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Insect development and metamorphosis are controlled by two major hormones; 20-

hydroxyecdysone (20E) and juvenile hormone (JH). 20E signaling pathway is well 

recognized while JH signaling is still ambiguous. For a better understanding of JH 

biosynthesis and signaling we worked on two parallel projects; reverse genetic and 

forward genetic studies.  

 

In the reverse genetic study, we have tested the potential functional redundancy 

between Methoprene-tolerant (Met) and germ cell-expressed (gce), two paralog 

bHLH-PAS transcription factors in Drosophila that were suggested to be JH 

receptors. Met null mutants are viable, resistant to JH and low fecundity. No gce 

mutant was available at the begening of this project. We generated a gce null allele 

and found that it phenocopies Met mutants. Met-gce double mutants are lethal at 

prepupal stage, which is similar to the JH-deficient flies. Krüppel homolog1 (Kr-h1) 



  

and broad (br) are two known JH signaling componets. Further investigations 

revealed that Met-gce double mutant diminishes Kr-h1 expression, induces 

precocious br expression, and causes premature and enhanced caspase-dependent 

programmed cell death. Therefore, we conclude that Met and Gce are functionally 

redundant in transducing JH signals.  

     

Expression of br is induced by 20E, but its induction can be suppressed by JH. In the 

forward genetic study, we designed and conducted a novel genetic screen to isolate 

mutations that can de-repress br expression at early larval stages. From 4,400 lethal 

lines, 55 mutations were isolated based on the precocious br expression in 2nd instar 

larvae. Genes associated with these 55 mutations include apterous, InR, NMAR1, 

Fpps and Kr-h1, which are known to be involved in JH biosynthesis or signaling. 

Other genes encode proteins with various molecular functions, including enzymes, 

signal transduction molecules, and transcriptional factors. Among them, there are 

three Wnt signaling components, Axin (Axn), supernumerary limbs (slmb), and naked 

cuticle (nkd) and two TGF-β signaling components, thick vein (tkv) and mothers 

against Dpp (mad). We further demonstrated that Wnt signaling mediates JH 

signaling by regulating Met and gce expression, and that TGF-β signaling controls JH 

biosynthesis by upregulating transcription of JH acid methyltransferase (jhamt), a 

key regulatory enzyme of JH biosynthesis. 
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Figure 1.4: Summary diagram of the hormonal regulation of Broad (BR) protein 
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Figure 1.5: Model for functioning of BR-C in Tribolium metamorphosis. In 
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Figure 1.6: Models of JH signaling pathway in insect molting and 
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alignment, (C) PAS-A domain alignment, (D) PAS-B domain alignment. 
(http://www.expasy.ch/tools/sim-prot.html). Asterisks denote perfect identities in the 
alignment positions. 

Fig. 2.2. The diagram of gce gene structure shows the insertion of 
Mi{ET1}MB07696 and position of the 2.5-kb deletion in the gce2.5k allele. The gce 
coding sequence is highlighted in red. The gce exons that encode the functional 
motifs of bHLH, PAS-A, and PAS-B are marked. 
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Fig. 2.3. A null allele of gce is resistant to JHA. One hundred newly hatched larvae 
of wildtype, Met27, and gce2.5k were reared on normal food or food containing 
different concentrations of JHA, pyriproxifen. The percentages of individuals that 
develop into adults are shown as the mean of 10 replicates ± standard deviation. 

Fig. 2.4. Met27 and gce2.5k mutations affect ovary development and fecundity 
Single newly eclosed virgin females of wildtype, Met27 and gce2.5k were crossed with 
three wildtype males individually. Cumulative numbers of eggs laid by a single 
female are shown as the mean of ten independent experiments. Arrows point to the 
average ages when females start to lay eggs. 

Fig. 2.5. Met27-gce2.5k double mutations cause prepupal lethality. DNA agarose gel 
electrophoresis of reverse transcription PCR products demonstrates that Met27-gce2.5k 
double mutations are null for both Met and gce. Total RNAs were isolated from the 
2nd instar larvae of wildtype, Met27, gce2.5k, and Met27-gce2.5k flies. 

Fig. 2.6. Met27-gce2.5k double mutations cause prepupal lethality. One hundred 
eggs of wildtype and Met27-gce2.5k were reared on normal food. Cumulative 
percentages of larvae developing to wandering stage are shown. 

Fig. 2.7. Met27-gce2.5k double mutations cause prepupal lethality. Images are of 
wandering larvae and early pupae of wildtype and Met27-gce2.5k reared on normal 
food, showing the reduced body size of Met27-gce2.5k. 

Fig. 2.8. Met27-gce2.5k double mutations cause prepupal lethality.  
(A) Wildtype and Met27-gce2.5k flies were reared on normal or 1 ppm pyriproxifen-

containing food. Images show the final developmental stages of these flies. 
Met27-gce2.5k die ~24 hours after pupariation and fail to undergo head eversion. 
When reared on food containing 3 ppm JHA, all wildtype animals died at the late 
pupal stage, but the development of Met27-gce2.5k was not affected by JHA. 

(B) The prepupal lethality of Met27-gce2.5k flies can be fully rescued by transgenic 
Met or gce. The genotypes of flies are Met27-gce2.5k/y; p{Met}/+ (top) and Met27-
gce2.5k/y; arm-GAL4/UAS-gce (bottom). 

Fig. 2.9. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 
caspase-dependent programmed cell death. Wildtype, Aug21-GAL4>UAS-grim 
(Aug21>grim) and Met27-gce2.5k were reared on normal (–JHA) or 0.1 ppm 
pyriproxifen-containing (+JHA) food. Fat bodies of 2nd instar larvae were stained 
with the Caspases 3 & 7 Apoptosis Detection Kit (Invitrogen, CA). Apoptotic cells 
are marked with red.  

Fig. 2.10. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 
caspase-dependent programmed cell death. Wildtype, Aug21-GAL4>UAS-grim 
(Aug21>grim) and Met27-gce2.5k were reared on normal (–JHA) or 0.1 ppm 
pyriproxifen-containing (+JHA) food.  Caspase 3 activity in the fat bodies of 2nd 
instar larvae was assessed using the Caspase 3 Activity Assay kit (Beyotime, 
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Shanghai, China). Values are the mean of three independent experiments ± standard 
deviation. 

Fig. 2.11. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 
caspase-dependent programmed cell death. Wildtype, Aug21-GAL4>UAS-grim 
(Aug21>grim) and Met27-gce2.5k were reared on normal (–JHA) or 0.1 ppm 
pyriproxifen-containing (+JHA) food. Disrupted plasma membrane was detected by 
propidium iodide staining (red) and nuclei were labeled by Hoechst 33342 (blue) in 
the fat bodies of pupae at 4 hours after pupariation.  

Fig. 2.12. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 
caspase-dependent programmed cell death. Wildtype, Aug21-GAL4>UAS-grim 
(Aug21>grim) and Met27-gce2.5k were reared on normal (–JHA) or 0.1 ppm 
pyriproxifen-containing (+JHA) food. Fat bodies were dissected at 8 hours after 
pupariation to show precocious cell dissociation in Met27-gce2.5k and Aug21>grim 
flies. 

Fig. 2.13. Met and Gce transduce the JH signal to induce Kr-h1 expression. 
Wildtype, Aug21-GAL4>UAS-grim (Aug21>grim), and Met27-gce2.5k were reared on 
normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Relative Kr-h1 
mRNA levels in the 2nd instar larvae were assessed by quantitative real-time PCR and 
normalized to rp49 mRNAs. Values are the means of three independent experiments 
±standard deviation.  

Fig. 2.14. Met and Gce transduce the JH signal to induce Kr-h1 expression. Total 
mRNAs were isolated from wildtype, Met27, gce2.5k, and Met27-gce2.5k 2nd instar 
larvae. Reverse transcription PCR was conducted with 30 cycles. PCR products were 
analyzed by agarose gel electrophoresis. 

Fig. 2.15. Met and Gce are required for br repression in young larvae. Wild type, 
Met27-gce2.5k, and Aug21-GAL4>UAS-grim (Aug21>grim) were reared on normal (–
JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Fat bodies of the 2nd instar 
larvae were dissected and stained with Br-core antibody (red). Nuclei were labeled 
with DAPI (blue).  

Fig. 2.16. A model for Met and Gce in transducing JH action to prevent 20E-
induced programmed cell death. As described in the text, this model suggests how 
Met and Gce transduce the JH signal to suppress programmed cell death during larval 
molts. 

Chapter 3: 

Fig 3.1. GAL4-PG12 resembles endogenous br expression patterns.  
(A) Protein extracts isolated from wild type animals at different developmental stages 
were separated by SDS-PAGE. Br proteins were assessed by Western blotting using a 
Br-core antibody. Tubulin-β was used as a loading control. The Br proteins were only 
detected in the late 3rd instar larval stage to pupal stage. All Br isoforms were 
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expressed in the late 3rd instar larvae and early pupae, but only Z1 and/or Z3 isoforms 
were expressed in the late pupae. 
(B-F) Expression of GAL4-PG12 was marked by GAL4-PG12>UAS-mCD8GFP 
mCD8GFP, a cell membrane protein. Constitutive expression of GAL4-PG12 in 
salivary glands (arrows) and auto-fluorescence of fly food in the midgut (arrowheads) 
are indicated. In tissues other than those from the salivary gland, GAL4-PG12/UAS-
mCD8GFP was only expressed in late 3rd instar larval and during early pupal stages 
(G and H). (B’-F’) White light images of the same organisms are shown in [B-F]. 

(G-I) GAL4-PG12 expression was monitored by mCD8GFP (green) [G-I]. 
Endogenous Br proteins were recognized by a Br-core antibody (red) [G’-I’] and 
nuclei were marked with DAPI (blue) [G”-H”]. Neither endogenous Br nor GAL4-
PG12 were expressed in FB of the 2nd instar or early 3rd instar [G-G” and H-H”], but 
both were expressed in FB of the late 3rd instar [I-I”]. [I”] is a merged image of [I] 
and [I’].  

Fig 3.2. GAL4-PG12 carries a P-element insertion in the first intron of br gene 
(A) The flanking sequence of the GAL4-PG12 P-element insertion site identified by 
inverse PCR analysis. 
(B) The insertion site of GAL4-PG12 was located within the first intron of the br gene 
by comparing the sequence with the Drosophila genome. 

Fig 3.3. Ectopic expression of JHE induces precocious br expression in the 2nd 
instar larvae. Flies carrying two copies of hs-jhe transgenes (GAL4-PG12, UAS-
mCD8GFP/Fm7C; hs-jhe1, hs-jhe2/+) were reared on normal (-JHA) or 0.1 ppm 
pyriproxifen-containing (+JHA) food and were treated with (HS) or without (no-HS) 
heat shocking twice a day for 40 min at 37 °C. Br expression was monitored by 
GAL4-PG12>UAS-mCD8GFP [A-D] and FB Br-core antibody staining in 2nd instar 
larvae [E-H]. Precocious br expression occurred in 2nd instar larvae that were reared 
on normal food and treated with heat shocking [B-B’ and F-F’]. However, this 
phenotype was blocked by JHA treatment [D-D’ and H-H’].  

Fig 3.4. A genetic screen identifies genes related JH biosynthesis and signaling 
pathways. Schematic diagram of genetic crosses for isolating mutations that 
derepress br expression in young larvae. GAL4-PG12, UAS-mCD8GFP ( X 
chromosome) was used to monitor br expression. The lethal mutation or P-insertion 
on the 2nd or 3rd chromosome is represented by an asterisk (*). 

Fig 3.5. Expression of br is not suppressed by exogenous JHA during the late 3rd 
instar larval stage. Wild type flies were reared on normal (-JHA) [A-C] or 0.1 ppm 
pyriproxifen-containing (+JHA) [D-F] food. Br proteins in the fat bodies of 2nd instar, 
early 3rd instar and late 3rd instar larvae were recognized by a Br-core antibody (red).  

Chapter 4: 

Fig. 4.1. Genetic screen identifies Tkv and Mad as being required for the 
suppression of br expression at early larval stages.  
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(A-E) GFP images showing the expression of GAL4-PG12>UASmCD8GFP in 2nd 
instar larvae. GFP was only expressed in the salivary gland of the wild type (A) 
larvae but was widely expressed in all tissues of GAL4-PG12, UAS-
mCD8GFP/Fm7C; tkvk1671/tkvk16713 (B), GAL4-PG12, UAS-mCD8GFP/Fm7C; 
madk00237/madk00237 (C), GAL4-PG12, UAS-mCD8GFP/Fm7C; Kr-h110642/Kr-h110642 
(D), and GAL4-PG12, UAS-mCD8GFP/Fm7C; Nmdar1 DG23512/Nmdar1DG23512 (E) 
larvae. (A’-E’) White light images of the same organisms are shown in (A-E). 

Fig. 4.2. Tkv and Mad repress br expression in the FB by maintaining JH levels  
(A) Wild type, tkvk167, madk00237, Kr-h110642, and Met27 flies were reared on normal          
(-JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Fat bodies of the 2nd instar 
larvae were stained with Br-core antibody (red). Nuclei were labeled with DAPI 
(blue).  (B) Br proteins extracted from wild type, tkvk167, madk00237, and Kr-h110642 2nd 
instar larvae that were reared on normal (-JHA) or 0.1 ppm pyriproxifen-containing 
(+JHA) food were assessed by western blotting with Br-core antibody. Tubulin-β was 
used as a loading control.  

Fig 4.3. Tkv and Mad non-cell-autonomously repress br expression in the FB.        
MARCM analyses were carried out in the FB of wild type (A-A’), tkv (B-B’), mad 
(C-C’), and Kr-h1 (D-D’) 2nd instar larvae. Cells homozygous for wild type, tkv8, 
mad8-2, or Kr-h110642 were marked by GFP (green). Br proteins were assessed with 
Br-core antibody (red). DAPI was used to label nuclei (blue). 

Fig 4.4. Tkv and Mad are required in the CA to promote jhamt transcription 
and then repress FB br expression. (A) UAS-mad was expressed in different tissues 
of madk00237 mutants using the GAL4 lines that are expressed ubiquitously (hs-GAL4), 
specifically in neurons (Dscam-GAL4), or specifically in the CA (Aug21-GAL4). FBs 
of 2nd instar larvae were stained with Br-core antibody (red) and DAPI (blue). (B) 
mRNA levels of JH biosynthetic enzymes in the wild type and madk00237 2nd instar 
larvae were analyzed by quantitative real-time PCR. The ratios of mRNA levels 
between madk00237 and wild type (means of 3 independent experiments ± standard 
deviations) larvae are presented. The accession numbers of genes and sequences of 
the primers are listed in Supplementary Table 1. (C) JHAMT activity in the brain-ring 
gland complexes of wild type, tkv RNAi, and mad RNAi organisms were measured at 
the wandering larval stage.  

Fig. 4.5. Expression of JH degradative enzymes is not affected in mad mutants. 
The endogenous expression of enzymes related to JH degradation was analyzed by 
quantitative real-time PCR. Total RNA was prepared from wild-type and madk00237 

mutant 2nd instar larvae. Levels of mRNA were normalized to actin mRNA. The ratio 
between mad mutant and wild type larvae is presented. The average of three 
independent experiments is shown. Error bars indicate standard deviations.  

Fig 4.6. Dpp is the ligand of Tkv that mediates JH biosynthesis in the CA.        
(A) FBs of wild type, dpps11, and dppd5 2nd instar larvae were stained with Br-core 
antibody (red) and DAPI (blue). (B) Brain-ring gland complexes of the dpp-lacZ 
transgene at the wandering larval stage were assessed with β-galactosidase antibody 
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staining (red). Nuclei were labeled with DAPI (blue). CA = corpus allatum, PG = 
prothoracic gland, and BR = brain. (C) One hundred 1st instar larvae of dpps11 were 
reared on normal food or food containing different concentrations of pyriproxifen. 
The percentages of individuals that develop into adults are shown as the means of 10 
replicates ± standard deviations. (D) GAL4-Aug21, dpps11/Cyo, GFP flies were 
crossed with (1) +/Cyo, GFP, (2) dpps1/Cyo, GFP, and (3) dpps1/Cyo, GFP; UAS-
jhamt. One hundred GFP-negative 1st instar larvae and their progeny were reared on 
normal fly food at 25 °C. The percentages of individuals that develop into adults are 
shown as the means of 10 replicates ± standard deviations. 

Fig. 4.7. The lethality caused by CA-specific dpp RNAi is partially rescued by 
JHA treatment. (A) Brain-ring gland complex showing that the expression of jhamt-
GAL4 is restricted to the CA. jhamt-GAL4 drives UAS-mCD8GFP, which is 
exclusively expressed in the CA cells. Nuclei were labeled with DAPI (blue). CA = 
corpus allatum, PG = prothoracic gland. (B) Flies of jhamt-GAL4>UAS-dpp RNAi, 
which are lethal during early-middle pupal stages were reared on regular food or food 
containing 0.1 ppm pyriproxifen (+JHA food). One hundred 1st instar larvae were 
reared in each vial. The percentages of individuals developing into each given 
developmental stage are shown as the means of 10 replicates ± standard deviations. 
Reared on regular food, most jhamt-GAL4>UAS-dpp RNAi flies died at the prepupal 
stage, and none of them developed into adults. Reared on +JHA food, most of jhamt-
GAL4>UAS-dpp RNAi flies died at pupal stages, although over 5% of them developed 
into adults. 
Prepupal stage: from pupariation to head eversion 
Early pupal stage: from head eversion to yellow eyes 
Late pupal stage: from yellow eyes to eclosion 
Adult stage: after eclosion. 

Fig 4.8. CA-specific knockdown of dpp, tkv, mad, Nmdar1, or jhamt induces 
precocious br expression. GAL4-Aug21 flies were crossed with UAS-dpp RNAi, 
UAS-tkv RNAi, UAS-mad RNAi, UAS-Nmdar1 RNAi, and UAS-jhamt RNAi. The FBs 
of their progeny were dissected at the 2nd instar larval stage and stained with Br-core 
antibody (red) and DAPI (blue).  

Fig 4.9. Expression of dpp in the CA correlates with that of jhamt. (A) Relative 
jhamt mRNA levels at the wandering larval stage were compared among flies with 
different genetic backgrounds, including wild type, dpps11, dppd5, jhamt-GAL4>UAS-
dpp RNAi, and jhamt-GAL4>UAS-dpp flies. Total RNA was extracted from the ring 
gland, and the mRNA levels of jhamt were assessed by quantitative real-time PCR. 
Levels of jhamt mRNA were normalized to actin mRNA. Values shown are the 
means of 3 independent experiments ± standard deviations. (B) Relative mRNA 
levels of dpp and jhamt in the ring gland were compared among different 
developmental stages of wild type organisms (Oregon R). Tissue and total RNA 
preparation, as well as quantitative real-time PCR, are the same as in (A). 

Fig 4.10. The expression of dpp and jhamt in the CA is reduced in Nmdar1 
mutants. The relative mRNA levels of dpp and jhamt at the wandering larval stage 



 xii 
 

were compared between wild type and two Nmdar1 mutant alleles, Nmdar105616 and 
Nmdar1DG23512. Tissue and total RNA preparation, as well as quantitative real-time 
PCR, were performed as described in Fig. 4.9.  

Fig 4.11. A model for the function of TGF-β signaling in controlling JH 
biosynthesis and insect metamorphosis. Proposed model as described in the text 
illustrating the function of TGF-β signaling in controlling JH biosynthesis and insect 
metamorphosis. The genes and proteins involved in this study are highlighted in red.  

Chapter 5: 

Fig 5.1. A genetic screen identifies that Axn, Slmb and Nkd regulate br 
expression. GFP images show the expression of GAL4-PG12>UASmCD8GFP in 2nd 
instar larvae. GFP was only expressed in the salivary gland of the wild type [A], but 
widely expressed in all tissues of Axn [B], slmb [C] and nkd [D] mutant larvae. (A’-
D’) White light images of the same organisms are shown in [A-D]. 

Fig 5.2.  Precocious br expression in Axn, slmb and nkd mutants is not prevented 
by JHA. Wild type and the Axn, slmb, and nkd mutants were reared on normal (-
JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Fat bodies of the 2nd instar 
larvae were stained with a Br-core antibody (red), and nuclei were labeled with DAPI 
(blue).   

Fig 5.3. Expression of Met, gce and Kr-h1 is reduced in the Axn, slmb and nkd 
mutants. 

(A) Total RNAs were extracted from wild type, Axn, slmb and nkd 2nd instar larvae. The 
mRNA levels of Met, gce and Kr-h1 were assessed by quantitative real-time PCR and 
normalized to rp49 mRNA. Values shown are the means of 4 independent 
experiments ± standard deviations.  

(B) The same total RNAs described in [A] were used as the templates for a 30-cycle 
reverse transcriptional PCR.  The RT-PCR products were analyzed by DNA agarose 
gel electrophoresis. 

Fig. 5.4. Gain-of-function arm mutation induces precocious br expression.          
(A-C) Fat bodies of 2nd instar larvae were stained with a Br-core antibody (red) and 
DAPI (blue). 

Fig. 5.5. Gain-of-function arm mutation suppresses Met, gce and Kr-h1expression 
Total RNA was extracted from the 2nd instar larvae. The mRNA levels of Met, gce 
and Kr-h1 were assessed by qRT-PCR and normalized to rp49 mRNA. Values shown 
are the means of 4 independent experiments ± standard deviations. Genotypes 
include: wild type; arm-GAL4/UAS-armS10 and arm-GAL4/UAS-armS10,UAS-gce/+.  

Fig. 5.6. As described in the text, the proposed model illustrates the cross-talk 
between the Wnt and JH signaling pathways.  
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Chapter 1 

 Introduction 

Juvenile Hormone Biosyntheses and Signaling Pathways 

 
Insect development is controlled by two major hormones; the steroid 20-

hydroxyecdysone (20E or Ec) and the sesquiterpenoid juvenile hormone (JH). The 

later was discovered by Wigglesworth (1936) as an anti-metamorphic humoral factor 

in the blood sucking bug, Rhodnius prolixus. Further studies reveal that JH has many 

vital functions in controlling insect development, reproduction and behavior. For 

example, JH is required for the maintenance of cuticular identity during larval molts, 

polyphenisms of aphids and locusts, caste determination in social insects, control of 

behavior in honeybee colonies, larval and adult diapause regulation, ovarian 

development, vitellogenesis, and maintenance of morphostasis (cell division without 

differentiation) in imaginal discs of holometabolous insects during the larval 

intermolt growth period (Nijhout, 1994; Truman et al., 2006). Here, we summarize 

the current understanding of chemical structures, physiological functions, 

biosynthesis, and signaling pathways of JH. 

 

1.1. Chemical Structures of JH 

The chemical structure of JH was first identified by Röller et al. (1967) showing that 

it is formed of noncyclic sesquiterpenoids structure carrying an epoxide group near 

one end and a methyl ester on the other. Over the years JH was found to have 
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different forms such as JH0, JH I, JH II, JH III, and JH III bisepoxide (JHB3) (Fig. 

1.1) (reviewed in Nijhout, 1994). So far, JH has been identified in about 100 different 

insect species representing ten insect orders with JH III being the predominant form 

(Baker, 1990).  JH 0, I, II, and III have been isolated from different members of order 

Lepidoptera while JH 0 was isolated only from lepidopteran embryos (Bergot et al., 

1980; Bergot et al., 1981; Schooley et al., 1984). JH bisepoxide (JHB3) was first 

reported as an unknown juvenoid biosynthesized in vitro by the adult corpora allata 

(CA) of the female black blow fly, Phormia regina (Liu et al., 1988), and its structure 

is similar to JH III except for the 6, 7-epoxy group with the probability that it could 

be an oxidation product of JH III.  

An in vitro study revealed that 95% of juvenoids produced by the isolated ring glands 

from third instar of Drosophila melanogaster are JHB3, while JH III is only a minor 

product (Richards et al., 1989). In addition, the isolated ring glands from other 

cyclorrhaphous dipteran larvae also produce JHB3 almost exclusively. However, 

corpora allata from mosquito larvae produce only JH III, signifying that JHB3 

production may be restricted to the higher Diptera. The suggestion that JHB3 is a fly 

juvenile hormone was supported when the synthetic JHB3 was topically applied to the 

newly formed D. melanogaster white puparia and caused developmental responses 

similar to those obtained with JH Ill (Richards et al., 1989). 

1.2. Physiological functions of JH 

1.2.1. Function of JH in Metamorphosis 

JH has conserved functions in hemimetabolous and holometabolous insects where it 

keeps the ‘status quo’ moults in these two groups of insects and maintains the former 
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morphology in the new resulted instars in addition to its ability to prevent 

differentiation without interfering with growth (Riddiford, 1994).  By applying JH 

analogs to the final nymphal instar of hemimetabolous insects, both supernumerary 

nymphal molts and nonviable “monstrous” larval/adult mosaics may result (Nijhout, 

1994). As first shown by Wigglesworth (1934), when the last stage Rhodnius nymphs  

is exposed to active corpora allata, a supernumerary molting occurs which ended by 

6th nymph instar instead of adult.  

The phenomenon also occurs in the holometabolous insects. For example, when 

methoprene is topically applied at the beginning of the eighth (final) Tribolium larval 

instar, it results in supernumerary larvae. After repeated JH treatment, the 

supernumerary larvae can reach their eleventh instar (i.e., they completed 10 

postembryonic ecdyses, rather than 7 ecdyses in wild type) (Konopova and Jindra 

2007). Moreover, when pupae of Tenebrio molitor are exposed to JH analogs, these 

pupae produce supernumerary (second) pupae instead of adults (Socha and Sehnal 

1972). Application of high doses of juvenile hormone (JH) mimics to mature 

lepidopteran larvae also induces prolongation of last instar larval duration of Bombyx 

mori (Akai and Kobayashi 1971) or the production of super larvae of Ephestia 

kühniella (Hong 1975).  However, in higher dipterans such as Drosophila, exogenous 

JH does not cause supernumerary larval molting, even when they are fed with JH 

continuously throughout larval life, but causes the formation of a pharate adult with a 

pupa-like abdomen (Riddiford and Ashburner, 1991). In contrast, reduction of JH in 

the early immature stages of insects usually causes precocious metamorphosis. If the 

corpora allata are removed (allatectomy) from a third-instar Rhodnius nymph, the 
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next molt successively turns the nymph into a precocious adult (smaller than normal 

adult) (Wigglesworth, 1936). In the tobacco hornworm, Manduca sexta, as in other 

Lepidoptera, allatectomy of the penultimate instar larva causes precocious pupation 

(Kiguchi and Riddiford 1978). 

 

1.2.2. Functions of JH in Adults 

In addition to the roles of JH in the immature stages, JH plays essential roles in adult 

reproductive biology. In the females of different insect species, JH plays distinct roles 

in controlling oocyte development.  Studies in lower Diptera such as Aedes aegypti 

revealed that JH triggers the vitillogenesis. Synthesis of vitellogenins (Vg), the yolk 

protein precursors, in the fat body is induced by 20E, while JH III prepares newly 

emerged mosquitoes to become competent to respond to the 20E induction (Clements, 

1992). On the contrary, when the gypsy moth,  Lymantria dyspar, are treated with JH 

analogue (JHA), the females show retardation in vitellogenesis process (Davis et al., 

1990). In Drosophila melanogaster females, loss of JH does not affect Vg production, 

but the deposition of Vg into the oocytes is blocked (Bownes, 1989; Gavin and 

Williamson, 1976).  

In males, JH controls male accessory gland functions and courtship. JH exists in the 

Hyalophora cecropia accessory gland in high amount, suggesting a role in male 

reproductive biology (Williams, 1956). It was reported that JH can induce protein 

synthesis in Drosophila melanogaster male accessory gland (Yamamoto et al., 1988) 

and the ap mutant males, which have JH biosynthesis deficiency, showed less 

courtship activity with the females than the wild type males (Tompkins, 1990). 
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Moreover, Drosophila males mutant for Met (the potential JH receptor) exhibited low 

protein accumulation in male accessory glands and low mating behavior (Wilson, et 

al., 2003). 

1.2.3. Other Functions of JH 

In the tobacco hornworm, Manduca sexta, corpora allata secrete the inactive 

metabolite of JH (JH acid) early in metamorphosis and the imaginal discs then locally 

convert the JH acid to JH (active form) using methyl transferase to prevent them from 

undergoing precocious adult differentiation during the larval-pupal transition 

(Sparagana et al., 1985). The local production of JH-catabolic enzyme (JH esterase) 

was activated in the wing discs of the lepidopteran Galleria mellonella to reduce the 

JH levels in this particular tissue early in the final larval instar, prior to the enzyme 

appearing in the hemolymph which allowed the imaginal tissues to escape from the 

JH suppressive action (Reddy et al., 1980). 

JH was found to have an important role in insect polymorphisms. JH has a role in 

morph determination of Aphis fabae for photoperiod-mediated wing polymorphism, 

where the application of JH at the critical phase sensitive to photoperiod resulted in 

change in the development from winged to the flightless form (Hardie and Lees 

1985).  

JH has many roles in cast determination in social insects. In honey bees, queen larvae 

which were feed on high amount of royal jelly have high rates of JH synthesis by the 

CA, while the worker larvae which were feed on mixed diet of royal jelly, pollen and 

nectar have low rates of JH synthesis and the food quality and quantity signals are 

believed to be transmitted via the stomatogastric nervous system of honey bee larvae 
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(Boleli et al., 1998).The mode of action of JH in honey bee caste differentiation is 

highly pleiotropic where JH affects cell proliferation in the developing ovaries during 

a critical phase in the last larval instar, and reduces induction of somatic cells in the 

developing female gonad (Schmidt and Hartfelder 1998).  

Insect diapause, which is a physiological rather than a behavioral response to 

unfavorable environmental conditions, is controlled by JH in both larval and adult 

stages. In some cases the pupal molt was prevented by high titers of JH accompanied 

by low ecdysteroid titers. However, low titers of JH in adults prevent reproduction 

and may induce searching behavior for suitable overwintering sites. Low JH titers 

during diapause are maintained either by repression of CA activity or by elevated 

levels of JH esterase (Denlinger 1985). 

 

1.3. JH Biosynthesis and Degradation 

The titer of JH is controlled by the relative rates of JH biosynthesis and degradation. 

JH is synthesized in a special pair of glands, the corpora allata (CA) (Tobe and Stay, 

1985; Gilbert et al., 2000). 

 

1.3.1. Biochemical Pathways of JH Biosynthesis 

Biochemical process of JH biosynthesis consists of two pathways, mevalonate 

pathway and JH biosynthesis pathway (Fig. 1.2). The mevalonate pathway is a 

conserved metabolic route based on reductive polymerization of acetyl-CoA and 

results in isoprenoid compounds (Belles, et al., 2005). The latter are used as 

precursors by different organisms to produce distinct final products, such as 
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cytokinins and phytoalexins in plants, steroid hormones in mammals (Cane, 1999), 

and defensive secretions, pheromones, and JH in insects (Seybold and Tittiger, 2003).  

The insect mevalonate pathway has two important peculiarities: the absence of the 

sterol branch and the synthesis of juvenile hormone (JH) (Clark and Bloch 1959; 

Schooley and Baker, 1985).  Isopentenyl diphosphate produced by the mevalonate 

pathway is further modified to JH by JH biosynthesis pathway (Fig. 1.2). Many 

enzymes involved in JH biosynthesis pathway, such as Farnesyl diphosphate synthase 

(FPPS) and JH acid methyltransferase (JHAMT), are well characterized in 

Drosophila and other insects.  

 

In insects, farnesyl pyrophosphate is converted to juvenile hormone (JH) via a 

conserved pathway consisting of isoprenoid derived metabolites (Manuela 1999). 

FPPS catalyzes the first step of this pathway by the condensation of dimethylallyl 

diphosphate with two molecules of isopentenyl diphosphate, producing farnesyl 

diphosphate (FPP) (Yong lei Zhang 2008).  To date, FPPS has been characterized in 

many insect species, including Agrotis ipsilon (Castillo-Gracia and Couillaud, 1999); 

Choristoneura fumiferana and Pseudaletia unipuncta (Cusson et al., 2006); Bombyx 

mori (Kinjoh et al., 2007); Drosophila melanogaster (Sen et al., 2008); and 

Anthonomus grandis (Taban et al., 2009).  

 

JHAMT is an enzyme that converts JH acids or inactive precursors of JHs to active 

JHs at the final step of JH biosynthesis pathway in insects. It transfers a methyl group 

from S-adenosyl-l-methionine (SAM) to the carboxyl group of JH acids to produce 
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JHs in the corpora allata (Shinoda and Itoyama, 2003). Studies reveal that JHAMT is 

predominantly expressed in corpora allata and its developmental expression profile 

correlates with changes in the JH titer, indicating that it is a key regulatory enzyme 

for JH biosynthesis (Niwa et al., 2008; Sheng et al., 2008).  

 

 

1.3.2.  Regulation of JH Biosynthesis 

JH biosynthesis is regulated at three closely linked steps. In the first step, 

developmental, environmental and physiological cues are received by the central 

nervous system, which somehow determines the appropriate rate of JH synthesis 

(Riddiford et al., 1993). In the second step, the brain transfers these signals into the 

JH biosynthesis in an endocrine gland, corpus allatum (CA). It has long been thought 

that JH biosynthesis is regulated primarily by two neuropeptides secreted by brain 

neurosecretory cells: allatotropin (AT) and allatostatin (AST) that stimulates or 

inhibits JH synthesis, respectively (Stay, 2000; Weaver and Audsley, 2009). In the 

final step of JH biosynthesis regulation, the brain signals received in the CA should 

be translated into changes of the expression and/or activity of key regulatory JH 

biosynthetic enzymes, which directly determine the rate of JH biosynthesis. 

In different insect species and at different stages of development, three allatostatin 

families (A-, B-, and C-type allatostatins), and two structurally unrelated allatotropins 

have been characterized (Weaver and Audsley, 2009). A-type ASTs were first 

identified from the viviparous cockroach species Diploptera punctata (Pratt et al., 

1989; Woodhead et al., 1989), and then discovered in widely across other insect 
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orders, including Diptera, Lepidoptera and Orthoptera. All A-type allatostatins share 

the same C-terminal motif (Y/F)XFG(L/I)-NH2, which also forms the core active 

region of the peptide. Usually, one insect species has 4-14 A-type allatostatins which 

are encoded in a single neuropeptide precursor. B-type ASTs, also termed the 

W(X)6Wamide ASTs, were first isolated in crickets. They are C-terminally amidated 

peptides with tryptophan in the second and ninth positions. The Manduca sexta 

allatostatin (Manse-AS) is a representative of C-type allatostatins. It is a single 15-

amino-acid peptide with the nonamidated C-terminal pentapeptide P-I-S-C-F. 

Orthologues of this peptide have also been deduced from genomic sequence data of 

the fruit fly, mosquito, and several lepidopteran species (Stay and Tobe, 2007). 

The first AT to be structurally characterized is a 13-amino acid amidated peptide, 

which stimulates JH synthesis in isolated CC-CA of Lepidoptera. Identical or similar 

peptides have since been identified in other orders, including Diptera, Orthoptera, and 

Coleoptera. However, thus far, no AT-like neuropeptides and AT receptor genes have 

been found in the Drosophila genome (Nassel 2002; Hauser et al., 2006; Liu et al., 

2006; Yamanaka et al., 2008).  

Several other regulation mechanisms independent to AT and AST have been found to 

control JH biosynthesis. First, it is reported that brain may directly control JH 

biosynthesis through neurotransmitters. For example, studies in cockroach and 

Drosophila revealed that glutamatergic nerves innervate the CA cells and N-methyl-

d-aspartate subtype of glutamate receptors (NMDAR) are expressed in both brain and 

CA. Additionally, glutamate and NMDA were demonstrated to stimulate JH synthesis 

in vitro (Chiang et al., 2002). Second, genetic analysis observed that Drosophila 



 10 
 

insulin signaling genes, such as Insulin receptor (InR) and chico, are required for 

normal JH biosynthesis.  

InR mutants are slow to develop, small, infertile, and long-lived. Additionally, they 

have reduced JH synthesis in the young adults, and that normal longevity and 

vitellogenesis are restored by topical application of a JH analog (Tatar et al., 2001).  

Another studies in D. melanogaster revealed that chico homozygous mutant 

genotypes reduced JH synthesis by 67% of the wild type and without influencing the 

ratio of JH subtypes. (Tu et al., 2005). 

1.3.3. JH binding proteins 

After the active form is released into the hemolymph, a specific protein, Juvenile 

hormone binding protein (JHBP), binds to JH. JHBP functions to keep JH in solution 

in the hemolymph, prevents non-tissue-specific uptake and degradation of JH, and 

assists in the interaction between JH and JH specific degradation enzymes (Goodman 

et al., 1990; Trowell, 1992). JHBPs are different among insect orders. In Lepidoptera 

this protein has low molecular weight and binds JH I and II with high affinity 

(Whitmore and Gilbert, 1972; Dillwith et al., 1985; Lerro and Prestwich, 1990). In 

Blattodea, Isoptera, Hymenoptera, Diptera and Coleoptera, a high molecular weight 

protein functions as JHBP with high binding activities for JH III (de Bruijn et al., 

1986; de Kort et al., 1987, de Kort and Koopmanschap, 1987; King and Tobe, 1992; 

Sevala et al., 1997). A very large hexameric protein with 6 binding sites with high 

affinity for JH III serves as the JHBP in Orthoptera (Koopmanschap and de Kort, 

1988; Braun and Wyatt, 1996). 
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1.3.4.  JH Degradation 

JH degradation is attributed to juvenile hormone esterase (JHE) and to juvenile 

hormone epoxide hydrolase (JHEH) in the hemolymph and tissues (DeKort and 

Granger, 1996). JHE proteins have been isolated and purified from D. melanogaster 

(Campbell et al., 1992). JHE hydrolyzes the ester of JH to produce JH acid. JHEH 

hydrolyzes the epoxide of JH to produce JH diol (JHD), but JHEH only functions in 

cells (Halarnkar et al., 1993). The cumulative activities of the two enzymes convert 

JH to the juvenile hormone acid diol (JHAD) for which no function has been 

discovered. Most JH is bound to JHBP and hence JH is protected from degradation by 

non-specific esterases with low binding affinities (Touhara et al., 1993; Touhara and 

Prestwich, 1993; Touhara et al., 1995). JHE is the only enzyme in the hemolymph 

that has a high affinity for JH, and hence is the only hemolymph esterase considered 

important in JH degradation (Gilbert et al., 2000).  

1.4. JH Signaling Pathways 

At the physiological level, Ec induces molting, whereas the “status quo” hormone JH 

titer determines the nature of the molt. At a high JH titer, JH antagonizes the 20E-

induced physiological and developmental events to assure larval molting and to 

prevent larval-pupal-adult metamorphosis (Riddiford, 1994; Buszczak and Segraves, 

2000; Gilbert et al., 2000; Thummel, 2001; Dubrovsky, 2005; Truman and Riddiford, 

2007; Riddiford, 2008). At a low JH titer, 20E promotes larva-pupa or pupa-adult 

metamorphosis (Gilbert et al., 2000; Riddiford et al., 2003). During the last two 

decades, dramatic progress has been made towards understanding the molecular 



 12 
 

mechanisms underlying 20E signaling (Thummel, 2002). In contrast, relatively little 

is known about the molecular action of JH. 

1.4.1  Met and Gce as the potential JH receptors  

Methoprene-tolerant (Met) gene, which is also known as Resistance to Juvenile 

Hormone (Rst(1)JH), was discovered by Wilson and Fabian (1986) while screening 

mutagenized Drosophila for resistance to methoprene, a JH analogue used as an 

insecticide.  The Met encodes a bHLH-PAS protein family member (Wilson and 

Ashok, 1998).  Several different studies propose MET as a component of the elusive 

JH receptor.  For example, Met null mutants are greater than 10-fold more resistant to 

methoprene (Wilson and Fabian, 1986).  Recombinant Met prepared in an in vitro 

transcription-translation system binds JH III with high affinity (Miura et al., 2005).  

In Tribolium, suppression of Met expression by injection of double-stranded (ds) Met 

RNA causes precocious metamorphosis (Konopova and Jindra, 2007), further 

suggesting its involvement in JH signaling.  

However, null Met mutants of Drosophila are completely viable, which is not what 

one would expect if Met is a JH receptor.  One reasonable explanation is that 

redundancy may exist between Met and another Drosphila bHLH-PAS gene, germ 

cell-expressed (gce), which has more than 50% homology to Met (Moore et al. 2000; 

Godlewski et al., 2006).  Met can either form homodimers or can heterodimerize with 

Gce in vitro and this dimerization can be reduced by JH (Fig. 1.3) (Godlewski et al., 

2006). Interestingly, there is only one Met homologous gene in mosquitoes and 

beetles, which is more similar to the fruit fly gce than to Met (Wang et al., 2007; 

Konopova and Jindra, 2007).   
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Flies receiving gce RNAi in a Met null background die during the pupal-adult 

transition (Liu et al., 2009; Baumann et al., 2010). Overexpression of Met causes 

precocious and enhanced PCD in larval tissues, resulting in high mortality during 

larval life (Barry et al., 2008; Liu et al., 2009). Meanwhile, overexpressed gce can 

substitute for Met function (Baumann et al., 2010). During the larval-pupal transition, 

Met/Gce mediates JH action to prevent 20E-triggered programmed cell death (PCD) 

of larval tissues (Liu et al., 2009) and cell differentiation of adult tissues (Riddiford et 

al., 2010). Many groups have suggested that when a gce mutant becomes available, 

its phenotype could help evaluate the functions of Met and gce in insects.  

1.4.2. Broad and JH-20E cross-talk 

There is a cross-talk between JH and Ec signaling pathways through the insect life 

cycle. During larva-to-larva molts, the simultaneous presence of 20E and JH leads to 

rapid accumulation of some early 20E-inducible proteins, such as E74 and E75. These 

proteins perform two functions. They facilitate activation of secondary 20E-inducible 

genes which induce larva molting process and repress their own expression. 

However, at the end of larval development, 20E in the absence of JH activates a large 

group of early response genes (BR-C, E74 and E75), thus initiating the onset of 

metamorphosis.  

After 20E activates the expression of BR-C, JH is no longer able to prevent pupation. 

Finally the differentiation of an adult occurs in the presence of high 20E titer, in the 

absence of JH and of BR-C activity, suggesting that two transcription factors, BR-C 

and E75A, contribute to the cross-talk between the two hormones. It appears that BR-

C is a key target of JH status quo action, and E75A is a part of the mechanism 
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whereby JH prevents BR-C activation (Dubrovsky, 2005). On the other hand, 

although some progress regarding JH signal transduction has been made recently, the 

detailed molecular mechanism of JH action remains speculative because of the JH 

receptor (JHR) has not been identified yet in Drosophila or any other insect species.  

The recent progress in our understanding of JH molecular action identified only three 

well investigated JH signaling genes, broad (br), Methoprene-tolerant (Met), and 

Krϋppel-homolog 1 (Kr-h1). Briefly, Br is a critical molecule at the cross talk 

between Ec and JH signaling (Fig. 1.4) (Zhou and Riddiford, 2002), Met gene 

encodes a bHLH-PAS protein family member, which is suggested to be a component 

of the elusive JH receptor (Ashok et al., 1998), while Kr-h1 is a primary JH response 

gene that acts downstream of Met in repressing br expression (Minakuchi et al., 2008, 

2009).   

The Broad gene and its responses to JH actions: 

Br is an early Ec-inducible gene, previously known as Broad-Complex (Br-C), and it 

is necessary for the onset of insect metamorphosis and specification of pupal 

development (Karim et al., 1993; Bayer et al., 1996; Zhou and Riddiford, 2002). 

Drosophila br encodes four transcriptional factors that contain a common N-terminal 

domain and four pairs of different DNA-binding zinc finger domains that belong to 

the Broad-Tramtrack-Bric-a-Brac (BTB) family (DiBello et al., 1991; Bayer et al., 

1996). Broad null mutants can develop into 3rd instar and die before pupal formation 

(Kiss et al., 1976, 1988).  Ectopic expression of br in the early second instar larvae of 

Drosophila induces premature pupal formation (Zhou et al., 2004).  Therefore, br is 

necessary and sufficient for the initiation of insect metamorphosis.  For this reason, br 
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is thought of as the JH-dependent “pupa identifier” to specify pupal development and 

to mediate the ‘status quo’ action of JH (Zhou and Riddiford, 2002; Dubrovsky, 

2005). 

Consistent with its function, Br is predominantly expressed during the larval-pupal 

transition in all holometabolous insects examined (Dubrovsky, 2005). Previous 

studies in Manduca, Bombyx, and Tribolium suggested that the temporal pattern of br 

expression is the result of 20E and JH interaction. 20E directly induces br expression, 

but this induction can be prevented by JH in young larvae. Therefore, expression of 

br is specifically restricted to the larval-pupal transition when 20E is high but JH is 

low or absent (Fig. 1.5) (Zhou et al., 1998; Reza et al., 2004; Konopova and Jindra, 

2008). However, unlike in moths and beetles, JH cannot prevent the larval-pupal 

transition or induce extra larval instars in the fly (Riddiford and Ashburner, 1991; 

Restifo and Wilson, 1998).  

1.4.3.- Kruppel homolog1 and its functions in mediating JH signaling: 

The Drosophila Kruppel homolog1 (Kr-h1), a C2H2-type zinc finger transcription 

factor, is a 20E-response gene (Pecasse et al., 2000; Beck et al., 2004). Kr-h1 mutants 

die at the prepupal-pupal transition (Beck et al., 2004). In both Drosophila and 

Tribolium, Kruppel-homolog1 (Kr-h1) mRNA levels are high during embryonic stage 

and continuously expressed in the larvae, and then disappears during pupal and adult 

development (Pecasse et al., 2000; Minakuchi et al., 2009). In a microarray analysis 

when JH was topically applied to newly emerged mosquitoes, Aedes aegypti, (before 

the normal endogenous increase in JH after eclosion), transcriptional changes were 

detected in a group of JH target genes including Kr-h1 (Zhu, et al., 2010).      



 16 
 

 

Kr-h1 expression can be induced in the abdominal integument by JH application at 

pupariation (Minakuchi et al., 2008). Suppression of Kr-h1 by dsRNA in the early 

larval instars of Tribolium causes precocious br expression and premature 

metamorphosis after one succeeding instar. Thus, KR-H1 is necessary for JH to 

maintain the larval state during a molt through suppressing br expression (Fig. 1.6) 

(Minakuchi et al., 2009).  

 Importantly, JH can induce Kr-h1 expression as well and Kr-h1 lies upstream of Br-

C (Minakuchi et al., 2008). Although sufficient evidence is lacking in Drosophila, in 

both Tribolium (Minakuchi et al., 2009) and the mosquito, Aedes aegypti (Zhu et al., 

2010), Met is required for JH action to induce Kr-h1 expression. It is likely that Kr-h1 

is an early JH-response gene that mediates JH action by linking Met/gce and Br-C 

(Minakuchi et al., 2009). Another study in hemimetabolous insects was conducted to 

test the expression profiles of Kr-h1 in two thrips species, the western flower thrips 

and a predatory thrips belonging to order Thysanoptera.  The data showed that Kr-h1 

expression profiles in post-embryonic development were comparable to those in 

holometabolous insects. In addition, when they consistently applied exogenous JHM 

in distinct developmental stages, a lethality in the propupal stages (non-feeding stages 

called propupa and pupa between the larval and adult stages), prolonged expression 

of Kr-h1 was quantified when the newly molted propupae treated with exogenous 

JHM suggesting that that Kr-h1 could be involved in JH actions in thrips’ 

metamorphosis (Minakuchi et al., 2011).  
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1.4.4.- Taiman is required for both JH and 20E signaling pathways: 

Taiman (tai) is a ligand-dependent nuclear receptor (HLH-PAS family) that encodes a 

steroid hormone receptor coactivator which activates transcription in conjunction 

with a ligand-dependent nuclear receptor from a RNA polymerase II promoter rather 

than binding DNA directly. Ecdysone signaling depends on the tissue type, the 

developmental stage, and the EcR/USP complexes with Taiman co-activator. In the 

Drosophila ovary, mutations in tai caused defects in the migration of specific follicle 

cells, the border cells, and the mutant cells exhibited abnormal accumulation of E-

cadherin, beta-catenin, and focal adhesion kinase. TAI protein colocalized with the 

ecdysone receptor in vivo and augmented transcriptional activation by the ecdysone 

receptor in cultured cells, introducing a new function for steroid hormones and the 

requirement of this type of coactivator (TAI) for cell motility and in stimulating 

invasive cell behavior, independent of effects on proliferation (Bai et al., 2000) 

Zhu and his colleagues (2006) identified mosquito protein FISC (β Ftz-F1 interacting 

steroid-receptor coactivator). FISC, the mosquitoes ortholog of DmTaiman, was 

found to functionally link to βFtz-F1 during transcriptional activation of E74B, E75A, 

Vg (vitellogenin), and VCP (vitellogenic carboxypeptidase in the stage-specific 20E 

response. They concluded that, in the mosquito fat body, βFtz-F1 defined the 20E 

response after a blood meal by enhancing the recruitment of FISC to the EcR/USP 

complex at the regulatory sites of their target genes and this is achieved through 

protein-protein interaction with FISC. 

FISC was found to bind to Met in vivo in a JH-dependent manner and to act as a 

functional partner of Met in mediating JH-induced gene expression, such as AaET 
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and AaKr-h1, indicating that, Met-FISC complex constitutes a key step in signal 

transduction of juvenile hormone (Li et al., 2011) 

1.5. JH Analogs as Insecticides: 

Williams (1967) first suggested that JH analogs (JHAs) might be used as insecticides 

to disturb insect growth and development. Since then, many of JH analogs and JH 

agonists have been commercialized as insecticides. For example, methoprene is a JH 

analog which has been used for decades as an insecticide (Staal 1975, Retnakaran 

1985).  It is essentially nontoxic to humans and vertebrates when ingested or inhaled.  

Therefore, it is approved by the WHO for use in drinking water cisterns to control 

mosquito larvae and is used in the production of a number of foods including meat, 

milk, mushrooms, peanuts, rice and cereals. It also has several uses on domestic 

animals (pets) for controlling fleas.  

Juvenile hormone mimics are the main components of the third generation of 

insecticides which are called Insect Growth Regulators (IGRs). JH mimics can be 

classified into two classes of hormone-based IGRs include: juvenoids (JH mimics, JH 

agonists and antagonists and JH analogs) and anti-JH agents. Larvae are not able to 

complete the final molt into adult resulting in death when JH synthesis is completely 

inhibited by using anti-JHs such as precocenes which inhibit JH biosynthesis by 

destroying cells of the CA (Bowers et al., 1976). In contrast, continuous application 

of JH analogs cause the larvae to molt into abnormal and reproductively-incompetent 

adults (Bowers, et al., 1980). Several JH analogs have been discovered and 

synthesized and are commercially available as insecticides against household pests 

and agricultural pests.  These include methoprene (Henrick et al., 1973), fenoxycarb 
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(Dorn et al., 1981, Masner et al., 1981), diofenolan (Sechser et al., 1994), and 

pyriproxyfen (Hatakoshi et al., 1986, Kawada et al., 1989) 

Although JH mimics are specific and effective in disrupting both insect embryonic 

development and metamorphosis (Riddiford and Williams 1967, Staal 1975, 

Dhadialla et al., 2005), unfortunately they also negatively affect caste differentiation 

in social insects and some are toxic to beneficial aquatic predator insects such as the 

dragonfly and the back swimmer (Dhadialla 1998), and toxic to crustaceans such as 

shrimp, crabs and lobsters (Tuberty 2005, Walker 2005). In general, the JHAs have 

low acute toxicity to fish, birds, mammals, and human. For example, the acute 50% 

lethal dose (LD50) for fenoxycarb in rat is >10 g/kg (oral), >2 g/kg (dermal), and >480 

mg/m3 for 4-h exposure (inhalation) (Grenier and Grenier 1993).  

More recently, persistent efforts by the agrochemical industry have led to the 

discovery of several new and much more chemically diverse insecticidal agents with 

JH or ecdysteroid modes of action. Such compounds have much greater metabolic 

and environmental stability than earlier analogs and are better suited to agriculture. In 

addition, some display remarkable target pest selectivity and some of them are among 

the most environmentally-friendly types of insecticides (Retnakaran et al., 1985) 
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1.6. Directions and research goals  

Since the discovery of the Met gene by Wilson and Fabian (1986), it has been 

confirmed that Met mutant flies are resistant to JHA, and have reduced fecundity, e.g. 

delayed egg laying by females and other phenotypes.  However, the important point 

here is that homozygous mutant flies for Met are viable.  This contradicts the 

expectation that a JH receptor such as Met should be lethal due to the importance of 

JH signaling in immature stages as well as in the adult stages. To explain this 

apparent contradiction, it was hypothesized that another functionally redundant gene 

exists, which may function simultaneously with Met downstream of JH actions. The 

discovery by Moore and colleagues (2000) identified the Dm-gce gene which encodes 

bHLH PAS proteins and named it according to its expression in a subset of 

embryonic germ cells. In this study we performed a bioinformatics analyses to align 

Met and gce Drosophila amino acids, and found an overall identity and similarity 

50% and 61% respectively, and 68 -86% identities and 86-88% similarities in the 

conserved domains bHLH, PAS-A, and PAS-B. A gce null allele was thus required to 

test the redundancy hypothesis between Met and gce in order to further 

ourunderstanding of JH signaling. In parallel, there are few known genes which are 

recognized to be involved in either the cross-talk between Ec and JH signalings or in 

JH signaling alone. Thus, in order to identify more genes, a genetic screening method 

had to be undertaken to achieve this goal. The present body of work aims to answer 

questions regarding the JH receptor candidates and identify new genes participating 

in the JH synthesis or signaling pathway.  
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The two primary approches of this dissertation research are:  

1- Reverse genetics approaches applied to candidate genes such as br, Kr-h1, and 

Met, and generation of a gce null allele. 

2- Forward genetics approaches effected by conducting a saturation genetic 

screen in order to identify genes involved in JH synthesis or signaling based 

on our previous knowledge of the key genes such as br, which plays important 

roles in the cross-talk between Ec and JH signaling pathways. 
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Figure 1.1:  Chemical structure of Juvenile Hormone homologues; JH 0, JH I, JH II, 

JH III, JHB3 (JH III bisepoxide). Figure reproduced from Nijhout (1994)   
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Figure 1.2: Model of JH Biosynthesis pathways through the mevalonate pathway 

starting from acetyle-CoA in insects (Modified from Bellés et al, 2005) 
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Figure 1.3: Model for Methoprene-tolerant (Met) as the JH receptor based primarily 

on Godlewski et al. (2006) and Miura et al. (2005). When JH is present, Met binds JH 

and remains as a monomer and regulates larval genes. When JH is absent, Met either 

homodimerizes or heterodimerizes with germ cells-expressed (gce) and 

metamorphosis proceeds in response to 20E. (Reviewed in Riddiford 2008) 
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Figure 1.4: Summary diagram of the hormonal regulation of Broad (BR) protein 

expression and its role in the specification of pupal development based on studies of 

its action on cuticle genes. Juvenile hormone (JH) prevents the pupal molt, by 

preventing the activation of the br gene by ecdysone and prevents the adult molt by 

preventing the suppression of br by ecdysone in JH-sensitive tissues. BR is sufficient 

to activate the pupal program and to suppress both the larval and the adult programs 

(Zhou and Riddiford 2002) 
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Figure 1.5: Model for functioning of BR-C in Tribolium metamorphosis. In young 

larvae, naturally occurring JH blocks pupal differentiation by repressing BR-C. JH is 

absent in early pupae, and its addition blocks adult morphogenesis by causing ectopic 

BR-C activation and death after a supernumerary pupal cuticle deposition. As both 

effects of JH on BR-C expression require Met, unknown stage-specific factors must 

modulate Met function (Konopova and Jindra 2008)  
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Figure 1.6: Models of JH signaling pathway in insect molting and metamorphosis in 

normal larvae (Minakuchi et al., 2009) 
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Chapter 2 

MET and GCE are functionally redundant in transducing 

the “status quo” action of juvenile hormone 

ABSTRACT 

Methoprene-tolerant (MET) and Germ cell expressed (GCE), two bHLH-PAS 

transcription factors in Drosophila, lie upstream of the juvenile hormone (JH) signal 

transduction pathway. Here we report that MET and GCE are functionally redundant 

in transducing the “status quo” action of JH. Both Met and gce null single mutants are 

fully viable, but the Met-gce double mutant, Met27-gce2.5k, dies during the larval-pupal 

transition. Precocious and enhanced caspase-dependent programmed cell death (PCD) 

appears in fat body cells of Met27-gce2.5k during the early larval stages. Expression of 

Kr-h1, a JH response gene that inhibits 20-hydroxyecdysone (20E)-induced broad 

(br) expression, is abolished in Met27-gce2.5k during larval molts. Consequently, 

expression of br, which induces caspase-dependent PCD predominantly during the 

larval-pupal transition and is prevented by JH during larval molts, occurs 

precociously in Met27-gce2.5k. Defective phenotypes and gene expression changes in 

Met27-gce2.5k are similar to the JH-deficient animal, Aug21-GAL4>UAS-grim. 

Importantly, exogenous application of JH agonists restored the JH signal in Aug21-

GAL4>UAS-grim, but not in Met27-gce2.5k. Our results demonstrate that Drosophila 

MET and GCE redundantly transduce JH action to prevent 20E-induced caspase-

dependent PCD during larval molts by inducing Kr-h1 to inhibit br expression. 



 40 
 

INTRODUCTION  

It has been nearly 80 years since the discovery of juvenile hormone (JH) by V. 

B.  Wigglesworth. Despite its important developmental and physiological roles, how 

JH functions at the molecular level is still not well understood, largely because the JH 

receptor has not been identified. The most likely candidate is Methoprene-tolerant 

(Met), which was first identified from the fruit fly, Drosophila melanogaster, in a 

genetic screen for mutants resistant to methoprene, a JH agonist (JHA) (Wilson and 

Fabian, 1986). Met is a typical bHLH-PAS transcription factor (Ashok et al., 1988), 

which binds JH (Shemshedini and Wilson, 1990; Miura et al., 2005). Met forms 

homodimers or heterodimers with its paralog, Germ-cell expressed (Gce), while JH 

reduces their dimerization (Godlewski et al., 2006). Although the Met null allele is 

fully viable (Wilson and Ashok, 1998), animals subjected to RNAi knockdown of gce 

in a Met null background die during the pupal-adult transition (Liu et al., 2009; 

Baumann et al., 2010). Overexpression of Met causes precocious and enhanced 

programmed cell death (PCD) in larval tissues (Liu et al., 2009), resulting in high 

mortality during larval development (Barry et al., 2008). Unlike Met, gce 

overexpression does not cause lethality; globally overexpressed gce can partially 

substitute for Met function (Baumann et al., 2010). During the larval-pupal transition, 

Met and Gce mediate JH action to prevent 20E-triggered caspase-dependent PCD of 

larval tissues (Liu et al., 2009) and differentiation of adult imaginal discs (Riddiford 

et al., 2010). In the beetle, Tribolium castaneum, which has only a single Met-like 

ortholog, Met plays a key role in JH action by maintaining proper larval molting and 
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preventing the premature development of adult structures during the larval-pupal 

metamorphosis (Konopova and Jindra, 2007; Parthasarathy et al., 2008a).  

JH has many vital functions in insect development and reproduction, one of 

which is to modulate the action of the molting hormone, 20-hydroxyecdysone (20E), 

to coordinate insect molting and metamorphosis. Overall, 20E orchestrates the 

molting process, whereas JH determines the nature of the molt (Riddiford et al., 2003; 

Riddiford, 2008). Broad (Br), previously known as Broad-complex, is a zinc finger 

transcription factor involved in JH-20E crosstalk (Zhou et al., 2004). In both 

Drosophila and the moth, Manduca sexta, br expression is directly induced by 20E 

via its nuclear receptor complex, EcR-USP, but this induction can be prevented by JH 

during larval molts (Zhou et al., 1998; Zhou and Riddiford, 2002), resulting in br 

expression predominantly during the larval-pupal transition (Emery et al., 1994; 

Huang et al., 2011). Ectopic expression of br in the Drosophila 2nd instar larvae is 

sufficient to induce pupal formation (Zhou et al., 2004), while the br null alleles 

develop normally to the final larval instar but fail to undergo pupal formation (Kiss et 

al., 1976, 1988). Therefore, Br is called a “pupa specifier” in the initiation of 

metamorphosis (Zhou et al., 2002; 2004). During metamorphosis, Br induces 

apoptosis by up-regulating Dronc and Drice, two caspase genes responsible for 

apoptotic programmed cell death (PCD) (Cakouros et al., 2002; Kilpatrick et al., 

2005). In Tribolium, Met mediates JH action to prevent 20E-induced br expression 

during larval molts, but is also required for exogenous JH to induce br expression 

during the pupal stage (Konopova and Jindra, 2008; Suzuki et al., 2008; Parthasarathy 

et al., 2008b).  
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Krüppel homolog1 (Kr-h1), another zinc finger transcription factor, is a key 

component in the JH signal transduction pathway. It has been documented that JH 

induces Kr-h1 expression in Drosophila (Minakuchi et al., 2008). In Tribolium 

(Minakuchi et al., 2009) and the mosquito Aedes aegypti (Zhu et al., 2010), Met is 

required for JH action to induce Kr-h1 expression. Moreover, the Tribolium Kr-h1 is 

a JH early-response gene that mediates JH action by linking Met and br (Minakuchi et 

al., 2009).  

In a previous study, it was demonstrated that a “status quo” action of JH is to 

prevent 20E-induced PCD in Drosophila, which is subtle, but functionally important 

(Liu et al., 2009). To understand how Met and Gce mediate the “status quo” action of 

JH, we generated a Met-gce double mutant, Met27-gce2.5k, which dies during the 

larval-pupal transition, exhibiting lethal and defective phenotypes similar to the JH-

deficient animal, Aug21-GAL4>UAS-grim. Furthermore, we show that Met and Gce 

are functionally redundant in transducing the “status quo” action of JH through Kr-h1 

induction, which inhibits br expression and precludes 20E-induced caspase-

dependent PCD during larval molts. This study lays a foundation for further 

elucidation of the molecular mechanism of JH action in Drosophila. 
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MATERIALS AND METHODS 

Fly strains and genetics 

All Drosophila strains were grown on standard cornmeal/molasses/yeast food at 

25°C. Aug21-GAL4, UAS-grim, UAS-gce, and Met27 flies are as described previously 

(Wilson and Ashok, 1998; Liu et al., 2009; Baumann et al., 2010). Three lines of 

UAS-Met-dsRNA, tubulin-GAL4, and arm-GAL4 flies were obtained from the VDRC 

Stock Center and Bloomington Drosophila Stock Center, respectively. Oregon-R 

and/or w1118 were used as wild type controls. 

 

Preparation of fly food: The fly food was prepared in a Groen® steam kettle and 

mixed by a LEESON motor. 

For the preparation of 10 – 12 trays of fly food; 750 ml Molasses (Food Service 

Direct) is added to 14 Liters hot water and mixed well. Corn meal (157g) (Food 

Service Direct) is added slowly to avoid lumps, followed by 80g of Agar (Moorehead 

& Co.) and 900g yeast (Food Service Direct). The food is boiled for 30 min, and after 

cooling for 45 min, the preservatives and anti-fungal agents 188 g Tagosept and 68 

ml Propionic acid (Fisher Scientific) are added and mixed well. About 15-20 ml is 

added to each vial.  

 

Generation of gce deletion lines by imprecise excision: To generate the gce deletion 

line, a Minos-insertion line Mi{ET1}MB07696  inserted in the 4th intron of gce (stock 

# 25565) was obtained from the Bloomington Drosophila Stock Center. This 

transposable element has GFPE.3xP3 eye marker. To transpose the Minos-insertion 
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element, another fly line (stock # 24613) was obtained from Bloomington Drosophila 

Stock Center. This fly has a P-element insertion (P{hsILMiT}), a Hsp70 promoter 

driving expression of an intronless Dhyd\Minos\Ths.PF gene.  Minos transposase-

induced imprecise excision was carried out according to the reported procedure 

(Metaxakis et al., 2005) with modifications as follow: 

About 5 – 7 virgin females carrying Minos-insertion transposable element (Stock # 

25565) were crossed with males carrying the P{hsILMiT} insertion (stock # 24613) in 

100 independent vials. The progenies of those crosses were heat shocked for 30 min. 

at 38oC two times a day for three days starting from 2nd instar larvae. To screen for 

successful excision, 1,000 F1 males were crossed with 8,000 virgin females that 

carried the Fm7c balancer chromosome with one male and eight females in each vial. 

One F2 female that carried the Fm7c balancer chromosome and probably has 

successful excision marked by the white and GFP negative eye was picked from each 

F1 cross and mated with Fm7c/Y males in 1,000 independent vials. The progenies of 

the last cross were used to isolate the genomic deletion lines by PCR.     

 

Genomic DNA was extracted from individual fly lines carrying the Minos-excised 

chromosome over an FM7c balancer according to previous described protocol 

(Bender et al., 1983) with some modifications as follow: 

About 20 flies in a 1.5 ml Eppendorf tube are homogenized in 600 µl buffer A (0.1 M 

Tris HCI (pH 7.5) - 0.1 M EDTA - 0.1 M NACl - 1% SDS). Add 1 µl 100 ug/ml 

RNase A and incubate at 65oC for 30 min. Add 90 µl buffer B (1:2.5 5 M KAc – 6 M 

LiCl), shake, and incubate on ice for 30 min. Centrifuge at 14,000 rpm for 15 min. 
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Transfer 550 supernatant into a new 1.5 ml Eppendorf tube, add 550 µl Chloroform 

centrifuge for 10 min after mixing. Transfer 500 supernatant to a new Eppendorf tube 

again and add 500 µl Isopropanol and centrifuge for 15 min, decant supernatant and 

wash the pellet with 800 µl 70% ethanol. Centrifuge for 5 min at 14,000 rpm and 

decant supernatant, air dry for 5 min and resuspend the pellet in 100 µl TE buffer (10 

mM Tris-HCl (pH 7.5) – 1 mM EDTA pH 8). Store at -20oC.       

 

Genomic DNA amplifications for deletion screening were carried out using primers 

designed from the DNA sequence of gce obtained from Flybase.com to amplify a 4-

kb fragment flanking the Mi{ET1}MB07696 insertion site. The primers used for the 

analytical PCR reactions were 5’-CAGAACGTGATCATTGCACTCGAATC-3’ and  

5’-GACCGAACGAGAAGTAACCCTGA-3’.  

PCR amplification was performed with 1 μl genomic DNA obtained from each 

excision line as a template, 2 μl of 10X PCR reaction buffer, 1μl of 25mM MgCl2, 1 

μl (10 μM) of each primer, 0.1 μM of each dNTP, and 0.25 U Taq DNA polymerase 

(Invitrogen) in a final volume of 20 μl. 

PCR amplification was carried out in a 200 μl Eppendorf cycler with an initial 

denaturation step at 94 °C for 2 minutes. Amplifications were achieved through 33 

cycles at 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 4 min. A final extension step 

was carried out for 10 min at 72 °C. PCR products were loaded in 1% Agarose gel for 

electrophoresis analysis and stained with Ethidium Bromide.   
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About 400 F2 lines were screened for deletions and 4 lines were selected based on the 

reduced length of PCR products. One line, gce2.5k, gave the shortest, 1.5-kb, PCR 

product. DNA sequencing demonstrated that gce2.5k carries a 2.5-kb deletion that 

removes exons 5–8 and part of exon 9 of gce.  

 

Generation of Met27- gce2.5k double mutant: The Met27- gce2.5k double mutant was 

generated by genetic recombination and verified by PCR and DNA sequencing.  

Since Met and gce genes are located in positions 10D and 13B on the first 

chromosome, respectively, the recombination technique was applied to combine 

Met27and gce2.5k mutations in one chromosome.  Virgin Met27 females were crossed 

with gce2.5K males. Met27 / gce2.5K  transheterozygous virgin females were collected 

from the F1 progeny and crossed with Fm7G/Y male. Because no obvious phenotype 

is associated with either Met27or gce2.5k mutations, 200 Fm7G-balanced virgin females 

were randomly collected from F2 progeny and each of them was crossed with 

Fm7G/Y male separately to set up 200 independent lines. Genomic PCR and DNA 

sequencing were used to detect Met27 and gce2.5K mutations for all 200 lines. The 

presence of gce2.5K was assessed by genomic DNA PCR with the same pair of primers 

used in the gce deletion line screening.  The presence of Met27 was confirmed by 

genomic PCR followed by DNA sequencing.  Met27 carries three point mutations 

and/or DNA single-nucleotide polymorphisms within its intron (G-A-T in Met27 and 

A-G-C in the wild type of the genome position 11,512,216 - 11,512,229 - 11,512,230, 

respectively).       

 



 47 
 

Lethal phase determination for Met27- gce2.5k double mutants: Because Met27-gce2.5K 

double mutants are lethal, we determined their lethal phase. Met27- gce2.5k /FM7c,act-

GFP females were crossed with FM7c,act-GFP/Y males. 100 newly hatched larvae of 

Met27- gce2.5k / Y male progeny were picked up based on the lack of GFP and were 

reared in one vial of fly food. Lethal phase of these larvae was closely monitored.  

 

Generation of p{Met} transgenic flies: To generate p{Met} transgenic flies, 

BACR29A04 was obtained from BACPAC Resources, Children’s Hospital Oakland, 

CA. This BAC clone carries 160 kb genomic DNA of D. melanogaster in the BAC 

vector and is transformed into DH10B E.coli host. To extract the DNA from the 

E.coli host, one single colony was inoculated into 100 ml LB media (10 g bacto-

tryptone, 5 g bacto-yeast extract, and 10 g NaCl dissolved in 1 liter H2O; pH 7.0) 

supplemented with 25μg/ml kanamycin antibiotics and cultured at 37oC in shacking 

incubator at 250 rpm over night (16-18 hrs). The culture was centrifuged for 10 min. 

at 3,000 rpm and the supernatant was discarded. The pellet was resuspended (vortex) 

in 15 ml P1 solution buffer (50mM Tris, pH 8 - 10 mM EDTA - 100 ug/ml RNase A; 

filter sterilized, 4oC). 15 ml P2 solution buffer (0.2N NaOH - 1% SDS; filter 

sterilized, room temp) was added and mixed gently by converting the tube about 6 

times and left at room temperature for 5 min. Slowly, 15 ml P3 solution buffer (3M 

KOAc, pH 5.5; autoclaved, 4oC) was added and gently shaked to mix the contents 

and left on ice for 10 min, and then the sample was spun at 10,000 rpm for 10 min. at 

4oC. Ice-cold isopropanol was added to the supernatant in the ratio of 1:1 and mixed 

and kept on ice for 20 min. or -20oC overnight, and then centrifuged at 10,000 rpm 
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for 15 min at 4oC. The pellet was washed using 5 ml 70% ethanol, centrifuged, air 

dried at room temperature, and resuspended in 2 ml TE buffer.   

 

Because Met is flanked by SspI restriction cites, about 20 μl BAC DNA was digested 

with SspI restriction enzyme (Invitrogen), and the products were separated by 1% 

agarose gel electrophoresis and stained by ethidium bromide. An approximately 5.7-

kb DNA fragment containing the Met-encoding region and its putative promoter was 

cut from the gel using DNA ladder Plus marker (Invitrogen), and purified by gel 

purification kit (QIAGEN). The purified fragment was sub-cloned into the 

pBluescript KS plus cloning vector (Invitrogen), digested by SmaI (blunt end); 3 μl 

plasmid victor, 12 μl insert, 4 μl 5X ligation buffer, and 1 μl TD4 DNA Ligase 

enzyme (Invitrogen), and transformed into DH5α E. coli competent cells as follow: 5 

μl overnight ligation mix was mixed gently with 100 μl competent cells and incubated 

in ice for 45 min., the mix was heat shocked for 90 s. and then returned to ice for 3 

min. 700μl LB was added and the suspension incubated at 37°C for 1 hour. The 

suspension was streaked out on LB agar plates with 1 μg/μl Ampicillin, 40 μl X-Gal, 4 μl 

IPTG, and incubated overnight at 37°C. The positive colonies (white) were selected 

and each colony was cultured in 5 ml LB with 1 μg/μl Ampicillin and incubated 

overnight at 37°C. Different independent plasmids were isolated by Plasmid Mini Kit 

(QIAGEN) according to the manufacture protocol. 

The correct sub-cloned plasmid containing the 5.7 kb DNA fragment was detected by 

digestion screening of about 50 isolated plasmids and confirmed by sequencing 

analysis using M13 F & M13 R primers.             
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The 5.7 kb Met fragment was excited from the pBluescript-Met plasmid by 

EcoRI/NotI and following gel purification was subcloned into pCaSpeR-4 using the 

same enzymes. A positive clone pCaSpeR-4–Met was selected by restriction enzyme 

digestion as well as DNA sequencing analysis.  

To isolate plasmid DNA for Drosophila transformation, the correct pCaSpeR-4–Met 

construct was re-transformed into DH5α E-coli competent cells and cultured on LB 

agar plates for overnight. A single colony was isolated and cultured in LB for large 

scale plasmid extraction using HiSpeed® Plasmid Midi Kit (QIAGEN) following the 

manufacture protocol.         

 

Transgenic fly lines were generated by P-element-mediated germline transformation.  

pCaSpeR-4–Met DNA prepared using HiSpeed® Plasmid Midi Kit was sent to 

Rainbow Transgenic Flies, Inc (Camarillo, CA) for embryo injection. pCaSpeR-4–

Met together with a helper plasmid that carries P-transposase gene was injected into 

~250 0-1 hrs w1118 embryos. The surviving injected eggs (embryos) were reared to 

adulthood at 25oC. Single white-eyed (w-) adult males and 3 females were crossed 

with w-; Pin/CyoY virgin females or males, respectively. F1 progenies were screened 

for the red eye flies (w+) that carry the integrated P-element insertion.  A single red 

eye male with Pin or CyoY marker was re-crossed with 5-7 virgin Pin/CyoY females. 

In order to know which chromosome received the P-element insertion, we observed 

the F2 progenies as follow: 

- If all males are white eye and all females are red eye, the P-element insertion 

is on the first chromosome (X). 
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- If all red eye flies are associated with either Pin or CyoY, but all Pin/CyoY 

flies are white eye, the P-element insertion is on the second chromosome (2nd).  

- If some Pin/CyoY males are red eye flies, the P-element insertion is on the 

third chromosome (3rd). 

    

JHA treatment 

The JHA pyriproxyfen (Sigma-Aldrich) was dissolved in 95% ethanol to give a 300 

ppm stock solution. JHA-containing fly food was prepared by adding JHA stock 

solution to the standard food at 50–55°C to a final concentration of 0.03–3 ppm. 

Parental flies were transferred on the JHA food. Their progeny were reared at 25 oC. 

 

JHA resistance assay: About 100 wild type, Met27, or gce2.5K parental flies were 

placed in a large fly food bottle with a small side opening plugged with a piece of 

cotton for aeration. Each bottle was supplied with a grape juice media plate carrying a 

small piece of yeast past in the middle to enhance the egg laying production. The 

grape juice medium was prepared as follow: To prepare 1 Liter grape juice medium, 

473 ml Welch’s 100% Grape Juice, 455 ml ddH2O, and 29.3 g granulated Agar are 

mixed together and boiled for 8 min. or until the agar has completely dissolved. When 

the mixture has cooled to 65oC, 9.9 ml 95% ethanol and 9.5 ml Glacial Acetic Acid 

are added and mixed well. The medium is poured in the small petri dish plates, kept 

in wet chamber (sealed plastic boxes or large petri-dishes with wet Kimwipe), and 

stored in the refrigerator at 4oC. The yeast past was freshly made by mixing about 1 g 

dry yeast with 1 ml 0.5% proponic acid. The parental flies from each genotype were 
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left in the large bottle (with grape juice plate and yeast past) for 3 – 7 hrs to collect 

enough eggs and then the plates were replaced by new ones. The plates with eggs 

were kept in wet champers at 25oC overnight. 100 newly hatched wild type, Met27, or 

gce2.5k larvae were collected from the grape juice plates and transferred into vials of 

food containing 0.03, 0.1, 0.3, 1 or 3 ppm pyriproxyfen. The same amount of the 

solvent (ethanol) was mixed into the food for the control (0 ppm) vials. Seven repeats 

of each type of flies were tested on the 6 treatments. Survival rates were calculated 

based on the numbers of flies developing to adulthood. 

 

JHA treatment for Br-antibody staining: To create larvae lacking Met and gce 

expression, Met27- gce2.5k /FM7c,act-GFP females were crossed with FM7c,act-

GFP/Y males on food containing 0.1 ppm pyriproxyfen. GFP-negative larvae were 

selected at the 2nd instar for FB dissection and Br-antibody staining. 

 

Immunohistochemistry and microscopy 

In order to observe the expression of br, fat bodies were dissected from flies of 

different genotypes and treatments at indicated developmental stages. 

Immunohistochemistry was performed as described previously (Patel, 1994) with the 

following modifications. The larvae were dissected in glass dissecting plates contains 

phosphate buffered saline (PBS; 8g of NaCl, 0.2g of KCl, 1.44g of Na2HPO4, 0.24g 

of KH2PO4 to 1L distilled H2O - pH 7.4) and fixed in 4% Para-formaldehyde in PBS 

on shaker for 30 min at room temperature. The samples were washed 3 times with 

PBT buffer (PBS + 1% Triton X 100) each for 30 min. The tissues were blocked by 
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5% Normal Goat Serum (NGS) in PBT (1:20 dilution) for 30 min. The Br- core 

antibody (25E9.D7, from the DSHB at the University of Iowa) against endogenous Br 

proteins was added to the samples (1:100 in PBT + NGS) and kept overnight at 4oC. 

The samples were then washed 3 times with PBT each for 20 min. Tissues were then 

stained with the second antibody goat-anti-mouse-Cy3 (Jackson ImmunoResearch, 

PA) using a 1:300 dilution for 2 hrs. The samples were rinsed with PBT 3 times for 

30 min. Then, the tissues were mounted in VECTASHIELD Mounting Medium with 

DAPI that specifically labels DNA (Vector Laboratories, INC., CA). Apoptosis was 

measured using the Caspase 3 & 7 Apoptosis Detection Kit (Invitrogen, CA). Cell 

membrane disruption was detected using the Propidium Iodide Staining Kit 

(Beyotime, Shanghai, China). Fluorescence signals were captured with Leica SP5 X 

laser scanning Confocal Microscope under the same conditions (40X oil immersion 

lens). 

 

 

Female fecundity assay 

One newly eclosed virgin female of Oregon-R, Met27, or gce2.5K was crossed with one 

Oregon-R male in each vial with ten replicates.  The flies were transferred into new 

vials and the number of eggs was counted for each cross every three days in the same 

time for 30 days. The cumulative numbers of eggs laid by a single female were 

calculated as the mean of the ten independent experiments for each type of flies. The 

average age when females started to lay eggs were also monitored and recorded.     
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Biochemical and molecular methods 

Caspase 3 activity assay: Caspase 3 activity was determined using the Beyotime 

Caspase 3 Activity Kit, following the manufacturer’s instructions (Beyotime, 

Shanghai, China). 

 

Total RNA isolation: Total RNAs were isolated from 2nd instar larvae using the 

RNeasy Mini Kit (Qiagen) at room temperature as follow: 

Homogenize ten 2nd instar larvae using RNase free pellet pestle (Kimble Chase) in 

350 ul lysis buffer (RLT) and 3.5 ul β-Mercaptoethanol using motor mixer. 

Centrifuge lysate for 3 min at maximum speed in a microcentrifuge (≥8000 x g), and 

transfer the supernatant into a new RNase free Eppendorf tube. Add 1 volume (350 

μL) of 70% ethanol to the cleared lysate, and mix well. Apply 700 μL of the sample 

to an RNeasy mini spin column sitting in a 2-mL collection tube. Centrifuge for 15 

sec at maximum speed. Discard flow- through, and reuse the collection tube. Add 350 

μL Buffer RW1 (washing buffer 1) onto the RNeasy column, and centrifuge for 15 

sec at maximum speed. Discard flow-through and reuse the collection tube.  

In a new RNase free Eppendorf tube mix gently 10 μl DNase I stock solution (RNase-

Free DNase, Qiagen)  with 70 μl Buffer RDD (reaction buffer) by inverting the tube. 

Centrifuge briefly. Add DNase I incubation mix (80 μl) directly to RNeasy column 

membrane, and incubate at room temp. for 15 min. Add 350 μl Buffer RW1 to 

RNeasy column, centrifuge for 15 s at ≥8000 x g, and discard flow-through. Add 500 

μl Buffer RPE (washing buffer 2) to the RNeasy spin column, and centrifuge for 15 s 

at ≥8000 x g. Discard the flow-through. Add another 500 μl Buffer RPE to the 
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RNeasy spin column, and centrifuge for 1 min at ≥8000 x g. Place the RNeasy spin 

column in a new 2-ml collection tube, and centrifuge at full speed for 1 min to dry the 

membrane. Place the RNeasy spin column in a new 1.5 ml collection tube. Add 30–

50 μl RNase-free water directly to the spin column membrane, and centrifuge for 1 

min at ≥8000 x g to elute the RNA. The RNA sample can be stored at -80oC for up to 

one year. 

 

Synthesis of the first strand cDNA: In order to produce templates for qualitative RT-

PCR (visualized by agarose gel electrophoresis) or quantitative RT-PCR on the 

LightCycler® 480 System, the first strand of cDNAs were prepared using the 

Transcriptor First Strand cDNA Synthesis Kit (Roche) as follow: 

Thaw all frozen reagents before use, briefly centrifuge them before starting the 

procedure, and keep all reagents on ice while setting up the reactions. Mix fresh 3 μg 

total RNA with 1 μl anchored-oligo(dT)18 primer (50 pmol/μl) and add PCR-grade 

water to 13 μl final volume. 

To the tube containing the template-primer mix, add 4 μl 5× conc. Transcriptor 

Reverse Transcriptase Reaction Buffer (8 mM MgCl2), 0.5 μl Protector RNase 

Inhibitor (40 U), 2 μl  Deoxynucleotide Mix (10 mM each), and 0.5 μl Transcriptor 

Reverse Transcriptase (20 U). Mix the reagents in the tube carefully and do not 

vortex. 

Incubate the RT reaction for 30 min at 55°C, inactivate Transcriptor Reverse 

Transcriptase by heating to 85° for 5 min., and stop the reaction by placing the tube 
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on ice. At this point the reaction tube may be stored at +2 to +8°C for 1-2 h or at -15 

to -25°C for longer periods.         

  

Qualitative reverse transcriptional PCR (RT-PCR): In order to compare qualitatively 

different genes transcription levels (mRNA level) in mutant flies with the wild type 

flies, the qualitative RT-PCR analyses were performed as follow: Three micro-litter 

cDNA of mutant or wild type animals as template was mixed with 2 μl of 10X PCR 

reaction buffer, 1μl of 25mM MgCl2, 1 μl (10 μM) of each primer, 0.1 μM of each 

dNTP, and 0.25 U Taq DNA polymerase (Invitrogen) in a final volume of 20 μl. 

PCR amplification was carried out in a 200 μl Eppendorf cycler with an initial 

denaturation step at 94°C for 2 minutes. Amplifications were achieved through 23 

cycles to avoid the saturation point at 94°C for 30 s, 60°C for 30 s, and 72°C for 1 

min. A final extension step was carried out for 5 min at 72°C. PCR products were 

loaded in 1% Agarose gel electrophoresis stained by Ethidium Bromide. 

The photos were taken from the gel by Alpha Innotech Imaging Station and processed 

by Photoshop. 

 

Quantitative real-timePCR (qRT-PCR): Q-RT-PCR was performed in a 

LightCycler® 480 Instrument (Roche) using rp49 for normalization (Sheng et al., 

2008).  

The reaction mixture was performed in 6 replicates for each gene as 20 μl total 

volume in 96-Multiwell-Plate using LightCycler® 480 SYBR Green I Master Kit 

(Roche) as follow: 
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Thaw one vial of “LightCycler® 480 SYBR Green I Master” and Water, PCR-grade, 

and Keep the Master mix away from light. In each well of the 96-Multiwell-Plate add 

3 μl PCR-grade water, 2 μl PCR primer mix (10 μM), and 10 μl 2X master mix. Add 

5 μl of the corresponding cDNA template and mix by pipetting up and down. Seal the 

Multiwell Plate with LightCycler® 480 Multiwell Sealing Foil.  

Load the Multiwell Plate into the the LightCycler® 480 Instrument and start the PCR 

program as follow: 

One cycle of Pre-Incubation at 95oC for 5 min., 45 cycles of Amplification (95oC for 

10 s., 60oC for 10 s, 72oC for 10 s.), 1 cycle for Melting Curve (95oC for 5 s., 65oC 

for 1 min., 97oC for the Continuous Acquisition Mode), and 1 Cooling cycle at 40oC 

for 10 s. 

The data were analyzed by using LightCycler® 480 Software, Version 1.5 (Roche) 

and the fit points were calculated as CP values. The fold increase or decrease was 

calculated according to the following equation: 

A/B = 2 Δ (CPA – CPB)   

Where: 

A is the percentage increase or decrease in the tested sample 

B is the control sample (wild type) which counted as 100% 

CPA is the CP value of the tested sample 

CPB is the CP value of the control sample (wild type)    
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The primers used were synthesized in Integrated DNA Technologies, Inc. included: 

Kr-h1: 5’-GAATACGACATAACAGCC-3’ and 

            5’-CGATTTCCGTGAATATGTTCT-3’ 

Met: 5’-GCCAGAACCCTATCAGTTGG-3’ and 

         5’-AGCAGACGGTAGCAGCTCTC-3’ 

gce: 5’-ACGGATCCATCCAGGAACTA-3’ and 

        5’-CATGGCAGGTGAGTGTGAGA-3’ 

Rp49: 5’-GACAGTATCTGATGCCCAACA-3’ and 

           5’-CTTCTTGGAGGAGACGCCGT-3’ 
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RESULTS 

The gce null mutant phenocopies the Met-null mutant 

In a previous study (Baumann et al., 2010), it was shown that global expression 

of gce dsRNA in tubulin-GAL4>UAS-gce-dsRNA results in severe lethality during the 

pupal stage. Similarly, we found that global expression of three independent UAS-

Met-dsRNA lines in the tubulin-GAL4>UAS-Met-dsRNA also resulted in 95–100% 

pupal lethality. This result is in conflict with the fact that the Met null allele, Met27, is 

fully viable (Wilson and Ashok, 1998). A possible explanation for the lethal 

phenotypes of the gce- and Met-RNAi animals is dsRNA off-targeting, which means 

RNA interference can silence not only the target gene, but also other genes with a 

similar sequence (Kulkarni et al., 2006).  

Met and gce were found to have highly similar amino acids sequences especially 

in the three conserved domains; bHLH, PAS-A, and PAS-B (Fig. 2.1) 

In order to clarify the function of Met and Gce in JH signaling, we created a gce 

deletion line, gce2.5k, using the Minos element-induced imprecise excision technique 

(Metaxakis et al., 2005). The original Minos element transgenic line, 

Mi{ET1}MB07696, which carries an insertion on the X chromosome within the 

fourth intron of gce, is viable and fertile and shows no phenotypic differences from 

wildtype animals. After imprecise excision, a 2.5-kb DNA fragment encoding the 

bHLH and both  

PAS domains was completely deleted in gce2.5k flies (Fig. 2.2). No gce transcript 

was detected in these flies, demonstrating that gce2.5k is a gce null allele (Fig. 2.5).  
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Like the Met27 mutant, the gce2.5k mutant is fully viable and fertile, which further 

indicates that the pupal lethality of Met- and gce-RNAi flies results from dsRNA off-

targeting. As Met mutants are resistant to JHA (Wilson and Fabian, 1986), we first 

tested whether gce2.5k also confers JHA resistance. One hundred wildtype, Met27 and 

gce2.5k newly hatched larvae were reared on the standard diet supplemented with 

different concentrations of a potent JHA, pyriproxyfen, over multiple trials. When 

flies were reared in the food containing 0.3 ppm pyriproxyfen, more than 90% of the 

wildtype flies died just prior to eclosion (as expected); by contrast, about 95% of 

gce2.5k flies developed to adulthood, implying that the gce2.5k allele conferred ~3–5-

fold resistance to pyriproxyfen versus wildtype. The JHA resistance of gce2.5k flies 

was significant, but much weaker than that seen in Met27, which was ~30 times more 

resistant to pyriproxyfen than wildtype (Fig. 2.3). Similar results were obtained with 

methoprene, another common JHA. 

In Drosophila, JH is the major gonadotropic hormone regulating the uptake of 

yolk proteins and the maturation of sexual behavior (Kelly et al., 1987; Gruntenko et 

al., 2010). Met mutant females show a delayed onset of vitellogenic oocyte 

development and oviposition (Wilson and Fabian, 1986). In order to evaluate the 

effects of a gce null allele on vitellogenic oocyte development and reproduction, we 

examined the fecundity of wildtype, Met27, and gce2.5k females. Wildtype females 

started to lay eggs at about 3 ± 0.4 days after eclosion. In contrast, Met27 and gce2.5k 

females began ovipositing to lay eggs at 6 ± 0.5 and 4.6 ± 0.7 days after eclosion, 

respectively. After 24 days, the number of eggs laid by a single Met27 and gce2.5k 

female reduced to 27% and 65% of wildtype (Fig. 2.4). All of these results suggest 
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that Met and Gce have similar functions, but that the physiological role of Met in JH 

action is predominant for these two bHLH-PAS transcription factors. 

 

Met and gce double mutations cause prepupal lethality 

Since both Met and gce genes are on the X chromosome, we generated a Met-

gce double mutant, Met27-gce2.5k, by genetic recombination to further characterize the 

potential functional redundancy of these genes. Met27 and gce2.5k mutations in the 

double mutant were verified by PCR and DNA sequencing. Moreover, as confirmed 

by reverse transcription PCR, neither the Met nor gce transcript was detectable in 

Met27-gce2.5k (Fig. 2.5). Compared to wildtype, onset of metamorphosis (larval 

wandering) of Met27-gce2.5k was delayed ~12 hours (Fig. 2.6), and its body weight 

reduced (Fig. 2.7). Importantly, Met27-gce2.5k died ~24 hours after pupariation and 

failed to undergo head eversion (Fig. 2.8A). When reared on food containing a high 

JHA concentration (i.e., 1 ppm pyriproxifen), all wildtype animals died at the pharate 

adult stage. However, when Met27-gce2.5k mutants were reared on food containing the 

same high dosage of JHA, their development was not affected. They still died ~24 

hours after pupariation (Fig. 2.8A). 

Of note, pupal lethality seen in Met27-gce2.5k flies can be fully rescued by either a 

single copy of the transgene that carries a 5.7-kb Met genomic fragment or by global 

gce overexpression (Fig. 2.8B), indicating that loss of both Met and gce is required to 

cause lethality. This finding confirms the hypothesis that Met and Gce are 

functionally redundant in Drosophila. 
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Precocious and enhanced caspase-dependent PCD in Met27-gce2.5k 

The lethal phase and defective phenotypes of Met27-gce2.5k were similar to, but 

slightly stronger than, those of the JH-deficient Aug21-GAL4>UAS-grim flies. For 

example, the posterior portion of Met27-gce2.5k prepupae becomes progressively 

empty during the larval-pupal transition (Fig. 2.8A). This phenotype is identical to 

that observed in the JH-deficient animal, Aug21-GAL4>UAS-grim, in which it was 

shown to be caused by precocious and enhanced caspase-dependent PCD (Liu et al., 

2009). Therefore, we further tested whether the same developmental defects of fat 

body remodeling observed in the JH-deficient animals also occur in Met27-gce2.5k 

flies. 

Four different assays were employed to detect the apoptotic PCD and/or cell 

dissociation of fat body cells. First, when the Caspase 3 & 7 Apoptosis Detection Kit 

was used to label apoptotic cells in the fat body of 2nd instar larvae, PCD was 

undetectable in wildtype flies, but apparent in Aug21-GAL4>UAS-grim and Met27-

gce2.5k (Fig. 2.9). Second, when Caspase 3 activity in the fat body of 2nd instar larvae 

was tested, it increased by ~60% in Aug21-GAL4>UAS-grim and ~100% in Met27-

gce2.5k (Fig. 2.10). Third, when propidium iodide was used to mark the disrupted cell 

membrane (a characteristic feature of the final stage of cell death) in the pupal fat 

body at 4 hours after pupariation, the majority of fat body cells in Aug21-

GAL4>UAS-grim and Met27-gce2.5k, but few in wildtype, were labeled (Fig. 2.11). 

Finally, we assessed fat body cell dissociation 8 hours after pupariation. Fat body 

cells in the wildtype larvae still associated with one another, but those in Aug21-

GAL4>UAS-grim and Met27-gce2.5k were mostly dissociated into individual cells (Fig. 
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2.12). Therefore, all results indicate that precocious and enhanced caspase-dependent 

PCD occurs in both Aug21-GAL4>UAS-grim and Met27-gce2.5k animals. Consistent 

with the lethal phenotypes, the developmental defects in fat body remodeling in 

Met27-gce2.5k double mutants were slightly stronger than that in Aug21-GAL4>UAS-

grim (Fig. 2.9, 2.10, 2.11, 2.12).  

Importantly, when reared on food containing an intermediate concentration of 

JHA (0.1 ppm pyriproxyfen), precocious and enhanced caspase-dependent PCD and 

cell dissociation phenotypes were prevented in Aug21-GAL4>UAS-grim, but not in 

Met27-gce2.5k (Figs. 2.9 – 2.12), demonstrating that Met and Gce redundantly mediate 

the “status quo” action of JH to prevent caspase-dependent PCD during larval molts. 

 

Diminished Kr-h1 expression in Met27-gce2.5k  

In Drosophila, it has been documented that exogenous JHA induces Kr-h1 

expression during the larval-pupal transition, and Kr-h1 lies upstream of br in the JH 

signaling pathway (Minakuchi et al., 2008). Recently, we observed precocious br 

expression in early larval stages of Kr-h1 mutants (Huang et al., 2011). Next, we 

chose to examine roles for Met and Gce in the JH-induced Kr-h1 expression. 

Quantitative real-time PCR (qRT-PCR) revealed that Kr-h1 was highly expressed 

during the 2nd larval molt of wildtype animals, and that this expression level was not 

enhanced by exogenous JHA (Fig. 2.13). However, the level of Kr-h1 mRNA in JH-

deficient Aug21-GAL4>UAS-grim larvae was decreased to ~40% of the wildtype 

level, which could be restored to wildtype levels by exogenous JHA (Fig. 2.13). 

These results suggest that Kr-h1 expression in early larvae is up-regulated by 
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endogenous JH to a saturated level; excess JH does not further stimulate Kr-h1 

expression, but loss of JH reduces Kr-h1 expression.  

Importantly, there are two differences regarding Kr-h1 expression in Met27-

gce2.5k and Aug21-GAL4>UAS-grim. First, revealed by qRT-PCR, Kr-h1 mRNA was 

nearly abolished in Met27-gce2.5k larvae (Fig. 2.13). When RT-PCR was carried out 

through 30 cycles, Kr-h1 mRNA was obviously reduced in both Met27and gce2.5k 

larvae and was totally undetectable in Met27-gce2.5k larvae (Fig. 2.14). Second, JHA 

treatment restored Kr-h1 expression in Aug21-GAL4>UAS-grim but not in Met27-

gce2.5k (Fig. 2.13). 

These results demonstrate that Met and Gce are functionally redundant in 

transducing JH action to induce Kr-h1 expression in Drosophila.  

 

Precocious br expression in Met27-gce2.5k animals 

It has been reported that 20E-induced expression of the caspase Dronc during 

hormone-dependent PCD in Drosophila is regulated by the “pupa specifier” Broad 

(Cakouros et al., 2002). Recently, we demonstrated that br is precociously expressed 

during early larval stages in thick veins (tkv), Mother-against dpp (Mad) and Kr-h1 

mutant backgrounds, which disrupt JH biosynthesis or JH signaling (Huang et al., 

2011). We inferred that the precocious and enhanced caspase-dependent PCD in 

Aug21-GAL4>UAS-grim and Met27-gce2.5k could, at least partially result from 

precocious br expression caused by the decrease in Kr-h1 expression during larval 

molts. To test this hypothesis, we assessed the presence of endogenous Br proteins in 

the fat body cells of 2nd instar larvae by immunohistochemistry with a Br-core 
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antibody (Emery et al., 1994). As expected, Br proteins were not detected in wildtype 

larvae. However, precocious br expression was observed in Aug21-GAL4>UAS-grim 

and Met27-gce2.5k, which was indicated by accumulation of Br proteins in the nuclei. 

When the larvae were reared on food containing JHA, precocious br expression was 

prevented in Aug21-GAL4>UAS-grim but not in Met27-gce2.5k (Fig. 2.15).  

Taken together, our data show that (1) Drosophila Gce has similar functions as 

its paralog, Met; (2) the Met-gce double mutant dies during the larval-pupal transition 

and causes phenotypes similar to the JH-deficient animals; and (3) Kr-h1 expression 

is eliminated and expression of br is precociously triggered during the larval molts, 

which induces precocious PCD. In conclusion, Drosophila Met and Gce, the 

redundant paralogs, transduce the “status quo” action of JH to prevent 20E-induced 

caspase-dependent PCD during larval molts by inducing Kr-h1 expression, which in 

turn inhibits br expression (Fig. 2.16).  

 

DISCUSSION 

Based on the similar functions of Met and Gce, the lethality of Met27-gce2.5k, 

together with the previous findings cited in the introduction (Godlewski et al., 2006; 

Barry et al., 2008; Liu et al., 2009; Baumann et al., 2010), we conclude that Met and 

Gce are functionally redundant in Drosophila.  

Kr-h1 was first identified as a JH-response gene in Drosophila (Minakuchi et al., 

2008). Given the previous reports that Kr-h1 mediates JH action by linking Met and 

br in Tribolium (Minakuchi et al., 2009) and Aedes (Zhu et al., 2010), it is not 

surprising that Met and Gce transduce JH signal to induce Kr-h1 expression in 
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Drosophila. Down-regulation of Kr-h1 in the JH-deficient animals and in the Met-gce 

double mutant during larval molts could at least partially account for precocious br 

expression and the resulting caspase-dependent PCD. 

It has been shown that JH induces Kr-h1 expression in a rapid and reversible 

manner in Tribolium (Minakuchi et al., 2009). A similar phenomenon has been 

observed in Drosophila Kc cells (data not shown). This observation is consistent with 

the previous finding that JH rapidly and reversibly reduces Met-Gce dimerization 

(Godlewski et al., 2006). Recent studies in Aedes, Drosophila and Tribolium have 

demonstrated that the p160/SRC/NCoA-like molecule is also required for JH action 

to induce expression of Kr-h1 and other JH response genes (Li et al., 2011; Zhang et 

al., 2011). Importantly, Met and the p160/SRC/NCoA-like molecule, Taiman in 

Drosophila and FISC in Ades, form a JH-dependent functional complex with the JH 

response element to directly activate transcription of JH target genes (Li et al., 2011). 

Taken together, one might assume that JH reduces Met-Gce dimerization, after which 

the Met or Gce monomer forms a heterodimer with Taiman to induce Kr-h1 

expression in Drosophila. However, to elucidate the detailed molecular mechanism of 

how Met, Gce, Taiman, and other possible or unknown transcriptional regulators 

transduce the JH signal to induce Kr-h1 expression in a rapid and reversible manner 

will require substantial studies at the biochemical and genetic levels.  

The ligand-receptor complex, 20E-EcR-USP and the 20E primary response gene 

br induce expression of Dronc and Drice to stimulate apoptotic PCD (Cakouros et al., 

2004; Kilpatrick et al., 2005). It is generally accepted that the major role of JH is to 

antagonize 20E action during larval molts (Riddiford, 2008), so that the 20E-induced 
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caspase-dependent PCD takes place predominantly during larval-pupal 

metamorphosis (Yin and Thummel, 2005). This has been shown in JH-deficient 

animal, Aug21-GAL4>UAS-grim larvae, in which the 20E-induced expression of 

Dronc and Drice and subsequent apoptosis occurs precociously. Moreover, it has 

been verified genetically that JH antagonizes 20E action in the JH-deficient animal by 

20E application and hs-EcR-RNAi rescuing experiments (Liu et al., 2009). In this 

study, we have further demonstrated precocious caspase-dependent PCD as early as 

the 2nd larval molt in the JH-deficient animal. Similarly, double mutations of Met and 

gce result in precocious and enhanced caspase-dependent PCD during larval molts, 

which results from the loss of JH signal opposing the 20E action.  

We have previously reported that Met overexpression also accelerates 20E-

triggered PCD and that JH counteracts Met and Gce to prevent 20E-triggered PCD 

during the larval-pupal transition in Drosophila (Liu et al., 2009). Accordingly, we 

observed the same phenotypes in both gain-of-function and loss-of-function of Met 

and gce. One reasonable explanation is that Met and Gce involve both 20E and JH 

signaling pathways. They are more critical for JH action during larval molts, while 

they are more important for 20E action during the larval-pupal transition. Although 

further investigations are required to understand the detailed molecular mechanisms 

of how Met and Gce mediate the JH-20E crosstalk, there are currently at least two 

lines of supporting evidence. First, Met physically binds EcR and USP (Li et al., 

2007); second, Met binds the p160/SRC/NCoA-like molecule, a critical 

transcriptional co-activator for both JH and 20E to induce gene expression (Bai et al., 

2000; Zhu et al., 2006; Li et al., 2011; Zhang et al., 2011). We assume that Met, Gce, 
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Taiman, and other unknown transcriptional regulators not only transduce JH signal to 

induce Kr-h1 expression but also mediate JH-20E crosstalk in Drosophila.  

Taken together, we conclude that Met and Gce are functionally redundant in 

transducing the status quo action of JH in Drosophila. This study lays a foundation to 

finally elucidate the JH signal transduction pathway and to understand the intricate 

JH-20E crosstalk. At present, probably the most urgent and critical issue is to identify 

whether Met and Gce are the actual JH receptors. Since Met binds JH at physiological 

concentrations in vitro (Miura et al., 2005), JH has no “status quo” action in the Met 

and gce double mutant, which dies during the larval-pupal transition, the most 

persuasive evidence to demonstrate that Met and Gce are the JH receptors could be a 

co-crystallization of JH and Met (and/or Gce) showing a hydrophobic JH binding 

pocket within the JH receptor. 
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Fig. 2.1. Amino acid sequences comparison between Dm-gce and Dm-Met using 

SIM - Alignment Tool for protein sequences and the graphic view was made by 

LALNVIEW program. (A) the whole amino acids alignment, (B) bHLH domain 

alignment, (C) PAS-A domain alignment, (D) PAS-B domain alignment.  

(http://www.expasy.ch/tools/sim-prot.html). 

 

Asterisks denote perfect identities in the alignment positions. 
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Fig. 2.2. The diagram of gce gene structure shows the insertion of Mi{ET1}MB07696 

and position of the 2.5-kb deletion in the gce2.5k allele. The gce coding sequence is 

highlighted in red. The gce exons that encode the functional motifs of bHLH, PAS-A, 

and PAS-B are marked. 
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Fig. 2.3. A null allele of gce is resistant to JHA. One hundred newly hatched larvae 

of wildtype, Met27, and gce2.5k were reared on normal food or food containing 

different concentrations of JHA, pyriproxifen. The percentages of individuals that 

develop into adults are shown as the mean of 10 replicates ± standard deviation. 
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Fig. 2.4. Met27 and gce2.5k mutations affect ovary development and fecundity 

Single newly eclosed virgin females of wildtype, Met27 and gce2.5k were crossed with 

three wildtype males individually. Cumulative numbers of eggs laid by a single 

female are shown as the mean of ten independent experiments. Arrows point to the 

average ages when females start to lay eggs. 

 

 

 

 

 

Days after eclosion 
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Fig. 2.5. Met27-gce2.5k double mutations cause prepupal lethality. 

DNA agarose gel electrophoresis of reverse transcription PCR products demonstrates 
that Met27-gce2.5k double mutations are null for both Met and gce. Total RNAs were 
isolated from the 2nd instar larvae of wildtype, Met27, gce2.5k, and Met27-gce2.5k flies.  
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Fig. 2.6. Met27-gce2.5k double mutations cause prepupal lethality. 

One hundred eggs of wildtype and Met27-gce2.5k were reared on normal food. 
Cumulative percentages of larvae developing to wandering stage are shown. 
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Fig. 2.7. Met27-gce2.5k double mutations cause prepupal lethality. 

Images are of wandering larvae and early pupae of wildtype and Met27-gce2.5k reared 
on normal food, showing the reduced body size of Met27-gce2.5k. 
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Fig. 2.8. Met27-gce2.5k double mutations cause prepupal lethality. 

(A) Wildtype and Met27-gce2.5k flies were reared on normal or 1 ppm pyriproxifen-
containing food. Images show the final developmental stages of these flies. Met27-
gce2.5k die ~24 hours after pupariation and fail to undergo head eversion. When 
reared on food containing 3 ppm JHA, all wildtype animals died at the late pupal 
stage, but the development of Met27-gce2.5k was not affected by JHA. 

(B) The prepupal lethality of Met27-gce2.5k flies can be fully rescued by transgenic Met 
or gce. The genotypes of flies are Met27-gce2.5k/y; p{Met}/+ (top) and Met27-
gce2.5k/y; arm-GAL4/UAS-gce (bottom). 
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Fig. 2.9. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 

caspase-dependent programmed cell death. 

Wildtype, Aug21-GAL4>UAS-grim (Aug21>grim) and Met27-gce2.5k were reared on 

normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food.  

 

Fat bodies of 2nd instar larvae were stained with the Caspases 3 & 7 Apoptosis 

Detection Kit (Invitrogen, CA). Apoptotic cells are marked with red.  

 

 

 

 

W1118               Aug21>Grim          Met27-gce2.5k 
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Fig. 2.10. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 

caspase-dependent programmed cell death. 

Wildtype, Aug21-GAL4>UAS-grim (Aug21>grim) and Met27-gce2.5k were reared on 

normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food.  

 

Caspase 3 activity in the fat bodies of 2nd instar larvae was assessed using the Caspase 

3 Activity Assay kit (Beyotime, Shanghai, China). Values are the mean of three 

independent experiments ± standard deviation. 
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Fig. 2.11. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 

caspase-dependent programmed cell death. 

Wildtype, Aug21-GAL4>UAS-grim (Aug21>grim) and Met27-gce2.5k were reared on 

normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food.  

 

Disrupted plasma membrane was detected by propidium iodide staining (red) and 

nuclei were labeled by Hoechst 33342 (blue) in the fat bodies of pupae at 4 hours 

after pupariation.  

 

W1118                   Aug21>Grim            Met27-gce2.5k 
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Fig. 2.12. Fat body cells of Met27-gce2.5k larvae undergo precocious and enhanced 

caspase-dependent programmed cell death. 

Wildtype, Aug21-GAL4>UAS-grim (Aug21>grim) and Met27-gce2.5k were reared on 

normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food.  

 

Fat bodies were dissected at 8 hours after pupariation to show precocious cell 

dissociation in Met27-gce2.5k and Aug21>grim flies. 

 

 

 

 

 W1118                    Aug21>Grim               Met27-gce2.5k 
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Fig. 2.13. Met and Gce transduce the JH signal to induce Kr-h1 expression. 

Wildtype, Aug21-GAL4>UAS-grim (Aug21>grim), and Met27-gce2.5k were reared on 

normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Relative Kr-h1 

mRNA levels in the 2nd instar larvae were assessed by quantitative real-time PCR and 

normalized to rp49 mRNAs. Values are the means of three independent experiments 

±standard deviation.  
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Fig. 2.14. Met and Gce transduce the JH signal to induce Kr-h1 expression. 

Total mRNAs were isolated from wildtype, Met27, gce2.5k, and Met27-gce2.5k 2nd instar 

larvae. Reverse transcription PCR was conducted with 30 cycles. PCR products were 

analyzed by agarose gel electrophoresis. 
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Fig. 2.15. Met and Gce are required for br repression in young larvae.  

Wild type, Met27-gce2.5k, and Aug21-GAL4>UAS-grim (Aug21>grim) were reared on 

normal (–JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Fat bodies of the 

2nd instar larvae were dissected and stained with Br-core antibody (red). Nuclei were 

labeled with DAPI (blue).  
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Fig. 2.16. A model for Met and Gce in transducing JH action to prevent 20E-

induced programmed cell death. 

As described in the text, this model suggests how Met and Gce transduce the JH 

signal to suppress programmed cell death during larval molts. 
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Chapter 3 

A Genetic Screen for Genes Involved in Juvenile Hormone 

Signaling and Biosynthesis in Drosophila melanogaster 

 

ABSTRACT 

In insects, juvenile hormone (JH) is a key regulator which coordinates with ecdysone 

(Ec) in regulating growth and metamorphosis.  Ec orchestrates the molting process, 

whereas the nature of the molt is determined by the presence of JH at critical JH-

sensitive periods.  At the molecular level, Ec and JH co-regulate expression of a small 

subset of critic genes.  The protein products of these genes are usually transcriptional 

factors which control the expression of large amount of other genes to induce the 

appropriate biological processes.  One example of these critical genes is broad (br), 

which was called Broad-Complex (BR-C) previously.  We demonstrated that JH 

signaling is required to repress br expression in the younger Drosophila larvae.  

Accordingly, a genetic screen was designed to dissect JH biosynthesis and signaling 

pathways based on br expression in the 2nd instar larvae. 

About 4,400 lethal p-insertion or mutant lines were collected from Bloomington 

Stock Center and tested their impact on br expression.  55 mutations were isolated 

based on the precocious br expression in the 2nd instar larvae.  Genes associated with 

these mutations involve various molecular and cellular functions, such as 

transcription factors, signaling molecules, and enzymes.   
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From the screen results, three genes or signaling pathways were reported to be 

involved in regulating JH biosynthesis.  They are transcriptional factor apterous; 

insulin-like peptide receptor InR, and neuron transmitter NMAR1.  Interestingly, our 

screen identified mutations of all three genes as well as JH synthesis enzyme Fpps, 

indicating the high efficiency of this screen. Also our screen identified two main 

components of TGF-β signaling, thick vein (tkv) and mothers against Dpp (mad) to be 

involved in JH biosynthesis. Further more, we identified those mutations in three Wnt 

signaling component genes, Axin (Axn), supernumerary limbs (slmb), and naked 

cuticle (nkd), induced precocious br expression.  

 

INTRODUCTION 

Juvenile hormone (JH) is a critical hormone that regulates many aspects of 

insect physiology. One main role of JH is its classic “status quo” action in the 

regulation of insect development. When 20-hydroxyecdysone (20E) induces molting 

during early developmental stages, the presence of JH ensures that the molt results in 

a repeat of the previous stage (Williams, 1961; Riddiford, 1996; 2008; Gilbert et al., 

2000). Therefore, JH does not block the 20E-coordinated molting process, but rather 

directs the action of 20E. During the last two decades, studies on the hormonal 

regulation of insect development have focused on understanding the molecular basis 

of 20E, JH, and their interaction. 

At the molecular level, 20E binds to its heterodimer receptor, EcR/USP, to 

directly activate the transcription of a small set of early-response genes that encode 

transcriptional factors. These genes transduce and amplify the original hormonal 
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signal by activating a large number of late-response genes that encode tissue-specific 

effector proteins necessary for insect molts and metamorphosis (Thummel, 2002). 

One of the 20E-induced early genes, broad (br), was identified as a key regulator in 

mediating the cross-talk between the 20E and JH signaling pathways. Drosophila br 

encodes four transcriptional factors that contain a common N-terminal domain and 

four pairs of different C2H2 DNA-binding zinc finger domains (DiBello et al., 1991; 

Bayer et al., 1996). The Br proteins directly regulate the transcription of 20E-induced 

late genes and are essential for the specification of pupal development (Crossgrove et 

al., 1996; Zhou and Riddiford, 2002). Null br mutants can develop normally to the 

final larval instar but cannot undergo pupal formation (Kiss et al., 1976, 1988). 

Moreover, ectopic expression of br in early 2nd instar larvae induces premature pupal 

formation (Zhou et al., 2004). Therefore, the Br proteins are necessary and sufficient 

for the initiation of insect metamorphosis. Consistent with its function, the Br proteins 

are predominantly expressed during the larval-pupal transition in all of the examined 

holometabolous insects (Dubrovsky, 2005). Previous studies in Manduca, Bombyx, 

and Tribolium suggested that the temporal pattern of br expression results from the 

20E and JH interaction. 20E directly induces br expression, which can be prevented 

by JH in young larvae (Zhou et al., 1998; Reza et al., 2004; Konopova and Jindra, 

2008). Here, we demonstrate that JH is also required to repress br expression during 

early larval stages in Drosophila.  

JH transduces its signal through Methoprene-tolerant (Met), Germ cell-

expressed (Gce) and Krüppel-homolog 1 (Kr-h1) and the p160/SRC/NCoA-like 

molecule (Taiman in Drosophila and FISC in Ades).  The Drosophila Met and gce 
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genes encode two functionally redundant bHLH-PAS protein family members, which 

have been proposed to be components of the elusive JH receptor (Wilson and Ashok, 

1998; Baumann et al., 2010; Abdou et al., 2011). Both Met and gce mutants are viable 

and resistant to JH analogs (JHA) as well as to natural JH III (Wilson and Fabian, 

1986; Abdou et al., 2011). However, Met-gce double mutants are prepupal lethal and 

phenocopies CA-ablation flies (Liu et al., 2009; Riddiford et al., 2010; Abdou et al., 

2011). The Met protein binds JH III with high affinity (Shemshedini and Wilson, 

1990; Miura et al., 2005). In Tribolium, suppression of Met activity by injecting 

double-stranded (ds) Met RNA causes precocious metamorphosis (Konopova and 

Jindra, 2007).  Kr-h1 is considered as a JH signaling component working downstream 

of Met. In both Drosophila and Tribolium, Kruppel-homolog1 (Kr-h1) mRNA 

exhibits high levels during the embryonic stage and is continuously expressed in the 

larvae; then, it disappears during pupal and adult development (Pecasse et al., 2000; 

Minakuchi et al., 2008, 2009). Kr-h1 expression can be induced in the abdominal 

integument by exogenous JH analog (JHA) at pupariation (Minakuchi et al., 2008). 

Suppression of Kr-h1 by dsRNA in the early larval instars of Tribolium causes 

precocious br expression and premature metamorphosis after one succeeding instar 

(Minakuchi et al., 2009). Thus, Kr-h1 is necessary for JH to maintain the larval state 

during a molt by suppressing br expression.  Studies in Aedes, Drosophila and 

Tribolium have demonstrated that the p160/SRC/NCoA-like molecule is also required 

for JH to induce expression of Kr-h1 and other JH response genes (Li et al., 2011; 

Zhang et al., 2010). For example, Ades FISC forms a functional complex with Met on 
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the JH response element in the presence of JH and directly activates transcription of 

JH target genes (Li et al., 2011). 

In an attempt to isolate other genes involving JH signaling, we conducted a novel 

genetic screen 

MATERIALS AND METHODS 

Fly Strains and Genetics 

All fly works were performed based on the standard procedure described in Chapter 

2. The GAL4-PG12 line was a gift from H.-M. Bourbon (Bourbon et al., 2002). All 

lethal mutant lines used in the genetic screen were obtained from the Bloomington 

Drosophila Stock Center (BDSC).  

 

Generation of hs-jhe transgenic flies 

To generate hs-jhe transgenic flies, total RNA was extracted by TRIzol® Reagent 

(Invitrogen) as follow: 

Homogenize 20 3rd instar larvae in 1 ml TRIzol® Reagent and incubate the sample 

for 5 min at room temperature. Add 200 µl chloroform, mix with vigorous shaking 

for 15 seconds and incubate at room temperature for 2-3 min. Centrifuge samples 15 

min at 12,000 x g at 4°C. Transfer 800 µl of the colorless upper aqueous phase to a 

fresh tube. Precipitate the RNA by mixing the sample with 400 µl of isopropanol and 

incubate at room temperature for 10 min. Then, centrifuge for 10 min at 12000 x g at 

4°C. The RNA pellet will be visible on the side of the tube. Remove the supernatant. 

Wash pellet with 1 ml 75% ethanol by flicking and inverting the tube or vortexing. 
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Centrifuge the sample at 7500 x g for 5 min at 4°C. Discard the supernatant, air dry, 

dissolve the RNA pellet in 30 µl RNase free water and store at -80oC.   

 jhe cDNA was isolated by RT-PCR using SuperScript® III One-Step Reverse 

Transcriptase Kit with Platinum® Taq DNA (Invitrogen) as follow: 

To a 0.2 ml PCR tube, add 25 µl 2X Reaction Mix (a buffer containing 0.4 mM of 

each dNTP, 3.2 mM MgSO4), 1 µg template RNA, 1µl Sense primer (10 µM), 1µl 

Anti-sense primer (10 µM), 2 µl SuperScript®  III RT/ PlatinumR Taq Mix, and add 

RNase free water to 50 µl. 

Place the reaction in the preheated thermal cycler programmed as follow: 

cDNA synthesis for 1 cycle at 55°C for 30 min – Denaturation for 1 cycle at 94°C for 

2 min - PCR amplification for 40 cycles (94°C for 15 s,  60°C for 30 s, 68°C for 1 

min) - Final extension for 1 cycle at 68°C for 5 min.   

Primer sequences: Forward 5’- ATTCCGCGGCAAatgctacaactgctgcttcttg-3’ and 

reverse 5’- ATTTCTAGAttacttttcgttgagtatatgc-3’. The PCR product was visualized 

by agarose gel electrophoresis stained with Ethidium Bromide to confirm the right 

size by comparing with DNA ladder Plus marker (Invitrogen) and recovered using 

Gel Purification Kit (QIAGEN) according to the manufacture protocol. The purified 

DNA fragment, which carries Not1 and Xba1 restriction enzyme cut cites that were 

introduced by PCR primers, was subcloned into  pCaSpeR-hs plasmid with the same 

restriction enzymes (Not1 & Xba1).  

Transgenic fly lines were generated by P element-mediated germline transformation 

at Rainbow Transgenic Flies, Inc (Camarillo, CA). The P-element insertion on the 
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second chromosome was detected through genetic crosses as described before and 

kept as homozygous viable transgenic flies carrying two copies of hs-jhe.  

 

Heat-shock treatment: 

To activate the JH esterase in the transgenic flies, the newly hatched larvae were heat 

shocked by placing the vials in water path at 38oC for one hour two times a day for 

two days. 

Immunohistochemistry and Microscopy 

Larval fat bodies were dissected from the 2nd, early 3rd, or late 3rd instar larvae and 

stained with the Br- core antibody (25E9.D7, from the DSHB at the University of 

Iowa) against endogenous Br proteins. Immunohistochemistry was performed as 

described previously.  Florescence signals were captured with Zeiss LSM710 laser 

scanning confocal microscope (Carl Zeiss) and processed with Adobe Photoshop. 

JHA Treatment  

The JHA pyriproxyfen (Sigma) was dissolved in 95% ethanol to give a 300 ppm 

stock solution. JHA-containing fly food was prepared by adding JHA stock solution 

to the standard cornmeal-molasses-yeast food at 50-55°C to a final concentration of 

0.3 ppm.  

 

Western Blotting  

Protein extracts isolated from the eggs, 1st, 2nd, early 3rd, and late 3rd instar larvae as 

well as white pupae, late pupae, adult males, and adult females were analyzed by 

standard SDS–PAGE and Western blot.  



 97 
 

Sample preparations:  

Fresh sample from each stage was ground in Laemmli Sample Buffer (Bio-Rad) (62.5 

mM Tris-HCl, pH 6.8, 2% SDS, 25% glycerol, 0.01% w/v bromophenol blue) with 

adding freshly 5% electrophoresis grade β-mercaptoethanol  (Sigma), boiled for 5 

min, and briefly centrifuged.  

 

Electrophoretic separation procedures: 

20 µl of each sample was loaded to 7.5% Tris-HCl 10 well-30 µl comb Ready Gel 

(Precast Gel Polyacrylamide Electrophoresis; Bio-Rad), 10 µl Prestained dye 

molecular weight marker was loaded, and 1X Tris/Glycine/SDS Running Buffer was 

used to separate the samples.    

To prepare 1X Running Buffer: Add 45 mL 10X Tris/Glycine/SDS Running Buffer 

(250 mM Tris, 1.92 M glycine, 0.1% SDS, pH 8.3) to 405 mL distilled water and mix 

gently. 

A constant voltage of 80 V was applied for 2 hrs.  

 

To transfer proteins from the gel to Nitrocellulose Membrane, all the folder layers 

should be soaked in Transfer Buffer (25mM Tris, 192mM glycine, 20% methanol, 

pH8.3) prior to assembling the sandwich. 

The transfer folder was assembled in a large, baking dish containing enough transfer 

buffer in the order as described below:  
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(+) POSITIVE ELECTRODE (ANODE) 

- Plastic cassette 

- Sponge pad (Scotch-Brite pads) 

- Mini Trans-Blot filter papr (Bio-Rad) (or three Sheets Whatman 3MM) 

- WestClear Nitrocellulose Membrane pore size 0.2 µm (GenScript). 

- Polyacrylamide gel 

- Mini Trans-Blot filter papr (Bio-Rad) (or three Sheets Whatman 3MM) 

- Sponge pad (Scotch-Brite pads) 

- Plastic cassette 

(-) NEGATIVE ELECTRODE (CATHODE) 

Avoid air bubbles between any of the layers. 

 

Proteins were transferred from the gel to nitrocellulose membrane for 45 min at 80 

Volts. Complete transfer can be detected by the presence of the protein markers in the 

membrane. The membrane then was subjected to Western Blotting analysis by using 

ONE-HOUR WesternTM Detection System (GenScript) according to the manufacture 

protocol.  

The expression of β-tubulin was used as a loading control. Br mouse monoclonal 

antibody Br-core (25E9.D7) (Emery et al., 1994) and β-tubulin mouse monoclonal 

antibody (AA12.1) were from the Developmental Studies Hybridoma Bank at the 

University of Iowa, and they were used as primary antibodies.   

The signal was developed by using LumiSensorTM Chemiluminescent HRP Substrate, 

and the signal was captured by exposing the membrane to Kodak x-ray film.  
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RESULTS 

 

GAL4-PG12 recapitulates the br expression pattern: It is well documented that br 

is a molecular marker for pupal commitment and specifies the larval-pupal 

metamorphosis in a variety of holometabolous insect species (Riddiford et al., 2003). 

Western blotting using a Drosophila Br-core antibody, which recognizes all 4 Br 

isoforms (Emery et al., 1994), showed that Br proteins were highly expressed in late 

3rd instar larvae and pupae. Conversely, no Br proteins were detected from the 

embryonic stages to early 3rd instar larval stages or in adults. Interestingly, during the 

larval-pupal metamorphosis, different Br isoforms exhibited distinct expression 

profiles, with all 4 isoforms (Z1, Z2, Z3, and Z4) expressed from the late 3rd instar to 

early pupal stages and only 1 or 2 isoforms (Z1 and/or Z3) expressed in the late pupal 

stage (Fig. 3.1A). 

 

To monitor br expression in live organisms, we examined the expression patterns of 

GAL4 enhancer-trap lines inserted near the br gene. One of these lines, GAL4-PG12, 

closely resembled the temporal and spatial expression pattern of the endogenous br 

gene in tissues other than the salivary gland. In 1st, 2nd, and early 3rd instar larval 

stages of GAL4-PG12>UAS-mCD8GFP, GFP expression was only detected in the 

salivary gland (Fig. 3.1B-D). This expression of GAL4-PG12 in the salivary gland is 

a common feature for most GAL4 lines derived from the P{GawB} construct, which 

may carry a position-dependent, unidentified salivary gland enhancer (Brand et al., 

1994). However, in late 3rd instar larvae and early pupae, an intensive GFP signal was 
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observed in most tissues, including epidermis, muscle, and fat body (FB) tissues (Fig. 

3.1E and F). Inverse PCR analysis revealed that GAL4-PG12 carries a P{GawB} 

construct within the first intron of the br gene, which caused pupal lethality (Fig. 3.2). 

 

We next compared the expression pattern of GAL4-PG12>UAS-mCD8GFP with that 

of the br gene in the larval FB. Neither endogenous Br proteins nor GFP were 

detectable in the FB of 2nd and early 3rd instar larvae (Fig 3.1G and H). In late 3rd 

instar larvae, the Br proteins (red) were observed in the FB nuclei in the same cells as 

mCD8GFP (green), the cell membrane-attached marker driven by GAL4-PG12 

(Fig.3.1I-I”). These results indicate that GAL4-PG12 can be used to monitor 

endogenous br expression in all tissues except for the salivary gland.  

 

JH represses br expression at early larval stages: To determine whether JH 

represses br expression in early Drosophila larval instars, we generated a transgenic 

fly line that harbors juvenile hormone esterase (jhe) cDNA driven by a heat-shock 

promoter (hs-jhe). JH is a common name for a family of sesquiterpenoid esters of 

methanol and hydrolysis of the conjugated methyl ester is generally regarded as one 

of the key pathways for inactivating the hormone (Goodman and Granger 2005). JHE 

was reported to be the only esterase that hydrolyzes all types of JH in Drosophila 

(Crone et al., 2007). Therefore, we expected that overexpression of jhe during early 

larval stages would reduce the JH titer in the hemolymph.  
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When treated by heat shock at the 2nd instar larval stage, the jhe mRNA level in the 

hs-jhe larvae increased by 2.8-fold compared to that in control larvae (data not 

shown). At the same time, precocious br expression was observed: levels of 

endogenous Br proteins increased (Fig. 3.3F), as did expression of the GAL4-

PG12>UAS-mCD8GFP reporter (Fig. 3.3B). However, when hs-jhe larvae were 

reared on food containing 0.1 ppm pyriproxifen, an efficient JH agonist (JHA) that is 

chemically different from natural JH (Riddiford and Ashburner 1991), precocious br 

expression in the hs-jhe larvae was undetectable (Fig. 3.3D and H). Together, these 

results demonstrate that JH is required to suppress br expression during early larval 

stages in Drosophila. 

 

A genetic screen for mutations affecting br expression: Because JH represses br 

expression during early larval stages, we reasoned that mutations that reduce the JH 

titer or disrupt JH action should cause precocious br expression in Drosophila. 

Accordingly, we designed and conducted a genetic screen to isolate genes that affect 

these processes. In these screens, GAL4-PG12>UAS-mCD8GFP on the X 

chromosome was used as a reporter of br expression, and lethal mutations or P-

insertions on the 2nd or 3rd chromosome were made homozygous and screened for 

precocious br expression (Fig. 3.4). Because most of the lethal lines allowed 

organisms to develop to early larval stages, we were able to examine GFP expression 

in the 2nd instar under the fluorescent microscope. From 4,400 lethal lines, 55 

mutations were isolated based on GFP expression in the 2nd instar larvae. Genes 
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associated with these mutations encode proteins with various molecular functions, 

including enzymes, signal transduction molecules, and transcriptional factors.  

 

This genetic screen was efficient in identifying the genes required for JH 

biosynthesis. It not only isolated genes that are known to be involved in JH 

biosynthesis, such as farnesyl diphosphate synthase (Fpps) (Sen et al., 2007), 

apterous (ap) (Altaratz et al., 1991), Insulin receptor (InR) (Tatar et al., 2001, Tu et 

al., 2005), and N-methyl-D-aspartate receptor 1 (Nmdar1) (Chiang et al., 2002), but 

also revealed that Dpp-mediated TGF-β signaling in the corpus allatum stimulates JH 

biosynthesis by upregulating transcription of JH acid methyltransferase (jhamt), a 

key regulatory enzyme of JH synthesis (Huang et al., 2011). The same genetic screen 

also isolated genes that are involved in JH signaling, such as Kr-h1. Another known 

JH signaling component, Met, was not identified by this screen because the Met gene 

is located to X chromosome. A reverse genetic study showed that precocious br 

expression was also detectable in Met mutant larvae (Huang et al., 2011).  

 

DISCUSSION 

 

JH is required to repress br expression during the early larval stages of 

Drosophila 

The ‘status quo’ action of JH in controlling insect metamorphosis is conserved in 

hemimetabous and most holometabous insects. However, the larval-pupal transition 

in higher Diptera, such as Drosophila, has largely lost its dependence on JH. For 
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instance, in most insects, the addition of JH in larvae at the last instar causes the 

formation of supernumerary larvae. However, exogenous JH does not prevent 

pupariation and pupation in Drosophila, and instead only disrupts the development of 

the adult abdominal cuticle and some internal tissues (Postlethwait 1974, Riddiford 

and Ashburner 1991). The molecular mechanisms underlying these differential 

responses to JH are not clear. 

 

Broad is a JH-dependent regulator that specifies pupal development and mediates the 

‘status quo’ action of JH (Zhou and Riddiford 2002). In the relatively basal 

holometabolous insects, such as beetles and moths, JH is both necessary and 

sufficient to repress br expression during all of the larval stages (Zhou et al., 1998, 

Reza et al., 2004). Our studies revealed that JH is also required during the early larval 

stages in the more derived groups of the holometabolous insects, such as Drosophila, 

but it is not sufficient to repress br expression at the late 3rd instar. During the early 

larval stages, overexpression of the JH-degradative enzyme JHE, reduction of JH 

biosynthesis or disruption of the JH signaling always causes precocious br 

expression. However, exogenous JHA treatment can not repress br expression in late 

3rd instar larvae (Fig 3.5). This phenomenon accounts for why exogenous JHA 

treatment can not induce supernumerary larvae in Drosophila. The molecular 

mechanism underlying the developmental stage-specific responses of the br gene to 

JH signaling remains to be clarified.  
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Fig 3.1. GAL4-PG12 resembles endogenous br expression patterns 

(A) Protein extracts isolated from wild type animals at different developmental stages 

were separated by SDS-PAGE. Br proteins were assessed by Western blotting using a 

Br-core antibody. Tubulin-β was used as a loading control. The Br proteins were only 

detected in the late 3rd instar larval stage to pupal stage. All Br isoforms were 

expressed in the late 3rd instar larvae and early pupae, but only Z1 and/or Z3 isoforms 

were expressed in the late pupae. 

(B-F) Expression of GAL4-PG12 was marked by GAL4-PG12>UAS-mCD8GFP 

mCD8GFP, a cell membrane protein. Constitutive expression of GAL4-PG12 in 

salivary glands (arrows) and auto-fluorescence of fly food in the midgut (arrowheads) 

are indicated. In tissues other than those from the salivary gland, GAL4-PG12/UAS-

mCD8GFP was only expressed in late 3rd instar larval and during early pupal stages 

(G and H). (B’-F’) White light images of the same organisms are shown in [B-F]. 

(G-I) GAL4-PG12 expression was monitored by mCD8GFP (green) [G-I]. 

Endogenous Br proteins were recognized by a Br-core antibody (red) [G’-I’] and 

nuclei were marked with DAPI (blue) [G”-H”]. Neither endogenous Br nor GAL4-

PG12 were expressed in FB of the 2nd instar or early 3rd instar [G-G” and H-H”], but 

both were expressed in FB of the late 3rd instar [I-I”]. [I”] is a merged image of [I] 

and [I’].  
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Fig 3.2. GAL4-PG12 carries a P-element insertion in the first intron of br gene 

(A) The flanking sequence of the GAL4-PG12 P-element insertion site identified by 

inverse PCR analysis. 

(B) The insertion site of GAL4-PG12 was located within the first intron of the br gene 

by comparing the sequence with the Drosophila genome. 
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Fig 3.3. Ectopic expression of JHE induces precocious br expression in the 2nd 

instar larvae. 

Flies carrying two copies of hs-jhe transgenes (GAL4-PG12, UAS-mCD8GFP/Fm7C; 

hs-jhe1, hs-jhe2/+) were reared on normal (-JHA) or 0.1 ppm pyriproxifen-containing 

(+JHA) food and were treated with (HS) or without (no-HS) heat shocking twice a 

day for 40 min at 37 °C. Br expression was monitored by GAL4-PG12>UAS-

mCD8GFP [A-D] and FB Br-core antibody staining in 2nd instar larvae [E-H]. 

Precocious br expression occurred in 2nd instar larvae that were reared on normal 

food and treated with heat shocking [B-B’ and F-F’]. However, this phenotype was 

blocked by JHA treatment [D-D’ and H-H’].  
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Fig 3.4. A genetic screen identifies genes related JH biosynthesis and signaling 

pathways 

Schematic diagram of genetic crosses for isolating mutations that derepress br 

expression in young larvae. GAL4-PG12, UAS-mCD8GFP ( X chromosome) was 

used to monitor br expression. The lethal mutation or P-insertion on the 2nd or 3rd 

chromosome is represented by an asterisk (*). 
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Fig 3.5. Expression of br is not suppressed by exogenous JHA during the late 3rd 

instar larval stage 

Wild type flies were reared on normal (-JHA) [A-C] or 0.1 ppm pyriproxifen-

containing (+JHA) [D-F] food. Br proteins in the fat bodies of 2nd instar, early 3rd 

instar and late 3rd instar larvae were recognized by a Br-core antibody (red).  
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Chapter 4 

DPP-mediated TGF-β Signaling Regulates Juvenile 
Hormone Biosynthesis by Upregulating the Expression of 

JH Acid Methyltransferase 

 

ABSTRACT 

Juvenile hormone (JH) biosynthesis in the corpus allatum (CA) is regulated by 

neuropeptides and neurotransmitters produced in the brain. However, little is known 

about how these neural signals induce changes in JH biosynthesis. Here, we report a 

novel function of TGF-β signaling in transferring brain signals into transcriptional 

changes of JH acid methyltransferase (jhamt), a key regulatory enzyme of JH 

biosynthesis. A Drosophila genetic screen identified that Tkv and Mad were required 

for JH-mediated suppression of broad (br) expression in the young larvae. Further 

investigation demonstrated that TGF-β signaling stimulated JH biosynthesis by 

upregulating jhamt expression. Moreover, dpp hypomorphic mutants also induced 

precocious br expression. The pupal lethality of these dpp mutants was partially 

rescued by exogenous JH agonist. Finally, dpp was specifically expressed in the CA 

cells of ring glands, and its expression profile in the CA correlated with that of jhamt 

and matched JH levels in the hemolymph. Reduced dpp expression was detected in 

the mutant larvae of Nmdar1, a CA-expressed glutamate receptor. Taken together, we 

conclude that the neurotransmitter glutamate promotes dpp expression in the CA, 

which stimulates JH biosynthesis through Tkv and Mad by upregulating jhamt 

transcription at the early larval stages to prevent premature metamorphosis. 



 115 
 

INTRODUCTION 

Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) in regulating 

insect molting and metamorphosis. The molting process is orchestrated by 20E, 

whereas the nature of the molt is determined by JH during critical JH-sensitive 

periods. In the presence of JH, 20E induces larva-larva molt, while in the absence of 

JH, 20E promotes larva-pupa or pupa-adult metamorphosis (Gilbert et al., 2000; 

Riddiford et al., 2003). The recent progress in our understanding of JH molecular 

action clarifies the function of Methoprene-tolerant (Met) and Krüppel-homolog 1 

(Kr-h1) in transducing JH signaling. The Drosophila Met gene encodes a bHLH-PAS 

protein family member, which is proposed to be a component of the elusive JH 

receptor (Wilson and Ashok, 1998). Kr-h1 is considered as a JH signaling component 

which works at downstream of Met (Minakuchi et al., 2008; 2009).  

 

JH biosynthesis is regulated at three closely linked steps. In the first step, 

developmental, environmental and physiological cues are received by the central 

nervous system, which determines the appropriate rate of JH synthesis (Riddiford, 

1993). In the second step, the brain transfers these signals to mediate JH biosynthesis 

in an endocrine gland, the corpus allatum (CA). It has long been thought that JH 

biosynthesis is regulated primarily by two neuropeptides secreted by brain 

neurosecretory cells: allatotropin (AT) and allatostatin (AST), which stimulates and 

inhibits JH synthesis, respectively (Stay, 2000; Weaver and Audsley, 2009). 

Nevertheless, no AT-like neuropeptides or AT receptor genes have been found in the 

Drosophila genome thus far (Nassel 2002; Hauser et al., 2006; Liu et al., 2006; 
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Yamanaka et al., 2008). Although AST-like neuropeptides exist in Drosophila (Lenz 

et al., 2000), their function of inhibiting JH biosynthesis has not been demonstrated. 

On the other hand, it has been reported that the brain may directly control JH 

biosynthesis through neurotransmitters. For example, studies in cockroaches and 

Drosophila revealed that glutamatergic nerves innervate CA cells, and the N-methyl-

D-aspartate subtype of glutamate receptors (NMDAR) are expressed in both the brain 

and CA. Additionally, glutamate and NMDA were shown to stimulate JH synthesis in 

vitro (Chiang et al., 2002). In the final step of JH biosynthesis regulation, the brain 

signals received in the CA should be translated into changes in the expression and/or 

activity of key regulatory JH biosynthetic enzymes, which directly determine the rate 

of JH biosynthesis. However, there are major voids in our current understanding of 

the pathways that lead from brain signals to the activities of JH biosynthetic enzymes.  

 

The evolutionarily conserved TGF-β signaling pathway modulates a wide range of 

cellular processes, including proliferation, differentiation, migration, apoptosis and 

cell fate speciation (Kingsley, 1994; Massagué et al., 2000). In addition, studies in C. 

elegans reveal that the TGF-β signaling pathway controls dauer formation through 

modulation of dafachronic acid synthesis (reviewed in Hu, 2007). Here, we present a 

novel, gradient-independent function of Dpp, a TGF-β ligand, in controlling JH 

biosynthesis. Dpp-Tkv-Mad-mediated TGF-β signaling in the CA serves as a bridge 

to connect brain-derived neurotransmitter signals to the transcriptional changes of JH 

acid methyltransferase (JHAMT), a key regulatory enzyme of JH biosynthesis 

(Shinoda and Itoyama, 2003; Sheng et al., 2008).  



 117 
 

MATERIALS AND METHODS 

Fly Strains and Genetics 

All fly strains were grown on standard cornmeal/molasses/agar medium at 25 °C. The 

mutant alleles for dpp, tkv, mad, Kr-h1, and Nmdar1 used in this study, including 

dpps11, dppd5, tkv7, tkv8, tkvk16713, mad1-2, mad8-2, madk00237, madkg00581, Kr-h1k04411, Kr-

h110642, Nmdar105616, and Nmdar1DG23512, were obtained from the Bloomington 

Drosophila Stock Center. Met27 is a gift from T. Wilson. RNAi lines of these genes, 

including UAS-dpp RNAi, UAS-tkv RNAi, UAS-mad RNAi, UAS-jhamt RNAi, and 

UAS-Nmdar1 RNAi, were also obtained from the Bloomington Drosophila Stock 

Center. Other fly lines used in this study include hs-GAL4; Dscam-GAL4 (Wang et al. 

2004); GAL4-Aug21 (Mirth et al. 2005); UAS-mad (a gift from S. J. Newfeld); and 

UAS-dpp (Bloomington Drosophila Stock Center). 

 

Fly stocks used for the creation of fat body MARCM clones include FRT40; FRT40, 

tkv8/Cyo (a gift from K. Moses); FRT40, mad8-2/Cyo; FRT40, Kr-h110642/Cyo; hs-Flp, 

UAS-mCD8GFP; and FRT40, tub-GAL80.  

 

MARCM analysis: 

The MARCM system (Mosaic Analysis with a Repressible Cell Marker) that 

positively labels mutant cells in the mosaic animals allows genetic analysis of tissue 

development at unprecedented single-cell resolution (Lee and Luo, 1999). In the 

MARCM system, yeast GAL80, the suppressor of GAL4 transcription factor, was 

introduced into GAL4-UAS binary expression system in Drosophila. Thus marker 
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gene under the control of UAS promoter can not be expressed in the cells 

heterozygous for GAL80. Following FLP/FRT-mediated mitotic recombination, one 

of the daughter cells becomes GAL80-negative, thus allowing expression of the 

marker gene specifically in this daughter cell and its progeny. If a mutation is located 

on the chromosome arm in trans to the chromosome arm containing the GAL80, the 

homozygous mutant cells will be uniquely labeled. Depending on whether mitotic 

recombination happens in the fat body or in other tissues, multicellular FB clones or 

other tissues clones can be generated. Thus, by controlling the timing of heat shock-

induced expression of FLPase, the MARCM system allows differentiates label single 

cell generated at specific development of wild type complex tissue (Jefferis et al., 

2002; Lee et al., 1999).  

MARCM clones in the fat body were induced by hs-Flp through heat shock-

independent induction as previously described (Britton et al., 2002).  

 

Construction of jhamt-GAL4 transgenic flies 

To generate jhamt-GAL4 transgenic flies, a 2 kb jhamt promoter was isolated by 

genomic DNA PCR. PhusionTM High-Fidelity PCR Kit (BioLabs) was used for the 

PCR reaction according to the manufacture protocol. The 2 kb PCR product was 

analyzed by agarose gel electrophoresis, purified PCR Purification Kit (Qiagen), 

fused with GAL4 cDNA, and inserted into pCaSpeR4. Transgenic fly lines were 

generated by P element-mediated germline transformation at Rainbow Transgenic 

Flies, Inc. (Camarillo, CA).  
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The jhamt-GAL4 transgenic flies were built through a genetic screening and different 

crosses to be homozygous viable on the 2nd chromosome.  

 

Immunohistochemistry and Microscopy 

Larval fat bodies were dissected from the 2nd or 3rd instar larvae. 

Immunohistochemistry was performed as described previously. Florescence signals 

were captured with a Zeiss LSM510 laser scanning confocal microscope (Carl Zeiss) 

and processed with Adobe Photoshop. 

 

JHA Treatment and JHAMT Activity Assay 

The JHA pyriproxifen (Sigma) was dissolved in 95% ethanol to give a 300 ppm stock 

solution. JHA-containing fly food was prepared by adding JHA stock solution to the 

standard cornmeal-molasses-yeast food at 50-55°C to a final concentration of 0.1 

ppm or as indicated. JHAMT activity in the brain-ring gland complex was measured 

as previously described (Liu et al., 2009).  

 

Western Blotting and Quantitative Real-time PCR 

Protein extracts isolated from 2nd instar larvae were analyzed by standard SDS–PAGE 

and western blot. The expression of β-tubulin was used as a loading control. Br 

mouse monoclonal antibody Br-core (25E9.D7) (Emery et al., 1994) and β-tubulin 

mouse monoclonal antibody (AA12.1) were obtained from the Developmental 

Studies Hybridoma Bank at the University of Iowa. The Western blotting analysis 

was described in details in chapter 3.   
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Total RNA samples were prepared from the whole body for 2nd instar larvae or ring 

glands for 3rd instar larvae and pupae. Quantitative real-time PCR was performed 

using the LightCycler 480 SYBR Green I Master Kit (Roche). The mRNA levels of 

different genes were normalized to actin mRNAs, with 3 replicates for each sample. 

Primers used are listed in the following Table. 

 

Name 
Accession 

number 
Primer F (5'-3') Primer R (5'-3') 

FPPS NM_058032 TGGCACAAGGTGGAGAACG CGATTGTCCGCAGGTAGTGA 

JHE NM_079034 AAATCCGCACTACCTGTAATGG CGGAGTCCATAAAGTATTCGGG 

JHAMT NM_135949 TTTCTTGAGCGAATGCCTGC AGGAGTCTTGCGAGCATAGGC 

actin NM_167053 GCTGAGCGTGAAATCGTCCG GGAGTTGTAGGTGGTCTCGTGGA 

JHEdup NM_137241 CTGACGACTATGGTCTTGGAGCA AACCTTGGCATCTTCCGAGTC 

JHEh1 NM_137541 CTTCTTTCCCAAGTCTAACGAG AGGGCATCCATTTTGTAGCG 

JHEh2 NM_137542 GGTTTGTGGACAGCGAGTATGC TCAGACCACCGTCAGGAAGC 

JHEh3 NM_137543 TGGATCATCACTTCCCCGTG CCGAAGACAGTGACTATGGCG 

cyp6g2 NM_136900 CGGATGTGATAGCCACGGTAG CTTGAATCTAACGAACGGGACC 

Famet NM_137700 CCGAATACGAGGTGCTGTGC TTCAGTGCGTTGGACATTCG 

FARox NM_132467 GATGTGCTGGTCAACAATGCC GCCCCAGGATGCTATTGATGAG 

FARD NM_132238 AGCCAAAGCGAACGAATCC TGATGCGTTGCGGATACAGAT 
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RESULTS 

A genetic screen identifies that Tkv and Mad regulate br expression 

The broad (br) gene has been identified as a key regulator in mediating the cross-talk 

between 20E and JH signaling pathways. Studies in Manduca indicated that the 

expression of br is directly induced by 20E, but this induction can be prevented by the 

presence of JH (Zhou et al., 1998; Zhou and Riddiford, 2002). Therefore, in many 

tissues, br is predominantly expressed during the larval-pupal transition when 20E is 

high and JH is absent (Huet et al., 1993). To identify genes involved in JH 

biosynthesis or JH signaling, we developed a Drosophila genetic screen to isolate 

mutations that de-repress br expression in the 2nd instar larvae. We reasoned that 

mutations that block JH biosynthesis or disrupt JH action should reduce JH activity 

and cause precocious br expression. 

 

To monitor br expression in live organisms, we examined the expression patterns of 

GAL4 enhancer-trap lines inserted near the br gene. One of these lines, GAL4-PG12, 

closely resembles the temporal and spatial expression pattern of the endogenous br 

gene in tissues other than the salivary gland. In the genetic screen, GAL4-PG12>UAS-

mCD8GFP on the X chromosome was used as a reporter of br expression, and lethal 

mutations or P-insertions on the 2nd or 3rd chromosome were made homozygous and 

screened for precocious br expression. Because most of the lethal lines allowed 

organisms to develop to early larval stages, we were able to examine GFP expression 

in the 2nd instar under a fluorescent microscope.  

 



 122 
 

 

From 4,400 lethal lines, 55 mutations were isolated based on GFP expression in the 

2nd instar larvae. Genes associated with these mutations encode proteins with various 

molecular functions, including enzymes, signal transduction molecules, 

transcriptional factors, and others. Some of them are known to be involved in JH 

biosynthesis, such as farnesyl diphosphate synthase (FPPS) (Sen et al., 2007) and 

NMDAR1 (Chiang et al., 2002). 

 

Among these 55 genes were two main components of TGF-β signaling, thick vein 

(tkv) and mothers against Dpp (mad) (Raftery and Sutherland, 1999). As shown in 

Fig. 4.1, the expression of GAL4-PG12>UAS-mCD8GFP was restricted to salivary 

glands in the wild type 2nd instar larvae, but ubiquitous expression of GAL4-

PG12>UAS-mCD8GFP was detected at the same stage of the tkv, mad, and Nmdar1 

mutant larvae. Consistently, when assessed with Br-core antibody staining, 

endogenous Br proteins were not detectable in the fat body (FB) of wild type 2nd 

instar larvae but were observed in the FB nuclei of both tkvk16713 and madk00237 mutant 

larvae (Fig. 4.2A). To further test this finding, we examined other tkv and mad alleles, 

including tkv7, tkv8, mad1-2, mad8-2, and madkg00581. Precocious br expression was 

detected in all cases. These results suggest that Tkv- and Mad-mediated TGF-β 

signaling is required to repress br expression at the early larval stages, possibly 

through regulating JH titer or signaling. 
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The same genetic screen also isolated genes that are involved in JH signaling, such as 

Kr-h1 (Fig. 4.1 and Fig. 4.2A). Another known JH signaling component, Met, was 

not analyzed by this screen because the Met gene is located to X chromosome. A 

reverse genetic study showed that precocious br expression was also detectable in 

Met mutant larvae (Fig. 4.2A).  

 

Exogenous JH agonist prevents precocious br expression in tkv and mad mutants 

We next asked whether the effects of tkv and mad mutations on br expression were 

caused by the decrease in JH titer. Based on this hypothesis, we expected that 

precocious br expression in the tkv and mad mutant larvae would be blocked by 

exogenous JH agonist (JHA). Wild type, tkv, and mad larvae were reared on a diet 

containing 0.1 ppm pyriproxifen, an efficient JHA (Riddiford and Ashburner, 1991). 

The Br-core antibody was used to detect Br proteins in the 2nd instar larvae. 

Immunohistochemical results revealed that the precocious br expression was 

suppressed by exogenous JHA in the FB of tkv and mad mutants (Fig. 4.2A). 

However, the precocious br expression in Kr-h1 and Met mutants was not suppressed 

by exogenous JHA, which demonstrates that Met and Kr-h1 function as the JH 

signaling components in mediating br expression (Wilson and Ashok, 1998; 

Minakuchi et al., 2008; 2009) (Fig. 4.2A). 

These observations were further confirmed by western blot analysis (Fig. 4.2B). 

Thus, we assume that Tkv/Mad-mediated TGF-β signaling maintains JH titers to 

inhibit br expression at the early larval stages, thereby blocking precocious 

metamorphosis. 
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Tkv and Mad cell-non-autonomously regulate br expression in the FB  

Proteins that transduce JH signals should cell-autonomously regulate br expression in 

the JH-affected organs, while proteins that affect JH titer should cell-non-

autonomously affect br expression. We asked whether the Tkv and Mad proteins 

were required for the regulation of br expression in the FB, a target organ of JH (Liu 

et al., 2009). A MARCM analysis of FB cells was conducted for tkv8, mad8-2, and Kr-

h110642 mutants. Br protein was assessed with Br-core antibody staining and compared 

between the homozygous mutant cells (GFP-positive) and the surrounding 

heterozygous or wild type cells (GFP-negative). As expected, br was not expressed in 

FB of the wild type 2nd instar larvae (Fig. 4.3A-A’), but was expressed in the mutant 

clones homozygous for Kr-h1 (Fig. 4.3D-D’). However, br expression was not 

detected in the tkv and mad mutant FB clones at the same stage (Fig. 4.3B-B’ and 2C-

C’). This result is different from those shown in Fig. 4.2A, in which br was found to 

be highly expressed in FB cells of the tkv and mad mutant larvae at the 2nd instar. 

Therefore, at the early larval stages, the presence of the Tkv and Mad proteins in the 

FB cells is not required for JH-mediated br suppression in these cells. Rather, these 

proteins function in other tissues to control br expression. These results further 

support the hypothesis that Tkv/Mad-mediated TGF-β signaling inhibits br 

expression at the early larval stages by maintaining JH titers. 

 

 

 



 125 
 

Mad functions in the CA to suppress br expression in the FB 

Because JH titer is mainly determined by JH biosynthesis in the CA, which is 

controlled by the brain, we tested whether the precocious br expression phenotype in 

the mad mutant larvae could be suppressed by expressing mad cDNA specifically in 

the CA or brain. When hs-GAL4 was used to drive UAS-mad ubiquitously in the 

madk00237 larvae, precocious br expression was fully suppressed as expected. By 

contrast, when we used Dscam-GAL4, a pan-neuronal expression driver (Wang et al., 

2004), the precocious br expression phenotype was not affected. However, when we 

used GAL4-Aug21, a CA-specific GAL4 line (Mirth et al., 2005), precocious br 

expression was completely suppressed (Fig. 4.4A). As the expression of mad in the 

CA was sufficient to suppress br expression in FB of the mad mutant larvae, we infer 

that Tkv/Mad-mediated TGF-β signaling promotes JH biosynthesis in the CA at the 

early larval stages.  

 

Tkv and Mad upregulate jhamt transcription and its enzymatic activity 

Next, we asked whether TGF-β signaling regulates the expression of genes encoding 

critical enzymes of JH biosynthesis. We first compared mRNA levels for these genes 

between wild type and mad mutant larvae at the 2nd instar by quantitative real-time 

PCR. Six enzymes, including JHAMT, farnesyl diphosphate synthase (FPPS), 

farnesol oxidase (FARox), farnesol dehydrogenase (FARD), cytochrome P450 6g2 

(Cyp 6g2), and farnesoic acid O-methyltransferase (Famet), were chosen because 

they catalyze the key steps of JH biosynthesis and are predominantly expressed in the 

CA (Belles et al., 2005; Noriega et al., 2006). We found that in the madk00237 larvae, 
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the mRNA levels of jhamt were decreased to less than half of that in wild type. 

However, no changes were detected for the mRNA levels of the other five enzymes 

(Fig 4.4B). We also examined the mRNA levels for genes encoding major JH 

degradative enzymes, including juvenile hormone esterase (JHE), juvenile hormone 

epoxide hydrolase 1-3 (JHEh1-3), and juvenile hormone esterase duplication 

(JHEdup) (Goodman and Granger, 2005). Expression of these JH degradative 

enzymes was not affected in the mad mutant larvae (Fig. 4.5).  

 

To test whether the reduced jhamt mRNA expression in tkv and mad mutants resulted 

in a correspondingly reduced enzymatic activity, we further measured JHAMT 

activity in the brain-ring gland complex of Tkv- or Mad-deficient larvae. Because tkv 

and mad mutants die at early larval stages, we carried out this experiment in the tkv 

and mad RNAi larvae. hs-GAL4/UAS-tkv RNAi, hs-GAL4/UAS-mad RNAi, and hs-

GAL4/+ control flies were reared under the normal conditions with or without heat-

shock treatment. In the hs-GAL4/+ larvae, heat-shock treatment did not affect 

JHAMT activity. However, JHAMT activity in heat-shocked hs-GAL4/UAS-tkv RNAi 

and hs-GAL4/UAS-mad RNAi larvae was reduced to 40-50% of that in the control 

(Fig. 4.4C). Additionally, JHAMT activity in non-heat-shocked hs-GAL4/UAS-

tkvRNAi and hs-GAL4/UAS-mad RNAi larvae was also mildly decreased (~80% of 

control), likely due to leaky expression of hs-GAL4. The lower jhamt mRNA levels 

and JHAMT activity in Tkv- and Mad-deficit larvae indicate that Tkv/Mad-mediated 

TGF-β signaling in the CA promotes JH biosynthesis by up-regulating jhamt 

expression. 
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Dpp is the TGF-β ligand in the regulation of JH biosynthesis 

The Drosophila genome encodes seven TGF-β superfamily members. Three of them, 

Decapentaplegic (Dpp), Glass bottom boat (Gbb) and Screw (Scw), belong to the 

BMP subgroup and are suggested to signal through Tkv as the type I receptor 

(Raftery and Sutherland, 1999). In an attempt to identify TGF-β ligand(s) 

participating in the regulation of JH synthesis, we found that, like tkv and mad 

mutations, hypomorphic dpp mutants, dpps11 and dppd5, also caused precocious br 

expression in the FB (Fig. 4.6A), suggesting that Dpp may be the TGF-β ligand 

regulating JH biosynthesis in the CA. Noticeably, while both are hypomorphic alleles, 

dpps11 and dppd5 have rearrangements of the disk and shv regulatory regions, 

respectively (Johnston et al., 1990). Likely, both regulatory regions are required for 

the normal dpp expression in the CA. 

 

Next, we asked where the Dpp protein in the CA originates. Dpp is transported via 

intracellular trafficking initiated by receptor-mediated endocytosis (Entchev et al., 

2000). Therefore, we first assessed dpp expression in the ring gland and found that 

dpp-lacZ was highly expressed in the CA but not in any other parts of the ring gland 

(Fig. 4.6B).  

 

Null alleles of dpp mutations are embryonic lethal, while hypomorphic alleles, such 

as dpps11, were completely pupal lethal. Interestingly, this pupal lethality could be 

partially rescued by exogenous JHA. When reared on JHA-containing diet, more than 



 128 
 

10% of dpps11 larvae developed into adults (Fig. 4.6C). This finding was further 

supported by a CA-specific dpp RNAi assay (Fig. 4.7). These data not only reinforce 

the importance of Dpp in regulating JH biosynthesis but also implicate that the pupal 

lethality of dpps11 are partially caused by the reduced jhamt expression and JH levels. 

When jhamt was ectopically expressed in the CA, approximately 8% of dpps11 

mutants developed to adulthood (Fig. 4.6D). In light of all this evidence, we conclude 

that Dpp expressed in the CA is the TGF-β ligand of Tkv in stimulating JH 

biosynthesis. 

 

CA-specific down-regulation of TGF-β signaling induces precocious br 

expression 

As mutations in dpp, tkv, and mad induce precocious br expression, we asked whether 

CA-specific knockdown of dpp, tkv, mad, or jhamt affects br expression. When the 

expression of dpp, tkv, mad, or jhamt was knocked down by CA-specific RNAi, 

precocious br expression was detected in the FBs of 2nd instar larvae in all cases (Fig. 

4.8). These results further support that Dpp-Tkv-Mad mediated TGF-β signaling in 

the CA is required to regulate JH biosynthesis. 

 

Expression of dpp in the CA correlates with that of jhamt 

We have demonstrated that Dpp and its downstream signaling molecules Tkv and 

Mad are required for normal jhamt expression and JH biosynthesis in the CA. It is 

critical to determine whether TGF-β signaling is an efficient regulation mechanism 

for jhamt transcription. To address this question, we first measured jhamt mRNA 
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levels in the ring glands of Dpp-deficient flies at the wandering larval stage. We 

found that jhamt mRNA levels in the ring glands of dpps11, dppd5, and CA-specific 

dpp RNAi larvae were only 10-40% of that in wild type. In contrast, when dpp was 

ectopically expressed in the CA, the mRNA level of jhamt increased 4-fold (Fig 

4.9A).  

 

We next compared the developmental profiles of dpp and jhamt expression in the CA 

of wild type animals. From the late 3rd instar larva to early pupa, only a single high 

peak of jhamt mRNA level was detected in the wandering larval stage, which is 

consistent both with a previous report (Niwa et al., 2008) and with JH titers in the 

hemolymph (Riddiford, 1993). As shown in Fig. 4.8B, jhamt mRNA level in the ring 

glands of wandering larvae was ~11-fold higher than that of the larvae 10 hours 

before the wandering stage. The expression pattern of dpp in the CA was similar to 

that of jhamt, but the increase of dpp mRNA prior to the wandering larval stage 

occurred hours earlier than that of jhamt mRNA (Fig. 4.9B). Therefore, despite 

differences in developmental stages of wild type animals or in the Dpp-deficient 

larvae with distinct genetic backgrounds, dpp expression in the CA always correlates 

with jhamt expression in vivo. These findings further demonstrate that Dpp-mediated 

TGF-β signaling plays a crucial role in controlling JH biosynthesis through 

upregulating jhamt expression. 
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Expression of dpp in the CA is controlled by neurotransmitter signals 

Finally, we asked whether dpp expression in the CA was regulated by brain signals. 

Drosophila Nmdar1, a glutamate receptor, is expressed in the CA and plays a role in 

regulating JH biosynthesis (Chiang et al., 2002). Our genetic screen also identified 

that mutations in Nmdar1 caused precocious br expression (Fig. 4.1). As shown in 

Figure 4.10, at the wandering larval stage, mRNA levels of both dpp and jhamt in 

Nmdar1DG23512 and Nmdar105616 mutants were reduced to below 30% of those in wild 

type. In addition, CA-specific knock-down of Nmdar1 expression also induced 

precocious br expression in the FBs of 2nd instar larvae. These data suggest that dpp 

expression in the CA is directly controlled by neurotransmitter signals from the brain. 

 

DISCUSSION 

 

Roles of TGF-β signaling in insect metamorphosis 

The functions of the TGF-β superfamily and other morphogens in regulating insect 

metamorphosis are rarely reported. In two independent genetic screens, we 

discovered that Drosophila TGF-β signaling controls two different aspects of insect 

metamorphosis. In a previous study, we found that Baboon (Babo) and dSmad2-

mediated TGF-β signaling regulates larval neuron remodeling, which is part of the 

insect central nervous system metamorphosis induced by 20E during the pupal stage. 

Further investigation revealed that Babo/dSmad2-mediated TGF-β signaling controls 

larval neuron remodeling through regulating the expression of EcR-B1, a specific 

isoform of the 20E receptor (Zheng et al., 2003).  
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In this work, we report several findings. First, br is precociously expressed in 2nd 

instar tkv and mad mutant larvae (Fig. 4.1). Second, the precocious br expression 

phenotype in tkv and mad mutant larvae can be suppressed by exogenous JHA (Fig. 

4.2). Third, Tkv and Mad repressed br expression in a cell-non-autonomous manner 

(Fig. 4.3). Fourth, the presence of Mad in the CA is sufficient to repress br expression 

in the FB (Fig. 4.4A). Fifth, jhamt mRNA levels and JHAMT activity were 

significantly reduced in the Mad-deficient larvae (Fig. 4.4B and C). These results 

demonstrate that Tkv and Mad-mediated signaling is required in the CA to activate 

jhamt expression and thus JH biosynthesis, which in turn controls insect 

metamorphosis. 

 

The Drosophila genome encodes two TGF-β type II receptors, Punt (Put) and 

Wishful thinking (Wit) (Raftery and Sutherland, 1999). Our genetic screen failed to 

identify a role for either of these receptors in the regulation of JH biosynthesis. Put 

and Wit are most likely functionally redundant in this biological event, as in the case 

of TGF-β mediated mushroom body neuron remodeling (Zheng et al., 2004). 

 

Dpp converts brain signals into JH biosynthesis in the CA 

Dpp is a key morphogen that controls dorsal/ventral polarity, segmental compartment 

determination, and imaginal disc patterning. Dpp function usually depends on its 

gradient distribution (Affolter and Basler, 2007). In an attempt to identify the ligand 

for Tkv/Mad-mediated TGF-β signaling in the CA, we have discovered a novel, 
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gradient-independent role for Dpp that controls JH biosynthesis. We demonstrate that 

Dpp is the ligand of Tkv, which regulates jhamt transcription. Loss of Dpp, even 

RNAi reduction of Dpp in the CA specifically, causes precocious br expression at the 

early larval stages, which phenocopies tkv and mad mutants (Fig. 4.2A, Fig. 4.4A, 

and Fig. 4.8). Phenotypes of dpp, including precocious br expression and lethality, 

are at least partially rescued by JHA treatment (Fig. 4.6C) or ectopic jhamt expression 

in the CA (Fig. 4.6D).  Notably, dpp-LacZ is strictly expressed in the CA cells, but 

not in the other two types of endocrine cells in the ring gland, the prothoracic gland 

and corpus cardiacum cells (Fig. 4.6B). The developmental expression profile of dpp 

in the CA is always consistent with that of jhamt (Fig. 4.9). Finally, dpp expression in 

the CA may be directly controlled by neurotransmitter signals in the brain, which is 

supported by reduced dpp and jhamt transcription levels in the Nmdar1 mutant 

wandering larvae (Fig. 4.10). 

 

Role of Met/Gce and Kr-h1 in JH action 

Several lines of evidence suggest that Met is a critical regulator at or near the top of a 

JH signaling hierarchy, possibly acting as a JH receptor (Wilson and Ashok, 1998). 

However, null Met mutants of Drosophila are completely viable, which is unexpected 

if Met is a JH receptor. A recent investigation indicated that another Drosophila 

bHLH-PAS protein, Germ cell-expressed (Gce), which has more than 50% homology 

to Met (Godlewski et al., 2006), may function redundantly to Met in transducing JH 

signaling (Baumann et al., 2010). Because Met is on the X chromosome in the fly 

genome, it was not covered by our genetic screen. We tested the br protein in the FBs 
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of a Met null allele, Met27, at the 2nd instar larval stage and observed precocious br 

expression. Importantly, this precocious br expression phenotype could not be 

suppressed by exogenous JHA (Fig. 4.2A). This result not only supports the previous 

reports regarding the function of Met in transducing JH signaling but also suggests 

that the precocious br expression is a more sensitive indicator for the reduced JH 

activity in Drosophila compared to precocious metamorphosis, lethality, and other 

phenotypes. 

 

Kr-h1 was reported to act downstream of Met in mediating JH action. Studies in both 

Drosophila and Tribolium reveal that, at the pupal stages, exogenous JHA induces 

Kr-h1 expression, which in turn up-regulates br expression (Minakuchi et al., 2008; 

2009). Our genetic screen successfully identified that Kr-h1 is cell-autonomously 

required for the suppression of br expression at young larval stages (Fig. 4.1; Fig. 4.2 

and 4.3). Precocious br expression occurred in the FBs of Kr-h1 mutants and was not 

suppressed by JHA treatment (Fig. 4.2). Therefore, our studies further suggest that 

Kr-h1 functions as a JH signaling component in mediating insect metamorphosis. 

However, our finding shows that, at the larval stages of Drosophila, the JH-induced 

Kr-h1 suppresses, rather than stimulates, br expression. This result is consistent with 

the facts that Kr-h1 functions to prevent Tribolium metamorphosis (Minakuchi et al., 

2009) and Br is a critical factor to promote pupa formation (Zhou and Riddiford, 

2002). 
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A working model for function of Dpp-mediated TGF-β signaling in controlling 

insect metamorphosis 

Taken together, we find a novel function of Dpp, Tkv, and Mad-mediated TGF-β 

signaling in controlling insect metamorphosis. As summarized in our model (Fig. 

4.11), the brain sends neurotransmitters, such as glutamate, to the CA through 

neuronal axons. Glutamate interacts with its receptor (NMDAR) on the surface of CA 

cells to induce dpp expression. Dpp protein produced and secreted by CA cells forms 

a complex with TGF-β type I receptor (Tkv) and type II receptor on the membrane of 

CA cells, followed by phosphorylation and activation of Tkv. Activated Tkv in turn 

phosphorylates Mad, which is imported into the nucleus together with co-Smad and 

stimulates jhamt expression. JHAMT in CA cells transforms JH acid into JH, which 

is released into hemolymph. The presence of JH in young larvae prevents premature 

metamorphosis through Met/Gce and Kr-h1 by suppressing the expression of br, a 

critical gene in initiating insect metamorphosis.  
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Fig. 4.1. Genetic screen identifies Tkv and Mad as being required for the 

suppression of br expression at early larval stages 

(A-E) GFP images showing the expression of GAL4-PG12>UASmCD8GFP in 2nd 

instar larvae. GFP was only expressed in the salivary gland of the wild type (A) 

larvae but was widely expressed in all tissues of GAL4-PG12, UAS-

mCD8GFP/Fm7C; tkvk1671/tkvk16713 (B), GAL4-PG12, UAS-mCD8GFP/Fm7C; 

madk00237/madk00237 (C), GAL4-PG12, UAS-mCD8GFP/Fm7C; Kr-h110642/Kr-h110642 

(D), and GAL4-PG12, UAS-mCD8GFP/Fm7C; Nmdar1 DG23512/Nmdar1DG23512 (E) 

larvae. (A’-E’) White light images of the same organisms are shown in (A-E). 
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Fig. 4.2. Tkv and Mad repress br expression in the FB by maintaining JH levels  

(A) Wild type, tkvk167, madk00237, Kr-h110642, and Met27 flies were reared on normal          

(-JHA) or 0.1 ppm pyriproxifen-containing (+JHA) food. Fat bodies of the 2nd instar 

larvae were stained with Br-core antibody (red). Nuclei were labeled with DAPI 

(blue).  (B) Br proteins extracted from wild type, tkvk167, madk00237, and Kr-h110642 2nd 

instar larvae that were reared on normal (-JHA) or 0.1 ppm pyriproxifen-containing 

(+JHA) food were assessed by western blotting with Br-core antibody. Tubulin-β was 

used as a loading control.  
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Fig 4.3. Tkv and Mad non-cell-autonomously repress br expression in the FB 

MARCM analyses were carried out in the FB of wild type (A-A’), tkv (B-B’), mad 

(C-C’), and Kr-h1 (D-D’) 2nd instar larvae. Cells homozygous for wild type, tkv8, 

mad8-2, or Kr-h110642 were marked by GFP (green). Br proteins were assessed with 

Br-core antibody (red). DAPI was used to label nuclei (blue). 
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Fig 4.4. Tkv and Mad are required in the CA to promote jhamt transcription 

and then repress FB br expression 

(A) UAS-mad was expressed in different tissues of madk00237 mutants using the GAL4 

lines that are expressed ubiquitously (hs-GAL4), specifically in neurons (Dscam-

GAL4), or specifically in the CA (Aug21-GAL4). FBs of 2nd instar larvae were stained 

with Br-core antibody (red) and DAPI (blue). (B) mRNA levels of JH biosynthetic 

enzymes in the wild type and madk00237 2nd instar larvae were analyzed by quantitative 

real-time PCR. The ratios of mRNA levels between madk00237 and wild type (means 

of 3 independent experiments ± standard deviations) larvae are presented. The 

accession numbers of genes and sequences of the primers are listed in Supplementary 

Table 1. (C) JHAMT activity in the brain-ring gland complexes of wild type, tkv 

RNAi, and mad RNAi organisms were measured at the wandering larval stage.  
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Fig. 4.5. Expression of JH degradative enzymes is not affected in mad mutants 

The endogenous expression of enzymes related to JH degradation was analyzed by 

quantitative real-time PCR. Total RNA was prepared from wild-type and madk00237 

mutant 2nd instar larvae. Levels of mRNA were normalized to actin mRNA. The ratio 

between mad mutant and wild type larvae is presented. The average of three 

independent experiments is shown. Error bars indicate standard deviations.  
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Fig 4.6. Dpp is the ligand of Tkv that mediates JH biosynthesis in the CA. 

(A) FBs of wild type, dpps11, and dppd5 2nd instar larvae were stained with Br-core 

antibody (red) and DAPI (blue). (B) Brain-ring gland complexes of the dpp-lacZ 

transgene at the wandering larval stage were assessed with β-galactosidase antibody 

staining (red). Nuclei were labeled with DAPI (blue). CA = corpus allatum, PG = 

prothoracic gland, and BR = brain. (C) One hundred 1st instar larvae of dpps11 were 

reared on normal food or food containing different concentrations of pyriproxifen. 

The percentages of individuals that develop into adults are shown as the means of 10 

replicates ± standard deviations. (D) GAL4-Aug21, dpps11/Cyo, GFP flies were 

crossed with (1) +/Cyo, GFP, (2) dpps1/Cyo, GFP, and (3) dpps1/Cyo, GFP; UAS-

jhamt. One hundred GFP-negative 1st instar larvae and their progeny were reared on 

normal fly food at 25 °C. The percentages of individuals that develop into adults are 

shown as the means of 10 replicates ± standard deviations. 
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Fig. 4.7. The lethality caused by CA-specific dpp RNAi is partially rescued by 

JHA treatment 

(A) Brain-ring gland complex showing that the expression of jhamt-GAL4 is 

restricted to the CA. jhamt-GAL4 drives UAS-mCD8GFP, which is exclusively 

expressed in the CA cells. Nuclei were labeled with DAPI (blue). CA = corpus 

allatum, PG = prothoracic gland. (B) Flies of jhamt-GAL4>UAS-dpp RNAi, which are 

lethal during early-middle pupal stages were reared on regular food or food 

containing 0.1 ppm pyriproxifen (+JHA food). One hundred 1st instar larvae were 

reared in each vial. The percentages of individuals developing into each given 

developmental stage are shown as the means of 10 replicates ± standard deviations. 

Reared on regular food, most jhamt-GAL4>UAS-dpp RNAi flies died at the prepupal 

stage, and none of them developed into adults. Reared on +JHA food, most of jhamt-

GAL4>UAS-dpp RNAi flies died at pupal stages, although over 5% of them developed 

into adults. 

Prepupal stage: from pupariation to head eversion 

Early pupal stage: from head eversion to yellow eyes 

Late pupal stage: from yellow eyes to eclosion 

Adult stage: after eclosion. 
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Fig 4.8. CA-specific knockdown of dpp, tkv, mad, Nmdar1, or jhamt induces 

precocious br expression 

GAL4-Aug21 flies were crossed with UAS-dpp RNAi, UAS-tkv RNAi, UAS-mad RNAi, 

UAS-Nmdar1 RNAi, and UAS-jhamt RNAi. The FBs of their progeny were dissected 

at the 2nd instar larval stage and stained with Br-core antibody (red) and DAPI (blue).  
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Fig 4.9. Expression of dpp in the CA correlates with that of jhamt. 

(A) Relative jhamt mRNA levels at the wandering larval stage were compared among 

flies with different genetic backgrounds, including wild type, dpps11, dppd5, jhamt-

GAL4>UAS-dpp RNAi, and jhamt-GAL4>UAS-dpp flies. Total RNA was extracted 

from the ring gland, and the mRNA levels of jhamt were assessed by quantitative 

real-time PCR. Levels of jhamt mRNA were normalized to actin mRNA. Values 

shown are the means of 3 independent experiments ± standard deviations. (B) 

Relative mRNA levels of dpp and jhamt in the ring gland were compared among 

different developmental stages of wild type organisms (Oregon R). Tissue and total 

RNA preparation, as well as quantitative real-time PCR, are the same as in (A). 
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Fig 4.10. The expression of dpp and jhamt in the CA is reduced in Nmdar1 

mutants 

The relative mRNA levels of dpp and jhamt at the wandering larval stage were 

compared between wild type and two Nmdar1 mutant alleles, Nmdar105616 and 

Nmdar1DG23512. Tissue and total RNA preparation, as well as quantitative real-time 

PCR, were performed as described in Fig. 4.9.  
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Fig 4.11. A model for the function of TGF-β signaling in controlling JH 

biosynthesis and insect metamorphosis 

Proposed model as described in the text illustrating the function of TGF-β signaling 

in controlling JH biosynthesis and insect metamorphosis. The genes and proteins 

involved in this study are highlighted in red.  
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Chapter 5 

Wnt Signaling Mediates Juvenile Hormone Action through 
Regulating Expression of Met and gce 

 

ABSTRACT 

Juvenile hormone (JH) plays key roles in controlling insect growth and 

metamorphosis. However, relatively little is known about the JH signaling pathways. 

In recent years, evidence has accumulated suggesting that JH modulates the action of 

20-hydroxyecdysone (20E) by regulating expression of broad (br), a 20E early 

response gene, through Met/Gce and Kr-h1. To identify other genes involved in JH 

signaling, we designed a novel genetic screen to isolate mutations that derepress JH-

mediated br suppression at early larval stages. We found that mutations in three Wnt 

signaling negative regulators, Axin (Axn), supernumerary limbs (slmb), and naked 

cuticle (nkd), caused precocious br expression, which could not be blocked by 

exogenous JHA. A similar phenotype was observed when armadillo (arm), the 

mediator of Wnt signaling, was overexpressed. Quantitative reveres transcriptase 

PCR revealed that Met, gce and Kr-h1expression was suppressed in the Axn, slmb and 

nkd mutants as well as in arm gain-of-function larvae. Furthermore, ectopic 

expression of gce restored Kr-h1 expression, but not Met expression, in the arm gain-

of-function larvae. Taken together, we conclude that Wnt signaling cross-talks with 

JH signaling by suppressing transcription of Met and gce, genes that encode for 

putative JH receptors. The reduced JH activity further induces down-regulation of Kr-

h1expression and eventually derepresses br expression in early larval stages.  
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INTRODUCTION 

Juvenile hormone (JH) is a critical hormone that regulates many aspects of insect 

physiology. A major role of JH is its classic “status quo” action in the regulation of 

insect development. When 20-hydroxyecdysone (20E) induces molting during early 

developmental stages, the presence of JH results in a molt that repeats the previous 

stage (Riddiford 1996, Gilbert et al., 2000). Therefore, JH does not block the 20E-

coordinated molting process, but rather directs the action of 20E. During the last two 

decades, studies on the hormonal regulation of insect development have focused on 

understanding the molecular basis of 20E, JH, and their interactions.  

 

At the molecular level, 20E binds to its heterodimer receptor, EcR/USP, to directly 

activate the transcription of a small set of early-response genes that encode 

transcriptional factors. These genes transduce and amplify the original hormonal 

signal by activating a large number of late-response genes that encode tissue-specific 

effector proteins necessary for insect molts and metamorphosis (Thummel 2002). One 

of the 20E-induced early genes, broad (br), was identified as a key regulator in 

mediating the cross-talk between the 20E and JH signaling pathways. Drosophila br 

encodes four transcriptional factors that contain a common N-terminal domain and 

four pairs of different C2H2 DNA-binding zinc finger domains (DiBello et al., 1991, 

Bayer et al., 1996). The Br proteins directly regulate the transcription of 20E-induced 

late genes and are essential for inducing pupal development (Crossgrove 1996, Zhou 

and Riddiford 2002). Null br mutants can develop normally to the final larval instar 

but cannot form pupa (Kiss et al., 1988). Moreover, ectopic expression of br in early 
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2nd instar larvae induces premature pupal formation (Zhou et al., 2004). Therefore, the 

Br proteins are necessary and sufficient for the initiation of insect metamorphosis. 

Consistent with its function, the Br proteins are predominantly expressed during the 

larval-pupal transition in every holometabolous insect so far examined (Dubrovsky 

2005). Previous studies in Manduca, Bombyx, and Tribolium suggested that the 

temporal pattern of br expression results from interaction between 20E and JH. 20E 

directly induces br expression, which can be prevented by JH in young larvae (Zhou 

et al., 1998, Konopova and Jindra 2008). Here, we demonstrate that JH is also 

required to repress br expression during early larval stages in Drosophila.  

 

JH transduces its signal through a pathway including Methoprene-tolerant (Met), 

Germ cell-expressed (Gce) and Krüppel-homolog 1 (Kr-h1) and the 

p160/SRC/NCoA-like molecule (Taiman in Drosophila and FISC in Ades).  The 

Drosophila Met and gce genes encode two functionally redundant bHLH-PAS protein 

family members, which have been proposed to be components of the elusive JH 

receptor (Wilson and Ashok 1998, Abdou et al., 2011). Both Met and gce mutants are 

viable and resistant to JH analogs (JHA) as well as to natural JH III (Abdou et al., 

2011, Wilson and Fabian 1986). However, Met-gce double mutants are prepupal 

lethal and phenocopies CA-ablation flies (Abdou et al., 2011, Liu et al., 2009, 

Riddiford et al., 2010). The Met protein binds JH III with high affinity (Shemshedini 

and Wilson 1990, Miura et al., 2005). In Tribolium, suppression of Met activity by 

injecting double-stranded (ds) Met RNA causes precocious metamorphosis 

(Konopova and Jindra 2007).  Kr-h1 is considered as a JH signaling component 
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working downstream of Met. In both Drosophila and Tribolium, Kruppel-homolog1 

(Kr-h1) mRNA is expressed at high levels during the embryonic stage and is 

continuously expressed in the larvae; then, it disappears during pupal and adult 

development (Pecasse  2000, Minakuchi et al., 2008). Kr-h1 expression can be 

induced in the abdominal integument by exogenous application of the JH analog 

(JHA) at pupariation (Minakuchi et al., 2008). Suppression of Kr-h1 by dsRNA in the 

early larval instars of Tribolium causes precocious br expression and premature 

metamorphosis in the next instar (Minakuchi et al., 2009). Thus by suppressing br 

expression, Kr-h1 is necessary for JH to maintain the larval state during a molt.  

Studies in Aedes, Drosophila and Tribolium have demonstrated that the 

p160/SRC/NCoA-like molecule is also required for JH to induce expression of Kr-h1 

and other JH response genes (Li et al., 2010, Zhang et al., 2010). For example in the 

presence of JH, Ades FISC forms a functional complex with Met on the JH response 

element and directly activates transcription of JH target genes (Li et al., 2010). 

 

In an attempt to isolate other genes involved in JH signaling, we conducted a novel 

genetic screen that identified mutations in three Wnt signaling component genes, Axin 

(Axn), supernumerary limbs (slmb), and naked cuticle (nkd), which induced 

precocious br expression, mimicking loss of JH activity. The evolutionarily 

conserved Wnt signaling pathway controls numerous developmental processes 

(Cadigan and Nusse 1997). The key mediator of the Drosophila Wnt pathway is 

Armadillo (Arm, the homolog of vertebrate β-catenin). When the Wnt signaling 

ligand, Wingless (Wg), is absent, the destruction complex is active and 
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phosphorylates Arm, earmarking it for degradation. Upon Wg stimulation, the 

destruction complex is inactivated; as a result, unphosphorylated Arm accumulates in 

the cytosol and is targeted to the nucleus to stimulate transcription of Wnt target 

genes (Bienz 2005). Many players in the Wnt signaling pathway negatively regulate 

its activity. For example, Axin (Axn) is one of the main components of the 

destruction complex (Hamada et al., 1999). Supernumerary limbs (Slmb) recognizes 

phosphorylated Arm and targets it for polyubiqitination and proteasomal destruction 

(Jian and Struhl 1998). Naked cuticle (Nkd) antagonizes Wnt signaling by inhibiting 

nuclear import of Arm (Zeng et al., 2000). Our investigations have revealed that the 

high activity of Wnt signaling in the Axn, slmb, and nkd mutants suppresses the 

transcription of Met and gce, genes encoding for putative JH receptors, thus linking 

Wnt signaling to JH signaling and insect metamorphosis for the first time. 
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MATERIALS AND METHODS 

Fly Strains and Genetics 

All Drosophila strains were grown on standard cornmeal/molasses/yeast food at 25 

°C. Oregon R strain was used as wild type. The GAL4-PG12 line was a gift from H.-

M. Bourbon (Bourbon et al., 2002). UAS-gce was a gift from T. Wilson (Baumann et 

al., 2010). The lethal mutant lines of Axn, nkd, and slmb as well as arm-GAL4 and 

UAS-armS10 were obtained from the Bloomington Drosophila Stock Center.  

 

Immunohistochemistry and Microscopy 

Immunohistochemistrical analysis of larval fat bodies was performed as previously 

described in Chapter 2. Florescence signals were captured with a Zeiss LSM510 

confocal microscope (Carl Zeiss) and processed with Adobe Photoshop. 

 

JHA Treatment  

The JHA pyriproxyfen (Sigma) was dissolved in 95% ethanol to yield a 300 ppm 

stock solution. The JHA-containing fly food was prepared by adding the JHA stock 

solution to the standard cornmeal-molasses-yeast food at 50-55°C to a final 

concentration of 0.1 ppm.  
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qRT-PCR 

Total RNAs were prepared from the 2nd instar larvae using the RNeasy Mini Kit 

(Qiagen). Quantitative real-time PCR (qRT-PCR) was performed using the 

LightCycler 480 SYBR Green I Master Kit (Roche). The mRNA levels of different 

genes were normalized to rp49 mRNA with 4 replicates for each sample. The primers 

used in this study are listed in the following Table. 

 

 

Genes Purpose Forward Primers Reverse Primers 

Met 

gce 

Kr-h1 

rp49 

qRT-PCR 

qRT-PCR 

qRT-PCR 

qRT-PCR 

5’-GCCAGAACCCTATCAGTTGG-3’ 

5’-GATCCGAATCCGATGACTTC-3’ 

5’-CTCTGCACGTCAGCGATCTA-3’ 

5’-GACAGTATCTGATGCCCAACA-3’ 

5’-AGCAGACGGTAGCAGCTCTC-3’ 

5’-GAATTTGCGGGAACAGAGTC-3’ 

5’-AACGTCCGGATTGGGTAGAG-3’ 

5’-CTTCTTGGAGGAGACGCCGT-3’ 

Met 

gce 

Kr-h1 

rp49 

RT-PCR 

RT-PCR 

RT-PCR 

RT-PCR 

5’-GCAGTGATCTGGAGGAGGAG-3’ 

5’- CGTCGATCTCGAGGAGGATA -3’ 

5’-CGGAGCAGATCCCTATCAGT-3’ 

5’-GACAGTATCTGATGCCCAACA-3’ 

5’-ACCGTCTCTGCTGAATCCAC-3’ 

5’-GATCAGCTGCTGTTTGAGCA-3’ 

5’- AACGTCCGGATTGGGTAGAG -3’ 

5’-CTTCTTGGAGGAGACGCCGT-3’ 
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RESULTS 

A genetic screen for mutations affecting br expression 

 Because JH represses br expression during early larval stages, we reasoned that 

mutations that reduce the JH titer or disrupt JH action should cause precocious br 

expression in Drosophila. Accordingly, we designed and conducted a genetic screen 

to isolate genes that affect these processes. In these screens, GAL4-PG12>UAS-

mCD8GFP on the X chromosome was used as a reporter of br expression, and lethal 

mutations or P-insertions on the 2nd or 3rd chromosome were made homozygous and 

screened for precocious br expression (Chapter 3). Because most of the lethal lines 

allowed organisms to develop to early larval stages, we were able to examine GFP 

expression in the 2nd instar under the fluorescent microscope. From 4,400 lethal lines, 

55 mutations were isolated based on GFP expression in the 2nd instar larvae. Genes 

associated with these mutations encode proteins with various molecular functions, 

including enzymes, signal transduction molecules, and transcriptional factors.  

 

This genetic screen was efficient in identifying the genes required for JH 

biosynthesis. It not only isolated genes that are known to be involved in JH 

biosynthesis, such as farnesyl diphosphate synthase (Fpps) (Sen et al., 2007), 

apterous (ap) (Altaratz et al., 1991), Insulin receptor (InR) (Tatar et al., 2001, Tu et 

al., 2005), and N-methyl-D-aspartate receptor 1 (Nmdar1) (Chiang et al., 2002), but 

also revealed that Dpp-mediated TGF-β signaling in the corpus allatum stimulates JH 

biosynthesis by upregulating transcription of JH acid methyltransferase (jhamt), a 

key regulatory enzyme of JH synthesis (Huang et al., 2011). The same genetic screen 
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also isolated genes that are involved in JH signaling, such as Kr-h1. Another known 

JH signaling component, Met, was not identified by this screen because the Met gene 

is located to the X chromosome. A reverse genetic study showed that precocious br 

expression was also detectable in Met mutant larvae (Huang et al., 2011).  

 

Mutations in the negative regulators of Wnt signaling cause precocious br 

expression 

Three important components of Wnt signaling, Axn, slmb, and nkd were found among 

these 55 genes. As shown in Fig. 5.1, expression of GAL4-PG12>UAS-mCD8GFP 

was restricted to salivary glands in the wild type 2nd instar larvae (Fig. 5.1A), but 

ubiquitous expression of GAL4-PG12>UAS-mCD8GFP was detected at the same 

stage in the Axn, slmb, and nkd mutant larvae (Fig. 5.1B-D). These results suggest 

that Wnt signaling is required to repress br expression during the early larval stages, 

possibly by regulating either the JH titer or JH signaling. 

 

Exogenous JHA does not prevent precocious br expression in Axn, slmb, and nkd 

mutants 

Consistently, precocious br expression was observed when we used Br-core antibody 

staining at the 2nd instar. Endogenous Br proteins were not detectable in the fat body 

(FB) of the wild type (Fig. 5.2A), but were observed in the FB nuclei of the 

AxnEY10228, slmbEY09052, and nkd2 larvae (Fig. 5.2B-D). We then examined other Axn, 

slmb, and nkd alleles, including Axn16-21, slmb00295, and nkd3. Precocious br 

expression was detected in all cases.  
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Next, we asked whether the precocious br expression phenotype of the Axn, slmb, and 

nkd mutants could be blocked by exogenous JHA. Wild type, AxnEY10228, slmbEY09052, 

and nkd2 larvae were reared on a diet containing 0.1 ppm pyriproxifen. 

Immunohistochemical results revealed that precocious br expression was not 

suppressed by exogenous JHA in the FB of the Axn, slmb, and nkd mutant larvae (Fig. 

5.2F-H).  

 

These results are the opposite of what we observed in mutants that affect JH 

biosynthesis, such as tkv and mad, in which the precocious br expression was totally 

suppressed by exogenous JHA (Huang et al., 2011). In contrast, these data are 

consistent with what we observed in the mutations that affect JH signaling, such as 

Kr-h1 and Met (Abdou et al., 2011, Huang et al., 2011). Therefore, we suggest that 

Axn, slmb, and nkd affect br expression by modulating JH signaling. 

 

Met, gce and Kr-h1expression is suppressed in Axn, slmb and nkd mutants  

JH functions through Met, Gce and Kr-h1 to suppress br expression during the early 

larval stages (Konopova and Jindra 2008, Abdou et al., 2011, Minakuchi et al., 2008, 

Minakuchi et al., 2009). We therefore investigated whether Wnt signaling regulates 

Met, gce and Kr-h1expression. We first used qRT-PCR to compare mRNA levels for 

Met, gce and Kr-h1 between wild type and Axn, slmb and nkd mutants. In the Axn, 

slmb and nkd mutant 2nd instar larvae, the mRNA levels of Met, gce and Kr-h1 were 

only about 20% of that in wild type at the same stage (Fig. 5.3A). Similarly, when 
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reverse transcriptional PCR was carried out for 30 cycles, the Met, gce and Kr-h1 

mRNA levels were also obviously reduced in the Axn, slmb, and nkd mutant 2nd instar 

larvae (Fig. 5.3B). These results suggest that Met, gce and Kr-h1expression are 

suppressed in Axn, slmb and nkd mutants, and this results in precocious br expression.  

 

Gain-of-function mutation of arm activates br and suppresses Met, gce and Kr-h1 

expression 

Because Axn, Slmb, and Nkd negatively affect Wnt signaling activity (Hamada et al., 

1999, Zeng et al., 2000), increased Wnt signaling activity was expected in the Axn, 

slmb and nkd mutants. We hypothesized that the high Wnt signaling activity 

accounted for precocious br expression as well as suppression of Met, gce and Kr-h1 

transcription in the Axn, slmb and nkd larvae. To test this hypothesis, we examined 

the effects of the arm gain-of-function mutation on the expression of br, Met, gce and 

Kr-h1 transcription. 

 

Stabilization and accumulation of Arm in the cytosol increases is in the nucleus 

importation and this activates the transcription of Wnt target genes (Bienz 2005). 

ArmS10 is a constitutively active form of Arm that resist degradation as it carries a 54 

amino acid deletion Shaggy phosphorylation sites (Pai et al., 1997). When UAS-

armS10 that includes the driven by arm-GAL4 was expressed in the wild type, we 

detected precocious br expression with the Br-core antibody staining fat bodies of 2nd 

instar larvae (Fig. 5.4B). The qRT-PCR data revealed that mRNA levels of Met, gce 

and Kr-h1 in the arm-GAL4>UAS-armS10 2nd instar larvae were significantly reduced 
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being less than 20% of that in the wild type (Fig. 5.5). Therefore, the phenotypes of 

the arm gain-of-function mutant are identical to that of Axn, slmb and nkd mutants, 

supporting the hypothesis that high Wnt signaling activity suppresses Met, gce, and 

Kr-h1 expression and promotes br expression. 

 

Wnt signaling indirectly suppresses Kr-h1 expression by down-regulating Met 

and gce expression 

Our previous studies revealed that Met and Gce are functionally redundant in 

transducing JH signaling. The Met-gce double mutant can totally eliminate JH-

induced Kr-h1 expression (Abdou et al., 2011). Therefore, we investigated whether 

Wnt signaling indirectly suppresses Kr-h1 expression by down-regulating Met and 

gce. We co-expressed armS10 and gce in wild type flies and examined br, Met, gce 

and Kr-h1 expression. When UAS-armS10 and UAS-gce were driven by arm-GAL4, 

the precocious br expression induced by arm-GAL4>UAS-armS10 was totally 

suppressed, as indicated by the absence of Br proteins in the nuclei of 2nd instar larval 

fat body cells (Fig. 5.4C). In the same organisms, the gce mRNA level was increased 

by > 30-fold, whereas transcription level of Kr-h1 and Met were ~1.5-fold and ~0.3-

fold wild type level (Fig. 5.5). These results demonstrate that ectopic expression of 

gce can block ArmS10-mediated Kr-h1 suppression, but does not affect ArmS10-

mediated Met suppression. We conclude that Wnt signaling indirectly regulates Kr-h1 

expression by down-regulating Met and gce. 
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Taken together, our genetic screen and further investigations demonstrate that Wnt 

signaling suppresses transcription of the potential JH receptors Met and gce, which 

reduces JH signaling activity as evident by the reduced Kr-h1expression and 

precocious br expression. This study reveals that Wnt signaling cross-talks with JH 

signaling in mediating insect metamorphosis. 

 

DISCUSSION 

Interactions between Wnt and JH signaling pathways 

As our knowledge of signal transduction increases, we are increasing able to decipher 

how individual signaling pathways integrate into the broader signaling networks that 

regulate fundamental biological processes. In vertebrates, Wnt signaling has been 

found to interact with different hormone signaling pathways to mediate various 

developmental events. For example, the Wnt/beta-catenin signaling pathway interacts 

with thyroid hormones in the terminal differentiation of growth plate chondrocytes 

(Wang et al., 2007) and interacts with estrogen to regulate early gene expression in 

response to mechanical strain in osteoblastic cells (Kouzmenko et al., 2004, Liedert et 

al., 2010). In insects, both Wnt and JH signaling are important regulatory pathways, 

each controlling a wide range of biological processes. Here, we report for the first 

time that the Wnt signaling pathway interacts with JH in regulating insect 

development. During the Drosophila early larval stages, elevated Wnt signaling 

activity in the Axn, slmb, nkd mutants and arm-GAL4>UAS-armS10 flies represses Met 

and gce expression, which down-regulates Kr-h1 and causes precocious br 
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expression. Ectopic expression of UAS-gce in the arm-GAL4>UAS-armS10 larvae is 

sufficient for restoring Kr-h1 expression and then repressing br expression.  

 

Arm is a co-activator that interacts with Drosophila TCF homolog Pangolin (Pan), a 

Wnt-response element-binding protein, to stimulate expression of Wnt signaling 

target genes (Brunner et al., 1997). In the absence of nuclear Arm, Pan interacts with 

Groucho, a co-repressor, to repress transcription of Wingless-responsive genes 

(Cavallo et al., 1998). Upon the presence of nuclear Arm, it binds to Pan, converting 

it into a transcriptional activator to promote the transcription of Wingless-responsive 

genes (Brunner et al., 1997). We propose that Wnt signaling indirectly suppresses 

Met and gce expression by activating an unknown transcriptional repressor (Fig. 5.6) 
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Fig 5.1. A genetic screen identifies that Axn, Slmb and Nkd regulate br 

expression 

GFP images show the expression of GAL4-PG12>UASmCD8GFP in 2nd instar 

larvae. GFP was only expressed in the salivary gland of the wild type [A], but widely 

expressed in all tissues of Axn [B], slmb [C] and nkd [D] mutant larvae. (A’-D’) 

White light images of the same organisms are shown in [A-D]. 
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Fig 5.2.  Precocious br expression in Axn, slmb and nkd mutants is not prevented 

by JHA  

Wild type and the Axn, slmb, and nkd mutants were reared on normal (-JHA) or 0.1 

ppm pyriproxifen-containing (+JHA) food. Fat bodies of the 2nd instar larvae were 

stained with a Br-core antibody (red), and nuclei were labeled with DAPI (blue).   
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Fig 5.3. Expression of Met, gce and Kr-h1 is reduced in the Axn, slmb and nkd 

mutants. 

(C) Total RNAs were extracted from wild type, Axn, slmb and nkd 2nd instar larvae. The 

mRNA levels of Met, gce and Kr-h1 were assessed by quantitative real-time PCR and 

normalized to rp49 mRNA. Values shown are the means of 4 independent 

experiments ± standard deviations.  

(D) The same total RNAs described in [A] were used as the templates for a 30-cycle 

reverse transcriptional PCR.  The RT-PCR products were analyzed by DNA agarose 

gel electrophoresis. 

 

 

 

 



 169 
 

 

 

 

 

 

 

 

Fig. 5.4. Gain-of-function arm mutation induces precocious br expression 

(A-C) Fat bodies of 2nd instar larvae were stained with a Br-core antibody (red) and 

DAPI (blue). 
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Fig. 5.5. Gain-of-function arm mutation suppresses Met, gce and Kr-h1expression  

Total RNA was extracted from the 2nd instar larvae. The mRNA levels of Met, gce 

and Kr-h1 were assessed by qRT-PCR and normalized to rp49 mRNA. Values shown 

are the means of 4 independent experiments ± standard deviations. Genotypes 

include: wild type; arm-GAL4/UAS-armS10 and arm-GAL4/UAS-armS10,UAS-gce/+.  
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Fig. 5.6. As described in the text, the proposed model illustrates the cross-talk 

between the Wnt and JH signaling pathways.  
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Chapter 6 

Conclusions and future perspectives  

1- Conclusions: 

Chapter 2: 

1. Bioinformatic analyses indicated that the DmMet and Dmgce share high 

amino acids sequence similarity and high identities in the conserved domains 

bHLH, PAS-A, and PAS-B.  

2. The gce null mutant flies, gce2.5K, which were generated by imprecise 

excision, are viable, fertile with low fecundity, and resistant to JH analogs 

similar to Met null mutant flies, Met27. When the two mutations were 

recombined together, the Met27-gce2.5K double mutant flies died at white pupae 

during the larval-pupal transition. The expression of Kr-h1, which is a JH 

response gene and functions as inhibitor for 20E-induced br expression, is 

decreased as detected through q-RT-PCR analysis in the young instar larvae 

(2nd instar) of Met27-gce2.5K animals. Accordingly, br expression is 

precociously activated in the fat bodies of 2nd instar larvae as detected by 

immunohistochemistry assay using Br-core antibodies.  

3. It is well known that the caspase-dependent programmed cell death (PCD) 

during the larval-pupal transition is induced by Br proteins. In the Met27-

gce2.5k double mutants, the precociously expressed Br proteins at 2nd instar 

larval stages caused the precocious caspase-dependent PCD in the fat body 

cells, which led to premature and enhanced fat body dissociation.  
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4. The prepupal lethality, reduced Kr-h1expression, precocious br expression, 

and premature caspase-dependent PCD phenotypes of Met27-gce2.5k double 

mutants were also observed in the JH-deficient animal, Aug21-GAL4>UAS-

grim, in which the cell death gene grim was specifically expressed in the 

corpora allata to ablate JH production cells. However, when reared on food 

containing JH analogue (pyriproxyfen), the defective phenotypes and gene 

expression changes of JH-deficient animals were restored to the wild type, 

while that of Met27-gce2.5k double mutants were not. 

 

Together, our results demonstrate that Drosophila Met and Gce are functionally 

redundant in transducing the “status quo” action of JH. JH induces Kr-h1 expression 

through binding with Met and Gce. Kr-h1 inhibits br expression and precludes 20E-

induced caspase-dependent PCD during larval molts. 

 

Chapter: 3  

1. For the better understanding of JH biosynthesis and signaling pathway, we 

designed a novel genetic screen to identify genes that are involved in either 

biosynthesis or signaling pathways. To facilitate the screening procedure, we 

identified a specific Gal4 driver, PG12-Gal4, to monitor br expression in vivo. 

PG12-Gal4 is an enhancer trap line that carries a p{GawB} insertion in the 

first intron of br gene. We demonstrated that PG12-Gal4>UAS-mCD8GFP 

express with the same temporal and spatial pattern as the endogenous br gene. 

Both PG12-Gal4>UAS-mCD8GFP and the endogenous br gene were 

predominantly expressed in the late 3rd instar larvae and pupal stages.  
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2. The principle of this screening depends on the hypothesis that mutations 

which reduce JH activity will induce precocious expression of PG12-

Gal4>UAS-mCD8GFP in the early larval stages. To test this hypothesis, we 

built a juvenile hormone esterase transgenic fly that carries jhe cDNA driven 

by a heat-shock promoter (hs-jhe). When hs-jhe larvae were treated with heat-

shock, the precocious expression of PG12-Gal4>UAS-mCD8GFP as well as 

endogenous br gene was detected. This early br expression can be fully 

suppressed by JHA, pyriproxyfen.  

3. We screened 4,400 lethal mutation lines and identified 55 genes that may be 

involved in JH biosynthesis or signaling. Mutations in these genes caused 

precocious expression of PG12-Gal4>UAS-mCD8GFP in the 2nd instar 

larvae.  

4. The 55 genes can be divided into two groups. 35 genes are potentially 

involved in JH biosynthesis because their phenotypes can be suppressed by 

JHA treatment. Some of these genes are well known to be required for JH 

biosynthesis such as farnesyl diphosphate synthase (Fpps), apterous (ap), 

Insulin receptor (InR), and N-methyl-D-aspartate receptor 1 (Nmdar1). The 

remaining 20 genes are potentially involved in JH signaling pathways 

including known JH signaling component Kr-h1, because their phenotypes 

can not be suppressed by JHA treatment. 
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Chapter 4: 

1. Our genetic screen identified two TGF-β signaling components, thick vein 

(tkv) and mothers against Dpp (Mad). Mutations in tkv and Mad induced 

precocious br expression in the 2nd instar larvae. 

2. The precocious br expression caused by tkv and Mad mutations can be 

suppressed by exogenous JHA treatment. 

3. MARCM analysis revealed that Tkv and Mad non-cell-autonomously repress 

br expression in the FB. In the fat bodies of 2nd instar larvae, br was 

precociously expressed in the cells of Kr-h1 mutant MARCM clones, but not 

in the cells of tkv and Mad mutant MARCM clones. 

4. Expression of Mad cDNA specifically in the corpora allata of Mad mutants by 

Aug21-Gal4>UAS-Mad blocked the precocious br expression phenotypes, 

suggesting that Mad is required in the corpora allata to regulate JH 

biosynthesis. 

5. qRT-PCR studies revealed that expression levels of JH acid methyltransferase 

(jhamt), a key regulatory enzyme of JH biosynthesis, in the Mad-RNAi and 

tkv-RNAi animals were only about 50% and 60% that of wilt type, 

respectively. 

6. Decapentaplegic (Dpp) is one of seven TGF-β superfamily members in 

Drosophila. Hypomorphic dpp mutants also caused precocious br expression 

in the 2nd larva fat body, which could be suppressed by JHA treatment. 
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7. Hypomorphic dpp mutants were completely pupal lethal. Noticeably, this 

pupal lethality could be partially rescued by JHA treatment and CA-specific 

expression of jhamt cDNA by Aug21-Gal4>UAS-jhamt.  

8. dpp was specifically expressed in the CA cells of ring glands, and its 

expression profile in the CA correlated with that of jhamt and matched JH 

levels in the hemolymph. 

9. Reduced dpp expression was detected in the mutant larvae of Nmdar1, a CA-

expressed glutamate receptor.  

 

In summary, we conclude that the neurotransmitter glutamate promotes dpp 

expression in the CA, which stimulates JH biosynthesis through Tkv and Mad by 

upregulating  jhamt transcription at the early larval stages to prevent premature 

metamorphosis. 

 

Chapter 5:  

1. Our genetic screen identified mutations in three Wnt signaling negative 

regulators, Axin (Axn), supernumerary limbs (slmb), and naked cuticle (nkd), 

that caused precocious br expression, which could not be blocked by 

exogenous JHA, suggesting that Axn, slmb, and nkd affect br expression by 

affecting JH signaling.  

2. qRT-PCR studies discovered that mRNA levels of JH signaling components 

Met, gce and Kr-h1 were reduced in the Axn, slmb and nkd mutants to only 

about 20% of that in wild type.  
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3. Because Axn, Slmb, and Nkd negatively affect Wnt signaling activity, 

increased Wnt signaling activity was expected in the Axn, slmb and nkd 

mutants, which is represented by the nuclear accumulation of Wnt signaling 

key mediator, Armadillo (Arm). We found that precocious br expression also 

occurred in the fat bodies of 2nd instar larvae when UAS-armS10 (a 

constitutively active form of Arm) was overexpressed in the arm-GAL4>UAS-

armS10. Meanwhile, the mRNA levels of Met, gce and Kr-h1 in the arm-

GAL4>UAS-armS10 larvae were significantly reduced to less than 20% of that 

in the wild type. Therefore, arm gain-of-function phenotypes are identical to 

that of Axn, slmb and nkd mutants, supporting the notion that high Wnt 

signaling activity suppresses Met, gce, and Kr-h1 expression and promotes br 

expression.  

4. When gce was co-expressed with armS10, Kr-h1 mRNA level was restored to 

~150% that of wild type, but Met mRNA level was still reduced to ~30% that 

of wild type.  

 

These results suggest that Wnt signaling indirectly regulates Kr-h1 expression by 

suppressing transcription of Met and gce, genes that encode for putative JH receptors, 

which eventually mediates insect metamorphosis by controlling br expression.  
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2- Future perspectives:   

Characterize functions of JH signaling in different tissues by MARCM analysis: 

Since Met was suggested to be the potential JH receptor, many labs have been 

working to solve the question of why Met mutants are viable. Our results demonstrate 

that Met and gce are functionally redundant in transducing JH signaling. Met-gce 

double mutant animals are white pupal lethal. MARCM analysis of this double 

mutant line will be performed to test the functions of Met and Gce in various tissues, 

such as the fat body, epidermis, midgut, salivary gland, muscle, and nervous system. 

MARCM, Mosaic Analysis with a Repressive Cell Marker, is a genetic technique 

designed to generate and specifically label homozygous mutant clones in a 

heterozygous background (Lee and Luo, 1999). It is an ideal technique to analyze 

cell-autonomous function of vital genes in different tissues. Results obtained from the 

MARCM analysis of Met-gce double mutant will reveal functions of Met/Gce, as 

well as JH signaling, in different tissues. For example, JH is known to be involved in 

vitellogenesis in adult females and gonads accessory glands in males. However, we 

do not know whether this involvement is directly within the reproductive organs or 

indirectly by affecting the other tissues. MARCM analysis will allow us to generate a 

Met-gce mutant ovary or testis in the heterozygous, phenotypically wild type, 

animals. Preservation of the phenotype will indicate that this influence is cell-

autonomous. Loss of the phenotype will indicate that it is cell-non-autonomous 
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Further clarify functions of other genes isolated by our genetic screen in JH 

biosynthesis or signaling: Our genetic screen identified 55 genes that are potentially 

involved in either JH biosynthesis or the JH signaling pathway. Only several of these 

are known to play roles in JH action. Our current studies have focused on five genes, 

revealing that two TGF-β signaling pathway components, tkv and mad, function in 

the CA to control JH biosynthesis and three Wnt signaling pathway components, Axn, 

slmb, and nkd, are required for the normal expression of Met and gce, which encode 

putative JH receptors. Further investigation will be continuously carried out on the 

rest of genes. 

Based on the results of JHA treatment assay, 35 of the 55 genes are likely required for 

maintaining JH titer, including known JH biosynthesis enzymes and regulators, such 

as Fpps, InR, ap, and NMDAR (Sen et al., 2007; Tatar et al., 2001; Altaratz et al, 

1991; Chiang et al., 2002). 20 other genes are potentially involved in JH signaling, 

including Krüppel homolog 1 (Kr-h1), one of the known JH signaling components 

(Minakuchi et al., 2008b). According to their molecular functions and genetic 

interactions described in the literature, these 20 potential JH signaling components 

can be divided into five categories: molecules involving Wnt pathway (axn, slmb, and 

nkd); molecules involving PAR-aPKC system (par-1, pkn, and 14-3-3ε); 

transcriptional factors (Kr-h1, Sin3A, Sox15, and tsh); molecules involving Ubiquitin 

pathways (ago, Pvr, cul-4, Uba1, ubl, and CG15141); and molecules with other or 

unknown functions (CG11241, CG1600, and CG6841). We will test whether these 

genes function cell-autonomously in mediating br expression by MARCM analysis 

and whether these genes affect expression of Met, gce, and Kr-h1. 
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