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The subject matter of this dissertation relates to the dynamics of non-smooth

vehicle systems, and in particular, supercavitating vehicles. These high-speed under-

water vehicles are designed to have sustained vaporous or ventilated gas cavities that

form over the entire vehicle. In terms of the modeling, the system non-smoothness

is caused by the interaction forces generated when the vehicle contacts the cav-

ity. These planing interactions can cause stable and unstable dynamics, some of

which could be limit-cycle dynamics. Here, planing forces are considered on the

basis of non-cylindrical cavity shapes that include shifts induced by the cavitator

angle of attack. Incorporating these realistic physical effects into a vehicle system

model generates a unique hydrodynamic non-smoothness that is characterized by

non-constant switching boundaries and non-constant switched dynamics. Nonlinear

stability analyses are carried out, Hopf bifurcations of equilibrium solutions are iden-

tified, and stabilizing control is investigated. Also considered is partially cavitating

system dynamics, where active fin forces are used to support the vehicle. Non-steady

planing is also considered, which accounts for vehicle motions into the cavity, and



this planing provides a damping-like component in the planing force formulation.

Modeled with non-steady planing is a physical time delay relating to the fact that

the cavity, where planing occurs, is based on the previous cavitator position and

orientation data. This delay is found to be stabilizing for certain values of speed.

Maneuvering is considered by using inner-loop and outer-loop control schemes. A

feedback inner-loop scheme helps reject fast planing instabilities, while a numeric

optimal control approach is used to generate outer-loop commands to guide the ve-

hicle through desired maneuvers. The maneuvers are considered for operations with

tight body to cavity clearance, and in which planing is prevalent. Simple search

algorithms along with a penalty method for handling the constraints are found to

work the best due to the complexity of the non-smooth system dynamics.
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Chapter 1

Introduction and Background

Non-smooth systems can be generally defined as systems where the vector field

representation of the system is non-smooth. A typical state-space representation of

a system’s dynamics is shown in Eq. (1.1), where x is a vector of the system states,

t is time, and u represents a vector of the system inputs. By using the state-space

representation, here, a non-smooth system is defined as a system where the function

f is not C1 continuous with respect to time and the states.

ẋ = f(t,x,u(t)) (1.1)

Non-smoothness can occur due to non-smooth forces, system geometry, or

non-smooth inputs. When the discontinuities that cause the non-smoothness are

finite and well defined, it is often helpful to treat the non-smooth system as a

switched combination of smooth systems. In most systems of interest (in terms

of the importance of including the non-smoothness), the dynamics of the switched

systems are dramatically different. Typical examples of non-smoothness are systems

with friction or impacts.

In general, vehicle systems are systems wherein a vehicle moves in space. Often

times, the forces acting upon the vehicle are best defined in a moving reference frame

that follows the vehicle. This is because in these systems, many of the forces relate

1



Figure 1.1: Supercavitating vehicle.

to relative positions and angles with respect to the vehicle. An example would be

tire forces for a wheeled terrestrial vehicle that depend heavily on slip angles, and

these are easiest defined with respect to the vehicle orientation. Another example

is from flight dynamics, wherein the lift and drag forces generated from the control

surfaces depend on the angle of attack.

1.1 Supercavitating Vehicles

The physical problem of interest for this work is supercavitating underwa-

ter vehicles. Cavitation is generally described as vapor bubble formation caused by

pressure drops associated with a body moving in a fluid. Cavitation is generally con-

sidered as being a detrimental and corrosive process, since the effects of collapsing

vapor bubbles causes damage to the body in the fluid. Collapsing bubble cavitation

2



is known as initial cavitation, and this type of cavitation is widely associated with

pumps and propellers [5]. However, partial cavitation and supercavitation, relate

to sustained cavities. Partial cavitation relates to a sustained cavity that encom-

passes some part of the body and supercavitation relates to a sustained cavity that

encompasses the entire body [40]. This leads to supercavitating vehicles, which are

high-speed underwater vehicles wherein a gas cavity surrounds the entire body of

the vehicle. For these vehicles, the cavity is formed by vapor due to cavitation at the

nose (created by a blunt trailing edged cavitator, Figure 1.1) and this cavity may

be aided through forced ventilation. Supercavitating vehicles have the advantage of

reduced drag (due to the reduction in wetted surface area), which allows for high

speeds. The high-speed capabilities are particularly advantageous for weapon or

counter-weapon systems, although other applications such as high-speed underwa-

ter transport have been proposed. Supercavitating vehicles face stability challenges

due to the nonlinear, non-smooth planing forces that arise from interaction between

the body and the cavity wall.

If the planing force function with respect to immersion is smooth (aside from

at zero immersion), then the supercavitating vehicle system can be considered as

a piecewise smooth system. When considering motions in the vertical plane, in

a general sense, the system dynamics can be divided into three regions with the

dynamics in each region individually characterized by smooth dynamics. One while

planing on the top surface, one while planing on the bottom surface, and one where

the vehicle is completely inside the cavity and is touching neither surface. These

regions are illustrated in Figure 1.2. For the most part, the cavity will form in
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Figure 1.2: Regions of smooth dynamics.

the direction of the flow with respect to the cavitator (the cavity shift effects due

to cavitator angle of attack can also play a role and this is discussed later in this

work). The switching points between regions are determined by the point where the

body begins to contact the cavity. For a constant cavity shape, the switching point

is defined by the angle made by the body with respect to the flow. Similarly, when

assuming a constant cavity shape, the planing force can also be written as a function

of the angle of the body with respect to the flow, since this angle also determines the

immersion area. Constant cavity approximations allow for simpler characterization

of the system dynamics and they are often utilized. However, within this work, non-

constant cavity shapes are considered. This inclusion creates not only non-constant

switching boundaries, but also non-constant switched dynamics, since the immersed

area (and hence planing force) depends on the cavity shape.

Supercavitating vehicle systems differ from the traditional impacting non-
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smooth systems. The use of non-constant cavity shapes creates moving switching

points and non-constant switched dynamics. In the supercavitating vehicle system,

the non-smoothness is not directly position dependent as with impacting systems

(instead related to the attitude of the vehicle with respect to the cavity). Addition-

ally the planing is “soft” in that movements well into the cavity surface are allowable.

The planing force formulations can also be highly complex and nonlinear, and these

formulations do not lend themselves to a direct analytical treatment.

1.2 Literature Review

1.2.1 Dynamics and Control of Non-smooth Systems

Much work has been conducted in the area of non-smooth system dynam-

ics, particularly, related to impact and friction problems. The following is a brief

summary of this work.

Tao and Lewis [41] applied adaptive control techniques for systems with non-

smooth nonlinearities such as backlash, dead-zone, component failure, friction, hys-

teresis, and saturation and time-delay effects. Adaptive control is particularly at-

tractive for systems where non-smoothness is unknown. Neural networks and other

adaptive techniques are used for fault detection, feedback control, friction compen-

sation, and control of linear time-delay systems.

Queiroz, Malisoff, and Wolensk [38] presented a collection of research results

dealing with non-smoothness in optimal control problems. Non-smoothness can

arise from the system itself, or the min operations carried out for the optimization.
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This research survey dealt with developments in mathematical control theory, opti-

mization, and control engineering brought on by advances in non-smooth analysis.

New optimality conditions for delay differential inclusions and effects of non-smooth

analysis on Hamilton-Jacobi and Lyapunov function theory have been presented.

Li, Soh, and Wen [24] look at switched systems that are defined as sets of con-

tinuous variable systems with a discrete event system that controls the switching.

These systems can be characterized as having non-smooth behavior. They present

a cycle analysis method and some results about conditions for Lyapunov functions

within each type of cycle and continuous system. A method to provide chaotic

synchronization for chaos based encryption systems is also presented. Fillipov and

Aizerman theories for piecewise continuous systems are presented in reference [3].

Numerical schemes for convergence, and bifurcations and chaos of a van der Pol-

Duffing oscillator with columb friction are presented along with several other system

examples. A collection of lecture notes for non-smooth dynamical systems is pre-

sented in reference [21]. Presented are Lyapunov exponents for non-smooth systems,

Conley index theory, KAM theory, and Melnikov’s method. An extension of Mel-

nikov’s method is presented in reference [2]. Here, the method is extended to study

higher dimensional systems (greater than three). They are able to predict chaotic

orbits for simple frictional models (stick-slip models), and attempt to apply the Mel-

nikov method to other physical systems such as those with multi-body dynamics.

Leine and Nijmeijer use convex analysis to look at the dynamics and bifurcations of

non-smooth systems [23]. This combines the non-smooth mechanics approach with

non-smooth dynamics analysis.
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Experimental work in the area of non-smooth dynamics has also been con-

ducted in studies [33] and [36]. These works relate to bifurcations in systems with

impacting dynamics. Another study pertaining to cantilever tip impacts is presented

in reference [6]. Drill-string dynamics, which include stick-slip friction interaction

and impacting, is discussed in reference [25].

Much of the work in the area of mechanical non-smooth systems relates to

friction and impact type dynamics. Again these studies differ from supercavitat-

ing systems due to the character of the switching boundaries, the relatively “soft”

switched dynamics, and the complexity of the planing forces.

1.2.2 Trajectory Planning for Vehicle Systems

Maneuvering or trajectory planning is a question that is inherent to vehicle

systems. Since motion or specific maneuvers for these systems can generally be

achieved by multiple (or potentially infinite number of) control input functions, op-

timal control methods become important for determining “best” inputs. An optimal

control approach for a flexible hull swimming vehicle is considered in reference [4].

Due to the complexity of the hydrodynamics for flexible hull vehicles, an analytic

treatment is intractable. Instead a numeric genetic evolutionary algorithm is applied

to effectively increase swimming performance. An optimal approach for yaw control

on a four-wheel vehicle is presented in study [10]. Here, parameters of a particular

control form are optimized to enhance yaw performance. A hybrid control strategy

for an autonomous vehicle is considered in reference [12]. Here, feasible trajecto-
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ries are carried out by lower level continuous control systems where a higher level

control layer is used to choose between discrete feasible trajectories in order to opti-

mize overall performance. This type of optimization can be applied to systems with

complex dynamics since only families of feasible trajectories need to be considered.

Motion planning is also discussed with the option of including obstacles or “no-

fly” areas. Another similar hybrid approach is used in reference [11]. Again, since

only a discrete set of feasible trajectories are being considered by the upper level

control scheme, the optimal control problem can be solved in real time. Another

computationally efficient optimal control problem is posed in reference [17], wherein

trajectory planning is considered for an omni-directional vehicle. Here, a restricted

set of allowable controller inputs is considered to reduce optimization complexity.

Path following techniques for underwater vehicles are presented in references [22, 9].

In these studies, the vehicle attempts to follow a prescribed path.

1.2.3 Supercavitating Vehicle Studies

Dzielski and Kurdila present a four-state dynamic model of a supercavitating

vehicle [8]. A simplified cavity model and planing force model are utilized. With

this model, unstable and limit-cycle behavior can be observed, demonstrating the

complex nature of the vehicle dynamics. A specific linearizing controller was also

considered in which the nonlinearities were canceled leaving a controllable linear

system. This approach is however specific to the model parameters and assumes

exact knowledge of the system behavior. Lin, Balachandran, and Abed [30] looked
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at the use of a switching controller for the same system. They also investigated

the presence of bifurcation behavior in the dynamic system and presented a control

method to delay an observed Hopf bifurcation which represents the onset of limit-

cycle (tail slap) behavior [29]. In reference [26], Lin et al. present results on absolute

stability for sector bounded nonlinearities, and these general results are applied to

the supercavitating vehicle system. Kirschner, Rosenthal and Uhlman [20] also

looked at supercavitating vehicle dynamics. In their study, the planing force is

modeled as the force derived from a nonlinear, non-smooth spring and damper

combination. In this work, the authors also accounted for the time delay generated

by the fact that the cavity radius in the area of planing is actually a function of

previous cavitator position. The effects of the time delay are closely examined in

references [15] and [16]. In these studies, control efforts that work to stabilize the

delay-free system are found to be ineffective in stabilizing the delayed system. And

for certain operating conditions, the delay has a destabilizing effect. Guidance using

a tracking method is considered in reference [43]. Simple tracking maneuvers are

considered by using two outer-loop control strategies consisting of a pole placement

method and receding horizon control scheme, both of which are applied to a feedback

linearized system. Trajectory optimization for supercavitating vehicles is presented

in references [39] and [1]. In these studies, optimal control methods are used to

determine the maneuvering characteristics of supercavitating vehicles. The time-

delay effect is accounted for in this work, along with fin force effects generated

by the distinct individual fin immersion depths (due to the position of the vehicle

inside of the cavity). The resulting maneuvers considered in this work do not involve
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any planing of the vehicle. In the previous studies, a multitude of interesting and

complicated dynamic behavior have been presented. However, the cavity and planing

force models are often simplified and this is one area of research intended to be

pursued in this work.

There has also been work in the area of cavity modeling. Initially cavity shapes

were used to design body shapes along constant pressure surfaces [40]. There have

been several analytical models developed for predicting cavity shapes. Logvinovich

has presented a detailed analytical discussion of cavity shape and cavity body in-

teractions in reference [31]. An iterative potential flow model for supercavitation

is presented in studies [42] and [19]. These studies help generate a numeric model

for cavity shape given cavitator and flow parameters. Partial cavity dynamics are

significantly more difficult to model since the body protrusion greatly affects the

cavity shape. Several schemes are outlined in reference [40]. However, all of these

methods for approximating partial cavity shapes are based on supercavitating cavity

models. A numeric potential flow model for partial cavity shapes is presented in

reference [44].

Another area of development for supercavitating vehicles is with the planing

forces generated by the body-cavity interactions. Analytical planing force models

are presented in references [32], [37], and [14]. Since planing for supercavitating

vehicles deals with non-flat surfaces, experimental testing is complicated and data

are limited. Some model validations have been conducted [7].
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1.3 Contributions

The first aim of this work to better characterize the non-smoothness in the

supercavitating vehicle system and explore the resulting dynamics. In all of the

previous research, cylindrical cavities without cavitator angle of attack shift effects

are assumed in order to simplify planing force calculations. In this work, a method

to allow for non-cylindrical shifted cavities is presented. This introduces more phys-

ically realistic force modeling, which however dramatically changes the nature of

the non-smooth forces. This creates a “soft” non-smoothness with non-constant

switching boundaries and switched dynamics. Dynamics and bifurcations of system

responses are explored for these systems as well as stabilization techniques.

A partially cavitating vehicle dynamics model is presented in an effort to move

towards full mission modeling, from launch (no cavitation), to partial cavitation

(partially wetted vehicle), to full supercavitation. This is also an area of research

not accounted for in any of previous research studies. Without the planing forces at

the rear of the vehicle, it is found that a more active fin input is required to stabilize

the vehicle.

Another item overlooked in much of the previous research is non-constant

planing. In an effort to reduce the complexity of the planing formulation, steady

planing force models (not accounting for vehicle motions into or out of the cavity)

are often utilized. In this work, a model that accounts for these “impacting” forces

is presented. Within this model development, a full description of the origins of the

immersion depth and immersion rate terms has been provided for use in the planing
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force formulation. This is an aspect that has been overlooked in much of the previous

literature, and these terms have been previously presented in a somewhat arbitrary

manner. Through careful representation of the immersion terms, time-delay effects

can also be properly included in this impacting model. The time delay is introduced

by the fact that the cavity at the rear of the vehicle (where planing is present),

is generated by a previous cavitator position and orientation. In this delayed and

impacting model, the time delay is found to be stabilizing for certain cavity sizes.

This is a observation that is contradictory to the findings of previous time-delay

studies.

All of these modeling efforts are meant to more properly characterize the

physical non-smoothness present in these systems. In addition to the dynamics and

stability observations made for these systems, maneuvering is also considered in this

dissertation effort. Maneuvers are presented by defining specific ending conditions

given a particular initial condition. A numeric optimal control approach is utilized

to find control inputs that accomplish the maneuvers in the quickest possible time.

Unlike other optimal control studies for supercavitating vehicles [1, 39], maneuvers

in this work are considered for operation regions where non-smooth interactions are

prevalent (such as speeds where the cavity-body clearances are tight). The resulting

maneuvers inherently include planing. This introduces a great deal of complexity,

especially, since the instabilities that these vehicle systems demonstrate stem from

the vehicle-cavity interactions. An inner-loop control scheme and an outer-loop con-

trol scheme are proposed, wherein a inner feedback loop helps stabilize the planing

motions of the vehicle, while the outer-loop guides the vehicle towards the desired
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end condition. This control configuration works well with the inner-loop rejecting

the fast timescale instabilities not addressable by the coarse outer-loop control. The

non-smoothness in this system is fairly complex, with dramatically different dynam-

ics when planing (versus not planing), and small windows of operation (due to tight

body-cavity clearances) which leads to rapid switching between different dynam-

ics. With such complicated dynamics, simple search algorithms that are coupled

with optimization constraints (determined by the direct integration of the dynam-

ics) handled as penalties, work the best for solving the optimal control problem.

This approach could be extended for use for other complicated non-smooth vehicle

systems.

1.4 Dissertation Objectives and Organization

The overall goal of the work is to achieve a better understanding of the dynam-

ics of supercavitating vehicles, and by extension, illustrate a method to analyze the

dynamics of other non-smooth systems. Specific objectives include the following:

1. Examine the dynamics of supercavitating vehicles by considering cavity models

that incorporate realistic physical effects

2. Examine the dynamics of partially cavitating vehicles

3. Examine the dynamics of a time delayed, non-constant planing, supercavitat-

ing vehicle system
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4. Examine the maneuvering capabilities for supercavitating vehicles and pro-

vide a framework to evaluate maneuvering for other complicated, non-smooth

vehicle systems.

The rest of this dissertation is organized as follows. In Chapter two, dynamics

of systems using shifted cylindrical cavities are discussed. This includes a description

of the the basic dynamics model as well as a planing force formulation that is used

throughout the rest of the work. In Chapter three, a method for accounting for

non-cylindrical cavities is introduced, along with dynamics results for these systems

that can be compared with previous research findings. Included are non-smooth

bifurcations and methods of stabilizing the vehicle motions for the non-cylindrical

cavity system. Additional modeling aspects are addressed in the following chapter.

Here, vehicle dynamics for partial cavities, and an impacting time-delayed model are

presented. Maneuvering on the basis of an optimal control approach is discussed in

Chapter five. Here, maneuvers are considered for the previously discussed systems,

as well as for a six degree-of-freedom system, by using a numeric optimal control

approach that has been tailored to deal with the non-smooth vehicle dynamics. This

is followed by a summary of the contributions and a discussion of potential future

directions. Appendices related to this dissertation are included at the end to provide

additional details and representative algorithms used in the present work
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Chapter 2

Vehicle Dynamics with Cylindrical Shifted Cavities

In much of the previous vehicle system analysis, the cavity is assumed to be

of cylindrical form [1, 8, 15, 16, 29, 30, 39]. In these studies, a closed-form solution

for the cavity radius at the rear of the vehicle is utilized to generate an approximate

cylindrical cavity for planing force calculations. In these formulations, the influence

of the cavitator angle of attack on the cavity radius are ignored. In this chapter, a

different cavity model is presented that allows for the inclusion of cavitator angle-of-

attack effects, which are incorporated as a shift to the nominal cavity radius. The

cylindrical assumption is maintained in order to highlight the cavity shift effects.

A more accurate shifted non-cylindrical cavity planing (utilizing the entire cavity

profile) is then considered in the following chapter.

To help illustrate the different approaches for modeling vehicle-cavity inter-

actions, three different scenarios are illustrated in Figure 2.1. In part a), a vehicle

orientation is shown with a typically assumed cylindrical cavity. The cylinder ra-

dius is determined by an estimate of the nominal cavity radius at the rear of the

vehicle. The vehicle body is depicted to be entirely within the cavity. The same

body orientation with a shifted cylindrical cavity, is shown in part b). As illustrated,

the cavitator angle-of-attack can shift the cavity location at the rear of the vehi-

cle which affects when planning occurs and how much immersion is present when
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Figure 2.1: Three different scenarios in modeling body-cavity interactions: a) vehicle

within a cylindrical cavity, b) vehicle within a cylindrical cavity with shifted axis,

and c) vehicle within a non-cylindrical cavity.

planing. A shifted full non-cylindrical cavity is shown in part c). The immersion

at the rear of the vehicle is the same as with the shifted cylindrical cavity (since

the shifted cylindrical cavity radius and position is determined by the size and po-

sition of the non-cylindrical cavity at the rear). However, the immersed volume is

different, which changes the planing forces due to immersion.

2.1 Basic Dive-Plane System Model

The dive-plane system model described in this section introduces a basic vehi-

cle dynamics representation that is used as a basis for the subsequent system models

presented in this work. The basic dive-plane system model comes from references
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Figure 2.2: Coordinate system definition for system model.

[29] and [30], and this model is based on a model originally presented in reference

[8]. The model is comprised of four states defined in a non-inertial reference frame

which accounts for two-dimensional ridged body movements in the dive-plane. The

dive-plane is defined as the plane formed by the vertical axis (as described by grav-

ity direction) and the vehicle velocity vector. The vehicle’s forward velocity, V ,

is assumed constant, and the model tracks the vertical position, z, the transverse

speed, w, along with the pitch angle, θ, and the pitch rate q. The transverse speed,

w, is at the cavitator and is defined as being perpendicular to the vehicle axis.

The coordinate system is attached to the moving vehicle and its orientation along

with the speed direction definitions are shown in Figure 2.2. The control action is

made up of the cavitator and fin deflection angles, δc and δe, respectively. The lift

force generated by the control elements are approximated to be linearly related to

their angle of attack with respect to the flow. The variable n is the ratio of lift

effectiveness between the fins and cavitator, and m represents the density ratio of

the body with respect to the surrounding water. Along with some additional small

angle assumptions, the equations of motion are represented as shown in Eqs. (2.1)

- (2.4). The first matrix term in Eq. (2.1) includes effects due to body orientation
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and the coordinate system. The second term incorporates the effect of the control

action. The third matrix includes the effect of gravity. The system is linear with the

exception of the planing force term, Fp, and the fourth matrix takes into account

this nonlinear and non-smooth planing force that occurs when the body contacts

the cavity wall. In this representation, the planing force is taken as a point force

applied at the end of the vehicle.
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ẇ

θ̇

q̇


=



0 1 −V 0

0 a22 0 a24

0 0 0 1

0 a42 0 a44





z

w

θ

q


+



0 0

b21 b22

0 0

b41 b42



 δe

δc

+



0

c2

0

0


+ (2.1)



0

d2

0

d4


(−V 2[1− (

Rc −R

h′R +Rc −R
)
2

]
1 + h′

1 + 2h′α)

a22 =
CV T

m
(
−1− n

L
)S +

17

36
nL

a24 = V TS(C
−n

m
+

7

9
)− V T (C

−n

m
+

17

36
)
17

36
L2

18



a42 =
CV T

m
(
17

36
− 11n

36
)

a44 =
−11CV TnL

36m

b21 =
CV 2Tn

m
(
−S

L
+

17L

36
), b22 =

−CV 2TS

mL

b41 =
−11CV 2Tn

36m
, b42 =

17CV 2T

36m
(2.2)

c2 = g, d2 =
T

m
(
−17L

36
+

S

L
), d4 =

11T

36m

S =
11

60
R2 +

133L2

405
, T =

1

7S/9− 289L2/1296

Cx = Cx0(1 + σ), C = 0.5Cx
Rn

2

R2

Rc = Rn

√
0.82

1 + σ

σ
K2, K1 =

L

Rn(
1.92
σ

− 3)
− 1

K2 =

√
1− (1− 4.5σ

1 + σ
)K1

40/17
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The body is represented as a conical section followed by a cylindrical section,

as shown in Figure 1.1. In this formulation, the cavity is approximated as a cylinder

with a radius equal to the cavity radius at the rear of the vehicle, and the planing

is approximated as a cylindrical body planing on a cylindrical cavity surface. The

cavity radius at the rear of the vehicle is calculated by using a formulation that

depends only on the cavitation number, σ, and the cavitator radius. The cavitation
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number is a non-dimensional term that determines the extent of the cavitation, and

this number is defined according to Eq. (2.5). In this expression, ρ represents the

fluid density, V is the vehicle velocity, p∞ is the ambient fluid pressure, and pc is the

cavity pressure. The model is run with a vaporous cavity, and since the fluid and

cavitator parameters are constant, the cavity radius which is considered to depend

only on the forward speed of the vehicle which (within each simulation run), is

constant. In this form, the influence of the cavitator angle of attack on the cavity

radius are neglected.

σ =
p∞ − pc
0.5ρV 2

(2.5)

The planing force function is shown in Eqs. (2.3)-(2.4). The planing force is a

non-smooth function since there is no force when the vehicle is not in contact with

the cavity wall. The quantity h′, which represents the immersion depth, is the source

of the non-smoothness. The Ṙc is the cavity closure rate (at the rear of the vehicle),

which is included as a correction factor to the angle of immersion, α. By using

the cylinder-cylinder assumption, the planing force can be determined as a function

of the angle of the flow velocity with respect to the body. Since forward speed is

constant, this angle can be determined from the transverse speed. A representation

of the planing force with respect to the transverse speed is shown in Figure 2.3.

This system can show unstable behavior when no control is present [8], [27].

By using a simple linear feedback controller, stable limit cycles can be observed [8],

[27]. The control law is shown in Eqs. (2.6), and only the cavitator deflection angle
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Figure 2.3: Original planing force versus transverse speed.

is varied while holding the fin deflection constant at 0.0 radians. The transverse

velocity, w is not utilized in the feedback formulation since it is difficult to measure

in an actual application. A simulation was run by using the following parameters:

g = 9.81 m/s2, m = 2, Rn = 0.0191 m, R = 0.0508 m, L = 1.8 m, V = 70.9740

m/s, σ = 0.0335, n = 0.5, and Cx0 = 0.82. The vehicle parameters are chosen to

match those used in the previous literature [8, 29, 30]. The results obtained are

presented in Figure 2.4. Since the model assumes constant forward speed (with

respect to the vehicle axis), the transverse speed, w, defines the velocity angle with

respect to the body. Limit-cycle motions about the w = 0 axis indicate the potential

for two-sided tailslap behavior where the vehicle contacts both the top and bottom

surfaces during the oscillatory motion. The two-sided planing can be confirmed for
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Figure 2.4: Simulation run demonstrating limit-cycle behavior with original cavity

model and planing force formulation; controlled case.

this simulation run by tracing the vehicle and cavity motions.

δe = 0

δc = 15z − 30θ − .3q (2.6)

2.2 Integration of Numeric Cavity Model

The first item modified is the cavity model. The original model uses a closed-

form solution for the cavity radius. The numeric cavity model described in references

[19, 42] is then implemented. The cavity model utilizes an iterative potential flow

solver. The cavitation number and cavitator shape (disc) is input into the numeric
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model and the entire non-dimensional (normalized with respect to cavitator diam-

eter) cavity shape for axis-symmetric flow (no angle of attack for the cavitator) is

predicted.

The cavitator angle of attack also affects the cavity shape, and since the cavity

model only provides the shape of the cavity for an axi-symmetric flow, the angle of

attack effects are included as a refinement to the axi-symmetric data. This refined

cavity shape is calculated as a shift of the axi-symmetric data produced by the cavity

model. The shift factor is a term derived from Logvinovich [31], and this factor is

based on the principle that the momentum created by the cavitator lift applies an

equal and opposite momentum upon the wake. The shift can be expressed as in

Eq. (2.7), where Wy expresses the lift force along the transverse direction (with

respect to the flow), and R represents unshifted the cavity radius. The transverse

lift force Wy can then be expressed as in Eq. (2.8). In this expression, α represents

the cavitator angle of attack (with respect to the flow), Dn represents the cavitator

diameter, and Cd represents the coefficient of drag for axi-symmetric flow.

shift(x) = − Wy

πρV 2

∫ x

0

ds

R(s)2
(2.7)

Wy = sin(α) · cos(α)1
2
ρπ

D2
n

4
Cd (2.8)

When normalized with respect toDn, the shift can be expressed as in Eq. (2.9).

Here the ′ designation refers to the non-dimensional form, so that shift′ = shift/Dn,

R′ = R/Dn, and x′ = x/Dn. The cavity model generates the non-dimensional

axi-symmetric cavity profile, R′(x′), as well as the coefficient of drag, Cd. The
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Figure 2.5: Non-dimensional cavity shape with angle of attack effects.

non-dimensional cavity profile for non-axi-symmetric flow can then be expressed by

adding the shift, as in Eq. (2.10). The inclusion of the cavity shift introduces non-

symmetry and cavity radius dependence on the states and control. An example of

the cavity shift is shown in Figure 2.5. The flow direction is taken along the positive

x-axis and an angle of attack of 10 degrees is assumed.

shift′(x) = −CD

8
sin(α)cos(α)

∫ x′

0

ds

R′(s)2
(2.9)

R′
shifted(x) = R′(x) + shift′(x) (2.10)

For the following simulation run, the original planing force formulation is re-

tained. The original model assumed a cylindrical cavity shape; so as before, only

the cavity radius at the rear of the vehicle (at distance of L) is considered. However,

the entire cavity profile from the numeric model (as well as the CD) is needed to

calculate the shift associated with the angle of attack. The cavitator angle of attack
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is dependent on both the states (which determines the angle of attack of the body

with respect to the flow) and the control (cavitator angle of attack with respect

to the body). The cavity radius is no longer constant and varies throughout the

simulation. Additionally, since the shift is non-symmetric, the cavity shape is not

symmetric, and a distinction must be made between planing on the top surface or

bottom surface.

2.2.1 Simulation Runs with Numeric Cavity Model

The simulations were run with the same parameters as in the initial simulation;

that is, g = 9.81 m/s2, m = 2 kg, Rn = 0.0191 m, R = 0.0508 m, L = 1.8 m,

V = 70.9740 m/s, σ = 0.0335, n = 0.5, and Cx0 = 0.82. The results are presented in

Figure 2.6 and a qualitative difference in the system behavior is evident. Limit cycles

are not present. This is partially related to the difference in the nominal (unshifted)

cavity radius calculated from the numeric model. A comparison of the cavity radius

versus cavitation number is shown in Figure 2.7. The numeric model provides a

larger cavity radii than the original model. The larger radius creates a larger cavity

to body clearance at a given speed (cavitation number). The larger cavity to wall

clearance is enough to transition the system out of the limit cycle region when the

original run parameters are used. It should be noted that the new cavity model

does not eliminate limit-cycle behavior in all scenarios. If the speed were decreased,

or the body radius increased (to cause lower body to wall clearances), limit cycles

can be observed. Limit-cycle observations will be discussed in a subsequent section.
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Figure 2.6: Simulation run with numeric cavity model and original planing force

formulation with linear feedback.

However, the qualitative difference in behavior when using the same run parameters,

does show the significance of the cavity model. Angle-of-attack effects can be seen in

Figure 2.8, wherein the effective cavity radius (depending on top or bottom planing)

observed during the simulation is shown.

2.3 Planing Force Model

The second item to be refined is the planing force formulation. Three plan-

ing force models were investigated. The models were developed by Hassan [14],

Logvinovich [32], and Paryshev [37]. Dzielski presents an interpretation of the three
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Figure 2.7: Cavity radius versus cavitation number as obtained from the cavity

model used in earlier studies [8, 29, 30] and the numerical model. Planing force

direction convention taken with respect to the positive transverse velocity direction

w.
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Figure 2.8: Effective cavity radius (depending on top/bottom planing) versus time

for simulation run by using numeric cavity model with angle of attack effect.
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approaches in relation to a cylinder planing on a cylindrical surface [7]. Given the

definition of terms provided in Figure 2.9, the apparent mass can be calculated ac-

cording to Eq. (2.11), where ∆ = R− r. The Hassan and Logvinovich models make

use of m∗
L as the apparent mass, while the Paryshev model makes use of m∗

P . The

derivative with respect to h is then taken, and Eq. (2.12) is used in integrating

the planing force. For a cylinder planing on a cylinder, Eq. (2.13) represents the

planing force. A closed-form solution for the integral can be found for the Hassan

and Paryshev models. The Hassan model simplifies to the planing force model used

in the previous works (as presented in the previous section). The Paryshev solution

for the cylinder-cylinder case is given in Eq. (2.14), where XP is the force centroid.

m∗
L = πρR2

(
1−

(
∆

∆+ h

)2
)

m∗
P = πρr2h

(
2∆ + h

(∆ + h)2

)
(2.11)

dm∗
L

dh
= 2πR2∆2(∆ + h)−3

dm∗
P

dh
= 2πr2∆2(∆ + h)−3 (2.12)

FH =

[∫ h0/tan(α)

0

dm∗
L

dh
dx

](
r + h

r + 2h

)
ḣ2

FL =

[∫ h0/tan(α)

0

dm∗
L

dh

(
r + h

r + 2h

)
dx

]
ḣ2

FP =

[∫ h0/tan(α)

0

dm∗
P

dh
dx

]
ḣ2 (2.13)

FP = πρr2V 2sin(α)cos(α)

(
1− ∆2

(h0 +∆)2

)

XP =

(
h0

tan(α)

)(
h0 +∆

h0 + 2∆

)
(2.14)
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Figure 2.9: Diagram of a cylinder planing on a cylindrical surface.

The three methods provide different planing forces. A comparison of the plan-

ing force results (in relation to w in the system model) is shown in Figure 2.10. The

Logvinovich results were calculated by using a numerical integration. Both Pary-

shev and Logvinovich produce higher planing forces than the planing formulation

used in the original model. The Paryshev method was chosen for integration into

the model since it was shown to better fit experimental results for both static and

dynamic planing [7].

All of these planing force representations are for steady planing (no body

acceleration or velocity into or out of the fluid). A derivation of the Paryshev
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Figure 2.10: Comparison of planing force models for cylindrical cavity shapes.

planing force model as applied in this dissertation is presented next.

2.3.1 Paryshev Planing Force

Paryshev defines the forces on an expanding cylinder planing on a cylindrical

cavity. The force per unit length is given by the rate of change of momentum of

the fluid displaced by the planing cylinder. This is shown in Eq. (2.15), where

m∗
y represents the apparent mass due to the planing, and m∗

R is the apparent mass

due to the expansion of the cylinder. For the supercavitating vehicle dynamics, the

contribution of the m∗
R can be ignored since the radius of the body does not change.

The expression for the force can then be expanded as shown in Eq. (2.16). If only

steady planing is considered (there is no acceleration into or out of the fluid) the
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second term involving dVy

dt
can be dropped.

f =
d

dt

(
m∗

yVy +m∗
RṼR

)
(2.15)

f =
dm∗

y

dt
Vy +m∗

y

dVy

dt
(2.16)

The expression for the apparent mass m∗
y is given in Eq. (2.17), and this

expression is a function of the immersion depth h. The gap ∆ is defined as ∆ = R−r.

The rate of change of the apparent mass m∗
y can then be described as shown in Eq.

(2.18). Again, since the radius of the body does not change, the gap is constant

with time, so d∆
dt

= 0. The term,
dm∗

y

dh
, can be expressed as in Eq. (2.19). The total

planing force can then be determined by integrating over the entire wetted area as

represented as in Eq. (2.20), with Vy = ḣ.

m∗
y = πρr2h

(
2∆ + h

(∆ + h)2

)
(2.17)

dm∗
y

dt
=

∂m∗
y

∂h

dh

dt
+

∂m∗
y

∂∆

d∆

dt
(2.18)

dm∗
y

dh
= 2πr2ρ∆2(∆ + h)−3 (2.19)

FP =
∫ dm∗

y

dh
ḣ2ds (2.20)

For the case of a cylindrical cavity, the planing force can be integrated over the

planing area and the obtained solution is given in Eq. (2.21). In these equations,

h0 is the immersion depth at the aft of the vehicle, as shown in Figure 2.9. The

immersion rate term ḣ can be expressed as V sin(α). The force centroid can also be

calculated, as shown in Eq. (2.22), with XP measured from the aft of the vehicle.
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Again, the Paryshev planing force representation was chosen, as it has been shown

to provide a better fit to experimental planing force data [7].

FP = πρr2V 2sin(α)cos(α)

(
1− ∆2

(h0 +∆)2

)
(2.21)

XP =

(
h0

tan(α)

)(
h0 +∆

h0 + 2∆

)
(2.22)

2.4 Simulation Results with Numeric Cavity Model and Paryshev

Planing Force Formulation

By utilizing the new cavity and planing force representations additional simu-

lations can be carried out. The same parameters as used in the previous simulation

runs are utilized, g = 9.81 m/s2, m = 2 kg, Rn = 0.0191 m, R = 0.0508 m, L = 1.8

m, V = 70.9740 m/s, σ = 0.0335, n = 0.5, and Cx0 = 0.82. The same linear feed-

back control law is implemented as given by Eqs. (2.6), where only the cavitator is

actuated and the fins are assumed to be passive. The same parameters are utilized

to present a direct comparison with the previous simulation run shown in Figure

2.4, where two-sided tailslap behavior is observed.

The simulation results are presented in Figure 2.11. At steady state, limit-

cycle oscillations are observed. The steady-state oscillations in w do not cross the

w = 0 axis. Assuming a small cavity shift, this indicates that there is no two-

sided tailslap behavior (oscillations where the cavity boundaries are crossed on both

sides). The cavity and supercavitating body motions can be tracked to confirm that

the oscillations are indeed only about the bottom planing surface. The lack of two-
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Figure 2.11: Results obtained with cylindrical planing force formulation and linear

feedback.

sided tailslapping is due to the different cavity and planing force models used here.

As discussed in the previous section, the cavity model used in this effort provides

a slightly larger nominal (un-shifted) cavity radius than that used in the previous

studies [8, 29, 30] (Figure 2.7), and the increased cavity to body clearance is partially

responsible for inhibiting the two-sided tailslap behavior.
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Figure 2.12: Results obtained with cylindrical planing force formulation and double

linear feedback in the presence of downwash effects.

2.4.1 Cavity Shift Effect

The difference in system behavior is not only due to the change in nominal

cavity radius. With this cavity formulation, the cavity shape is not constant as in

previous studies [8, 29, 30]. The effect of the cavity shift can be noted with a stabi-

lized system. By using the previous run parameters, the system can be stabilized,

as shown in Figure 2.12, by doubling the values of the control law coefficients given

in Eqs. 2.6. However, even with this control, if the cavity shift effect is removed,

the system can again be seen to exhibit oscillations.
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Figure 2.13: Normalized planing force versus vertical speed w, with cavitator actu-

ation neglected, for cylindrical planing force model.

The cavity shift is dependent on the angle of attack of the cavitator with

respect to the flow. The cavitator angle of attack is in part due to the vehicle orien-

tation (with respect to the flow). As the vehicle beings to plane, the contribution of

the vehicle orientation on the cavitator angle of attack will tend to shift the cavity

away from the body. A representation of the normalized planing force versus verti-

cal speed w is shown in Figure 2.13. Here, the planing forces with and without the

shift effect are shown. The cavitator actuation angle is fixed at δc = 0 to remove

contributions due to the actuation angle. As shown, the cavity shift due to body

orientation, can be considered as creating a slightly larger cavity radius, which in

some cases, may delay the onset of oscillations.
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Chapter 3

Vehicle Dynamics with Shifted Non-Cylindrical Cavities

Since the cavity model produces an entire cavity shape, the planing force can

be calculated on the basis of the entire profile rather than on the basis of a cylin-

drical shape assumption, which is fairly inaccurate in determining the planing area,

particularly during high immersion. With a cylindrical cavity shape assumption,

the wetted area is generally over-predicted as shown in Figure 3.1. The horizontal

line represents the assumed cavity shape, with the cylindrical cavity assumption.

The curved line represents the actual cavity shape. The error in cavity radius made

by using the cylindrical assumption during vehicle system simulations can be quite

high [35].

3.1 Non-cylindrical Cavity Planing

To incorporate the non-cylindrical profile, as shown in Figure 3.2, the cavity

can be treated as made up of several short cylindrical sections. During each time

step, the entire shifted cavity profile is determined. Areas of interference with the

vehicle body are then determined. No planing is assumed to occur along the conical

forebody. The planing area is then re-meshed by using linear interpolation between

the cavity points to refine the region of planing.

The cavity contraction rate must also be considered for the planing force.
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Figure 3.1: Illustration for cylindrical cavity assumption.

In the planing force formulation, only the angle of planing α is used to generate

the immersion rate term ḣ. So for planing forces, the contraction rate can be

expressed as an augmentation to α (similar to the role of Ṙc in reference [8]). If

independent expansion is assumed, as in the cavity model presented in reference

[31], the contraction rate can be determined by the cavity slope and velocity. In

the formulation for non-cylindrical planing, the cavity slope and the body slope

along each integration section are used to calculate an effective α (see Eq. (3.1)),

which generates an appropriate ḣ (for each section) that accounts for both the body

immersion rate and the cavity contraction. The planing force is then numerically

integrated across all sections of interference.

αcorrected(x) = α+ tan−1(δR(x)/δ(x)) (3.1)

In the cylindrical planing formulation, since the cavity shape is assumed, the

cavity shift only affects when the vehicle begins to plane and it does not affect
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Figure 3.2: Cavity approximated by a series of short cylindrical sections.

the planing force function once planing has been initiated. By contrast, in the

non-cylindrical planing force formulation, the shift not only affects when the vehicle

begins to plane, but it also changes the profile of the cavity and therefore the planing

force function once planing has been initiated. A depiction of the planing force

dependence is shown in Figure 3.3. The control as well as the states (which determine

body orientation), determine the cavitator angle of attack. This in turn determines

the shift and the cavity profile. The profile as well as the body orientation are used

in determining whether the body is in contact with the cavity or not. If there is

contact, the profile and the body orientation are utilized to integrate the planing

force. In previous research [29], wherein cavity shift effects were not considered,

the vehicle dynamics could be modeled by using a switching system, with a set of

equations governing the system when planing occurs and another set of equations

when planing does not occur. In these cases, there are defined state dependent

switching boundaries and defined switched dynamics. However, when one considers

the cavity shift as well as the non-cylindrical planing, the system has both a state
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Figure 3.3: Planing force variation for the non-cylindrical planing force model.

and control dependent switching boundary, as well as a state and control dependent

switched dynamics.

The planing force function is represented in Figure 3.4. Here, the planing force

variation is shown with respect to the vertical speed of the body w, as well as the

cavitator actuation angle δc. Cavity shift effects are incorporated, the cavity shift

being a function of both the body orientation (which for a constant forward speed

becomes solely a function of w), and the cavitator actuation angle. The onset of

planing in relation to w changes with respect to the actuation angle. Once planing

is initiated, the planing force can also be seen to vary with respect to the actuation

angle.
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Figure 3.4: Normalized planing force versus vertical speed w, and cavitator actuation

angle δc, for non-cylindrical planing force model.

3.2 Non-cylindrical Cavity Simulation Results

Results, which were obtained by using the same vehicle parameters as before

and the feedback control law given by Eqs. (2.6), are presented in Figure 3.5.

Oscillations about a single planing surface are observed. In prior research with

cylindrical cavity models [29], it was found that when the cavitation number is

lowered from σ = 0.0335 to σ = 0.025 (increased speed and larger cavities), the

system can demonstrate stable equilibrium solutions. A similar remark can be

made about the non-cylindrical planing force case. Results obtained for σ = 0.025

are shown in Figure 3.6. Here, the system appears to stabilize to an equilibrium

solution. Additionally, when the cavitation number is increased from σ = 0.0335
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Figure 3.5: System response results obtained with non-cylindrical planing force

formulation and linear feedback. Cavitation number is σ = 0.0335.

to σ = 0.037 (decreased speed and smaller cavities), the vehicle is seen to exhibit

two-sided tailslap motions, as shown in Figure 3.7.

In prior efforts in the group, a Hopf bifurcation of an equilibrium solution and

a period-doubling bifurcation were identified [29]. In order to determine whether

these bifurcations also occur in the system with non-cylindrical and non-symmetrical

cavities, an attempt was made to numerically determine the equilibrium solutions.

However, even for cases, where the time domain results suggest the presence of a

stable equilibrium solution, these equilibrium solutions could not be found. This

is suspected to be due to the discretization of the sections used for the numerical

integration along the cavity profile.
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Figure 3.6: System response results obtained with non-cylindrical planing force

formulation and linear feedback. Cavitation number is σ = 0.025.

3.3 Smoothened Non-Cylindrical Cavities and Equilibrium Points

Even with the re-meshed area of planing, as outlined in the previous section,

only a discrete estimate of the planing area (and subsequent planing force) is ob-

tained. To improve this computation, a smoothened version of the cavity can be

formed by carrying out a cubic spline interpolation of the cavity coordinates gener-

ated by the numerical cavity model. This creates a third-order piecewise polynomial

representation of the cavity profile. With a continuous expression for the entire cav-

ity, when the body is immersed, the planing area and planing force can be expressed

as smooth functions. It should be noted that unlike the smoothing used in reference
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Figure 3.7: System response results obtained with non-cylindrical planing force

formulation and linear feedback. Cavitation number is σ = 0.037.

[28], here, the transition to planing is still non-smooth. Planing forces determined

with the smoothened cavity model and the discrete section model are compared in

Figure 3.8, for zero cavitator actuation angle; that is, δc = 0. There are no dis-

cernible differences, with the remark that the chattering type behavior is eliminated

with the splined cavity approximation. Similar results were also obtained for other

cavitator actuation angles. The time domain results obtained with the splined cavity

are also matched with those obtained earlier for the discrete cavity sections.

The main advantage of using a splined cavity profile is that equilibrium solu-

tions can be obtained. A branch of equilibrium points related to stable operations is

shown in Figure 3.9. In this figure, the stars represent stable equilibrium points and
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Figure 3.8: Normalized planing force versus vertical speed, w, for both the re-meshed

discrete sections and splined cavity shapes, when δc = 0.

the circles represent unstable equilibrium points. It can be seen that at a cavitation

number between 0.0313 and 0.0315, there is a transition from a stable state to an

unstable state on this branch of equilibrium points. Here the equilibrium solutions

are plotted as the l2 norms of the corresponding states. Thus, each solution can be

represented as a scalar value, which corresponds to the magnitude of an equilibrium

solution; this is done for easier visualization.

Through the time domain results, stable equilibrium and stable limit-cycle

behavior are identified. In Figure 3.10, a graph of the projection of the steady-state

behavior of the system is shown on the w - q plane with respect to the cavitation

number. As expected, the transition from stable to unstable equilibrium points
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Figure 3.9: l2 norm of the equilibrium points versus cavitation number.

corresponds to the onset of limit-cycle behavior and therefore suggesting a Hopf bi-

furcation. By numerically evaluating the eigenvalues of the linearized system about

the equilibrium points, the system is seen to satisfy the transversality condition re-

quired for a Hopf bifurcation. This finding parallels the Hopf bifurcation found in

the prior work with a cylindrical cavity formulation [28, 29]. However, the instability

occurs at a different cavitation number in the present case. As the cavitation num-

ber is further increased, an abrupt change in the character of the steady-state limit

cycles is observed, as shown in Figure 3.11. At a cavitation number between 0.036

and 0.03625, the steady-state limit-cycle motion grows dramatically. From the time

domain responses of the vehicle, it is found that this abrupt change corresponds to

the case when the limit cycles first begin to plane about both surfaces at steady
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Figure 3.10: Projection of steady-state behavior of system in the w-q plane versus

cavitation number σ.

state. It is believed that this additional impact with the second cavity surface is

related to the post-Hopf bifurcation behavior discussed in reference [29].

3.3.1 System Dynamics With Washout Filter

In the previous work reported in reference [29], a washout filter was used to

delay the onset of the Hopf bifurcation. This approach is desirable since it preserves

the equilibrium solutions of the original system. The washout filter generates an

additional state variable p whose dynamics are described by Eq. 3.2, where d > 0

is a constant between 0 and 1, kp is the dynamic feedback coefficient, and q is the
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Figure 3.11: Projection of steady-state behavior of system in the w-q plane versus

cavitation number σ, showing two-sided tailslap behavior.

pitch rate. The original feedback law given by Eqs. (2.6) is then augmented by

adding δc2, as given in Eq. (3.3).

ṗ = q − dp (3.2)

δc2 = kp(q − dp) (3.3)

For an equilibrium solution q − dp = 0 and the system simplifies back to the

original system without the filter. Equilibrium solutions obtained for d = 0.5 and

kp = −3, are shown in Figure 3.12. These equilibrium solutions are the same as those

obtained in the original system and shown in Figure 3.9, but here, these equilibrium
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Figure 3.12: l2 norm of the equilibrium points versus cavitation number with

washout filter.

points remain stable and there are no limit-cycle motions within the considered

range of the cavitation number. A time domain response of the system with the

washout filter obtained at σ = 0.034 is shown in Figure 3.13. The steady state

here corresponds to a stable equilibrium position, while in the original system, this

cavitation number is associated with limit-cycle motions in the post-Hopf bifurcation

regime.

3.3.2 Fin Input Based Stabilization Inside Cavity

Stabilization inside the cavity may also be beneficial for straight line flight.

Since there are no planing forces while the vehicle is completely inside the cavity,
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Figure 3.13: Results obtained with non-cylindrical planing force formulation and

washout filter. Cavitation number is σ = 0.034.

the fins need to be utilized to stabilize the rear of the vehicle. Through the previous

simulations, it can be seen that a fin deflection of δe = 0 is not enough to support

the rear of vehicle. Instead, a passive fin deflection of δe = 0.1 is utilized along

with the cavitator control input described by Eqs. 2.6. The fin deflection angle

was chosen by determining the fin force, under static conditions, that is required

to support the rear of the vehicle. The vehicle system is found to have stable

equilibrium solutions inside the cavity. The equilibrium points are plotted in Figure

3.14. Stable equilibrium points exist past the region where Hopf bifurcation occurs

in the original system.
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Figure 3.14: l2 norm of the equilibrium points versus cavitation number by using

linear feedback and constant fin input.

3.4 Logvinovich Cavity and Related Dynamics

A similar analysis was also performed by using a second cavity model. A

semi-empirical closed-form solution for cavity shape is presented in reference [31].

A diagram of the cavity is shown in Figure 3.15. For this representation, the cavity

radius is expressed as in Eq. (3.4). Here, Lk and Rk occur at the maximum radius

of the cavity. The terms x1 and R1 refer to an arbitrary point along the cavity,

and χ is a correction factor. The cavity contour is defined as passing through the

point where R = R1 at time t = 0. An additional derived relationship between Rk

and Rn is shown in Eq. (3.5). In this expression, cx0 = 0.82 and the constant k is

approximately unity (for the cavitations numbers of interest); both of these values
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Figure 3.15: Diagram for the Logvinovich Cavity Model

can be determined experimentally. Additionally, if x1 is chosen as x1 = 2Rn, R1

can be expressed as in Eq. (3.6). Furthermore from Figure 3.15, tk = Lk/V , and t

can be expressed in terms of the distance x as t = (x − x1)/V . The term Lk can

in turn also be approximated by using an experimentally derived relationship as in

Eq. (3.7).

R = Rk

√√√√1−
(
1− R2

1

R2
k

) ∣∣∣∣1− t

tk

∣∣∣∣2/χ (3.4)

(
Rk

Rn

)2

=
cx0(1 + σ)

kσ
(3.5)

R1 = 1.92Rn (3.6)

Lk = Rn

(
1.92

σ
− 3

)
(3.7)

With a correction factor of χ = 0.85 (chosen to match experimental data),

the expression for cavity radius can be written as Eq. (A.14), where the d terms

represent the associated diameters.
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dmax = dc
√
0.82(1 + σ)/σ

lm = dc/2(1.92/σ − 3)

k1 = 1.92(.82(1 + σ)/σ)−
1
2

k2 = (x · dc − dc)/lm

Rc(x) = dmax/2
√
1− (1− k2

1)|1− k2|2/.85 (3.8)

A comparison of cavity models is presented in Figure 3.16. Here, three cavity

models are presented, the Logvinovich model described in this section, the numeric

cavity model, and the Dzielski cavity representation presented in reference [8] (only

used for approximating of cavity radius at the rear of the vehicle). For the vehicle

length considered in this work (L = 1.8m), the Logvinovich and numeric cavity

models produce similar results at the tail end of the vehicle.

The Logvinovich cavity formulation was implemented into the non-cylindrical

planing models by sampling points along the cavity length. The simulations provided

qualitatively similar results as those obtained with the numeric cavity model. The

system exhibits stable equilibrium behavior at low cavitation numbers (high-speed)

and transitions into limit-cycle motion as the cavitation number increases and the

cavities tighten. A diagram of the equilibrium solutions is presented in Figure 3.17.

The system is also similarly stabilized by using a washout filter or fin input. A

full write-up on the simulation results using the Logvinovich cavity is presented in

reference [34].

The main advantage of the Logvinovich cavity representation is that it is a
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Figure 3.16: Cavity model comparison for σ = 0.0335.

closed-form solution, and cavity shapes can be easily and rapidly calculated. This

aspect is not as important for constant speed simulations (as presented in the pre-

vious sections), but becomes important for variable speed maneuvering which will

be presented in a subsequent chapter.
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Figure 3.17: l2 norm of the equilibrium points versus cavitation number by using

the Logvinovich cavity formulation.
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Chapter 4

Extensions to Vehicle Dynamics Models and Related Dynamics

In this chapter, some additional model considerations are presented for the

supercavitating vehicle system. The modifications and the physical basis behind the

modifications are discussed, along with an examination of the resulting dynamics.

4.1 Partial Cavitation

Being able to model dynamics for partially cavitating vehicles is an important

step towards being capable of modeling full vehicle missions. Partial cavitation oc-

curs when operating at speeds where the cavitation bubble does not entirely envelop

the vehicle, as illustrated in Figure 4.1. When operating in these ranges, a portion

of the vehicle (from the rear forward) is fully wetted. Along the wetted portions, the

vehicle experiences buoyancy forces, and added mass effects (caused by accelerating

the body in the fluid). The planing no longer occurs at the rear, but occurs where

the cavity is formed.

For the partial cavitation case, a more general forebody is considered, as shown

in Figure 4.2. A truncated cone with an initial radius of R1 is considered. This

modification was made because the numeric cavity models used to predict body-in-

flow partial cavities were made with these truncated cone forebodies.
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Figure 4.1: Diagram of a partially cavitating vehicle.

Figure 4.2: Vehicle and cavity length parameters.

4.1.1 Buoyancy and Added Mass Effects

If the dimensions are as shown in Figure 4.2, the buoyancy force can be de-

termined as shown in Eq. (4.1), where rc =
R−r1
L1

Lc + r1. The resulting buoyancy

moments can be expressed as given in Eqs. (4.2)-(4.4).

Fbuoy =


ρgπR2(L− Lc) if Lc ≥ L1

ρgπ
(
R2(L− L1) +

1
3
(L1 − Lc)

R3−r3c
R−rc

)
otherwise

(4.1)
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Fbuoy =


Mbuoy1 if Lc ≥ L1

Mbuoy2 otherwise

(4.2)

Mbuoy1 =
1

2
ρgπR2(L2 − L2

c) (4.3)

Mbuoy2 = ρgπ
[1
4

(R− r1)
2(L4

1 − L4
c)

L2
1

+
2

3

r1(R− r1)(L
3
1 − L3

c)

L1
(4.4)

+
1

2
r21(−L2

c + L2
1) +

1

2
R2(L2 − L2

1)
]

The added mass terms are approximated as the added mass of a 2-D cylinder

moving through fluid. A similar approach has been presented in reference [31]. The

obtained force and moments due to the added mass effects are shown in Eqs. (4.5)-

(4.6). The added mass terms are defined according to Eqs. (4.7)-(4.9), and the force

and moment conventions remain the same as with the previous systems with the

reference being the nose of the vehicle.

Fam = λ22ẇ + λ26q̇ (4.5)

Mam = λ26ẇ + λ66q̇ (4.6)

λ22 =
∫

πρR2dx

=



ρπR2(L− Lc) if Lc ≥ L1

ρπ(R2(L− L1) +
1
3
(L1 − Lc)

R3−Rc3

R−Rc
) otherwise

(4.7)

λ26 =
∫

xπρR2dx
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=



1
2
ρπR2(L2 − L2

c) if Lc ≥ L1

ρ[1
4

π(R−r1)2(L4
1−L4

c)

L2
1

+ 2
3

πr1(R−r1)(L3
1−L3

c)

L1
otherwise

+1
2
πr21(L

2
1 − L2

c) +
1
2
πR2(L2 − L2

1)]

(4.8)

λ66 =
∫

x2πρR2dx

=



1
3
πρR2(L3 − L3

c) if Lc ≥ L1

ρ[1
5

π(R−r1)2(L5
1−Lc5)

L2
1

+ 1
2

πr1(R−r1)(L4
1−L4

c)

L1
otherwise

+1
3
πr21(L

3
1 − L3

c) +
1
3
πR2(L3 − L3

1)]

(4.9)

4.1.2 Cavity Model

For partial cavitation, the cavity prediction model must now account for the

vehicle body which is now within the flow. Here, a partial cavitating numeric cavity

model provided in reference [44] is utilized. This numeric model can be used to solve

for the steady-state cavities that close along a body for an axi-symmetric flow, as

shown in Figure 4.3.

The cavity model is an iterative potential flow solver similar to the supercav-

itating numeric cavity model. Cavity shift effects due to cavitator angle of attack

are again approximated by using the method shown in the previous chapter. A

limitation of this model is that it is only able to converge for small cavities (high

cavitation numbers). So only cavities that close on the front portions of the body

can be considered in this fashion. As shown in Figure 4.1, planing occurs along

the length of the cavity, and where the vehicle is wetted, added mass and buoyancy
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Figure 4.3: System response results from numeric partial cavity model presented in

reference [44].

forces are introduced into the system dynamics.

4.1.3 Simulation Results

The partially cavitating vehicle system was run by using the same simulation

parameters as used in the previous studies, with g = 9.81 m/s2, m = 2 kg, Rn =

0.0191 m, R = 0.0508 m, L = 1.8 m, n = 0.5, and Cx0 = 0.82. Working near the

largest cavity limit of the partial cavity model (for the given vehicle and cavitator

parameters), a cavitation number of σ = 0.066925 is considered. This generates

a cavity of approximately 0.7640 m. The liner feedback configuration used in the

supercavitating systems is again utilized here (Eqs. (2.6)). Simulation results are
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Figure 4.4: Simulation results for partial cavity model with σ = 0.066925.

presented in Figure 4.4. Since there is no planing along the rear of the vehicle, it is

unable to support itself at the rear (by using this particular control), and the rear

sinks generating a high pitch angle and a high sideslip angle (as shown by the values

for the transverse velocity w).

Since this is the largest cavity that can be converged upon by using the partial

cavity numeric model, larger partial cavities are approximated by using the super-

cavitating numeric model. This approach may not produce an accurate cavity shape

since it does not consider the vehicle body in the flow. But, cavities generated us-

ing this approach can be used as representative partial cavity shapes to illustrate

potential partially cavitating vehicle dynamics. The supercavitating numeric cavity

model is run at low speeds (compared to the supercavitating vehicle simulations),
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Figure 4.5: Simulation results obtained by using numeric supercavitating model to

estimate partial cavity shape at σ = 0.043.

which will mean the generation of generate small cavities. The small cavities are

then truncated to only sections where the cavity radius is larger then the vehicle

body. The truncated supercavity, is then treated as an estimate of a partial cavity.

Results of a simulation obtained for σ = 0.043 is shown in Figure 4.5. This corre-

sponds to a cavity length of 1.5106 m (close to the length of the vehicle at L = 1.8

m). Here, limit-cycle motion is observed.

By running the simulation with a slightly smaller cavity, at σ = 0.046, with

1.3930 m of the vehicle unwetted, the rear of the vehicle is again unable to be

supported by the planing (see Figure 4.6).

62



Figure 4.6: Simulation results obtained by using numeric supercavitating model to

estimate partial cavity shape at σ = 0.046.

4.1.4 Fin Feedback

For the partially cavitating vehicles, the planing forces are not rearward enough

to support the vehicle. A simulation run with a passive fin input of δe = 0.1 rad,

is considered (with the same the linear cavitator feedback control). As mentioned

in the previous chapter, this is approximately the fin angle required to statically

support the rear of a supercavitating vehicle. The simulation results are presented

in Figure 4.7. For the supercavitating system, the vehicle was able to eventually

stabilize inside the cavity using this passive fin input (no planing support required).

However, for the partially cavitating system, even with the buoyancy forces helping

to support the vehicle (as compared to the supercavitating case), the vehicle is still

63



0 0.5 1 1.5
0

0.5

1

1.5

de
pt

h 
z 

(m
)

Time (s)
0 0.5 1 1.5

−10

0

10

20

30

ve
lo

ci
ty

 w
 (

m
/s

)

Time (s)

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

pi
tc

h 
an

gl
e 

θ 
(r

ad
)

Time (s)
0 0.5 1 1.5

−1

0

1

2

pi
tc

h 
ra

te
 q

 (
ra

d/
s)

Time (s)

Figure 4.7: Simulation results obtained for the partial cavity model σ = 0.066925,

with passive fin input of δe = 0.1 rad.

unable to support itself. This may be attributed to the fact that for the partially

cavitating system, the planing forces and moments are insufficient to resist transient

motions, whereas with the supercavitating system, planing is able to reject high pitch

rates and vehicle sideslip angles before the vehicle stabilizes inside the cavity.

A modified linear fin feedback in addiition to the linear cavitator feedback is

considered next. A simulation conducted using the control actuation given by Eq.

(4.10) is shown in Figure 4.8. Similar to the reasoning used for the choice of feedback

states in Eqs. (2.6), the fin feedback is based on a practically measurable state (as

opposed to vehicle side slip w). Here, the vehicle clearly stabilizes with very small

sideslip angle (moving predominantly forward with respect to the vehicle axis).
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Figure 4.8: Simulation results obtained for the partial cavity model with σ =

0.066925, using cavitator and fin linear feedback.

δe = .12 + .3q

δc = 15z − 30θ − .3q (4.10)

The Matlab code used for the partially cavitating vehicle dynamics model is

included in Appendix B.

4.1.5 Summary

The partial cavitating vehicle dynamics model was generated to explore vehicle

motions present during this type of operation. A numeric partial cavity model is

used, but this model only provides solutions for limited length cavities. Longer
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partial cavities are estimated by using truncated versions of supercavity solutions.

Vehicles operating under partially cavitating conditions are modeled here by adding

buoyancy forces and simplified added mass expressions. Because the cavity closes

further forward on the body, compared to the supercavitating systems, planing

does not provide sufficient resistance (for smaller partial cavities) to high vehicle

sideslip angles without the aid of feedback fin control. A future goal would be the

capability of simulating full vehicle missions, from fully wetted, to cavity growth

(partial cavitation), to full supercavitation (and potentially transitioning between

the different operating conditions). Unfortunately at the time of this work, there are

no unsteady partial cavity models. The work presented here provides an initial step

towards modeling full vehicle missions that include cavity growth (and collapse).

4.2 Delayed Cavity with Non-Steady Planing Forces

In much of the previous research (and in all of the aforementioned models), the

planing force modeling is based on the assumption that steady planing is neeeded

to simplify the planing force calculations. With this assumption, vehicle motions

into or out of the cavity are ignored. The simplification pertains to the immersion

rate term ḣ. For steady planing, the immersion rate at any section of planing can

be represented as ḣ = Vt · sin(α), where α is the angle between the body and the

cavity, and Vt in this expression represents the total vehicle speed (Figure 4.9). This

immersion rate accounts for the fact that the body is moving along the cavity axis

at an angle but does not include any radial motions of the body into the fluid. With
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Figure 4.9: Diagram of a cylinder planing on a cylindrical surface.

the steady planing assumption, the planing force becomes only a function of the

body’s position with respect to the cavity, and therefore it can be considered as

having no damping relationship in terms of the vehicle’s motion.

As demonstrated in the previous models, cavity shape and location predictions

can have a significant effect on the resulting dynamics. Two methods of modeling

cavity position and orientation (with respect to the vehicle body) are shown in

Figure 4.10. The instantaneous approach is utilized in all of the previous models.

With this approach, the cavity position and orientation are calculated based on the

current cavitator position and velocity direction. In this approach, one approximates
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Figure 4.10: Two methods of modeling cavity position and orientation.

the cavity at the rear of the vehicle (where planing occurs) as a cavity that would

have been generated if the cavitator had been moving along it’s current velocity

direction up to it’s current position. This approximation works well at capturing

the dynamics of the system when the vehicle speeds are high. However, the cavity

at the rear of the vehicle is actually generated by previous motions of the cavitator

through the fluid (which may not coincide with the current position and orientation

of the cavitator). As such, a more appropriate method of representing the cavity

for planing is to model the cavity centerline and orientation based on a previous

cavitator position and velocity information. This is shown as the delayed approach

in Figure 4.10.

In this section, a model is presented which uses both a delayed cavity approach
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Figure 4.11: Cavity and vehicle centerlines for the delayed case.

to generate cavity location and orientation for planing, as well as a planing force

formulation that includes vehicle motions into and out of the fluid. For simplification

and computational purposes, only cylindrical cavities are considered. However, the

approach may be extended to account for non-cylindrical cavity planing.

4.2.1 Description of Immersion Terms

A depiction of the cavity and vehicle centerlines for an arbitrary vehicle posi-

tion is shown in Figure 4.11. The portion of the cavity that interacts with the vehicle

is generated by previous positions and orientations of the cavitator. When using a

cylindrical cavity approximation, the cavity radius and location can be calculated

by using a single previous cavitator position and orientation (a single delay). The

delay is taken as τ seconds, which corresponds to the amount of time it took for
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the cavitator to move from the position of interest (where the planing is occurring

at the back of the vehicle) to where it is currently. In the figure, the cavity center

is located at the previous nose position (xτ , zτ ). The cavity expands in a radial

direction perpendicular to the velocity direction at the previous time, making the

cavity axis parallel to the delayed velocity direction. The cavity angle with respect

to horizontal is denoted as θcτ and can be expressed as shown in Eq. (4.11). In this

expression, θτ represents the delayed body orientation with respect to horizontal,

and tan−1(wτ/V ) represents the delayed velocity orientation with respect to the

body.

θcτ = θτ − tan−1(wτ/V ) (4.11)

The relative position of the rear of the body with respect to the cavity cen-

terline is a function of both a translation and a body rotation. The translation of

the current position of the nose with respect to the cavity centerline is expressed as

b. The relative angle between the current body centerline and the cavity centerline

can be expressed as θ(t) − θcτ , where θ(t) is the current body orientation with re-

spect to horizontal. The displacement due to body rotation, c, can be expressed as

c = a · tan(θ(t) − θcτ ). The radial displacement of the body centerline at the rear

with respect to the cavity at (xτ , zτ ), is simply b+ c.

The immersion depth h can then be described as given in Eq. (4.12), where

∆ = Rc − R; this is a simplified expression for immersion only along one surface.

The immersion rate can then be generated by differentiating Eq. (4.12) which yields
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Eq. (4.13). The delay terms are treated as having no dependence on time. They

relate only to a specific instance in time which is used to generate an instantaneous

cavity orientation in space for use in the calculation of the planing forces. With

the exception of expansion and contraction along the cavity radial direction, this

instantaneous cavity does not move or change. This corresponds to the physical

understanding that the cavity is not moving in space once created; that is it is

simply expanding or contracting.

h = a · tan(θ(t)− θcτ ) + b−∆ (4.12)

ḣ = a · sec2(θ(t)− θcτ ) · q(t) + ȧ · tan(θ(t)− θcτ ) + ḃ− Ṙc (4.13)

The terms ȧ and ḃ represent the motion of the vehicle nose relative to the

fixed cavity. These terms are the axial and radial (with respect to the cavity axis)

components of the nose velocity. Going back to the immersion rate expression in

Eq. (4.13), the first term relates to the rotation of the body into the cavity, the

second term relates to the fact that the body is moving through the cavity with a

relative angle, the third term relates to the rigid body motion of the vehicle into the

fluid, and the last term relates to the cavity radial growth rate.

The parameters a and b can be solved by using geometry. In Figure 4.12,

the orientation of a and b, along with (xτ , zτ ) and (x(t), z(t)), are shown. The line

segment that joins (xτ , zτ ), and (x(t), z(t)), creates an angle of θx = tan−1
(
zτ−z(t)
x(t)−xτ

)
with the horizontal; the term is zτ−z(t) since z is positive in the downward direction.
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Figure 4.12: Parameters a and b in relation to cavity centerline.

The relative angle that this segment creates with the cavity axis is simply θcτ − θx.

The parameters a and b can then be expressed as in Eqs. (4.14)-(4.15). By expanding

the sin and cos terms, the expressions can be simplified to Eqs. (4.16)-(4.17). The

rate of change can then be expressed as given in Eqs. (4.18)-(4.19). As described

earlier, these terms can also be considered as the axial and radial components (with

respect to the cavity axis) of the vehicle velocity at the nose.

a =
√
(zτ − z(t))2 + (x(t)− xτ )2 · cos

(
θcτ − tan−1

(
zτ − z(t)

x(t)− xτ

))
(4.14)

b =
√
(zτ − z(t))2 + (x(t)− xτ )2 · sin

(
θcτ − tan−1

(
zτ − z(t)

x(t)− xτ

))
(4.15)

a = cos(θcτ )(x(t)− xτ ) + sin(θcτ )(zτ − z(t)) (4.16)

b = sin(θcτ )(x(t)− xτ )− cos(θcτ )(zτ − z(t)) (4.17)

ȧ = ẋ · cos(θcτ )− ż · sin(θcτ ) (4.18)
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ḃ = ẋ · sin(θcτ ) + ż · cos(θcτ ) (4.19)

As an aside, the impacting planing force expressions can be solved for the non-

delayed case. In the case with no delay, the cavity is directly related to the current

conditions at the nose, and the axis of the cavity is oriented along the current

velocity direction. For no delay, θτ = θ(t), wτ = w(t), zτ = z(t), and b = ḃ = 0. The

expression for the immersion depth becomes hnon delay = a · w/V − ∆ where V is

the forward vehicle speed (as used in the dynamics modeling). The immersion rate

simplifies to ḣnon delay = a · sec2(tan−1(w/V )) · q + ȧ · w/V − Ṙc, where ȧ is total

vehicle speed.

4.2.2 Integration into Dynamics Model

In order to incorporate the delay, the overall vehicle path needs to be accurately

tracked in the inertial frame. The small angle assumptions can be removed from

the propagation of the depth state z and an additional state for the x position can

be added to the equations of motion represented by Eqs. (2.1) and (2.2). The

expressions for ż and ẋ are shown as follows.

ż = w · cos(θ)− V · sin(θ) (4.20)

ẋ = V · cos(θ) + w · sin(θ) (4.21)

The planing force is calculated from the Paryshev representation [37], which

is solved for the cylinder on cylinder case. The resulting planing force can then be
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represented as shown in Eq. (4.22), where ∆ = Rc − r, and h0 is the immersion

depth at the aft of the vehicle, as shown in Figure 4.9.

FP = πρr2ḣ2 1

tan(α)

(
1− ∆2

(h0 +∆)2

)
(4.22)

4.2.3 Simulation Results

For the simulation runs, the vehicle parameters were chosen to match those

used in the previous runs with m = 2, Rn = 0.0191 m, R = 0.0508 m, L = 1.8 m,

n = 0.5, and Cx0 = 0.82. Feedback control is again described by Eqs. (2.6) where

the fins are assumed to be passive, while the cavitator utilizes linear state feedback.

The nominal value for the delay simulations is chosen as τ = L/V , the approximate

amount of time it takes for the vehicle nose to travel one body length. For low

cavitation numbers (high speeds), the system shows a stable equilibrium response.

Similar to the other dynamics models with the same feedback formulation, this

system exhibits oscillations as the cavitation number is increased (speed is decreased)

and the cavity to body clearance tightens.

A simulation run conducted for σ = 0.0241 (V = 83.68 m/s) is shown for the

delayed system in Figure 4.13. This particular value of σ is chosen to be just below

the critical cavitation number where limit-cycle motion is observed.

A simulation run for the non-delayed system at the same cavitation number

σ = 0.0241 is shown in Figure 4.14. Here the non-delayed system exhibits limit

cycles. It should be noted that for high speeds (low cavitation numbers), the non-
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Figure 4.13: System response results for σ = 0.0241 and delayed system.

delayed system does demonstrate stable behavior. So when starting from sufficiently

high speeds, as the cavitation number is increased, both the delayed and non-delayed

system transition from stable to limit-cycle motions. However, the transition for

the non-delayed system occurs slightly earlier. It is within this window of cavitation

numbers, where the equilibrium position of the delayed system is stable and the

non-delayed system is unstable, that the delay can be considered stabilizing. This

is in contrast to previous findings where the delay can be shown to destabilize the

system

If the delay is taken as a parameter, and the forward velocity is held constant

at V = 83.68 m/s, the steady-state behavior of the system follows the plots shown
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Figure 4.14: System response results for σ = 0.0241 and non-delayed system.

in Figure 4.15. Here, the delay is varied from close to 0 s (no delay) to 0.01936

s (approximately 90% of the nominal delay value of L/V ). The system can be

shown to transition from limit-cycle motion to asymptotic stability as the delay is

increased. By varying the delay with a fine timestep of less then 0.00001 s, the

critical value of τ = 0.01930 s can be found, where limit cycles exist for τ < 0.01930

s.
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Figure 4.15: Effect of delay on steady-state system response.

77



Chapter 5

Vehicle Maneuvering Using Numeric Optimal Control Approach

In this chapter, a framework is provided for analyzing maneuvering of non-

smooth vehicle systems. Maneuverability, for nonlinear and particularly for non-

smooth vehicle systems, can be difficult to characterize since “all out” or fully

saturated control inputs do not necessarily define the envelope of vehicle motion

capabilities. For example, in the case of supercavitating vehicles, a fully saturated

control input will push the system into tailslap which negatively affects the position

control of the vehicle. In this work, a numeric, direct optimal control approach has

been used for generating optimal control inputs for defined vehicle maneuvers. This

approach is applied to the supercavitating vehicle systems presented in the previ-

ous chapters. The supercavitating systems are complex examples of non-smooth

dynamic systems, they serve as good candidates for numerical approaches.

5.1 General Approach

Due to the complexity, and non-differentiable nature of non-smooth systems,

the direct method for optimal control was chosen. In this method, controller inputs

are determined numerically. The control inputs for discrete segments of time, or

parameters that are used to define a control input function, are treated as variables

in an optimization scheme. The system dynamics can be directly integrated by
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Figure 5.1: Diagram of discretization method for the optimization strategy used to

generate controller input.

using the governing equations of motion. The maneuver itself can be treated as a

constraint on the optimization formulation, constraining the dynamics to perform a

desired task. The control input(s) can then be optimized for total time (which can

also be treated as a variable), or ending state, depending on the type of maneuver

considered.

A simple example of an application would be a maneuver subject to optimiza-

tion for total time of maneuver T , which has end point constraints (such as final

position and orientation constraints). The maneuver can then be discretized into

s equal length time segments where the control input is constant over each time

segment, as shown in Figure 5.1. The values for the control ui for i = 1 . . . s as

well as the final time T are considered as variables in the optimization scheme. The

dynamics can then be directly integrated from a given initial state x0 and with the

final position xs, subject to the constraints determined by the type of maneuver

being considered. This type of maneuver is illustrated in Figure 5.2.

The optimization formulation can be described as follows. The objective func-
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Figure 5.2: Diagram of trajectory generated by using the constant control inputs

over discretized time segments.

tion can be expressed as given in Eq. (5.1). This function is subject to the constraint

shown in Eq. (5.2), where s is the number of time intervals and xf is defined by the

maneuver. The state values at end of each of the time intervals can be expressed as

shown in Eq. (5.3), for i = 1...s and x0 a given. Additional constraints can also be

applied to bound the control inputs and/or states.

minu1,u2,...,us,T (T ) (5.1)

xs = xf (5.2)

xi =
∫ t=iT/s

t=(i−1)T/s,xi−1

F (t, x, ui)dt (5.3)

An important consideration in this formulation is that this formulation in-
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Figure 5.3: Simple point mass controlled system.

herently only considers trajectories that the system is capable of achieving (since

the dynamics are directly integrated). This eliminates the need to determine a set

of achievable trajectories as done with some path planing methods. However, end

conditions must be chosen with care, since an un-achievable end condition means

that there is an empty feasible set of variables for the optimization formulation.

5.1.1 Application to Simple System

To better illustrate the optimal control method, it is applied to a planar point

mass system. The system is shown in Figure 5.3, wherein the inputs are Fx and Fy.

They represent the forces along the x and y directions respectively. The equations

of motion are given by Eq. (5.4), where the state vector is given by (x, y, ẋ, ẏ).

d

dt



x

y

ẋ

ẏ


=



ẋ

ẏ

ẍ

ÿ


=



ẋ

ẏ

u(1)

u(2)


(5.4)
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t (s) x (m) y (m) ẋ (m/s) ẏ (m/s) Fx (N) Fy (N)

0.5 0.5 0.5 2.2 2.2 5.0 5.0

0.9 2.0 2.0 4.5 4.5 5.0 5.0

Table 5.1: Optimal solution for point mass system for starting point

(0.0m, 0.0m, 0.0m/s, 0.0m/s) and end condition (2.0m, 2.0m, , ) and s = 2.

The control forces are bounded to [−5N, 5N ]. The control inputs are calcu-

lated by using the constrained optimizer in Matlab, fmincon. Simple maneuvers are

considered first, with s = 2 and an initial condition of x0 = (0.0m, 0.0m, 0.0m/s, 0.0m/s)

(which corresponds to an initial position at the origin, with zero speed). A so-

lution for a maneuver that is only defined by a final position is shown in Ta-

ble 5.1, where (xf , yf ) = (2.0m, 2.0m) (any velocity at final position allowed).

The optimal solution for a fastest time maneuver is a “full-on”, u = 5.0, style

control. A second maneuver that defines both the final position and final ve-

locity is shown in Table 5.2. Here, the maneuver is defined with the end point

(xf , yf , ẋf , ẏf ) = (2.0m, 2.0m, 0.0m/s, 0.0m/s), which can be thought of as a move-

to and stop. The optimal control inputs for this maneuver are a “full-on” (u = 5.0)

time segment, followed by a“full-stop” (u = −5.0) control. The solution for these

symmetric position and velocity end conditions are not surprising, and they can

easily be determined by inspection. The optimal control process discussed here can

be applied to more complicated maneuvers.

The optimal time solution for a maneuver to the end point (xf , yf , ẋf , ẏf ) =
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t (s) x (m) y (m) ẋ (m/s) ẏ (m/s) Fx (N) Fy (N)

0.3 0.3 0.3 1.6 1.6 5.0 5.0

0.6 1.0 1.0 3.1 3.1 5.0 5.0

.09 1.8 1.8 1.6 1.6 -5.0 -5.0

1.3 2.0 2.0 0.0 0.0 -5.0 -5.0

Table 5.2: Optimal solution for point mass system for startint point

(0.0m, 0.0m, 0.0m/s, 0.0m/s) and end condition (2.0m, 2.0m, 0.0m/s, 0.0m/s) and

s = 2.

(1.0m, 7.0m,−1.0m/s, 2.0m/s) is less intuitive, and the best result found from the

optimization process is shown in Table 5.3. The trajectory as well as the time

histories of the sates are also shown in Figure 5.4. The resulting motion can be seen

to move around in the x direction; this is due to the fact that the limiting factor

for fastest time maneuver was the motion in the y direction. Although the solution

here is more difficult to ascertain via inspection, simple systems are only useful to

validate the numeric optimal control approach. This type of approach is intended

for more complex systems.

5.2 Maneuvering with Cylindrical Dive-Plane Models

The optimal control approach is applied to a supercavitating vehicle system.

The first system considered is based on the original cylindrical cavity, dive-plane
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Figure 5.4: Best solution for point mass system for starting point

(0.0m, 0.0m, 0.0m/s, 0.0m/s) and end condition (1.0m, 7.0m,−1.0m/s, 2.0m/s) and

s = 10.
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step : 1 2 3 4 5 6 7 8 9 10

Fx (N) 5.0 4.5 -3.4 -5.0 -5.0 5.0 1.1 2.8 -5.0 -5.0

Fy (N) 5.0 5.0 5.0 5.0 5.0 4.8 -5.0 -5.0 -5.0 -5.0

T = 2.0

Table 5.3: Best solution for point mass system for starting point

(0.0m, 0.0m, 0.0m/s, 0.0m/s) and end condition (1.0m, 7.0m,−1.0m/s, 2.0m/s)

and s = 10.

model, which utilizes the Hassan planing force model (as used in reference [8]).

This model was chosen to implement first because of it’s simplicity (compared to

the subsequent modified models), while the system still exhibited behavior such as

limit-cycle motions, and unstable responses.

Similar to the delayed system, maneuvering considerations require accurate

tracking of the inertial position. An additional state for the x coordinate is added,

and the expression for the propagation of z is adjusted to remove the small angle

assumptions. The state space representation of the inertial states, x and z, are

shown in Eqs. (5.5)-(5.6).

ẋ = V · cos(θ) + w · sin(θ) (5.5)

ż = w · cos(θ)− V · sin(θ) (5.6)

Additional constraints are applied to the supercavitating vehicle system. Ac-

tuation angles for both the fin and cavitator control surfaces are bounded, and
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these can be applied as direct bounds on the optimization variables. Additionally,

since the planing force model is only valid for small immersions, state limits on the

transverse speed, |w| < 6 m/s, are applied. The constraint equations can then be

specified as shown in Eq. (5.7) and Eq. (5.8); ceq = 0 constrains the end condition,

and ci ≤ 0 is used to apply bounds on the transverse velocity at the end of each time

interval. Unless otherwise specified, for these runs, σ = 0.03, which corresponds to

a velocity (cavity size) where the system experiences limit-cycle motions and un-

stable behavior. All runs start with an initial condition of straight and level flight

originating from (z0, x0, w0, q0) = (0.0m, 0.0m, 0.0m/s, 0.0rad/s). The optimization

(unless otherwise specified) was carried out by using an off the shelf constrained

optimizer, fmincon, in Matlab (and specifically the interior point algorithm for this

function).

ceq = xf − xs (5.7)

ci = |wi| − 6 ∀i = 1 . . . s (5.8)

If the optimal control approach is applied without the aid of feedback control,

certain solutions can be found. An example of a slight dive maneuver is shown in

Figure 5.5. This is a maneuver to zf = 2.0 m and wf = 0.0 m/s, which corresponds

to a dive-to-depth, and an alignment of the body with the total velocity direction.

For this run s = 8 and an initial guess of zero cavitator input and zero fin input is

applied. In this situation, the optimizer was capable of finding a solution with a fea-

sible end condition. However, if the discretization was increased to s = 16, a feasible
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solution by using the same starting condition could not be found. This finding was

surprising, since the solution for s = 8 is clearly feasible for s = 16. Additionally,

feasible solutions for other similarly simple maneuvers (including straight and level

flight) could not be found, even with good initial conditions. The issue relates to

the fact that the system without feedback control is inherently unstable (as shown

in the previous work and in Chapter 2). As the optimizer searches for solutions that

satisfy the end conditions, the system can easily transition into instability. When

no feedback control is utilized, the optimal control method is tasked with generat-

ing a controller that stabilizes the system, while maneuvering it to the proper end

condition. However, with the exception of some specific cases, the coarseness of the

discretization used for the optimal control approach was found to be incapable of

rejecting planing instabilities.

5.2.1 Inner-Loop and Outer-Loop Control Schemes

A feedback controller can be added to the system. The feedback controller can

be considered as an “inner-loop” controller that is used to help reject fast timescale

instabilities (such as with the planing force), while the control inputs generated by

the optimization can be considered as “outer-loop” control that guides the vehicle

through the desired maneuver to the proper end condition. A diagram of how

the two controllers are integrated is shown in Figure 5.6. Here, the optimization

formulation plays the role of the motion planner.

By utilizing the liner feedback law shown in Eqs. (2.6), the system is stabilized

87



0 2 4 6 8 10 12 14 16 18
−0.5

0

0.5

1

1.5

2

x (m)

y 
(m

)

Figure 5.5: Trajectory for dive maneuver to zf = 2.0 m and wf = 0.0 m/s with no

feedback control and s = 8.

to stable limit cycles. The response time histories for a solution using this feedback

law for straight and level flight is shown in Figure 5.7, along with the determined

controller inputs in Figure 5.8. Here, the maneuver requires an end condition of

(xf , zf , wf ) = (40.0m, 0.0m, 0.0m/s) with all other final states unconstrained. By

using an initial guess of constant fin input of δf = 0.1 rad (approximately what is

Figure 5.6: Depiction of inner-loop and outer-loop controllers.
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Figure 5.7: Time histories for maneuver to (xf , zf , wf ) = (40.0m, 0.0m, 0.0m/s)

with feedback control according to Eqs. (2.6) and s = 8.

required to support the rear of the vehicle), the optimization scheme was easily able

to find a good set of control inputs.

One issue with this particular form of feedback is that it directly involves the

inertial states z and θ. Unfortunately, this greatly limits the ability to perform

maneuvers aside from straight and level flight. Instead, the inertial terms can be

dropped and an inner-loop control of the form as shown in Eq. (5.9) can be utilized.

This type of controller still aids in stabilizing the system (using measurable states),

while allowing for motions in space.

δc inner = kinnerq (5.9)
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Figure 5.8: Outer-loop control inputs for maneuver to (xf , zf , wf ) =

(40.0m, 0.0m, 0.0m/s) with feedback control according to Eqs. (2.6) and s = 8.

By using kinner = −0.9, a dive maneuver to zf = 2 m and wf = 0 m/s

is considered (all other final states being unconstrained). The resulting state and

outer-loop control histories for the best solution are shown in Figures 5.9 and 5.10.

An initial guess of zero cavitator or fin control angles is utilized here with s = 8.

Also, unlike the case with no inner-loop control, control inputs for similar simple

maneuvers can be easily solved. Deeper dive maneuvers can be solved relatively

quickly by seeding the optimization scheme with previous solutions for shallower

maneuvers. Trajectories for dive maneuvers to zf = 4.0, 8.0 and 20.0 m, are shown

in Figure 5.11 (again with wf = 0).

With the inner-loop stabilization, more complicated maneuvers can also be

considered. A dive followed by a level-off maneuver can be described with zf = 20.0
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Figure 5.9: Time histories for maneuver to (zf , wf ) = (2.0m, 0.0m/s) with modified

feedback control according to Eq. (5.9), kinner = −0.9, and s = 8.

m and θf = 0.0 rad. This maneuver is solved with s = 14 and kinnner = −0.9, and

the resulting trajectory and outer-loop control solution are shown in Figures 5.12

and 5.13, respectively.

5.2.2 Homing maneuvers

Move-to-point maneuvers are also of interest for maneuvering. These types of

maneuvers can be characterized by specifying the final position (zf , xf ). By using

the results from the previous dive maneuvers, an obtainable move to point marker

was chosen at (zf , xf ) = (20.0m, 80.0m). The resulting control solutions with s = 14

and kinner = −0.7 are shown in Figures 5.14 and 5.15. Included in the trajectory plot
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Figure 5.10: Outer-loop control inputs for maneuver to (zf , wf ) = (2.0m, 0.0m/s)

with modified feedback control according to Eq. (5.9), kinner = −0.9, and s = 8.

Figure 5.11: Trajectories for dive maneuvers to (zf , wf ) = (4.0m, 0.0m/s),

(zf , wf ) = (8.0m, 0.0m/s), and (zf , wf ) = (20.0m, 0.0m/s), with modified feedback

control according to Eq. (5.9), kinner = −0.9, and s = 8.
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Figure 5.12: Trajectory for (zf , θf ) = (20.0m, 0.0rad) with modified feedback control

according to Eq. (5.9), kinner = −0.9, and s = 14.
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Figure 5.13: Outer-loop control inputs for maneuver to (zf , θf ) = (20.0m, 0.0rad)

with modified feedback control according to Eq. (5.9), kinner = −0.9, and s = 14.
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of Figure 5.14, is a trajectory showing the vehicle path with inner-loop control only,

as well as vehicle orientation and cylindrical cavity plots at specific points along the

actual trajectory (exaggerated in size to show detail). It is clear that the vehicle is

planing during the maneuver. The control history plot in Figure 5.15 also includes

a total cavitator actuation angle plot showing the combination of the inner-loop

and outer-loop control. Similar move to point maneuvers can also be solved. The

resulting best solved trajectory for a climb maneuver to (xf , zf ) = (80.0m,−20.0m)

is shown in Figure 5.16
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Figure 5.14: Trajectory for (zf , xf ) = (20.0m, 80.0m) with modified feedback control

according to Eq. (5.9), kinner = −0.7, and s = 14.
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Figure 5.15: Control inputs for maneuver to (zf , xf ) = (20.0m, 80.0m) with modified

feedback control according to Eq. (5.9), kinner = −0.7, and s = 14.

Homing maneuvers with a circular obstacle or “no-fly” area are considered

next. If the obstacle is centered at (xobst, zobst) with radius robst, the obstacle can be

modeled as a single constraint that specifies a minimum distance from the obstacle

center to the closest point along the trajectory. The constraint relationship can

be expressed as in Eq. (5.10); the right-hand side expresses the closest distance

to the obstacle center over the entire trajectory (determined by the integration of

the equations of motion), and the radius of the obstacle robst specifies the minimum

allowable distance.
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Figure 5.16: Trajectory for (zf , xf ) = (−20.0m, 80.0m) with modified feedback

control according to Eq. (5.9), kinner = −0.7, and s = 14.

robst ≥ min
t

√
(x(t)− xobst)2 + (z(t)− zobst)2 (5.10)

A climb maneuver to (zf , xf ) = (−20.0m, 80.0m) with an obstacle is centered

at (zobst, xobst) = (−5.0m, 40.0m) with a radius, robst = 10.0 m is then considered.

The position is chosen so that the obstacle is located in the best found move-to-

point trajectory, which has been generated for the obstacle-free case (as shown in

Figure 5.16). The resulting trajectory is shown in Figure 5.17. The inner-loop only

trajectory is also shown along with the vehicle-cavity orientation plots (exaggerated
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in size). As expected, the best discovered trajectory has the vehicle operating un-

der extreme maneuvering conditions (as shown by the high cavity immersion), and

positions the path very close to the obstacle boundary. The response histories are

plotted in Figure 5.18, and the control histories are shown in Figure 5.19.
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Figure 5.17: Trajectory for (zf , xf ) = (−20.0m, 80.0m), obstacle at (zobst, xobst) =

(−5.0m, 40.0m), robst = 10.0 m. With modified feedback control according to Eq.

(5.9), kinner = −0.7, and s = 14.

Additional obstacles can be also be accommodated by using additional con-

straints. A run to a further point of (zf , xf ) = (−50.0m, 200.0m) is shown, with two

obstacles at (zobst, xobst)1 = (−5.0m, 40.0m), and (zobst, xobst)2 = (−10.0m, 175.0m),
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Figure 5.18: Time histories for (zf , xf ) = (−20.0m, 80.0m), obstacle at

(zobst, xobst) = (−5.0m, 40.0m), robst = 10.0 m. With modified feedback control

according to Eq. (5.9), kinner = −0.7, and s = 14.

both with radius robst = 15.0 m, is shown in Figure 5.20. The first obstacle was

chosen to be in the path of the obstacle-free best discovered solution, and the second

obstacle was chosen to be in the path of the single obstacle best discovered solution.

Moving end points can also be considered, and they are of interest since the

vehicle motion does not occur instantaneously. A moving end point can be added

by using an expression for the final end point constraint in terms of the final time

T . An example is generated by setting (xf , zf ) = (80 + 10T,−20− 10T ) m, letting
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Figure 5.19: Outer-loop control inputs for (zf , xf ) = (−20.0m, 80.0m), obstacle at

(zobst, xobst) = (−5.0m, 40.0m), robst = 10.0 m. With modified feedback control

according to Eq. (5.9), kinner = −0.7, and s = 14.

the desired end point start at (xf , zf ) = (80.0m,−20.0m), and giving a velocity of

10 m/s in both the x and z directions, away from the initial position of the vehicle.

The plot of the resulting trajectory is shown in Figure 5.21.

5.3 Maneuvering with Non-Cylindrical Dive-Plane Models

The optimal control method was then applied to the non-cylindrical dive-plane

models. As presented in Chapter 3, the non-smooth dynamics is complicated due to
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Figure 5.20: Trajectory for (zf , xf ) = (−50.0m, 200.0m), obstacles at (zobst, xobst)1 =

(−5.0m, 40.0m), and (zobst, xobst)2 = (−10.0m, 175.0m), both with robst = 15.0 m.

With modified feedback control according to Eq. (5.9), kinner = −0.7, and s = 34.

non-constant cavity boundaries (due to the cavity shift) and a varying planing force

function (due to the cavity shape change). A homing maneuver is considered first

by using the splined cavity model (to ensure accurate planing area predictions). A

solution for dive maneuver to xf = 20.0 m, zf = 80.0 m with σ = 0.0335, is shown

in Figure 5.22. The vehicle orientation and non-cylindrical cavity plots at specific

points along the trajectory are also shown, and are exaggerated in size to show

detail. With the non-splined cavity model, the computational time was significantly
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Figure 5.21: Trajectory for (xf , zf ) = (80 + 10T,−20 − 10T ) m with modified

feedback control according to Eq. (5.9), kinner = −0.7, and s = 14.

reduced, but larger tolerances on the end condition were required.

Incorporating aggressive maneuvering with the non-cylindrical models be-

comes more difficult. Several attempts at solving the single obstacle case (similar to

the cylindrical case shown in Figure 5.17) yielded no feasible solutions. One example

where the constrained optimizer failed to find a feasible solution is shown in Figure

5.23. Although both cylindrical and non-cylindrical models produced similar bifur-

cation behavior; however, the parameter values at which the bifurcations occur are

different, which may lead to significantly different maneuvering capabilities when
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Figure 5.22: Non-cylindrical planing with splined cavity model, trajectory for

(xf , zf ) = (80.0m,−20.0m) with feedback control according to Eq. (5.9), σ =

0.0335, kinner = −0.9, and s = 14.

run at similar parameter values.

5.3.1 Optimization using Penalty Methods and Simple Search Algo-

rithms

In order to investigate the maneuvering capability difference between the non-

cylindrical and cylindrical models, maximum turn maneuvers are considered. A

maneuver that maximizes (or minimizes) θf over a set time T , originating from
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Figure 5.23: Non-cylindrical planing with splined cavity model; failed run for

(zf , xf ) = (−20.0m, 80.0m), obstacle at (zobst, xobst) = (−5.0m, 40.0m), and robst =

10.0 m.

some initial condition (such as (z0, x0, w0, q0) = (0.0m, 0.0m, 0.0m/s, 0.0rad/s)) can

be considered. The built in Matlab function fmincon is capable of solving this type

of maneuver for the cylindrical case; however, this direct constrained approach has

difficulty improving upon initial guesses for the non-cylindrical models. For the

non-cylindrical planing system, the maneuver was solved by using a non-gradient

based optimization algorithm with the function fminsearch. Although these types of

maneuvers are only considering one specific capability measure, the differences be-

tween the results for the non-cylindrical and cylindrical models were not significant.
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This finding may mean that the incapability of the constrained optimizer to find a

feasible solution for the single obstacle maneuver with non-cylindrical planing, may

be more related to the complexity of the feasible domain rather then the incapability

of the vehicle to maneuver.

The family of control inputs that generate trajectories that satisfy the maneu-

ver conditions define the feasible domain, and this domain may include unconnected

sets. Optimizing in this domain can be difficult and the complexity of the feasible

domain increases as the dynamics get complex. The direct constrained optimization

can instead be replaced by a penalty type objective function. Here, the constraints,

rather then being directly enforced, are treated as penalties on the objective function

in an unconstrained optimization scheme. The optimizer progresses simultaneously

towards feasible and optimal solutions.

For the example of the supercavitating vehicle system, the objective function

can be re-written as Eq. (5.11). The values ci represent the inequality constraints

(as used for the bounds on the states and control), and the values ceqj represent

the equality constraints (as used for the end condition for the maneuver). For the

supercavitating vehicle system, the penalty multipliers, Pineq and Peq are positive,

and these multipliers multiply all equality constraints by the same factor, and all

inequality constraints by the same factor; in the general case, these may be non-

linear and can be independent for each constraint.

F (u1, u2, . . . , us, T ) = T + Pineq

∑
ci>0

|ci|+ Peq

∑
j

|ceqj| (5.11)
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Coupled to the penalty method is an unconstrained optimizer. Simple search

algorithms worked best for these complicated systems, with the simplest built in

Matlab function patternsearch providing the best results in the fastest time. This

observation is not surprising, since the gradient based methods can be expected

to face difficulties due to the non-smooth dynamics, and the overall complexity of

the optimization function. Additionally, these gradients are not readily available

due to the numeric nature of the dynamics integration and the cavity (planing

force) calculations. Overall, all algorithms using the penalty method provided better

improvement on initial guesses then the constrained approach with fmincon.

By using the penalty approach, the obstacle scenarios similar to the cylindrical

case shown in Figure 5.17, can be considered for the non-cylindrical case. The ma-

neuver consisted of an end condition of (zf , xf ) = (−20.0m, 80.0m) with an obstacle

centered at (zobst, xobst) = (−5.0m, 40.0m). Medium radius obstacles are solved ini-

tially, and these solutions are used to seed optimization runs for progressively larger

radius obstacles until no feasible solution could be found. A feasible solution for the

non-cylindrical single obstacle case is shown in Figure 5.24 for an obstacle radius

robst = 7.0 m. In this plot, the vehicle and cavity orientation plots are exaggerated

in size. When compared to the cylindrical case, the non-cylindrical case was also

found to be capable of maneuvering around similarly sized obstacles.

The Matlab code for carrying out the optimal control with the non-cylindrical

planing model is presented in Appendix B. This is included to demonstrate the gen-

eral method for how the optimization using patternsearch with the penalty method

is coded, along with the specific code for the non-cylindrical planing dynamics.
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Figure 5.24: Non-cylindrical planing model, run for (zf , xf ) = (−20.0m, 80.0m),

obstacle at (zobst, xobst) = (−5.0m, 40.0m), and robst = 7.0 m.

5.3.2 Bootstrapping Techniques Using Simple Integration

The use of simple integration schemes and bootstrapping techniques are com-

mon for numeric optimal control solutions. Simple integration schemes, such as mid-

point integration shown in Eq. (5.12), help speed up the integration of the dynamics,

which in turn dramatically increases the speed of the optimization. Bootstrapping

is based on building solutions from previous solutions. A common approach for solv-

ing a complicated optimal control problem is to first solve the maneuver by using

a coarse discretization using a simple integration scheme. Since the discretization

is coarse, and the integration method is simple, this initial problem is not difficult
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to solve. This solution can then be applied to a finer discretization and solved

again. This can be carried out for several iterations, and as the time discretization

becomes finer, the solution becomes better, and the integration becomes more accu-

rate. Although the optimizer has to solve a series of progressively more complicated

problems, it is given a series of progressively better starting guesses.

xi+1 − xi =
∫ ti+1

ti
f(t, x(t))dt ≈ f(

ti + ti+1

2
,
xi + xi+1

2
)(ti+1 − ti) (5.12)

This technique has been applied to supercavitating vehicle systems before

[39, 1]; however, the solutions for the maneuvers considered are all within the cav-

ity. For the maneuvering studies in this work, and the parameter values and speeds

considered, planing or cavity contact is abundant during maneuvering (operation

in ranges where unstable and limit-cycle behavior is observed with the uncontrolled

and feedback controlled systems). Bootstrapping schemes and mid-point integration

were attempted for both the set end time and floating end time maneuvers. The

system dynamics for non-smooth systems can very greatly depending on the re-

gion of operation. The supercavitating system is an example of this; when planing,

the system dynamics are dramatically different, with much higher forces present.

Since planing is prevalent, mid-point integration for any coarse discretization be-

comes highly inaccurate. Feasible solutions for coarse discretizations where planing

is present become extremely difficult to resolve. Even when feasible solutions can

be solved, the dynamics are so dependent on the region of operation that differ-

ent solutions “bootstrapped” to finer discretizations are not necessarily feasible, let
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alone good seeds. Because of this, for the supercavitating vehicle systems, direct

integration methods are required for accuracy. This of course, comes at the expense

of lengthy computational time for the optimization process.

5.4 Maneuvering for Delayed Model without Steady Planing As-

sumption

The penalty approach was also applied to the delayed model presented in the

previous chapter. This model includes the forces due to the motion of the body,

instead of the use of the steady planing assumption. Due to the delay, the equations

of motion must be integrated by using a delay differential equation (DDE) solver that

requires the state history along with an initial condition. In the previous examples,

the equations of motion are integrated over each individual section of piecewise

constant control. This becomes difficult to implement with the DDE solver, since

each individual section will require a state history.

To get around this difficulty, a smooth control scheme is implemented by us-

ing a splined interpretation. In this formulation, the optimization variables become

inputs to a spline interpolation that is used as the control input function; the op-

timization variables in this case can be though of as parameters in a describing

function that defines the controller input. Now, the control input function for the

duration of the maneuver is known completely within the integration function. An

additional advantage in this approach is that, the controller input is now a con-

tinuous and differentiable function which is practical to implement. Additionally,
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control contributions to the system dynamics will be less abrupt. It should be noted

that the previous systems can be also solved in a similar manner, but in these cases,

the piecewise-constant control is sufficient to demonstrate results.

Results for a move-to-point maneuver to (zf , xf ) = (−20.0m, 80.0m) and the

delayed model with non-steady planing are shown in Figure 5.25. The smooth

outer-loop control inputs are shown in Figure 5.26. Obstacle avoidance maneuvers

are then considered starting with maneuvers with small obstacles and progressing to

larger obstacles until no feasible solutions can be found. The ending largest feasible

obstacle radius of robst = 5.0 m for a maneuver to (zf , xf ) = (−20.0m, 80.0m) with

the obstacle centered at (zobst, xobst) = (−5.0m, 40.0m) is a smaller radius obstacle as

compared to similar runs for the cylindrical and non-cylindrical models with steady

planing and without time delay. The best solved trajectory is shown in Figure

5.27. Here, it can be seen that the trajectory moves under the obstacle (in terms of

positive z), as opposed to over as with the steady planing, non-delayed cylindrical

and non-cylindrical models.

The influence of the initial guess on the ending solution can be seen by consid-

ering a larger obstacle (infeasible ending trajectory). A run using the best discovered

trajectory at robst = 5.0 m as an initial guess for the optimization to do a maneuver

with an obstacle radius robst = 6.0 m is shown in Figure 5.28. Here, the optimization

scheme considers trajectories under (with respect to positive z) the obstacle, which

is the case for the trajectory that seeded the optimization. If instead zero outer-loop

control input is used as the initial guess, the optimization considers trajectories over

the obstacle (see Figure 5.29). Although the results of either seeding in this case
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Figure 5.25: Delayed model without steady planing assumption and run to (zf , xf ) =

(−20.0m, 80.0m).
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Figure 5.26: Outer-loop control inputs for delayed model without steady planing

assumption and run to (zf , xf ) = (−20.0m, 80.0m).
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Figure 5.27: Delayed model without steady planing assumption, run for (zf , xf ) =

(−20.0m, 80.0m), obstacle at (zobst, xobst) = (−5.0m, 40.0m), and robst = 5.0 m.
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are infeasible, the difference in the types of trajectories considered demonstrate the

influence of the initial guess.
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Figure 5.28: Delayed model without steady planing assumption, run for (zf , xf ) =

(−20.0m, 80.0m), obstacle at (zobst, xobst) = (−5.0m, 40.0m), and robst = 6.0 m. The

best found control input solved for a smaller obstacle run is used as an initial guess.

Infeasible ending trajectory.

The Matlab code for carrying out the optimal control with the delayed model

is presented in Appendix B. This is included to demonstrate the general method for

how the optimization using the smooth inputs is coded, along with the specific code
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Figure 5.29: Delayed model without steady planing assumption, run for (zf , xf ) =

(−20.0m, 80.0m), obstacle at (zobst, xobst) = (−5.0m, 40.0m), and robst = 6.0 m.

Trivial outer-loop control is used as an initial guess. Infeasible ending trajectory.
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for the impacting and delayed dynamics.

5.5 Maneuvering with Six DOF Model

The optimal control solution method is also applied to a six degree-of-freedom

model. The model is used to consider more general flight motions in three dimen-

sions, and the details are presented in Appendix A. This model does not include

small angle assumptions for the vehicle motions, although there are assumptions for

the forces generated by the control elements. Initially, only dive-plane maneuvers

are considered to test the approach. When considering a fixed end time maneuver,

the system was found to suffer from several local minima. By using a constrained

optimizer, it was found that for a maximum angle dive or climb maneuvers (max-

imizing or minimizing θf ), the optimization would not progress far from an initial

guesses before becoming stuck in a local minimum. More difficult maneuvers such

as move to point were difficult to solve, even when given a near feasible starting

guess. Again, a penalty method based on the pattern search algorithm was applied

instead and was found to worked well. A solution for a move to point maneuver

with (zf , xf , yf ) = (−50.0m, 120.0m, 0.0m) is shown in Figure 5.30. Feedback con-

trol of the form shown in Eq. (5.9) is utilized to stabilize vehicle motions in the

vertical plane, with kinner = 0.7. The vehicle parameters remained consistent with

the previous simulations with g = 9.81 m/s2, m = 22.7005 kg, Rn = 0.0191 m,

R = 0.0508 m, L = 1.8 m, and Cx0 = 0.82. The propulsive force is set as constant,

with Fprop = 2200 N . The initial conditions are for a straight and level flight with
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Figure 5.30: Six degree-of-freedom model, run for (zf , xf , yf ) = (−50m, 120m, 0m).

a forward velocity of u = 75 m/s.

With the six degree-of-freedom model, motions outside of the vertical plane

can also be considered. To allow for motion in the horizontal plane, the optimizer

is allowed three control inputs, the cavitator actuation angle, the elevator actuation

angle, and the rudder actuation angle. Both elevators and both rudders are assumed

to move together with the same actuation angle. A move-to-point maneuver for

(zf , xf , yf ) = (−50.0m, 120.0m, 5.0m) is shown in Figure 5.31. The resulting best

solution, is not as expected with an abrupt maneuver in the horizontal plane only

within the last time segment of the optimization discretization. This observation
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is confirmed by looking at the resulting control input, shown in Figure 5.32, where

the rudder input is only applied during the last time segment. The result can be

traced to the fact that the inner-loop controller is only stabilizing planing motions

in the vertical plane. This is in part due to the orientation of the cavitator actuation

angle that is set to be vertical (with respect to the body orientation). With this,

the cavitator angle control actuation of an un-rolled vehicle cannot be expected to

produce contributions in the horizontal plane. The vehicle motions in the horizontal

plane are in fact quite unstable, with significant planing forces being generated

during the quick motion at the end of the maneuver, which is required to achieve

desired horizontal displacement. If the vehicle were to generate horizontal motions

early in the maneuver, the high planing forces and instabilities would greatly reduce

the ability of the vehicle to reach the desired end point.

The maneuvering studies for the six degree-of-freedom model are very prelim-

inary. More work needs to be done such as allowing greater control authority over

vehicle roll, by giving independent control over each set of rudders and elevators.

Better control of vehicle roll may allow for inner-loop feedback stabilization in mul-

tiple planes with a single axis cavitator. Additionally, a two axis cavitator could

also be considered, with separate feedback control along each direction.

5.6 Discussion

Maneuvering of non-smooth vehicle systems is considered in this chapter with

the primary example of supercavitating vehicle systems. Maneuvers were solved for
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Figure 5.31: Six degree-of-freedom model, run for (zf , xf , yf ) =

(−50.0m, 120.0m, 5.0m).

the cylindrical, non-cylindrical, six degree-of-freedom, and the delayed non-steady

planing models described in the previous chapters.

In this work, the speeds and parameter values for the maneuvers considered

for the supercavitating vehicle systems are within the range where unstable as well

as limit-cycle behavior exists in the un-controlled and feedback systems. Within

these parameter ranges, the non-smoothness of the planing must be addressed in

the optimal control solution procedure, and planing is apparent in the best calcu-

lated maneuvers. As such, the need for an inner-loop feedback controller is required.
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Figure 5.32: Outer-loop control inputs for six degree-of-freedom model, run for

(zf , xf , yf ) = (−50.0m, 120.0m, 5.0m).

This fast acting stabilizing inner-loop controller is used in conjunction with a coarser

outer-loop control that guides the vehicle through the desired maneuver. Addition-

ally, since the vehicle moves across regions with dramatically different dynamics,

simple integration techniques with coarse time discretizations do not accurately es-

timate vehicle motions. Therefore methods of bootstrapping (in terms of using

simple integration techniques and moving from coarse to finer time discretizations)

are not viable for solving maneuvers for these types of systems.
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For systems with complicated dynamics, constrained optimizers can face diffi-

culties searching for feasible optimal solutions. Penalty methods open up the feasi-

ble domain and allow for simultaneous progression towards better and more feasible

solutions. The penalty approach combined with a simple unconstrained search algo-

rithms (such as patternsearch) where shown to provide a means to solve difficult ma-

neuvers for systems with complicated non-smooth dynamics (where the constrained

optimizers failed). Seeding algorithms such as those for solving progressively more

aggressive maneuvers (iterating towards larger obstacles) using previous solutions as

initial guesses can help to speed up the optimization process. However, the influence

of the initial guess must also be considered when using these approaches, as they

may limit the types of trajectories considered. It may be beneficial to use different

initial guesses once the iterations terminate with infeasible solutions.
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Chapter 6

Summary and Recommendations for Future Work

6.1 Summary

This dissertation work is centered around supercavitating vehicle systems with

“soft” non-smooth interactions between the cavities surrounding the vehicles and the

vehicles. Here, the modeled cavity interactions generate a system that is charac-

terized by non-constant switching boundaries and non-constant switched dynamics.

Since, the vehicle motions vary greatly depending on the region of interaction, this

creates a very complex system given that the boundaries, and the forces within each

region, are state and control dependent.

Much of the above mentioned complexity is due to the inclusion of realistic

physical effects such as the planing associated with shifted non-cylindrical cavities,

an aspect unique to this dissertation work. By using these shifted non-cylindrical

cavities, similar qualitative changes were found as in previous supercavitating ve-

hicle studies. Similar stabilization techniques were also successful for inclusion in

the systems considered here. However, the values of equilibrium solutions and the

parameter values at which qualitative changes experienced by them occur, differ for

the non-cylindrical cavity case. Hence, the inherent vehicle motions when including

these effects can be distinctly different.

Additional observations have been made by generating a preliminary vehicle
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motion model for partially cavitating vehicles. This model is meant to be the first

step towards modeling full vehicle missions that include cavity growth and collapse.

For small cavities, it has been found that the planing is insufficient to support the

rear of the vehicle. Furthermore, the use of passive fin input which supports the

vehicle for the supercavitating case, is not necessarily capable of rejecting transient

motions that move the vehicle away from a straight and level flight. Linear fin

feedback is shown to work well in conjunction with the linear cavitator feedback,

and active fin inputs may be necessary for sustaining partial cavity flight.

A full representation of the derivation of the immersion depth, and immersion

rate terms used in the planing force calculation have also been given in this work.

These terms have been presented in a somewhat arbitrary manner in much of the

previous research. This full derivation provides a basis for properly accounting for

the effects of vehicle motions and body velocities into the cavity, creating damping-

like contributions in the planing force formulation. This is a departure from the

previous steady planing assumption based studies, which form a vast majority of

the previous literature; in them, one only considers planing forces due to the relative

vehicle-cavity positions. The complete representation of the immersion terms also

allows for a proper handling of the cavity time-delay effect (in this case for cylindrical

cavities). In this work, the delay is found to have a stabilizing effect for particular

values of cavitation numbers.

A combined inner-loop and outer-loop control scheme is applied with suc-

cess for the maneuvering studies. Here, fast acting instabilities are rejected by a

feedback inner-loop while a numeric optimal control derived outer-loop guides the
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vehicle through a desired maneuver. For complicated supercavitating vehicle system

maneuvers, the best results are provided by utilizing a penalty method (to account

for the constraints) along with a simple unconstrained search algorithm. This is due

to the highly complicated feasible domain generated by dynamic constraints. Direct

integration techniques, rather then boot-strapping techniques are required, since the

system dynamics differed greatly depending on operating conditions. Maneuvers are

generated for cylindrical, shifted non-cylindrical, six degree-of-freedom systems, and

impacting models. All maneuvers have been performed at speeds where there were

tight cavity-body clearances, and planing is dominant during the motion. Much of

this work can be extended for use with other non-smooth systems.

6.2 Recommendations for Future Work

There are many direct extensions possible from this body of work. Full mis-

sion simulation by using the partial cavitation model is still an open avenue. The

main limitation for this line of work is the availability of accurate partial cavitation

models, which in particular should include non-steady cavity growth and collapse.

The numeric optimal control approach outlined for maneuvering should work well

for developing optimal outer-loop commands for these full mission simulations. The

six degree-of-freedom model is also another direction for expansion. Out of plane

maneuvers with multiple axis cavitator actuation can be considered. The non-

cylindrical cavities accounting for delay affects have also not been considered. This

may greatly complicate the computation, since multiple delays accounting for cav-
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ity positions all along the planing area must be tracked. Additional physical effects

such as gravity effects on the cavity should also be considered, since as shown, the

cavity shape can play a significant role in determining the system dynamics. The

approach used to determine the non-cylindrical planing forces in this work is gen-

eralizable to other cavity models that are to account for realistic physical effects.

Actuator dynamics, specifically actuator rate limitations, has not been included in

this work, but can be incorporated into the numeric optimal control approach. The

maneuvering studies can also be extended to a broad range of non-smooth vehicle

systems, including hypersonic flight vehicles.
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Appendix A

Six Degree-of-Freedom Model

A six degree-of-freedom (DOF) model is generated to consider general flight

dynamics modeling. In this model, all small angle assumptions related to the dy-

namics are removed, and the vehicle speed is no longer considered to be constant.

For supercavitating vehicle systems, as with many flight systems, the force defini-

tions, position vectors, and control surface rotations are conveniently described in

local coordinate systems. An Euler angle approach is utilized to track several coor-

dinate systems and their relationships to an inertial reference frame. This approach

closely mimics the one used in previous literature [13].

A.1 General Approach

An inertial reference system with made up of unit vectors < ê1, ê2, ê3 > is

defined. A moving reference frame that is attached to the body CG and aligned

along the body is defined with unit vectors < b̂1, b̂2, b̂3 >, as shown in Figure A.1. By

using the body coordinate system, the locations to the control surfaces are simply

defined. Additionally, the vectors defining the forces and moments can easily be

resolved and applied within this reference system (similar to the moving coordinate

system in the dive-plane model).

The Euler angle relationships between the differing coordinate systems used
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Figure A.1: Diagram of inertial and body reference frames.

in this work follow the ZY X convention. An example of transforming from the

inertial frame < ê1, ê2, ê3 >, to the body frame < b̂1, b̂2, b̂3 >, is shown in Figure

A.2. The first rotation is about ê3 axis with angle Ψ, generating the intermediate

frame < ê1
′, ê2

′, ê3
′ >. The second rotation is about b̂2

′
with angle Θ, generating the

intermediate frame < ê1
′′, ê2

′′, ê3
′′ >. The final rotation is about ê1

′′ with angle Φ,

to the body fixed frame. The rotation matrix [Re→b] that defines the transformation

from the inertial to body reference frame can then be expressed as a chain of rotation

matrixes as shown in Eq. (A.1).
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Figure A.2: ZY X rotation order used for Euler angle relationships.



b̂1

b̂2

b̂3


=



1 0 0

0 cosΦ sinΦ

0 −sinΦ cosΦ





cosΘ 0 −sinΘ

0 1 0

sinΘ 0 cosΘ





cosΨ sinΨ 0

−sinΨ cosΨ 0

0 0 1





ê1

ê2

ê3



= [Re→b]



ê1

ê2

ê3


(A.1)

The cavitator reference frame is one that follows the orientation of the cavitator

as shown in Figure A.3. The cavitator is constrained to only one control actuation

angle δc about the b̂2 or ĉ2, axis. So the cavitator reference frame can be described

by a single rotation from the body reference frame as shown in Eq. (A.2).



ĉ1

ĉ2

ĉ3


=



cosδc 0 −sinδc

0 1 0

sinδc 0 cosδc





b̂1

b̂2

b̂3


(A.2)

The fin reference frames can be represented as shown in Figure A.4. For each

fin, f̂1 is oriented forward along the fin, and f̂2 extends out along the fin axis. Two
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Figure A.3: Diagram of cavitator reference frame.

Figure A.4: Diagram of fin reference frames.

successive rotations define the fin reference frame, first, a sweepback angle rotation

about the positive f̂3 axis, and a control angle δf rotation along the fin axis, f̂2. Each

fin is associated with a unique transformation between the body and fin reference

frames.
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Figure A.5: Velocity direction shown with respect to a local coordinate system

< x̂1, x̂2, x̂3 >.

A.2 Fin Forces

The velocity at any point can be calculated by using rigid body kinematics.

This velocity can then be expressed in any of the local reference frame basis by

using the proper transformation matrixes. An example of a velocity vector shown

with respect to some generic reference system, < x̂1, x̂2, x̂3 >, is shown in Figure

A.5. The velocity can be resolved in the local reference frame unit vecotrs as V⃗ =

ux̂1+vx̂1+wx̂1. The individual slip angles α and β can then be expressed according

to Eqs. (A.3)-(A.4). Furthermore, a transformation from the local reference frame

to a frame aligned along the velocity direction, can be described by two rotations

about the slip angles α and β. The transformation matrix can be described by Eq.

(A.5). The slip angles are important in determining the forces generated by the

control surfaces.
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Figure A.6: Velocity direction at a fin.

tan(α) =
w

u
(A.3)

sin(β) =
−v

∥V ∥
(A.4)



ĝ1

ĝ2

ĝ3


=



CαCβ −Sβ SαCβ

CαSβ Cβ SαSβ

−Sα 0 Cα





x̂1

x̂2

x̂3


(A.5)

The fin force is determined by using a simplified calculation. The fins are

modeled as only generating lift and drag forces. A fin diagram and it’s local velocity

vector are shown in Figure A.6. The velocity at the fin can be calculated in the

body reference frame according to Eq. (A.6), as the sum of the velocity due to the

motion of the CG, along with the velocity due to rotation of the body (r⃗bf represents

the vector to the fin from the body CG in the body reference system). The velocity

in the fin reference system can then be represented by a transformation as shown in

Eq. (A.7).
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V⃗ b
f = V⃗ b

cg + ω⃗b × r⃗bf (A.6)

V⃗ f
f = [Rb→f ]V⃗

b
f (A.7)

From the expression for V⃗ f
f , the slip angles α and β can be calculated from

Eqs. (A.3)-(A.4), and the rotation matrix [Rg→f ] can be generated. The lift and

drag forces are taken as only functions of the angle of attack α and they are defined

according to Eqs. (A.8)-(A.9). The lift and drag forces for a control surface are

generally defined with respect to the relative fluid velocity direction as shown in

Figure A.7. Therefore the lift and drag forces can be directly represented in the

velocity reference frame, and the overall force of the fin can be expressed according

to Eq. (A.10), when transformed back into the body reference frame.

fdrag =
1

2
ρ∥V ∥2cd|α| (A.8)

flift =
1

2
ρ∥V ∥2clα (A.9)

F⃗ b
fin = [Rf→b][Rg→f ]



−fdrag

0

−flift



g

(A.10)

A.3 Cavitator Force

The cavitator force is calculated somewhat differently due to the cavitation. A

diagram of the orientation of the lift and drag forces for the cavitator with respect to
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Figure A.7: Lift and drag forces on a control surface with respect to the relative

fluid velocity direction.

the relative fluid velocity direction are shown in Figure A.8. Through experimental

data, for a cavitating disc, it was found that the forces on the cavitator were pre-

dominantly due to pressure [18]. This means that the lift to drag ratio follows the

relationship fl/fd ≈ tan(αc), or that the force is predominantly along the direction

perpendicular to the wetted face of the cavitator. From experimental results, the

coefficient of drag for flow along the axial direction of a disc cavitator is found to

follow a relationship according to Eq. (A.11). So the overall cavitator force can be

represented as given in Eq. (A.12), where cos(αc) =
uc

∥Vc∥ . The cavitator force fc is

applied along the axial direction of the cavitator, so the vector representation of the

cavitator force in the body reference system can is expressed as in Eq. (A.13).

Cd(σ, 0) = CD0(1 + σ) (A.11)

fc =
1

2
ρAc∥V ∥2cd(σ, 0)cos(αc) (A.12)
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Figure A.8: Lift and drag forces for a cavitator with respect to the relative fluid

velocity direction.

F⃗ b
cav = [Rc→b]



−fc

0

0



c

(A.13)

A.4 Cavity and Planing Force

Since various speeds are considered in the six DOF model, a closed form cav-

ity model is utilized for faster generation of cavity shapes. A cylindrical cavity

assumption (without cavity shift effects) is used for simplicity. The cavity shape

is predicted by using a semi-empirical closed form solution formulated in reference

[31]. As presented in Chapter 3, the cavity radius at a point along the cavity can

be estimated by using Eq. (A.14). Here, again x represents the length from the

cavitator, and dc represents the cavitator diameter. An entire cavity profile can be

generated by evaluating Rc at several points. Alternatively, as carried out here, an

approximate cylindrical cavity can be generated by utilizing the cavity radius at

x = L.
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dmax = dc
√
0.82(1 + σ)/σ

lm = dc/2(1.92/σ − 3)

k1 = 1.92(0.82(1 + σ)/σ)−
1
2

k2 = (x · dc − dc)/lm

Rc(x) = dmax/2
√
1− (1− k2

1)|1− k2|2/.85 (A.14)

The planing formulations presented in the previous chapters are for planing in

two dimensions. Since the body and cavity are both bodies of revolution, and both

axes share a common point (the nose of the vehicle), the planing force can still be

considered in two dimensions if an appropriate plane of planing is chosen. The plane

of planing is the plane in which the vehicle immersion (when present) is symmetric,

and hence, the two dimensional planing models are valid. This is the plane defined

by the cavity and body axis (or the velocity direction and body axis). A diagram

illustrative of this relationship is shown in Figure A.9. Here, the rotated planing

frame < p̂1, p̂2, p̂3 > is defined with, p̂1 = b̂1, p̂2 = p̂1×V⃗c

∥V⃗c∥
, and p̂3 = p̂1 × p̂2. The

planing force is along the p̂3 direction with F⃗plane = fpp̂3, where fp is the planing

force calculated by using the cylinder-on-cylinder Paryshev formulation presented

in Eq. (2.21).

134



Figure A.9: Plane of planing defined by cavity axis (or velocity direction) and body

axis.

A.5 Equations of Motion

The system has twelve states. The states considered are the body rotation

angles



Ψ

Θ

Φ


, the location of the CG



x

y

z



e

, and the local velocities and rotation

rates (in body reference system)



u

v

w



b

and



p

q

r



b

. The propagation of the

location coordinates can be expressed with the velocity as shown in Eq. (A.15). The

local angular velocity is ω⃗b, and can be expressed in terms of the body rotation angle

rates as given in Eq. (A.16). By utilizing transformations from the intermediate

reference frames, the relationship between the body rotation angle rates and the

angular velocities can be generated as shown in Eq. (A.17).
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

ẋ

ẏ

ż


= [Rb→e]



u

v

w


(A.15)

ω⃗b = pb̂1 + qb̂2 + rb̂3 = Ψ̇ê3
′ + Θ̇ê2

′′ + Φ̇ê1
′′′ = Ψ̇ê3 + Θ̇ê2

′ + Φ̇b̂1 (A.16)



p

q

r


=



−SΘ 0 1

CΘSΦ CΦ 0

CΘCΦ −SΦ 0





Ψ̇

Θ̇

Φ̇


(A.17)

By applying Newton’s and Euler’s principles, the sum of the forces and the

sum of the moments can be expressed as shown in Eqs. (A.18)-(A.19).

∑
F⃗ b = m





u̇

v̇

ẇ



b

+ ω⃗b × V⃗ b


(A.18)

∑
M⃗ b = [Icg]



ṗ

q̇

ṙ



b

+ ω⃗b × ([Icg]ω⃗
b) (A.19)

The forces and moments that act upon the body come from the planing, the

four fins, the cavitator, gravity, and the propulsive force Fprop.
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Appendix B

Matlab Code

B.1 Partially Cavitating Vehicle Dynamics

%2/9/2009

%This code i s se tup so t ha t the matrix a l g e b ra f o r the

equa t ions o f motion

%are done wi th in the ode func t ion . This i s r e qu i r ed f o r the

p a r t i a l c a v i t y

%s imu la t i on s s ince the added mass terms cannot be s imply

added as f o r c e s

%s ince they a f f e c t a c c e l e r a t i o n ( i n e r t i a matrix becomes

dynamic ) .

clear ;

close a l l ;

clc ;

global R L Rn L1 V M xcg Iyy rho T n g gcounter

i n d i v i d u a l s h i f t ycptrunc xcptrunc Lc r1 ;

gcounter=0;
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%%%%%%%%%BODY/RUN PARAMETERS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g = 9 . 8 1 ;

m = 2 ; %dens i t y r a t i o

Rn = 0 . 0191 ;

R = 0 . 0508 ;

L = 1 . 8 ;

sigma=0.066925;

%sigma=0.046; %or 0.043 f o r us ing scax ( supercav ) to c r ea t e

p a r t i a l c a v i t y shape

n = 0 . 5 ;

Cx0 = 0 . 8 2 ;

Cx = Cx0∗(1+sigma ) ;

V = sqrt (0 .03∗75ˆ2/ sigma ) ;

rho=1000;

L1=L/3 ; %leng t h o f the con i ca l s e c t i on o f the body

L2=L−L1 ; %leng t h o f c y l i n d r i c a l s e c t i on o f body
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r1=0; %rad ius o f the f r on t o f the body

M=m∗ rho∗pi ∗(Rˆ2∗L2+(Rˆ3−r1 ˆ3) /(3∗ (R−r1 ) )∗L1) ;

xcg=1/4∗(−3∗Rˆ2∗L1ˆ2+2∗R∗L1ˆ2∗ r1+r1 ˆ2∗L1ˆ2+6∗Rˆ2∗Lˆ2) /(3∗R

ˆ2∗L−2∗Rˆ2∗L1+L1∗R∗ r1+L1∗ r1 ˆ2) ;

xcg=−xcg ;

Iyy=1/60∗m∗ rho ∗(3∗Rˆ4+3∗ r1∗Rˆ3+12∗Rˆ2∗L1ˆ2+3∗Rˆ2∗ r1ˆ2+6∗R∗ r1

∗L1ˆ2+3∗R∗ r1ˆ3+2∗ r1 ˆ2∗L1ˆ2+3∗ r1 ˆ4)∗pi∗L1+1/12∗pi∗Rˆ2∗(L−

L1)∗ rho∗m∗(3∗Rˆ2+(L−L1) ˆ2)+pi∗Rˆ2∗(L−L1)∗ rho∗m∗(1/2∗L

+1/2∗L1) ˆ2 ;

T=.5∗ rho∗pi∗Rnˆ2∗V∗Cx ;

%%%%%%%%%%%%%%CAVITY SHAPE MODEL

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%data f o r i n i t i a l c a v i t y l e n g t h vs . c a v i t a t i o n number to be

converged upon

%fo r scax model

s i gma f i t =[0.03649 0.039992 0.042468 0.034994 0.03196

0.029983 0.027951 0.025967 0.024977 0 . 0 4 5 ] ;

l e n g t h f i t =[50.934422 45.790226 42.768097 53.378616 59.052101

63.461826 68.921989 74.727722 78.073776 40 . 0 3 1219 ] ;
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cav len=spline ( s i gma f i t , l e n g t h f i t , sigma ) ;

f i d=fopen ( ’ body . dat ’ , ’w ’ ) ;

fpr intf ( f i d , ’ body . dat\nCONE\nC\nD\n ’ ) ;

fpr intf ( f i d , ’ 32\ t16\t−>MBOD, MEND\n ’ ) ;

fpr intf ( f i d , ’ 90 .0\ t0 .5\ t−> HALF CONE ANGLE (DEGREES) , HEIGHT

OF ENDPLATE\n ’ ) ;

fpr intf ( f i d , [ num2str( cav len ) ’\ t0 .05\ t−> CAVITY LENGTH,

CAVITY NODE FACTOR (CJPT) TO DEFINE # OF NODES IN CAVITY\

n ’ ] ) ;

fpr intf ( f i d , ’ 1\ t−> ITERATE ON CAVITATION NUMBER: 1=ITERATE,

0=NOT ITERATE\n ’ ) ;

fpr intf ( f i d , [ num2str( sigma ) ’\ t5 . 0E−5\t−> CAVITATION NUMBER

TO BE CONVERGED ON,CONVERGENCE CRITERION\n ’ ] ) ;

fpr intf ( f i d , ’ 1\ t0 .5\ t−> 1−IF NON−DIMENSIONAL WITH BASE

DIAMETR, BASE RADIUS OTHERWISE\n ’ ) ;

fpr intf ( f i d , ’ 2 . 0E−4\t−> EPS (EPSILON) f o r cav i ty l ength \n ’ ) ;

fpr intf ( f i d , ’ 0\ t−> GRAVITY EFFECT: 1=ADD, 0=DO NOT ADD\n ’ ) ;

fpr intf ( f i d , ’ 104 .0\ t−> FROUDE NUMBER\n ’ ) ;

fpr intf ( f i d , ’ 0\ t−> ANGLE OF ATTACK EFFECT: 1=ADD, 0=DO NOT

ADD\n ’ ) ;

fpr intf ( f i d , ’ 10\ t−> ANGLE OF ATTACK (IN DEGREES)\n ’ ) ;
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fpr intf ( f i d , ’ 3 . 0E7\t−> REYNOLDS NUMBER’ ) ;

fc lose ( f i d ) ;

%! scax . exe

%f i d=fopen ( ’ c on t r o l . x l s ’ ) ; %use t h i s incase o f us ing scax

f i d=fopen ( ’ book1 . csv ’ ) ; %data from prev ious run f o r pscax

sigma=0.066925;

Cd=str2num( fget l ( f i d ) ) ;

Mbod=str2num( fget l ( f i d ) ) ;

Mcav=str2num( fget l ( f i d ) ) ;

counter=1;

while (1 )

r e ad s t r=fget l ( f i d ) ;

i f r e ad s t r˜=−1

t e s t e r ( counter , : )=str2num( r e ad s t r ) ;

counter=counter+1;

else

break

end

end
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fc lose ( f i d ) ;

xpos=t e s t e r ( : , 1 ) ;

ypos=t e s t e r ( : , 2 ) ;

xcp=[xpos (Mbod+1) ; t e s t e r (Mbod+1:Mcav+Mbod, 3 ) ] ; %adds f i r s t

x , y va lue to the c a v i t y s e c t i on o f xcp/ycp data

ycp=[ypos (Mbod+1) ; t e s t e r (Mbod+1:Mcav+Mbod, 4 ) ] ;

%xcp=[x (Mbod+1) ; xcp ] ;

%ycp=[y (Mbod+1) ; ycp ] ;

normL=L/(Rn∗2) ; %f i nd s the normal ized va lue

f o r L

Lc=max( xcp )∗Rn∗2 ;

i f L<Lc %only t runca t e s i f c a v i t y l e n g t h

>L

index=find ( xcp<normL , 1 , ’ l a s t ’ ) ; %f i nd s the l a s t x

po in t index t ha t i s < L

xcptrunc=[xcp ( 1 : index ) ; normL ] ; %in t e g r a t e s on ly

up to l e n g t h = L

ycptrunc=[ycp ( 1 : index ) ; interp1 ( xcp , ycp , normL) ] ;

else

xcptrunc=xcp ;
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ycptrunc=ycp ;

end

%%%%%%%CODE FOR MANUALLY MODIFIED CAVITY SHAPES %necessary

when us ing

%%%%%%%scax model to c r ea t e p a r t i a l c a v i t y

i f ycptrunc (end)∗Rn∗2 < R

index=find ( ( ycptrunc∗Rn∗2)>R,1 , ’ l a s t ’ ) ;

xcptrunc=xcptrunc ( 1 : index ) ;

ycptrunc=ycptrunc ( 1 : index ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i n d i v i d u a l s h i f t=−Cd/8∗ cumtrapz ( xcptrunc , 1 . / ( ycptrunc . ˆ 2 ) ) ;

%%%%%%ODE%%%%%%INTEGRATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d e l t a t =0.0001; x i n i t =[0.1 0 .2 0 0 ] ; i =1;

x i n i t =[0 0 0 0 ] ;

for t1=0: d e l t a t : 1

[ t s t a t e , x s t a t e ] = ode45 (@ODEfunPC mxinside 020809 , [
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t1 t1+d e l t a t ] , x i n i t ) ;

x ( i , : )=x s t a t e (end , : ) ; t (1 , i )=t s t a t e (end) ;

x i n i t=x s t a t e (end , : ) ;

%s i z e ( t s t a t e )

clear x s t a t e t s t a t e ;

i=i+1

end

%

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

f igure (1 ) ;

subplot ( 2 , 2 , 1 ) ; plot ( t , x ( : , 1 ) ) ; ylabel ( ’ depth z (m) ’ ) ; grid on ;

xlabel ( ’Time ( s ) ’ ) ;

subplot ( 2 , 2 , 2 ) ; plot ( t , x ( : , 2 ) ) ; ylabel ( ’ v e l o c i t y w (m/ s ) ’ ) ;

grid on ; xlabel ( ’Time ( s ) ’ ) ;

subplot ( 2 , 2 , 3 ) ; plot ( t , x ( : , 3 ) ) ; ylabel ( ’ p i t ch ang le \ theta (

rad ) ’ ) ; grid on ; xlabel ( ’Time ( s ) ’ ) ;

subplot ( 2 , 2 , 4 ) ; plot ( t , x ( : , 4 ) ) ; ylabel ( ’ p i t ch ra t e q ( rad/ s ) ’ )

; grid on ; xlabel ( ’Time ( s ) ’ ) ;

function dxdt = ODEfunPC mxinside 020809 ( t , x )

% 4− s t a t e model from Dz i e l s k i & Kurdila ’ s paper
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% x=[ z w th e t a q ]

global R L Rn L1 V M xcg Iyy rho T n g A B C D gcounter

i n d i v i d u a l s h i f t ycptrunc xcptrunc Lc r1 ;

%%%CREATING THE MX’ s FOR THE EOM%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a11=T∗(−1−n) ;

a12=M∗V−T∗n∗L ;

a21=−T∗n∗L ;

a22=−M∗xcg∗V−T∗n∗Lˆ2 ;

b11=−T∗V∗n ;

b12=−T∗V;

b21=−T∗V∗n∗L ;

b22=0;

i f Lc<=L1 %cav i t y ends on forebody ( which i s

t runca ted cone )

c1=M∗g−rho∗g∗pi (Rˆ2∗(L−L1)+1/3∗(L1−Lc ) ∗(Rˆ3−((R−r1 ) /L1∗

Lc+r1 ) ˆ3) /(R−((R−r1 ) /L1∗Lc+r1 ) ) ) ;

c2=−M∗g∗xcg−rho∗g∗(1/4∗pi ∗(R−r1 ) ˆ2/L1ˆ2∗(L1ˆ4−Lcˆ4)+2/3∗

pi∗ r1 ∗(R−r1 ) /L1∗(L1ˆ3−Lcˆ3)+1/2∗pi∗ r1 ˆ2∗(L1ˆ2−Lcˆ2)

+1/2∗pi∗Rˆ2∗(Lˆ2−L1ˆ2) ) ; %xcg i s nega t i v e
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lamda22=−(c1−M∗g ) /g ;

lamda26=−(c2+M∗g∗xcg ) /g ;

lamda66=rho ∗(1/5∗pi ∗(R−r1 ) ˆ2/L1ˆ2∗(L1ˆ5−Lcˆ5)+1/2∗pi∗ r1

∗(R−r1 ) /L1∗(L1ˆ4−Lcˆ4)+1/3∗pi∗ r1 ˆ2∗(L1ˆ3−Lcˆ3)+1/3∗pi

∗Rˆ2∗(Lˆ3−L1ˆ3) ) ;

e l s e i f Lc<=L %cav i t y ends on rear body ( c y l i n d e r )

c1=M∗g−rho∗g∗pi∗Rˆ2∗(L−Lc ) ;

c2=−M∗g∗xcg−.5∗ rho∗g∗pi∗Rˆ2∗(Lˆ2−Lcˆ2) ;

lamda22=−(c1−M∗g ) /g ;

lamda26=−(c2+M∗g∗xcg ) /g ;

lamda66=1/3∗pi∗ rho∗Rˆ2∗(Lˆ3−Lcˆ3) ;

else %cav i t y ends pas t body

c1=M∗g ;

c2=−M∗g∗xcg ;

lamda22=0;

lamda26=0;

lamda66=0;

end

d1=1;

d2=L ;
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%L1p=rho∗ p i ∗Rˆ2;

M0=[M −M∗xcg;−M∗xcg Iyy ] ;

A0=[a11 a12 ; a21 a22 ] ;

B0=[b11 b12 ; b21 b22 ] ;

C0=[c1 ; c2 ] ;

D0=[d1 ; d2 ] ;

%Added mass changes%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M0=[M+lamda22 −M∗xcg+lamda26;−M∗xcg+lamda26 Iyy+lamda66 ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A2=M0\A0 ;

B2=M0\B0 ;

C2=M0\C0 ;

D2=M0\D0 ;

a22=A2(1 , 1 ) ; a24=A2(1 , 2 ) ; a42=A2(2 , 1 ) ; a44=A2(2 , 2 ) ;

b21=B2(1 , 1 ) ; b22=B2(1 , 2 ) ; b41=B2(2 , 1 ) ; b42=B2(2 , 2 ) ;

c2=C2(1 , 1 ) ;

d2=D2(1 , 1 ) ; d4=D2(2 , 1 ) ;
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A=[0 1 −V 0 ; 0 a22 0 a24 ; 0 0 0 1 ; 0 a42 0 a44 ] ;

B=[0 0 ; b21 b22 ; 0 0 ; b41 b42 ] ;

C=[0; c2 ; 0 ; 0 ] ;

D=[0; d2 ; 0 ; d4 ] ;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C=[0;C2(1 ) ; 0 ; C2(2 ) ] ; %now the second term in C2 i s not = 0 ,

e s p e c i a l l y wi th the bouyancy term , so i t needs to be

inc luded un l i k e b e f o r e

w = x ( 2 , : ) ;

d e l t a e = .12+.3∗x ( 4 , : ) ; %f i n ang l e wrt body

%d e l t a e =.1;% pa s s i v e f i n input

%d e l t a c = −15∗x ( 1 , : )+30∗x ( 3 , : ) +0.3∗x ( 4 , : ) ; ( Kurdi la in JVC)

d e l t a c = 15∗x ( 1 , : )−30∗x ( 3 , : ) −0.3∗x ( 4 , : ) ;%−2∗x ( 2 , : ) /V; %

cor r e c t i on by Guojian Lin

alphacav=w/V+de l t a c ;
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alpha=atan (w/V) ;

i f (w>0)

cav i t y co rd s=abs(−ycptrunc+i n d i v i d u a l s h i f t ∗ sin ( alphacav )∗

cos ( alphacav ) ) ∗2∗Rn; %unnormalized c a v i t y r a d i i

a long p lan ing l o c a t i o n

else

cav i t y co rd s=abs ( ycptrunc+i n d i v i d u a l s h i f t ∗ sin ( alphacav )∗

cos ( alphacav ) ) ∗2∗Rn;

end

de l t a=abs ( ycptrunc ∗2∗Rn)−R; %ind i v i d u a l d e l t a s (

d i f f e r e n c e in rad ius o f c a v i t y vs body ) unnormalized

xcords=xcptrunc ∗2∗Rn; %unnormalized x p o s i t i o n s

bodycords=abs ( xcords ∗tan ( alpha ) )+R;

%re f i n i n g mesh only where p lan ing beg in s

index=find ( ( bodycords>cav i t y co rd s ) . ∗ ( xcords>max( xcords ) /3)

,1 ) ; %f i nd s f i r s t l o c a t i o n o f p lan ing o f the c y l i n d e r

par t o f the body

i f index>0 %i f p lan ing

xcordsnew=linspace ( xcords ( index−2) , xcords (end) ) ’ ;
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cav i t y co rd s=interp1 ( xcords , cav i tycords , xcordsnew ) ;

d e l t a=abs ( interp1 ( xcords , ycptrunc , xcordsnew ) ∗2∗Rn−R) ;

xcords=xcordsnew ; %xcords becomes

t runca ted to j u s t the p lan ing area

bodycords=abs ( xcords ∗tan ( alpha ) )+R;

end

hdepths=(bodycords−cav i t y co rd s ) . ∗ ( bodycords>cav i t y co rd s ) ;

%f i nd s immersion depths ( on ly where body i s p lan ing

)

i f index>0 %only does t h i s c a l c u l a t i o n i f p l an ing

for j =1: length ( xcords ) %requ i r e s ” f o r ” loop s ince

d e l t a+hdepths can =0 g i v i n g NaN

i f ( bodycords ( j )>cav i t y co rd s ( j ) ) %ca l c u l a t i o n

only where p lan ing (on now trunca ted xcords )

in tegrand ( j )=2∗de l t a ( j ) ˆ2 . / ( de l t a ( j )+hdepths ( j ) )

ˆ3 ;

else

in tegrand ( j )=0;

end

end

else
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in tegrand ( 1 : length ( xcords ) )=0;

end

hdots=V∗ sin (abs ( alpha )−atan ( d i f f ( cav i t y co rd s ) . / d i f f ( xcords ) )

) ;%cav i t y ang le = atan ( d i f f ( c a v i t y c o r d s ) ./ d i f f ( xcords ) )

FpnormNoncyl=−sum( d i f f ( cumtrapz ( xcords , integrand ’ ) ) .∗ hdots

. ˆ 2 ) ∗sign ( alpha ) ;

%t h i s DOES take in t o account the c a v i t y s l o p e . d i f f ( cumtrapz

) g i v e s the

%i n d i v i d u a l t r a p e z o i d a l areas , t h i s mu l t i p l i e d by hdot ˆ2

over t ha t

%pa r t i c u l a r area g i v e s the i n d i v i d u a l i n t e g r a l t o t a l s .

summed up g i v e s the

%en t i r e p lan ing f o r c e .

i f FpnormNoncyl˜=0

xp=−sum( d i f f ( cumtrapz ( xcords , integrand ’ . ∗ xcords ) ) .∗ hdots

.ˆ2∗ sign ( alpha ) ) . / FpnormNoncyl ;

else

xp=L ;
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end

gcounter=gcounter+1;

Fp=FpnormNoncyl∗pi∗ rho∗Rˆ2 ;

%in o r i g i n a l f o rmu la t ion the s e terms were accounted f o r

w i th in the D matrix

%and were t h e r e f o r e omit ted from the p lan ing force , in t h i s

formu la t ion the

%D matrix i s se tup to handle the un−normal ized p lan ing f o r c e

.

dxdt = A∗x+B∗ [ d e l t a e ; d e l t a c ]+C+D∗Fp . ∗ [ 1 1 1 ( xp ) /L ] ’ ;

B.2 Maneuvering with the Non-Cylindrical Planing Model

clear

clc

close a l l

sigma=0.03;

%preamble used to se tup a l l parameters needed f o r the

func t i on c a l l . i t
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%requ i r e s t ha t sigma be s p e c i f i e d in the workspace b e f o r e

c a l l i n g .

global Rcdot Rp R V L A B C D Rn Rc gcounter i n d i v i d u a l s h i f t

ycptrunc xcptrunc ;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g = 9 . 8 1 ;

m = 2 ;

Rn = 0 . 0191 ;

R = 0 . 0508 ;

L = 1 . 8 ;

%sigma = 0.0335 ; %0.035 or 0.03

%sigma=0.025;

%R=R∗1 .25 ;

%L=L∗1 . 1 ;
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n = 0 . 5 ;

Cx0 = 0 . 8 2 ;

Cx = Cx0∗(1+sigma ) ;

C = 1/2∗Cx∗Rnˆ2/Rˆ2 ;

V = sqrt (0 .03∗75ˆ2/ sigma ) ;

M0=[7/9 17∗L/36 ; 17∗L/36 11/60∗Rˆ2+133/405∗Lˆ 2 ] ;

A0=C∗V∗[(1−n) /m/L −n/m; −n/m −n∗L/m]+V∗ [ 0 7/9 ; 0 17∗L/3 6 ] ;

B0=C∗Vˆ2∗[−n/m/L 1/m/L ; −n/m 0 ] ;

C0=[7/9; 17∗L/36]∗ g ;

D0=[1/m/L ; 1/m] ;

D00=[1/m/L 0 ; 0 1/m/L ] ;

% cor r e c t i on by Guojian Lin

A0=C∗V∗[(−1−n) /m/L −n/m; −n/m −n∗L/m]+V∗ [ 0 7/9 ; 0 17∗L/3 6 ] ;

B0=C∗Vˆ2∗[−n/m/L −1/m/L ; −n/m 0 ] ;

A2=inv (M0)∗A0 ;

B2=inv (M0)∗B0 ;

C2=inv (M0)∗C0 ;

D2=inv (M0)∗D0 ;
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D22=inv (M0)∗D00 ;

%data f o r i n i t i a l c a v i t y l e n g t h vs . c a v i t a t i o n number to be

converged upon

%fo r scax model

s i gma f i t =[0.03649 0.039992 0.042468 0.034994 0.03196

0.029983 0.027951 0.025967 0.024977 0 . 0 4 5 ] ;

l e n g t h f i t =[50.934422 45.790226 42.768097 53.378616 59.052101

63.461826 68.921989 74.727722 78.073776 40 . 0 3 1219 ] ;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a22=A2(1 , 1 ) ; a24=A2(1 , 2 ) ; a42=A2(2 , 1 ) ; a44=A2(2 , 2 ) ;

b21=B2(1 , 1 ) ; b22=B2(1 , 2 ) ; b41=B2(2 , 1 ) ; b42=B2(2 , 2 ) ;

c2=C2(1 , 1 ) ;

d2=D2(1 , 1 ) ; d4=D2(2 , 1 ) ;

d21=D22 (1 , 1 ) ; d22=D22 (1 , 2 ) ; d41=D22 (2 , 1 ) ; d42=D22 (2 , 2 ) ;

A=[0 1 −V 0 ; 0 a22 0 a24 ; 0 0 0 1 ; 0 a42 0 a44 ] ;

B=[0 0 ; b21 b22 ; 0 0 ; b41 b42 ] ;

C=[0; c2 ; 0 ; 0 ] ;
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D=[0; d2 ; 0 ; d4 ] ;

K=[0 0 0 0 ; −15 0 30 0 . 3 ] ;

K=[0 0 0 0 ; 15 0 −30 −0 .3 ] ; % correc t ed by Guojian Lin

%A=A+B∗K;

%ca v i t y model in format ion

%sigma=.03∗75ˆ2/Vˆ2; %s p e c i f i c c a v i t a t o r data from

o r i g i n a l model

%c r ea t e s input f i l e f o r scax code

cav len=spline ( s i gma f i t , l e n g t h f i t , sigma ) ;

f i d=fopen ( ’ body . dat ’ , ’w ’ ) ;

fpr intf ( f i d , ’ body . dat\nCONE\nC\nD\n ’ ) ;

fpr intf ( f i d , ’ 32\ t16\t−>MBOD, MEND\n ’ ) ;

fpr intf ( f i d , ’ 90 .0\ t0 .5\ t−> HALF CONE ANGLE (DEGREES) , HEIGHT

OF ENDPLATE\n ’ ) ;

fpr intf ( f i d , [ num2str( cav len ) ’\ t0 .05\ t−> CAVITY LENGTH,

CAVITY NODE FACTOR (CJPT) TO DEFINE # OF NODES IN CAVITY\

n ’ ] ) ;

fpr intf ( f i d , ’ 1\ t−> ITERATE ON CAVITATION NUMBER: 1=ITERATE,

0=NOT ITERATE\n ’ ) ;

fpr intf ( f i d , [ num2str( sigma ) ’\ t5 . 0E−5\t−> CAVITATION NUMBER
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TO BE CONVERGED ON,CONVERGENCE CRITERION\n ’ ] ) ;

fpr intf ( f i d , ’ 1\ t0 .5\ t−> 1−IF NON−DIMENSIONAL WITH BASE

DIAMETR, BASE RADIUS OTHERWISE\n ’ ) ;

fpr intf ( f i d , ’ 2 . 0E−4\t−> EPS (EPSILON) f o r cav i ty l ength \n ’ ) ;

fpr intf ( f i d , ’ 0\ t−> GRAVITY EFFECT: 1=ADD, 0=DO NOT ADD\n ’ ) ;

fpr intf ( f i d , ’ 104 .0\ t−> FROUDE NUMBER\n ’ ) ;

fpr intf ( f i d , ’ 0\ t−> ANGLE OF ATTACK EFFECT: 1=ADD, 0=DO NOT

ADD\n ’ ) ;

fpr intf ( f i d , ’ 10\ t−> ANGLE OF ATTACK (IN DEGREES)\n ’ ) ;

fpr intf ( f i d , ’ 3 . 0E7\t−> REYNOLDS NUMBER’ ) ;

fc lose ( f i d ) ;

! scax . exe

f i d=fopen ( ’ c on t r o l . x l s ’ ) ;

Cd=str2num( fget l ( f i d ) ) ;

Mbod=str2num( fget l ( f i d ) ) ;

Mcav=str2num( fget l ( f i d ) ) ;

counter=1;

while (1 )

r e ad s t r=fget l ( f i d ) ;

i f r e ad s t r˜=−1
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t e s t e r ( counter , : )=str2num( r e ad s t r ) ;

counter=counter+1;

else

break

end

end

fc lose ( f i d ) ;

%{

Cd=0.85167;

Mbod=32;

Mcav=203;

load t e s t e r . txt

%}

xpos=t e s t e r ( : , 1 ) ;

ypos=t e s t e r ( : , 2 ) ;

xcp=[xpos (Mbod+1) ; t e s t e r (Mbod+1:Mcav+Mbod, 3 ) ] ; %adds f i r s t

x , y va lue to the c a v i t y s e c t i on o f xcp/ycp data

ycp=[ypos (Mbod+1) ; t e s t e r (Mbod+1:Mcav+Mbod, 4 ) ] ;

%xcp=[x (Mbod+1) ; xcp ] ;

%ycp=[y (Mbod+1) ; ycp ] ;

normL=L/(Rn∗2) ; %f i nd s the normal ized va lue
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f o r L

index=max( find ( xcp<normL) ) ;

xcptrunc=[xcp ( 1 : index ) ; normL ] ; %in t e g r a t e s on ly up

to l e n g t h = L

ycptrunc=[ycp ( 1 : index ) ; interp1 ( xcp , ycp , normL) ] ;

%sh i f t C o e f f=−Cd/8∗ t r ap z ( xcptrunc , 1 . / ( ycptrunc .ˆ2) ) ; %

normal ized s h i f t va lue w/o the s in ( a lpha )∗ cos ( a lpha ) term

%unshi f t edR=in t e rp1 ( xcp , ycp , normL) ;

i n d i v i d u a l s h i f t=−Cd/8∗ cumtrapz ( xcptrunc , 1 . / ( ycptrunc . ˆ 2 ) ) ;

%%%%%%%%%%%%%%%END PREAMBLE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global s x0 x f n m x f i ndex obs t co rd s ob s t r s lowest

l owes tho lde r

lowest=i n f ;

l owes tho lde r = [ ] ;

s =14;

m=2;

x0=[0 0 0 0 0 ] ’ ;

x f=[−20 0 0 0 8 0 ] ’ ;

x f i ndex =[1 5 ] ;

n=length ( x0 ) ;

159



u l im i t =[pi / 2 . 5 ] ;

ob s t co rd s=[−5 4 0 ] ;%coord ina te o f o b s t a c l e ( z , x )

ob s t r s = [ 6 . 5 ] ;

o b s t r s=ob s t r s . ˆ 2 ; %squares the rad ius f o r e a s i e r

comparison in func t i on

guessT=1.1;

gue s s c =0.6 ;

gue s s e =0;

guess=[ ones ( s , 1 ) ∗ gue s s e ; ones ( s , 1 ) ∗ gue s s c ; guessT ] ;

%data from prev ious run

opt ions=opt imset ( ’ Algorithm ’ , ’ i n t e r i o r−point ’ , ’MaxFunEvals ’

,80000 , ’TolCon ’ ,1 e−3) ;%for fmincon

opt ions=opt imset ( ’MaxFunEvals ’ ,10000) ;%for fminsearch /

fminunc

UB=[ones ( s∗m,1 ) ∗ u l im i t ; Inf ] ;

LB=[−ones ( s∗m,1 ) ∗ u l im i t ; 0 ] ;

%for l ooper =1:10

t ic
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%[ vars f v a l ]= fminsearch ( @ob j e c t i v e d i v ep l ane , guess ) , op t i ons

) ;

Ainput=[eye ( length ( guess ) ) ;−eye ( length ( guess ) ) ] ;

binput=[UB;−LB ] ;

for l oope r =1:4

[ vars f v a l ]= pat t e rn sea r ch ( @objec t ive d ivep lane , guess ,

Ainput , binput ) ;%, op t i ons ) ;

i f f va l <5

guess=vars ;

o b s t r s=(sqrt ( o b s t r s ) +.5) ˆ2 ;

else

break

end

end

toc

%guess=vars ;

%end

ob s t r s
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for i =1:m

u ( : , i )=vars ( ( i −1)∗ s+1: s∗ i ) ;

end

c on t r o l=u ;

T=vars (end) ;

c on t r o l

T

d e l t a e = [ ] ; d e l t a c = [ ] ;

[ i n t t , i n t x ] = ode45 ( @dive plane noncyl , [ 0 T/ s ] , x0 , [ ] ,

c on t r o l ( 1 , : ) ) ;

d e l t a e =[ d e l t a e ; ones ( length ( i n t t ) , 1 ) ∗ c on t r o l ( i , 1 ) ] ;

d e l t a c =[ d e l t a c ; ones ( length ( i n t t ) , 1 ) ∗ c on t r o l ( i , 2 ) ] ;

t imes=T/ s :T/ s :T;

for i =2: length ( t imes )

[ t , x ] = ode45 ( @dive plane noncyl , [ t imes ( i −1) t imes ( i ) ] ,

i n t x (end , : ) ’ , [ ] , c on t r o l ( i , : ) ) ;

i n t t =[ i n t t ; t ] ;

i n t x =[ i n t x ; x ] ;

d e l t a e =[ d e l t a e ; ones ( length ( t ) , 1 ) ∗ c on t r o l ( i , 1 ) ] ;
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d e l t a c =[ d e l t a c ; ones ( length ( t ) , 1 ) ∗ c on t r o l ( i , 2 ) ] ;

end

K=[0 0 0 0 ; 0 0 0 −0 .9 ] ; %inner loop con t r o l law

t o t c o n t r o l =([ de l t a e ’ ; d e l t a c ’ ]+K∗ i n t x ( : , [ 1 2 3 4 ] ) ’ ) ’ ; %

makes columns wi th [ d e l t a e t o t , d e l t a c t o t ]

d e l t a c t o t=t o t c o n t r o l ( : , 2 ) ;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f igure (1 )

plot ( i n t x ( : , 5 ) , i n t x ( : , 1 ) ) ; xlabel ( ’ x (m) ’ ) ; ylabel ( ’ z (m) ’ ) ;

hold on

[ t i nne ron ly , x inne ron ly ] = ode45 ( @dive plane noncyl , [ 0 T] ,

x0 , [ ] , zeros (m, 2 ) ) ;

plot ( x inne ron ly ( : , 5 ) , x inne ron ly ( : , 1 ) , ’−−b ’ ) ; legend ( ’ i nne r

and outer loop ’ , ’ i nne r loop only ’ )

%p l o t s the o b s t a c l e s

for i =1: length ( o b s t r s )

xc=obs t co rd s ( i , 2 ) ;
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zc=obs t co rd s ( i , 2 ) ;

rad=sqrt ( o b s t r s ( i ) ) ;

xes=linspace(−rad , rad ) ;

z p l u s=sqrt ( radˆ2−xes . ˆ 2 )+obs t co rd s ( i , 1 ) ;

z minus=−sqrt ( o b s t r s ( i )−xes . ˆ 2 )+obs t co rd s ( i , 1 ) ;

plot ( xes+xc , z p lus , ’ r ’ ) ; plot ( xes+xc , z minus , ’ r ’ ) ;

end

legend ( ’ i nne r and outer loop ’ , ’ i nne r loop only ’ , ’ ob s t a c l e ’ ) ;

%p l o t t i n g the body o r i e n t a t i o n s

indexes=[ find ( i n t t>i n t t (end) ∗ . 2 0 , 1 ) find ( i n t t>i n t t (end)

∗ . 4 0 , 1 ) find ( i n t t>i n t t (end) ∗ . 6 5 , 1 ) length ( i n t t ) ] ;

e f =3;%enlargement f a c t o r

L=L∗ e f ;R=R∗ e f ;

xcordbody=[ linspace (0 ,−L , 4 ) linspace(−L, 0 , 4 ) ] ;

zcordbody=[0 R R R −R −R −R 0 ] ;

for i =1: length ( indexes )

theta=in t x ( indexes ( i ) , 3 ) ;

xpos=in t x ( indexes ( i ) , 5 ) ;

zpos=in t x ( indexes ( i ) , 1 ) ;
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xcord=xpos+xcordbody∗cos(− theta )−zcordbody∗ sin(− theta ) ;

zcord=zpos+zcordbody∗cos(− theta )−(−xcordbody )∗ sin(− theta

) ;

patch ( xcord , zcord , ’ r ’ )

w = in t x ( indexes ( i ) , 2 ) ;

alphacav=w/V+d e l t a c t o t ( indexes ( i ) ) ;

cav i tyco rd s top=(ycptrunc+i n d i v i d u a l s h i f t ∗ sin ( alphacav )∗

cos ( alphacav ) ) ∗2∗Rn;

cavitycordsbottom=(−ycptrunc+i n d i v i d u a l s h i f t ∗ sin (

alphacav )∗cos ( alphacav ) ) ∗2∗Rn;

xcords=−xcptrunc ∗2∗Rn;

cav i tyco rd s top=cav i tyco rds top ∗ e f ; cav itycordsbottom=

cavitycordsbottom ∗ e f ; xcords=xcords ∗ e f ;

cavxt=xpos+xcords ∗cos(− theta+w/V)−cav i tyco rd s top ∗ sin(−

theta+w/V) ;

cavzt=zpos+cav i tyco rd s top ∗cos(− theta+w/V)−(−xcords )∗ sin

(− theta+w/V) ;

cavxb=xpos+xcords ∗cos(− theta+w/V)−cavitycordsbottom ∗ sin

(− theta+w/V) ;
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cavzb=zpos+cavitycordsbottom ∗cos(− theta+w/V)−(−xcords )∗

sin(− theta+w/V) ;

plot ( cavxt , cavzt , ’ g ’ ) ; plot ( cavxb , cavzb , ’ g ’ )

end

L=L/ e f ;R=R/ e f ;

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f igure (2 ) ;

subplot ( 2 , 2 , 1 ) ; plot ( i n t t , i n t x ( : , 1 ) ) ; ylabel ( ’ depth z (m) ’ ) ;

grid on ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 2 , 2 ) ; plot ( i n t t , i n t x ( : , 2 ) ) ; ylabel ( ’ v e l o c i t y w (m/

s ) ’ ) ; grid on ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 2 , 3 ) ; plot ( i n t t , i n t x ( : , 3 ) ) ; ylabel ( ’ p i t ch ang le \

theta ( rad ) ’ ) ; grid on ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 2 , 4 ) ; plot ( i n t t , i n t x ( : , 4 ) ) ; ylabel ( ’ p i t ch ra t e q (

rad/ s ) ’ ) ; grid on ; xlabel ( ’ time ( s ) ’ ) ;

f igure (3 ) ;

subplot ( 2 , 1 , 1 ) ; plot ( i n t t , d e l t a e ) ; ylabel ( ’ Fin ang le ( rad ) ’ )

; t i t l e ( ’ Outer loop con t r o l only ’ ) ; xlabel ( ’ time ( s ) ’ ) ;
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subplot ( 2 , 1 , 2 ) ; plot ( i n t t , d e l t a c ) ; ylabel ( ’ Cav i tator ang le (

rad ) ’ ) ; t i t l e ( ’ Outer loop con t r o l only ’ ) ; xlabel ( ’ time ( s ) ’

) ;

f igure (4 )

subplot ( 2 , 1 , 1 ) ; plot ( i n t t , d e l t a c t o t ) ; ylabel ( ’ Cav i tator

ang le ( rad ) , t o t a l ’ ) ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 1 , 2 ) ; plot ( i n t t ( 2 : end) , d i f f ( d e l t a c t o t ) . / d i f f (

i n t t ) ) ; ylabel ( ’ Cav i tator ang le ra t e ( rad/ s ) , t o t a l ’ ) ;

xlabel ( ’ time ( s ) ’ ) ;

function va l = ob j e c t i v e d i v ep l a n e ( var )

%var i s s p l i t up in t o [ x1 ( t s ) x2 ( t s ) . . . xn ( t s ) u1 ( t s ) u2 ( t s

) . . . um( t s ) T]

%the t s are s p l i t up to T/s , s i s the number o f s t e p s

%n i s the number o f s t a t e s , m i s the number o f c on t r o l

v a r i a b l e s

%x0 are the i n i t i a l s t a t e s , x f i s the f i n a l s t a t e and

%x f i n d e x i s the index o f the f i n a l s t a t e s t h a t are de s i r e d

to be f i x e d .

%fo r in s tance i f on ly the f i r s t two s t a t e s are de s i r ed to be

f i x ed ,
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%x f i n d e x =[1 2 ]

global s x0 x f m x f i ndex obs t co rd s ob s t r s lowest

l owes tho lde r

for i =1:m

u ( : , i )=var ( ( i −1)∗ s+1: s∗ i ) ;

end

% crea t e s a mx o f x = [ u1 (1) u2 (1) . . . un (1) ;

% u1 (2) u2 (2) . . . un (2) ;

% . . .

% u1 ( s ) x2 ( s ) . . . un( s ) ;

T=var (end) ;

c = [ ] ;

t o t a l x = [ ] ; %keep t rack o f e n t i r e t r a j e c t o r y

%e q u a l i t y c on s t r a i n t s : dynamic c on s t r a i n t s betweens s t a t e s ,

and g l u i n g

%con s t r a i n t f o r x ( s )=x f
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%cons t r a i n t f o r f i r s t x (1)

[ t xtemp]=ode45 ( @dive plane noncyl , [ 0 ,T/ s ] , x0 , [ ] , u ( 1 , : ) ) ;

x2=xtemp(end , : ) ;

t o t a l x =[ t o t a l x ; xtemp ] ;

%con s t r a i n t s to make sure w<6

for i =2: s

[ t xtemp]=ode45 ( @dive plane noncyl , [T/ s ∗( i −1) ,T/ s ∗( i ) ] ,

x2 ’ , [ ] , u ( i , : ) ) ;

x2=xtemp(end , : ) ;

c=[c ; abs ( x2 (2 ) ) −6];

t o t a l x =[ t o t a l x ; xtemp ] ;

end

%ob s t a c l e c on s t r a i n t s

for i =1: length ( o b s t r s )

c l o s e s t d i s t=min( ( t o t a l x ( : , 1 )−obs t co rd s ( i , 1 ) ) .ˆ2+((

t o t a l x ( : , 5 )−obs t co rd s ( i , 2 ) ) . ˆ 2 ) ) ;

c=[c ; o b s t r s ( i )−c l o s e s t d i s t ] ;

end

c
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%con t r o l bounds

for i =1: length ( var )−1

c=[c ; abs ( var ( i ) )−pi / 2 . 5 ] ;

end

%enforce s f i n a l cond i t i on

ceq=xf ( x f i ndex )−x2 ( x f i ndex ) ’ ;

u

T

c

ceq

va l=var (end) + 100∗sum( ( c>0) .∗ abs ( c ) )+100∗sum(abs ( ceq ) ) ;

va l

i f val<l owest

lowest=va l ;

l owe s tho lde r=var ;

end

function dxdt = d ive p l ane noncy l ( t , y , u )

% 4− s t a t e model from Dz i e l s k i & Kurdila ’ s paper

% x=[ z w th e t a q ]
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global Rcdot R V L A B C D Rn Rc gcounter i n d i v i d u a l s h i f t

ycptrunc xcptrunc ;

x=y ( 1 : 4 , : ) ;

w = x ( 2 , : ) ;

d e l t a e = 0 ;

%de l t a c = −15∗x ( 1 , : )+30∗x ( 3 , : ) +0.3∗x ( 4 , : ) ; ( Kurdi la in JVC)

d e l t a c = 15∗x ( 1 , : )−30∗x ( 3 , : ) −0.3∗x ( 4 , : ) ;%−2∗x ( 2 , : ) /V; %

cor r e c t i on by Guojian Lin

d e l t a c =−0.9∗x ( 4 , : ) ;

%de l t a c =30∗x ( 1 , : )−60∗x ( 3 , : ) −0.6∗x ( 4 , : ) ;%app l y ing t rue 2x

f eedback ( a f f e c t s

%ca v i t y shape as w e l l i n s t ead o f j u s t adding i t i n t o the A

mx with

%A=A=B∗K (where K conta ins the l i n e a r f eedback law )

d e l t a c = de l t a c+u (2) ;

d e l t a e = de l t a e+u (1) ;

%de l t a c = −30∗x ( 3 , : ) −0.3∗x ( 4 , : ) ;%−2∗x ( 2 , : ) /V; %no depth
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f e edback

%d e l t a c=0 %no feedback ;

%d e l t a c =15∗x ( 1 , : )−30∗x ( 3 , : )−6∗x ( 4 , : ) ;% b i f u r c a t i o n con t r o l

%d e l t a c = 15∗x ( 1 , : )−90∗x ( 3 , : ) −0.9∗x ( 4 , : ) ; %gain augmented

f eedback

alphacav=w/V+de l t a c ;

% i f (w>0) %p lanes on bottom Rcdot<0 so sgn ( a lpha )=sgn (w)

% alpha = w/V;

% e l s e %p lanes on top

% alpha = w/V;

% end

alpha=atan (w/V) ;

i f (w>0)

cav i t y co rd s=abs(−ycptrunc+i n d i v i d u a l s h i f t ∗ sin ( alphacav )∗

cos ( alphacav ) ) ∗2∗Rn; %unnormalized c a v i t y r a d i i

a long p lan ing l o c a t i o n

else
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cav i t y co rd s=abs ( ycptrunc+i n d i v i d u a l s h i f t ∗ sin ( alphacav )∗

cos ( alphacav ) ) ∗2∗Rn;

end

de l t a=abs ( ycptrunc ∗2∗Rn)−R; %ind i v i d u a l d e l t a s (

d i f f e r e n c e in rad ius o f c a v i t y vs body ) unnormalized

xcords=xcptrunc ∗2∗Rn; %unnormalized x p o s i t i o n s

%a lphageometr i c = atan (w/V) ;

bodycords=abs ( xcords ∗tan ( alpha ) )+R;

%re f i n i n g mesh only where p lan ing beg in s

index=find ( ( bodycords>cav i t y co rd s ) . ∗ ( xcords>max( xcords ) /3)

,1 ) ; %f i nd s f i r s t l o c a t i o n o f p lan ing o f the c y l i n d e r

par t o f the body

i f index>0 %i f p lan ing

xcordsnew=linspace ( xcords ( index−2) , xcords (end) ) ’ ;

c av i t y co rd s=interp1 ( xcords , cav i tycords , xcordsnew ) ;

d e l t a=abs ( interp1 ( xcords , ycptrunc , xcordsnew ) ∗2∗Rn−R) ;

xcords=xcordsnew ; %xcords becomes

t runca ted to j u s t the p lan ing area

bodycords=abs ( xcords ∗tan ( alpha ) )+R;

end
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hdepths=(bodycords−cav i t y co rd s ) . ∗ ( bodycords>cav i t y co rd s ) ;

%f i nd s immersion depths ( on ly where body i s p lan ing

)

i f index>0 %only does t h i s c a l c u l a t i o n i f p l an ing

for j =1: length ( xcords ) %requ i r e s ” f o r ” loop s ince

d e l t a+hdepths can =0 g i v i n g NaN

i f ( bodycords ( j )>cav i t y co rd s ( j ) ) %ca l c u l a t i o n

only where p lan ing (on now trunca ted xcords )

in tegrand ( j )=2∗de l t a ( j ) ˆ2 . / ( de l t a ( j )+hdepths ( j ) )

ˆ3 ;

else

in tegrand ( j )=0;

end

end

else

in tegrand ( 1 : length ( xcords ) )=0;

end

hdots=V∗ sin (abs ( alpha )−atan ( d i f f ( cav i t y co rd s ) . / d i f f ( xcords ) )

) ;%cav i t y ang le = atan ( d i f f ( c a v i t y c o r d s ) ./ d i f f ( xcords ) )

%hdots=V∗ s in ( a lpha ) ;
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FpnormNoncyl=−sum( d i f f ( cumtrapz ( xcords , integrand ’ ) ) .∗ hdots

. ˆ 2 ) ∗sign ( alpha ) ;

%t h i s DOES take in t o account the c a v i t y s l o p e . d i f f ( cumtrapz

) g i v e s the

%i n d i v i d u a l t r a p e z o i d a l areas , t h i s mu l t i p l i e d by hdot ˆ2

over t ha t

%pa r t i c u l a r area g i v e s the i n d i v i d u a l i n t e g r a l t o t a l s .

summed up g i v e s the

%en t i r e p lan ing f o r c e .

%FpnormNoncyl=−Vˆ2∗ t r ap z ( xcords , in tegrand )∗ s in ( a lpha ) ˆ2∗ s i gn

( a lpha ) ; %s i gn to ge t the proper s i gn on p lan ing f o r c e

%t h i s a l s o assumes t ha t the p lan ing ang l e i s a lpha ( does not

take in t o

%account s l o p e o f c a v i t y shape ) . a l s o a lpha in t h i s case

t a k e s in t o

%account the Rcdot term , i s t h a t r i g h t ??

i f FpnormNoncyl˜=0

%xp=−Vˆ2.∗ t r ap z ( xcords , in tegrand .∗ xcords ) .∗ s in ( a lpha )

ˆ2.∗ s i gn ( a lpha ) ./ FpnormNoncyl ; %e f f e c t i v e po in t
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l o c a t i o n o f p lan ing f o r c e ( from f r on t o f v e h i c l e )

xp=−sum( d i f f ( cumtrapz ( xcords , integrand ’ . ∗ xcords ) ) .∗ hdots

.ˆ2∗ sign ( alpha ) ) . / FpnormNoncyl ;

else

xp=L ;

end

gcounter=gcounter+1;

n=FpnormNoncyl ;

dxdt 4 = A∗x+B∗ [ d e l t a e ; d e l t a c ]+C+D∗n . ∗ [ 1 1 1 ( xp ) /L ] ’ ;

theta=x ( 3 , : ) ;

dzdt=w∗cos ( theta )−V∗ sin ( theta ) ;

xdot=V∗cos ( theta )+w∗ sin ( theta ) ;

dxdt=[dzdt ; dxdt 4 ( [ 2 3 4 ] , : ) ; xdot ] ;

B.3 Maneuvering with Delay and Impact Model
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clc

clear

close a l l

global Rcdot Rp R V L A B C D delay V;

%%%%%%%%%%%%%%%%%%%%%%%%%cons tan t s s e c t i on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g = 9 . 8 1 ;

m = 2 ;

Rn = 0 . 0191 ;

R = 0 . 0508 ;

L = 1 . 8 ;

sigma = 0 . 0241 ; %0.035 or 0.03

sigma=0.03;

n = 0 . 5 ;

Cx0 = 0 . 8 2 ;

Cx = Cx0∗(1+sigma ) ;

C = 1/2∗Cx∗Rnˆ2/Rˆ2 ;

V = sqrt (0 .03∗75ˆ2/ sigma ) ;

M0=[7/9 17∗L/36 ; 17∗L/36 11/60∗Rˆ2+133/405∗Lˆ 2 ] ;

A0=C∗V∗[(1−n) /m/L −n/m; −n/m −n∗L/m]+V∗ [ 0 7/9 ; 0 17∗L/3 6 ] ;
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B0=C∗Vˆ2∗[−n/m/L 1/m/L ; −n/m 0 ] ;

C0=[7/9; 17∗L/36]∗ g ;

D0=[1/m/L ; 1/m] ;

D00=[1/m/L 0 ; 0 1/m/L ] ;

% cor r e c t i on by Guojian Lin

A0=C∗V∗[(−1−n) /m/L −n/m; −n/m −n∗L/m]+V∗ [ 0 7/9 ; 0 17∗L/3 6 ] ;

B0=C∗Vˆ2∗[−n/m/L −1/m/L ; −n/m 0 ] ;

A2=inv (M0)∗A0 ;

B2=inv (M0)∗B0 ;

C2=inv (M0)∗C0 ;

D2=inv (M0)∗D0 ;

D22=inv (M0)∗D00 ;

K1 = L/Rn/(1 .92/ sigma−3)−1;

K2 = sqrt (1−(1−4.5∗ sigma/(1+sigma ) )∗K1ˆ(40/17) ) ;

Rc = Rn∗(0.82∗(1+ sigma ) /sigma ) ˆ0 .5∗K2;

Rp = (Rc−R)/R;

Rcdot = −20/17∗(0.82∗(1+ sigma ) / sigma ) ˆ0 .5∗V∗(1−4.5∗ sigma/(1+

sigma ) )∗K1ˆ(23/17) /K2/(1 .92/ sigma−3) ;
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a22=A2(1 , 1 ) ; a24=A2(1 , 2 ) ; a42=A2(2 , 1 ) ; a44=A2(2 , 2 ) ;

b21=B2(1 , 1 ) ; b22=B2(1 , 2 ) ; b41=B2(2 , 1 ) ; b42=B2(2 , 2 ) ;

c2=C2(1 , 1 ) ;

d2=D2(1 , 1 ) ; d4=D2(2 , 1 ) ;

d21=D22 (1 , 1 ) ; d22=D22 (1 , 2 ) ; d41=D22 (2 , 1 ) ; d42=D22 (2 , 2 ) ;

A=[0 1 −V 0 ; 0 a22 0 a24 ; 0 0 0 1 ; 0 a42 0 a44 ] ;

B=[0 0 ; b21 b22 ; 0 0 ; b41 b42 ] ;

C=[0; c2 ; 0 ; 0 ] ;

D=[0; d2 ; 0 ; d4 ] ;

K=[0 0 0 0 ; −15 0 30 0 . 3 ] ;

K=[0 0 0 0 ; 15 0 −30 −0 .3 ] ; % correc t ed by Guojian Lin

K=[0 0 0 0 ; 0 0 0 −0 .9 ] ; %changed to remove dependence on z

or t h e t a

%A=A+B∗K; %t h i s has the b u i l t in inner loop con t r o l a l r eady

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delay=L/V;

global s x0 x f num in x f i ndex obs t co rd s ob s t r s u i n i t
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s=14;

num in=2;

x0=[0 0 0 0 0 ] ’ ;

x f=[−20 0 0 0 8 0 ] ’ ;

x f i ndex =[1 5 ] ;

%n=l eng t h ( x0 ) ;

u l im i t =[pi / 2 . 5 ] ;

ob s t co rd s=[−5 4 0 ] ;%coord ina te o f o b s t a c l e ( z , x )

ob s t r s = [ 6 ] ;

u i n i t=zeros ( num in , 1 ) ;

o b s t r s=ob s t r s . ˆ 2 ; %squares the rad ius f o r e a s i e r

comparison in func t i on

guessT=.8;

gue s s c =0;

gue s s e =0;

guess=[ ones ( s , 1 ) ∗ gue s s e ; ones ( s , 1 ) ∗ gue s s c ; guessT ] ;

opt ions = psopt imset ( ’TolCon ’ ,1 e−3) ;

UB=[ ones ( s∗num in , 1 ) ∗ u l im i t ; Inf ] ;
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LB=[−ones ( s∗num in , 1 ) ∗ u l im i t ; 0 . 1 ] ;

t ic

%[ vars f v a l ]= fmincon ( @ob j e c t i v e d i v ep l ane , guess

, [ ] , [ ] , [ ] , [ ] , LB,UB, [ ] , op t i ons ) ;

[ vars f v a l e x i t f l a g ]= pat t e rn sea r ch ( @objec t ive d ivep lane ,

guess , [ ] , [ ] , [ ] , [ ] , LB,UB, [ ] , opt ions ) ;

toc

for i =1:num in

u ( : , i )=vars ( ( i −1)∗ s+1: s∗ i ) ;

end

c on t r o l=u ;

T=vars (end) ;

c on t r o l

T

for i =1:num in

upp( i )=spline ( 0 :T/ s :T , [ u i n i t ( i ) ; u ( : , i ) ] ) ;

end
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s o l = dde23 (@( t , y , Z) d iv e p l ane ( t , y , Z , upp ) , [ de lay ] ,@( t ) [ x0

( 1 : 4 ) ; sqrt (Vˆ2+x0 (2) ˆ2)∗ t ] , [ 0 T ] , [ ] ) ;

i n t t=s o l . x ’ ;

i n t x=s o l . y ’ ;

f igure (1 )

plot ( i n t x ( : , 5 ) , i n t x ( : , 1 ) ) ; xlabel ( ’ x (m) ’ ) ; ylabel ( ’ z (m) ’ ) ;

hold on

u inne r=zeros ( s ,m) ;

for i =1:num in

upp inner ( i )=spline ( 0 :T/ s :T , [ u i n i t ( i ) ; u inne r ( : , i ) ] ) ;

end

s o l i n n e r = dde23 (@( t , y , Z) d iv e p l ane ( t , y , Z , upp inner ) , [

de lay ] ,@( t ) [ x0 ( 1 : 4 ) ; sqrt (Vˆ2+x0 (2) ˆ2)∗ t ] , [ 0 T ] , [ ] ) ;

t i nn e r on l y=s o l i n n e r . x ’ ;

x inne ron ly=s o l i n n e r . y ’ ;

plot ( x inne ron ly ( : , 5 ) , x inne ron ly ( : , 1 ) , ’b−− ’ ) ;
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%p l o t s the o b s t a c l e s

for i =1: length ( o b s t r s )

xc=obs t co rd s ( i , 2 ) ;

zc=obs t co rd s ( i , 2 ) ;

rad=sqrt ( o b s t r s ( i ) ) ;

xes=linspace(−rad , rad ) ;

z p l u s=sqrt ( radˆ2−xes . ˆ 2 )+obs t co rd s ( i , 1 ) ;

z minus=−sqrt ( o b s t r s ( i )−xes . ˆ 2 )+obs t co rd s ( i , 1 ) ;

plot ( xes+xc , z p lus , ’ r ’ ) ; plot ( xes+xc , z minus , ’ r ’ ) ;

end

legend ( ’ i nne r and outer loop ’ , ’ i nne r loop only ’ , ’ ob s t a c l e ’ )

f igure (2 ) ;

subplot ( 2 , 2 , 1 ) ; plot ( i n t t , i n t x ( : , 1 ) ) ; ylabel ( ’ depth z (m) ’ ) ;

grid on ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 2 , 2 ) ; plot ( i n t t , i n t x ( : , 2 ) ) ; ylabel ( ’ v e l o c i t y w (m/

s ) ’ ) ; grid on ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 2 , 3 ) ; plot ( i n t t , i n t x ( : , 3 ) ) ; ylabel ( ’ p i t ch ang le \

theta ( rad ) ’ ) ; grid on ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 2 , 4 ) ; plot ( i n t t , i n t x ( : , 4 ) ) ; ylabel ( ’ p i t ch ra t e q (

rad/ s ) ’ ) ; grid on ; xlabel ( ’ time ( s ) ’ ) ;
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f igure (3 ) ;

d e l t a c = ppval (upp (2 ) , i n t t ) ;

d e l t a e = ppval (upp (1 ) , i n t t ) ;

subplot ( 2 , 1 , 1 ) ; plot ( i n t t , d e l t a e ) ; ylabel ( ’ Fin ang le ( rad ) ’ )

; t i t l e ( ’ Outer loop con t r o l only ’ ) ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 1 , 2 ) ; plot ( i n t t , d e l t a c ) ; ylabel ( ’ Cav i tator ang le (

rad ) ’ ) ; t i t l e ( ’ Outer loop con t r o l only ’ ) ; xlabel ( ’ time ( s ) ’

) ;

f igure (4 )

t o t c o n t r o l =([ de l t a e ’ ; d e l t a c ’ ]+K∗ i n t x ( : , [ 1 2 3 4 ] ) ’ ) ’ ; %

makes columns wi th [ d e l t a e t o t , d e l t a c t o t ]

d e l t a c t o t=t o t c o n t r o l ( : , 2 ) ;

subplot ( 2 , 1 , 1 ) ; plot ( i n t t , d e l t a c t o t ) ; ylabel ( ’ Cav i tator

ang le ( rad ) , t o t a l ’ ) ; xlabel ( ’ time ( s ) ’ ) ;

subplot ( 2 , 1 , 2 ) ; plot ( i n t t ( 2 : end) , d i f f ( d e l t a c t o t ) . / d i f f (

i n t t ) ) ; ylabel ( ’ Cav i tator ang le ra t e ( rad/ s ) , t o t a l ’ ) ;

xlabel ( ’ time ( s ) ’ ) ;

function va l = ob j e c t i v e d i v ep l a n e ( var )

%var i s s p l i t up in t o [ u1 ( t s ) u2 ( t s ) . . . um( t s ) T]

%x f i n d e x i s the index o f the f i n a l s t a t e s t h a t are de s i r e d
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to be f i x e d .

%fo r in s tance i f on ly the f i r s t two s t a t e s are de s i r ed to be

f i x ed ,

%x f i n d e x =[1 2 ]

global s x0 x f num in x f i ndex obs t co rd s ob s t r s u i n i t

de lay V

for i =1:num in

u ( : , i )=var ( ( i −1)∗ s+1: s∗ i ) ;

end

% crea t e s a mx o f x = [ u1 (1) u2 (1) . . . un (1) ;

% u1 (2) u2 (2) . . . un (2) ;

% . . .

% u1 ( s ) x2 ( s ) . . . un( s ) ;

T=var (end) ;

c = [ ] ;

t o t a l x = [ ] ; %keep t rack o f e n t i r e t r a j e c t o r y

for i =1:num in
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upp( i )=spline ( 0 :T/ s :T , [ u i n i t ( i ) ; u ( : , i ) ] ) ;

end

%equ a l i t y c on s t r a i n t s : dynamic c on s t r a i n t s betweens s t a t e s ,

and g l u i n g

%con s t r a i n t f o r x ( s )=x f

%con s t r a i n t f o r f i r s t x (1)

s o l = dde23 (@( t , y , Z) d iv e p l ane ( t , y , Z , upp ) , [ de lay ] ,@( t ) [ x0

( 1 : 4 ) ; sqrt (Vˆ2+x0 (2) ˆ2)∗ t ] , [ 0 T ] , [ ] ) ;

t=s o l . x ;

t o t a l x=s o l . y ’ ;

%cons t r a i n t to make sure w<6

c=[c ; max(abs ( t o t a l x ( : , 2 ) ) ) −6];

%ob s t a c l e c on s t r a i n t s

for i =1: length ( o b s t r s )

c l o s e s t d i s t=min( ( t o t a l x ( : , 1 )−obs t co rd s ( i , 1 ) ) .ˆ2+((

t o t a l x ( : , 5 )−obs t co rd s ( i , 2 ) ) . ˆ 2 ) ) ;

c=[c ; o b s t r s ( i )−c l o s e s t d i s t ] ;

end
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xend=to t a l x (end , : ) ;

%enforce s f i n a l cond i t i on

ceq=xf ( x f i ndex )−xend ( x f i ndex ) ’ ;

va l=var (end) + 100∗sum( ( c>0) .∗ abs ( c ) )+100∗sum(abs ( ceq ) ) ;

u

T

c

ceq

va l

function dxdt = d ive p l ane ( t , y , Z , upp )

% 4− s t a t e model from Dz i e l s k i & Kurdila ’ s paper

% x=[ z w th e t a q x ]

global Rcdot Rp R V L A B C D;

the ta t=Z(3 , 1 ) ;

xt=Z(5 , 1 ) ;

z t=Z(1 , 1 ) ;

wt=Z(2 , 1 ) ;

the ta c t=thetat−atan (wt/V) ;
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z=y ( 1 , : ) ;

w=y ( 2 , : ) ;

theta=y ( 3 , : ) ;

q=y ( 4 , : ) ;

x=y ( 5 , : ) ;

o l d s t a t e s=y ( 1 : 4 , : ) ;

zdot=w∗cos ( theta )−V∗ sin ( theta ) ;

xdot=V∗cos ( theta )+w∗ sin ( theta ) ;

a=cos ( the tac t ) ∗(x−xt )+sin ( the tac t ) ∗( zt−z ) ;

a=L∗cos ( theta−the tac t ) ; %t h i s i s necessary when dropping the

de lay c l o s e to 0

b=sin ( the tac t ) ∗(x−xt )−cos ( the tac t ) ∗( zt−z ) ;

adot=xdot∗cos ( the tac t )−zdot∗ sin ( the tac t ) ;

bdot=xdot∗ sin ( the tac t )+zdot∗cos ( the tac t ) ;

hhat=a∗tan ( theta−the ta c t )+b ; %t h i s i s the r e l a t i v e p o s i t i o n

o f the body wrt c a v i t y ( can be neg or pos )

h=max( [ abs ( hhat )−Rp∗R, 0 ] ) ; %t h i s i s the immersion depth ,

p o s i t i v e no matter what s i d e i s immersed
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hdot=(a∗sec ( theta−the tac t ) ˆ2∗q+adot∗tan ( theta−the tac t )+bdot )

∗sign ( hhat )−Rcdot ; %the mu l t i p l i c a t i o n by s i gn ( hhat ) i s

to make sure t ha t the immesion ra t e i s in the d i r e c t i o n

o f the immersion

hdot=max( hdot , 0 ) ; %the p lan ing f o r c e formu la t ion only works

f o r an immerstion ra t e t ha t i s in the d i r e c t i o n o f the

immersion so only p o s i t i v e immersion ra t e s are a v a i l a b l e

de l t a=Rp∗R;

i f h>0

Fplane=−hdot ˆ2∗1/tan (abs ( theta−the tac t ) ) .∗(1− de l t a ˆ2 . / ( h

+de l t a ) . ˆ 2 ) ∗sign ( hhat ) ;

else

Fplane=0;

end

d e l t a c = ppval (upp (2 ) , t )−0.9∗ o l d s t a t e s ( 4 , : ) ;

d e l t a e = ppval (upp (1 ) , t ) ;
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n=Fplane ;

dolddt = A∗ o l d s t a t e s+B∗ [ d e l t a e ; d e l t a c ]+C+D∗n ;

dxdt=[ zdot ; dolddt ( [ 2 3 4 ] , : ) ; xdot ] ;
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