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Fair-weather cumulus clouds, bay breezes, and land use influence air quality and 

climate.  The impacts of urban land surface changes and model resolution on fair-weather 

cumulus clouds, bay breezes, air quality, and climate are examined.  As model resolution 

increases, more pollutants are transported aloft through fair-weather cumulus clouds 

causing an increase in the rate of sulfur dioxide conversion to sulfate aerosols and an 

increase in boundary layer venting.  As model resolution increases, a larger temperature 

gradient develops along the shoreline of the Chesapeake Bay causing the bay breeze to 

form sooner, push farther inland, and loft more pollutants upward.  This stronger bay 

breeze results in low-level convergence, a buildup of near surface ozone over land and a 

decrease in the land-to-sea flux of ozone and ozone precursors. Also, an examination of 

the sensitivity of sulfur dioxide to sulfate conversion to different model cloud parameters 

shows the importance of accurately simulating clouds to obtain accurate sulfate 

concentrations.  To analyze the impact of urbanization on the atmosphere, an urban tree 

parameterization is developed for the Weather Research and Forecasting model coupled 



with an urban canopy model (WRF-UCM) to determine how urban trees can dampen the 

urban heat island (UHI).  Adding vegetation decreases the (subgrid-scale) surface air 

temperature due to tree shading and evapotranspiration.  The impact of building height on 

the UHI shows that shorter urban buildings have higher daytime surface temperatures due 

to less shading and lower nighttime temperatures due to less longwave radiative trapping 

in urban street canyons.  The WRF-UCM with urban trees is utilized with an air quality 

model to investigate how urban vegetation changes impact air quality.  Cooling due to 

planting urban trees is expected to improve air quality.  However, for one case study that 

does not include anthropogenic emissions reductions due to cooling from increased 

vegetation, adding trees in the model results in higher ground level ozone concentrations 

due to a shallower planetary boundary layer and more pollutants converging near a 

stronger bay breeze near Baltimore, MD.  Future work incorporating changes in 

anthropogenic emissions with changes in urban vegetation will help quantify how urban 

trees impact air quality. 
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Chapter 1: Introduction 

1.1 Background and motivation 

The production of secondary air pollutants and the accumulation and dispersion of 

pollutants depends on emissions, meteorology, and the chemical composition of the 

atmosphere.  Air pollution may degrade human health and natural resources as well as 

alter the radiative budget and cloud properties affecting Earth’s climate and weather 

systems.  A change in land surface characteristics can alter weather and climate and 

therefore impact air quality.  Understanding air pollution formation processes and 

interactions between air quality, weather, climate, and land surface processes will aid in 

developing air pollution and climate change mitigation plans and forecasting air quality, 

weather, and climate. 

1.1.1 Air pollution impacts on human, terrestrial, and aquatic health 

Tropospheric ozone is a secondary pollutant, harmful to human health.  High 

concentrations of ozone near the surface may cause permanent lung damage (Mudway 

and Kelly, 2000).  Tropospheric ozone is formed through complex chemical and 

photochemical reactions involving nitrogen oxides, volatile organic compounds (VOCs), 

and carbon monoxide.  Also, ground-level aerosols may produce heart and lung disease 

(Docker et al., 1993; Samet et al., 2000).  Aerosols can be emitted directly into the 

atmosphere and form through reactions in the atmosphere.  The U.S. Environmental 

Protection Agency (EPA) recognizes the health hazards of ground-level ozone and 
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aerosols and set National Ambient Air Quality Standards (NAAQS) that include ozone 

and aerosol concentration limits. 

Air pollution is also harmful to land and aquatic ecosystems.  High ozone 

concentrations damage plants and reduce crop yields (Booker et al., 2009; Fishman et al., 

2010; Sanders et al., 1992).  Sulfate and nitrate aerosols contribute to acid precipitation, 

which can make lakes and streams uninhabitable for fish.  Acid precipitation can also 

erode buildings, monuments, and paint on cars.  Nitrogen deposited into watersheds 

degrades river and coastal water quality by causing more algae blooms.  These algae 

blooms block sunlight preventing underwater grasses from growing.  The decrease in 

these grasses lowers dissolved oxygen levels to dangerous levels for fish and shellfish 

(Moffat, 1998; Morgan and Owens, 2001, Galloway et al., 2003; NRC, 2000). 

1.1.2 Air pollution impacts on weather and climate 

Tropospheric ozone and aerosols impact the radiative budget and therefore 

climate (Shine, 2000; Fishman et al., 1979).  Ozone is a greenhouse gas that absorbs 

infrared radiation emitted by Earth and contributes to climate change.  Scattering aerosols 

reflect solar radiation away from Earth causing a cooling effect on the climate.  On the 

other hand, black carbon aerosols absorb radiation contributing to a warming climate.  

Also, black carbon aloft causes the upper atmosphere to warm, therefore stabilizing the 

atmosphere and preventing cloud formation and/or inhibiting convection (Hansen et al., 

1997).  This further contributes to a warming climate since clouds have a high albedo and 

reflect solar radiation away from Earth’s surface. 

Aerosols can also lengthen the lifetime of a cloud and alter precipitation 

processes.  The formation of precipitation depends largely on the presence of aerosols.  
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Cloud droplets form when water vapor condenses onto small particles or cloud 

condensation nuclei (CCN) (Wallace and Hobbs, 1977).  Increasing the number of CCN 

produces more numerous but smaller cloud droplets (Toon, 2000).  Consequently, 

pollution increases the amount of aerosols in the atmosphere that act as CCN causing 

cloud droplets to be smaller and more numerous producing ‘whiter’ clouds that increase 

the amount of solar radiation reflected by clouds (Twomey, 1974).  In addition, the cloud 

droplet growth rate is dependent on droplet radius so droplets in polluted clouds grow 

less quickly than droplets in unpolluted clouds (Toon, 2000).  Smaller droplets may not 

be able to fall to the surface before evaporating.  NASA satellite imagery has been used 

to show polluted clouds from urban and industrial sources contain smaller cloud droplets 

and a lower precipitation rate than clean clouds (Rosenfeld, 2000).  Long-lived polluted 

clouds result in reduced precipitation formation near the pollutant source, but the cloud 

water is eventually converted to precipitation further downwind of the pollution source 

causing enhanced precipitation further downwind (Rosenfeld, 2006). 

1.1.3 Weather impacts on air pollution 

Meteorology is an important component in the production of secondary pollutants 

and accumulation of air pollution.  Wind patterns determine where pollutants are 

transported and help determine the chemical composition of the atmosphere in a specific 

area, therefore helping to determine what molecular collisions take place that may result 

in a chemical reaction and formation of secondary air pollutants.  Stagnant conditions 

allow pollutants to accumulate in one location while high wind events disperse pollutants 

(U.S. Environmental Protection Agency, 2006). 
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Localized air circulation patterns, like a sea breeze, bay breeze, or lake breeze, 

influence pollutant dispersion and accumulation.  A sea breeze forms during the day due 

to differential heating along a coastline, with relatively warm near surface air temperature 

over the land and cool air over the water.  This temperature structure results in a localized 

circulation pattern with low-level convergence and rising motion over the land and 

descending motion over the water.  A sea breeze can exacerbate air pollution levels near 

the sea breeze’s convergence zone (Boucouvala and Bornstein, 2003; Evytugina et al., 

2006).  Rising air can transport pollution out of the planetary boundary layer and into the 

free troposphere.  Once in the free troposphere, pollutants have longer lifetimes and are 

able to be transported further downwind.  Pollutants in the free troposphere are able to 

travel further distances before being deposited to the ground and are able to degrade air 

quality further downwind than pollutants that are not vented into the free troposphere.  

Since pollutants that reach the free troposphere have a longer lifetime than pollutants that 

stay in the PBL, pollutants in the free troposphere have a larger impact on climate. 

Clouds have a large impact on atmospheric chemistry.  Clouds influence the 

amount of solar radiation reaching near surface air, therefore affecting photochemistry.  

Clouds also play an important role in the sulfur cycle.  Gas phase sulfur dioxide oxidation 

rates are slow, but sulfur dioxide can be quickly converted to sulfate aerosols in clouds.  

Sulfur dioxide can be oxidized rapidly through heterogeneous reactions in clouds when 

ozone is present and the pH is greater than 5 or when hydrogen peroxide is present over 

all pH values (Daum, 1990; Finlayson-Pitts and Pitts, 2000; Jacob et al., 1989).  In the 

Mid-Atlantic in 2007, the pH of rainwater reported by the National Atmospheric 

Deposition Program/National Trends Network was around 4.5, so the quickest path of 
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sulfur dioxide to sulfate conversion in this region is in the presence of liquid water and 

hydrogen peroxide.  Also, updrafts associated with clouds vent pollutants out of the 

planetary boundary layer (PBL) and into the free troposphere.  Therefore, pollutants that 

are vented into the free troposphere through clouds have a larger impact on air quality 

further downwind and have a larger impact on climate than pollutants that stay in the 

PBL. 

1.1.4 Urbanization impacts on weather, climate, and air pollution 

There is a positive correlation between high air pollution and high temperature 

events (Weaver et al., 2009; Banta et al., 1998; Cheng and Byun, 2008; Jacob and 

Winner, 2009; Bloomer et al., 2009; Bloomer et al., 2010; Tai et al., 2010).  Urbanization 

can increase temperatures locally creating an urban heat island (UHI) (Oke, 1987; 

Bornstein and Lin, 2000; Arnfield, 2003, Zhang et al., 2009; Landsberg, 1981).  UHI 

effects can also propagate downwind to another city and amplify the downwind UHI 

(Zhang et al., 2009; Zhang et al., 2011).  In addition to UHIs contributing to warmer 

temperatures which can result in higher concentrations of unhealthy air pollution, UHIs 

can amplify summertime heat waves that cause heat stress (Kunkel et al., 1996). 

Planting trees in urban areas has a potential to dampen the urban heat island.  The 

addition of trees will increase the amount of evaporative cooling in the urban area helping 

to cool near surface temperatures.  Also, additional urban trees provide more shade 

cooling near surface air as well as ground and urban building wall surfaces.  The change 

in temperature has a beneficial impact on reducing heat-related illnesses and air pollution.  

The addition of urban trees, however, adds more biogenic emissions of VOCs, which can 

react in the presence of nitrogen oxides to form ozone (Chameides et al., 1998).  On the 
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other hand, the addition of trees increases the deposition of pollutants.  Pollutants can be 

deposited on tree leaves.  Cooling building wall surfaces increases buildings energy 

efficiency and reduces electrical demand.  This results in a decrease in anthropogenic 

emissions from power plants and therefore has a beneficial impact on air quality and 

climate. 

An UHI can influence the strength of a sea, lake, or bay breeze, which can affect 

air quality.  For example, urbanization near an ocean can alter the temperature gradient 

along the coastline and therefore influence the strength of a sea breeze.  Likewise, 

planting additional trees in a coastal city will dampen the UHI, alter the temperature 

gradient between land and sea, and therefore influence the strength of the sea breeze. 

1.1.5 Roles of earth system models 

Meteorological, air quality, and land surface models are important tools for 

studying the interactions among the land surface, air chemistry, and meteorology.  They 

are used alongside observations to gain a better understanding of earth science.  Models 

are also used to help understand how future changes to emissions, climate, or land 

surfaces will impact the earth system.  Models are also used to help evaluate air pollution 

and climate change mitigation plans. 

1.2 Objectives 

This work investigates interactions among the atmosphere, land surface changes 

and atmospheric chemistry.  Chapter 2 examines how current-generation meteorological 

and air quality models simulate two fine-scale meteorological processes and their impact 

on air chemistry and answers the following questions: 
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 How does model grid resolution influence fair-weather cumulus clouds and sulfur 

dioxide oxidation? 

 How do differences in model cloud parameters affect sulfate concentrations? 

 How does model grid resolution impact transport between the planetary boundary 

layer and the free troposphere? 

 How does model grid resolution impact the simulation of the Chesapeake Bay 

breeze, the dispersion of pollutants, and ozone formation? 

 What can be done to improve future model simulations? 

Chapter 3 investigates how urban trees and building heights impact meteorology in and 

downwind of urban areas.  The following questions are addressed: 

 How do urban trees and building heights impact surface and air temperatures? 

 How do trees in cities near a coastline impact a sea, bay, or lake breeze? 

To accomplish this goal, an urban tree canopy parameterization is developed and 

implemented into a meteorological model.  Chapter 4 explores the role of urban trees on 

air quality by answering the following questions: 

 How do meteorological changes associated with planting trees in cities affect air 

quality? 

 How do additional biogenic volatile organic compound emissions associated with 

planting urban trees influence air quality? 

A summary and recommendations for future work are provided in Chapter 5. 
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Chapter 2: Impact of fair-weather cumulus 

clouds and the Chesapeake Bay breeze on 

pollutant transport and transformation 

2.1 Introduction 

Ozone and aerosols have health and climate implications.  Ground-level ozone 

may cause permanent lung damage (Mudway and Kelly, 2000) and ground-level aerosols 

may produce heart and lung disease (Docker et al., 1993; Samet et al., 2000), and both 

tropospheric ozone and aerosols impact the radiative budget (Shine, 2000). The 

production of secondary pollutants, such as ozone and sulfate aerosols, depends on 

emissions, meteorological conditions, and the chemical composition of the atmosphere.  

Numerical Weather Prediction (NWP) and chemical models along with observations have 

been used to investigate how pollutants evolve in the atmosphere, to forecast air quality 

and climate impacts of pollutants, and to help evaluate air pollution and climate change 

mitigation plans. 

   Fine scale weather structures, such as fair-weather cumulus clouds and a sea 

breeze, influence air chemistry.  Clouds play an important role in the sulfur cycle.  While 

gas phase sulfur dioxide oxidation rates are slow, sulfur dioxide can be oxidized rapidly 

through heterogeneous reactions in clouds when ozone is present and the pH is greater 

than 5 or when hydrogen peroxide is present over all pH values (Daum, 1990; Finlayson-

Pitts and Pitts, 2000; Jacob et al., 1989).  For example, Eatough et al. (1984) studied the 

conversion of sulfur dioxide to sulfate aerosols in a power plant plume near the Pacific 

Ocean coast and found that on average 24-36% of the sulfur dioxide was oxidized in one 

hour in the presence of fog, but only 2-4% of the sulfur dioxide was oxidized when the 
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plume was not located in a cloud.  The pH of rainwater reported by the National 

Atmospheric Deposition Program/National Trends Network in the Mid-Atlantic is around 

4.5, so the quickest path of sulfur dioxide to sulfate conversion in the region is in the 

presence of liquid water and hydrogen peroxide. 

Many atmospheric chemistry models have a high bias in sulfur dioxide and a low 

bias in cloud cover compared with observations.  Hains (2007) found that sulfur dioxide 

column content has a 55% high bias in the Environmental Protection Agency’s (EPA) 

Community Multiscale Air Quality (CMAQ) model when run at a 12 km horizontal 

resolution and a 50% high bias in the Georgia Tech / Goddard Global Ozone Chemistry 

Aerosol Radiation and Transport (GOCART) model when run at a 2  latitude by 2.5  

longitude resolution.  Hains (2007) suggested that the high biases are due to an 

underestimation of sulfate conversion in clouds.  Mueller et al. (2006) noted that CMAQ 

has a low cloud bias and high sulfur dioxide bias and used two alternative cloud 

parameterizations to improve the simulation.  In their study the alternative 

parameterizations improved the frequency of clear sky and overcast sky conditions but 

still underestimated the frequency of partly cloudy sky conditions.  Sulfur dioxide and 

sulfate biases decreased with the alternative parameterizations as additional clouds 

increased the rate at which sulfur dioxide was converted to sulfate.  A high bias of total 

sulfur in the planetary boundary layer (PBL) remained and Mueller et al. (2006) stated 

that CMAQ might underestimate the removal of pollutants from the PBL by convective 

venting.  Increasing convective venting causes pollutants to have longer lifetimes and be 

transported greater distances exacerbating air pollution downwind.  Previous studies 

showed air quality models underestimating inter-state transport of pollutants (e.g., 
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Gilliland et al. (2008) and Godowitch et al. (2010) using CMAQ and Hogrefe (2000) 

using the Urban Airshed Model, Variable-Grid Version (UAM-V)). 

On the other hand, Lee et al. (2011) showed that GEOS-CHEM, a global 

chemistry model, reproduced the column content of SO2 measured by aircraft or satellite 

instruments implying that the short lifetime was captured.  Yu et al. (2007) has shown 

that CMAQ simulations at 12 km horizontal resolution have good agreement with SO2 

aircraft observations in Ohio River Valley power plant plumes at ~1000 m altitude, but 

have a high bias below 700 m in the New York City and Boston urban plumes.  Yu et al. 

(2007) suggested that this could be attributed to an overestimation of emissions from the 

New York City and Boston areas.  It has also been shown that CMAQ simulations at 12 

km horizontal resolution have a high SO2 bias compared with ship observations off the 

coast of New England when the airflow is from the west and southwest (Yu et al., 2010).  

This high bias could be due to an overestimation of emissions in the Washington, DC, 

New York City, and Boston metropolitan areas (Yu et al., 2010) or to a too slow removal 

rate in the model.  

Previous studies have shown that a sea breeze circulation can exacerbate air 

pollution levels.  Evtyugina et al. (2006) showed that along the Portuguese west coast 

ozone levels are elevated when a sea breeze is present.  Boucouvala and Bornstein (2003) 

found that peak ozone concentrations in southern California on high ozone days occur at 

the farthest inland location of a sea breeze’s convergence zone.  In Houston, high ozone 

episodes begin when the large-scale flow is offshore (Banta et al., 2005; Darby, 2005).  

As the bay breeze begins to develop stagnant conditions ensue allowing ozone and ozone 
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precursors to accumulate before being advected farther onshore as the bay breeze 

increases in intensity later in the afternoon (Banta et al., 2005; Darby, 2005). 

With rapid increases in computing power in recent years, there have been a 

growing number of higher-resolution model simulations.  The importance of increasing 

resolution in producing better-defined and more realistic mesoscale structures has been 

long recognized in the NWP community, since the horizontal resolution in operational 

models has been reduced from 300-400 km in middle 1950’s to a few km today.  In 

particular, many studies have shown benefits of using high-resolution NWP models to 

resolve frontal structures, orographic flows, and vertical circulations induced by surface 

inhomogeneities (see Mass et al., 2002 for review).  Mass et al. (2002) explained that 

while it is difficult to prove that high-resolution simulations are more accurate due to the 

sparseness of observational sites, high-resolution simulations appear to produce more 

realistic weather structures.   

High-resolution CMAQ modeling is also desirable for understanding the transport 

of air pollutants.  Cohan et al. (2006) found that while air quality modeling at a horizontal 

resolution of 12 km is sufficient to determine regional-scale features of ozone changes to 

emissions reductions, finer resolution is necessary to capture localized variability.  

Jimenez et al. (2006) determined that a 2 km CMAQ simulation better simulates ozone 

concentrations in the presence of a sea-breeze than 4 and 8 km simulations.  Weijers et al. 

(2004) found evidence that the spatial scale of aerosol variability is below 1 km in urban 

areas.  Sokhi et al. (2006) showed that CMAQ run at a horizontal resolution of 1 km 

reproduces temporal fluctuations in ozone well, but like coarse model simulations 

underpredicts daily maximum ozone and overpredicts nighttime ozone concentrations.  
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Nevertheless, few numerical studies have been performed to examine the variability of 

air chemistry interacting with fair-weather cumulus clouds and sea-breeze circulations 

with horizontal resolutions below 1 km.  

In the present study, the above issues are examined with state-of-the-art NWP and 

air quality models by pushing the horizontal resolution down to 0.5 km.  The objectives 

of this study are to a) investigate how model resolution impacts the development of fair-

weather cumulus clouds, the transport of pollutants through clouds, and sulfur dioxide to 

sulfate aerosol conversion in clouds in the model; and b) examine the effects of varying 

horizontal resolution on the development of the Chesapeake Bay breeze and the 

associated advection of air pollutants.  These objectives are achieved by performing 

simulations with the Weather Research and Forecasting (WRF) model (Skamarock et al., 

2008) coupled with the Urban Canopy model (UCM, Kusaka et al., 2001) and 

simulations with the CMAQ model (Byun and Schere, 2006) covering the Washington-

Baltimore metropolitan areas from 1200 UTC 7 July to 1200 UTC 10 July 2007.  This 

time period covers a period of fair-weather cumulus clouds (afternoon of 7 July), and one 

of the worst air pollution events of the decade (9 July) in which 8-h maximum ozone 

concentrations reached 114 ppbv downwind of Baltimore, MD near the Chesapeake Bay 

coastline in Edgewood, MD.  Yegorova et al. (2011) analyzed this same air pollution 

event using the WRF model with online chemistry (WRF/chem) at 12 km resolution and 

observations.  The air pollution event began with the passage of a cold front on 6 July 

2007.  Subsequently, an anticyclone developed and approached the Mid-Atlantic from the 

southeast and brought sunny, stagnant conditions to the region. 
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2.2 Model description 

 In this study, we use the Environmental Protection Agency’s (EPA) Community 

Multiscale Air Quality (CMAQ) model, fed off-line by output from the Advanced 

Research WRF (WRF-ARW) model via the Meteorology-Chemistry Interface Processor 

(MCIP) (Otte and Pleim, 2010), to achieve the above-mentioned objectives. 

2.2.1 Meteorological model and post-processing 

The WRF model is coupled with the Noah land surface model and the single layer 

Urban Canopy Model (UCM).  The Noah scheme produces soil moisture, soil 

temperature, skin temperature, canopy water content, and the energy flux and water flux 

terms in the surface energy balance and surface water balance (Chen and Dudhia, 2001).  

The UCM improves the parameterization of physical processes involved in the exchange 

of heat, momentum, and water vapor in urban environments by including shadowing 

from buildings, reflection of short and longwave radiation, wind profile information in 

the canopy layer and a multi-layer heat transfer equation for roof, wall and road surfaces 

(Kusaka and Kimura, 2004).  Other physics options include a double-moment six-class 

microphysics scheme that calculates water vapor, cloud water, rain, cloud ice, snow, and 

graupel mixing ratio (Lim and Hong, 2010), the Mellor-Yamada-Janjic (MYJ) boundary 

layer parameterization (Janjic, 1994), and the Grell three-dimensional (3D) ensemble 

cumulus scheme, which expands on the Grell-Devenyi scheme (Grell and Devenyi, 2002) 

to allow subsidence in neighboring grid cells (Skamarock et al., 2008).  The Grell 3D 

scheme is only used in the outermost domain. 

Zhang et al. (2009) and Shou and Zhang (2010) used WRF-UCM simulations to 

show that upstream land use can exacerbate the urban heat island (UHI) effect.  Herein, 
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the WRF-UCM is used with the same domain along with CMAQ to investigate the 

impact of model resolution on sulfur dioxide oxidation in fair-weather cumulus clouds, 

the Chesapeake Bay breeze, the dispersion of pollutants, and ozone formation.  The 

model was run at 13.5, 4.5, 1.5, and 0.5 km horizontal resolution from 1200 UTC 7 July 

to 1200 UTC 10 July 2007 with dimensions of 181 × 151, 244 × 196, 280 × 247, and 349 

× 349 grid cells, respectively (see Figure 2-1 for the model domains).  All of the domains 

use 30 layers in the vertical with 20 layers in the lowest 2 km.  The North American 

Regional Reanalysis is used for the model initial and outermost lateral boundary 

conditions.  In the present study, Version 3.1.1 of the WRF model is used instead of 

Version 2.2.1, used by Zhang et al. (2009) and Shou and Zhang (2010).  In order to 

examine the impact of varying model resolutions on the simulated air chemistry, one-way 

feedback is used instead of two-way feedback between the domains.  Two-way feedback 

involves information being exchanged bi-directionally between the finer and coarser 

grids, whereas one-way feedback only involves information exchange from the coarse 

grid to the finer grid (Zhang et al., 1986). 

A mass conservation problem was identified in the 0.5 km resolution domain of 

the WRF-UCM and CMAQ simulations.  A mass balance analysis from a CMAQ 

simulation with chemistry turned off revealed a change in mass of chemical species that 

was inconsistent with model calculated sources, sinks, and fluxes.  After analysis of the 

WRF-UCM output, we determined that the mass non-conservation was caused by waves 

reflecting off the top of the model domain.  Fortunately, WRF-UCM includes damping 

options to minimize unrealistic reflections at the top of the model.  WRF-UCM was re-

run with gravity wave damping (Klemp et al., 2008) and vertical velocity damping 
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(Skamarock et al., 2008) with respective damping coefficients of 0.2 and 0.3.  These 

changes minimize unrealistic reflections at the top of the modeling domain and loss in 

mass. 

 

Figure 2-1: Location of modeling domains 1, 2, 3, and 4, with horizontal resolutions of 

13.5, 4.5, 1.5, and 0.5 km, respectively. 

 

Version 3.4 of MCIP was used to ingest the WRF-UCM outputs and create input 

files for processing emissions data and running air chemistry simulations.  This step 

requires modifying MCIP to write out the percentage of each WRF-UCM grid cell that is 

urban.  The urban fraction is used in CMAQ to calculate vertical diffusion.  This model 

update is available beginning in Version 3.5_beta of MCIP. 

2.2.2 Emissions 

Emissions input files are created with the Sparse Matrix Operator Kernel 

Emissions (SMOKE) modeling system (Houyoux and Vukovich, 1999).  Because a 2007 
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emissions inventory is not yet available, projected annual 2009 emissions from U.S. 

Regional Planning Organizations (RPOs) are processed with SMOKE to create hourly 

emissions input files for CMAQ.  The annual 2009 projected emissions from the U.S. 

RPOs were grown from annual 2002 emissions and include estimated emissions changes 

due to growth and emissions controls expected to be implemented by 2009. 

Area source emissions input to SMOKE are annual, countywide emissions, and 

are temporally and horizontally spatially distributed with SMOKE to create hourly 

gridded CMAQ emissions input files.  Annual emissions are distributed based on the time 

of day, day of the week, and season based on temporal emissions distributions provided 

by the U.S. RPOs.  Countywide area emissions are horizontally distributed based on 

gridded highly detailed landuse patterns from a spatial surrogate file.  These landuse 

patterns are obtained from shapefiles that describe landuse from the 2000 census, 

National Land Cover Characteristics Data, and other spatial sources available from 

EPA’s Emissions Modeling Clearinghouse.  The shapefiles are input into the Multimedia 

Integrated Modeling System (MIMS) Spatial Allocator (Eyth and Brunk, 2005) to create 

a spatial surrogate file. 

Point source emissions data are annual emissions for a specific location, and are 

temporally and spatially distributed in the vertical with SMOKE.  Similar to the area 

emissions, the point source emissions are distributed based on temporal emissions 

distributions provided by the U.S. RPOs, except for power point sources, which are 

temporally distributed based on continuous emissions monitoring (CEM) observations.  

Also, point sources are vertically distributed based on temperature and velocity of the 

emissions, stack height, and meteorological conditions. 



 

 17 

Mobile and biogenic emissions are also processed to create CMAQ emissions 

input files.  Mobile emissions are created with MOBILE6 (U.S. Environmental Protection 

Agency, 2003) and biogenic emissions are processed with the Biogenic Emissions 

Inventory System (BEIS) Version 3.12 based on meteorology and land use (Vukovich 

and Pierce, 2002).  MOBILE6 and BEIS are coupled with SMOKE. 

2.2.3 Air quality model description 

The EPA’s CMAQ model Version 4.6 (Byun and Schere, 2006) is used to 

investigate the role of fair-weather cumulus clouds in the conversion of sulfur dioxide to 

sulfate aerosols and how the bay breeze influences the dispersion of pollutants and the 

formation of ozone.  Here the model is run with the following user options: (1) a density 

based mass-conserving Piecewise Parabolic Method advection scheme (Colella and 

Woodward, 1984); (2) the Carbon Bond-05 gas-phase chemical mechanism (Yarwood et 

al., 2005); (3) the Asymmetric Convective Model Version 2 (Pleim, 2007) for vertical 

diffusion; and (4) a cloud module that uses the Regional Acid Deposition Model (Chang 

et al., 1987) to calculate the aqueous phase chemistry and the Asymmetric Convective 

Model (Pleim and Chang, 1992) to compute convective mixing.  CMAQ is run with the 

same vertical resolution as the WRF-UCM simulations.  Chemical initial and boundary 

conditions come from a Model for Ozone and Related chemical Tracers, Version 4 

(MOZART-4) simulation (Emmons et al., 2010).  Also, the 13.5 km resolution domain 

simulation begins 2 weeks prior to 1200 UTC 7 July 2007 to spin up the chemistry of the 

atmosphere for the species unavailable from global model output files used for chemical 

initial conditions. 
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Several model improvements are made to CMAQ based on Castellanos (2009), 

Castellanos et al. (2011), and Odman and Hu (2009).  The non-urban minimum eddy 

diffusion coefficient used in CMAQ is reduced from 0.5 to 0.1 m
2 

s
-1

 to be consistent 

with micrometeorological observations and to improve model results (Castellanos, 2009; 

Castellanos et al., 2011).  Also, the CO dry deposition velocity is reduced from 0.001 to 

0.0 m s
-1

, turning off CO dry deposition, which agrees better with observations 

(Castellanos, 2009).  Bug fixes to the advection and horizontal diffusion schemes are 

implemented following Odman and Hu (2009).  Finally, the CMAQ code is modified to 

output the flux of each species due to horizontal advection to adjacent grid cells. 

CMAQ uses cloud properties to calculate photolysis rates and aqueous chemistry 

reactions.  However, the representation of these cloud properties differ dramatically 

between the photolysis and aqueous chemistry schemes (Byun and Schere, 2006; Otte 

and Pleim, 2010).  The cloud properties used in CMAQ’s aqueous chemistry scheme 

consist of three-dimensional cloud water, rain, cloud ice, snow, and graupel mixing ratio 

from explicit clouds calculated in the WRF-UCM (Byun and Schere, 2006).  When the 

horizontal resolution is coarser than 8 km, CMAQ adds parameterized clouds calculated 

in CMAQ’s cloud module to the explicit clouds (Byun and Schere, 2006).  The cloud 

properties used in CMAQ’s photolysis scheme are two dimensional and consist of cloud 

top, cloud base, cloud fraction, and the total cloud water content averaged between the 

cloud top and cloud base (Otte and Pleim, 2010).  These variables are diagnosed in MCIP 

using an algorithm based on a relative humidity (RH) threshold as described by Byun et 

al. (1999).   
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Differences in the representation of cloud properties between the photolysis and 

aqueous chemistry schemes are analyzed and simulations using the photolysis clouds in 

the aqueous chemistry scheme, hereafter referred to as MCIP clouds simulations, are 

performed to determine the sensitivity of sulfur dioxide and sulfate concentrations to the 

representation of cloud properties in the WRF-MCIP-CMAQ system.  In order to perform 

the MCIP clouds simulations, MCIP is modified so that the input fields of the aqueous 

chemistry scheme use the same cloud properties as the photolysis cloud properties.  

Three-dimensional cloud fraction and total cloud water content are calculated in the same 

way as the photolysis scheme’s two-dimensional cloud fraction and total water content 

but are not averaged in the vertical between the cloud base and cloud top.  Total cloud 

water is then multiplied by the cloud fraction to obtain a new total cloud water content for 

use in CMAQ’s aqueous chemistry scheme in the MCIP clouds simulations.  The MCIP 

clouds simulations use the same graupel, ice, snow, and rain content as the base case, i.e., 

from the WRF model output.  The graupel, ice, snow, and rain content are then subtracted 

from the new total cloud water content variable to obtain cloud liquid water content that 

is used in CMAQ.  The 13.5 km MCIP clouds simulation is run with CMAQ calculated 

parameterized clouds turned off in the aqueous chemistry scheme as they are not needed 

since the MCIP RH-based clouds are calculated at all resolutions and includes 

parameterized clouds. 

2.3 Results 

This section evaluates how model simulations with different horizontal 

resolutions affect the development of fair-weather cumulus clouds, the transport of 

pollutants through clouds, and sulfur dioxide to sulfate aerosol conversion in clouds; and 
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then investigates the impact of varying horizontal resolution on the development of the 

Chesapeake Bay breezes and the associated advection of air pollutants. 

2.3.1 Impact of fair-weather cumulus clouds 

Fair-weather cumulus clouds, which play a role in converting sulfur dioxide to 

sulfate aerosols, developed during the afternoon of 7 July 2007.  A Geostationary 

Operational Environmental Satellite (GOES) visible image at 2000 UTC is shown in 

Figure 2-2 and the average total cloud water content used in CMAQ’s aqueous phase 

chemistry scheme from the 13.5 and 0.5 km resolution base and MCIP clouds simulations 

are compared in Figure 2-3.  The cloud properties from the MCIP clouds simulations 

agree better with satellite observations, while the base case simulations underestimate the 

spatial coverage of clouds.  The 13.5 km resolution simulation is unable to resolve small, 

fair-weather cumulus clouds, as expected, and tends to produce smooth cloud fields, e.g., 

as shown by a single cloud system in Figure 2-3a.  RH maps from the 0.5 km resolution 

WRF simulation show many moist bubbles at 750 and 800 hPa (Figure 2-4), two levels 

where fair-weather cumulus clouds are found.  In these regions of high RH, water vapor 

is close to condensing to form clouds.  The large spatial differences between Figures 2-

3c, 2-3d, 2-4a, and 2-4b show the sensitivity of model calculated fair-weather cumulus 

clouds to small variations in RH.  These differences illustrate the difficulties involved in 

accurately diagnosing cloud properties in numerical models.  The short spin-up time (8 

hours) may also contribute to the biases in model cloud cover.  It can be seen from Figure 

2-5 that the MCIP clouds simulations have larger cloud fractions and average total cloud 

water content at all resolutions than in the base case.  As the model resolution increases 
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in the base case, the cloud fraction over the innermost domain on 7 July and 9 July 

decreases, and the clouds that do form have lower total water content (Figure 2-5). 

 

Figure 2-2: GOES Visible satellite image at 2000 UTC 7 July 2007.  White regions show 

locations of fair-weather cumulus clouds in the region.  The white lines depict state 

borders and coastlines. 
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Figure 2-3: Cloud average liquid water content (g/m
3
) used in CMAQ’s aqueous 

chemistry scheme for the a) 13.5 km base case, b) 13.5 km MCIP clouds case, c) 0.5 km 

base case, and d) 0.5 km MCIP clouds case at 2000 UTC 7 July 2007.  The white lines 

depict state borders and coastlines.  The high resolution MCIP clouds most nearly 

resemble observations (Figure 2-2). 
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Figure 2-4: Relative humidity (%) for the 0.5 km horizontal resolution simulation at 2000 

UTC 7 July 2007 at a) 750 hPa and b) 800 hPa. 
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Figure 2-5: Time-series of model cloud fraction for the a) base case and b) MCIP clouds 

case and average cloud liquid water content (g/m
3
) for the c) base case and d) MCIP 

clouds case for the 13.5, 4.5, 1.5, and 0.5 km horizontal resolution simulations averaged 

over the 0.5 km domain from 1200 UTC 7 July to 1200 UTC 10 July 2007. 

 

The simulated sulfur dioxide is compared to surface measurements from the 

EPA’s Air Quality System (AQS) at two locations.  The observed 24-h average sulfur 

dioxide concentrations from 1200 UTC 7 July to 1200 UTC 8 July at Beltsville, MD 

(39.06 N, 76.88 W) and Essex, MD (39.31 N, 76.47 W) are 2.01 and 2.45 ppbv, 

respectively.  The model ground-level sulfur dioxide and sulfate aerosol concentrations 

for the base and MCIP clouds cases are shown in Table 2-1 for Beltsville and Table 2-2 

for Essex.  The CMAQ simulations have a high bias in sulfur dioxide at the measurement 

sites at all resolutions at both sites and for both the base and MCIP clouds cases.  The 

higher resolution simulations have larger median SO2 concentrations than the 13.5 km 



 

 25 

simulations around Essex because the higher resolution runs simulate stagnation 

downwind of emissions sources southeast of Essex causing pollution to accumulate.  

Observed median and 10
th

 and 90
th

 percentile sulfur dioxide concentrations for the month 

of July 2007 were 1.1, 0.2, and 4.2 ppbv, respectively at Beltsville and 3, 1, and 9 ppbv, 

respectively at Essex.  It can be seen from Tables 2-1 and 2-2 that mean sulfur dioxide 

concentrations in the MCIP clouds simulations are slightly lower (1-6%) and sulfate 

concentrations are higher (7-20%) than the base case simulated sulfur dioxide and sulfate.  

More clouds in the MCIP clouds case cause more sulfur dioxide to be converted to 

sulfate aerosols. Since the PBL is well mixed, many sulfate aerosols formed in clouds 

aloft are transported downward to the surface. 

 Base SO2 (ppbv) MCIP Clouds 

SO2 (ppbv) 

Base SO4  

(μg/m
3
) 

MCIP Clouds SO4  

(μg/m
3
) 

13.5km 3.32, 3.85, 7.96 3.16, 3.69, 7.77 4.73, 5.62, 6.22 5.70, 6.17, 7.16 

4.5km 2.66, 3.40, 4.27 2.62, 3.35 4.19 4.05, 5.29, 5.99 4.60, 4.60, 6.20 

1.5km 2.60, 4.16, 5.30 2.55, 4.06, 5.21 4.12, 5.36, 5.86 4.57, 5.95, 6.39 

0.5km 3.17, 3.97, 4.63 2.95, 3.72, 4.36 4.59, 5.49, 5.94 5.59, 6.58, 7.12 

Table 2-1: 10
th

 percentile, median, and 90
th

 percentile 24-h average sulfur dioxide (ppbv) 

and sulfate (μg/m
3
) concentrations at Beltsville, MD from 1200 UTC 7 July to 1200 UTC 

8 July for the 13.5, 4.5, 1.5, and 0.5 km Base and MCIP Clouds simulations.  Values 

reflect variability in space for a 1,640.25 km
2
 region surrounding the measurement site, 

which represents the area of 9 grid cells for the 13.5 km simulation.  The observed 24-h 

average SO2 concentration at Beltsville, MD was 2.01 ppbv. 

 

 

 Base SO2 (ppbv) MCIP Clouds 

SO2 (ppbv) 

Base SO4  

(μg/m
3
) 

MCIP Clouds SO4  

(μg/m
3
) 

13.5km 4.02, 4.91, 6.48 3.85, 4.80, 6.33 4.94, 5.85, 6.14 5.84, 6.42, 6.94 

4.5km 4.00, 7.32, 10.64 3.88, 7.18, 10.52 5.06, 6.56, 7.75 5.75, 7.23, 8.33 

1.5km 3.53, 5.53, 12.94 3.38, 5.36, 12.83 4.93, 5.66, 7.57 5.72, 6.45, 8.34 

0.5km 3.63, 4.99, 13.58 3.40, 4.78, 13.44 4.99, 5.69, 7.51 6.11, 6.75, 8.36 

Table 2-2: 10
th

 percentile, median, and 90
th

 percentile 24-h average sulfur dioxide (ppbv) 

and sulfate (μg/m
3
) concentrations at Essex, MD from 1200 UTC 7 July to 1200 UTC 8 

July for the 13.5, 4.5, 1.5, and 0.5 km Base and MCIP Clouds simulations.  Values reflect 

variability in space for a 1,640.25 km
2
 region surrounding the measurement site, which 

represents the area of 9 grid cells for the 13.5 km simulation.  The observed 24-h average 

SO2 concentration at Essex, MD was 2.45 ppbv. 



 

 26 

 

Figure 2-6 displays west-east cross sections of sulfate aerosols averaged over the 

north-south direction covering the innermost domain at 2000 UTC 7 July when fair-

weather cumulus clouds are present in the 13.5 and 0.5 km resolution base and MCIP 

clouds simulations. It can be seen that more sulfate aerosols are present in the 0.5 km 

simulation.  Even though the cloud fraction is lower and the liquid water content of 

clouds that do form is lower in the 0.5 km base case simulation than in the 13.5 km base 

case simulation, more sulfur dioxide is being converted to sulfate aerosols in the 0.5 km 

resolution simulation.  Apparently, higher resolution simulations cause more sulfur 

dioxide to be transported vertically into the clouds where it is converted to sulfate 

aerosols, and as expected, updrafts occur preferentially under clouds.  Updraft speeds 

also increase as the resolution increases.  At 2000 UTC 7 July the 4.5, 1.5, and 0.5 km 

resolution base case simulations averaged over the innermost domain have mass fluxes at 

910 hPa that are 1.8, 7.5, and 20.3 times larger than the 13.5 km base case mass flux; 

these updraft calculations include vertical advection but not vertical diffusion.  As 

expected, the SO2 to sulfate conversion rates are also sensitive to cloud amount.  Sulfate 

aerosols change noticeably between the MCIP clouds and base cases. More sulfate 

aerosols are present in the MCIP clouds case simulations due to the presence of more 

clouds (Figure 2-6).   
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Figure 2-6: West-east cross-section of sulfate aerosols (μg/m

3
) averaged over the north-

south direction covering the area of the 0.5 km domain for the a) 13.5 km base case, b) 

13.5 km MCIP clouds case, c) 0.5 km base case, and d) 0.5 km MCIP clouds case at 2000 

UTC 7 July 2007.  Fair-weather cumulus clouds are present at this time.  The surface to 

500 hPa sulfate column averaged over the innermost domain is shown above each figure. 

 

Sixteen hours later (i.e., at 1200 UTC 8 July), there is noticeably less sulfur 

dioxide present at higher resolutions (Figure 2-7).  Specifically, the surface to 215 hPa 

sulfur dioxide columns at 1200 UTC 8 July, averaged over the innermost domain for the 

4.5, 1.5 and 0.5 km resolution base case simulations are 14, 21, and 23% smaller than that 

from the 13.5 km resolution base case simulation (Figure 2-7).  However, differences in 

the amount of sulfate aerosols between the base and MCIP clouds simulations are small.  

The base case sulfate column of the 4.5 km simulation is 3% larger than in the 13.5 km 

simulation, while the 1.5 and 0.5 km simulations’ sulfate columns are 4% smaller. 
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Figure 2-7: Surface to 215-hPa SO2 column (μg/cm

2
) at 1200 UTC 8 July 2007 averaged 

over the innermost domain for the base and MCIP clouds case simulations at 13.5, 4.5, 

1.5, and 0.5 km horizontal resolutions.  The smaller column content should bring CMAQ 

into better agreement with observations (Hains 2009; Lee et al., 2011). 

 

The net flux of total sulfur (sulfur dioxide, sulfate aerosols, and sulfuric acid) 

integrated over the vertical extent of the model into and out of the area of the innermost 

domain for each simulation will now be analyzed to examine why the column content 

sulfur dioxide decreases as the horizontal resolution increases.  While all of the CMAQ 

simulations have a net flux of total sulfur out of the area during the first 24 h of 

simulations, due partly to sulfur from emissions in the innermost domain being 

transported out of the domain, the magnitude of the net outward flux increases as the 

resolution increases.  When integrating over the depth of the model the 4.5, 1.5, and 0.5 

km resolution simulations have 52, 68, and 70% more sulfur leaving the area than the 

13.5 km resolution. 
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There is a net import of sulfur in the PBL and a net export in the free troposphere.  

As the model resolution increases, more sulfur is transported aloft and vented out of the 

PBL to the free troposphere where winds are stronger causing the pollutants to be 

transported downwind more quickly.  Figure 2-7 shows that as the resolution increases, 

sulfur dioxide integrated from the surface to 215 hPa within the innermost domain 

decreases due to more sulfur dioxide being converted to sulfate aerosols and more being 

transported out of the area of the innermost domain.  Also, the MCIP clouds simulations 

have less column integrated sulfur dioxide than the base case simulations due to the 

presence of more clouds, which causes more sulfur dioxide to be oxidized to form sulfate 

aerosols.  Uncertainties in vertical transport through clouds are difficult to quantify.  

Conversion of sulfur dioxide to sulfate is faster in clouds than clear skies (Daum, 1990; 

Finlayson-Pitts and Pitts, 2000; Jacob et al., 1989; Eatough et al., 1984).  Therefore, it is 

expected that sulfate concentrations increase as cloud cover and transport through clouds 

increases.    

2.3.2 Impact of the Chesapeake Bay breezes 

Coarser resolution model simulations are unable to capture large abrupt changes 

in surface characteristics, such as land-water boundaries of fronts.  In the early morning 

of 9 July 2007, the synoptic-scale winds were westerly.  By mid-morning (i.e., at 1400 

UTC or 0900 EST), stagnation is present in the northern Chesapeake Bay (downwind of 

Baltimore, MD) in the 4.5, 1.5, and 0.5 km resolution simulations (Figure 2-8) as a result 

of the wind direction changing from a westerly to southeasterly direction as the bay 

breeze sets up (Figure 2-9).  This stagnation allows ozone and ozone precursors to 

accumulate east of Baltimore and Washington, DC over the bay.  The 13.5 km resolution 
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simulation, however, does not generate stagnation over the bay and produces a weaker 

bay breeze that starts later due to a smaller temperature gradient along the coastline.  

Instead, the winds over the northern Chesapeake Bay in the 13.5 km resolution 

simulation shift from a westerly to southwesterly direction by mid-morning.  By mid-

afternoon, the winds at all resolutions shift to a southerly direction.  At 1900 UTC, it can 

be seen that as the resolution increases, the bay breeze increases in strength, and its 

convergence zone pushes farther inland (Figure 2-9).  The area of land grid boxes with 

easterly winds at 1900 UTC near the surface between 76.5-76.25 W and 38.5-39.5 N for 

the 13.5, 4.5, 1.5, and 0.5 km resolution domains are 182, 851, 1040, and 1087 km
2
, 

respectively. 

Air quality was poor on 9 July 2007, and mean ozone concentrations from all of 

the CMAQ simulations agree well with EPA’s AQS observations at 30 sites in the 

innermost domain (see Figure 2-10).  The 8-h maximum ozone concentrations for the 

13.5 and 4.5 km resolution simulations have mean low biases of 1.9 and 1.3 ppbv, 

respectively, whereas the 1.5 and 0.5 km simulations have mean high biases of 0.56 and 

1.0 ppbv, respectively.  A notable improvement in the centered root mean squared error is 

obtained as the resolution increases from 13.5 to 4.5 km.  The centered root mean squared 

error of the 8-h maximum ozone is 9.60, 6.92, 6.77, and 6.92 ppbv for the 13.5, 4.5, 1.5, 

and 0.5 km simulations, respectively.   
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Figure 2-8: 2-m temperature (K) and 10-m wind speeds for the a) 13.5, b) 4.5, c) 1.5, and 

d) 0.5 km horizontal resolution simulations at 1400 UTC (0900 EST) 9 July 2007. 
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Figure 2-9: 2-m temperature (K) and 10-m wind speeds for the a) 13.5, b) 4.5, c) 1.5, and 

d) 0.5 km horizontal resolution simulations at 1900 UTC (1400 EST) 9 July 2007. 
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Figure 2-10: 8-h maximum ozone concentrations (ppbv) from a) EPA’s Air Quality 

System (AQS) observations and the b) 13.5, c) 4.5, d) 1.5, and e) 0.5 km horizontal 

resolution simulations at the lowest model level on 9 July 2007.  The black lines depict 

state borders and coastlines. 

 

The highest 8-h maximum ozone measured on 9 July in the innermost domain 

occurred at Edgewood, MD (39.4 N, 76.3 W), the northeastern-most measurement point 

depicted in Figure 2-10a located on the northern coast of the Chesapeake Bay.  Its value 
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was 114 ppbv while the model simulates 8-h maximum concentrations of 75, 91, 92, and 

96 ppbv at 13.5, 4.5, 1.5, and 0.5 km resolution, respectively.  The low bias may be 

partially due to a low bias in emissions.  Projected 2009 emissions used, which may 

contain emissions controls, or emissions reductions, which had not been implemented by 

July 2007.  A time series of ozone observations and model results at Edgewood shows 

that the model has a low bias during the day on 9 July at all resolutions with the 13.5 km 

resolution simulation performing the worst (Figure 2-11).  The high bias at night may be 

attributed to the dry deposition velocity of pollutants being too slow in CMAQ.  Y. Choi 

(personal communication) found that adjusting the aerodynamic resistance with improved 

forest canopy heights increases dry deposition velocity and brings CMAQ into better 

agreement with observations in the Northeastern US.  While the increased ozone dry 

deposition velocities improved CMAQ simulated ozone in the Southeastern US, a high 

bias still remained (Y. Choi, personal communication).  The high bias in the southeast 

corresponded with a high bias in formaldehyde and more NOx sensitive regions than 

observations reveal, which may be due to a high bias in biogenic emissions (Y. Choi, 

personal communication).  The 4.5, 1.5, and 0.5 km resolution simulations come into 

better agreement with the observations at Edgewood on 9 July because they simulate 

mid-morning stagnation over the northern Chesapeake Bay causing pollutants to 

accumulate, a late-morning bay breeze causing pollutants to converge over Edgewood, 

and afternoon advection by southerly winds causing additional ozone that had built up 

over the bay to be transported to Edgewood (Figure 2-12).  The 13.5 km resolution 

simulation does not produce a bay breeze convergence zone over Edgewood.   
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Figure 2-11: Ozone (ppbv) time-series at Edgewood, MD from AQS measurements and 

the 13.5, 4.5, 1.5, and 0.5 km resolution simulations at the lowest model level from 1200 

UTC 7 July to 1200 UTC 10 July 2007. 
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Figure 2-12: Ozone concentrations (ppbv) from a) AQS observations and the b) 13.5, c) 

4.5, d) 1.5, and e) 0.5 km horizontal resolution simulations at the lowest model level at 

1900 UTC 9 July 2007.  The black lines depict state borders and coastlines. 

 

The 13.5 km CMAQ simulation has higher 8-h maximum ozone concentrations 

near the surface over the Chesapeake Bay than over land (Figure 2-10) even though less 

stagnation is present over the bay during the morning in the 13.5 km resolution 
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simulation (Figure 2-8).  The early morning stagnation seen in the higher resolution runs 

causes localized high concentrations over the bay.  However, concentrations decrease 

later in the day as the bay breeze transports the pollutants northward and as it limits the 

west to east transport across the coastline.  Since the simulated bay breeze is weaker at 

13.5 km, more pollutants flow near the surface over the bay where the PBL is shallow 

over the cool water surface.  In addition, it appears that more pollutants are directly 

emitted over the bay in coarser resolution simulations due to the failure to properly 

resolve the coastline.  Emissions in a grid cell that straddle the coastline can appear to be 

emitted over the water, but in reality they are emitted over land.  Figure 2-13 depicts a 

west-east cross section of CO for the 13.5, 4.5, 1.5, and 0.5 km resolution base case 

simulations at 1900 UTC 9 July, in which the coastline is located at 76.42 W.  The cross 

section is located at 39.1 N, which includes the area of high ground-level ozone 

concentrations between Washington, DC and Baltimore, MD in the 0.5 km resolution 

simulation.  One can see that the 0.5 km resolution model run simulates a stronger bay 

breeze that inhibits pollutants from being transported eastward over the water near the 

surface.  Instead, pollutants are lofted and then transported eastward.  The higher 

resolution simulations shows a local maximum in CO mixing ratio near the top of the 

PBL, as has been observed for CO and O3 in this area (Castellanos et al., 2011; Taubman 

et al., 2006).  Profiles of CO and O3 near the coastline in the 0.5 km resolution simulation 

reveal concentration peaks at the surface and aloft (Figure 2-14).  The peaks at ground 

level are from local sources while the peaks aloft are from pollutants being transported 

into the bay breeze convergence zone where they are lofted and then transported 

eastward.   
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Figure 2-13: West-east cross-section of carbon monoxide (ppbv) passing between 

Washington, DC and Baltimore, MD at 39.1° latitude for the a) 13.5, b) 4.5, c) 1.5, and d) 

0.5 km domains at 1900 UTC 9 July 2007.  The coastline of the Chesapeake Bay is 

located at -76.42° longitude and is marked with a vertical black line.  The local maximum 

in CO mixing ratio produced near the top of the boundary layer has been observed in 

aircraft profiles (Castellanos et al., 2011; Taubman et al., 2006). 
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Figure 2-14: Profiles of ozone and carbon monoxide (ppbv) at the coastline of the 

western shore of the Chesapeake Bay at 39.1° latitude -76.4° longitude for the 0.5 km 

domains at 1900 UTC 9 July 2007. 

 

The lofting associated with the bay breeze causes lower pollutant concentrations 

near the surface over the water in the higher resolution simulations (Figure 2-10).  The 

simulated maximum 8-h surface ozone concentrations over the Chesapeake Bay on 9 July 

are 116, 105, 105, and 106 ppbv for the 13.5, 4.5, 1.5, and 0.5 km resolution simulations, 

respectively.   

Even though the bay breeze increases in strength with increasing resolution, the 

bay breezes in the 4.5 and 1.5 km resolution simulations are strong enough to prevent 

pollutants emitted over land in the afternoon from being transported over the water near 

the surface similar to the 0.5 km resolution simulation.  This results in similar maximum 

8-h ozone concentrations over the water.  The mean 8-h maximum ozone concentrations 
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over land between 77.25-76.25 N and 38.5-39.5 N are 83.7, 82.4, 82.4, and 84.1 ppbv, 

and the mean 8-h maximum ozone concentrations over water with the same boundaries 

are 105.0, 96.4, 94.0, and 94.2 ppbv for the 13.5, 4.5, 1.5, and 0.5 km resolution domains, 

respectively.  As the resolution increases, 8-h maximum ozone concentrations increases 

near the bay-breeze convergence zone and decrease over the entire Chesapeake Bay. 

2.4 Discussion 

 In previous studies, CMAQ has shown a weakness in modeling partly cloudy sky 

conditions (Mueller et al., 2006) and the sulfur budget (Hains, 2007; Mueller et al., 

2006).  This work shows these problems can be improved by using diagnosed clouds that 

agree with observations and by increasing the model resolution.  CMAQ’s aqueous 

chemistry scheme and photolysis scheme generate dramatically different cloud cover.  

These cloud properties need to be harmonized.  For this particular case the photolysis 

scheme’s clouds agree better with observations than the aqueous chemistry scheme’s 

clouds.  Simulations using the photolysis scheme’s clouds in the aqueous chemistry 

scheme result in more sulfur dioxide oxidizing to form sulfate aerosols due to more 

clouds present. 

 As resolution increases, more vigorous convective vertical mixing occurs in the 

PBL and between the PBL and free troposphere.  Faster vertical mixing in the presence of 

fair-weather cumulus clouds results in more sulfur dioxide transport into clouds and more 

sulfate formation.  More transport across the PBL to the free troposphere allows 

pollutants to have a longer lifetime and travel further downwind.  The longer trace gases 

and aerosols remain in the atmosphere, the larger the radiative, microphysical, and 

climate impacts.  Also, an increase in pollutant transport exacerbates air pollution 
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downwind. 

 The bay breeze increases in strength as the resolution increases.  The 13.5 km 

resolution simulation does not capture the bay breeze and allows ground level pollutants 

to cross the coastline.  This causes larger 8-h maximum ozone concentrations over the 

water and lower concentrations inland near the bay breeze convergence zone seen in finer 

resolution simulations and in observations.  Even though ozone concentrations differ near 

the bay breeze convergence zone in the 4.5, 1.5, and 0.5 km simulations, a comparison of 

error statistics between model simulations and observations indicates that running CMAQ 

at a horizontal resolution of 4.5 km is sufficient for modeling ground level ozone in the 

vicinity of the Chesapeake Bay.  However, it should be noted that the 8-h maximum 

ozone concentrations near the convergence zone of the bay breeze on the western shore 

of the Chesapeake Bay, which is not co-located with an observational site, are sensitive to 

resolution equaling 93, 98, 101, and 107 ppbv for the 13.5, 4.5, 1.5, and 0.5 km 

simulations, respectively.  Due to the sparseness of observational sites, it is difficult to 

prove that CMAQ simulations at resolutions greater than 4.5 km are more accurate at 

calculating ground level ozone. 

 It is difficult to simulate or parameterize fine spatial scale features, such as fair-

weather cumulus cloud development and a bay breeze, at a coarse resolution.  However, 

it is impractical to run model simulations at a horizontal resolution of 0.5 km for many 

projects due to computational restraints.  The results discussed earlier can be used to help 

improve coarse model simulations.  Even though cloud fraction and liquid water content 

decreases with increasing resolution in the base case simulations, the rate of SO2 

oxidation increases with increasing resolution, due to more vertical transport through 
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clouds.  Also, more pollutants are transported out of the PBL to the free troposphere.  

These results suggest that the vertical diffusion scheme for coarse simulations could be 

modified to produce faster vertical transport to allow more pollutants to be transported 

into clouds and across the top of the boundary layer. 

In order to simulate a bay, sea, or lake breeze at resolutions coarser than 4.5 km, a 

bay, sea, or lake breeze parameterization needs to be developed.  Otherwise, finer 

horizontal resolutions are needed along coastlines.  This can be accomplished with nested 

simulations along coastlines or a stretched grid with the resolution increasing as the 

distance from the coastline decreases.  

2.5 Conclusions 

In this study, CMAQ simulations at 13.5, 4.5, 1.5, and 0.5 km horizontal 

resolution are performed using the corresponding meteorological modeling results. 

Results show that more sulfur dioxide is converted to sulfate aerosols as the resolution 

increases when fair-weather cumulus clouds are present.  Even though for the base case 

simulations there are fewer clouds in the higher resolution simulations, more pollutants 

are transported vertically through clouds causing more sulfur dioxide to be converted to 

sulfate aerosols.  Also, in higher resolution simulations more pollutants are vented out of 

the PBL to the free troposphere, where winds are faster, and transported downwind at a 

faster rate. 

CMAQ uses one method to diagnose clouds for aqueous chemistry calculations 

and another for photolysis rates.  For this modeling scenario, use of the photolysis 

scheme’s clouds in both the photolysis and aqueous chemistry schemes leads to better 

agreement with GOES visible satellite observations.  Simulations using the photolysis 
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scheme’s clouds in the aqueous chemistry scheme displays an increase in sulfur dioxide 

oxidation due to the presence of more fair-weather cumulus clouds, showing the 

importance of accurately modeling the spatial coverage of fair-weather cumulus clouds in 

order to accurately model sulfate aerosol concentrations. 

These results indicate that higher resolution simulations are more capable of 

simulating horizontal temperature gradients that can cause a bay breeze to form and 

impact the transport of pollutants.  The 4.5, 1.5, and 0.5 km WRF-UCM simulations 

produce a Chesapeake Bay breeze that starts sooner and is stronger throughout the day 

than the 13.5 km resolution simulations.  This results in less pollutants being transported 

near the surface over the Chesapeake Bay and instead being transported aloft.  

Simulations at 4.5, 1.5, and 0.5 km resolution produce higher and more realistic 8-h 

maximum ozone concentrations at locations near the Bay Breeze convergence zone (e.g., 

Edgewood) and lower concentrations near the surface of the Chesapeake Bay. 
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Chapter 3: Roles of an Urban Tree Canopy and 

Buildings on Urban Heat Island Effects: 

Parameterization and Application 

3.1 Introduction 

 Urbanization can alter local climate and form an urban heat island (UHI) 

(Landsberg, 1981).  Altering land use by creating impervious urban surfaces causes 

increased runoff, decreased evapotranspiration, increased solar radiation absorption, 

additional release of anthropogenic heat, and changes in surface friction, which results in 

changes in near-surface air temperature, humidity, wind speeds, low-level 

convergence/divergence, convection, and precipitation (e.g., Oke, 1987; Bornstein and 

Lin, 2000; Arnfield, 2003).  Previous studies show that UHIs strengthen as city size and 

building density increase (Oke, 1973; Landsberg, 1981; Atkinson, 2003; Imhoff et al., 

2010).  In addition, a recent study reveals that upstream urbanization can magnify UHI 

effects (Zhang et al., 2009).  Therefore a smaller city with upstream urbanization can 

have a larger UHI than a larger city with no upstream urbanization (Zhang et al., 2009). 

 An UHI can have ill effects on human health.  The UHI can amplify summertime 

heat waves leading to heat stress (Kunkel et al., 1996).  The UHI can also aggravate air 

pollution.  Air quality model results show air pollution worsens as temperature increases 

(Weaver et al., 2009; Banta et al., 1998; Cheng and Byun, 2008; Jacob and Winner, 

2009), and observations confirm a correlation between high temperature and high air 

pollution events (Bloomer et al., 2009; Bloomer et al., 2010; Tai et al., 2010). 

 Urban trees have the potential to dampen the UHI and decrease near-surface 

temperatures through direct shading and evaporative cooling.  Observations show 
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temperatures over a grassy surface were 0.7-1.3 K cooler under urban trees than adjacent 

areas with no tree cover (Souch and Souch, 1993).  Similarly, measurements revealed 

temperatures to be 2.2-3.3 K cooler under mature trees in a suburban neighborhood than 

in new developments with no trees (McGinn, 1982).  In general, cooler summertime 

temperatures can result in less emissions and air pollution.  Moreover, air pollution can 

be deposited onto leaves causing more removal of air pollutants when trees are present. 

An UHI also has the potential to alter a sea, lake, or bay breeze, which can affect 

air quality.  A summertime sea breeze is driven by the temperature gradient between the 

warm land and cool water.  Increasing or decreasing land surface temperature through 

urbanization or planting urban trees, respectively, will alter the temperature gradient and 

therefore modify the strength of the sea breeze.  Previous studies have shown that a sea 

breeze circulation can exacerbate air pollution levels (Boucouvala and Bornstein, 2003; 

Evytugina et al., 2006; Loughner et al., 2011).  In Houston, high ozone episodes begin 

when the large scale flow is offshore before a bay breeze develops (Banta et al., 2005; 

Darby, 2005).  As the bay breeze begins to strengthen, stagnant conditions develop 

allowing ozone and ozone precursors to accumulate before being advected further 

onshore as the bay breeze increases in intensity later in the afternoon (Banta et al., 2005; 

Darby, 2005). 

With rapid increases in computing power in recent years, there have been a 

growing number of higher resolution model simulations.  Many studies show benefits of 

using high-resolution mesoscale models to resolve frontal structures, orographical flows, 

and vertical circulations induced by surface inhomogeneities (see Mass et al., 2002 for 

review).  For urban settings at fine scales (horizontal grid spacing less than 1 km), urban 
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canopy models are used to simulate the meteorology in the complex urban environment 

consisting of streets, buildings, and vegetation.  Currently, the Weather Research and 

Forecasting (WRF) model (Skamarock et al., 2008) can be run coupled with the Noah 

land surface model and an urban canopy model (Kusaka et al., 2001) (WRF-UCM).  

However, this urban canopy model does not include soil, grass, or trees in urban street 

canyons.  Lee and Park (2008) developed a vegetated urban canopy model and found that 

canyon vegetation has a large influence on surface temperatures and sensible and latent 

heat fluxes. 

 In the present study, the effects of soil, grass, and trees in urban street canyons are 

incorporated into Version 3.1.1 of the WRF-UCM.  How urban trees dampen the UHI 

and the sensitivity of the UHI to urban building height are examined.  These objectives 

are accomplished by performing simulations down to a horizontal grid spacing of 0.5 km 

with a modified version of the ARW WRF-UCM in which urban trees, soil, and grass are 

incorporated.  The simulations cover the Washington-Baltimore metropolitan areas from 

1200 UTC 7 to 1200 UTC 10 July 2007.  This time period is significant in that high air 

pollution was observed in the region under hot, sunny, stagnant conditions.  A cold front 

passed through the area on 6 July 2007, followed by a short-wave trough approaching the 

Mid-Atlantic states (Zhang et al., 2011).  The Baltimore, MD UHI exhibited a 2 m 

temperature of 37.5°C and downwind of Baltimore near-surface 8 h maximum ozone 

mixing ratios reached 125 ppb (the current air quality standard is 75 ppb) on July 9.  This 

same time period was analyzed to investigate the impact of upstream urbanization on the 

UHI (Zhang et al., 2009; Zhang et al., 2011), to characterize the air pollution event 
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(Yegorova et al., 2011), and to examine the impact of fair-weather cumulus clouds and 

the Chesapeake Bay breeze on air quality (Loughner et al., 2011). 

3.2 Model description and modification 

3.2.1 Model configuration 

In the coupled ARW WRF-UCM, the Noah land surface model calculates soil 

moisture and temperature, skin temperature, canopy water content, and the energy and 

water flux terms in the surface and water energy balance equations (Chen and Dudhia, 

2001), while the UCM improves the parameterization of physical processes involved in 

the exchange of heat, momentum, and water vapor in urban environments by including 

shadowing from buildings, reflection of short and longwave radiation, wind profile 

information in the canopy layer and a multi-layer heat transfer equation for roof, wall, 

and road surfaces (Kusaka and Kimura, 2004). 

The WRF-UCM includes 3 categories of urban surfaces: 

commercial/industrial/transportation, high-intensity residential, and low-intensity 

residential.  Each urban category consists of fractional coverage of urban land occupied 

by buildings and roads, with the remaining fraction as undeveloped land.  Urban fraction 

is set to 95%, 90%, and 50% for grid cells labeled commercial/industrial/transportation, 

high-intensity residential, and low-intensity residential urban, respectively, for the model 

simulations described herein.  The remaining land in grid cells classified as urban is 

considered undeveloped and classified as USGS land use type Cropland/Grassland 

Mosaic.  Surface heat and moisture fluxes are calculated in the UCM for urban streets 

and buildings and in the Noah land surface model for undeveloped urban land. 
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The coupled model is run at 13.5, 4.5, 1.5, and 0.5 km horizontal grid spacing 

with (x, y) dimensions of 181 x 151, 244 x 196, 280 x 247, and 349 x 349 grid cells, 

respectively (see Figure 3-1 for the model domains).  All of the domains use 32 layers in 

the vertical with 20 layers in the lowest 2 km.  The North American Regional Reanalysis 

is used for the model initial and outermost lateral boundary conditions.  The 3 category 

urban surfaces are defined by the U.S. Environmental Protection Agency’s National Land 

Cover Dataset for Year 2001.  The urban areas in the 0.5 km domain are displayed in 

Figure 3-2.  The model physics schemes used include (1) a double-moment six-class 

microphysics scheme (Lim and Hong, 2010), (2) the Mellor-Yamada-Janjic boundary 

layer parameterization (Janjic, 1994), (3) the Noah Land Surface Model (Chen and 

Dudhia, 2001), and (4) an ensemble cumulus parameterization that advances the Grell-

Devenyi scheme (Grell and Devenyi, 2002) to allow subsidence in neighboring grid cells 

(Skamarock et al., 2008).  The cumulus parameterization is only used for the 4.5 and 13.5 

km domains. 
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Figure 3-1: Location of modeling domains 1, 2, 3, and 4, which have horizontal grid 

spacing of 13.5, 4.5, 1.5, and 0.5 km, respectively. 
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Figure 3-2: Urban land use in the 0.5 km horizontal resolution domain, where red, 

yellow, and cyan represent commercial/industrial/transportation, high-intensity 

residential, and low-intensity residential, respectively.  The letters F, R, B, and W denotes 

the cities of Frederick, MD, Reston, VA, Baltimore, MD, and Washington, DC, 

respectively.  The letter C shows the location of the Chesapeake Bay. 

 

Three different WRF-UCM simulations were performed to achieve the above-

mentioned objectives: 1) a base case, 2) with urban soil, grass, and trees, and 3) with 

shorter buildings.  Hereafter, these simulations are referred to as No Trees, Trees, and No 

Trees Shorter Buildings.  Urban fraction and building and canyon dimensions for the 

three model simulations and three urban categories are displayed in Table 3-1.  The No 

Trees Shorter Buildings simulation is performed to test the sensitivity of the UHI effects 

to building height.   

 



 

 50 

 

Urban Fraction 

 

 

Building 

Height (m) 

 

Building 

Depth (m) 

 

Urban 

Canyon 

Width (m) 

 LI HI C LI HI C LI HI C LI HI C 

NT 0.5 0.9 0.95 7.5 10 20 8.3 9.4 10 8.3 9.4 10 

T 0.5 0.9 0.95 7.5 10 20 8.3 9.4 10 8.3 9.4 10 

NTSB 0.5 0.9 0.95 5 7.5 12 8.3 9.4 10 8.3 9.4 10 

Table 3-1: Specification of urban fraction, building height and depth, and urban canyon 

width for the three urban categories [low-intensity residential (LI), high-intensity 

residential (HI), and commercial/industrial/transportation (C)) and three simulations (No 

Trees (NT), Trees (T), and No Trees Shorter Buildings (NTSB)]. 

 

3.2.2 Parameterization of trees for the UCM 

The WRF-UCM was modified to investigate how urban trees impact the UHI 

effects.  The WRF-UCM was tailored to include grass, soil, and trees in urban street 

canyons and trees in undeveloped land in urban grid cells.  Urban vegetation coverage is 

described in Tables 3-2 and 3-3.  Urban canyon tree height is set to 10 m.  Urban tree leaf 

area index (LAI) is set to 3.31, the same as USGS land use type Deciduous Broadleaf 

Forest and inline with favorable urban trees found in the Mid-Atlantic.  Averaged LAIs 

by individual tree species from a tree survey in New York City range from 0.68 for 

honeylocust trees to 10.07 for northern white cedar trees (TreesNY and CENYC et al., 

2002).  Ideally, urban trees must be durable, able to thrive in an urban environment, low 

biogenic volatile organic compound (VOC) emitters, and have a large LAI to cause 

maximum shading, latent heat exchange, and pollutant deposition.  A list of urban tree 

species from the USDA Forest Service (Chicago Botanic Garden, 2001) was referenced 

to find trees that are suitable to live in an urban environment.  Biogenic emissions of tree 

species from the Biogenic Emissions Inventory System (BEIS) (Vukovich and Pierce, 

2002) were referenced to find low VOC emitters.  LAIs from a New York City tree 
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survey (TreesNY and CENYC et al., 2002) were referenced to determine which trees 

have a large LAI.  It was determined that ash and elm trees are preferred urban trees for 

the Washington, DC and Baltimore, MD metropolitan areas.  Observed average LAI in 

New York City for ash and elm trees is 4.11 and 3.12, respectively (TreesNY and 

CENYC et al., 2002).   

 

Urban Canyon 

Tree Canopy  

Fraction 

Undeveloped  

Land Tree 

Canopy Fraction 

Percent Tree Cover  

of Total Grid 

 

 LI HI C LI HI C LI HI C 

NT 0 0 0 0 0 0 0 0 0 

T 0.5 0.5 0.5 0.5 0.5 0.5 37.5 27.5 26.25 

NTSB 0 0 0 0 0 0 0 0 0 

Table 3-2: Specification of urban canopy tree canopy fraction, undeveloped land tree 

canopy fraction, and tree cover fraction over total grid cell for the three urban categories 

[low-intensity residential (LI), high-intensity residential (HI), and 

commercial/industrial/transportation (C)) and the three simulations (No Trees (NT), 

Trees (T), and No Trees Shorter Buildings (NTSB)]. 

 

 

Urban Canyon 

Grass/Soil 

Fraction 

 LI HI C 

NT 0 0 0 

T 0.1 0.1 0.1 

NTSB 0 0 0 

Table 3-3: Urban canyon grass/soil fraction for the three urban categories (low-intensity 

residential (LI), high-intensity residential (HI), and commercial/industrial/transportation 

(C)) and the three simulations (No Trees (NT), Trees (T), and No Trees Shorter Buildings 

(NTSB)). 

 

To increase the percentage tree cover in the undeveloped land from 0% to 50%, 

the undeveloped land is re-classified from USGS land use type Cropland/Grassland 

Mosaic to USGS land use type Cropland/Woodland Mosaic.  A 50% tree cover over 

undeveloped land and urban streets results in a 26.25%, 27.5%, and 37.5% tree cover 

over commercial/industrial/transportation, high-intensity residential, and low-intensity 

residential urban areas, respectively.  Tree canopy cover in urban and metropolitan areas 
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in the US averages 27% and 33%, respectively (Dwyer and Nowak, 1999).  Surface heat 

and moisture fluxes are calculated with the Noah land surface model for undeveloped 

urban land and with the UCM for the urban buildings and street canyons. 

The UCM was modified to account for fractional coverage of grass, soil, and tree 

canopies in the street canyons, including the increased momentum drag due to the tree 

canopy, the transmissivity of shortwave and longwave radiation through the tree canopy, 

tree shading on building roofs, building walls, and the ground, and additional shortwave 

radiative, longwave radiative, latent heat, and sensible heat fluxes due to the added trees, 

soil, and grass.  Figure 3-3 depicts a schematic diagram of the modified UCM.  The wind 

speed below treetops is modified to account for the additional trees.  The wind speed in 

the street canyon or at the roof level where the trees are taller than the buildings is 

multiplied by exp(-υflLAI), where LAI is the leaf area index above the rooftops or in the 

street canyon, fl is the fractional coverage of the tree canopy above the road, and υ is the 

extinction coefficient and it is set to 0.1 to account for momentum drag due to the tree 

canopy (Lee and Park, 2008). 
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Figure 3-3: Schematic diagram of urban street canyons with trees, where hf and hb are 

tree height and building height, respectively; hc is height where building shadow covers 

50% of the tree leaves, hfc is the height of the highest tree leaf in the canyon, hfa is height 

of tree above the building, ha_rdirect is path length of direct solar radiation through tree 

before reaching the roof, and θz is the solar zenith angle. 

 

For trees taller than the adjacent buildings, the tree canopy is split into two layers, 

one above the building roof and another in the street canyon.  The LAI above the street 

canyon is calculated by: 

lbfa hhLAI )(        (Equation 3-1), 

and the LAI in the street canyon is defined as: 

lbc hLAI         (Equation 3-2), 

where hf and hb are the tree and building heights, respectively.  The density of the leaves 

is assumed invariant with height and is defined by: 
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f

l
h

LAI
        (Equation 3-3). 

A list of all of the variables used to parameterize urban trees in the WRF-UCM is located 

in Table 3-4. 

The amount of radiation that can be transmitted through a tree canopy needs to be 

defined in order to compute the radiative budget.  The transmissivity of radiation through 

a tree canopy from height z1 to z2 is computed by: 

)5.0exp()2,1(
2

1
dzzzT

z

z
l      (Equation 3-4), 

where ρl is the leaf area density and α represents the absorptivity for individual leaves 

(Annandale et al., 2004; Campbell and Norman, 1998; Norman and Wells, 1983). 

A typical value of α is 0.5 (Annandale et al., 2004) and is used here. 

The direct solar radiation that reaches the surface of the leaves in the street 

canyon is: 

)}sin1](,0(1[sin)],(1{[ nfcnfccl

D

c

D

l hThhTfSS  (Equation 3-5), 

where S
D*

l, S
D↓

c, hc, and hfc are the downward direct solar radiation that reaches the 

surface of leaves, downward direct solar radiation in the canyon, the height of the top of 

the tree in the canyon, and the average tree shaded height due to the buildings, 

respectively (Lee and Park, 2008); θn is the angle between the average canyon axis and 

the direction of the sun as described by Kusaka et al. (2001).  The first and second terms 

describe the solar radiation that reaches building shaded and unshaded leaves,  

respectively.  If the tree height is greater than the adjacent building height, then hfc is set 

to the building height.  The height of the shaded canopy is defined by: 
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nz

fcc

w
hh

sintan2
      (Equation 3-6), 

where w is the width of the ground between the buildings and θz is the solar zenith angle.  

If hc is greater than hfc, then hc is set to hfc.  The direct solar radiation absorbed by the 

leaves is: 

l

l

D

lD

l

S
S

)1(*

       (Equation 3-7), 

and the direct solar radiation reaching the surface of the wall, ground and grass/soil are: 

height

shadowD

l

D

c

D

w
l

l
SSS

2
)( *

      (Equation 3-8), 

ground

shadowgroundD

l

D

crd

D

rd
l

ll
SSfS )( *      (Equation 3-9), 

ground

shadowgroundD

l

D

cs

D

s
l

ll
SSfS )( *      (Equation 3-10), 

where frd and fs define the fraction of the ground that is road and grass/soil, respectively, 

and lshadow, lheight, and lground are the normalized shadow length, normalized building 

height, and normalized street canyon width, respectively, as defined by Kusaka et al. 

(2004).  The solar radiation absorbed by the leaves is a function of the leaf aspect ratio, 

σl, which is defined as: 

ll fLAI         (Equation 3-11), 

where the effective leaf area index is: 

)]4.0exp(1[5.2 LAILAI      (Equation 3-12), 

as described by Lee and Park (2008). 
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Symbol Description       Units 

LAI  Leaf area index      - 

LAI
*
  Effective leaf area index     - 

Tl   Temperature of leaves      K 

Tla   Temperature of leaves above roof level   K 

Υ  Extinction coefficient      - 

εl   Emissivity of leaves      - 

ρl  Leaf density       m
-1

  

σl  Leaf aspect ratio      - 

α   Absorptivity of a leaf      - 

fl   Tree canopy fraction in street canyon    - 

frd  Road fraction of ground in street canyon   - 

fs  Grass/soil fraction of ground in street canyon  - 

hf   Tree height       m 

hb   Building height      m 

hc   Height of top of tree in street canyon    m 

hfc   Average tree shaded height due to buildings   m 

hfa   Height between the tree top and building roof level  m 

ha r_direct  Distance of path of direct radiation through the tree canopy 

from the center of the shadow on roof   m 

θn  Angle between average street axis and sun angle  radians 

θz  Solar zenith angle      radians 

αr  Albedo of roof       - 

w  Width of the ground between the buildings   m 

lshadow  Normalized shadow length     - 

lheight  Normalized building height     - 

lground  Normalized street canyon width    - 

lshadow_roof Normalized shadow on roof     - 

T(z1,z2) Transmissivity between heights z1 and z2   - 

τwa  Wall – atmosphere transmissivity    - 

τww  Wall – wall transmissivity     - 

τwg  Wall – ground transmissivity     - 

τga  Ground – atmosphere transmissivity    - 

S
D*

l  Downward direct solar radiation reaching leaves  W m
-2

 

S
D↓

c  Downward direct solar radiation in street canyon  W m
-2

 

S
D↓

w  Downward direct solar radiation reaching wall  W m
-2

 

S
D↓

rd  Downward direct solar radiation reaching road  W m
-2

 

S
D↓

s  Downward direct solar radiation reaching grass/soil  W m
-2

 

S
I↓

l  Indirect solar radiation absorbed by leaves   W m
-2

 

S
I↓

c  Indirect solar radiation in street canyon   W m
-2

 

S
I*

l  Indirect solar radiation reaching leaves if no buildings  

present        W m
-2

 

S
I↓

w  Indirect solar radiation incident on wall   W m
-2

 

S
I↓

rd  Indirect solar radiation incident on road   W m
-2  

Table 3-4: Description of symbols used to parameterize trees in UCM.
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Symbol Description       Units 

S
I↓

s  Indirect solar radiation incident on grass/soil   W m
-2

 

S
↑↓

w  Solar radiation absorbed by wall    W m
-2 

S
↑↓

rd  Solar radiation absorbed by road    W m
-2 

S
↑↓

s  Solar radiation absorbed by grass/soil   W m
-2 

S
↑↓

l  Solar radiation absorbed by leaves    W m
-2 

S
D*

la  Direct solar radiation that reaches leaves above roof level W m
-2 

S
D↓

a  Direct solar radiation from the atmosphere above  W m
-2 

S
I*

la  Indirect solar radiation that reaches leaves above roof level W m
-2 

S
I↓

a  Indirect solar radiation from the atmosphere above  W m
-2 

S
D↓

la  Direct solar radiation absorbed by leaves above roof level W m
-2 

S
I↓

la  Indirect solar radiation absorbed by leaves above roof level W m
-2 

S
D↓

la_side Direct solar radiation absorbed through side of tree canopy  

above roof level      W m
-2 

S
I↓

la_side  Indirect solar radiation absorbed through side of tree  

canopy above roof level     W m
-2 

S
↓

la_r  Solar radiation reflected by roof and absorbed by tree  

canopy above roof      W m
-2 

S
↑↓

r  Solar radiation absorbed by roof    W m
-2 

L
l
l↑  Longwave radiation emitted by leavesthat reaches other  

leaves        W m
-2 

L
a
l↑  Longwave radiation emitted by leaves that escapes canyon W m

-2 

L
w
l↑  Longwave radiation emitted by leaves that reaches wall W m

-2 

L
g
l↑  Longwave radiation emitted by leaves that reaches ground W m

-2
 

L
↑↓

w  Net longwave radiation on surface of wall   W m
-2 

L
↑↓

rd  Net longwave radiation on surface of road   W m
-2 

L
↑↓

s  Net longwave radiation on surface of grass/soil  W m
-2 

L
↑↓

l  Net longwave radiation on surface of leaves   W m
-2 

L
c
la↑   Longwave radiation emitted from the tree canopy above the  

rooftop that enters the street canyon    W m
-2 

Lla↑   Longwave radiation emitted from leaves above roof level W m
-2 

L
la
la↑   Longwave radiation emitted from leaves that reaches the  

surface of other leaves above the roof height   W m
-2 

L
↑↓

r  Longwave radiation absorbed by roof   W m
-2 

L
↑↓

la  Longwave radiation absorbed leaves above roof level W m
-2 

Fw↔a   Wall – atmosphere view factor    - 

Fg↔a   Ground – atmosphere view factor    - 

Fw↔g   Wall – ground view factor     - 

Fw↔w   Wall – wall view factor     - 

Fl↔a   Leaves – atmosphere view factor    - 

Fl↔g   Leaves – atmosphere view factor    - 

Fl↔w   Leaves – atmosphere view factor    - 

Fla_side↔a Side of tree canopy above roof – sky view factor  - 

Fla_side↔r Side of tree canopy above roof – roof view factor  - 

Table 3-4 (Cont’d): Description of symbols used to parameterize trees in UCM.
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Symbol Description       Units 

Cl   Specific heat capacity of leaves    J m
-2

 K
-1 

Hl   Sensible heat flux of leaves     W m
-2 

El   Moisture flux on leaves     kg m
-2

 s
-1

 

Eroot   Transpiration from root zone     kg m
-2

 s
-1

 

Lv   Latent heat of vaporization     J kg
-1 

Cw1mm   Specific heat capacity of 1mm water depth   J m
-2

 K
-1 

Table 3-4 (Cont’d): Description of symbols used to parameterize trees in UCM. 

The indirect solar radiation reaching the surface of the leaves if buildings cause 

no shade is defined by: 

)),0(1( fl

I

c

I

l hTfSS       (Equation 3-13), 

where S
I↓

c is the downward indirect solar radiation at the top of the street canyon (i.e., 

roof level) (Lee and Park, 2008). 

The indirect solar radiation flux absorbed by the leaves is (Lee and Park, 2008): 

Sl
I¯ =

Sl
I*Fl«a(1-al )

s l

       (Equation 3-14), 

and the indirect solar radiation incident on the surfaces of the wall, road, and soil are (Lee 

and Park, 2008):  

)( *I

l

I

caw

I

w SSFS       (Equation 3-15), 

)( *I

l

I

cagrd

I

rd SSFfS       (Equation 3-16), 

)( *I

l

I

cags

I

s SSFfS       (Equation 3-17), 

where Fw↔a and Fg↔a are the sky view factors at the center of the wall and ground, and 

Fl↔a is the sky view factor of the leaves at half the height of the tree.  The sky view 

factors are computed with the same algorithm as shown in Kusaka et al. (2001). 

The mean radiative transmissivities due to the tree canopy within the street 

canyon are calculated by (Lee and Park, 2008): 
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)],
4

3
(1[1 fcblwa hhTf       (Equation 3-18), 

)]
4

3
,

4

1
(1[1 bblww hhTf       (Equation 3-19), 

)]
4

1
,0(1[1 blwg hTf       (Equation 3-20), 

)],0(1[1 fclga hTf       (Equation 3-21), 

where τwa, τww, τwg, and τga represent the respective transmissivity between the wall and 

atmosphere above the canyon, two building walls, wall and ground, and ground and 

atmosphere above the canyon.  The UCM allows for solar radiation to be reflected twice 

within the urban canopy.  The solar radiation absorbed by the building wall, road, 

soil/grass, and tree leaves  are defined as: 

])(         
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  (Equation 3-22), 
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rdrdrd FSSfSSS    (Equation 3-23), 
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 (Equation 3-25), 

where subscripts w, g, and a represent the wall, ground, and atmosphere above the 

canopy, respectively, and F is the view factor, and it is calculated in the UCM as given in 

Kusaka et al. (2001).  
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Longwave radiation is emitted isotropically from the tree canopy.  Some of the 

radiation emitted from the tree leaves reaches the surface of other leaves within the tree 

canopy, while the remainder reaches the ground, building walls, or atmosphere above the 

street canyon.  The longwave radiation emitted from tree leaves that reaches the surfaces 

of other leaves, the atmosphere above the canyon, building walls, and the ground is 

defined as in Lee and Park (2008): 

)],0(1[ fcll

l

l
hTfLL     (Equation 3-26), 

al

l

lll

a

l
FLLL ][5.0       (Equation 3-27), 

)2]([5.0
2

glal

l

lll

b

w

l
FFLL

h

w
L     (Equation 3-28), 

gl

l

lll

g

l
FLLL ][5.0       (Equation 3-29), 

where w is the width of the ground and Ll↑ is defined as: 

4

llll
TL         (Equation 3-30), 

where εl and Tl are the emissivity and temperature of the leaves, respectively.  The UCM 

allows for longwave radiation to be reflected twice within the urban canopy.  The net 

longwave radiation at the surfaces of the building walls, roads, grass/soil, and trees are 

obtained by incorporating the downwelling atmospheric longwave radiation, longwave 

radiation emitted by building walls and roofs, roads, grass/soil, and trees, and multiple 

reflections in the urban street canyon:  The net longwave radiation at the surface of the 

wall is 
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(Equation 3-31). 

The net longwave radiation at the surface of the road is: 
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(Equation 3-32). 

The net longwave radiation at the surface of the grass/soil is: 
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(Equation 3-33). 

The net longwave radiation on the surface of leaves is: 
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(Equation 3-34). 

 The UCM is coupled with the Noah land surface model to obtain the latent and 

sensible heat fluxes at the soil surface by passing the incident longwave and shortwave 

radiation at the soil surface.  The sensible heat flux of the tree canopy, the moisture flux 

on tree leaves, and transpiration from the root zone are calculated, following Lee and 
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Park (2008).  Transpiration from the root zone is obtained from the Noah land surface 

model, as a function of stomotal resistance. 

The temperature of the tree leaves (Tl) is calculated using the energy balance 

equation of the tree canopy: 

)( rootlvlll

l

l EELHLS
t

T
C     (Equation 3-35), 

where Cl is the specific heat capacity of the leaves defined by: 

LAICC mmwl 1        (Equation 3-36), 

Lv is the latent heat of vaporization, Hl is the sensible heat flux, El is the moisture flux on 

the tree leaves, and Eroot is the transpiration from the root zone (Lee and Park, 2008).  

Cw1mm is set to 4186Jm
-2

K
-1

, which is the heat capacity of 1mm water depth. 

If trees are taller than the adjacent buildings, then the heat and moisture fluxes are 

calculated for the portion of the tree canopy above the roof height and tree shading of the 

roof is considered.  The direct and indirect solar radiation that reaches the leaves above 

the roof height are: 

],0(1[ fal

D

a

D

la hTfSS       (Equation 3-37), 

)),0(1( fal

I

a

I

la hTfSS       (Equation 3-38), 

where S
D*

la, S
D↓

a, S
I*

la, S
I↓

a, and hfa are the downward direct solar radiation that reaches 

the surfaces of the leaves, downward direct solar radiation from the atmosphere above, 

downward indirect solar radiation reaching the surfaces of the leaves, downward indirect 

solar radiation from the atmosphere, and height between the tree top and building roof 

level, respectively.  The amount of direct and indirect solar radiation absorbed by the tree 

canopy entering the top of the tree canopy is defined as: 
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      (Equation 3-39), 
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      (Equation 3-40). 

Solar radiation is also transmitted through the sides of the tree canopy above the 

roof.  The respective direct and indirect solar radiation absorbed through the side of the 

tree canopy are: 
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      (Equation 3-42), 

where lshadow_roof and Fla_side↔a is the normalized shadow on the roof and the view factor 

between the side of the tree canopy and the atmosphere above.  The amount of solar 

radiation reflected from the roof and absorbed by the tree canopy is: 

lr

rsidelalrlfar

rla

FfhTS
S

)1(

)1(),0(1( _

_    (Equation 3-43), 

where S
↓↑

r, αr, and Fla_side↔r are the solar radiation absorbed by the roof, albedo of the 

roof, and view factor between the roof and the side of the tree canopy, respectively.  So, 

the solar radiative flux on the tree canopy above the rooftop is: 

rla

I

sidela

D

sidela

I
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D

lala SSSSSS ___     (Equation 3-44). 

The solar radiative flux on the roof is: 
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 (Equation 3-45), 

where ha r_direct is the distance of the path of the direct radiation through the tree canopy 

from the center of the shadow on the roof (lshadow_roof/2).  The first term in the equation 

above is the amount of direct solar radiation that reaches the roof with no obstructions 

and is absorbed by the roof, the second term represents the transmitted direct solar 

radiation through the tree absorbed by the roof, the third term is the indirect solar 

radiation that reaches the roof with no obstructions and is absorbed by the roof, and the 

fourth term is the indirect solar radiation transmitted through the tree canopy that is 

absorbed by the roof. 

When the trees are taller than the building height, the amount of longwave 

radiation entering the street canyon is: 

c

lafal

ac LhTfLL )]},0(1[1{      (Equation 3-46), 

where L
c
la↑ is the amount of longwave radiation emitted from the tree canopy above the 

rooftop that enters the street canyon, defined by 

)(5.0 la

lalal

c

la
LLL       (Equation 3-47), 

where Lla↑ is emitted from the tree canopy above the roof defined by: 

4

lallla
TL         (Equation 3-48), 

and L
la
la↑ is the amount of longwave radiation that is emitted from the tree that reaches 

the surface of other tree leaves above the roof height: 
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hTfLL       (Equation 3-49), 

where Tla is the temperature of the leaves above the roof. 

The longwave radiation flux when the trees are taller than the adjacent buildings 

is defined as:  
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   (Equation 3-50), 

where the first term is the amount of longwave radiation from the atmosphere that is not 

obstructed by the tree canopy and is absorbed by the roof, the second term is the amount 

of longwave radiation from aloft that is transmitted through the tree canopy and absorbed 

by the roof, the third term is the amount of longwave radiation emitted by the roof, and 

the fourth term is the amount of radiation that is emitted by the tree canopy and absorbed 

by the roof. 

The longwave radiation flux in the tree canopy above the rooftop is the sum of the 

amount of radiation that is emitted from the road, grass/soil, building walls, building roof, 

tree canopy in and above the canyon, and atmosphere above the trees that is captured by 

the tree leaves minus the amount of radiation emitted from the tree canopy above 

rooftops, which is defined as: 
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 (Equation 3-51). 

The sensible heat and moisture fluxes, transpiration, and temperature of the leaves 

for the portion of the tree above the street canyon are calculated using the same 

algorithms as described above for the tree canopy in the street canyons. 

3.3 Sensitivity simulations 

 Three nested-grid simulations (i.e., No Trees, Trees, and No Trees Shorter 

Buildings) with the finest grid spacing of 0.5 km are analyzed alongside observations to 

investigate the role of urban trees and building heights on the UHI.  Averaged over 23 

measurement sites within the 0.5 km resolution domain, the near-surface (at z = 2 m) 

temperature for all three simulations are compared to temperature and wind velocity 

observations from the National Weather Service and the Maryland Department of the 

Environment (Figure 3-4).  The observational sites include urban sites and sites that are 

downwind and upwind of urban areas.  The Trees simulation consistently has lower 

surface temperatures than the No Trees simulation due to increased evapotranspiration 

and shading of roads and buildings.  At the measurement sites, the surface temperature of 



 

 68 

the Trees simulation is on average 0.3 K cooler than the No Trees simulation between 

0000 UTC 8 July and 1200 UTC 10 July.  The No Trees Shorter Buildings simulation has 

higher daytime temperatures but lower nighttime temperatures than the No Trees 

simulation.  Averaged over all of the measurement sites, maximum differences between 

the No Trees Shorter Buildings and No Trees simulations peaked at 0.4 K during the day 

and 1.2 K during the night.  Shorter buildings produce fewer shadows, thereby allowing 

more solar radiation to heat the building walls and roads.  On the other hand, street 

canyons with shorter buildings trap less longwave radiation emitted from the surfaces 

allowing the surface to cool quicker during the nighttime. 

 

Figure 3-4: Timeseries of No Trees (red), No Trees Shorter Buildings (blue), and Trees 

(green) simulated 2 m temperature minus observed 2 m temperature at 23 measurement 

sites within the 0.5 km horizontal resolution domain.  Results are averaged over 23 

measurement sites. 
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At 2000 UTC (1500 LST) July 9, 2007, the Chesapeake Bay breeze’s 

convergence zone was over Baltimore, MD (Figure 3-5), and at 2300 UTC (1800 LST) it 

was between Washington, DC and Baltimore, MD (Figure 3-6).  The No Trees Shorter 

Buildings simulation is slightly warmer than the No Trees simulation.  The maximum 2 

m temperature difference between the No Trees Shorter Buildings and No Trees 

simulations in Washington, DC is 0.6 K at 2000 UTC and 0.4 K at 2300 UTC 9 July, (not 

shown).  Even though this difference is small, it can be seen from Figures 3-5 and 3-6 

that the spatial extent of the highest temperatures in the region is largest in the No Trees 

Shorter Buildings simulation followed by the No Trees and then the Trees simulations. 



 

 70 

Figure 3-5: Observed and simulated 2 m temperature and 10 m wind speed with a 

horizontal resolution of 0.5 km at 2000 UTC (3 PM EST) 9 July 2007. 
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Figure 3-6: Observed and simulated 2 m temperature and 10 m wind speed with a 

horizontal resolution of 0.5 km at 2300 UTC (6 PM EST) 9 July 2007. 

 

The maximum difference between the No Trees and Trees simulated 2 m 

temperature is 0.8 and 1.2 K at 2000 and 2300 UTC, respectively, in Washington, DC 

and 1.9 K at 2000 and 2300 UTC in Baltimore, MD.  Differences in 2 m temperature 

between the No Trees and the Trees simulations at 2000 (Figure 3-7) and 2300 UTC 



 

 72 

(Figure 3-8) show that thethe impact of planting trees in all urban areas in the domain is 

largest in Baltimore, MD. 

 

Figure 3-7: Trees minus No Trees simulated 2 m temperature with a horizontal resolution 

of 0.5 km at 2000 UTC (3 PM EST) 9 July 2007. 



 

 73 

 

Figure 3-8: Trees minus No Trees simulated 2 m temperature with a horizontal resolution 

of 0.5 km at 2300 (6 PM EST) UTC 9 July 2007. 

 

Urban trees are seen to impact the strength of the Chesapeake Bay breeze.  

Figures 3-7 and 3-8 show the change in temperature associated with trees at 3 PM and 6 

PM, respectively.  The most striking feature is a thin line of warmer temperatures in the 

Trees simulation than the No Trees simulation running north-south between Washington, 

DC and Baltimore, MD.  Northwest of Baltimore, MD this thin line switches sign.  At 

2300 UTC the thin line shows warmer temperatures by up to 2 K in the Trees simulation 

than the No Trees simulation between Washington, DC and Baltimore, MD, but cooler 

temperatures by 2 K northwest of Baltimore, MD (Figure 3-8).  This thin line is due to 

differences in the positioning of the Chesapeake Bay breeze convergence zone.  
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Differences in wind velocities north of Baltimore at 2000 UTC reveal a stronger bay 

breeze that penetrates further inland in the Trees simulation than the No Trees simulation 

(Figure 3-9).  Wind velocity differences at 2300 UTC between Washington, DC and 

Baltimore, MD show a weaker bay breeze in the Trees simulation than the No Trees 

simulation (Figure 3-10).  High temperatures due to the Washington, DC UHI 

propagating downwind near the coastline of the Chesapeake Bay strengthen the 

temperature gradient along the Chesapeake Bay coastline and therefore strengthen the 

bay breeze.  The addition of urban trees dampens the urban heat island causing a weaker 

temperature gradient along the coastline and a weaker bay breeze that does not penetrate 

as far inland downwind of Washington, DC.  So, the thin line of warmer temperatures in 

the Trees simulation shown in Figures 3-7, 3-8, and 3-10 is due to a weaker bay breeze 

that does not push the cooler air originating over the water as far inland.  On the other 

hand, urban trees can amplify the bay breeze after being pushed through an urban area.  

The dampened UHI in Baltimore, MD due to urban trees when Baltimore, MD was on 

the cool side of the bay breeze, amplified the temperature gradient.  The stronger 

temperature gradient caused the bay breeze to push further inland than the No Trees 

simulation as shown by the thin line of cooler temperatures northwest of Baltimore 

(Figures 3-7, 3-8, and 3-9). 
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Figure 3-9: Trees minus No Trees simulated 2 m temperature and 10 m wind speed with a 

horizontal resolution of 0.5 km covering the bay breeze convergence zone north of 

Baltimore, MD at 2000 (3 PM EST) UTC 9 July 2007. 
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Figure 3-10: Trees minus No Trees simulated 2 m temperature and 10 m wind speed with 

a horizontal resolution of 0.5 km covering the bay breeze convergence zone between 

Washington, DC and Baltimore, MD at 2300 (6 PM EST) UTC 9 July 2007. 

 

As mentioned previously, the impact of planting trees in all urban areas in the 

domain is larger in Baltimore, MD than Washington, DC.  Since the bay breeze is 

stronger over and downwind of Baltimore in the Trees simulation than the No Trees 

simulation after the bay breeze convergence zone passes through Baltimore, more air 

originating over the cool surface waters is transported to Baltimore.  So, cooler 

temperatures over Baltimore in the Trees simulation than the No Trees simulation are due 

to more evapotranspiration and shading from the added vegetation and a stronger bay 

breeze transporting cooler air over Baltimore at a faster rate. 
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 There are significant urban temperature differences on the subgrid scale.  Figure 

3-11 shows building roof, building wall, and road surface temperatures as well as street 

canyon air temperature averaged over all urban buildings, roads, and street canyons for 

the three simulations.  The roof surface temperatures vary little between the three 

simulations because the roofs for both the No Trees and No Trees Shorter Buildings 

simulations are not shaded and only the low-intensity residential roofs in the Trees 

simulations are partially shaded at low solar zenith angles.  The No Trees Shorter 

Buildings simulation’s maximum daytime building wall and road surface temperatures 

and maximum canyon air temperature are 1.9, 2.4, and 1.5 K greater than the No Trees 

simulation’s temperatures on July 9 due to more shading from the buildings.  On the 

other hand, the No Trees Shorter Buildings simulation’s minimum nighttime building 

wall and road surface temperatures and minimum canyon air temperature are 0.4, 0.6, and 

0.6 K lower than the No Trees simulation’s temperatures between sunset on 8 July and 

sunrise on 9 July due to less longwave radiative trapping in the urban canyon.  The Trees 

simulation’s maximum building wall and road surface temperatures and maximum 

canyon air temperature are 8.9, 15.4, and 4.1 K lower than the No Trees simulation’s 

temperatures on July 9 due to tree shading and evapotranspiration.  The Trees 

simulation’s minimum wall and road surface temperatures and canyon air temperature are 

3.1, 3.2, and 2.5 K lower than the No Trees simulation’s temperatures during the night of 

July 8. 
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Figure 3-11: Timeseries of No Trees Shorter Buildings minus No Trees (blue), and Trees 

minus No Trees (green) simulated subgrid a) roof, b) building wall, and c) road surface 

temperatures and d) canyon air temperature with a horizontal resolution of 0.5 km 

averaged over all urban land use categories. 

 

3.4 Conclusions and future directions 

 In this study, the role of urban trees and building height in UHI effects are 

investigated by performing simulations with the WRF-UCM and a modified version of 

WRF-UCM including the parameterized effects of urban trees, soil, and grass.  Results 

show that urban areas with shorter buildings have a diurnal cycle of large amplitudes.  

Shorter urban buildings cause higher surface and near surface air temperatures during the 

daytime due to less building shading and lower temperatures at night due to less 

longwave radiative trapping in urban street canyons.  In the model simulations, 

decreasing building size resulted in maximum daytime urban canyon air temperature to 

increase by 1.5 K and minimum nighttime urban canyon air temperature to decrease by 
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0.6 K.  Urban trees result in lower surface and near surface air temperatures due to tree 

shading and evapotranspiration.  The addition of trees in the simulations caused 

maximum daytime and minimum nighttime urban canyon air temperatures to decrease by 

4.1 and 2.5 K, respectively.  Future investigations will look into how these temperature 

differences due to varying building height and urban vegetation cover influence 

emissions, climate, and air quality. 

 Urban trees alter the strength of the Chesapeake Bay breeze by altering the 

temperature gradient near the coastline.  Urban trees downwind of the Chesapeake Bay 

breeze dampen the strength of the breeze and therefore suppress the penetration of the 

bay breeze inland.  The urban trees decrease the near surface air temperature over the 

warm land and therefore decreases the temperature gradient between the warm air over 

land and relatively cool air over the water.  However, after the bay breeze penetrates 

inland past Baltimore, MD, it is found that urban trees increase the strength of the bay 

breeze.  The addition of urban trees in Baltimore, MD causes the temperature of the cool 

side of the bay breeze to decrease resulting in a stronger temperature gradient and bay 

breeze.  Since the bay breeze can impact air quality, future research can examine how 

altering the bay breeze due to the addition of urban trees can impact air quality.  

 Since urban areas in the WRF-UCM only include impervious surfaces, buildings 

and roads, the WRF-UCM with trees can be used to simulate the meteorology under more 

realistic urban land surface coverage.  The National Land Cover dataset used in this study 

is from 2001.  Keeping urban tree fraction and building height datasets up to date is 

useful for initializing the WRF-UCM with trees given that the UHI is sensitive to these 

parameters. 
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WRF-UCM with trees can be used as a tool to investigate how vegetative land 

surface changes to urban areas impact many aspects of earth science.  Results show that 

urban trees can lower surface and air temperatures in and downwind of cities and alter a 

bay breeze.  Future studies will investigate how lower summertime building surface 

temperatures due to an increase in urban trees can result in less energy demand for 

cooling buildings, quantify the reduction in energy demand to a decrease in 

anthropogenic emissions, and determine the climate and air quality impact of urban trees.  

In addition, the WRF-UCM with trees can investigate how an increase in urban trees, 

grass, and soil impacts the hydrological cycle by decreasing runoff, increasing 

evapotranspiration, and their effects on precipitation in and downwind of cities.  
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Chapter 4: Impact of urban trees on air quality 

4.1 Introduction 

High temperatures are associated with sunny skies, high pressure, subsidence, and 

weak winds.  Chemically, high temperatures lead to faster reaction rates, greater biogenic 

and anthropogenic emissions and favor dissociation of peroxyacetyl nitrate (PAN) 

into.nitrogen dioxide (NO2), an ozone precursor.  Therefore a positive correlation exists 

between observed air pollution and temperatures (Bloomer et al., 2009; Bloomer et al., 

2010; Tai et al., 2010; U.S. EPA, 2006).  Air quality model simulations agree that air 

pollution events are amplified with increasing temperatures (Weaver et al., 2009; Banta et 

al., 1998; Cheng and Byun, 2008; Jacob and Winner, 2009). 

Urbanization can increase temperatures, and therefore exacerbate air pollution 

events.  Creating impervious urban surfaces causes increased runoff, decreased 

evapotranspiration, increased solar radiation absorption, additional release of 

anthropogenic heat, and changes in surface friction (e.g., Oke, 1987; Bornstein and Lin, 

2000; Arnfield, 2003).  Previous studies show that rural to urban temperature differences 

are amplified as city size and building density increase (Oke, 1973; Landsberg, 1981; 

Atkinson, 2003; Imhoff et al., 2010).  However, Zhang et al. (2009; 2011) show that UHI 

effects are not necessarily proportional to city size or building density as the effects from 

one city can be advected over another city.  They show that the UHI effects over 

Baltimore, MD can be larger than the UHI effects over Washington, DC, a larger city 

than Baltimore, when Washington is upwind of Baltimore. 
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 Urban trees can dampen the UHI and decrease near-surface air and building 

surface temperatures through direct shading and evaporative cooling.  This cooling may 

result in lower air pollution levels.  A change in temperature can also alter local weather 

patterns.  For example, planting trees in a coastal city can alter a sea breeze as discussed 

in Chapter 3  

A sea breeze circulation can exacerbate air pollution levels (Boucouvala and 

Bornstein, 2003; Evytugina et al., 2006).  In Houston, high ozone episodes begin when 

the large scale flow is offshore before the onset of a bay breeze develops (Banta et al., 

2005; Darby, 2005).  As the bay breeze begins to strengthen, stagnant conditions develop 

allowing ozone and ozone precursors to accumulate before being advected further 

onshore as the bay breeze increases in intensity later in the afternoon (Banta et al., 2005; 

Darby, 2005).  A change in the strength of a sea, bay, or lake breeze due to planting urban 

trees can therefore potentially alter air quality. 

Trees can act to remove pollutants from the air, but also emit trace gases.  Air 

pollutants can be deposited on trees, decreasing air pollution levels in the atmosphere.  

On the other hand, trees emit biogenic volatile organic compounds (VOCs), which can 

oxidize to form secondary organic aerosols (SOAs) or react in the presence of nitrogen 

oxides to form ozone, two secondary pollutants harmful to human health.  Choi and 

Ehrman (2003) found that biogenic VOCs contribute significantly to ozone production in 

the Baltimore area during high ozone episodes. 

In Hong Kong, a 1°C increase in monthly ambient temperature increases 

electricity consumption by 9.2, 3.0, and 2.4% in the domestic, commercial, and industrial 

sectors, respectively (Fung et al., 2006).  Therefore cooler summertime surface wall and 
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roof temperatures of urban buildings associated with planting trees reduce energy 

demand on the electrical grid and anthropogenic emissions.  Therefore decreasing 

anthropogenic emissions helps dampen climate change and improve air quality.   

Herein, I show how the WRF-UCM with trees can be used as a tool to investigate 

how urban tree cover changes can affect air quality.  In the present study, I examine how 

air quality can be altered by meteorological changes and biogenic emissions changes due 

to the addition of urban trees.  This work does not include the impact of reductions in 

anthropogenic emissions on air quality due to planting urban trees.  Future research will 

investigate how cooling building surface walls and roofs reduces electrical demand and 

anthropogenic emissions.  The stated objectives are accomplished by performing air 

quality model simulations down to a horizontal resolution of 0.5 km.  Model simulations 

are performed for the following three cases: (1) a No Trees case which includes 

meteorology and emissions for urban areas with no trees; (2) a Trees case which includes 

meteorology for an urban area with urban trees but no biogenic emissions from urban 

trees; and (3) a Trees Altered Emissions case which includes meteorology for an urban 

area with urban trees and biogenic emissions from the urban trees.  Ash trees are used for 

the urban trees, which are low VOC emitters.  At 30°C, ash trees emit 290 times less 

isoprene and 2 times less monoterpenes than oak trees, which are high VOC emitters.  

The simulations cover the Washington-Baltimore metropolitan areas from 1200 UTC 7 to 

1200 UTC 10 July 2007.  High air pollution was observed in the region alongside hot, 

sunny, stagnant conditions.  A cold front passed through the area on 6 July 2007, 

followed by an anticyclone approaching the Mid-Atlantic states.  A bay breeze was 

present during the daytime on July 7, 8, and 9.  The Baltimore, MD UHI exhibited a 2 m 
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temperature of 37.5°C and downwind of Baltimore near-surface 8 h maximum ozone 

mixing ratios reached 125 ppb (the current air quality standard is 75 ppb) on July 9.  This 

same time period was analyzed to investigate the impact of upstream urbanization on the 

UHI (Zhang et al., 2009; Zhang et al., 2011), characterize the air pollution event 

(Yegorova et al., 2011), and examine the impact of fair-weather cumulus clouds and the 

Chesapeake Bay breeze on air quality (Loughner et al., 2011). 

4.2 Model description 

 The No Trees and Trees modeling scenarios performed with the Weather 

Research and Forecasting model coupled with an Urban Canopy Model (WRF-UCM) 

discussed in Chapter 3 are used to investigate how local and downwind weather 

modifications due to planting urban trees impacts air quality.  The WRF-UCM output is 

fed into Version 4.6 of the Environmental Protection Agency’s (EPA) Community 

Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006) via the Meteorology-

Chemistry Interface Processor (MCIP) (Otte and Pleim, 2010).  Emissions input files for 

CMAQ are created with the Sparse Matrix Operator Kernel Emissions (SMOKE) 

modeling system (Houyoux and Vukovich, 1999). 

4.2.1 Meteorological post-processing 

MCIP Version 3.4 was used to ingest the WRF-UCM outputs and create input 

files for processing emissions data and running air chemistry simulations.  As mentioned 

in Chapter 2, this step requires modifying MCIP to write out the percentage of each 

WRF-UCM grid cell that is urban.  This urban fraction information is used in CMAQ to 

calculate vertical diffusion.  This model update is available beginning in Version 3.5_beta 

of MCIP. 
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MCIP calculates the dry deposition velocity of gaseous species, which is then 

used in CMAQ to calculate pollutant removal from the atmosphere.  MCIP uses the 

Models-3 Dry deposition velocity scheme (M3Dry) as described in Pleim et al. (2001), 

Byun and Ching (1999), and Otte and Pleim (2010).  Four parameters used to calculate 

dry deposition velocities, a minimum stomatal resistance, leaf area index, vegetation 

fraction, and soil moisture in the root zone, are functions of landuse.  MCIP was modified 

to scale these variables for the three urban categories for both the No Trees and Trees 

cases by: 
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      (Equation 4-1), 
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     (Equation 4-2). 

Here Xnotrees, Xtrees, XUSGS_crop/grass, XUSGS_decid_broadleaf, XUSGS_crop/wood, and Xurban represent 

either minimum stomatal resistance, leaf area index, vegetation fraction, or soil moisture 

for a No Trees urban grid cell, Trees urban grid cell, USGS landuse type cropland / 

grassland mosaic, USGS landuse type deciduous broadleaf, USGS landuse type cropland 

/ woodland mosaic, or a grid cell that is 100% urban, respectively.  The formula for Xurban 

is: 
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f

fXX
X

_

_/__ )1(
  (Equation 4-3), 

where fUSGS_urban is the urban fraction for USGS landuse type urban and XUSGS_urban 

represents either minimum stomatal resistance, leaf area index, vegetation fraction, or soil 

moisture for USGS landuse type urban.  Here, USGS landuse type urban has an urban 
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fraction of 0.9 and the remaining landuse is USGS landuse type cropland / grassland 

mosaic.  flu is the tree coverage fraction in the urban area and is set to 0.25 to account for 

trees in the street canyons.  furban is the urban fraction and is set to 0.95, 0.9, and 0.5 for 

urban landuse type commercial/industrial/transportation, high-intensity residential, and 

low-intensity residential, respectively.  The first term on the right hand side in the 

equation for the parameters for the No Trees case represents the portion of the grid cell 

that is urban, while the second term represents the non-urban area of the grid cell.  The 

first term on the right hand side in the equation above for the Trees case represents the 

urban area with no tree coverage, the second term represents the tree covered urban 

streets, and the third term represents the non-urban portion of the grid cell with a 50% 

tree coverage. 

4.2.2 Emissions 

Emissions input files are created with SMOKE using the same methodology as 

described in Chapter 2.  An interim 2007 emissions inventory from the U.S. Regional 

Planning Organizations (RPOs) is available.  The interim 2007 emissions inventory is 

used instead of the projected 2009 emissions inventory which was utilized in Chapter 2.  

The interim 2007 inventory consists of actual 2007 point source emissions and 

interpolated area source emissions from existing 2002 and 2009 inventories.  The 2007 

emissions inventory has 1.2 times more NOx than the projected 2009 inventory.  

Biogenic emissions are created with the Biogenic Emissions Inventory System 

(BEIS) Version 3.12 coupled within SMOKE and are dependent on the meteorology and 

landuse (Vukovich and Pierce, 2002).  The landuse data, which is created with the MIMS 

Spatial Allocator as described in Chapter 2, is modified to be consistent with the three 
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categories of urban landuse for the Trees and No Trees simulations.  Ash trees, which are 

low biogenic volatile organic compound (VOC) emitters that are favorable urban trees 

found in the Mid-Atlantic, are chosen for the urban tree species used in the Trees Altered 

Emissions case. 

4.2.3 Air quality model description 

The CMAQ model is used to investigate the impact of changes in biogenic 

emissions and meteorology due to urban trees on air quality. .  The model is run with the 

same user options and chemical initial and boundary conditions as described in Chapter 

2.  CMAQ is run with 32 vertical levels with 20 layers in the lowest 2 km.  The 13.5 km 

resolution domain simulation begins 2 weeks prior to 1200 UTC 7 July 2007 to spin up 

the chemistry of the atmosphere for the species that are not available from global model 

output files used for chemical initial conditions. 

4.3 Results 

 The three CMAQ model simulations, No Trees, Trees, and Trees Altered 

Emissions, at horizontal resolutions of 0.5 km are analyzed alongside observations to 

investigate how meteorological changes due to planting urban trees and biogenic 

emissions from urban trees impacts air quality.  The impact of adding trees to removing 

atmospheric pollutants through dry deposition and adding more sources of biogenic VOC 

emissions are explored. 

Due to changes in the surface properties and local meteorology in the urban areas, 

dry deposition processes of chemical species are altered.  The dry deposition velocities 

altered for the Trees and Trees Altered Emissions cases as described in Section 4.2.1 with 

Equations 4-1, 4-2, and 4-3 are shown in Table 4-1.  The added urban trees cause more 
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air pollutants to be removed from the atmosphere.  For example, averaged over the 72 

hour simulation in the commercial/industrial/transportation urban grid cells, the dry 

deposition velocities of O3, NO, NO2, HONO, and HCHO are faster with urban trees by 

21, 5, 14, 32, and 51%. 

 

Table 4-1: Average dry deposition velocities of O3, NO, NO2, HONO, and HCHO in the 

three urban categories (low-intensity residential (LI), high-intensity residential (HI), and 

commercial/industrial/transportation (C)) with and without urban trees. 

 

Ash trees, which are low VOC emitters, are used for the urban trees.  Emissions 

from urban trees are included in the Trees Altered Emissions case, while the No Trees 

and Trees cases do not include urban tree emissions.  The Trees Altered Emissions case 

has more biogenic emissions of terpenes in the low-intensity residential, high-intensity 

residential, and commercial/industrial/transportation urban grid cells and more biogenic 

emissions of isoprene in the high-intensity residential and 

commercial/industrial/transportation urban grid cells (Table 4-2).  Biogenic emissions are 

a function of temperature.  Even though the Trees Altered Emissions case include more 

  No urban trees Urban trees 

O3 

(cm / s) 

LI 0.28 0.30 

HI 0.27 0.30 

C 0.24 0.29 

NO 

(cm / s) 

LI 0.062 0.064 

HI 0.62 0.065 

C 0.060 0.063 

NO2 

(cm / s) 

LI 0.15 0.15 

HI 0.14 0,15 

C 0.13 0.15 

HONO 

(cm / s) 

LI 0.38 0.44 

HI 0.37 0.45 

C 0.33 0.43 

HCHO 

(cm / s) 

LI 0.32 0.41 

HI 0.30 0.41 

C 0.27 0.41 
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sources of biogenic emissions of isoprene due to the urban trees, the lower temperatures 

in the low-intensity residential urban grid cells yield lower isoprene emissions. 

 

Isoprene 

(kg / day) 

Terpenes 

(kg / day) 

 LI HI C LI HI C 

No urban trees 1088 81 110 2069 219 316 

Urban trees 1050 91 128 2260 242 345 

Table 4-2: Daily average biogenic emissions of isoprene and terpenes in the three urban 

categories (low-intensity residential (LI), high-intensity residential (HI), and 

commercial/industrial/transportation (C)) with and without urban trees. 

 

 Model simulated 8-h maximum ozone concentrations on 9 July 2007 for the No 

Trees, Trees, and Trees Altered Emissions cases are analyzed alongside observations 

(Figure 4-1).  The model simulations have a low bias along the northern coast of the 

Chesapeake Bay, but a high bias northwest of Baltimore, MD.  These biases are due to 

the model simulating southerly winds in the morning and early afternoon, while 

observations reveal westerly winds at this time (Figure 4-2).  This result causes the model 

to simulate pollutants emitted in the Washington, DC metropolitan region to be 

transported north-northeastward to the area of high model simulated ozone concentrations 

instead of further eastward toward the Chesapeake Bay. 
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Figure 4-1: 8-h maximum ozone concentrations (ppbv) from a) EPA’s Air Quality 

System (AQS) observations and the b) No Trees, c) Trees, d) Trees Altered Emissions 

cases on 9 July 2007. 
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Figure 4-2:  Observed and simulated 2 m temperature and 10 m wind speed at 1600 UTC 

(11 AM EST) 9 July 2007. 

 

 The Trees and Trees Altered Emissions model runs simulated higher ozone 

concentrations than the No Trees simulation.  The peak simulated 8-h maximum ozone 

concentration for the Trees case is 3 ppb higher than the No Trees simulation.  Lower 

surface temperatures in and downwind of urban areas in the Trees simulation contributes 
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to lower PBL heights compared to the No Trees simulation.  The shallower PBL causes 

higher pollutant concentrations by volume in the PBL in the Trees simulation (Figure 4-

3).  The PBL height at 2100 UTC 9 July averaged over 900 km
2
 at 39.31° latitude -76.87° 

longitude, an area of high ozone concentrations west of Baltimore, in the No Trees and 

Trees simulations is 1.73 and 1.68 km, respectively.  Higher ozone concentrations in the 

Trees and Altered Trees simulations than the No Trees simulation northwest of Baltimore 

may also be due to a stronger simulated bay breeze.  As discussed in Chapter 3, added 

trees in Baltimore strengthened the bay breeze after the bay breeze convergence zone 

passes through Baltimore.  A stronger bay breeze that penetrates further inland may result 

in more pollutants converging and accumulating at the bay breeze convergence zone.  

 
Figure 4-3:  O3 (left) and CO (right) profiles for the No Trees (red) and Trees (green) 

simulations averaged over 900 km
2
 at 39.31° latitude -76.87° longitude at 2100 UTC (4 

PM EST) 9 July 2007.  Maximum differences in ground-level ozone concentrations in the 

simulation is found in this area and at this time. 
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 As shown in Figure 4-1, there are little differences in simulated 8-h maximum 

ozone concentrations between the Trees and Trees Altered Emissions cases even though 

the VOC emissions differ.  The peak 8-h maximum ozone concentration of the Trees 

Altered Emissions simulation is only 0.005 ppb higher than the Trees case.  The small 

difference in ozone concentrations could be due to the region being NOx limited.  This 

means a change in VOC concentrations will have little impact on ozone formation, but a 

change in NOx concentrations will alter the rate of ozone formation.  The small difference 

between the two simulations may also be due to the use of low VOC emitting trees 

instead of high VOC emitting trees like Oak trees. 

4.4 Conclusions 

 In this study, I demonstrate how the WRF-UCM with trees can be used to 

investigate how urban vegetation changes affect air quality. CMAQ simulations are used 

to investigate how meteorological changes due to planting urban trees impacts air quality 

during a high air pollution episode in the Mid-Atlantic.  The impact of additional 

biogenic VOC emissions due to low VOC emitting urban trees on air quality is shown to 

have little impact on ozone formation.  For this particular modeling scenario, the model 

simulations with urban trees results in a shallower PBL, which results in higher pollutant 

concentration in the PBL.  However, the changes in PBL depth are too small to explain 

much of the increase in surface layer pollutant concentrations.  It appears that urban trees 

strengthen the Chesapeake Bay breeze, which causes a buildup of pollutants near the 

Chesapeake Bay Breeze convergence zone. This unexpected result may not be robust as it 

was obtained from a model simulation of one pollution episode.   
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 Additional research is needed to fully gain an understanding on how urban trees 

impact air quality.  Urban trees can alter meteorology, deposition, biogenic emissions, 

and anthropogenic emissions, all of which impact air quality.  Gaining an understanding 

on how cooling urban building walls and roofs with urban trees impacts electrical 

demand and anthropogenic emissions is needed.  Incorporating this information in air 

quality model simulations will help achieve the goal of determining how urban trees 

affect air quality.  In addition, further research is needed on the sensitivity of sea breeze 

circulations to the distribution of trees.  Further research can also investigate how 

different types of urban trees impacts ozone concentrations. 
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Chapter 5: Conclusions 

5.1 Research summary 

Interactions among meteorology, land surface processes, and atmospheric 

chemistry were examined, and the impact of model resolution on meteorological and air 

quality simulations was explored.  I found that as model resolution increases, (i) more 

sulfur dioxide is transported through fair weather cumulus clouds causing faster sulfate 

formation, (ii) more pollutants are vented from the PBL to the free troposphere, (iii) more 

pollution accumulates in a convergence zone with weak surface winds west of the 

Chesapeake Bay, and (iv) a stronger bay breeze forms preventing pollutants from being 

transported across the coastline near the surface but instead the pollutants are lofted 

before being transported downwind.  These results improve our understanding of air 

quality and climate.  Sulfate aerosols are harmful to human health and play a role in 

scattering radiation as well as impact cloud and precipitation processes.  Transporting 

pollutants from the PBL to the free troposphere, even the lower free troposphere, 

increases their lifetime and the distance they can travel (Taubman et al., 2004).  This 

causes the pollutants to have a larger impact on climate and be able to impact air quality 

further downwind.  A stronger simulated bay breeze produces higher and more realistic 

8-h maximum ozone concentrations at locations near the Bay Breeze convergence zone 

and lower concentrations over the surface of the Chesapeake Bay. 

Differences in the cloud parameters used in CMAQ’s aqueous chemistry and 

photolysis schemes were analyzed.  The photolysis clouds agreed better with 

observations during the three day modeling time period by producing more cloud cover.  
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This resulted in more sulfur dioxide oxidation to form sulfate aerosols and shows the 

importance of accurately modeling the spatial coverage of clouds in model sulfate aerosol 

concentrations.  It is also important to accurately model clouds and transport processes 

through clouds.  Pollutants can be lofted and vented through clouds into the free 

troposphere. 

Building heights and urban trees affect near surface air temperature and building 

wall and roof surface temperatures.  Shorter buildings cause less direct shading of streets 

and adjacent building walls, which results in higher daytime air and surface temperatures.  

On the other hand, shorter buildings trap less longwave radiation in urban street canyons, 

allowing more radiative cooling and causing lower nighttime temperatures.  Urban trees 

provide cooling through shading and evapotranspiration.  Urban trees near coastlines can 

alter a sea, bay, or lake breeze.  The model suggests that planting trees in Washington, 

DC could decrease the temperature gradient along the coastline causing a weaker 

Chesapeake Bay breeze.  However, urban trees in Baltimore, MD might amplify the bay 

breeze.  Once the bay breeze convergence zone is inland past Baltimore with Baltimore 

on the cool side of the bay breeze, the addition of urban trees causes lower temperatures 

on the cool side of the bay breeze.  This magnifies the temperature gradient along the 

convergence zone and the strength of the bay breeze. 

Urban trees can impact air quality by emitting biogenic VOCs, removing 

pollutants from the atmosphere, and decreasing surface temperatures.  It was shown how 

the WRF-UCM with trees can be used to examine how urban vegetation changes impact 

air quality.  For one particular modeling scenario, adding urban trees to Washington, DC 

and Baltimore, MD resulted in lower PBL heights, a stronger bay breeze northwest of 
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Baltimore, and higher surface ozone concentrations.  This modeling scenario did not 

include the impact of anthropogenic emissions reductions associated with the additional 

urban trees.  Cooler surface temperatures from adding trees results in lower 

anthropogenic emissions, which is expected to decrease air pollution. 

5.2 Recommendations for further research 

It is difficult to simulate or parameterize fine spatial scale features, such as fair-

weather cumulus clouds and bay breezes, at coarse model resolutions.  However, it is 

impractical to run model simulations at a horizontal resolution of 0.5 km for many 

projects due to computational restraints.  Results discussed above suggest vertical 

diffusion schemes for coarse simulations should be modified to produce faster vertical 

transport to allow more pollutants to be transported through clouds and across the top of 

the boundary layer.  It is also shown that CMAQ’s aqueous chemistry and photolysis 

schemes generate dramatically different cloud cover.  These cloud properties need to be 

harmonized.  To simulate a bay, sea, or lake breeze at resolutions coarser than 4.5 km, a 

bay, sea, or lake breeze parameterization needs to be developed.  Otherwise, finer 

horizontal resolutions are needed along coastlines.  This might be accomplished with 

nested simulations along coastlines or a stretched grid with the resolution increasing as 

the distance from the coastline decreases.  

The impact of building height on the UHI was examined.  Future work can look 

into how building depth and the width of street canyons impact the UHI.  An urban tree 

canopy parameterization was developed and implemented into the WRF-UCM to study 

the effect of planting urban trees on temperatures and meteorology.  Future work can 

look into how different tree planting strategies could influence temperatures and 
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meteorology.  For example, instead of examining how planting urban trees uniformly 

along streets in urban cores and suburban neighborhoods, future work can look into how 

planting a high concentration of trees only in suburban neighborhoods affects the UHI.  

In addition, future WRF-UCM experiments can be performed to examine how replacing 

urban roofs with a more reflective surface affects the UHI. 

Additional research is needed to determine how urban trees impact air quality and 

climate.  Urban trees can alter meteorology, deposition, biogenic emissions, and 

anthropogenic emissions, all of which impact air quality.  Future work is needed to learn 

how cooling building walls and roofs can decrease the electrical demand on utilities and 

anthropogenic emissions.  Results from this work can then be incorporated in climate and 

air quality models to fully understand how urban trees impact the atmosphere.  
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