnel coupling factor varies as the hyperbolic-
cosine, as in the theory presented in Appendix |, the sensitivity of the impedance is predicted as
-4.29 O/mm (the negative sign signifies that the impedance decreases as the beam-tunnel
height increases). Clearly, the beam-tunnel height has a direct impact on the space-charge
reduction effects and other factors that moderately affect the gain calculation. Also, notice that
for small enough beam-tunnel height the gain ripple increases uncontrollably and possibly

unstable behavior occurs — this is confirmed with 3D particle simulations.

The variation of beam-height has similar results to the variation of beam-tunnel height, except
with a positive relation and a reduced sensitivity. The initial beam has a beam-height to beam-
tunnel height ratio of ~34%, and from a set of CHRISTINE-CC simulations, we find that the
sensitivity of the effective impedance is 2.25Q/mm in beam-height variation. This is
substantially different from the ballistic analysis prediction of 6.32 Q/mm, due to space charge
effects and otherwise. This sensitivity to beam-size (and, more generally, the beam density
distribution) is important because the actual, thermal beam that will be used in the structure
has somewhat indeterminate height, and the beam-height may change as the beam interacts
with the slow-wave structure. Overall, the sensitivity of device gain and other characteristics
seems acceptable due to variations in beam-height as demonstrated in these simulations and

further 3D particle simulations.
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The sensitivity to period length is of concern due to the manufacturing and alignment process.
Specifically, the thickness of the braze material after the braze process is of concern. This
parameter has several effects, with the possibility of significantly impacting the dispersion and
impedance, and also affecting the general synchronism with the beam. In order to investigate
both of these points we performed two sets of CHRISTINE-CC simulations: the first set of
simulations only adjusted the period descriptor within the simulation input such that the
periods were uniformly varied by £0.001” from the nominal with the dispersion and impedance
kept constant, and the second set of simulations used separate dispersion and impedance data
computed from 3D electromagnetic simulations with uniformly varied periods (and cavity depth
due to the usual placement of braze material). The results of these two sets of simulations are
presented in Figure 3.4 for a device with SWS described in the final chapter, and a step in the
SWS period (as described in the following chapter on stability). Clearly, the period length has an
effect on the gain peak, the frequency tuning, and the bandwidth. However, the uniform
variation of 0.001” still appears within reasonable operation, and this is a larger variation than
we expect from manufacturing or brazing tolerances, which are expected individually to be

within £0.0002” (randomly distributed) of the nominal dimensions.
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Figure 3.4: Gain vs. Frequency plots for a 21 cavity structure with a 200 W drive power — CHRISTINE-CC
study of period length variation. a) Only the period variable is adjusted. b) Period and cavity depth are
adjusted in 3D electromagnetic simulations, with SWS data defined separately in each CHRISTINE-CC
simulation.

3c¢) MAGIC3D Simulations

In order to address the 3-dimensional nature of the coupled-cavity structure, beam, and their

interaction, we utilize the fully 3D particle-in-cell (PIC) finite-difference electromagnetic solver
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MAGIC3D [108] to simulate the amplifier characteristics under a variety of circumstances. These
simulations confirm 1D gain estimates, exhibit oscillations when present, and provide field and
particle data suggesting methods to improve interaction and avoid instabilities. Finally, a suite
of simulations with small offset confirms the insensitivity of the structure to manufacturing

tolerances, and also the overall stability of the structure to oscillations of various nature.

MAGIC3D is a user-configurable software tool [109], meaning the user can select and configure
the solvers corresponding to the class of problem that the user is studying. There are
fundamentally two connected solvers, the electromagnetic field solver and the particle-pusher
algorithm. Because we require a full-wave solution, yet we have non-relativistic particles, we
can use the default solvers with fine-tuning to increase performance. The default
electromagnetic solver is a standard explicit finite-difference time-domain algorithm on a
Cartesian grid [108], so the resolution of the simulation is limited by grid size, and the grid size
limits the size of the time-step (due to the Courant stability condition), so a well-resolved
geometry requires significant computational resources (mostly time, as memory bandwidth is a
limiting factor on a good workstation computer). The default particle-pusher algorithm uses the
Boris split time explicit scheme [108], which is appropriate for non-relativistic particles, and can
be tuned for performance by increasing the number of electromagnetic time steps per particle
step, so long as the particle does not traverse a Cartesian grid cell in one particle time step.
These fundamental concerns and several specific details (port definition, particle definition,
magnetic-field definition, input signal definition, etc.) were taken into consideration in the setup

of the simulations to achieve optimal performance and fidelity.

Figure 3.5 shows the MAGIC3D model of a 14-cavity Ka-band sheet-beam CCTWT with two
waveguide ports. This is a single section structure with no sever, and will be useful as a
comparison to the uniform structure gain estimates in previous sections. Notice that due to the
Cartesian grid used in the simulation, we use rectangular cavity geometries with squared
corners. The geometry shows the input and output waveguide couplers connecting to input and
output cavities and a uniform section of periodic coupled-cavities with a beam tunnel extending
through the length of the structure. The visibly meshed objects are the conducting walls of the
cavities and waveguides, and can be assigned any reasonable value of conductivity (or be

perfectly conducting). The solution domain is the vacuum interior of the conducting objects,
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and the ports defined on the open ends of
waveguides and the opposing ends of the

beam-tunnel.

PIC simulations have been used to investigate
vacuum electronic devices of all types in many
applications [110] [111]. Specifically, linear

beam amplifiers have used 3D PIC simulations

to study accurate gain calculations [112] [113] | e
[114] [115] [67] [116], and stability to higher-

order mode oscillations [117]. MAGIC3D is a LA B B B B B

commercial simulation tool that has been used . .
Figure 3.5: Geometry of sheet-beam SWS with

in many of these studies. We use it here to  Wwaveguide inputs — cross-section along beam
tunnel.
study gain estimates, and in the subsequent

chapter for stability analyses.

We begin the 3D simulations by looking at the electromagnetic response and transmission
characteristics of the slow-wave structure with waveguide couplers as a comparison to previous
3D electromagnetic simulations with finite element software. We drive the simulations with a
specified drive power, P ive, and a specified drive frequency, f4rive, at the input port, where
the initial fields are zero, and the input signal is ramped up over 15 RF cycles. The simulation
runs for a few hundred cycles until a steady state is achieved at all ports. The magnitude of the
reflection coefficient at the input port is calculated by observing the power at each port and

solving for [T}, | in the following:

Pout = Parive(1 = [T ]?) (3.5)
in linear units, or

Poy¢[dBm] = Pgyipe[dBm] + [Ty, [[dB] (3.6)
in logarithmic units.

The RF return loss as a function of frequency for the structure is reported in Figure 3.6, in
comparison with the simulation of an identical structure geometry in the finite element

software, HFSS. The differences in the response can likely be attributed to the mesh resolution
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in the MAGIC simulation and overall simulation [0 PSS
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methodology of the preceding chapter, and the o
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slow-wave structure is different from previous, ¢} v
so as to obtain a stable device. Specifically, this 30
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geometry will be discussed presently in our Frequency [GHz]

discussion of gain studies with a 3D PIC
Figure 3.6: Simulated scattering-matrix
simulation, without yet discussing instabilities  parameters evaluated with MAGIC and HFSS.

and oscillations.

For the following particle simulations we refer to the set of parameters from Table 3-Il for a
slow-wave structure that has a center frequency at 35 GHz, and operates with an electron beam
at 19.5 kV and 3.5 A of rectangular cross-section 4 mm x 0.3 mm. This structure does not utilize
a rectangular ferrule (or nose) around the rectangular beam-tunnel. We performed a full gain
analysis of the structure in Table 3-1l with a suite of simulation analyses, and the following
presents representative data of that analysis. The simulated geometry with 18 cavities is

illustrated in Figure 3.7 including a simulated sheet electron beam for reference.

Results of a set of simulations for a short 14-cavity section are presented in Figure 3.8, where

the drive frequency was varied across the
bandwidth of the device at constant drive
power (Ppie = 200W = 53 dBm). The drive
frequency is adjusted in the input-file for each
separate simulation, and the results are
obtained from the steady-state portion of the
output-files. The RF power is calculated at both
waveguide  ports by integrating the

instantaneous Poynting flux over the WG port

surface area, therefore the input port power is

Figure 3.7: Geometry of sheet-beam SWS with
waveguide inputs and electron beam traveling
through the beam tunnel. a) cross-section along
beam tunnel. b) cross-section through septum
calculated as the ratio of the output power and coupling slots.

a combination of the drive power and any

reflected power from the structure. The gain is
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Figure 3.8: Bandwidth plots for a 14 cavity structure with a 200 W drive power. a) RF Power measured at
each waveguide port vs. Frequency. b) RF Gain vs. Frequency — comparison between MAGIC and
CHRISTINE-CC.

magnitude to the drive power. We see that for such a short section of slow-wave structure that
there is little gain (only 9 dB at maximum). Also, the CHRISTINE-CC estimated gain is provided as
a comparison. In this comparison the magnitude is similar, but the shape is off — this might
suggest that the end effects are somehow affecting the simulation. Some later comparisons are

much closer.

Further simulation results are presented in Figure 3.9, where the drive power was varied over a
reasonable input range of the device at constant drive frequency (three drive frequencies are
included in the plots). The drive power is adjusted in the input-file for each separate simulation,
and the results are obtained from the steady-state portion of the output-files. The 200 W
(53 dBm) drive power value is in the middle of the range and is in the mostly linear gain region —

it is certainly not saturated with the nominal drive power.

In the preceding particle simulations, the electron beam that was used was a beam created
through a standard uniform current density emission definition within MAGIC3D. This uniform
current density definition produces a beam with velocity perpendicular to the emission surface
with nominally 19.5 kV electron macro-particles (with a 2D space-charge depression algorithm
applied on the input port) and a total current of 3.5 A uniformly distributed over the rectangular
region of emission surface mesh. Hence, the nominally singular electron voltage and the
singularly defined emission direction produces a fundamentally overly-simplistic electron beam

in comparison to the thermal electron beam produced by a realistic thermionic cathode with a
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Figure 3.9: Drive curves for a 14 cavity structure. a) RF gain vs. drive power at different frequencies. b) RF
output power vs. drive power at different frequencies.

thermal spread of electron energies and emission angles. To provide a more realistic numerical
electron beam, we simulated the electron beam produced by the electron gun with a 3D
electrostatic gun simulation using the MICHELLE software [118], and utilized thermal emission
characteristics starting at the cathode. The MICHELLE thermal beam produces a beam with
nominally 19.5 kV electrons and a total of 3.5 A current in the beam. The particle data is
exported from MICHELLE into a data table that MAGIC3D can import and apply directly to the
desired emission surface. When the uniform beam definition without thermal particles is used,
we refer to this case as a cold-beam — whereas, when the electron beam has thermal velocity
spreads appropriate for a beam originating from a thermionic cathode with appropriate focusing

and compression, the beam is referred to as a hot-beam.

In comparison to the cold-beam results obtained above, in Figure 3.10 we present hot-beam
results for the same device geometry as the cold-beam results above. The solid curves have
identical geometry (in particular, the beam-tunnel height is the same 0.035” tall), while the
dashed lines are results for a smaller beam-tunnel height (0.0325” tall) producing a stronger
interaction. The gain and power vs. frequency plots are the same shape as above, but the solid
curves are reduced gain — due only to the thermal velocity and nonuniform beam distribution.
In order to compensate for the reduced interaction, we reduced the beam-tunnel height and
compensated appropriately for the gain as seen in the results. The CHRISTINE-CC results are

provided again as a comparison for the gain, and the same dissimilarity in shape persists.
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Figure 3.10: Bandwidth plots for a 14 cavity structure with a 200 W drive power and a hot-beam. a) RF
power measured at each waveguide port vs. Frequency. b) RF gain vs. frequency — comparison between
MAGIC and CHRISTINE-CC.

In Figure 3.11 we present a comparison of a drive-curve with the same geometry but different
beams in order to investigate effects of particle sampling on the device characteristics. The plot
shows a few points on the drive curve vs. drive power in order to establish consistent magnitude
of the response. The highest curve on the plot represents the output power for the cold-beam
case, while all four of the lower curves are various samplings of the thermal beam. Sampling is
required for the thermal beams to keep the particle count reasonable, and a renormalization of
the sampled particles produces the required current. The sampling varies from ~1-10%, yielding
particle counts from ~27000-265000 in the input region for the hot-beams, compared to the
cold-beam with ~65000 particles. Because the results are similar for the various samplings, we
establish that any of these samplings is sufficient to correctly resolve the amplifier dynamics.

For the remainder of the hot-beam tests we use
Drive Curves at 35GHz Comparing Cold/Hot Beams

an intermediate sampling of those tested here.
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Figure 3.11: Comparison of various beam

geometry. sampling and hot-beam vs. cold-beam results.
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Chapter 4: Sheet-Beam Stability Analysis

Stability is an issue that must be addressed in all high-power and high-gain tubes, but is of
particular concern in a sheet-beam structure where the mode density is increased and multiple
modes can couple and interact causing undesired effects. Sheet-beam coupled-cavity slow-
wave structures are inherently three-dimensional with complicated electric fields and
overmoded dispersion. In order to analyze the stability of a sheet-beam SWS, we must account
for the non-uniform fields and complex dispersion in order to estimate the interactions of the
SWS modes with a realistic sheet electron beam. Throughout the design of the sheet-beam
coupled-cavity amplifier, we account for several common sources of oscillations in conventional
high-power coupled-cavity amplifiers as well as concerns raised due to the elongated sheet-

beam structure.

Instabilities tend to occur at specific frequencies that can be traced to specific behavior of the
dispersion diagram — specifically, oscillations will most likely occur at band edges, mode
crossings, and at backward wave intersections of the beam-line with the dispersive modes.
Instabilities may also be observed at resonances of the electron gun or collector cavity, due to
back-streaming electrons, or a PPM cyclotron resonance — however, these instabilities are
separate from the beam-structure interaction and will not be considered here. The fields and
behaviors of the considered instabilities are all different, and will be catalogued through the
course of this chapter. Once catalogued, we can discuss the causes of these instabilities and
investigate techniques to mitigate their onset. In this chapter, we do not use the parameters of
the proposed device, but explore the properties of the structure through several variations of

geometry — the simulated results of the proposed device are presented in Chapter 5.

4a) Conventional High-Power Amplifier Instabilities

Instabilities have been documented as a cause of undesired behavior in many conventional
single-beam, round-beam, high-power coupled-cavity amplifiers [4] [119] [120] [104] [121] [122]
with similar analyses for other linear beam amplifiers (e.g. helix traveling wave tube [123], [124],
[125], klystron amplifiers [126]), and gyro devices (e.g. gyroTWT [127], [128] [129] [130])). For
traveling wave devices, the predominant mechanism for instabilities is regenerative oscillation,
where the amplified signal experiences a feedback due to internal or external reflections, and

the regeneratively amplified signal increases with each reflection until saturation is reached or
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some other nonlinear mechanism takes over. These regenerative oscillations tend to be near
the band-edges due to increased gain and high reflections at the passband edges. Instabilities
are particularly troublesome for devices with broad bandwidth interaction and high-gain and/or

high-power, because the band-edges experience a stronger interaction in all these cases.

The dispersion diagram pictured in Figure 4.1 represents an example dispersion curve of a
conventional round-beam CC-SWS operating in the first harmonic. The electron beam is
synchronous with the forward-wave of the fundamental mode over some region of phase

between m and 2m. In a pillbox-like cavity this 0

lowest, fundamental mode has fields that are o

similarly shaped to a pillbox TMge mode,
a0

therefore called the “cavity mode”. The next g

highest mode (separated in frequency by a E N
stopband and with opposite group velocity) has %— o
somewhat similarly shaped fields but is affected = 20
more by the coupling slots, and is therefore 10

called the “slot mode”. The dispersion diagram

0 0.5 1 1.5 2

is particularly useful for identifying points of Phase advance per cell / pi

intersection for the SWS modes and the

Figure 4.1: Example dispersion curve for a
electron beam-line (points of synchronicity conventional round-beam CCSWS operating in

. the first harmonic.

where the electron beam interacts most
strongly with the slow-wave structure). When the intersection is at a point of positive group
velocity, the interaction is generally an amplification of a forward propagating wave, which
would only have instability due to reflections and regenerative amplification. When the
intersection is at a point of negative group velocity, the interaction is a backward-wave
amplification, which can grow via a similar regenerative amplification under some
circumstances, or can grow spontaneously when the interaction is strong enough [131]. When
the interaction is near a zero-group velocity point (a band-edge, or otherwise local extrema), the
interaction can behave strongly and does not require reflections to produce oscillations. All of

these cases of intersection/interaction are of concern for both conventional high-power and

sheet-beam amplifier devices.
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As discussed in the section on linear gain, the forward wave interaction is determined, as a
function of frequency, predominantly by the following points: 1) the relative strength of
interaction for the structure, 2) the beam parameters, and 3) the relative synchronization of the
beam and wave velocities. The first two points are often combined into a single (frequency
dependent) parameter called the Pierce gain parameter, Cpiece. AS Cpierce increases the
interaction across the entire range of modes increases, the interaction effect with asynchronous
modes increases due to a stronger coupling of the electron beam and the electromagnetic
mode, therefore the interaction becomes more broadband, and most asynchronous oscillations
increase their likelihood of spontaneously growing. Alternatively, as the SWS bandwidth
increases, the coupling between the beam and the fundamental-mode band-edges inherently
increases due to a more synchronous phase-velocity across the entire bandwidth of the
structure. These are the dominant reasons why high-gain, broadband devices require special
methods of suppressing oscillations [120] [4]. Further complications arise if the beam current is
increased by increasing the beam cross-section, because undesired modes tend to interact more
strongly off-axis — therefore, in most forward-wave traveling-wave amplifiers a smaller ratio

must be maintained between the beam height and the beam-tunnel height [2].

High-gain devices are prone to oscillations even within the middle of the fundamental passband
under certain conditions. If the gain of the device is larger than the combined effect of round-
trip attenuation and reflections at the input and output, then a signal near the synchronous
interaction of the beam will form an unstable feedback loop and will oscillate. In practice, the
reflections at the input and output can only be controlled to a limit, and in-band attenuation is
often undesirable, so the conventional limit from a single-section device is roughly 20 dB [4]. In
order to achieve further stable amplification, the standard method is to use a circuit sever (a
localized, matched circuit termination that separates the circuit into sections) to prevent the
high-gain signal from being reflected to the input, yet allowing transmission and further
amplification of the RF signal on the beam. The dynamics of the sever are outside the scope of
this thesis and have been well documented elsewhere [1] [4] [95]. For an overmoded structure
such as a sheet-beam, the sever would need to present a broadband match to all modes
supported by the structure — this will be discussed in the section on sheet-beam instabilities, but
will be avoided in the final design by limiting the length and gain of the device to a single
section. Few high-power tubes have only a single section because that would require a

moderately high-power driver tube, but single-section tubes are often used in helix MPM'’s as
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power boosters [132] and have been used in some broadband high-power coupled-cavity power

boosters as well [18].

Although the in-band oscillations can be managed by reasonably well-matched couplers and
limited gain per section, for high-power, broadband devices the biggest danger comes from
band-edge oscillations [4] [119] [120] [122] [133]. This can be simply thought of as a
regenerative oscillation that occurs for frequencies near the upper or lower frequency of the
structure pass-bands, and therefore with the increased interaction impedance and reflections
that are associated with the band-edges. However, the total interaction can be much higher
due to the inherent interaction of forward and backward waves that produces an increased
feedback and interaction mechanism near the band-edge [121] [134]. For most high-power
devices this is a major concern for self-oscillation and drive-induced oscillation at the upper

band-edge of the fundamental passband.

All of these instabilities are of concern for both conventional amplifiers and sheet-beam
amplifiers. The key characteristics of distributed-beam amplifiers are high-current, high-gain per

cavity, and broad bandwidth, all of which increase the likelihood of oscillation.

4b) Driven vs. Non-Driven Instabilities

The two major classifications of instability are driven vs. non-driven. A driven instability (or
drive-induced oscillation) is some oscillation behavior that occurs only for some (usually large)
drive signal, but does not generally occur when the drive signal is small or nonexistent, and is
generally a nonlinear, multi-frequency phenomenon. A non-driven instability (also called a self-
oscillation) is an oscillation that occurs with no drive signal present, and arises as a regenerative
amplification or absolute instability of the thermal noise in the system. Almost any of the
separately classified oscillations can be due to either driven or non-driven causes, and therefore

this distinction is made separately.

Self-oscillation generally arises from a regenerative amplifier or absolute instability type
oscillation. Regenerative amplifier refers to a situation where a fraction of the amplified signal
(thermal noise to begin with) is partially coupled back to the input through some feedback
mechanism, and the gain is strong enough to overcome attenuation and coupling losses. This
type of amplification occurs for frequencies with strong interaction, and such that the phase of

the reflected wave allows constructive wave interference. An absolute instability is a point of
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particularly strong beam-wave interaction with zero group velocity (e.g. a band edge frequency),
such that the growth is not through a convective amplification but uncontrolled growth of the
undesired frequency at each point along the beam. The distinctions between the different kinds
of self-oscillation are usually mostly of degree, and it is undesired for any degree to be present,

so they all must be accounted for.

Drive-induced oscillations occur for certain types of instability more than others — most
commonly 2 band-edge oscillations and backward-wave oscillations. There have been several
reasons proposed for why a strong drive-signal would induce instabilities or lower the threshold
for oscillations. First, the energy spread of the electron beam increases for strong signals,
allowing undesired interaction of the beam with band-edges and regions of otherwise strong
interaction. Second, beam-expansion generally increases with drive signal as the beam-bunches
create stronger electric repulsion forces, allowing increased interaction of the beam with
undesired (off-axis) modes. Third, coupling of the undesired mode to the strongly driven mode
can occur through a mode-coupling mechanism mediated by the electron beam. All three of
these reasons likely contribute to the appearance of an oscillation, and the oscillating
mechanism is generally similar to the self-oscillation cases described above, but generally with a
reduced oscillation threshold. However, there are instances where a strong drive signal will
improve the stability of a structure, and a spurious self-oscillation will be overcome by a
powerful drive signal. This is a complicated nonlinear process that demands careful

investigation in all circumstances.

A special-case of this distinction between drive-induced and self-oscillation is a power-hole
occurring at a frequency of some self-oscillation. A power hole is only defined in cases of a drive
signal with some finite power and some reasonable frequency bandwidth, but the power-hole
may appear for large or quite small drive signal, and not quite the same manner as a large drive-
power induced oscillation. A power-hole occurs due to direct coupling of the drive-frequency to
some resonant oscillation, often due to resonances in the beam or transport, but possibly a
coupling to other modes supported by the structure. Generally the frequency of the driven
mode and the coupled mode would need to be commensurate, but could conceivably be a
coupling of a drive harmonic to a strongly interacting mode at a frequency the multiple of the

drive signal, but coupling harmonics would require a strong drive signal. The dynamics of this
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behavior are represented by a direct coupling of power from the fundamental mode into the

undesired, coupled mode where the power is dissipated or causes beam break-up.

4c) Sheet-Beam Amplifier Instabilities

A sheet beam amplifier has numerous complications that increase the likelihood of oscillation
due to a number of different instabilities. The sheet-beam slow-wave structure is inherently
overmoded with an increased mode-density, due to the expanded transverse dimensions of the
beam-tunnel and rectangular cavity. Also, the decreased beam impedance of the sheet-beam
creates a stronger interaction with all modes supported by the slow-wave structure. The

various instabilities of concern will be presented and discussed with examples.

A representative dispersion diagram for the 3- 0 " - T T
slot sheet-beam CCSWS is illustrated in Figure 60 | g
4.2. Several of the complications of this R _
dispersion diagram were discussed in Chapter 2, g i
where both the symmetric and antisymmetric g‘ ------------ e .
modes, and the intrinsic band-gap at 1.75w ;"{ T |
were investigated. The illustrative ©owop — Symmetric Mode| |
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are characteristic of the possible sheet-beam Du uls ; 1'5 .
amplifier instabilities that cause concern. Phase advance per cell / pi

Figure 4.2: Example dispersion curve for the 3-
slot sheet-beam CCSWS operating in the first
in the figure) are at a frequency comparable to  harmonic.

The transverse modes (the green, dashed lines

a half-wavelength supported by the beam-

tunnel length [23]. These modes can cause oscillation through either a backward-wave
oscillation or a band-edge oscillation when the modes are coupled through beam-tunnel offsets.
We investigate the interaction of transverse modes using 3D particle simulations (results found
in Section 4g) because the 1D theory is designed for longitudinal interaction with the
fundamental mode only. We have found that these oscillations do not arise in non-driven
conditions, and only appear as power holes near the frequency of the backward-wave
intersection or band-edge. The transverse nature of the oscillation was identified through

particle and momenta plots along the length of the interaction, and by the appearance only
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under beam-tunnel offset — never did a transverse oscillation occur for a perfectly aligned
structure. It may be the case that for longer structures with insufficient severs, that a self-

excitation of these oscillations would exist (i.e. oscillation without a drive signal).

The transverse mode is not strongly coupled by design, but can be unintentionally excited by
alignment errors in several locations. Without the electron beam, the transverse mode is not
excited if the beam-tunnel is perfectly aligned within the short dimension of the rectangular
cavity because the couplers are oriented such that the electric field is symmetrically excited
within the cavities. However, as the offset of the beam-tunnel increases, so too does the
unintentional excitation of the transverse mode. This offset can occur as any asymmetry in the
input cavity, or any cavity within the structure, although the most important parameters are
those affecting the symmetry/asymmetry of the electric field near the beam-tunnel (i.e. beam-
tunnel offset, or uneven capacitor post height). With the electron beam present the coupling to
the transverse mode increases if the beam is offset in the short dimension because the
transverse mode only has longitudinal fields off-axis (there are zero longitudinal fields on-axis in
the aligned geometry, and the transverse fields are relatively uniform in the short dimension).
These off-axis longitudinal fields will interact strongly with the bunched electron beam and
support oscillations. It is the combination of these affects that leads to the excitation of the

transverse mode oscillations through unintentional misalignments.

The band gap in the symmetric mode is indicative of the rectangular cavity, which reduces the
frequency of the second cavity resonance. In our effort to maintain the broad bandwidth of the
SWS, the second cavity mode (the conventional “slot-mode”) crosses with the fundamental

III

mode (the conventional “cavity-mode”), however, according to [135] the dispersions of similar
modes cannot cross in a trivial way without having a specific higher symmetry, which is not the
case for this particular crossing). This complicated dispersion is typical of the increased mode
density of a sheet-beam SWS — not only are there more modes within the general frequency
range of interest, but these modes will have additional band-edges and otherwise reduced
group-velocity regions unless carefully controlled. Another complication of the increased mode
density, is that this makes frequency selective attenuation techniques more difficult (if not

impossible), because the undesired, oscillatory frequency may exist closer to (or within) the

desired frequency range such that the attenuation may affect the operating mode.
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A further point that does not appear in the plot of dispersion is that sheet-beam structures
generally have complicated fields. Within the beam-tunnel region the fields are relatively
smooth and will be studied in terms of the transverse profiles of the interaction impedance. In a
SWS with only conductive losses, the complication of the fields in the exterior of the beam-
tunnel is not of overly general concern because the fields and dispersion can be obtained
through numerical simulation, and the only interaction outside the beam-tunnel region is
between the electromagnetic wave and the conductive surfaces. However, it is sometimes
harder to apply a mode-selective attenuation in such a place that will attenuate higher modes
and not affect the desired mode — the increase in difficulty is partially related to the increased
mode density discussed above. It is generally more difficult to selectively attenuate a higher
mode without affecting the lowest mode than to selectively attenuate the fundamental in
preference to a higher mode because the lowest mode generally has no extra field nulls in which
to place lossy absorbers. Nevertheless, the fields can be separated into symmetric and
antisymmetric modes which have very different field distributions and current densities.
Therefore a scheme could be applied to preferentially attenuate the antisymmetric modes

either in a distributed manner or at a discrete sever location.

A final complication that we discuss here is that if multiple sections of gain are used in the
amplifier design, a sever must be utilized that will substantially absorb and suppress all modes
that are supported by the structure and which may interact with the electron beam. Again, this
may be accomplished by dividing the modes into symmetric and antisymmetric classes. The
symmetric modes are nominally terminated at the sever in the conventional manner — either
internally by removing the coupling slots and applying lossy dielectrics, or externally by coupling
the SWS into a matched broadband load. However, the antisymmetric modes exist
predominantly within the beam-tunnel region, and would neither be well-coupled to an external
load, nor likely to internally loading dielectrics. It may be that a distributed loss that suppresses
the antisymmetric mode along the length of the circuit is necessary for longer devices with

higher gain.

4d) Backward Wave Analysis

There have been many analyses of backward wave interactions and the thresholds for oscillation
in a given structure. The most standard analysis finds a threshold above which the device will

oscillate even when no reflections are created by mismatched terminations or severs, but only
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by the natural feedback that occurs with the combination of forward and backward waves. The
most classic backward wave oscillation analysis by Johnson [131] evaluates the current
threshold required for oscillation as a function of length of the structure and provides a Pierce-
like 1D transmission-line model for the interaction. Variations on this analysis have been
developed using field solutions or otherwise for various kinds of linear beam device [131] [136]
(or gyro-device [137]). The model we use is similar to the standard Johnson model with the
interaction calculated using beam averaged values for the synchronous electric field

components [123].

Specifically, we use the same 1D transmission-line interaction assumptions as in the 1D gain
analysis, but in the calculation of forward and backward wave interaction, we average the Pierce
impedance using the appropriate synchronous spatial harmonic of the backward wave over the
beam cross-sectional area. We find that in comparison to the nearly uniform interaction of the
forward-wave with the electron beam, the fundamental backward-wave has a linearly varying
interaction with the height of the beam, with zero interaction on-axis. This is only marginally
different than the calculation in a cylindrical beam, where the linear variation in backward wave
interaction is radial with a single azimuthal variation. However, higher-order modes of the
sheet-beam structure have much more complicated field profiles and the beam-averaged
interaction impedance values are calculated numerically from simulated field solutions, and
these higher modes are at reduced frequency (increased mode-density) causing an increased

interaction and increasing the difficulty of selective suppression.

The 1D model used here assumes no reflections and no loss — the oscillation threshold is
analytically derived as the necessary conditions for the backward wave to spontaneously grow
from zero amplitude at the output of the device to a finite value at the input (which due to the
inherent feedback of the backward wave will grow until saturation). Generally this oscillation
threshold is presented as the start oscillation current for a given device and given beam voltage,
however in the design of our device we assume a beam voltage and current, and allow the axial
length to change for a given uniform structure, thus providing a threshold length for BWO
stability. The simple model for backward wave growth is calculated using the following

formulas:
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where wperris an effective, angular plasma frequency, R, is a reduction constant (assumed equal

to 0.5 for this simple model), Ageam is the beam area, 7 is the electron charge-to-mass ratio, v

is the beam velocity and yis the relativistic Lorentz factor.

As a preliminary example, for the original structure characterized in Chapter 2, we use a beam-
averaged Pierce Impedance appropriate for the backward wave mode (Zpierce = 0.282 Q) and
beam parameters as previously, producing the result that Qpierce = 124. Then, using the tables in
[131] we find CpierceN = 0.6 for our value of QpierceCpierce. This yields a maximum length of 63 mm,

which is twice the length of the short section used in the forward wave analysis of that section.

It has been found that for reasonable ratio of beam height to beam-tunnel height, that the
backward wave component (n = -1 spatial harmonic) of the fundamental mode has a small
enough interaction to keep the spontaneous excitation below the threshold value. However,
the backward wave interaction can couple to a reflected forward-wave, allowing for a self-
regenerating oscillation — this is particularly dangerous at the 1.5m-intersection of the forward
and backward waves, where the forward and backward waves have the same frequency and
wavenumber and are nearly in synchronism with the electron beam. Providing further concern
for biperiodic structures is the case of an asymmetry that might couple the modes and create a
bandgap at 1.5, thereby increasing the beam-wave interaction at that point [123] [138] [139].
Further implications of this backward-wave mode have been found (power holes, gain ripple)

[123] and investigated in terms of the device simulations.

Of greater importance than the simplistic spontaneous BWO analysis provided here, is the
understanding of the backward wave interaction for similar analysis of dangerous band-edge
oscillations and higher-order mode interaction. Using a 1D interaction theory, the interaction
with the backward wave of the fundamental mode is identical to the backward-wave interaction
with higher modes, except the fields are more complicated and the frequency is somewhat

higher (meaning the interaction is generally lower). Non-driven band-edge oscillations are of
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major concern for a coupled-cavity device with large gain per cavity, and are qualitatively similar
to backward-wave oscillations with large reflections and larger interaction. Most intersections
of the beam-line with higher-order modes occur at backward wave intersections or near band-
edges due to the slope of the beam-line. These various intersections will be investigated in the

following for our example sheet-beam structure.

4e) Higher-Order Mode Analysis

The term higher-order mode is loosely applied

these are considered undesired modes that
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Figure 4.3: Close-up dispersion curves for all
modes obtained in eigenmode simulations of modes of the SWS with parameters in Table 3-II.
the 3-slot sheet-beam CCSWS with parameters

in Table 3-1l. The intersections of the beam-line (the dashed line in the dispersion plot) with the

various modes represent possible interactions that will be investigated in the following.

Higher order modes are a concern for conventional high-power devices, although instability is
less common than band-edge oscillations [4] [119] [120]. There are several reasons why the
fields in higher-order modes interact less in the case of round-beam devices yet are potentially
of concern in a sheet-beam device. First, the fields of the higher mode fall off rapidly from the
walls of the beam tunnel, which is conventionally accounted for by limiting the beam radius to
beam-tunnel radius ratio; however, for a sheet-beam device, even though the beam height to
beam-tunnel height ratio might be small, the beam-width is generally a sizeable fraction of the
beam-tunnel width, which could increase interaction with some modes. Second, in
conventional structures the frequency and wavenumber at the point of intersection are
significantly larger for the higher-order mode than for the fundamental interaction, which
conspire to decrease the interaction strength; however, for a sheet-beam SWS, the increased

mode density reduces both the frequency and wavenumber of several higher-order mode
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intersection points in relation to the fundamental interaction, increasing the relative interaction
strength. Third, due to the increased mode density of sheet-beam SWSs, additional band-edges

may appear that interact strongly with the electron beam.
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Figure 4.4: Interaction impedance vs. position plotted over the transverse cross-sections of the beam-
tunnel, for each mode intersection in Figure 4.3. Designators: F.W. — Forward Wave, B.W. — Backward
Wave, B.E. — Band Edge.

In order to investigate the interaction of the electron beam with the fields of the structure, we
numerically evaluate the interaction impedance across the transverse cross-section of the
beam-tunnel area for each intersection of the beam-line and dispersion curves in Figure 4.3. A
set of contour plots representing the transverse positional-dependence of the interaction

impedance calculated over the cross-section of the beam-tunnel is shown in Figure 4.4. For

reference, the beam height to beam-tunnel height ratio is approximately 50%, and the width
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ratio is about 80%. These impedance profiles have the following significance for interaction:
Mode 0 is the only mode that has a strong non-zero impedance on-axis and is mostly uniform
across the beam cross-section. Mode 1 is a backward wave intersection with zero impedance
on-axis and little interaction across the beam. Mode 2 is an antisymmetric mode backward
wave intersection, with very little interaction for the aligned beam-tunnel case. Mode 3 is the
second antisymmetric mode intersection with even less interaction, but the intersection is close
to a band-edge so the interaction will be much stronger. Mode 4 is a symmetric mode backward
wave intersection with non-zero impedance on-axis, but very small magnitude across the beam
cross-section. Mode 5 is another symmetric mode backward wave intersection with nearly zero
impedance on-axis (due to the biperiodicity), but the off-axis impedance ramps up quickly in the
wide direction, and is intensified due to the proximity of the upper band-edge, and is therefore

of concern. Modes 6 and 7 are antisymmetric modes with weak-to-moderate interaction.

In order to quantify the interactions and compare their relative strengths, we develop a table of
the expected linear amplification of the structure (forward wave intersection) and the threshold
oscillation length (backward wave and band-edge intersection) for a given beam voltage and
current. The interaction impedance is averaged over the beam cross-section and applied to the
linear gain or BWO theory already developed. The results are provided in Table 4-I, assuming an
axial length of 12 cavities (0.77”) for the forward gain calculations (negative gain means that the
bunching process has not succeeded in amplifying the signal). This table suggests that the band-
edge intersection does not have a strong interaction (which fortunately is true), and that if the

circuit were made longer (e.g. to produce more gain) that the most susceptible mode to

Mode # Type Phase [deg] Freq [GHz] Zpierce [OhMS] Gain [dB] Lthreshold [iN]

0 FW 1.497 34.686 2.166 10.0
1 BW 1.497 34.761 0.018 ——— 5.90
2 BW 1.563 36.144 0.191 ——— 2.49
3 BE 1.583 36.875 0.007 7.50
4 BW 1.750 40.557 0.022 ——— 4.69
5 BW 2.125 49.074 0.287 ——— 1.45
6 FW 2.375 55.570 0.003 -6.2
7 BW 2.458 58.464 0.007 ——— 4.79

Table 4-1: Table of interaction strength (forward gain or BWO threshold length) for each mode
intersection in Figure 4.3.
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oscillation is the backward wave intersection of Mode 5 (which unfortunately is also true). The
stability of this slow-wave structure was confirmed with 3D particle simulations for several
lengths of uniform structure (until oscillation occurred). Further information on particle

simulations can be found in Section 4g.

4f) CHRISTINE-CC Pi and 2Pi Analysis

CHRISTINE-CC was used in the analysis of small- and large-signal gain for the coupled-cavity
structures investigated here. The limitation with CHRISTINE-CC is that, although it is a multi-
frequency simulation code, it only responds to the set of frequencies prescribed to the
simulation — it does not predict oscillation frequencies in a manner that a time-domain
simulation might naturally exhibit an inherent oscillation. However, below the onset of
oscillation, the CHRISTINE-CC simulation should well predict the performance of the amplifier,
and nearly up to the threshold of oscillation the simulation should predict the gain
characteristics. Furthermore, the fast simulation times of the parametric design codes allow
many variations and a full search of the possible parameter space. We use several analyses of

CHRISTINE-CC to predict instabilities within the fundamental mode and at band-edges.

It was mentioned in the small-signal analysis of the structure, that if the Pierce gain parameter,
Cpierce, increases then the gain ripple increases and the gain fluctuates wildly. We explore that
further with a fixed structure (SWS parameters, and fixed length), by adjusting the beam voltage
and current. By performing a few frequency sweeps with several values of beam current (see

Figure 4.5), we see that for large currents the solution again fluctuates wildly and, in this case,

the gain increases towards the band edges_ The % Small-Signal Gain vs. Frequency for 5 Beam Currents
increased interaction created by the increased
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are confirmed here.

Figure 4.5: Small-signal gain vs. frequency for 5

Furthermore, what we find in the simulation is  values of beam current — simulation results from
CHRISTINE-CC for a structure very similar to that
that for some values of beam current and  from Chapter 3.
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frequency, the solution does not converge to a solution in its iterative solution process. This
non-convergence does not necessarily imply instability, but we would expect that for regions of
physically stable amplification that the simulation would correctly predict the amplifier gain.
We can avoid the complications of rationalizing the significance of converged vs. unconverged
solutions by noticing that the unconverged solutions generally occur at the peaks of gain ripples
near the band-edges, and then suggesting that the amplification at the band-edges should be
below some threshold gain to avoid instabilities — therefore, we can pick a reasonable gain
threshold below the threshold of unconvergencea and suggest that the gain is required to

remain below this value at the band-edges.

To investigate the beam voltage and current stability margins more carefully, we perform a fine-
tuned sweep of voltage and current at a single frequency near the m-point, and again at another
frequency near the 2m-point. The results of this variation are shown in Figure 4.6 as contour
maps of the gain vs. beam voltage (abscissa) and beam current (ordinate). The absolute
magnitudes of the gain contours have been omitted — only retaining the general shape of
contours and the threshold contour above which the solution does not converge. The threshold
contour is the thick line, above which the solution is unconverged. The red dot represents the
nominal values of beam voltage and current that we desire to use, which lies far above the
threshold curve, which implies that this structure may oscillate when using the desired beam-
parameters. Both band-edge oscillations (m and 2m) were observed in 3D particle simulations

(cf. section 4g), confirming the instability prediction.

Uns{able!

Unstable!

Beam Current (A)
Beam Current (A)

| Stable} __|Stable}
L L L L
05 17 19 21 23 55 %45 17 19 21 23 25
Beam Voltage (kV) Beam Voltage (kV)

Figure 4.6: Gain contour maps. (a) Near m-point f,=30.6 GHz. (b) Near 2m-point f,=40.3 GHz.
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4g) MAGIC3D Simulations

In order to address all the complications of the three-dimensional nature of the coupled-cavity
structure, beam, and their interaction, we utilize the fully 3D particle-in-cell (PIC) finite-
difference electromagnetic solver MAGIC3D to investigate the stability of a design. These
simulations exhibit all kinds of oscillation mentioned so far (gain ripple, band-edge, power holes,
backward wave, higher-order modes, and transverse interactions), and provide field and particle
data suggesting methods to improve interaction and avoid instabilities. A suite of simulations
with small offset confirms the insensitivity of the final design to manufacturing tolerances, and

also the overall stability of the structure to oscillations of various nature.

PIC simulations are well-suited to looking for oscillations because the simulation does not make
any assumptions about single-frequency excitation, stable amplifications, or forward-wave
approximations, and have been used in several studies of amplifier stability [140] [141]. The
“first-principles” and time-domain nature of the PIC simulations allow the simulations to more
faithfully model all the effects and complications of a real device without having prior
knowledge of the expected behavior of the system. The result is that oscillations are very
apparent even when unexpected, and instabilities were investigated from the beginning due to

their innate appearance in particle simulations.

The first example of an oscillation that was most apparent, and also seemingly most dire, was at
an intersection with Mode 4 (c.f. Figure 4.3), but for a slightly different dispersion curve that
included a bandgap near 1.75m. The simulation was started as a test of mid-band gain for a
small-signal input with a slow turn-on of both the input signal (35 GHz drive frequency, and 1
mW drive power) and the electron beam. However, under even these unassuming conditions,
the signal at the output began to grow exponentially. Figure 4.7 provides a frequency spectrum
of the output waveguide voltage obtained by FFT of the voltage output, and also a time-history
of the power through the output waveguide. The time-history shows the exponential gain after
an initial turn-on transient. The spectral magnitude shows that the oscillation occurs near a
frequency of 43 GHz — this frequency is out of the fundamental mode band (approximately 30-
40 GHz) and is near both the beam-line intersection and the 1.75m band-edge. For the SWS
used in this example, the higher-order mode analysis used previously showed that the threshold
stability length was only 0.27” (the shortest length of all mode intersections), while the total

circuit length in the MAGIC3D simulation was 0.81”. In this case the position of the band-edge
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Figure 4.7: (a) FFT spectrum of output waveguide Figure 4.8: (a) FFT spectrum of output waveguide
voltage, and (b) output waveguide power time- voltage, and (b) output waveguide power time-
history, showing a strong oscillation at a history, showing oscillations at a both band-edge
frequency of a H.O.M. intersection. frequencies (c.f. Figure 4.6).

with respect to the beam-line was aggravating the oscillation and decreasing the threshold — this

was adjusted by changing the dispersion through geometry adjustments.

The second example of an oscillation that appeared through the innate characteristics of the
sheet-beam structure were band-edge oscillations at the opposite ends of the fundamental
mode (both m and 2m). The SWS used in this simulation was similar to the above, except that
the 1.75m band-gap was minimized. The frequency range of the fundamental mode was
maintained approximately between 30-40 GHz. The simulation was again run with a small drive-
signal (1 mW) at the center of the fundamental mode (35 GHz) with slow turn-on times. Figure
4.8 exhibits frequency and time data for this example case. The time-history plot of the output
power again shows exponential growth in the output power after some turn-on transient. The
frequency spectrum clearly shows the predominance of the signals at 30 and 40 GHz (1 and 2m).
This structure and parameters were studied in the CHRISTINE-CC band-edge analysis previously
with representative gain contour plots at the band-edge frequencies in Figure 4.6. It is

confirmed in these two complimentary analyses that the increased current afforded by the
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sheet-beam geometry creates the larger band-edge interactions. We account for this in later

simulations by reducing the cold-bandwidth of the structure to 31-39 GHz.

Not all oscillations arise as quickly as the last two — many oscillations only appear after running
quietly for 50 ns, or they might grow exponentially but have such a small growth rate that after
~20 ns would still remain in the small-amplitude drive signal, or possibly the simulation noise.
The standard simulation we use to look for general stability is to set the input drive signal to
zero amplitude and run the simulation with a slow turn-on time for the electron beam. The
simulation then proceeds for 50-100 ns and a time-frequency analysis is performed to study any
apparently growing frequency content. Furthermore, in order to assure stability of normal
device operation, this analysis is repeated under worst-case scenarios — e.g. slight mismatch at
the input port and large mismatch (or total reflection) at the output port. Appropriate steps can
then be taken to assure stability under even the most arduous circumstances as detailed in the
following section. This zero-drive stability test is of primary importance because it very directly

shows the inherent stability of the amplifier device under test.
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fundamental mode at a constant drive power of  bandwidth showing the appearance of a power-
200 W (strongly driven, but not saturated). hole when the beam-tunnel is offset.

Then the entire set of beam-tunnels was

uniformly offset in the short transverse dimension to create a coupling of the excited wave with
the transverse mode and to increase the longitudinal coupling of the wave with the electron
beam. The results of gain vs. frequency are plotted in Figure 4.9 showing the standard parabolic
gain variation for the perfectly aligned case, and in the offset beam-tunnel case showing a large

ripple, or power-hole, at 36 GHz. We see in the dispersion diagram of Figure 4.3 that the upper

band edge of the antisymmetric mode is at ~36 GHz, and that the beam-line crosses the
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dispersion somewhere near this band-edge. This power hole was removed by adjusting the
dispersion so that the antisymmetric mode band-edge was not in the middle of the operating

band and therefore interacts less strongly with the bunched beam.

4h) Instability Mitigation Techniques

In order to combat the various oscillations that are inherent to this structure, many techniques
were considered to reduce or suppress the interaction that leads to oscillations. Some
techniques were investigated in terms of the loss provided to selective frequencies within an
infinite structure without a beam. Other techniques involved adjusting the dispersion in various
ways to avoid bad interactions. A third general technique was to adjust the fields of higher
modes to reduce their interaction with the beam. The final technique was to change the
structure in some prescribed manner along the axis to limit the undesirable interaction at any

one frequency or intersection.

One of the first methods we investigated for selectively attenuating higher frequency modes
was the standard method of applying lossy dielectrics in tuned cavities adjacent to the SWS
cavities. We used the same eigenmode simulation setup as those in obtaining the dispersion
diagrams and compared the calculated axial attenuation for the case of lossy dielectrics vs. only
copper conductor losses. We obtained reasonable results with some frequency selectivity and
modest attenuation for some of the higher frequency modes. However, these lossy dielectrics
did not noticeably affect the antisymmetric modes (even when they were at the tuned
frequency of the lossy dielectric). Loss was created in the antisymmetric modes by adding a
lossy coating or insert on the side walls of the beam-tunnel where the current density is highest
for these modes — this is very selective to the antisymmetric modes because very little current
flows in the beam-tunnel for symmetric modes. Neither of these methods were pursued in the
design of the proposed experimental device due to their increased complexity. One of the
methods that we did use was increased broadband conductive losses, created by surface coating
or appropriate choice of conductor material. The benefit of this method is that general stability
is maintained for all modes regardless of current distributions. It is noted in many references
(e.g. [4], [139]) that the forward gain is affected only modestly by the introduction of
attenuation, while the backward wave and band-edge oscillations are affected much more by
the increased loss. Therefore, we utilize the broadband conductive loss to help stabilize the

fundamental mode band-edge oscillations (both m and 2m) that cannot be eliminated by

72



frequency selection (high and low frequencies) or suppressed by targeting differences in field-

shape (they have the same field shape as the desired interaction mode).

In order to observe the field-shapes of the various modes and decide how the geometry could
be altered to suppress interaction with modes and otherwise disrupt higher-order modes, we
plot the surface currents and volumetric fields within the 3D modeling and graphical
visualization tools contained in the electromagnetic software programs. Several salient points
regarding the usefulness of these field-plots have been discussed in the above paragraph in
terms of targeting the attenuation of only the antisymmetric mode vs. the operating symmetric
mode. These field plots were also useful to suggest ways to decrease interaction with a higher
symmetric mode with two electric field peaks across the length of the rectangular cavity — for
example, extending the beam tunnel in one direction (see Figure 5.1 for an example of this
geometry) will adjust the position of these peaks with respect to the beam, and greatly reduce
their intensity, as there is no opposing conductor on the wide-sides of the beam-tunnel, only the
short-sides have directly opposing conductors (this misshapes the nearly uniform quality of the
fundamental mode, but only secondarily to the effects on undesired modes). We adopt this
stretched beam-tunnel in the final design for its effects on the higher-order mode, and the
dispersion shaping effect on the antisymmetric mode moving the antisymmetric mode almost

completely out of the range of interaction with the fundamental mode.

Continuing on the theme of adjusting the geometry, we investigated ways that the geometry
could be altered slightly to maintain the desired performance of the operating mode, but
minimize instabilities due to bad intersections. In addition to the antisymmetric mode already
mentioned, the most critical adjustment was the removal of the band-gap near 1.75m by
appropriately shaping the dispersion through geometry adjustments. By changing the cavity
resonance slightly and the total slot coupling amount, the symmetric modes are mostly
coalesced (although not in the standard sense of coalesced-modes at 2m [142] — illustrated in
Figure 4.10). Although concerns arise about manufacturing imperfections causing an
unintentional band-gap, it has been determined that this is only a concern when the fractional

frequency width of the band-gap is larger than the Pierce gain parameter [123], i.e.:

= CPierce

=
f
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Figure 4.10: Dispersion plots for the symmetric modes showing how a geometry adjustment can decrease
the bandgap to negligible size. (a) SWS with bandgap. (b) Adjusted SWS geometry to minimize bandgap.

The expected frequency width of the band-gap due to manufacturing tolerances is within the
designed range of the gain parameter. As stated previously, the calculated stability threshold
length in the original case was 0.27” (which is probably an underestimate due to the band-edge
effects), the threshold in the case of the adjusted geometry is 3.83” (which has the added
benefit of removing the band-edge effects) — for reference, the MAGIC3D simulated circuit
length was 0.81” (12 cavity periods). It was seen in the particle simulations that the first
structure oscillated due to the band-edge instability; in contrast, the adjusted structure does not
oscillate at this band-edge frequency (however, the adjusted structure exhibits oscillations at

both m and 21 points of the fundamental mode).

In order to avoid the band-edge oscillations of the fundamental mode we performed a
combination of steps that also increased the stability of other modes as well. First, we slightly
reduced the bandwidth of the fundamental mode — this was accomplished with a few
straightforward adjustments to the cavity size and a reduced inter-cavity coupling. This removes
the band-edge phase-velocities from the synchronous beam-line velocity and reduces the
interaction. Second, we monitored the gain/cell of the structure (related to the Pierce gain
parameter), reducing the amount of gain when the interaction was too strong. This reduction
was accomplished with a combination of increasing the beam-tunnel height, and adjusting the
gap-length (which simultaneously adjusts the gap transit-angle and the effective voltage that the

cavity experiences for a given power propagated). Third, was the increase of broadband
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conductive loss on the structure. The increased conductor loss is only used at the input end of
the structure where the power is low, therefore the exponentially larger signal at the output
does not experience loss at an increased rate and the total power lost through finite
conductivity attenuation is not increased proportionally with the inverse factor of the decreased
conductivity — the proposed design attenuates more total power in the final sections of high

conductivity copper than in the entire length of the lower conductivity input section.

The final method investigated in order to mitigate interactions with higher-order modes is
changing the period of the interaction structure to adjust the backward wave intersection
points. This has been utilized in the proposed concept presented in Chapter 5, and is illustrated

in terms of the dispersion characteristics in Figure 5.2 there.
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Chapter 5: Final Design and Conclusions

In this chapter we develop the design of a sheet beam traveling-wave tube (TWT) amplifier with
high power operation and moderate bandwidth. We utilize a three-slot, doubly periodic,
staggered ladder coupled-cavity slow-wave structure developed and characterized at the U.S.
Naval Research Laboratory. The design takes into account higher-order mode competition and
device stability. A suite of particle-in-cell (PIC) simulations confirm that the device stably
produces over 5 kW peak power across a 4 GHz bandwidth, and is reasonably tolerant to

achievable mechanical tolerances and misalignments.

5a) Slow-Wave Structure & Dispersion

The structure utilized for the sheet-beam TWTA is a three-slot, doubly periodic, staggered-
ladder coupled-cavity slow-wave structure developed and characterized at the U.S. Naval

Research Laboratory [74] [75]. The geometry is

of the same generic design pictured and

described in previous chapters with three

additional parameters as illustrated in Figure
5.1.  First, the axial cavity gap length is

s
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specified, while this value was originally Y alt Perio

assumed to be equal to the axial length of the Figure 5.1: Generic design for one cell (half-
period) of the three-slot SWS.

septum (one half the axial length of a half-

period). Second, the variable slots parallel to the beam tunnel are offset from the wide edge of

the cavity to allow easier variation of the dispersion diagram and minimize this structure’s

bandgap in the fundamental mode. Third, the beam tunnel is extended on one side out to the

wide edge of the cavity to allow for adjustment of the transverse modes. There are two values

listed for period because there are two sections of uniform SWS with identical frequency vs.

phase characteristics, but different period.

The dispersive characteristics of a structure with parameters listed in Table 5- were computed
with commercial 3D finite-element solvers (HFSS [81] and Analyst [82]) are presented in Figure
5.2, where frequency is plotted versus phase advance per cell. The dispersion for both sections
of uniform structure are visually indistinguishable on a plot of this nature, but the beam-line is

plotted twice to show the changing period. In this dispersion plot we see that the lowest mode
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SWS Parameter [in] [mm]
input-section period 0.066 1.676
output-section period 0.064 1.626
cavity gap length 0.0262 0.6655
slot 1 & 2 width 0.030 0.762
slot 1 length 0.113 2.870
slot 1 offset 0.037 0.940
cavity width 0.300 7.620
cavity height 0.155 3.937
beam tunnel (offset)

length 0.254 6.452

width 0.0275 0.700

Table 5-I: Parameters for the final design

simulated slow-wave structure.
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Figure 5.2:

Simulated

dispersion

diagram

(frequency vs. phase) with respect to one cavity-
period. Beam-lines are included to represent the
slow space-charge waves supported by periodic
structures of specified period length.

is an antisymmetric mode with fields predominantly transverse to the beam, the interaction of

which will be discussed with the fully 3D particle-in-cell simulations.

The fundamental

longitudinal mode, Model in Figure 5.2, has the shape of a standard CC-SWS. The only major

differences of this SWS from the design in Ref. [75] are the reduction in the additional three-slot

stop-band and the fundamental mode bandwidth, both for improved stability.

Although,

Model and Mode2 are close in frequency around 2m and the modes couple in a complicated

way, the modes are not coalesced in the normal manner (the group velocity of both modes goes

to zero).

The SWS impedance is also calculated via
numerical simulation in the usual way [78] [88]
[75] with a few analytical assumptions for an
infinitely-wide sheet geometry instead of
azimuthal symmetry (using hyperbolic functions
instead of modified Bessel functions). As a
comparison of the similarities between the two
uniform SWS, the

sections of coupling

impedances for the fundamental modes of both
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Figure 5.3:
plotted vs.
uniform periodic SWS.
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sections are plotted in Figure 5.3 across the entire frequency band.

5b) Device Layout and Couplers

The initial design for a proof-of-principal sheet-
beam amplifier experiment has been envisioned
as a single-stage (no sever), low-gain, high-
power amplifier. This decision was made in part
to reuse the gun, collector, and transport
systems from the W-band sheet-beam klystron,
which has a short axial extent. The single-stage

design also reduces any complications of

matching a sever over a broad bandwidth as

well as multiple modes — although a few sever

designs were investigated with some success.

Further, we have access to broadband, medium

power drivers (~¥200W across the band of

interest), which will achieve our goals of
obtaining more than 5 kW output power from a  Figure 5.4: Solid-model (cut-away view) of
single stage device. coupled-cavity circuit.

A cutaway view of a solid-model for the coupled-cavity circuit section of the amplifier is pictured
in Figure 5.4. There are 22 cavities, including the input/output cavities, with the first 14 made of
CuNi 90/10 (o = 5.24e6 S/m) with period 0.066", and the last 8 made of OFHC Cu (o = 6.0e7 S/m)
with period 0.064". The rectangular beam-tunnel slot extends through the middle of the
structure, perpendicular to the waveguide couplers. This design consists of a set of identically
machined plates that are stacked together in an alignment fixture and brazed together into one
piece, with the waveguides attached subsequently. The weld-flanges on either side of the
device are borrowed from the sheet-beam klystron design, and therefore mates with the gun

and collector assembilies.

The waveguides into and out of the SWS are standard WR-28 size with identically step-tapered
couplers into the first and last cavities. The coupler was developed to achieve a very good

match across the entire frequency band of the structure, and has been discussed previously

78



[90]. Results of HFSS simulations of the RF 0

response are presented in Figure 5.5, indicating

a return loss better than 20 dB from 32-38 GHz,

and a transmission loss of 2.0 dB. Furthermore,

the coupler allows for this match without

S-parameters [dB]
S

| O frmmmmmmmm ===

-30 | ::_
requiring transition cavities beyond the %7 |} ¥V § § ... g] ;

-40 L 1 | 1 ) — ]
input/output cavity and the first/last set of 30 32 34 36 38 40

Frequency [GHZ]
coupling slots.

Figure 5.5: Simulated RF response of matched
couplers attached to the SWS as illustrated in

5¢) MAGIC3D Simulations and Figure 5.4.

Stability

In order to address the 3-dimensional nature of the coupled-cavity structure, beam, and their
interaction, we utilize the fully 3D particle-in-cell (PIC) finite-difference electromagnetic solver
MAGIC3D [109] to simulate the amplifier characteristics under a variety of circumstances. These
simulations confirm 1D gain estimates, exhibit oscillations when present, and provide field and
particle data suggesting methods to improve interaction and avoid instabilities. Finally, a suite
of simulations with small offset confirms the insensitivity of the structure to manufacturing

tolerances, and also the overall stability of the structure to oscillations of various nature.

The simulation set up is of nearly identical geometry as the solid model in Figure 5.4, with the
electromagnetically important regions being the vacuum interior with appropriately conducting
boundaries. The geometry was altered only slightly to convert all the curved corners of the
rectangular cavities and slots into squared corners, appropriate for the stair-step geometry of
the Cartesian simulation grid and represent only a minor change for the sheet geometry. The
simulation setup is similar to a single section of the structure simulated in Ref. [115]. The
electromagnetic response of the structure across the operating band confirms that the couplers
provide a good match even with the minor geometry changes (which is an additional data point

on the robust design of the couplers).

Particle simulations were conducted with a variety of beams to probe the structure response to
varying electron beam. The initial device simulations used the uniform current-density beam
model within MAGIC3D, with a beam voltage of 19.5 kV, beam current of 3.5 A, beam height of

0.3 mm, and beam width of 4.0 mm. For these initial simulations, the magnetic field was
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defined as a uniform axial field with magnitude 8.5 kG, which is close to the peak field obtained
in the sheet-beam gun beam-stick experiment [93]. Also used was a thermal beam created via
MICHELLE [118] simulation of the electron gun using simulated magnetic fields from Maxwell
software [81]. Finally, all these simulated data were combined to perform PIC simulations in
MAGIC3D with a realistic thermal beam from MICHELLE and focusing magnetic fields derived
from geometry through Maxwell simulations. These various simulations have increased our
confidence and understanding of the simulation, the beam-wave interaction, and tolerances of
the electron beam on the device gain. The following results will represent data from the

realistic thermal beam model with the simulated magnetic field.

The various simulation data have predicted

stable amplifier operation with output powers s
@
up to 8-9kW. For the simulated bandwidth % %-
o —
curves presented in Figure 5.6, the drive power % &
n 2 —— P_out ‘n_ 5 —
is maintained at a constant 200 W, which -~ Gain &“
0 i 0
represents the attainable source power in 32 33 34 3B 36 37 38

Frequency [GHZ]
experiment, and a simulated thermal beam is

Figure 5.6: Output RF power and gain vs.
frequency at constant drive power (Pgive =

the 3 dB bandwidth is ~4 GHz, and a saturated 200 W).

used. The data indicates that at constant drive

bandwidth would be greater if saturation were
achievable in the axial length. Even with reasonable reflections due to unintended mismatches
at the input and output, the experimental amplifier should be able to achieve greater than 5 kW

output power across a modest bandwidth.

70 |
. . . . — ; .;a"—:‘
Further simulation data is presented as a drive £ 65 e
) Pl
curve for three frequencies across the operating = 60 / ’:_’.' *
=1 0
band in Figure 5.7. The 200 W drive power limit O  a” .
o 50 Tl
we expect in experiment is marked as a solid g 45 g M= P_out (33GHz)
- =t P_out (35GHz)
) o 1 = === P_out (37GHz)
black line for reference — hence, the structure 40 I I I
30 35 40 45 50 55 60
has not reached saturation. Also, one can see Power In [dBm]

that although the amplifier gain is only 16 dB at Figure 5.7: Output RF power vs. input drive

the 200 W drive level, there is 18-20 dB gain at powe.r at three. drive frequenues. The
experimental maximum drive power, Pgie =

small-signal drive powers. The peak power 200 W, is marked with a solid black line.
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simulated (~10 kW) represents a 14% electronic efficiency, which is similar to round-beam
devices of this type, and this value could be optimized somewhat. We expect that the total
device gain could increase proportional to total length if a two-section device were designed

with an appropriate sever, thus allowing saturation to be reached by a solid-state driver.

Throughout the course of the development of this amplifier three main causes of instability and
oscillation have been of concern — 1) band-edge oscillations, 2) higher-order-mode oscillation, 3)
transverse mode oscillation. The band-edge oscillation was eliminated from concern by
moderately reducing the bandwidth of the fundamental mode pass-band, and introducing
reasonable loss in the SWS. Higher-order-mode instabilities were mitigated by minimizing the 3-
slot band-gap inherent in the structure, introducing moderate loss in the input section, and by
changing the period of the latter section to spoil the interaction. Transverse modes were
studied extensively by offsetting the rectangular beam tunnel so as to excite the transverse
mode, which did not generally lead to oscillation, but caused a power hole at the upper band-
edge of the transverse mode, which was avoided by shifting the transverse mode lower in
frequency, below the fundamental mode. Numerous zero-drive, and fully-driven simulations

confirm that the device does not oscillate under realistic beam conditions.

5d) Conclusions

Based on numerous design analyses and simulations, we conclude that the design of a sheet-
beam couple-cavity traveling-wave tube amplifier looks promising for stable 5kW amplifier
operation across a moderate bandwidth. The sheet-beam is obtained from an experimentally
demonstrated source, and is manufactured with conventional technologies. This represents a 5-

10x increase in peak output power at this frequency range, while maintaining bandwidth.

The next steps planned for this device are to construct a device utilizing vacuum-grade materials
for cold-test on a network analyzer. Then a subsequent hot-test experiment will be conducted
in pulsed mode using the NRL pulse modulator (capable of pulse durations of 2-25 us and
repetition rates up to 20 Hz). The hot-test measurements will produce drive-curves, bandwidth
curves, and body-current measurements, and will experimentally confirm the stability of the

structure.
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Appendix I: Sheet-Beam Small-Signal Gain

A sheet-beam centered within the beam-tunnel region has some transverse width and height,
and therefore each part of the beam experiences a slightly different field as it streams axially
through the structure. However, the longitudinal electric field is generally shaped to provide
minimal variation across the width (long-extent) of the electron beam, and for thin beams the
field variation with height is minimal, as the field in the fundamental mode does not vary greatly
near the symmetry plane. Therefore, to first order, the interaction can be described as if the
beam interacts uniformly with the longitudinal electric field on-axis, or, alternatively, uniformly
with an averaged representation of the fields over the beam transverse cross-section — this is

the principle idea of a 1D analysis that we will develop and utilize in the following sections.

1-Dimensional Coupled-Cavity Field Analysis

Coupled-cavity slow-wave structures (CC-SWS’s) fall somewhere between the continuous field
interaction of a helix structure and the axially discrete interaction of a klystron cavity, and so
different approaches can be made to analyze the fields. The generally periodic nature of the
cavities will be utilized to fill in the analysis and provide comparisons, which allows for the
transfer of quantitative data from 1D continuous interaction analyses to discrete cavity models.
The field within the beam-tunnel is smoothly varying and is expanded in analytical forms using

standard analytical techniques for cavity and periodic structures.

We start by looking at a hypothetical infinite chain of uniform coupled-cavity structures. The
electromagnetic field within the cavity chain is represented by a traveling wave with some
specified phase advance (modulo 2m) from period N to period N+1 (the phase advance is
determined by the frequency as a result of the dispersion relation of the structure). Therefore,
the time-harmonic phasor representation of the electric fields is complex, with complex phase
varying through space (in contrast to a resonant klystron cavity, which would resonate with all
fields oscillating in phase). However, for small gap and small beam tunnel we make the
assumption that the field is quasi-static within the beam tunnel, and go as far as calculating the

voltage across the gap at the beam-tunnel edge

z=gap/2
Vgap = fzz_gap/zEle.T.dZ (1.1)

82



where E, |1 is the complex electric field long a line across the cavity gap at the beam tunnel
edge, the integral is a complex integral, and the result is the quasi-static magnitude of the
voltage across the gap. This is the standard assumption in conventional CC-SWS, and is useful
for applying the field analysis and expansion derived subsequently to a circuit model for the

transmission of the electromagnetic wave along the structure.

As we are looking for a 1-dimensional representation of the fields at the beam-tunnel axis, and
we are given the gap voltage, we must first find some analytical models for the electric fields on-
axis in terms of the gap voltages. The subsequent step is to Fourier analyze the field because
this will be used in the next section to find the appropriate beam-wave interaction. First, we
expand the complex axial electric field as a sum of complex-weighted, shifted field shape

functions.

Ez(z) = Zn anaxis(z - Zn) (1.2)

The electric field may maintain the MKS units of [V/m], and the complex weights may have the
units of voltage to relate closely to the gap voltage. Therefore the field shape function has units

of inverse meters, and maintains a normalization defined as

ffooofaxis(z)dz =1 (1.3)

Any piece-wise continuous function which can be appropriately normalized could conceivably be
used to model the on-axis field. We tend to pick functions that resemble the actual fields and

are analytically simple. We will present and

compare a few simple example functions with
the actual fields produced by simulations of a

real structure.

As a schematic, Figure | - 1 illustrates a slice of
geometry near the beam-tunnel, indicating a

parabolic field shape function with axial electric

field magnitude indicating the nature of the

Figure | - 1: Schematic diagram of geometry (top)
and fields (bottom) within the beam-tunnel over
one period.

complex-weighted sum. The structure is
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periodic with period p, beam-tunnel half-height h, and gap spacing g.

In the analysis presented here, we treat each cavity field separately and represent the total field
as the complex sum of all the cavity fields. Of course the fields from one cavity are directly
coupled to the cavities on either side through the coupling slots, and the total field is necessary
to find the beam-wave interaction. However, this analysis is introduced to compare simulation
analyses that utilize this method of field construction. Also, there is a certain understanding to
be gained of a beam interaction with a single cavity, and that amplified resonance is coupled to
both forward and backward cavities, which can cause gain ripple or oscillations in certain cases.
The Fourier transform of this single cavity field is used to relate the expected beam-wave
interaction from simulation analyses of this type with a continuous-field interaction used in

other analyses.

The Fourier transform of the axial electric field will subsequently be used for analyzing the
beam-wave interaction. We include it here to compare examples of analytical field shape

functions. The transform of the field shape function is expressed as

e(k,) = [ e f,.(2")dz’ (1.4)

The following three field shape functions are presented as models of various complexities and

will be subsequently utilized in beam-wave analyses.

Uniform gap:

In klystron cavity theory, the simplest model for field distribution is zero fields within the beam-
tunnel, and uniform electric field within the gap. This was a more appropriate model when the
beam-tunnel entrances were covered with a conducting grid that would act as a permeable
membrane for the electron-beam, but precludes the electric field from the beam-tunnel
(modern cavities are not built with grids). The axial electric field shape function and

corresponding Fourier transform are represented as follows:

! 1 !
faxis(z') = g for|z'| <% (1.5)
in(kzg/2)
elky) == "20= (1)
Parabolic:
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A slightly improved model for the on-axis axial electric field might be a smoothly varying field
that decreases to zero some distance into the beam-tunnel. The parabolic model has a
maximum at the gap center, and decreases symmetrically from that point, to some effective
length L which is a variable parameter. A representation of the parabolic field shape function
was presented graphically in Figure | - 1. The axial electric field shape function and

corresponding Fourier transform are represented as follows:

N2
N _ 3 _ (.= '
faris(2) = 4Leff(1 (=) ) for |21 < Legy (.7
(k) = —> (sin(kzLeff) — cos(k,L )> L8
eWz) = kzzLeffz kzLeff cOS\ezlery (18)

Kosmahl-Branch (on-axis):

The modern standard for analytical approximation of fields in cavity gap is that developed by
Kosmahl and Branch [107]. The following is a form that provides the correct normalization as
required, preserving the field shape. The utilization of the Kosmahl-Branch approximation in
modern analyses is that it describes the fields at all points within the beam-tunnel, and can
therefore accurately describe the change with radius of the fields and interaction — however, we
look only at the expression on-axis at this point. This model also has one variable parameter, m,
that must be fit to expected data or otherwise predetermined. The increased complexity is
obvious from the defining equation as this model is represented by an infinite sum. However,
this sum converges rapidly for fields on axis, so only a few terms are required to achieve
sufficient accuracy. The axial electric field shape function and corresponding Fourier transform

are represented as follows:

fo () = i cos(wh/c) m? cos(B,rg/2) + B,y mcoth(mg/2) sin(B,g/2) cos(Brz")

m2 + B cosh(y, h)

n'=—co

for|z'| <p (1.9)
_ cos(wh/c) o m? cos(B,r9/2) + B,ymcoth(mg/2) sin(B,1g/2) B
T Zm (m? + ) cosh(yurh) O — ko)
(1.10)
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1D Beam-Wave Interaction

There are several ways to investigate beam-wave interaction in a periodic structure, of which |
will give the highlights of two approaches: a single-particle, ballistic (or Lagrangian) approach;
and a sheet-fluid, Eularian approach. The ballistic approach is so ubiquitous as to require only a
couple good references and little explanation — we adapt the approach for a sheet-geometry
and relate several key parameters. The Eularian approach is adapted as well for an infinite

planar sheet electron beam.

We follow the development of Branch for electron beam coupling in interaction gaps of
cylindrical symmetry [143], but assume top/bottom symmetry and infinitely-wide uniform gap.
We will also simplify the present discussion to a thin, infinite sheet-beam traveling on-axis. The
beam-tunnel half-height is x,, and the gap length is g (the gap extends from z = 0 to g). An
axially streaming electron within the beam has kinetic energy eV, where e is the electron charge
and V; is the dc voltage of the electron entering the gap. Harmonically-oscillating fields exist
within the CC-SWS, gap, and extending into the beam-tunnel (there is no conducting grid at the
—iwt

beam tunnel opening), with time-variation e , and a 1D variation of the gap voltage defined

as

V:qap = Uo:_OOEzlaxistl (|.11)

where E,|..is is the electric field caused by the single cavity and integrated along a line of

infinite extent on-axis.

Branch shows that, to first order (V,qp << V,) , an electron entering the gap at time t = t, will

experience a change in kinetic energy
AKE = %m(ulz —uy?) = e”@ho fzz_lz eE,(b,z)dz (1.12)
—40

We define the on-axis electric field in terms of the field shape function and, alternatively, as the

Fourier inverse of the transform,
E,(z,t) = Vgapfaxis(z)e_iwt
= Vygpe @t [ e(k,)e*%dk, (1.13)

kz:—co
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Therefore the energy transfer to the single electron by traversing through the entire field of a

single cavity with a propagation constant 8, = w/u,, such that .z = wt, can be expressed as

[ee]

AKE = eVyqpe™ '@t fzoi_oo sz:_me(kz)eikzz_i“’tdkz dz
= eVgpe @t kO::—oo e(k,) fZO:_OO etkzz=iBeZqz7 d .,

= eVgape_iwtO ka::_Oo e(k,)o(k, — ﬂe)dkz

= eVgape_iwtO -e(Be) (1.14)

Therefore, instead of gaining kinetic energy proportional to the gap voltage, there is a factor
dependent on the Fourier transform of the field shape and the velocity of the beam. There are
obviously two extremes for the field shapes that have very different implications on the kinetic
energy — the first is that a field with an impulse at the center of the gap will have a maximally
uniform effect on any beam velocity, and the second is that a uniform field will only be effective
on a beam exactly synchronous with the wave. The field shape factor is important for
Lagrangian theories of small-signal gain and numerical simulations of large-signal operation,
where the interaction experienced between the beam and a single cavity is reduced somewhat

by this factor.

To adapt the full theory in [143] to a sheet geometry, we make a few changes to the analytical
expressions for the field. In an infinitely-wide beam-tunnel, the field-shape within this
hypothetical beam-tunnel that satisfies Maxwell’s equations is a linear combination of
hyperbolic sines and cosines. Specifically, for the fundamental mode that has axial electric field

symmetric about the axis, we see that a uniform field has an axial component expressed as
E, = Ae!@t=F2cosh(yx), (1.15)
where x is the transverse distance from the axis in the short (non-infinite) direction.

The effective voltage experienced by an electron beam on-axis can be written in the following

manner:

V.=V, xM, M

eff gap gap™"* radius (| 1 6)
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where My, the gap coupling coefficient, is calculated by the magnitude of the Fourier-
transform of the field-shape, and M5, the radial coupling coefficient, is a ratio of the field
strengths at the gap to the beam-tunnel wall. The combination of these two coefficients
represents the interaction of the beam particles with the field with a given voltage between the

opposing faces of the cavity.

The complete analysis above suggests that a total interaction impedance should take into

account the factors of the field shape and the distance of the beam-tunnel wall to the beam.

3D Impedance Calculations and Comparisons

We calculate and compare 2 different impedances that are used for different simulation codes.
These impedances are evaluated directly from HFSS (or Analyst) field solutions. There is an
equivalence between the two impedances that can be readily evaluated for the coupled-cavity
case, where the gap is easily defined and the fields are “analytically known”. We term the two
different impedances the Kino Impedance (Gap Voltage Impedance), and the Pierce Impedance
(also called the Coupling, or Interaction Impedance). They are evaluated as follows in
accordance with convention to coupled-cavity structures (e.g. see [78]).

E2

n

2knzPRF

Pierce

(1.17)

V2
2Fer

(1.18)

Where E, is the n™ spatial harmonic of the on-axis axial electric field (defined explicitly below),
k, is the axial phase constant for that same harmonic, Pxr is the RF power flow, and V is the gap

voltage. For a cavity gap, Kosmahl and Branch [107] relate the V and E, terms as follows.

z=L
V= fEZ(r =r,z)dz
2o (1.19)
1 z=L .
E, = 7 [()EZ (r=0,z)"dz
= (1.20)
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V = LMgap (kng)Mrazﬁus (ynrw )En (|-21)

Where r,, is the beam-tunnel wall radius, L is the axial length of one period, g is the axial length
of the gap, My, is an axial coupling coefficient (transit-time factor) that depends on the field

shape, and M,y is a radial coupling coefficient that depends on the radius of the beam-tunnel

2

w

wall, and )/nz = kn2 - (—) . These terms aren’t truly independent in the sense that increasing
c

the beam-tunnel radius will increase leakage into the beam-tunnel, which will affect My, in

addition to M,44us. In standard coupled-cavity tubes with a defined beam-tunnel gap, both the

coupling coefficients have analytical approximations that are standard (borrowed from Klystron

gap theory):
in(k, g/2)
M, ( ng)=%
“ k,g/2 (1.22)
Mradms (ynrw ) = ;
1,(r,7,) (1.23)

Where [, is the modified Bessel function of the first kind. With all the relationship between V

and E, and the definitions of impedance above, we can form a relationship between Kpje,ce and Z.

kL
Z = K Pierce M M
gap radius ( 1.2 4)

Therefore, the Pierce Impedance integration with the transit-factor included in the integral is
equivalent to finding the integrated complex voltage and including the transit-time coupling
coefficient. Also, the Pierce impedance is a function of position over the beam area (strongest
near the conducting walls), so multiple evaluations over the area will produce a correctly
averaged impedance. Furthermore, there are some structures that do not have standard gaps
and no analytical approximations for either coupling coefficient — these structures require the
coupling impedance to be evaluated using the exact field shape provided by modern 3D

simulation tools, and accounting for transit-time directly in the integration.
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Figure | - 2 illustrates a comparison of the Kosmahl-Branch analysis of Mgg,Mqaius (blue curve),
the HFSS results expressed as a ratio of the evaluated impedances (pink curve), and the klystron-
theory approximations (yellow curve) for the 3-Slot sheet-beam coupled-cavity SWS under
investigation at NRL. They agree well, with the Kosmahl-Branch analysis having a slightly smaller
error (in the mean-squared-error sense) than the klystron-theory approximation. Note that for
a sheet-beam structure modified Bessel functions have been replaced with hyperbolic functions

and the analysis still holds (reasonably well).

M (on axis) comparison for 3-Slot
Sheet-Beam Coupled-Cavity SWS

1
—— M/ cosh
—— M_axis_est
g 0.8 - sincicosh
AT
© N ®-.
E 06 7 N\‘__
&
2
S 04 -
O
(8]
= 02-
O T T T T 1
1 1.2 1.4 1.6 1.8 2

phase / pi
Figure | - 2: Comparison of theoretical coupling coefficients with the computed values from HFSS.

This is particularly important for determining the Pierce gain parameter, Cpice, Used for small-

signal gain analysis in a traveling-wave tube.

2

M_ M .
Cpie,«m} = Kn IBeam = ZIBeam gap radius ( | 25)
4 VBeam 4 VBeam k n L
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Infinite Planar Beam Space Charge Waves

In order to account for the self-field effects of the planar beam we develop an Eulerian approach
for the sheet-beam system. The following are based on the cylindrical beam, confined flow
model of [144] (with reference to [145] and [146]). We start with a model of the planar field
configuration and develop a dispersion relation for the space-charge waves that has the same

form as a cylindrical beam.

We consider an infinitely wide (in the y-dimension) planar geometry with a beam of finite size in
the x-dimension which propagates in the z-direction. Assuming a nonrelativistic beam in which
the Lorentz force can be neglected, we write the fluid equations of motion using z as an

independent variable,

Nm% =pE+vXB, (1.26a)

V'] =—jwp. (1.26¢)
Here By is a strong focusing field that limits the motion of the particles to the axial direction.

We assume that the AC fields vary sinusoidally with frequency w with traveling wave form

exp(jwt — jBz).

The equilibrium electron beam has a uniform density profile in x and y for |x|< a with the form,

Ko x| < a
Ny(x) = <2avzoe ) (1.27)
0 otherwise

where Kj is the effective surface current density of the beam.

Starting from equations (1.26), we can find first order relations for the current density and the
axial electric field, which can be used in Maxwell’s equations to find a self-consistent set of

Helmholtz equations (Collin’s equations (9.16)):
V.2A, +p?A, =0 0<|x|<a (1.28a)

V.24, —h?4,=0 a<|x|<b (1.28b)
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where we use wavenumbers defined by

=it ()
(=)= (2) G2 oasm

h? = B2 — k,* (1.29b)

Applying equations (1.28) to the planar geometry with no y variation reduces to

a2 p?

EENAT
where 4, = Y (x)e /PZ. Because the space-charge waves are slow-waves, withf§ =~ B, > k,
p and h are real valued, and the solutions of Y are trigonometric and hyperbolic functions.

Matching the fields at the beam edge, and setting the axial electric field to zero at the beam-

tunnel wall leads to the relation:

tanh(ha)+coth(hb)
1—tanh(ha) coth(hb)

ptan(pa) = h (1.31)
which along with equations .29 determine the propagation constant 5. The solution to these
equations can be cast in a form

Rw

B = Bo (1 + —”) (1.29b)
)

where a)pz = poe/me, is the electron plasma frequency, and R is a reduction factor
determined by the solution. This can be compared to the analysis and results of [144] and [145].
A dispersion relation for the interaction of the space-charge waves and the slow-wave structure

fields can be constructed similarly and has been implemented in the CHRISTINE-1D and

CHRISTINE-CC sheet-beam models.
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Appendix II: Biperiodic SWS Eigenmode Simulations

General SWS Eigenmode Simulations

In order to determine the dispersive characteristics of a periodic slow-wave structure, the
standard simulation technique is to perform an eigenmode simulation on one axial period of the
structure with matching boundaries on opposite axial faces. For a given phase-advance
between the matching boundaries, the solution data obtained from the simulation include the
eigenfrequency (dispersion) and fully 3-dimensional field data within the solution domain for a
specified number of modes. For a sweep of matching boundary phase-advances, we obtain a

full dispersion curve and set of data with which to obtain field quantities of interest.

Generally, the solution domain is bounded in the transverse dimensions by conducting walls and
the matching boundaries are planes perpendicular to the axial direction. The conducting walls
may be lossy (finite conductivity), and there may be lossy elements within the solution domain
as well (dielectric or conducting elements). The matching boundaries (called individually master
and slave boundaries), may be placed at any axial position along the period (remaining exactly
one period apart) so long as the geometry on the master surface is exactly identical to the

geometry on the slave surface, which generally precludes locations of a step in the geometry.

The fields within the structure exhibit a periodic nature similar to the structure due to Floquet’s

theorem [147], [83], [144]. The general field solution within the structure can be expressed as:

+00

VR N . 27T
E(x,Z)= EEn(x)e./ﬂnZ e j(Ut, ﬁn =/))0 +_n, (”1)
ria—to L
where L is the period of the structure, and En(f) is some function of the transverse
coordinates. Here the z-dependence is expressed as the Fourier transform of a periodic function
times a slowly varying phase determined by the matching-boundary phase-advance, /)’0 = ¢/L

At this point, the field solution is a general expression that is fixed by the requirements of
Maxwell’s equations and the given boundary conditions, and the Fourier components only come
about as the consequence of the periodicity of the fields. There is no single phase-velocity, as
there is no single 8. However, there are unique values for group velocity and attenuation for a

given mode, representing that as the mode propagates along the SWS the power positively
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transmits energy along the SWS at a specified rate, and the transmitted power deposits energy

into the lossy elements at another specified rate.

The concept of a periodic dispersion diagram (or Brillouin diagram), is allowed by the nature of
the 2m periodic range of the matching-boundary phase-advance (¢E[O,2;z]), and the set of
Fourier transform components that this directly implies. The utility in defining a frequency-
phase relationship across multiple, periodic phase ranges is that a separate phase advance can

be defined for each harmonic and the beam to wave velocity mismatch (u, —vpn) is used to

calculate the gain across the band. Further, because the beam is designed to match the phase-
velocity of one spatial harmonic, and all the other spatial harmonics have rapidly oscillating
components that cancel out as the beam traverses a period, the only harmonic that interacts
strongly with the beam is the one that lies along the beam-line of the dispersion curve. The 3D
simulation software is tasked with solving the relevant partial differential equations with the
appropriate boundary conditions, yielding frequency and total field information — the task of
extracting the spatial harmonic information is achieved by computing the Fourier spectrum of

the simulation results.

There is one last note of importance for the periodic dispersion diagram of reciprocal structures
(here reciprocal refers to properties of the microwave media of the solution domain in the sense

of the usual Lorentz-Reciprocity theorem for microwaves). For a steady-state excitation at
angular frequency w, the structure supports wavenumbers = /3’0 (a)), where one wavenumber
corresponds to a forward-traveling wave (with respect to the z-axis), and the other wavenumber
corresponding to a backward-traveling wave (for a lossless structure, ﬁo(w) is real within the

SWS pass-bands and imaginary within the SWS stop-bands). The importance of this reciprocity
result is that after repeating both the forward and backward wavenumbers across multiple

periods of phase advance the dispersion displays a mirror-symmetry, not only around
B, =@/L =0, but also around all phase multiples of t (i.e. 5, =@/L = nzw/L). Therefore, the

entire dispersion-curve information for reciprocal structures is contained within a T phase range
(¢E[O,;z] - this is generally termed the “first Brillouin zone”), and all data from 1 to 2m is

obtained by “reflecting” the dispersion data from 0 to T across phase value of .
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The dispersion diagram can be complicated for structures with closely spaced modes, or even a
plurality of modes occupying the same frequency range (overmoded). Sometimes modes can
intersect on the dispersion diagram, and other times there is a small gap that must be resolved.
Because the diagram obtained from simulation possesses a discrete set of phases, the
distinction between modes can be difficult by inspection of the diagram alone. In order to
identify connected modes in the dispersion diagram, we can compare field quantities, such as
attenuation, voltage, and interaction impedance for neighboring points. If further clarification is
required, more phase-points can be evaluated to increase the phase-resolution. Once this is

accomplished, lines can connect the points to trace out distinct, contiguous modes.

Symmetric-Biperiodic SWS Eigenmode Simulations

A biperiodic structure is a general term for a SWS composed of two geometries on alternating
periods. A symmetric-biperiodic SWS is specifically a SWS with geometric period containing two
translationally identical sections that occupy half the axial period, and are rotated (skew-
symmetry), mirrored (reflection- or glide-symmetry), or both. There are generally two axial
regions of electron interaction (two gaps) for each geometric period. Examples of symmetric-
biperiodic structures include staggered-ladder coupled-cavity SWS’s, and ring-bar circuits with

symmetrically placed support rods.

By the analysis of Crepeau and Mclsaac [135], it is evident that structures exhibiting skew- or
reflection-symmetry support “fields with the symmetry of the structure”, meaning that the
structure’s geometric symmetry influences the symmetric shape of the electromagnetic field.
Therefore, in addition to the periodic nature of the fields over the full geometric period (with
some slowly-varying complex phase multiplier), the fields are periodic in a rotated, or mirrored
sense across the half-period of a biperiodic structure (with some related slowly-varying complex
phase multiplier). In terms of periodic field-solution, this analysis precisely states what we
sometimes take advantage of in symmetric-biperiodic structures, that the phase-advance across
half a structure-period is half the phase-advance across the whole geometric-period, and the
fields in each half-section are identical, modulo the complex half-phase-advance multiplier, and

a rotation or reflection. There are a few complexities that arise due to the mapping of the

geometric-period phase advance ¢whole—period E[O,Zir] to the half-period phase advance
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Praif - periad E[O,Jr] that will be discussed in some detail in order to understand how the fields

behave and the electron beam will interact.

We present an example of a biperiodic coupled-cavity structure with both skew and reflection
symmetry. The geometry presented in Figure Il - 1 (a) is biperiodic with both symmetries, and
the geometry in (b) illustrates the half-period geometry of this SWS. The master and slave
boundaries for each simulation geometry have a coordinate system to define the orientation of
the periodicity and to match the geometry and finite-element mesh appropriately. In the case
of the full geometric period, the coordinate systems are in-line with each-other and are axially
shifted versions of the x-y coordinate systems pictured. In the case of the half-period
simulation, there are two options for coordinate system orientation owing to the two, different
symmetries of the structure — these are illustrated in Figure Il - 2 (a) and (b). The concept of
applying a rotated or mirrored matching boundary, although conceptually simple, is only
rigorously defined through the analysis of Crepeau and Mclsaac. However, once the matching

surface is applied and the fields are matched by definition, further implications can be

Figure Il - 1: Symmetric-Biperiodic SWS geometry presented as the full-period (a) and half-period (b) for
use in eigenmode simulations. The outer, bounding box is assigned the material of copper with finite,
copper conductivity, and the simulation domain lies within the vacuum objects, which define the interior
of the SWS. The z-axis is the periodic axial direction; with the two square faces perpendicular to it
assigned matching boundaries.
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Figure Il - 2: Half-period simulations of a symmetric-biperiodic SWS, showing two different, correct
orientations of matching coordinate systems on opposing faces — (a) reflection-symmetry, (b) rotation-
symmetry. Some symmetric-biperiodic structures would only allow one symmetry or the other.

investigated, as follows.

Although both [135] and [148] suggest that only a fraction of this multiplicity need to be
retained in the final dispersion diagrams, this is not entirely true for our applications. The
predominant reason that both sets of authors reduce the number of solutions is to observe
where modes cross and where the crossing is avoided due to the symmetries (which is of
minimal concern for us because this is explicitly calculated within the eigenmode simulations).
Crepeau and Mclsaac [135] make a point of stating that only certain spatial harmonics are non-
zero on-axis due to the symmetries, but we are concerned about off-axis interaction with higher
modes, which have finite off-axis interaction for all spatial-harmonics (and can be numerically

evaluated within the field solutions of the simulation software).

However, the important point for our application is to characterize the structure within the
standard framework of a coupled-cavity circuit. The conventional method of referring to the
interaction fields in a coupled-cavity circuit is by dividing the unit cell into one interaction gap —

both in the fields, and in a circuit representation of the structure. Therefore to create a
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dispersion diagram and interaction impedance appropriate for one interaction gap, we must

investigate the properties of a two-period structure and ascertain how to proceed.

The essential calculation for determining interaction of an arbitrary electron beam with a given
mode of the SWS is the calculation of the appropriate spatial harmonic of the axial electric field
(i.e. finding the Fourier components of equation A.1). For a single-period this calculation is

conventionally written as
1 rz=L i
E,, = |Zf2=0 E,(z)efn?dz (11.2)

. . 2nn . , . .
where L is the period, 8, = o + ? is the nth axial wavenumber for the corresponding spatial

harmonic. However, with two periods and two phases, the correspondence between the nth
spatial harmonic of a single and double period comes into question. Accordingly, for a single
cavity period we use variables L; and ¢;, such that ¢; = fL;. Then for a doubly-periodic
structure such that L, = 2L;, implies the earlier suggested relation for phase that ¢, = fL, =
2Ly = 2¢,. Here we assume the physical notion that no matter how we divide the structure
into periods, for a given frequency the wavenumber will be a constant. However, in the

expansion of the dispersion diagram above we allowed the phase values from ¢E[jr,2;z] to be

obtained from a mirror-reflection of those values in ¢E[0,7r], and some care must be taken.

In Figure Il - 3 are representative dispersion diagrams for a single-period and a double-period
structure. In the single-period structure, the dispersion is represented by the solid line, with a
dashed-line representing a m-shifted version of the same dispersion, which is not necessarily
physical. In the double-period structure, the dispersion stretches the m-point out to 2w, and
folds the data back onto the range from zero to 2w - both of the visible modes are physical
in a biperiodic structure and constitute the multiplicity of modes that was mentioned
earlier. The symmetry of a biperiodic structure may imply that some of these modes
interact less with an electron beam, and can therefore be represented by the dispersion

diagram on the left with the less-important modes removed.

From these two diagrams, it can be seen that to construct the single-period diagram from the

double-period diagram with values in the first Brillouin zone (¢, E[O,;r]) we must use the first

two modes to create the data in ¢1 E[O,;z]. Furthermore, although the data in the second
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Figure Il - 3: Dispersion comparison for a single period and a double period of a generic slow-wave

structure. (a) Single-period dispersion — solid line is dispersion, dashed line is for reference. (b) Double-
period dispersion — both lines are the dispersion.

mode map linearly from ¢2 E[O,;r] to ¢1 e[o,;z/z], the data in the first mode require a
reversed linear transformation to map from ¢2 E[O,;r] to ¢1 E[Jr/2,.7r].

The wavenumber for a single cavity period for the nth spatial harmonic is expressed as:

27Tn,
Ly

Bn, = B1o +

— P10 2mMy (1.3)
Ly Ly

where nj is the nth spatial harmonic according to the single-cavity period, and ¢, is the phase
seen in the first Brillouin zone. Similar expressions can be developed for the double-cavity
period geometry, and equating B, with 8, and ;o = B, (which is true for half the values in

the first Brillouin zone that are not reversed in orientation) would imply

ng _ ny

o= (11.4)
_ 2

ny = 2 (”5)

Therefore, of the half of all doubly-periodic modes in the first Brillouin zone that map linearly,

only those that have n, even will have a strong interaction with the electron beam. Similarly, for
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the other half of values in the first Brillouin zone, we equate S, with (ﬁnz + LE) and B9 =
2

A

n B2,0, which leads to the relations
1

M ne—l (11.6)
Ly Ly '

(1.7)

This implies that for the half of all doubly-periodic modes that are mapped in a reverse linear
fashion, only those that have n, odd will have a strong interaction with the electron beam. The
determination of whether n, even or odd is retained in the single-cavity characterization is

dependent on the shape of the fields [135], and we will see in examples how this is handled.

The one last general point about biperiodic structures, is that once this correlation has been
made of the harmonics in a doubly-periodic structure and a singly-periodic structure, that the

calculated electric field Fourier components are identical.

1 rz=L ;

Epm, = |ZfZZ:0 ! Ez(z)e‘ﬁnlzdz| (11.8)
1 z=L ;

Ep, = |ZfZZ:0 2 Ez(z)e‘ﬁnzzdz| (11.9)

Taking note of the fact that the quantity Ez(z)eiﬂnzz is periodic with period L; by the symmetry
of the structure, produces the result that the double-period integral is twice the value of the

single-period integral. Dividing by the appropriate length yields equal Fourier components.

Implications of Reflection Symmetry

Reflection symmetry requires that the fields on the master (z=0) and slave (z=L;) surfaces match
modulo a complex phase constant, e’ =M, and the field profile and orientation are
mirrored across the y-z plane. The first, obvious implication is that the fields at the next half-

period (z=2L;) will match the fields on the master face modulo e’** =¢/?"1 | and the field
profile and orientation are identical to that on the master face. This implies the correct
periodicity of the full geometry, but the fact that the field shape “matches” (under mirror-

symmetry) at this half-period surface is only proven through the referenced analysis.

100



Due to the boundary conditions we can make several statements about the fields within the full-
period geometry. If the full-period is divided into two half-periods, the fields in the second half-
period are a mirrored, axially shifted (by length L,), time-delayed (by electrical phase ¢, ) replica

of the fields in the first half-period. Therefore, the time-averaged field interaction that a beam
experiences as it traverses a full-period is symmetric across the reflection plane even if the
structure is not symmetric across this plane. Also, following the same analysis as in [144], [83],
we find that, in a lossless structure, for a given power transmitted across a terminal plane, the
stored energy in a single half-period is equally split between electrical and magnetic stored
energy, and is equal to the stored energy in an adjacent half-period. Therefore, the group

velocity can be calculated identically to a full-period structure:

, do__ P
<dp o (w,+w,)/L
P

+2W,,)/2L,

P
W, +W,,)/L, (11.10)

“ow

ml

Further, a multiplicity of the dispersion characteristics is suggested by the phase conditions
enforced on the matching boundaries. That is, for example, the m phase advance for a half-
period will appear like a 21 (or zero) phase advance for the whole-period geometry — which
means that both the points for zero and m phase advance for a half-period will map to the point
for zero phase advance for the whole-period geometry. This is explained in detail in [135],
[148], for which we find that the relevant interaction modes are determined by the even or odd
character of the field-profile. This will be best understood through an example in the following

sections.

Implications of Skew Symmetry

Skew or rotation-translation symmetry requires that the fields on the master (z=0) and slave

(z=L;) surfaces match modulo a complex phase constant, e’? = ¢/, and the field profile and
orientation are rotated 180° around the z-axis. The first, obvious implication is that the fields at
the next half-period (z=2L,) will match the fields on the master face modulo e/ =e/*"  and

the field profile and orientation are identical to that on the master face. This implies the correct
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periodicity of the full geometry, but the fact that the field shape “matches” (under rotation-

symmetry) at this half-period surface is only proven through the referenced analysis.

Due to the boundary conditions we can make several statements about the fields within the full-
period geometry. If the full-period is divided into two half-periods, the fields in the second half-

period are a rotated, axially shifted (by length L,), time-delayed (by electrical phase ¢, ) replica of

the fields in the first half-period. Therefore, the time-averaged field interaction that a beam
experiences as it traverses a full-period is identical 180° around the rotation axis. Also, following
the same analysis as in [144], [83], we find that, in a lossless structure, for a given power
transmitted across a terminal plane, the stored energy in a single half-period is equally split
between electrical and magnetic stored energy, and is equal to the stored energy in an adjacent

half-period. Therefore, the group velocity can be calculated in an identical manner.

Example of Matching Boundary Eigenmode Simulation for a
Symmetric-Biperiodic SWS

As an example, we look at the 3-slot sheet-beam coupled-cavity slow-wave structure
investigated throughout this thesis. An image of the simulation geometry (the vacuum interior)
is presented in Figure Il - 4 for a full geometric period with one of the matching boundary faces
represented in purple. The eigenmode solution is calculated for values of phase advance ¢[deg]
={1, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 179} predominantly evenly spaced between
0 and pi, but avoiding the “singularities” that occur at each of those points (those points are not
traveling wave solutions, but standing waves).
The raw data obtained for the first eight
eigenmodes of each phase advance is presented
Figure Il - 5 (a). The individual points are
connected with lines for all points at
corresponding frequency ordering (i.e. all
eigenmodes at the fifth lowest frequency are

connected so that no two lines intersect). In

order to identify the various modes across all
phases we look at physical quantities relevant to ) )

Figure Il - 4: Simulated geometry for the example
each mode, such as attenuation, group velocity, eigenmode simulations.
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Raw Data for 8 mode eigenmode simulation Raw Data for 8 mode eigenmode simulation
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Figure Il - 5: Dispersion data represented as frequency vs. phase advance specified between two planes of
the two-cavity structure pictured in Figure Il - 4. (a) Raw data. (b) Mode-identified data.

field components, and field derived quantities. The appropriately connected points are
illustrated in Figure Il - 5 (b). The result is a series of curves that appears smoothly connected
with various crossings (the curves that cross are one symmetric and one antisymmetric curve —

two symmetric curves never cross on this diagram, but have avoided crossings).

In order to find a full dispersion diagram that is within the conventional coupled-cavity

interaction framework, we mirror the data from ¢E[O,;r] to ¢E[jr,2;z-] and then duplicate the

data with translational period ¢t =27T. Finally, the data is converted to the phase that

ranslate
would be effected by a single cavity-period (a half geometry-period), with the data presented in
Figure Il - 6 in an expanded Brillouin Diagram including a dashed line representing the beam
velocity for a 13.3kV electron beam. This plot represents all the modes supported by the
structure that may interact with the electron beam. However, many of the modes have no

interaction on-axis and, accordingly, do not have a strong interaction under most circumstances.
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Dispersion Diagram with 13.3 kV Beam-Line
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Figure Il - 6: Expanded dispersion diagram.

We calculate the Fourier components of each mode on-axis, and display characteristic results of

the fundamental mode in Figure Il - 7. The values between ¢€[0,_7[/2j| were calculated from
the lowest double-period mode, while the values between ¢E[ﬂ/2,ﬂ] were calculated from
the second mode. It was found that between ¢€[0,_7[/2j| all the even values of spatial

harmonic were zero (numerically small), and for En/sqrt(P) for fundamental mode:

<n> w.r.t 2-cavity period,
the range ¢E[ﬂ/2,ﬂ] all the odd values of phase w.r.t. 1-cavity
4000
spatial harmonic were zero. Further, the values ( -3
3000 2
that match up from one side of 0.5m to the g ‘ \ -1
& 2000 0
other confirm the previous analysis. 2 N 1
p y ; \‘Q\\ : -
1000 ~ 3
Finally, we develop a numbering scheme that %—H*H“ |
0 = ;
works with the Fourier component calculation 0 0-25 phag‘é’/pi 0.7 !
and apply it to the dispersion diagram for ) ) )
Figure 1l - 7: Spatial harmonics for the

consistency (illustrated in Figure Il - 8). Then all  fundamental mode.
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the beam-line intersections can be assessed for the interaction strength. The dashed lines in the
plot have zero interaction on-axis, and are of secondary importance in some regards. They are
included for the full calculation of interactions, but not in the large-signal simulations of the

forward wave interaction.

Dispersion Diagram with 13.3 kV Beam-Line
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Figure Il - 8: A spatial-harmonic labeled dispersion diagram for the structure of interest.
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Appendix III: Intense Sheet Electron Beam Transportin a
Periodically Cusped Magnetic Field

INTRODUCTION

Electron beams with large transverse aspect ratios (sheet-beams) are of interest for use in RF
sources, accelerators, and free-electron laser applications. Focusing an intense, relatively low
voltage (i.e. > 300 A/cm?, < 20 kV) sheet electron beam is difficult, and only solenoidal focusing
over distances of several cm has been successfully used to date [27], [25], [93], [149]. If periodic
permanent magnets could be used instead of a permanent magnet solenoid, the overall size and
weight of the magnetic structure would be substantially reduced and transport over longer

distances might become practical [24].

The electron beam that we wish to transport has the following parameters: beam current =
3.5 A, voltage = 19.5 kV, beam height = 0.3 mm, beam width = 4.0 mm. These are the same
parameters achieved by Nguyen and Pasour et al. [27], [25] with strong permanent magnet
solenoid focusing (8.5 kG), and this is a realizable gun at the voltages desired, and has been
demonstrated [93]. This is a very strong magnetic field, as compared with the sheet-beam

Brillioun Field calculated to be 1.5 kG.

The goal of this study is to find what measure of focusing is realizable for an intense sheet-beam
with PCM focusing. To this end, we assume a beam tunnel within a slow-wave structure with
outer dimension 7 mm (Figure Il - 1 (a)). This provides a lower limit on the magnet spacing
(Figure 1l - 1 (b)), and therefore a limit on the

magnetic field intensity. The magnet period is ]I
similarly limited by materials and machining o Magnet

Spacing
7mm

technology, and also affects the available field beam

3.5mm Magnet Period: 12mim

intensity within the beam tunnel. Here, we set ]I
the period at 12 mm and analyze the magnetic

(a) (b)

field using a finite-element magnetic field

solver, Maxwell [81]. By adjusting the magnet Figure il - 1: a) Generic Ka-Band sheet-beam
slow-wave structure geometry (end view). b) 2D
Magnet configuration with realistic dimensions
(magnet period, magnet spacing) — arrows
represent direction of magnet polarization (side
and go 20-30% beyond without saturating the  view).

height, we can easily produce the 1.5kG

Brillioun field within the beam tunnel region
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pole-pieces. However, the magnet period is dangerously large when considering PPM instability

[24].

1-Dimension Analytical Focusing

An analytical, laminar sheet-beam that is infinite in the wide-dimension has a force equation

[150],

where K, is a measure of the defocusing charge,

K -4

T 2me,v,
’

(I11.1)

(111.2)

Jis the current per unit width, k. is the cyclotron wavenumber,

B
kco — q rms
my._

(111.3)

and b(z) is the magnetic field shape with rms value of one.

The force equation can be solved numerically
using a simple leap-frog integration and
assuming an initial beam height. The results of
a set of simulations with increasing magnetic
field are included in Figure Ill - 2. Also marked
are the analytical value for the Brillioun
Magnetic-Field and the area of observed PPM

instability.

2-D MICHELLE Simulations
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Figure 1l - 2: Results of 1D Numerical PPM
Transport

A set of 2D beam-optics simulations were performed using the finite-element code MICHELLE

[118]. The 2D magnetic field was produced using realistic magnetic materials in the finite-

element magnetic field solver Maxwell [81], exported to a table, and scaled linearly in

magnitude within MICHELLE. The electron beam used in these initial simulations is an artificial

beam created from a non-convergent gun with nearly constant beam-height (both laminar and
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“thermal” emission models were tested). The |Co|d Beaml

0.5 :
beam is transported through a straight 4 cm- = 04 P ————
. -1 = max
long section of a flat beam-tunnel of nominal % 03 il \
£ 0.
Ka-band size (specifically 0.9 mm tall). Note %02 .\\./'5/ \
’ TN
. . . . E \%A-‘\.
that this propagation distance is only 3.3 = 0.1
I
periods long, so a steady-state solution is not 0
1000 1200 1400 1600 1800 2000 2200
achieved. However, this distance is sufficient axial rms B-field [Gauss]
for the Ka-band circuit we envision.
05 [Thermal Beam|
: ; ~
The 2D results presented in Figure Ill - 3 are g 0.4 S average &
.. . ) é | —®ripple /\ /
very similar to the predicted 1D results in terms = 03 N N
o S \Z 4
of the shape near the Brillioun-field value, and D 02 e 1/
EE TN A
also in the appearance of a PPM instability at G 0.1 :/-
I
approximately the same magnetic field value. 0
1000 1200 1400 1600 1800 2000 2200
The particle trajectories (not pictured here) also axial rms B-field [Gauss]
indicate the PPM instability for larger magnetic Figure Il - 3: Results of MICHELLE 2D PPM

transport simulations with scaled 2D magnetic
fields — infinite sheet beam approximation. a)
with a period close to the magnetic field period.  Cold (laminar) Beam. b) Thermally-emitted
Beam.

fields, as they exhibit a growing beam scallop

3-D MICHELLE Simulations — Laminar Beam

A series of 3D beam-optics simulations were performed with MICHELLE — the simplest using a
laminar, elliptical beam, created numerically to fully account for the space charge depression of
the beam. The beam is propagated through a straight rectangular beam-tunnel of dimension
0.9 mm x 5.0 mm. The 3D magnetic field is created with the 3D capabilities of the Maxwell field
solver — both periodic boundaries and a realistic, finite stack of periodic magnets were used with

agreement between methods.

The initial 3D simulations were accomplished with minimal side-focusing (or none — as the
extrusion of the 2D magnetic field solution) with currents measured vs. rms magnetic field
strength plotted in Figure Il - 4. The currents represent a measure of how well the beam is
transported and whether the fractions of the beam lost is collected on the top and bottom
(wide surfaces), or the left and right sides (short surfaces). For small magnetic field, the beam
quickly expands into the top/bottom due to space-charge. As the magnetic field increases the

beam is better confined in the short-dimension (as predicted by 1D and 2D analyses), but shears
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quickly into the side-walls. It can be seen that 35 A

s Beam-In
the optimum field is near the predicted Brillioun Ve Left/Right
field, but is somewhat smaller. % Beam-Out X
§1.5
Focusing in the wide-dimension is accomplished ©
by alternately offsetting the pole-pieces as 0%
0 .
suggested by Booske et al. [24]. Simulations 800 1000 1200 1400 1600 1800 2000 2200
B, s [Gauss]
with an “infinite” periodic stack were
accomplished with magnetic symmetry Figure Il - 4: Beam-Interception results of

MICHELLE PPM transport simulations with scaled
boundaries, and injecting a laminar (shielded) 2D magnetic fields extruded from 2D field

. o solution — no side-focusing fields.
beam into the periodic field.

Creating a uniformly periodic magnetic field with finite length and magnetically shielded gun-
region required some adjustments to the magnet strengths (e.g., by adjusting the heights of
individual magnets) and monitoring the magnetic field components on axis and at the beam
edges and corners. These full 3D magnetic simulations were evaluated with both linear and
nonlinear materials to assess the realities of saturation within the pole-pieces. We found that
realistically a 12 mm period PCM would produce the required Brillioun field on axis without
saturating, but that a 10 mm period PCM would saturate before producing the required
magnetic field for the given magnet-spacing (refer to Figure Il - 1 for geometry). This

determined the lower-limit on magnet period for this study.

The results from a series of 3D beam-optics 35

Beam-Out

simulations with varying rms axial magnetic . . .
ying & with side-focusing

<
field strength are illustrated in Figure Ill - 5. The 2 2
[
key result of this plot is the depiction of a range é > 'Beam-Out
1 'wloside-focusing
of magnetic field strengths over which the 05
entire beam is transported successfully, 0
1000 1200 1400 1600 1800 2000 2200
indicating that the side-focusing is successful. Brms [Gauss]

Unfortunately, the side-focusing (the y- oo i1 - 5. Results of MICHELLE PPM transport

simulations with scaled 3D magnetic fields, both

component of the magnetic field) is linearly
with and without side-focusing fields.

scaled along with the dominant focusing of the
beam (the x-component of the magnetic field), so for increasing values of magnetic field, the

beam becomes over-focused in the wide-dimension and becomes less sheet-like. The other
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point to observe from this plot is that, similar to the 2D-field/3D-beam case above, the optimal
solution occurs somewhat below the Brillioun-field value. This is likely the result of the

distortion of the sheet-beam during transport.

3-D MICHELLE Simulations — Available Gun
As a case with a slightly more realistic thermal sheet-electron beam, we used the electron gun

designed by Nguyen [25] for the electron source. The original design for this gun intended for

very strong solenoidal focusing, which worked Beam Profile - Short Dimension
very well at capturing the thermal beam (98% g 0.8 e 1
50%
transport demonstrated [93]). However, as we % 0.6 o5
see from simulations, the thermal emittance is 09_ 0.4 \ AT\ N\
quite large due in part to the large beam % 0.2 A \/A"’A\/f
@ NN X7
convergence. For realistic magnetic fields 0 v\f\,\/\/\,\,
o . 0 10 20 30 40
optimized to this beam, the best PCM transport Axial Position [mm]
H 0,
achieved thus far was 83% for the 4cm Figure Il - 6: Beam-height profiles vs. axial
transport section. position for the thermal gun of Nguyen with PPM

focusing fields.

111



Bibliography

[1] Robert J Barker, John H Booske, Neville C Luhman, and Gregory S Nusinovich, Modern
Microwave and Millimeter-Wave Power Electronics. Piscatway, NJ: Wiley-Interscience,
2005.

[2] A. S. Gilmour, Principles of Traveling Wave Tubes. Print on Demand: Artech House, 1994.

[3] B. Levush et al., "Vacuum electronics: status and trends," IEEE Radar Conference 2007, pp.
971-976, 2007.

[4] J.F. Gittins, Power travelling-wave tubes. New York: Elsevier, 1965.
[5] J.R. Pierce, Traveling-Wave Tubes. New York, NY: D. Van Nostrand Co., Inc., 1950.

[6] J.R. Legarra, J. Cusick, R. Begum, P. Kolda, and M. Cascone, "A 500-W coupled-cavity TWT
for Ka-band communication," IEEE Trans. on Electron Devices, Vol. 52, No. 5, pp. 665-668,
2005.

[7] L-3 Communications ETI. (2008) 8909H TWT Datasheet. [Online]. http://www.|-
3com.com/eti/downloads/8909H.pdf

[8] L-3 Communications. (2011) Millimeter Wave Power Module Data sheet. [Online].
http://www.l-3com.com/edd/pdfs/13000509.pdf

[9] A. Laurent, P. Nugues, T. Beck, and D. Henry, "Wideband high efficiency compact TWTs," in
IEEE Intl. Vacuum Electronic Conference, Monterey, CA, 2002, pp. 178-179.

[10] L-3 Communications ETI. (2008, April) 8928H datasheet. [Online]. http://www.|-
3com.com/eti/downloads/military/8928H.pdf

[11] L-3 Communications ETI. (2008, March) 8929H datasheet. [Online]. http://www.|-
3com.com/eti/downloads/military/8929H.pdf

[12] R.L. Ives, L.R. Falce, G. Miram, and G. Collins, "Controlled-Porosity Cathodes for High-
Current-Density Applications," IEEE Transactions on Plasma Science, vol. 38, no. 6, pp.
1345-1353, June 2010.

[13] G. S. Nusinovich, B. Levush, and D. K. Abe, "A Review of the Development of Multiple-
Beam Klystrons and TWTs," US Naval Research Laboratory, Washington, DC,
Memorandum Report NRL/MR/6840--03-8673, 2003.

[14] E. A. Gelvich et al., "The new generation of high-power multiple-beam klystrons," IEEE-
MTT, vol. 41, no. 1, pp. 15-19, January 1993.

[15] C. Bearzatto, A. Beunas, and G. Faillon, "Long pulse and large bandwidth multibeam
klystron," in AIP Conf. Proc. 474, Pajaro Dunes, CA, 1998, pp. 107-116.

[16] D. Yaogen, "Recent progress on L-band broadband MBK," in 3rd IEEE Intl. Vacuum
Electronics Conference, Monterey, CA, 2002, pp. 296-297.

[17] D. K. Abe et al., "Demonstration of an S-band, 600-kW fundamental-mode multiple-beam

112



klystron," IEEE Electron Device Letters, vol. 26, no. 8, pp. 590-592, Aug 2005.

[18] A. A. Borisov et al., "The development of vacuum microwave devices in Istok," in IEEE Intl.
Vacuum Electronics Conference, Bangalore, IND, 2011, pp. 437-438.

[19] M. Basten et al., "A multiple electron beam array for a 220 GHz amplifier," in IEEE Intl.
Vacuum Electronic Conference, Rome, IT, 2009, p. 110.

[20] K. Nguyen et al., "1.4: Design of a high-gain wideband high-power 220-GHz multiple-beam
serpentine TWT," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2010, pp. 23-
24,

[21] P. Ferguson, "Development of a 10 MW hollow beam klystron," in IEEE Intl. Conference on
Plasma Science, Karlsruhe, GER, 2008, p. 1.

[22] W. Beaver, G. Caryotakis, G. Huffman, and N. Taylor, "An experimental wide-band
klystron, employing a high perveance hollow beam," in Intl. Electron Devices Meeting,
Washington, DC, 1959, p. 72.

[23] A.V. Galdetskiy, "8.2: On the opportunity of self-oscillation in sheet beam devices," in IEEE
Intl. Vacuum Electronics Conference, Monterey, CA, 2010, pp. 95-96.

[24] ). H. Booske, B. D. McVey, and T. M. Antonsen, "Stability and confinement of
nonrelativistic sheet electron beams with periodic cusped magnetic focusing," Journal of
Applied Physics, vol. 73, no. 9, pp. 4140-4155, May 1993.

[25] K.T. Nguyen, J. Pasour, E.L. Wright, J. Petillo, and B. Levush, "High-perveance W-band
sheet-beam electron gun design," IEEE International Vacuum Electronics Conference, pp.
179 - 180, 2008.

[26] J. Pasour et al., "Sheet beam stick for low-voltage W-band extended interaction klystron
(EIK)," IEEE International Vacuum Electronics Conference (IVEC), pp. 43 - 44, 2010.

[27] K. T. Nguyen, J. A. Pasour, T. M. Antonsen Jr., and P. B. Larsen, "Intense Sheet Electron
Beam Transport in a Uniform Solenoidal Magnetic Field," IEEE Transactions on Electron
Devices, vol. 56, no. 5, pp. 744-752, May 2009.

[28] B. E. Carlsten, "Modal analysis and gain calculations for a sheet electron beam in a ridged
waveguide slow-wave structure," Physics of Plasmas, vol. 9, no. 12, p. 5088, August 2002.

[29] S. J. Papadakis et al., "A micro-fabricated sheet-beam Orotron THz source," in Proc. SPIE
Micro- and Nanotechnology Sensors, Systems and Applications Ill, Orlando, FL, 2011, p.
8031.

[30] G. Scheitrum, "Design and Construction of a W-band Sheet Beam Klystron," in AIP
Conference Proceedings Vol. 807, 2006, pp. 120-125.

[31] D. Sprehn et al., "Development of a 10 MW Sheet Beam Klystron for the ILC," in Particle
Accelerator Conference, Vancouver, BC, CAN, 2009.

[32] G. Scheitrum et al., "W-band Sheet Beam Klystron Research at SLAC," in IEEE Intl. Vacuum
Electronics Conference, Monterey, CA, 2006, pp. 481-482.

113



[33] G. Scheitrum et al., "W-band sheet beam klystron design," in Intl. Infrared and Millimeter
Waves Conference, Karlsruhe, GER, 2004, pp. 525-526.

[34] G. Scheitrum et al., "Fabrication and Testing of a W-band Sheet Beam Klystron," in IEEE
Intl. Vacuum Electronics Conference, Kitakyushu, JAP, 2007, pp. 1-2.

[35] M. Cusick et al., "X-Band Sheet Beam Klystron (XSBK)," in IEEE Intl. Vacuum Electronics
Conference, Rome, ITA, 2009, pp. 296-297.

[36] B.E. Carlsten et al., "Technology development for a mm-wave sheet-beam traveling-wave
tube," IEEE Transactions on Plasma Science, vol. 33, no. 1, pp. 85-93, February 2005.

[37] S. Humphries, S. Russell, B. Carlsten, and L. Earley, "Focusing of high-perveance planar
electron beams in a miniature wiggler magnet array," IEEE Transactions on Plasma
Science, vol. 33, no. 2, pp. 882-891, April 2005.

[38] Steven J. Russell, Zhi-Fu Wang, W. Brian Haynes, Bruce E. Carlsten, and Lawrence M.
Earley, "Optical beam profile diagnostic for low energy, long pulse, moderate current
electron beams," Review of Scientific Instruments, vol. 77, no. 3, pp. 033302-033302-7,
March 2006.

[39] L.M. Earley et al.,, "Simulation and Measurement of the Los Alamos 94GHz TWT RF
Structure," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2006, pp. 449-450.

[40] B.E. Carlsten et al., "MM-wave sheet-beam traveling-wave tube development at Los
Alamos," in IEEE Intl. Conference on Plasma Science, Baltimore, MD, 2004, p. 422.

[41] B.E. Carlsten et al., "MM-wave source development at Los Alamos," in IEEE Intl. Vacuum
Electronics Conference, Monterey, CA, 2004, pp. 24-25.

[42] G.M. Borsuk and B. Levush, "PL-2: Vacuum electronics research perspective at the naval
research laboratory," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2010, pp.
3-4.

[43] K.T. Nguyen et al., "Sheet-Beam 90 GHz and 220 GHz Extend-Interaction-Klystron Designs,"
in IEEE Intl. Vacuum Electronics Conference, Kitakyushu, JAP, 2007, pp. 1-2.

[44] J. Pasour, K. Nguyen, E. Wright, A. Balkcum, and B. Levush, "W-band sheet beam Extended
Interaction Klystron (EIK)," in IEEE Intl. Vacuum Electronics Conference, Bangalore, IND,
2011, pp. 87-88.

[45] K.T. Nguyen, D.E. Pershing, D.K. Abe, G. Miram, and B. Levush, "Eighteen-beam gun design
for high power, high repetition rate, broadband multiple-beam klystrons," [EEE
Transactions on Plasma Science, vol. 33, no. 2, pp. 685-695, April 2005.

[46] K.T. Nguyen, D.E. Pershing, D.K. Abe, and B. Levush, "Bandwidth extension of an S-band,
fundamental-mode eight-beam klystron," IEEE Transactions on Plasma Science, vol. 34, no.
3, pp. 576-583, June 2006.

[47] D.K. Abe et al., "Experimental Study and Analysis of an S-Band Multiple-Beam Klystron
With 6% Bandwidth," IEEE Transactions on Electron Devices, vol. 56, no. 5, pp. 846-854,
May 2009.

114



[48] D.K. Abe et al.,, "Experimental demonstration of MBK2, an eight-beam, five-cavity
multiple-beam klystron," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2008,
pp. 423-424.

[49] K.T. Nguyen et al., "High-average power broadband 18-beam klystron circuit and collector
designs," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2008, pp. 425-426.

[50] K.T. Nguyen et al., "Broadband High-Power 18-Beam S-Band Klystron Amplifier Design,"
IEEE Transactions on Electron Devices, vol. 56, no. 5, pp. 883-890, May 2009.

[51] T.M. Antonsen, S.J. Cooke, B. Levush, and Y.N. Pchelnikov, "Axial vs Transverse Bunching in
Sheet Beam TWTs," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2006, pp.
483-484.

[52] D. Chernin et al., "Linearity of the Transverse Field Interaction in a Traveling Wave Tube,"
in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2006, pp. 27-28.

[53] D. Chernin, T.M. Antonsen, B. Levush, S.J. Cooke, and W. Manheimer, "A Comparison of
Linearity and Efficiency in Conventional and Transverse TWT Amplifiers," IEEE Transactions
on Electron Devices, vol. 54, no. 2, pp. 194-201, February 2007.

[54] S.J. Cooke, B. Levush, and T.M. Antonsen, "8.1: Nonlinear characteristics of transverse
interaction in sheet beam amplifiers," in IEEE Intl. Vacuum Electronics Conference,
Monterey, CA, 2010, pp. 93-94.

[55] Young-Min Shin, A. Baig, D. Gamzina, and N.C. Luhmann, "9.4: MEMS fabrication of 0.22
THz sheet beam TWT circuit," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA,
2010, pp. 185-186.

[56] A. Baig et al., "Experimental characterization of LIGA fabricated 0.22 THz TWT circuits," in
IEEE Intl. Vacuum Electronics Conference, Bangalore, IND, 2011, pp. 275-276.

[57] Young-Min Shin et al., "Micro-fabricable terahertz sheet beam amplifier integrated with
broadband metamaterial circuit," in Intl. Conference on Communications and Electronics,
2010, pp. 373-378.

[58] Young-Min Shin, L.R. Barnett, A. Baig, Wen-Ching Tsai, and N.C. Luhmann, "0.22 THz sheet
beam TWT amplifier: System design and analysis," in IEEE Intl. Vacuum Electronics
Conference, Bangalore, IND, 2011, pp. 61-62.

[59] Young-Min Shin, L.R. Barnett, and N.C. Luhmann, "Phase-Shifted Traveling-Wave-Tube
Circuit for Ultrawideband High-Power Submillimeter-Wave Generation," IEEE Transactions
on Electron Devices, vol. 56, no. 5, pp. 706-712, May 2009.

[60] Young-Min Shin and Larry R. Barnett, "Intense wideband terahertz amplification using
phase shifted periodic electron-plasmon coupling," Applied Physics Letters, vol. 92, no. 9,
pp. 091501-091501-3, March 2008.

[61] Chiping Chen, R. Bhatt, A. Radovinsky, and Jing Zhou, "Three-Dimensional Design of a Non-
Axisymmetric Periodic Permanent Magnet Focusing System," in Proceedings of the Particle
Accelerator Conference, Knoxville, TN, 2005, pp. 1964-1966.

115



[62] R. Bhatt, T. Bemis, and C. Chen, "Three-dimensional theory and simulation of
nonrelativistic elliptic electron and ion beam generation," IEEE Transactions on Plasma
Science, vol. 34, no. 2, pp. 187-193, April 2006.

[63] R. C. Davidson, P. Stoltz, and C. Chen, "Intense non-neutral beam propagation in a periodic
solenoidal field using a macroscopic fluid model with zero thermal emittance," Physics of
Plasmas, vol. 4, no. 10, p. 3710, July 1997.

[64] R. Bhatt, J. Zhou, and C. Chen, "Three Dimensional Simulation of Large-Aspect-Ratio
Ellipse-Shaped Charged-Particle Beam Propagation," in Proceedings of the Particle
Accelerator Conference, Knoxville, TN, 2005, pp. 823-825.

[65] C. Chen and J. Zhou, "Equilibrium theory of an intense elliptic beam for high-power ribbon-
beam klystron applications," in IEEE Particle Accelerator Conference, Albuquerque, NM,
2007, pp. 2316-2318.

[66] Young-Min Shin, L.R. Barnett, and N.C. Luhmann, "Numerical and experimental design
study of quasi-optical multi-gap output cavity for W-band sheet beam klystron (WSBK)," in
IEEE Intl. Vacuum Electronics Conference, Rome, ITA, 2009, pp. 530-532.

[67] Young-Min Shin, Jian-Xun Wang, L.R. Barnett, and N.C. Luhmann, "Particle-In-Cell
Simulation Analysis of a Multicavity W-Band Sheet Beam Klystron," IEEE Transactions on
Electron Devices, vol. 58, no. 1, pp. 251-258, January 2011.

[68] Xiaofeng Zhang et al., "X-Band sheet beam klystron design," in IEEE Intl. Vacuum
Electronics Conference, Bangalore, IND, 2011, pp. 245-246.

[69] Cunjun Ruan, Shuzhong Wang, Ding Zhao, and Qinsheng Li, "Thermodynamics analysis of
electron gun for sheet beam klystron," in IEEE Intl. Vacuum Electronics Conference, Rome,
ITA, 2009, pp. 439-440.

[70] Wang Ruan et al., "P1-3: Cavity design for an X-band sheet beam klystron," in IEEE Intl.
Vacuum Electronics Conference, Monterey, CA, 2010, pp. 105-106.

[71] Wang Ruan et al., "Interaction simulation of an X-band sheet beam klystron," in IEEE Intl.
Vacuum Electronics Conference, Rome, ITA, 2009, pp. 304-305.

[72] Ding Zhao, Cunjun Ruan, Yong Wang, and Wang Ruan, "8.5: Numerical simulation and
experimental test of a sheet beam electron gun," in IEEE Intl. Vacuum Electronics
Conference, Monterey, CA, 2010, pp. 101-102.

[73] J. Tucek, M. Basten, D. Gallagher, and K. Kreischer, "1.2: Sub-millimeter and THz power
amplifier development at northrop grumman," in [EEE Intl. Vacuum Electronics
Conference, Monterey, CA, 2010, pp. 19-20.

[74] S.J. Cooke, B. Levush, and T.M.,, Jr. Antonsen, "A coupled-cavity slow-wave structure for
sheet-beam devices," IEEE Int. Vac. Elec. Conf., pp. 487-488, 2006.

[75] P.B. Larsen, D.K. Abe, S.J. Cooke, and B. Levush, "Characterization of a Ka-band sheet-
beam coupled-cavity slow-wave structure," IEEE Trans. on Plasma Sci., pp. 1244-1254,
2010.

116



[76] C.L. Kory, "Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit," NASA
Contractor Report, 4766, 1997.

[77] C.L. Kory and J.A. Dayton, "Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits,"
IEEE Transactions on Electron Devices, vol. 45, no. 4, pp. 966-971, April 1998.

[78] J.D. Wilson and C.L. Kory, "Simulation of cold test parameters and RF output power for a
coupled-cavity traveling-wave tube," IEEE Transactions on Electron Devices, vol. 42, no. 11,
pp. 2015-2020, November 1995.

[79] F. Kantrowitz and I. Tammaru, "Three-Dimensional Simulations of Frequency-Phase
Measurements of Arbitrary Coupled-Cavity RF Circuits," IEEE Transactions on Electron
Devices, vol. 35, no. 11, pp. 2018-2026, 1988.

[80] W.Q. Lei and Z.H. Yang, "Software Cold Test Simulation of Coupled Cavity Slow-Wave
Structure in Millimieter Wave TWT," Intl. Journal of Infrared and Millimeter Waves, vol. 24,
no. 1, pp. 71-77, January 2003.

[81] Ansoft Corporation, a subsidiary of Ansys Inc., , Pittsburgh, PA.
[82] STAAR Inc., a subsidiary of AWR, , El Segundo, CA.
[83] D. A. Watkins, Topics in Electromagnetic Theory. New York, U.S.: John Wiley & Sons, 1958.

[84] H. J. Curnow, "A general equivalent circuit for coupled-cavity structures," IEEE
Transactions on Microwave Theory and Techniques, vol. 13, no. 5, pp. 671-676, 1965.

[85] R. G. Carter and L. Shunkang, "A method for calculating the properties of coupled-cavity
slow-wave structures from their dimensions," IEE Proceedings Pt. H, vol. 133, no. 5, pp.
330-334, 1986.

[86] V. L. Christie, L. Kumar, and Balakrishnan N., "Improved equivalent circuit model of
practical coupled-cavity slow-wave structures for TWTs," Microwave and Optical
Technology Letters, vol. 35, no. 4, pp. 322-326, 2002.

[87] D. J. Connolly, "Determination of the interaction impedance of coupled cavity slow wave
structures," IEEE Transactions on Electron Devices, vol. 23, no. 5, pp. 491-493, 1976.

[88] J. R. M. Vaughan, "Calculation of coupled-cavity TWT performance," IEEE Transacations on
Electron Devices, vol. ED-22, no. 10, pp. 880-890, October 1975.

[89] A. W. Horsley and A. Pearson, "Measurement of dispersion and interaction impedance
characteristics of slow-wave structures by resonance methods," IEEE Transactions on
Electron Devices, vol. 13, no. 12, pp. 962-969, 1966.

[90] P. B. Larsen, D. K. Abe, B. Levush, and T. M. Antonsen, "Coupling a waveguide input into a
sheet-beam coupled-cavity slow-wave structure," in [EEE Intl. Vacuum Electronics
Conference, Bangalore, IND, 2011, pp. 209-210.

[91] Calabazas Creek Research, Inc., San Mateo, CA,.

[92] J. Legarra, Personal Communications, 2010.

117



[93] J. Pasour et al., "Demonstration of a 100-kW Solenoidally Focused Sheet Electron Beam for
Millimeter Wave Amplifiers," IEEE Transactions on Electron Devices, vol. 57, no. 12, April
2011.

[94] Thomas M., Jr. Antonsen and Baruch Levush, "CHRISTINE: A Multifrequency Parametric
Simulation Code for Traveling Wave Tube Amplifiers," US Naval Research Laboratory,
Washington, DC, NRL/FR/6840--70-9845, 1997.

[95] B. N. Basu, Electromagnetic theory and applications in beam-wave electronics.: World
Scientific, 1996.

[96] D.K. Abe, M.T. Ngo, B. Levush, T.M,, Jr. Antonsen, and D. Chernin, "Experimental validation
of CHRISTINE, a 1-D, multi-frequency helix TWT code: drive curves, phase, distortion
products, and intermodulation," in IEEE Intl. Conference on Plasma Science, 1999, p. 136.

[97] D.K. Abe, B. Levush, T.M., Jr. Antonsen, D.R. Whaley, and B.G. Danly, "Design of a linear C-
band helix TWT for digital communications experiments using the CHRISTINE suite of
large-signal codes," IEEE Transactions on Plasma Science, vol. 30, no. 3, pp. 1053-1062,
June 2002.

[98] T.A. Hargreaves et al., "Ku-band MPM booster helix TWT design and validation," in IEEE
Intl. Vacuum Electronics Conference, Monterey, CA, 2004, pp. 293-294.

[99] J.H. Booske et al., "Accurate parametric modeling of folded waveguide circuits for
millimeter-wave traveling wave tubes," IEEE Transactions on Electron Devices, vol. 52, no.
5, pp. 685-694, May 2005.

[100] S. Bhattacharjee et al., "Investigations of folded waveguide TWT oscillators for THz
radiation," in IEEE Intl. Conference on Vacuum Electronics, Seoul, KOR, 2003, pp. 317-318.

[101] D. Chernin et al., "Large-Signal Multifrequency Simulation of Coupled-Cavity TWTs," IEEE
Transactions on Electron Devices, vol. 58, no. 4, pp. 1229-1240, April 2011.

[102] D. Chernin et al., "Validation Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity
TWT," in IEEE Intl. Vacuum Electronics Conference, 2006, pp. 399-400.

[103] D. Dialetis et al., "Comparative analysis of the Curnow and Malykhin-Konnov-Komarov
(MKK) circuits as representations of coupled-cavity slow-wave structures," [EEE
Transactions on Electron Devices, vol. 52, no. 5, pp. 774-782, May 2005.

[104] S.0. Wallander, "Reflexions and Gain Ripple in TWT's," IEEE Transactions on Electron
Devices, vol. ED-19, no. 5, pp. 655-660, 1972.

[105] H.C. Limburg, J.A. Davis, I. Tammaru, J.P. Vaszari, and J. Wilson, "Reducing the Gain and
Phase Variation in High Power MMW TWTs," in Intl. Electron Devices Meeting, 1988, pp.
381-384.

[106] J.R.M. Vaughan, "A Model for the Klystron Cavity Gap," IEEE Transactions on Electron
Devices, vol. 32, no. 11, pp. 2482-2484, 1985.

[107] H.G. Kosmahl and G.M. Jr. Branch, "Generalized Representation of Electric Fields in
Interaction Gaps of Klystrons and Traveling-Wave Tubes," IEEE Transactions on Electron

118



Devices, vol. 20, no. 7, pp. 621-629, 1973.
[108] ATK Mission Research Corp., "Magic User's Manual," 2005.

[109] B. Goplen, L. Ludeking, D. Smith, and G. Warren, "User-configurable MAGIC for
electromagnetic PIC calculations," Computer-Physics Communications, vol. 87, no. 1, pp.
54-86, May 1995.

[110] T.M., Jr. Antonsen, A.A. Mondelli, B. Levush, J.P. Verboncoeur, and C.K. Birdsall, "Advances
in modeling and simulation of vacuum electronic devices," Proceedings of the IEEE, vol. 87,
no. 5, pp. 804-839, May 1999.

[111] L. D. Ludeking et al., "Computational Modeling," in Modern Microwave and Millimeter-
Wave Power Electronics. Piscataway, NJ, 2005, ch. 10, pp. 507-586.

[112] D.M. & Choi, J.J. Park, "Three-Dimensional Simulations of an X-Band Coupled-Cavity
Traveling-Wave-Tube Amplifier," Journal of the Korean Physical Society, vol. 43, no. 6, pp.
1105-1111, December 2003.

[113] H.J. Kim, J.J. Choi, B.J. Lee, J.Y. Kim, and J.C. Lee, "MAGIC3D simulation of an ultra-
compact, highly efficient, and high-power reltron tube," IEEE Transactions on Dielectrics
and Electrical Insulation, vol. 16, no. 4, pp. 961-966, August 2009.

[114] S. G. Jeon, Y. S. Jin, J. I. Kim, G. J. Kim, and C. H. Shon, "Three-dimensional particle-in-cell
simulations of 300 GHz reflex klystrons," Journal of Applied Physics, vol. 101, no. 5, p.
054519, March 2006.

[115] H. J. Kim, H. J. Kim, and J. J. Choi, "MAGIC3D Simulations of a 500-W Ka-Band Coupled-
Cavity Traveling-Wave Tube," IEEE Transactions on Electron Devices, vol. 56, no. 1, pp.
149-155, January 2009.

[116] S. Reddy, V.B. Naidu, S.K. Datta, P.K. Jain, and L. Kumar, "14.5: PIC simulation of a
gyrotron-traveling-wave tube amplifier," in IEEE Intl. Vacuum Electronics Conference,
Monterey, CA, 2010, pp. 319-320.

[117] F. Friedlander, A. Karp, B.D. Gaiser, J.S. Gaiser, and B. Goplen, "Transient analysis of beam
interaction with the antisymmetric mode in a truncated periodic structure using the three-
dimensional computer code "SOS"," IEEE Transactions on Electron Devices, vol. 33, no. 11,
pp. 1896-1901, November 1986.

[118] J. Petillo et al., "The MICHELLE three-dimensional electron gun and collector modeling
tool: theory and design," IEEE Transactions on Plasma Science, vol. 30, no. 3, pp. 1238-
1264, June 2002.

[119] A. Karp and G.T. Hunter, "Higher order modes and instabilities in coupled-cavity TWT's,"
IEEE Trans. on Elec. Dev., vol. ED-33, no. 11, pp. 1890-1895, 1986.

[120] I. Tammaru, "Instabilities and spurious noise in coupled-cavity traveling-wave tubes,"
Physica Scripta, vol. 71, no. 1, pp. 50-59, 1997.

[121] A. P. Kuznetsov, S. P. Kuznetsov, A. G. Rozhney, E. V. Blokhina, and L. V. Bulgakova, "Wave
Theory of a Traveling-Wave Tube Operated Near the Cutoff," Radiophysics and Quantum

119



Electronics, vol. 47, no. 5, pp. 356-373, May 2004.

[122] VP. Taranenko and A. A. Mikhin, "Study of Methods to Suppress Self-Excitation in O-type
Traveling Wave Tubes (TWT)," Radioelektronika, vol. 17, pp. 5-17, November 1974.

[123] T. M., Jr. Antonsen, P. Safier, D. P. Chernin, and B. Levush, "Stability of traveling-wave
amplifiers with reflections," IEEE Transactions on Plasma Science, vol. 30, no. 3, pp. 1089-
1107, 2002.

[124] L. K. Ang and Y. Y. Lau, "Absolute instability in a traveling wave tube model," Physics of
Plasmas, vol. 5, no. 12, pp. 4408-4410, July 1998.

[125] Y.D. Joo, A.K. Sinha, B.N. Basu, and G.S. Park, "Analysis of pi-point instability in an
asymmetric helical slow-wave structure in helix traveling wave tubes," in IEEE Intl. Vacuum
Electronics Conference, Monterey, CA, 2004, pp. 120-121.

[126] D. L. Webster, "The Theory of Klystron Oscillations," Journal of Applied Physics, vol. 10, no.
12, pp. 864-872, June 1939.

[127] L. R. Barnett et al., "Absolute instability competition and suppression in a millimeter-wave
gyrotron traveling-wave tube," Physical Review. Letters, vol. 63, no. 10, pp. 1062-1065,
September 1989.

[128] C.H. Du and P.K. Liu, "Beam-Wave Coupling Strength Analysis in a Gyrotron Traveling-
Wave Amplifier," Journal of Infrared, Millimeter and Terahertz Waves, vol. 31, no. 6, pp.
714-723, February 2010.

[129] Y. Y. Lau, K. R. Chu, L. R. Barnett, and V. L. Granatstein, "Gyrotron travelling wave
amplifier: I. Analysis of oscillations," Intl. Journal of Infrared and Millimeter Waves, vol. 2,
no. 3, pp. 373-393, May 1981.

[130] K.R. Chu and A.T. Lin, "Gain and bandwidth of the gyro-TWT and CARM amplifiers," IEEE
Transactions on Plasma Science, vol. 16, no. 2, pp. 90-104, April 1988.

[131] H. R. Johnson, "Backward-wave oscillators," Proceedings of the IRE, vol. 43, no. 6, pp. 684-
697, 1955.

[132] C.R. Smith, C.M. Armstrong, and J. Duthie, "The microwave power module: a versatile RF
building block for high-power transmitters," Proceedings of the IEEE, vol. 87, no. 5, pp.
717-737, May 1999.

[133] A.J Bahr, "A coupled-monotron analysis of band-edge oscillations in high-power traveling-
wave tubes," IEEE Transactions on Electron Devices, vol. 12, no. 10, pp. 547-556, October
1965.

[134] G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, "Excitation of parasitic waves near
cutoff in forward-wave amplifiers," Physical Review Letters E, vol. 82, no. 4, p. 046404,
October 2010.

[135] P.J. Crepeau and P.R. Mclsaac, "Consequences of symmetry in periodic structures,"
Proceedings of the IEEE, vol. 52, no. 1, pp. 33-43, January 1964.

120



[136] B. Levush et al., "Relativistic backward wave oscillators: Theory and experiment," in JEDM
Intl. Electron Devices Meeting, 1991, pp. 775-778.

[137] S. Y. Park, V. L. Granatstein, and R. K. Parker, "A Linear Theory and Design Study for a
Gyrotron Backward-Wave Oscillator," Intl. Journal of Electronics, vol. 57, no. 6, pp. 1109-
1123, December 1984.

[138] E.L. Lien, "Stopbands Produced by Asymmetrical Support Rod System in Helix Structures,"
Intl. Electron Devices Meeting, vol. 25, pp. 412-415, 1979.

[139] A. Karp, "Biperiodicity as Liability and as Asset in Non-Helix Linear-Beam TWT Interaction
Structures," Intl. Electron Devices Meeting, vol. 29, pp. 440-443, 1983.

[140] Young-Min Shin et al., "Numerical modeling analysis of 0.22 THz sheet beam TWT circuit,"
in IEEE Intl. Vacuum Electronics Conference, Bangalore, IND, 2011, pp. 139-140.

[141] J. Pasour, K. Nguyen, E. Wright, and B. Levush, "3.5: Sheet beam EIK sensitivity to
multimoding and circuit imperfections," in IEEE Intl. Vacuum Electronics Conference,
Monterey, CA, 2010, pp. 45-46.

[142] J.R. Frey and |. Tammaru, "A coupled-cavity TWT operating in the inverted slot mode," Intl.
Electron Devices Meeting, vol. 27, pp. 504- 506, 1981.

[143] G.M., Jr. Branch, "Electron beam coupling in interaction gaps of cylindrical symmetry," IRE
Transactions on Electron Devices, vol. 8, no. 3, pp. 193-207, May 1961.

[144] R. E. Collin, Foundations for microwave engineering, 2nd ed. New York: IEEE Press, 2001.

[145] G. M. Branch and T. G. Mihran, "Plasma Frequency Reduction Factors in Electron Beams,"
IRE Transactions, vol. ED-2, pp. 3-11, 1955.

[146] S. Ramo, "Space-Charge and Field Waves in an Electron Beam," Phys. Rev., vol. 56, no. 3,
pp. 276-283, August 1939.

[147] R. M. Bevensee, Electromagnetic Slow Wave Systems. New York: Wiley, 1964.

[148] A. Hessel, Ming Hui Chen, R.C.M. Li, and A.A. Oliner, "Propagation in periodically loaded
waveguides with higher symmetries," Proceedings of the IEEE, vol. 61, no. 2, pp. 183-195,
February 1973.

[149] J.E. Atkinson et al., "8.3: A high aspect ratio, high current density sheet beam electron
gun," in IEEE Intl. Vacuum Electronics Conference, Monterey, CA, 2010, pp. 97-98.

[150] S. Humphries, Charged Particle Beams.: John Wiley and Sons, 1990.

[151] T.M., Jr. Antonsen, Note on Linear Theory of Slow Wave Interactions with Planar Beams,
2005.

121



122



