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 The current study examined the effect of an instructional package on the algebra 

performance of secondary students with mathematics learning disabilities or difficulties 

(MD) when applied to the grade-appropriate algebra content of quadratic expressions.  

The instructional package included a blend of research-based instructional practices for 

secondary students with LD (i.e., concrete-representation-abstract instruction, graphic 

organizers, and components of explicit instruction) and the process standards 

recommended by the National Council of Teachers of Mathematics process standards 

(i.e., problem solving, reasoning and proof, communication, connections, and 

representations).  A concurrent embedded mixed methods design was utilized with the 

quantitative data representing the main strand, while qualitative data provided 

supplemental data (Creswell & Clark, 2011).  Specifically, the quantitative data were 

collected from a multiple-probe design across two groups replicated over five students.  

The participants were five high school students identified as a learning disability or 



 

 

difficulty in mathematics. The qualitative analysis of transcriptions from instructional 

sessions, field notes, and work samples was completed on one participant, who 

represented a critical case (Creswell, 2007).  Results of the study indicated that all five 

participants improved their algebraic accuracy on tasks involving quadratic expressions 

embedded within an area context.  Further, providing multiple representations allowed 

participants to make connections to algebraic content and enhanced their metacognition.  

Additionally all participants maintained their performance up to six weeks following 

intervention.  Three participants also transferred the performance to novel and more 

complex tasks.  The study suggests that students with MD may be successful with higher-

level algebra content when provided blended instruction and visual representations.     
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Chapter 1: Introduction 

Algebra has often been referred to as a gatekeeper to postsecondary education and 

employment opportunities.  Many colleges and universities require mathematics 

placement tests that include a minimum of Algebra 1 with essential domain content 

including representing algebraic expressions, solving algebraic word problems and linear 

equations, and representing and applying polynomials (ACT, 2011; The College Board, 

2009).  Additionally, admissions to apprenticeships, such as the National Joint 

Apprenticeship and Training Committee (NJATC) of National Electrical Contractors 

Association (NECA) and International Brotherhood of Electrical Workers (IBEW), 

require one year of high school algebra (NJACT, 2009).  Success in algebra provides a 

foundation for higher mathematics, which increases the likelihood of completing college 

and a obtaining a higher quality of living as adults.  Adults who participate in higher 

mathematics courses in high school are more likely to have a higher income, use new 

technology, vote, and engage in civic leadership (National Mathematics Advisory Panel 

[NMAP], 2008).  Additionally, some claim that a greater number of students with 

mathematics backgrounds are necessary for the United States (U.S.) to maintain its 

position as an international leader in science, technology, engineering, or mathematics 

(STEM), as only 12% of postsecondary students graduate  with a degree in STEM fields 

(Chen & Weko, 2009; NMAP, 2008).   

Given the presumed importance of math competency, secondary schools are 

implementing more rigorous mathematics requirements for all students, including 

students with disabilities.  To date, 45 states and the District of Columbia have adopted 
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the rigorous mathematics standards set forth by the Common Core State Standards 

Initiative, a state-led effort coordinated by the National Governors Association Center for 

Best Practices and the Council of Chief State School Officers (Achieve, 2011). These 

standards represent the knowledge and skills students need to be prepared for college and 

work.  Within the mathematics standards, all students are expected to progress through 

Algebra I, Geometry, and Algebra II (Common Core State Standards Initiative, 2010). 

Additionally, 26 states require a mathematics exit exam containing algebra content as a 

requirement for high school graduation (Colasanti, 2007; Zabala, Minnici, McMurrer, 

Hill, Bartley, & Jennings, 2007).    

Two pieces of federal legislation that affect the mathematics education of students 

with disabilities are the Individuals with Disabilities Education Improvement Act 

(IDEIA) and the No Child Left Behind Act (NCLB).  IDEIA (2004) provides students 

with disabilities access to the general education curriculum and NCLB (2001) requires 

states and districts to assess students with disabilities on the general education content 

with the use of accommodations or an alternate assessment, if necessary.  As algebra is a 

required component of the high school curriculum, students with disabilities have access 

to and are held accountable for this rigorous mathematics content.   

Approximately 6% of the school population is identified as having a learning 

disability (Mazzocco, 2007).  A learning disability (LD) is defined as a disorder in one or 

more of the basic psychological functions involved in understanding or in using language 

and manifests itself in an imperfect ability to listen, speak, read, write, spell, or do 

mathematical calculations (IDEA, 2004).  Although 62% of secondary students with LD 

participate in mathematics courses in the general education setting (Newman, 2006), on 
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average they are enrolled in less rigorous mathematics courses that focus on basic math 

rather than age-appropriate mathematics content (Kortering, deBettencourt, & Braziel, 

2005; Maccini & Gagnon, 2002; Wagner, et al., 2003).  Additionally, students with LD 

take fewer mathematics courses as they progress through high school (i.e., 98% of 

freshman with disabilities participate in a high school mathematics course compared to 

85% of juniors) (Wagner, et al., 2003).  On average, Algebra 1 is the highest level 

mathematics course for students with disabilities, while Trigonometry is the highest 

average mathematics course for students without disabilities (Wilson, 2008).  Access to 

high-level mathematics courses is critical for successful postsecondary outcomes for 

students with LD. 

In this chapter, I discuss the challenges students with and without LD experience 

as they develop algebraic proficiency, followed by a brief description of the impact of 

characteristics of students with LD on algebra competency.  Next, I summarize the results 

from international, national and state assessments, which provide an overview of the 

current status of algebra proficiency in the U.S.  I then discuss the impact of advocacy 

groups and mathematics reform on the mathematics curriculum in the U.S.  The 

concluding sections review the existing research, leading to the purpose of this study, the 

guiding research questions, and definitions of terminology.       

Development of Algebraic Proficiency 

 In 2008, the National Mathematics Advisory Panel (NMAP) released their final 

report summarizing the state of mathematics education in the U.S, focusing on the 

preparation of students for proficiency in algebra.  To obtain algebraic proficiency, 

students must develop:      (a) conceptual understanding; (b) procedural knowledge; and 
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(c) problem-solving skills associated with algebra.  Conceptual understanding is defined 

as the knowledge of relations and connections (Star, 2005), while procedural knowledge 

refers to actions and manipulations involving rules, algorithms, and strategies (de Jong & 

Ferguson-Hessler, 1996).  In-depth procedural knowledge coincides with in-depth 

conceptual knowledge, and vice versa (Baroody, Feil, & Johnson, 2007).  Together, 

conceptual understanding and procedural fluency support effective and efficient problem 

solving (NMAP, 2008), as students apply previously learned concepts and skills to novel 

problems in which the solution method is unknown (National Council of Teachers of 

Mathematics [NCTM], 2000).    

In general, U.S. students struggle to reach procedural and conceptual proficiency 

in algebra due to a poor understanding of whole numbers, fractions (including decimals, 

percents, and negative fractions), and aspects of geometry and measurement (i.e., 

perimeter, area, similar triangles, slope of a line) (NMAP, 2008).  Additionally, students 

lack an understanding of foundational algebra concepts such as negativity (Kieran, 1989; 

Vlassis, 2004), variables (Kieran, 1989; NMAP, 2008; Russel, O‟Dwyer & Miranda, 

2009; MacGregor & Stacey, 1997; Wagner, 1981), equality and the equal sign (Kieran, 

1989; NMAP, 2008; Russel, et al., 2009; Stacey & MacGregor, 1997), commutative and 

distributive properties (Carraher & Schliemann, 2007; Saul, 2008), and algebraic 

expressions (Clements, 1982; Kieran, 1989; NMAP, 2008).  Additionally, students 

struggle with complex algebra processes, such as solving algebraic equations (Clements, 

1982; Kieran, 1989; NMAP, 2008) and factoring quadratics (Kotsopoulos, 2007; Nataraj 

& Thomas, 2006).   
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Characteristics of Students with LD 

Students with LD experience many of the aforementioned difficulties and exhibit 

additional characteristics that may impede their algebra performance.  Although this is a 

heterogeneous population, students with LD may exhibit one or more of the following 

characteristics.  Students with LD have difficulty recalling math facts as a result of long 

term memory deficits (Garnett, 1998; Geary, 2004) and struggle to compute arithmetic 

problems as a result of poor sequential memory with procedures (Calhoon, Emerson, 

Flores, & Houchins, 2007; Garnett, 1998; Geary, 2004).    Students with LD may also 

have visual spatial deficits, as evidenced by difficulty spatially representing and 

interpreting mathematical information (Garnett, 1998; Geary, 2004).  Additionally, 

students with LD perform significantly lower than their non-disabled peers in problem 

solving as a result of poor recall and generalization of previously learned materials (Bley 

& Thorton, 2001; Bryant, Bryant, & Hammill, 2000; Gagnon & Maccini, 2001).  

Language deficits may interfere with the association of words to the symbols of algebra, 

which causes significant difficulties in classrooms that rely heavily on comprehension of 

texts and the spoken language of teachers and peers (Bley & Thornton, 2001; Ives, 2007).   

Poor metacognition impedes their ability to solve complex, multi-step problems and 

engage in problem solving (Bley & Thornton, 2001; Vaidya, 1999).  Additionally, 

students with LD struggle to conceptualize abstract algebraic concepts (i.e., abstract 

symbols such as variables) and algebraic tasks (i.e., solving complex equations) (Bley & 

Thorton, 2001; Garnett, 1998; Geary, 2004; Witzel, 2005).  Affective measures may also 

negatively impact performance of in algebra, such low motivation, self-esteem, and/or 

passivity in the classroom (Gagnon & Maccini, 2001; Mazzocco, 2007).    
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Status of Algebra Proficiency in the United States 

Due to the difficulties that students with and without LD experience in algebra, 

U.S. students have not demonstrated algebraic proficiency to the level expected from 

mathematics educators, researchers, and policy makers, as evidenced by their 

performance on both international and national assessments.  The results of one 

international study in particular heighten this concern.  The Program for International 

Student Assessment (PISA) is sponsored by the Organization for Economic Cooperation 

and Development (OECD) and measures the mathematics literacy of 15-year olds 

mathematics literacy.  The most recent PISA in 2009 reported that U.S. 15-year olds 

scored 9 points below the OECD average, were outperformed by 24 of the 34 countries, 

and scored measurably higher than only five OECD countries (Fleischman, Hopstock, 

Pelczar,& Shelley, 2010).  

A second international assessment, the Trends in International Mathematics and 

Science Study (TIMSS), measures the performance of students in mathematics and 

science, based on classroom curricula.  In regard to the algebra content domain, U.S. 

eighth-grade students scored in the average range, outperforming 37 countries, scoring 

lower than seven countries, and demonstrating no measurable difference in scores with 

the remaining three countries (Gonzales, Williams, Jocelyn, Roey, Kastberg, & 

Brenwald, 2008).   

Whereas the TIMSS focuses on curricula outcomes, PISA focuses on the 

application of knowledge in real-life contexts.   A general conclusion may be made that 

U.S. students are improving in their knowledge of the concepts and skills taught in the 

classroom, based on the TIMSS data, but are not improving in their application of this 
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knowledge, based on the PISA data.  Data for students with disabilities was not 

disaggregated; therefore, no comparisons can be made between students with disabilities 

and their international counterparts.    

In addition to the overall underperformance of U.S. students in mathematics on 

international assessments, U.S. students have not made the achievement gains expected 

on national assessments, such as the National Assessment of Educational Progress 

(NAEP), which covers a wide range of mathematics content areas, including algebra.   

The NAEP places a greater emphasis on algebra as the assessments advance through 

grade levels.  For instance, only 15% of the questions from the fourth grade NAEP are 

related to algebra as compared to 30% of the questions on the eighth grade assessment.  

Additionally, algebra problems represent 35% of the total twelfth-grade mathematics 

assessment.  Overall, approximately two-thirds of eighth graders and three-fourths of 

twelfth-graders in the general education population scored below the proficient level (i.e., 

competency in grade level material) on the most recent NAEP assessments.   Based on 

the 2009 NAEP, 65% of eighth-graders and 76% of twelfth graders are performing below 

a proficient level (National Center for Education Statistics [NCSE], 2009; NCES, 2010).   

An even larger number of secondary students with disabilities performed below 

the proficient level. Specifically, 91% of eighth-graders with disabilities and 94% of 

twelfth-graders with disabilities performed below the proficient level (NCES, 2009; 

NCES, 2010).   Additionally, students without disabilities outperformed their peers in 

special education on algebra tasks.  Eighth-grade students without disabilities 

outperformed  peers with disabilities in the algebra content domain as demonstrated by 

mean scale scores of 291 and 251, respectively, while twelfth grade students without 
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disabilities outperformed their peers in special education with mean scores of 157 and 

118, respectively (NCES, 2011).   

State level data also indicates poor performance for students with disabilities.  

Only three states reported that 50% or more of their students with disabilities 

demonstrated proficiency on their high school mathematics assessment compared to 35 

states reporting 50% or more of their general student population demonstrated 

proficiency (VanGetson & Thurlow, 2007).   For example, in the state of Maryland, 88% 

of the general education population passed the algebra/data analysis exit exam by twelfth 

grade compared to only 57% of students in special education (Maryland State 

Department of Education, 2010).   

Math Reform and Algebra 

 The data from the international, national, and state assessments warrant concern 

regarding the mathematic education of students in the U.S. students, particularly for 

students with disabilities.  To address this concern, advocacy groups, such the National 

Council of Teachers of Mathematics (NCTM), Achieve, Inc., the National Mathematics 

Advisory Panel (NMAP), and the Common Core State Standards Initiative (CCSSI), a 

state-led effort coordinated by the National Governors Association Center for Best 

Practices and the Council of Chief State School Officers, have promoted equality 

programs and access to a rigorous algebra curriculum for all learners.  Additionally, these 

organizations promote the inclusion of student-centered instructional practices, in which 

students learn mathematics through activities, often with groups of peers, which explore 

mathematical concepts. During student-centered instruction, the teacher acts as a 

facilitator, asking guiding questions that enable learners to explore the nature of the target 
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concept or skill.  For instance, the NCTM‟s Principles and Standards for School 

Mathematics (2000) promotes student acquisition and application of the algebra content 

through the processes of problem solving, reasoning and proof, communication, 

connections, and representations.  Additionally, the NCTM advocates for equity for all 

students to meet high expectations and excel in mathematics through these processes.  

Student-centered instruction promotes these process standards.  Currently, all but one 

state in the U.S. has aligned their mathematics curriculum standards to the NCTM 

Standards (Woodward, 2004).   

 More recently, the CCSSI (2010) released a focused and coherent set of rigorous 

standards that define the mathematics all “students should understand and be able to do” 

(p.5).  The high school algebra standards contain algebra content found in typical Algebra 

I and Algebra II courses, ranging from algebraic expressions to trigonometric functions. 

In addition to content, the common cores state standards (CCSS) promote specific 

standards related to mathematical practice, which are based on NCTM process standards 

and the National Research Council‟s strands of mathematical proficiency (i.e., adaptive 

reasoning, strategic competence, conceptual understanding, procedural fluency, and 

productive disposition).  Specifically, mathematics educators should develop in all of 

their students the ability to: (a) make sense of problems and persevere in solving them; 

(b) reason abstractly and quantitatively; (c) construct viable arguments and critique the 

reasoning of others; (d) model with mathematics; (e) use appropriate tools strategically; 

(f) attend to precision; (g) look for and make use of structure; and (h) look for and 

express regularity in repeating reasoning.  These standards promote a balanced 

combination of procedural fluency and conceptual understanding (CCSSI, 2010).  



10 

 

Additionally, these standards may be developed through a combination of teacher-

directed and student-centered activities.    

Similarly to NCTM and the CCSS, the American Diploma Project (ADP, 2004), 

and the NMAP (2008) advocate for a more rigorous high school mathematics curriculum 

for all students and have developed benchmarks describing specific mathematics 

knowledge and skills that high school graduates must master to succeed in postsecondary 

education or employment.  These benchmarks include topics addressed in Algebra I and 

Algebra II courses, including algebraic expressions, linear equations, quadratic equations, 

polynomials, and functions.   Although the ADP and the CCSSI do not promote a specific 

instructional practice, the NMAP recommends a blended model of student-centered and 

teacher-directed instruction, which is consistent with expert recommendations in the field 

of special education (Hudson, Miller, & Butler, 2006; Jones & Southern, 2003; 

Woodward & Montague, 2002).   

Regardless of the instructional practice, learning requires engagement and social 

interactions.  According to Vygotsky, social interactions within a classroom create a zone 

of proximal development, in which students learn new concepts by interacting with a 

teacher and/or other students (Gurganus, 2007; Kozulin, 1998).  Questioning and 

discussion are important components of student-centered and teacher-directed instruction, 

with teachers providing scaffolds (i.e., guiding questions, models) to assist struggling 

students.  As all learning is a constructive process (Gurganus, 2007; Kieran, 1994; 

Moshman, 1982), student-centered and teacher-directed instructional practices provide 

opportunities for all students to build knowledge through the use of appropriate supports 

and scaffolds to address individual student needs.   
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Existing Research 

To help students with LD develop proficiency in rigorous algebra content, certain 

instructional strategies, which will be defined and analyzed in chapter 2, have been 

identified in previous reviews of algebra interventions for secondary students with LD 

(Foegen, 2008; Maccini, McNaughton, & Ruhl, 1999; Strickland & Maccini, 2010).  

Strategies include cognitive strategy instruction (Foegen, 2008; Maccini, et al., 1999), 

components of explicit instruction (Foegen, 2008; Maccini et al., 1999; Strickland & 

Maccini, 2010), graphic organizers (Strickland & Maccini, 2010) and the concrete-

representation-abstract (CRA) instructional sequence (Foegen, 2008; Maccini, et al., 

1999; Strickland & Maccini, 2010).  Many studies in these reviews investigated the 

effects of an instructional package, which included two or more of the above strategies, 

therefore, the impact of specific components can not be determined; however, the 

package produced positive effects.   Additionally, findings from the literature reviews are 

limited due to the relatively basic algebra content (i.e., integers, one-variable equations) 

addressed in the reviewed studies.  Future research should address interventions that 

focus on more complex aspects of algebra, including simplifying polynomial and rational 

expressions, computation and factoring polynomials expressions, and solving and 

graphing quadratic equations (Foegen, 2008; Maccini, et al., 1999; Strickland & Maccini, 

2010). 

 The critical topic of algebraic expressions (e.g., linear and quadratic expressions) 

is absent from the current literature on algebra interventions for students with LD.  This 

algebraic topic is critical for three reasons: a) algebraic expressions introduce students to 

the abstract, symbolic notation of mathematics; b) many students experience difficulty 
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when encountering this set of topics, which may result in an inadequate understanding of 

higher mathematics (MacDonald, 1986); and c) students are required to represent, add, 

subtract, multiply and factor algebraic expressions on many state algebra exit exams, as 

well as on SAT‟s, ACT‟s, and other college mathematics placement exams.  

Additionally, organizations such Achieve (2008) and the NMAP (2008) identify skills 

associated with polynomials as a benchmark for secondary mathematics and this content 

is integrated in the CCSSI (2010).  As students with LD are being held accountable for 

the general education curriculum through NCLB (2001), they will need to develop 

complex algebraic knowledge.   

Statement of Purpose 

Algebra is a gatekeeper to postsecondary education and employment 

opportunities for all students, including students with LD.  Overall, U.S. students are not 

demonstrating proficiency in algebra as evidenced by performance on international, 

national, and state assessments.  Students with disabilities are performing significantly 

below their non-disabled peers on national and state assessments as specific 

characteristics, such deficits in long term and sequential memory (Calhoon, et al., 2007; 

Garnett, 1998; Geary, 2004), poor generalization of previously learned material (Bley & 

Thornton, 2001), and difficulty understanding abstract algebraic concepts and tasks 

(Garnett, 1998; Geary, 2004; Witzel, 2005) impede their progress toward proficiency in 

algebra.   

The current study was developed in light of the reform efforts and recent 

legislative mandates that call for research-based methods to support the algebra 

development of students with LD.   By expanding the existing research literature, this 



13 

 

study investigated an intervention that consisted of an instructional package containing 

the concrete-representational-abstract integration strategy, explicit instruction, graphic 

organizers, and real-world problem solving on the completion of tasks involving multiple 

representations of quadratic expressions for secondary students with mathematics 

disabilities or difficulties (MD) .  This study addressed algebra content that aligns with 

the NCTM standards, the CCSSI,  and the NMAP and ADP benchmarks for secondary 

mathematics for all learners, as well as the NCTM process standards of problem-solving, 

representations, reasoning, communication, and connections.   

Research Questions and Hypotheses  

 The overarching research question relevant to this study was to determine if 

blending instructional practices from both the special education and the mathematics 

education literature would lead to improved academic performance of students with MD 

on general education algebra content. The study was guided by the following specific 

research questions.   

When provided blended instruction with visual representations:  

1. To what extent do secondary students with mathematics disabilities or 

difficulties (MD) increase their accuracy on algebraic tasks involving 

quadratic expressions embedded within area problems?  

2. To what extent do secondary students with MD maintain performance on 

algebraic tasks involving quadratic expressions embedded within area 

problems four to six weeks after the end of the intervention?  

3. To what extent do secondary students with MD transfer their knowledge of 

quadratic expressions to problem-solving tasks?  
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4. To what extent do secondary students with MD find blended instruction with 

visual representations beneficial (i.e., social validity)? 

5. How do the qualitative data findings provide an enhanced understanding of 

the quantitative results? Specifically, what connections and disconnections to 

the algebra content emerge as a result of the intervention and how can these 

findings improve future instruction? In what ways does the intervention 

enhance aspects of metacognition?   

Based on current findings in both the special education and mathematics 

education research communities that will be summarized in the Chapter 2, I have 

developed hypotheses to address each research questions.   

1. Secondary students with MD will increase their accuracy on algebraic tasks 

involving quadratic expressions embedded within area problems by scoring a 

minimum average of 80% or greater on the post test domain probes.  

2. Secondary students with MD will maintain performance on of transforming 

quadratic expressions as evidenced by scoring a minimum of 80% or greater 

on the maintenance measure. 

3. Secondary students with MD will transfer their conceptual and procedural 

knowledge of quadratic expressions to problem-solving tasks as evidenced by 

scoring a minimum of 80% or greater on the transfer measure. 

4. Secondary students with MD will find blended instruction beneficial and 

enjoyable.  

5. Using the multiple representations will provide support (i.e., flexibility across 

instructional phases, multiple modes of representations, opportunities for 
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reasoning and sense-making) for students with MD to access the algebra 

content.  
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Definition of Terms 

 This section provides definitions of terms used in this study. 

Abstract phase refers to an instructional phase that utilizes only symbolic numbers and 

notations. 

Algebra includes many definitions, such as: a) the study of relationships among quantities 

using symbolic notation (NCTM, 2001; Usiskin, 1988); b) generalized arithmetic 

(Kieran, 1989; Saul, 2008; Usiskin, 1988); c) the study of procedures (Kieran, 1989); d) a 

representation system (Wagner & Kieran, 1989); and e) the study of structures (Saul, 

2008; Usiskin, 1988).   

Blended Instruction refers to instruction that incorporates instructional practices from the 

special education literature (e.g., CRA instruction, graphic organizers, and explicit 

instruction) with NCTM process standards (i.e., representations, communication, 

connections, problem solving, and reasoning and proof).  

Conceptual knowledge refers to the idea that logical relationships are constructed 

internally and are constructed in the mind as part of a network of ideas.  

Concrete phase refers to an instructional phase that utilizes physical manipulatives. 

Concrete- representational-abstract integration strategy (CRA-I) refers to an 

instructional strategy that simultaneously introduces physical manipulatives, sketches of 

manipulatives and symbolic notation while gradually fading the manipulatives and the 

sketches.  

Constructivist Theory of Learning refers to learning that is actively created by the 

student.  Ideas are made meaningful when the student integrates them into their existing 

structures of knowledge (Clements & Battista, 1990; Greeno, et al., 1996). 
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Contextualized problems refer to problems that are based on real world examples and are 

presented in a narrative form. 

Explicit instruction refers to a highly structured, teacher-directed method for presenting 

new information that incorporates key variables such as curriculum-based assessment, 

advanced organizer, teacher modeling, guided practice, independent practice, and review 

for maintenance.  

Graphic organizers refer to visual representations that depict the relationship between 

facts or ideas within a learning task (i.e. graphs, charts). 

Learning disability refers to a disorder in one or more of the basic psychological 

processes involved in understanding or in using language, which may manifest itself in 

the imperfect ability to listen, think, speak, read, write, spell, or do mathematical 

calculations (IDEA, 2004).   

Manipulatives are physical objects that support mathematical thinking and represent a 

mathematical concept (i.e., counters, beads, algebra tiles, geoboards). 

Peer-assisted instruction involves a student assisting a peer to learn a skill or concept, 

under the supervision of a teacher. 

Procedural fluency refers to the flexible, accurate, and efficient use of mathematical 

procedures and algorithms (NRC, 2001).  

Problem solving refers to the process of applying previously learned concepts and skills 

to  novel situations (NCTM, 2000).  

Representational phase refers to an instructional phase that utilizes visual 

representations, such as drawings and virtual manipulatives, to represent abstract 

mathematical concepts and is synonymous with the term semi-concrete. 
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Secondary students are students in grades 6 through 12 and/or of middle school to high 

school ages (11-21).   

Strategy instruction provides students with a plan for solving a problem, i.e. providing 

students with a memory device or a cue card.    

Student-center instruction refers to instruction in which the students are primarily 

responsible for their learning. 

Teacher-directed instruction refers to instruction in which the teacher is primarily 

communicating the mathematics to students. 
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Chapter 2: Review of the Literature 

Despite the increasing demand for proficiency in algebra, international 

assessments indicate that secondary students in the United States (U.S.) experience 

difficulty in mathematics and score below many of their international counterparts.  Data 

from the Trends in International Mathematics and Science Study (TIMSS) and the 

Program for International Student Assessment (PISA) indicate that students in the U.S. 

are performing below the level of many other industrialized countries in mathematics.  

Algebra problems comprise 30% of the TIMSS assessment, which is the highest 

percentage of questions of all content domains (Gonzales et al., 2008; Baldi, Jin, Skemer, 

Green, & Herget, 2007).  Experts express concern that the U.S. will lose its standing as 

an international leader because U.S. students are not excelling in mathematics (National 

Mathematics Advisory Panel, 2008). 

Additionally, U.S. students have not made the achievement gains expected on 

national assessments.  For example, data from the National Assessment of Educational 

Progress (NAEP) indicates that 65% of eighth graders without disabilities scored below 

the Proficient level, defined as solid academic performance and competency over 

challenging subject matter.  The performance of eighth-grade with disabilities is even 

more unsettling as 91% of these students performed below the proficiency level (NCES, 

2009).  An even greater percentage of twelfth-grade students, both within the general 

student population and specifically students with disabilities, scored below the 

proficiency level, 77% and 95% respectively.   Similarly to the TIMSS, the majority of 

questions on the NAEP mathematics assessment address the algebra domain for the 

eighth-grade and the twelfth-grade assessments, 30% and 35% respectively.  Clearly, 
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algebra is a priority at the national level and students are not performing at an acceptable 

level.    

In response to these concerns, the National Council of Teachers of Mathematics 

(NCTM, 2000) addressed the need for more rigorous standards by publishing the 

Principles and Standards for School Mathematics.  The NCTM Standards focus on 

conceptual understanding and real-world problem solving and reflect a belief in the 

importance of mathematics for all students, including students with disabilities.  The 

Content Standards describe the content that all students should learn from pre-

kindergarten through twelfth grade (i.e., number and operations, algebra, geometry, 

measurement, data analysis, and probability).  The Process Standards (i.e. problem 

solving, reasoning and proof, communication, connections, and representations) describe 

ways of learning the content knowledge.  Additionally, the high school mathematics 

curriculum should emphasize mathematical reasoning (i.e. drawing conclusions based on 

evidence) and sense making (i.e. developing an understanding of a concept by connecting 

it to existing knowledge) in all courses, for students of varying abilities (NCTM, 2009).  

In addition to the NCTM standards, reports from the National Mathematics 

Advisory Panel (NMAP; 2008) and the American Diploma Project (2004) emphasize a 

rigorous curriculum for all learners.  Authors of both reports suggest mathematics 

benchmarks which include foundational skills to prepare elementary age learners for 

algebra (i.e., fluency and conceptual understanding of whole numbers, fractions, and 

certain aspects of geometry) (NMAP, 2008) and algebra skills necessary for completion 

of Algebra during secondary education (i.e., linear equations, quadratic equations, 

functions, and polynomials) (ADP, 2004; NMAP, 2008).    
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In addition to the higher math standards set forth by NCTM, NMAP, and ADP, 

the Individuals with Disabilities Education Act (IDEA) of 1997 requires that all students, 

including students with disabilities, have access to grade-appropriate curriculum.  

Additionally, the 2004 Individuals with Disabilities Education Improvement Act (IDEIA) 

regulations require states to establish academic standards for students with disabilities 

that are comparable to those for their nondisabled peers and for states to annually report 

progress toward meeting these goals.   

The No Child Left Behind (NCLB) Act of 2001 also mandates access to the 

general education curriculum and accountability for content proficiency for students with 

disabilities.  Under Title I of the No Child Left Behind Act (2001), all states must adopt 

challenging academic content standards and student academic achievement standards.  

Title I identifies mathematics as a content area that must be aligned with academic 

standards.   Additionally, states must develop and implement a statewide accountability 

system that is based on their academic standards and academic assessments and be held 

accountable for making Adequate Yearly Progress (AYP).  AYP includes applying the 

same high standards of academic achievement to all public elementary and secondary 

schools.  All students need to demonstrate continuous and substantial improvements, 

including students with disabilities, who are consistently outperformed by their non-

disabled peers (NCES, 2009).    

In compliance with NCLB, all students are assessed in mathematics annually in 

grades 3-8, and at least once more between grades 10 – 12.  These assessments must align 

with the state‟s academic content and student academic achievement standards and must 

assess higher-order thinking skills and understanding.  Results from assessments are 
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reported with disaggregation of scores for students with disabilities, therefore, students 

with disabilities are being held accountable for the general education secondary 

mathematics content.  As such, 62% of secondary students with LD participate in 

mathematics courses in the general education classroom (Newman, 2006); however, only 

12% of students with disabilities participate in advanced mathematics courses such as 

Algebra I (Kortering, deBettencourt, & Braziel, 2005).  Of the students with disabilities 

participating in advanced mathematics courses, many do not perform well.  For example, 

students with disabilities demonstrate mathematics proficiency at a rate of 50% or greater 

in only three states as measured by high school assessments (VanGetson & Thurlow, 

2007).   Further, only 13.6% of students with LD perform on grade level during 

secondary school (Wagner, et al., 2003).   

Certain characteristics of students with LD may impede their algebra 

performance, including difficulty recalling of math facts (Garnett, 1998; Geary, 2004), 

poor computations (Calhoon, et al., 2007; Garnett, 1998; Geary, 2004), language deficits 

(Bley & Thorton, 2001; Garnett, 1998; Ives, 2007), visual spatial deficits (Garnett, 1998; 

Geary, 2004), difficulty understanding abstract symbols (Bley & Thorton, 2001; Garnett, 

1998; Geary, 2004; Witzel, 2005), and poor conceptual understanding of procedures 

(Geary, 2004).  Students with LD may also have difficulties processing information and 

self-monitoring during problem solving tasks.  Additionally, they may experience low 

motivation, poor self-esteem, and/or passivity in the classroom (Gagnon & Maccini, 

2001).  To help students with LD meet the algebra requirements necessary for high 

school graduation and preparation for post-secondary education and occupational 
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opportunities, teachers look to research for effective strategies to successfully instruct 

these students (Scheuermann, Deshler, & Schumaker, 2009; The Access Center, 2004).   

Organization of the Review of the Literature 

 In this chapter, I present a comprehensive review of the current research involving 

algebra interventions for secondary students with LD.  This review serves two purposes: 

(a) to determine the current status of and the need for effective algebra interventions for 

secondary students with LD; and (b) to examine empirically-based instructional variables 

to inform the current study.  Studies meeting the following criteria were included in this 

review: (a) included students identified as LD; (b) examined the effects of an 

instructional intervention on the performance of secondary students with LD in algebra; 

(c) used an experimental, quasi-experimental, or single-subject design; and (d) been 

published in a peer reviewed journal between 1989 and 2009, to reflect the origin of the 

NCTM standards.  An electronic search of the following five databases was conducted; 

ERIC, Education Research Complete (EBSCO), JSTOR, PsycINFO, and Social Sciences 

Citations Index.  The descriptors “algebra” and “learning disabilities” were used in this 

search.  Initially, 12 articles were identified as meeting all the criteria for inclusion 

(Allsopp, 1997; Bottge, Heinrichs, Chan, & Serlin, 2001; Bottge, Rueda, LaRoque, 

Serlin, & Kwon, 2007a; Bottge, Rueda, Serlin, Hung, & Kwon, 2007b; Hutchinson, 

1993; Ives, 2007; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Mayfield & Glenn, 

2008; Scheuermann, Deshler, & Schumaker, 2009; Witzel, 2005; Witzel, Mercer, & 

Miller, 2003).  However, two of the articles (Witzel, 2005; Witzel, et al., 2003) reported 

the same study and the first study (Witzel et al., 2003) will be reported in the current 

review.   
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Overview of Studies 

 A total of 11 studies met the criteria for inclusion in this literature review (see 

Table 1).  Out of the total sample of 1009 participants, 262 (26%) were identified as LD.  

Five of the 10 studies included only students with LD (Bottge, et al., 2007a; Hutchinson, 

1993; Ives, 2007; Maccini & Hughes, 2000; Maccini & Ruhl, 2000), while five studies 

included students with and without disabilities (i.e., Allsopp, 1997; Bottge, et al., 2001; 

Bottge, et al., 2007b; Mayfield & Glenn, 2008; Witzel, et al., 2003) and two studies 

(Allsopp, 1997; Witzel, et al., 2003) included students at risk for mathematics failure.   

Six studies utilized a group design (Allsopp, 1997; Bottge, et al., 2001; Bottge, et al., 

2007a; Bottge, et al., 2007b; Ives, 2007; Witzel, et al., 2003) and four studies utilized a 

single subject design (Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Mayfield & 

Glenn, 2008; Scheuermann, et al., 2009).  Additionally, one study incorporated both a 

group design and a single subject design (Hutchinson, 1993).  The following review of 

the literature is divided into three major sections: (a) nature of the sample,                 (b) 

instructional content and focus, and (c) instructional activities.  
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          Table 1  

          Algebra Interventions for Secondary Students with LD 

Author (year) Sample and Setting Instructional Content / 

Instructional Focus 

Research Design/ 

Intervention 

Dependent 

Variable 

 

Results M / G 

Allsopp (1997) N = 262; LD = 8; 

middle school; ages 

12 -15 

 

Inclusive 

classrooms 

division equations and 

word problems 

 

Procedural Focus 

 

 

Pretest/posttest group 

design  

 

(a) classwide peer 

tutoring 

(b) independent 

practice 

Unit test  

 

 

 

 

 

 

No significant difference 

between groups. 

 

 

M 

Bottge, 

Heinrichs, Chan, 

& Serlin (2001) 

N = 75; 

LD = 16;  

grade 8; 

ages 13 – 15 

 

1 remedial inclusive 

class; 3 pre-algebra 

classes 

Linear function, line of 

best fit, variables, rate 

of change (slope)  

 

Conceptual Focus 

 

 

Pretest/posttest group 

design  

 

(a) video-based 

instruction  

(b) text-based 

instruction 

Researcher 

developed problem 

solving test; 

WRAT-III 

arithmetic subtest 

 

 

 

 

(a) = (b) on problem solving 

measure, greater gains for 

students in remedial class;  

(a) = (b) on computation 

measure for students in pre-

algebra classes; 

Decline in computation 

scores for students in 

remedial class receiving (b). 

  

 

M 

Bottge, Rueda, 

LaRoque, 

Serlin, & Kwon 

(2007a) 

N = 100; 

LD = 100; 

grades 6 - 12; 

ages NS  

 

Special ed. 

Classroom 

linear function, line of 

best fit, variables, rate 

of change (slope) 

 

Conceptual Focus 

 

 

Pretest/posttest group 

design  

 

(a) video-based 

instruction 

(b) typical instruction 

Researcher 

developed problem 

solving test; ITBS 

computation and 

problem solving 

(a) > (b) on problem solving 

measure; effect size was 

large (1.08) 

 

M 

Bottge, Rueda, 

Serlin, Hung, & 

Kwon, 2007b) 

N = 128; 

LD = 12; 

grade 7; 

ages NS 

 

1 inclusive 

classroom, 1 pre-

algebra classroom, 4 

typical classrooms 

linear function, line of 

best fit, variables, rate 

of change (slope) 

 

Conceptual Focus 

 

 

 

 

 

 

 

 

Quasi-experimental 

group design  

 

(a) video-based 

instruction 

 

Researcher 

developed 

problem-solving 

test 

All students demonstrated 

improvements with students 

with LD demonstrating 

larger improvements on 

algebraic tasks. 

No difference between 

students with LD and 

without LD on maintenance.  

 

M 
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Author (year) Sample and Setting Instructional Content / 

Instructional Focus 

Research Design/ 

Intervention 

Dependent 

Variable 

 

Results M / G  

Hutchinson 

(1993) 

N = 20; 

LD = 20; 

grades 8 - 10;  

ages 12 – 15 

 

Special ed. 

classroom 

(individual 

instruction) 

word problems 

involving equations in 

one and two variables 

 

Conceptual + 

Procedural Focus 

Multiple baseline 

across participants; 

Pretest/ posttest 

group design  

 

(a) strategy 

instruction 

(b) regular instruction 

Assessment 

measures, multiple 

choice and 

problem solving 

tests, 

metacognitive 

interview, think 

alouds 

(a) > (b) on representation 

and solution posttests, 

metacognitive interview; 

medium to large effect sizes 

(0.52 – 10.34) 

 

 

 

M, G 

Ives (2007) N = 40;  

LD and/or ADHD = 

40; 

grades 7 – 12; 

ages 13 – 19 

 

Special ed. 

Classroom 

linear systems of 

equations in two 

variables (Study 1) 

and three variables 

(Study 2) 

 

Procedural Focus 

Two group 

comparison  

 

(a) graphic organizer 

(b) regular instruction 

 

 

Researcher 

developed test, 

teacher-generated 

test 

(a) > (b) in Study 1 and 

Study 2 posttests 

(a) > (b) in Study 1 

maintenance test; large effect 

sizes for both studies 

 

 

 

M 

       

Maccini & 

Hughes (2000) 

 

N = 6; LD = 6; 

grades 9 – 12; ages 

14 – 18 

 

 

Individualized 

instruction 

word problems 

involving addition, 

subtraction, 

multiplication, and 

division of integers 

 

Conceptual + 

Procedural Focus 

Multiple-probe single 

subject design across 

participants 

 

 instructional 

package:  strategy 

instruction +  CSA 

instructional 

sequence 

 

Researcher 

develop problem 

representation and  

problem solution 

measures  

Significant improvements in 

problem representation and 

problem solution across 

participants and problem 

types; Large effect sizes 

(PND = 90%  for 

representation; PND = 72% 

for solution) 

 

 

 

M, G 

Maccini & Ruhl 

(2000) 

N = 3; LD = 3; 

grade 8; ages 14 – 

15 

 

Individualized 

instruction 

word problems 

involving subtraction 

of integers 

 

Conceptual + 

Procedural Focus 

 

 

 

 

 

 

 

Multiple-probe single 

subject design across 

participants  

 

instructional 

package: strategy 

instruction +  CSA 

instructional 

sequence 

Researcher 

developed problem 

representation and 

problem solution 

measures 

Significant improvements in 

problem representation and 

problem solution across 

participants; Large effect 

size (PND = 67% for 

representation; PND = 94% 

for solution) 

 

M,G 
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Author (year) Sample and Setting Instructional Content / 

Instructional Focus 

Research Design/ 

Intervention 

Dependent 

Variable 

 

Results M / G 

Mayfield & 

Glenn (2008) 

N = 3; LD = 2; 

grades 4 – 8; ages 9 

– 14 

 

Residential 

problem solving 

involving target skills 

of variables, 

exponents, and linear 

equations 

 

Problem Solving 

Focus 

Single subject design 

across skills 

replicated across 

three participants  

 

(a) cumulative 

practice 

(b) tiered feedback 

(c) feedback + 

solution sequence 

(d) review  

(e) transfer training 

Researcher 

developed target 

skills tests, 

problem solving 

test 

Limited increases in 

accuracy after (a) and (c).  

Consistent improvements in 

all participants after (e) with 

large effect size (PND = 

96%) 

 

 

-- 

Scheuermann, 

Deshler, & 

Schumaker 

(2009) 

 

N=14; LD =14; 

Middle school; ages 

11-14 

 

Special ed. 

classroom 

 

One-variable 

equations 

 

Conceptual + 

Procedural Focus 

Multiple probe across 

students 

 

Explicit Inquiry 

Routine = content 

sequencing, scaffold 

inquiry, modes of 

representation 

 

Researcher-

developed word 

problem test and 

concrete 

manipulation test; 

KeyMath revised 

 

Mean of 95% accuracy on 

final instructional word 

problem probe; large effect 

size (PND = 93%); 

 

Mean of 88.6% accuracy on 

manipulation  

 

Significant improvement on 

KeyMath (effect size .54) 

 

 

M,G 

Witzel, Mercer, 

& Miller (2003) 

 

N = 358;  

LD =  41;  

grades 6 – 7;  

ages NS 

 

Inclusive classroom 

 

Linear equations 

 

 

Conceptual + 

Procedural Focus 

Pretest/posttest/ 

follow-up design 

with random 

assignment of 

clusters 

  

(a) CRA instruction 

(b) abstract 

instruction 

 

 

Researcher-

developed 

assessment 

(a) > (b); Effect size was 

large (0.97) 

 

 

 

M 

 

N = total number of participants; LD = number of participants identified with a learning disability; NS = not specified; CSA= concrete-semiconcrete-abstract;  

CRA = concrete-representational-abstract; PND = percentage of nonoverlapping data; WRAT-III = Wide Range Achievement Test, 3rd edition; ITBS = Iowa 

Test of Basic Skills
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Nature of the Sample 

 In this section, I review the literature for participant descriptions, including 

identification criteria for LD status, gender, demographic information, age, grade level, 

and setting.  These variables were chosen based on previous analyses of mathematics 

interventions for students with disabilities (Mulcahy, 2007; Templeton, Neel, & Blood, 

2008).  

Identification criteria of LD status.  Six (55%) studies (Allsopp, 1997; Bottge, 

et al., 2001; Ives, 2007; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Mayfield & 

Glenn, 2008) did not report specific criteria for identifying students with LD, although 

two of these studies (Maccini & Hughes, 2000; Maccini & Ruhl, 2000) stated that 

students met state criteria.  The remaining five studies (Bottge, et al., 2007a; Bottge, et 

al., 2007b; Hutchinson, 1993; Scheuermann, et al., 2009; Witzel, et al., 2003) identified 

students as LD based on a discrepancy between intellectual ability and academic 

achievement.   

Gender.  Based on reported gender data within the total sample size, 354 (54%) 

of the participants were males and 297 (46%) were females.  One study (Witzel, et al., 

2003) did not include gender data.  Six studies (Hutchinson, 1997; Ives, 2007; Maccini & 

Hughes, 2000; Maccini & Ruhl, 2000; Mayfield & Glenn, 2008; Scheuermann, et al., 

2009) identified gender specific to students with LD.  Those samples included a total of 

56 (66%) males with LD and 29 (34%) females with LD.  Authors of the remaining 

studies did not identify the gender of students with LD.   

Demographic data.  Authors of six studies (Allsopp, 1997; Bottge, et al., 2007a; 

Ives, 2007; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Scheuermann, et al., 2009) 
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reported the race and/or ethnicity of participants.  The combined number of students in 

these studies included 311 (77%) White students, 71 (17%) Black students, 18 (4%) 

Hispanic students, 3 (<1%) Native American students, and 3 (<1%) Asian American 

students.  The remaining five studies (Bottge, et al., 2001; Bottge, et al., 2007b; 

Hutchinson, 1997; Mayfield & Glenn, 2008; Witzel, et al., 2003) did not identify the race 

and/or ethnicity of the participants.  Nine of the studies (Allsopp, 1997; Bottge, et al., 

2001; Bottge, et al., 2007b, Hutchinson 1993; Ives, 2007; Maccini & Hughes, 2000; 

Maccini & Ruhl, 2000; Scheuermann et al., 2009; Witzel, et al., 2003) provided 

information regarding geographic location with representation from the southeastern, 

Midwestern, and mideastern locations of the U.S., as well as Canada.  Socioeconomic 

status of participants was identified in only four studies (Allsopp, 1997; Bottge, et al., 

2007a; Ives, 2007; Maccini & Hughes, 2000).  Two studies (Allsopp, 1997; Bottge, et al., 

2007a) identified 36% of the combined participants as receiving Free and Reduced Meals 

(FARMS), while Maccini and Hughes identified one student‟s socioeconomic status as 

“below average.”  Additionally, Ives measured socioeconomic status by the highest 

educational degree completed by a parent and reported 85% of participants had a parent 

with a bachelor‟s degree or higher, which would indicate a high socioeconomic position.   

Age, grade level, and setting.  Students‟ age was reported in seven studies and 

ranged from 12 years to 19 years with one outlier of age 9.  Six studies (55%) took place 

in middle schools, one study (9%) in a high school, and three studies (27%) in both 

middle and high schools.   Settings included inclusive general education classrooms 

(n=4), special education classrooms (n=4), and a residential setting (n=1).  Additionally, 
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three studies (Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl, 2000) were 

conducted in a resource room setting utilizing individualized instruction.   

Summary: Nature of sample.  The majority of the current research on algebra 

interventions for students with LD has been conducted on white males in middle school 

special education settings.  However, almost four times the number of studies in the 

present review examined the effects of the intervention within the general education 

classroom, as compared to an earlier review conducted by Maccini, et al. (1999).  

Interventions that demonstrated positives effects within this environment are important as 

more students with LD are participating in general education classrooms.  Future research 

should include a more diverse sample to include more female students with LD, minority 

students, and students from a variety of socioeconomic backgrounds.  Data on eighth 

grade students from the most recent NAEP (National Center for Educational Statistics, 

2009) exemplifies the need to address a diverse group of students.  Although there is only 

a two point gender gap favoring males, substantial achievement gaps exists among racial 

and ethnic groups, with White students outperforming Black students, Hispanic students, 

and students from Native American and Native Alaskan descent (percentage of students 

at or above proficiency equaling 43%, 12%, 17%, and 20%, respectively).  Additionally, 

students from impoverished socioeconomic backgrounds, as measured by eligibility for 

FARMS, are outperformed by students who are not eligible (percentage of students at or 

above proficiency equaling 17% and 45%, respectively).     

The majority of the current research does not report specific identification criteria 

for students with LD.  For the five studies reporting criteria, students were identified as 

having LD based on a discrepancy between intellectual ability and academic 



31 

 

achievement.  This is problematic for four reasons.  First, intellectual ability and 

academic achievement are not independent of each other (Fuchs, Fuchs, Compton, & 

Bryant, 2005).  Second, each study utilizes differing criteria to establish a discrepancy 

(i.e., 1.5 standard deviations, 1.75 standard errors, three years below on standard 

achievement test, severe discrepancy).  Third, discrepancy-based identification of 

students with LD is often an inaccurate measure as students who meet this criterion may 

not have a specific LD, while students who do not meet this criterion may have LD 

(Mazzocco, 2007).   Finally, as suggested by the 2004 reauthorization of IDEA, special 

education policy is moving away from the discrepancy model and toward a Response to 

Intervention (RtI) model, in an effort to address the rising number of LD diagnoses, 

particularly of minority students (Hollenbeck, 2007; Mellard, 2004).   

Typically, RtI involves three-tiers of instruction: a) general classroom instruction,  

b) specialized small group instruction for students not responding to classroom 

instruction, and c) intensive individualized instruction for students who do not respond to 

small group instruction (Fuch, et al., 2005).  This process holds the general education 

environment accountable for the success of all students, as only children who do not 

respond to research-based instruction through these tiers may be diagnosed as LD.  Only 

through the RtI process can ineffective teaching be eliminated as a factor in determining a 

specific learning disability, thus resulting in accurate diagnoses (Hollenbeck, 2007).  

Therefore, future research on algebra interventions for students with LD should include 

students who have been identified as LD through the RtI process.   
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Instructional Content and Focus 

In this section, interventions are identified by instructional content and focus of 

algebra abilities (see Table 1).  Instructional content refers to the algebra skills and 

concepts that interventions intend to improve.  The instructional focus refers to three 

abilities (i.e., conceptual knowledge, procedural fluency, and problem solving) necessary 

for proficiency in algebra (Hudson & Miller, 2006; NCES, 2009; NMAP, 2008; NRC, 

2001).   

Instructional content.   Similar to the review of algebra interventions for 

secondary students with LD conducted by Maccini et al. (1999), the majority of the 

interventions (91%) in the current review address basic algebra content, including a) 

integers (Maccini & Hughes, 2000; Maccini & Ruhl, 2000), b) equations in one variable 

(Allsopp, 1997; Hutchinson, 1993; Mayfield & Glenn, 2008; Scheuermann, et al., 2009; 

Witzel, et al., 2003), and c) multiple areas, including variables, slope, and linear functions 

(Bottge, et al., 2001; Bottge, et al., 2007a; Bottge, et al., 2007b).  Only one study (Ives, 

2007) focused on complex algebra content (systems of equations in two and three 

variables), while an additional study (Hutchinson, 1993) expanded the intervention to 

include equations in two variables.  

Instructional focus.  In addition to examining instructional content, algebra 

interventions can be identified by instructional focus.  In this review, the instructional 

focus refers to three abilities (i.e., conceptual knowledge, procedural fluency, and 

problem solving) necessary for proficiency in algebra (Hudson & Miller, 2006; NMAP, 

2008; NRC, 2001).  Conceptual knowledge involves an integrated and functional 

understanding of mathematical ideas (NRC, 2001) and allows students to develop a 
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meaningful understanding of abstract mathematical objects (Hudson & Miller, 2006).   

The NRC refers to procedural fluency as the flexible, accurate, and efficient use of 

mathematical procedures (i.e., regrouping during computations of whole numbers, data 

analysis, simplifying algebraic expressions).  Lastly, problem solving refers to the 

process of applying previously learned concepts and skills to novel situations (NCTM, 

2000).   Although problem solving has been limited in focus to solving word problems 

(Hudson & Miller, 2006), experts in math education (Hudson & Miller, 2006; NCTM, 

2000; NRC, 2001) recommend a broader definition to include solving word problems as 

well as problems that involve abstract notation only.     

Although these three mathematical abilities are defined separately, they need to 

develop simultaneously to ensure proficiency in algebra (Hudson & Miller, 2006; 

NMAP, 2008).  A certain degree of procedural knowledge is necessary to develop 

conceptual understanding, as procedures strengthen conceptual development (NRC, 

2001).    Additionally, conceptual knowledge goes beyond memorization of facts and 

procedures to provide students with an in-depth understanding of a mathematic idea 

(Hudson & Miller, 2006; NRC, 2001), while supporting retention of procedures (NRC, 

2001).  Both procedural fluency and conceptual understanding are necessary to establish 

a network of skills and concepts to link new material in the development of problem 

solving abilities (NRC, 2001).   In the section below, studies are categorized by the type 

of ability addressed.  As previously stated, these abilities are intertwined; therefore, the 

studies are grouped based on the prominent features of the interventions.    

Procedural fluency.  Authors of two studies (Allsopp, 1997; Ives, 2007) focused 

on developing procedural fluency.  Allsopp utilized peer tutoring to develop students‟ 
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abilities to solve division equations.  In the tutoring situation, the tutor used an answer 

key to determine if the tutee‟s solution was correct.  In Ives‟ study, students were taught a 

procedure for solving systems of equations using a graphic organizer.   

Conceptual knowledge.  Authors of three students (Bottge, et al., 2001; Bottge, et 

al., 2007a; Bottge, et al., 2007b) focused on developing conceptual understanding.  

Bottge and his colleagues focused on developing understanding of algebra concepts such 

as variables, linear functions, and slope, using a videodisc anchor, hands-on activities, 

and group discussions.  For example, in order to predict the speed of a car at the end of a 

stratightaway when released from various heights on a ramp, students timed cars on a 

video.  Students then graphed the heights and times and used the graphs to make their 

predictions.   

Conceptual knowledge and procedural fluency. Five studies (Hutchinson, 1993; 

Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Scheuermann, et al., 2009; Witzel, et 

al., 2003) incorporated instructional features that developed both conceptual knowledge 

and procedural fluency.   Four of these studies (Maccini & Hughes, 2000; Maccini & 

Ruhl, 2000; Scheuermann, et al., 2009; Witzel, et al., 2003) incorporated the use of the 

CRA sequence to represent and solve problems involving integers and linear equations in 

one variable.  The CRA sequence represents algebraic ideas in a variety of ways (i.e., 

concrete objects, pictorial drawings, abstract notation).  Connections between 

representations allow students to develop conceptual understanding (NRC, 2001).  

Maccini and colleagues also utilized strategy instruction (i.e., a mnemonic) to develop 

accurate representations and solutions of contextualized problems involving integers.  

Through the use of a cue card, Hutchinson taught students to solve various types of word 
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problems involving equations, by representing the problem structure.  Lastly, 

Scheurermann and colleagues investigated the effects of the Explicit Inquiry Routine 

(EIR), which incorporated explicit content sequencing, scaffolded inquiry, and systematic 

use of various modes of illustration, using concrete manipulatives, pictorial 

representations, and abstract notation.  

Problem solving. Mayfield and Glenn (2008) used explicit instruction (EI) to 

teach target skills involving variables, exponents, and linear equations, then examined the 

effects of various forms of practice and review on the students‟ ability to solve novel 

problems incorporating at least two of the target skills.  Although this was the only study 

that focused exclusively on problem solving as defined in this review, four additional 

studies (Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; 

Scheuermann, et al., 2009) included a generalization or transfer measure, which assessed 

participants‟ ability to solve problems that they were not directly exposed to during the 

intervention (Gersten, Chard, Jayanthi, Baker, Morphy, & Flojo, 2009b).   Although not 

the primary focus of the studies, these measures represented the ability to problem solve.    

 Summary of instructional content and focus.  The studies in this review 

included a narrow range of algebra content with most of the studies focusing on basic 

algebra concepts and skills, including integers, variables, exponents, linear 

equations/functions (see Table 1).   Basic algebra content is appropriate for the majority 

of participants, as they are in middle school classrooms (82% of participants without LD, 

69% of participants with LD) and not participating in a formal algebra course.  However, 

future research should include high school students who are participating in formal 

Algebra I and/or Algebra II courses.  
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Five studies (Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; 

Scheuermann, et al., 2009; Witzel, et. al, 2003)  focused on a combination of conceptual 

knowledge and procedural fluency and authors of four studies (Hutchinson, 1993; 

Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Scheuermann, et al., 2009) 

incorporated all three abilities (i.e., conceptual knowledge, procedural fluency, and 

problem solving) necessary for proficiency in algebra (Hudson & Miller, 2006; NCES, 

2009; NMAP, 2008; NRC, 2001). Additionally, studies that targeted all three algebra 

abilities incorporated a single-subject design, while the majority of studies that 

incorporated a group design focused on either conceptual understanding or procedural 

fluency.  The use of single subject designs to investigate interventions focusing on the 

conceptual and procedural development of complex algebra content may provide a 

springboard for future studies incorporating experimental or quasi-experiment group 

design.   

Instructional Activities 

This section reviews studies based on instructional practices and instructional 

materials (see Table 2).  The organization of this section is adopted from a current 

analysis of math interventions for students with LD (Gersten, et al., 2009b).  For each 

instructional activity, a definition is provided followed by a review of the current studies 

incorporating these activities.  The section concludes with a discussion of the potential 

benefits of the instructional activities to assist students with LD in accessing the algebra 

content. 
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Table 2 

Algebra Interventions by Practice, Method of Delivery, and Materials Used 

Author (year) 

 

Practice Method of Delivery Materials 

Allsopp (1997) Peer-assisted Student-centered prompt card 

Bottge, Heinrichs, 

Chan, & Serlin (2001) 

Enhanced Anchored 

Instructions 

Student-centered Videodisc, model cars, 

model ramp 

Bottge, Rueda, 

LaRoque, Serlin, & 

Kwon (2007a) 

Enhanced Anchored 

Instructions 

Student-centered Videodisc, model cars, 

model ramp 

Bottge, Rueda, Serlin, 

Hung, & Kwon, 

2007b) 

Enhanced Anchored 

Instructions 

Student-centered Videodisc, model cars, 

model ramp 

Hutchinson (1993) Strategy Instruction Teacher-directed Self-questioning 

prompt card, 

structured worksheet 

Ives (2007) Visual Representation Teacher-directed Graphic organizer 

Maccini & Hughes 

(2000) 

 

Explicit instruction+ 

Strategy instruction + 

visual representation + 

sequencing of 

examples 

Teacher-directed Manipulatives 

(Algebra Lab Gear), 

structured worksheet 

Maccini & Ruhl 

(2000) 

 

Explicit instruction+ 

Strategy instruction + 

visual representation + 

sequencing of 

examples (CRA)  

Teacher-directed Manipulatives 

(Algebra Lab Gear), 

structured worksheet 

Mayfield & Glenn 

(2008) 

Explicit instruction Teacher-directed Prompt card, 

structured worksheet 

Scheuermann, 

Deshler, & Schumaker 

(2009) 

Sequencing of 

examples (CRA + 

range) + visual 

representation 

Teacher-directed Manipulatives (beans, 

buttons, unifix cubes) 

Witzel, Mercer, & 

Miller (2003) 

 

Sequencing of 

example (CRA) + 

Visual representation 

Teacher-directed Manipulatives 

(algebra tiles) 

 

Instructional practices.  Instructional practices refer to the methods of 

instruction that promote student access to the algebra content.   The type of instructional 

practice is categorized as method of delivery (i.e. teacher-directed or student-centered), 

sequence and range of examples, strategy instruction (SI), visual representations, peer-

assisted math instruction, and Enhanced Anchored Instruction (EAI).   
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 Method of delivery.  Teacher-directed instruction occurs when the teacher is 

primarily communicating the mathematics to students; however, this varies greatly, 

ranging from scripted lessons to interactive lessons (NMAP, 2008).   Authors of seven 

studies (Hutchinson, 1993; Ives, 2007; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; 

Mayfield & Glenn, 2008; Scheuermann, et al., 2009; Witzel, et al., 2003) used teacher-

directed instruction.  In one study (Hutchinson, 1993), the author referred to using 

scripted lessons, while the authors of the remaining studies incorporate elements of 

explicit instruction (EI).   

  EI is a specific type of teacher-directed instructional method that incorporates the 

following components: an advanced organizer, teacher demonstration, guided practice, 

independent practice, progress monitoring with corrective feedback, and distributed 

reviews for maintenance (Hudson & Miller, 2006).    EI is a systematic approach to 

teaching that involves a step-by-step plan for solving the problem (Gersten, et al., 2009b).  

Authors of three studies (Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Mayfield & 

Glenn, 2008) incorporated EI in their instructional intervention package.      

Maccini and colleagues investigated the effects of an instructional package 

including EI on the problem representation and problem solution of contextualized word 

problems involving integers.  Specifically, each lesson consisted of six EI components: 

(a) advance organizer, (b) teacher demonstration,(c) guided practice, (d) independent 

practice, (e) posttest, and (f) feedback.  Both studies utilized a single subject design 

across subjects with six high school students with LD (Maccini & Hughes, 2000) and 

three eighth-grade students with LD (Maccini & Ruhl, 2000).  In both of these studies, 

students reached criterion level of 80% accuracy or greater on two consecutive probes.  
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However, it is unclear the extent to which EI is responsible for the academic 

improvements in these studies, as EI was a component of the instructional package.   

Mayfield and Glenn (2008) investigated the effect of five types of review and 

practice on students‟ performance with multiplying and dividing variables with 

coefficients and exponents and solving linear equations.  The purpose of this study was to 

determine which of the intervention phases (cumulative practice, tiered feedback, 

feedback plus solution sequence instruction, review practice, and transfer training) helped 

students reach criterion on the problem solving tasks that embedded the target skills.  A 

single subject design across skills replicated across three participants was used to 

examine the effects of the five intervention phases.  Two middle school students with LD 

enrolled in special education classes and one fourth-grade student enrolled in general 

education classes participated in the intervention within a residential setting.  

Initially, the participants received target skill training via EI.  All participants 

reached criterion of 100% on three nonconsecutive tests on all target skills.  Researchers 

then implemented the intervention phases and determined that transfer training produced 

the most significant effects on students‟ problem solving performance with participants 

meeting criterion of 100% accuracy on three nonconsecutive problem solving tests.  

Transfer training involved presenting each step of the problem solving task as an 

individual target skill prior to presenting the original problem solving task in its entirety.  

No modeling or feedback was provided and prompts were added and faded as needed.  

Future research should include the use of transfer training on various multi-step algebra 

problems, such as multiplying and factoring polynomials.   
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In contrast to teacher-directed instruction, student-centered instruction occurs 

when students are primarily responsible for their learning (NMAP, 2008) with little or no 

guidance from the teacher (Kirschner, Sweller, & Clark, 2006; Mayer, 2004; NMAP, 

2008). Authors of four studies (Allsopp, 1997; Bottge, et al., 2001; Bottge, et al., 2007a; 

Bottge, et al., 2007b) in the current review used student-centered instruction.  In one 

study (Allsopp, 1997), the author systematically arranged peer tutoring pairs and 

provided the tutor with an answer key to guide instruction provided by the tutor.  

Additional participants engaged in independent practice. No significant differences in 

posttest scores were found between students who participated in peer tutoring and 

students who engaged in independent practice.   

Bottge and colleagues incorporated student-centered learning in their instructional 

intervention entitled Enhance Anchored Instruction (EAI).  Students worked in groups to 

solve problems based on a videodisc anchor.  Two studies (Bottge, et al., 2001; Bottge, et 

al., 2007b) were conducted in general education classrooms with students with LD and 

their non-disabled peers.  The authors noted that at times the group process collapsed and 

students with LD merely copied the work of more mathematically able students.  

Additionally, one study (Bottge, et al., 2007a) took place in a special education classroom 

where authors observed students with LD struggling to learn key concepts in student 

groups (i.e., time-speed-distance relationship, plotting variables).  Therefore, teachers 

provided explicit instruction on key concepts needed to complete the hands-on activities.   

Bottge and colleagues‟ work appears to support the NMAP (2008) finding that high-

quality research in mathematics does not support the exclusive use of either student-

centered or teacher-directed instruction.   
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Teacher directed instruction, such as EI, has proven to be an effective 

mathematics intervention for students with LD (Hudson & Miller, 2006; Maccini & 

Hughes, 1997; Maccini, et al., 2008) and their nondisabled peers (Kirschner, et. al., 2006; 

Mayer, 2004).  Specifically, EI is beneficial for students with LD as it compensates for 

deficits in retention and recall through the review of prerequisite skills, multiple practice 

opportunities, and cumulative reviews.   The effect of student-centered instruction on the 

performance of students with LD is uncertain.  For example, after receiving EAI, students 

in Bottge‟s studies improved their performance on problem solving posttests, but 

performed worse on computation posttests.  Additionally, Allsopp (1997) reported similar 

improvements on posttest measures for both the treatment group (i.e., CWPT) and the 

comparison group (i.e., independent practice).  

  Appropriate scaffolds may be necessary to help students with LD access the 

curriculum during student-centered instruction.  Bottge and colleagues incorporated 

student-centered instruction within EAI which developed the problem-solving skills of 

students with LD.  However, computational skills frequently declined from pretest to 

posttest, despite the inclusion of formal, teacher-directed instruction on targeted skills.  

To address this area of concern, Bottge, Rueda, Grant, Stephens, and Laroque (2010) 

investigated the effects of providing students with math LD formal instruction (i.e., 

teacher-directed instruction) on targeted computational skills involving fractions prior to 

student participation in problem solving tasks embedded within EAI that required.  

Bottge and colleague found that students who received this formal instruction made 

greater gains in computations involving fractions as well as gains in problem solving 

compared to students who only received EAI.   Future research is needed to determine if 
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formal instruction of computational and/or procedural skills followed by engagement in 

student-centered problem solving tasks produces greater achievements for students with 

LD than only student-centered activities in other mathematics content areas, such as 

algebra. This is a critical area of research, as more students with LD are placed in the 

general education classroom, which is likely to incorporate student-centered instruction 

(Woodward & Montague, 2002).      

Sequence and range of examples. To be included in this category, interventions 

needed to include: (a) a specified sequence or pattern of examples, such the CRA 

sequence; and/or (b) a systematic variation in the range of examples, such as teaching 

only proper fractions followed by improper fractions versus teaching proper and 

improper fractions simultaneously (Gersten, et al., 2009b).  Four studies investigated the 

effectiveness of the CRA sequence as part of an instructional package to improve 

students‟ ability to solve problems involving integers (Maccini & Hughes, 2000; Maccini 

& Ruhl, 2000) and to solve linear equations (Scheuermann, et al., 2009; Witzel, et al., 

2003).  The sequence of examples included physical objects (i.e., algebra tiles, buttons, 

unifix cubes), pictorial representations (i.e., drawings of algebra tiles, tallies, dots, 

pictures), and abstract notation.  Additionally, one study (Scheuermann, et al., 2009) 

included the systematic planning of the range of examples (i.e., introducing one-step 

equations prior to teaching two-step equations). 

Maccini and colleagues investigated the effects of an instructional package on the 

representation and solution of contextualized word problems involving integers.  The 

authors incorporated the CRA instructional sequence and elements of EI and strategy 

instruction to address the target areas.  In the concrete phase of instruction, students used 
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Algebra Lab Gear (Picciotto, 1990) to represent and solve problems.  In the semi-

concrete phase, students drew picture representations of the algebra tiles.  After using 

concrete manipulatives and representational drawings, students were able to abstractly 

solve similar problems.  In both studies, students reached criterion level of 80% accuracy 

or greater on two consecutive probes.   

Similar to Maccini and colleagues, Scheuermann, et al. (2009) used a multiple 

baseline design across 14 middle school students with LD to investigate the effects of an 

instructional package entitled Explicit Inquiry Routine (EIR) on the performance of 

students‟ representation and solution of one-variable equations embedded in word 

problems.   EIR consists of three components: a) explicit sequencing, b) scaffold inquiry, 

and c) various modes of illustration.  Within explicit sequencing, the essential concept or 

process (e.g. solving equations in one variable) was broken down into instructional bites 

that were taught in a predetermined sequence, from simple to more complex (e.g., simple 

equations consisting of adding a constant to complex equations consisting of multiplying 

by a constant and adding and/or subtracting two constants).  Scaffold inquiry provided 

opportunities for students to verbalize and illustrate how to represent and solve problems 

to the teacher, to their classmate, and to themselves.  Lastly, various modes of illustration 

incorporated the CRA instructional sequence.  After instruction, all participants 

demonstrated substantial gains with a mean of 95% across all probes.  Additionally, 

students scored significantly better on a standardized assessment (KeyMath-Revised) 

posttest.  EIR incorporated both a sequencing pattern of examples through the CRA 

sequence and systematic variation in the range of examples through the introduction of 

simple to more complex equations.  These components provided students will LD 
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multiple representations of the concept and a foundation of previous knowledge to build 

upon as they progress to more complex problems.     

In addition, Witzel et al. (2003) investigated the impact of the CRA sequence on 

student performance in solving equations in one variable.  Using a pretest/posttest/follow-

up design with random assignment of classrooms including sixth and seventh graders 

with LD, Witzel and colleagues compared the performance gains of students receiving 

instruction utilizing the CRA instructional strategy to students receiving instruction via 

abstract notation only.  During CRA instruction, students first solved equations by using 

physical manipulatives.  After successfully solving the equations using the manipulatives, 

students drew pictures of the manipulatives to aid in the solution process, and then solved 

equations using abstract notation only.  The CRA group significantly outperformed the 

group receiving instruction in abstract notation only.  However, future research is needed 

given that neither group performed to mastery level, indicated by low mean scores on 

post-test measures (27% and 11%, respectfully).     

The CRA sequence holds promise as an effective instructional practice as 

physical and pictorial representations scaffold students‟ learning of abstract concepts, 

which are often challenging for students with LD to understand (Bley & Thorton, 2001; 

Garnett, 1998; Geary, 2004; Witzel, 2005).  Additionally, a systematic variation in the 

range of examples builds foundational skills for more complex problems and supports 

generalization to novel situations, which is critical area of need for students with LD 

(Bley & Thornton, 2001; Bryant, et al., 2000; Gagnon & Maccini, 2001).    

 Strategy instruction.  SI includes the use of memory aids (i.e., mnemonics, cue 

cards) and graphic organizers (i.e., graphs and charts) that provide students with a 
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strategic plan to solving problems (Gersten, et al., 2009b; Maccini, Strickland, Gagnon, 

& Malmgren, 2008).  The use of a strategy involves a general approach to solving a wide 

range of problems (Gersten, et al., 2009b) and has been found to be effective for students 

with LD in a wide range of educational settings, including  general education classrooms 

and alternative settings (Maccini, et al., 2008).  In the current review, authors of three 

studies (Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl, 2000) 

investigated the effectiveness of SI.      

 Hutchinson (1993) investigated the effectiveness of SI for students with LD in 

grades eight through ten with relational and proportional word problems in one and two 

variables.  The author used a mixed methods research design including two research 

methodologies: (a) a single subject multiple baseline design across 12 students with LD; 

and (b) a pretest/posttest comparison group design including the 12 students from the 

single subject design and an additional eight students with LD as a comparison group. 

Students who received SI were provided a self-questioning prompt card and a structured 

worksheet to assist in representing and solving a variety of word problems (i.e., 

relational, proportional) involving equations in one and two variables.  The representation 

of problems focused on structural elements of relational (i.e., one unknown quantity in 

terms of its relationship to another) and proportional (i.e., ratios) problems.   The author 

modeled how to use the self-questions to represent and solve word problems through 

thinking alouds (i.e., reading and answering questions aloud).   All students in the SI 

group reached criterion (80% accuracy on three consecutive assessments), although for 

differing instructional phases, as students progressed at their own pace.  Additionally, 
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students in the SI group significantly outperformed students in the treatment group on the 

posttest.   

Similarly to Hutchinson (1993), Maccini and colleagues incorporated SI in their 

instructional package to assist students with LD in the problem representation and 

solution of word problems containing integers.  The authors incorporated the use of a 

mnemonic strategy, STAR, which cued students to Search, Translate, Answer, and 

Review when representing  and solving word problems involving integers for each phase 

of the CRA sequence.  In the search phase, students were prompted to read the problem 

carefully and write down what is known and what needs to be found out.  Next, students 

translated the words into an algebraic equation by choosing a variable, identifying the 

operation(s), and representing the problem via manipulatives, pictures, or algebraic 

notation.  To answer the problem, students used the manipulatives or followed rules for 

the necessary symbolic manipulation.  Lastly, students reviewed the problem by 

rereading it, asking if the answer made sense, and checking the answer for accuracy.  As 

a component of the instructional package including EI, the CRA sequence, and SI, 

participants demonstrated significant improvements in their ability to represent and solve 

contextualized problems involving integers.    

SI is a promising instructional practice that supports metacognitive processes (i.e., 

self-regulation, strategic planning, monitoring, and evaluating a learning task) that are 

often deficient in students with LD (Bley & Thornton, 2001; Vaidya, 1999).  In the 

studies above, students were able to plan, monitor, and evaluate their progress in the 

representation and solution of algebraic word problems while using a mnemonic device 
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(i.e., STAR) or self-questioning worksheet.  Future research should include the use of SI 

to support students‟ metacognition during complex algebra content.  

Visual representations.  In this review visual representations include the use of 

graphic organizers (GO), such as diagrams and charts, that depict the relationship 

between facts or ideas within a learning task (Hall & Strangman, 2002) to clarify ideas, 

support reasoning, and build understanding (NRC, 2001).  One article (Ives, 2007) in the 

present review explored the use of a GO as a tool for solving systems of linear equations.  

Ives (2007) reported the results of two related studies that utilized a two-group 

comparison experimental design.  Participants included a total of 40 middle and high 

school students with LD who attended a private school for students with LD and attention 

disorders.  The first study consisted of 14 participants in the treatment group and 16 

participants in the control group and addressed the effects of the GO on the solution of 

systems of two linear equations in two variables.  The researcher found no significant 

difference in solving for the solution of systems of equations between the treatment and 

comparison groups, perhaps due to students‟ inconsistent use of the GO.  However, both 

the treatment and the comparison groups performed poorly on the posttest with 

approximately 40% accuracy.  Ten high school students with LD participated in the 

second study, which extended use of the GO to the solution of three linear equations in 

three variables.  Participants in the treatment group demonstrated greater gains, 

significantly outperforming the comparison group, with average accuracy of 

approximately 61% to 42%, respectively.   

The use of the GO in Ives‟ (2007) study is a promising instructional practice for 

students with LD who have language deficits.  The use of the GO emphasized a 
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nonverbal approach to teaching systems of linear equations that relied on visual-spatial 

skills rather than language skills.  This instructional practice reduced the emphasis on 

language while accessing a higher-level algebra skill.  Future research should include 

various forms of graphic organizers that access additional higher-level algebra content, 

such as the use of expansion boxes for multiplying polynomials. 

Peer-assisted math instruction.  Peer assisted instruction, or peer tutoring, 

involves a student, under the supervision of the teacher, assisting a peer to learn a skill or 

concept.  These student partnerships occur during structured math study sessions, after 

receiving instruction from the teacher.  Peer tutoring can involve both cross-age tutoring, 

in which an older student tutors a younger student, within-classroom tutoring, which 

involves a higher performing student tutoring a lower performing student (Gersten, et al., 

2009b; The Access Center, 2004).   One study (Allsopp, 1997) in the present review 

examined the effects of Classwide Peer Tutoring (CWPT), using within classroom 

tutoring.    

Using a pretest/posttest experimental design, Allsopp (1997) examined the effects 

of Classwide Peer Tutoring (CWPT) verses individual student practice on beginning 

algebra problem-solving skills (i.e. division equations and word problems).   Students in 

both the CWPT treatment group and the comparison group received 12 instructional 

lessons consisting of direct instruction, mnemonics, and the use of concrete 

manipulatives.   After direct instruction of the skill or concept by the teacher, students in 

the CWPT group worked with a partner to practice while students in the treatment group 

completed worksheets independently for practice.  Within the CWPT classrooms, 

students were divided into four quarters based on their class grade.  A ranking procedure 
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was used to control for large differences in student ability levels within tutoring pairs.  

Students from the top quarter were paired with students from the second quarter, while 

students from the lowest quarter were paired with students from the third quarter.  In each 

pair, students took a turn being the tutor and being the tutee.  The researcher determined 

that both groups demonstrated higher mean scores from pretest to posttest and pretest to 

the maintenance measure with no significant difference between the CWPT treatment 

group and the comparison group.   

Although CWPT did not produce an increase in performance over independent 

practice, students demonstrated equal improvements and indicated a favorable opinion of 

the CWPT.  Peer tutoring may provide other benefits in the algebra classroom, such as an 

opportunity for students to engage in the NCTM (2000) process standards of 

communication and reasoning.  Additionally, tutoring partnerships may promote active 

engagement of students with LD, who have become passive learners (Gagnon & Maccini, 

2001).  Overall, future research is needed to determine the effectiveness of peer tutoring 

on the algebra performance for students with LD.   

Enhanced Anchored Instruction. Enhanced Anchored Instruction (EAI) is a 

video-based instructional program aimed at developing the computation and problem 

solving skills for students with LD through authentic contexts.  After watching a video 

portraying a real life situation, students solve related problems. For example, after 

watching a videodisc entitled Fraction of a Cost, students determined the cost of 

materials needed to build a skateboard ramp. Students may view the video as many times 

as necessary, scanning the video to find the pertinent information.  Three studies in the 
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present review (Bottge, et al., 2001; Bottge, et al., 2007a; Bottge, et al., 2007b) 

investigated the use of EAI.   

Using quasi-experimental group designs, Bottge and colleagues (Bottge, et al., 

2001; Bottge, et al., 2007a; Bottge, et al., 2007b) examined the effects of EAI on 

students‟ algebra performance with linear functions, lines of best fit, variables, and slope.  

EAI involved the use of video based problems that are solved through hands-on activities 

within student groups.  Participants in the EAI groups watched a videodisc entitled Kim’s 

Komet about two girls entering a model car soapbox derby.  Participants solved problems 

from the video, such as determining the fastest model car and constructing a graph to 

predict the speed of a car at the end of a straightaway when released from any height on a 

soapbox derby ramp.  Additionally, participants built model cars to release on a ramp and 

solved additional problems similar to those on the video.  In contrast, participants in the 

comparison groups solved a variety of standard textbook word problems involving 

distance, rate, and time, as well as completing tables and graphing the information.  The 

researchers in all three studies determined that students with disabilities improved their 

problem solving skills when provided EAI, although outcomes on computational skills 

were mixed, with students frequently performing worse on computational posttests.  

Further, the performance of students with LD receiving EAI in an inclusive classroom 

matched or exceeded the performance of their non-disabled peers on problem solving 

measures (Bottge, et al., 2001; Bottge, et al., 2007b).   

The NCTM (2000) recognizes technology (i.e., videos, calculators, and 

computers) as an essential and influential principle for school mathematics that can help 

students learn and do mathematics.  Technology enables students to conceptually learn 
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mathematics by providing multiple representations.  Additionally, technology, such as 

calculators, enables students to do computations and procedures that may be laborious 

without the use of technology (NCTM, 2000).   EAI, which included video anchors, 

positively affected students‟ problem solving abilities, although additional research is 

needed to determine the effects of EAI on students‟ computation skills.   

Instructional materials.  Instructional materials are equipment used in the 

classroom to support construction of mathematical ideas (Reys, Suydam, & Lindquist, 

1992).  The use of materials in the mathematics classrooms has led to increased student 

achievement in mathematics (Bley & Thornton, 2001; Hudson & Miller, 2006; Reys, 

Suydam, & Lindquist, 1992).  Instructional materials included in this review are 

manipulatives, prompt cards and instructional worksheets, and graphic organizers.   

 Manipulatives.  Manipulatives are physical objects that support mathematical 

thinking (NRC, 2001) and include any physical object that represents a mathematic 

concept.  Examples include counters, beads, blocks, fraction bars, pattern blocks, 

Cuisenaire rods, algebra tiles, and geoboards (Maccini, et al., 2008).  

In the current review, authors of seven studies (Bottge, et al., 2001; Bottge, et al., 

2007a; Bottge, et al., 2007b; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; 

Scheuermann, et al., 2009; Witzel, et al., 2003) incorporated the use of manipulatives in 

their interventions.  Maccini and colleagues used Algebra Lab Gear (Picciotto, 1990), 

which are plastic colored blocks of varying size to represent numeric and variable 

constants, to help students represent problems involving integers.  Witzel and colleagues 

developed a set of manipulatives to represent numbers in units of ones and tens (small 

sticks and large sticks, respectively), and variables and operators (pictured on square 
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tiles).  These manipulatives were used to solve a variety of equations in one variable.  

Further, Scheuermann and colleagues used buttons, beans, and unifix cubes to teach 

students to solve equations in one variable.  In contrast, Bottge and colleagues 

incorporated the use of model cars and ramps in hands-on activity that encouraged 

student exploration of concepts involving distance, rate, and time.  Students in all seven 

studies demonstrated gains in target skills and concepts, which supports previous research 

that promotes the use of manipulatives in mathematics classrooms (Bley & Thornton, 

2001; Hudson & Miller, 2006; Maccini & Gagnon, 2000; Reys, et al., 1992).   

The use of manipulatives is a promising instructional activity for students with 

LD as it addresses various areas of deficit.  For example, manipulatives provide students 

with a referent to the abstract symbolism of mathematics (Reys, et al., 1992).  Through 

the CRA sequence, manipulatives develop conceptual knowledge (Hudson & Miller, 

2006) and provide a bridge to the development of abstract ideas (Reys, et al., 1992).  

Additionally, manipulatives provide students with opportunities for active engagement as 

they explore mathematic relationships (Gurganus, 2007).  Further, the use of 

manipulatives has been found to support retention of mathematical ideas (Reys, et al., 

1992).   Future research should include the use of manipulatives for teaching higher-level 

algebra content (i.e., computing and factoring of polynomials) to help students with LD 

develop a conceptual understanding of symbolic manipulation necessary for advanced 

mathematics (Banchoff, 2008).  

Prompt cards and structured worksheets.  Prompt cards and structured 

worksheets provide students with cues to complete a task.  Additionally, these materials 

help students to develop a strategic plan to solve problems (Maccini, et al., 2008) as they 
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prompt students to think about important components of the problem and to ask 

themselves questions regarding know and unknown information.   Authors in five studies 

(Allsopp, 1997; Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl, 2000; 

Mayfield & Glenn, 2008) used prompt cards and/or structured worksheets.   

Allsopp (1997) provided an answer sheet to assist tutors in determining correct 

responses from tutees.  Therefore, tutors were able to provide accurate feedback.  

Maccini and colleagues (2000) provided students with a structured worksheet that aligned 

with the STAR strategy.  The worksheet cued students to follow the strategy when 

representing and solving contextualized problems involving integers.  The cue card 

included the four main steps of the STAR strategy (i.e., search, translate, answer, review).  

Additionally, the cue card contained prompting questions for each step.  For example, the 

cue card prompted students to “Search the word problem.”  Additionally, students were 

prompted to read the question carefully and write down facts.   

Hutchinson (1993) used both a prompt card and a structured worksheet as part of 

the strategy intervention.  The prompt card included self-questions for representing and 

solving algebra word problems.  Examples of self-questions for representing the word 

problem included, “Have I read and understood each sentence?  Are there any words 

whose meaning I have to ask?” and “Have I written down my representation on the 

worksheet?” (p.39). Examples of self-questions for solving the problems included “Have 

I written an equation?” and “Have I written out the steps of my solution on the 

worksheet? (p.39). Additionally, Hutchinson provided students with a structured 

worksheet in which they needed to fill in information such as the goal, known 

information, unknown information, an equation, and solution.   
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Further, Mayfield and Glenn (2008) included a prompt card in the feedback plus 

solution sequence instructional phase, which provided written directions for solving 

novel problems, such as beginning the problem with a known part of the problem.  

Additionally, in the transfer training intervention phase, the authors included the use of a 

structured worksheet which broke down a novel problem into familiar steps and then 

presented the original novel problem.   

When completing an algebra problem, students with LD often have difficulty 

identifying important information, understanding the nature of the problem, and 

organizing an efficient strategy for solving the problem (Gurganus, 2007).  Prompt cards 

and structured worksheets guide students through these important elements to reach a 

reasonable problem solution.  Additionally, they support students‟ metacognition by 

assisting with self-regulation.  Future research should include the use of these materials in 

high school mathematics, including Algebra I and Algebra II, as students are required to 

solve complex, multi-step problems.    

Summary of instructional activities.  Authors of the current studies incorporated 

a variety of instructional practices and instructional materials to improve the algebra 

performance of secondary students with LD (see Table 2).  Instructional practices include 

method of delivery, sequence and/or range of examples (i.e., CRA sequence), SI, visual 

representations, peer-assisted instruction (i.e., CWPT), and EAI.  Six studies incorporated 

an instructional package consisting of more than one approach.  This is important as each 

instructional practice addresses specific areas of need for students with LD.  For example, 

EI compensates for memory deficits that affect recall and retention, by providing students 

with multiple opportunities for practice and teacher scaffolds to promote content mastery 
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(Hudson & Miller, 2006).  SI promotes metacognition by providing students with a plan 

to solve various problems (Bley & Thornton, 2001; Vaidya, 1999).  The CRA 

instructional sequence provides a bridge toward developing understanding of abstract 

concepts.  Finally, visual representations, such as graphic organizers, allow students to 

access algebra content using visual-spatial skills and are beneficial for students with 

language deficits.  Therefore, an instructional package can address multiple areas of 

deficit to support student achievement.   

Overall, seven of the current algebra intervention studies for students with LD 

incorporated teacher-directed instruction with all but one of these studies occurring in a 

special education setting.  Teacher-directed instruction has a long history in special 

education (Hudson & Miller, 2006); however, as more students with LD are included in 

general education classrooms (Newman, 2006), future research should include 

interventions involving student-center approaches.  A blended approach to instruction has 

been proposed by experts (Hudson, Miller, & Butler, 2006; Jones & Southern, 2003; 

NMAP, 2008) to address the specific needs of students with LD and to promote the 

NCTM standards for a rigorous mathematics for all students.  For example, by providing 

EI addressing foundational skills and concepts (i.e., multiplication of binomials), students 

will be prepared to engage in student-centered instruction to further develop 

understanding of the topic (factoring a trinomial).   

  Materials in the current studies included the use of manipulatives (i.e., algebra 

tiles, unifix cubes, model cars), prompt cards and structured worksheets, and technology 

(i.e., videodisc).  Five studies included more than one material; therefore, a promising 

intervention includes a variety of materials that provide multiple representations 
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necessary for generalization and supports various areas of deficits (i.e., abstract notation, 

metacognition, memory) for students with LD.   

Summary 

 The current review of the literature on algebra interventions for secondary 

students with LD identified instructional approaches, instructional practices, and 

instructional materials which lead to improved performance on a variety of algebra skills 

and concepts.    In the following section, limitations of the current literature and 

suggestions for future research are summarized.  

Limitations.  Overall, the authors of the studies in this review employed sound 

methodology and data analysis to reach their conclusions.  However, there are several 

limitations to the current research.    

1) Few studies exist that examine the effects of an intervention on students‟ 

algebra performance and the exiting studies focus primarily on basic algebra 

content, rather than critical algebra tasks as recommended by NCTM, NMAP, 

and ADP. 

2) Few studies include participants in high school algebra courses, therefore, the 

effectiveness of the instructional practices in this review are uncertain for this 

population of students in this content.   

3) There is no consistent criterion for identifying students with LD and 

socioeconomic status which limits generalization of current findings for these 

populations. 

4) Three studies (Allsopp, 1997; Bottge, et al., 2001; Witzel, et al., 2003) do not 

disaggregate outcome data for students with LD.  
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Future research.  Historically, research of reading disabilities far surpasses 

research for mathematics disabilities, while the current number of studies researching 

reading disabilities continues to exceed the number of studies examining mathematics 

disabilities by a ratio of 14 to 1 (Gersten, Clarke, & Mazzocco, 2007).  In a recent meta-

analysis of mathematical interventions for students with LD, Gersten and colleagues 

(2009b) identified a variety of instructional practices that produce improvements in the 

mathematical performance of students with LD, including EI, sequencing and range of 

examples, visual representations, and SI.  However, these findings are limited as the 

meta-analysis includes only one algebra intervention, as a result of restricting inclusion to 

studies that employ an experimental or quasi-experimental design.  More comprehensive 

reviews of algebra interventions for students with LD (Foegen, 2008; Maccini, et al., 

1999; Strickland & Maccini, 2010) support Gersten‟s findings of effective instructional 

practices, however, findings from these reviews are limited due to the relatively basic 

algebra content (i.e., integers, one-variable equations) addressed in the reviewed studies.  

Given the limitations in the existing research base, future research should examine: 

1) Student performance on complex algebra content, including content from 

Algebra II. 

2) Inclusion of a greater number of high school students with LD. 

3) Performance of secondary students with LD in general education classes, 

including Algebra I, Geometry, Algebra II, and high school courses that 

integrate this content. 

4) Performance of secondary students with LD when participating in student-

centered instruction.  
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5) The use of an instructional package containing instructional practices and 

materials supported by the current research.   

Conclusion 

 The current literature review synthesizes research findings involving algebra 

interventions for secondary students with LD.  Theses interventions address instructional 

practices and materials that provide students with disabilities access to the general 

education algebra curriculum.  This is a critical area of research, as more secondary 

students with LD are included in the general algebra classes (Newman, 2006).  

Additionally, algebra intervention research for this population needs to be grounded in 

general education algebra research.  For example, the way in which teachers and 

researchers view algebra (i.e., generalized arithmetic, polynomial-based, or functions-

based) impacts students‟ learning (Chazan, 2008).  However, the authors of the studies 

from the special education literature reviewed above do not focus on defining algebra.  

Additionally, beliefs regarding the ways in which students learn affect the algebra 

classroom by influencing curriculum choices and pedagogy. Therefore, a theoretical 

grounding is essential for developing an instructional intervention. Traditionally, special 

education research has been based on behaviorist theories of learning that emphasize 

teacher directed instruction with repeated practice and reinforcement (Woodward & 

Montague, 2002).  In contrast, the NCTM (2000) promotes student centered instruction 

rooted in a form of constructivism that supports guided inquiry.  The conclusion of this 

literature review: (a) discusses the multiple definitions of algebra; (b) identifies 

characteristics of typical students relating to algebra; and (c) summarizes the theory of 

the constructivist continuum and the theory of reification.  This section ends with a 
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rationale for the current study, which is influenced by the multiple definitions of algebra, 

the constructivist and reification theories of learning, and existing research findings from 

the special education and mathematics education communities.  

Defining school algebra.  According to Usiskin (1988), algebra can be defined in 

four ways: (a) generalized arithmetic, (b) the study of procedures, (c) the study of 

relationships between or among quantities, and (d) the study of structures, such as groups, 

domains, fields, and vector spaces.   Similarly, Saul (2008) discusses three milestones for 

secondary students to reach as they progress through school algebra.  First, students view 

algebra as generalized arithmetic, in which algebra identities are generalizations of 

arithmetic sentences. Next, students view algebra as the study of binary relations on sets.  

Students understand expressions as mathematical objects of their own right.  Equality of 

two expressions focuses on operations, not numbers as previously viewed in the first 

milestone.  Lastly, algebra is viewed for algebra‟s sake.  Algebra becomes the study of 

structures (i.e., groups, rings, fields).  This is the work of mathematicians and many 

typically developing students never reach this milestone.    

Currently, a debate exists in mathematics education regarding the most 

appropriate approach to school algebra.  Algebra as generalized arithmetic, the study of 

procedures, and the study of structures may be categorized as a traditional algebra 

program that focuses on symbolic manipulations involving equations and polynomials.  

In contrast, algebra as the study of relationships is the basis of a reformist algebra 

program that focuses on functions (Kieran, 2007).  I briefly describe these two 

approaches below.      
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   According to Cuoco (2008), “polynomial algebra sits at the historical core of 

algebra” (p.57).  School algebra that focuses on polynomial expressions and their 

manipulation aligns with traditional algebra courses from the 1960‟s and 1970‟s.  Topics 

that are taught within this type of algebra course include simplification of expressions, 

solving equations, inequalities, systems of equations, factoring polynomials, and rational 

expressions.  Functions play a minor role in polynomial-based algebra courses (Kieran, 

2007); instead symbolic forms and manipulations are emphasized.  Many 

mathematicians, mathematics educators, and researchers continue to value polynomial-

based algebra, believing that through symbolic manipulations and computational 

processes, students develop a deeper understanding of mathematical objects (Kieran, 

2007; Kilpatrick & Izsak, 2008; Sfard & Linchevski, 1994).   Specifically, Banchoff 

(2008) asserts that the heart of algebra involves procedures.  Additionally, to advance 

through Saul‟s (2008) milestones, students must demonstrate both procedural and 

conceptual knowledge of polynomials.    

  In contrast, reformist algebra courses emphasize functions and the various ways 

of representing them (i.e., graphs, tables, narrative, algebraically).  Students are 

encouraged to solve real-world problems by methods other than manual symbolic 

manipulations (Kieran, 2007).   Due to technological advancements, calculators and 

computer algebra systems can perform complex symbolic manipulation, which has lead 

many mathematics educators and researchers to question the purpose of teaching topics 

such as factoring polynomials (Kieran, 2007; Kilpatrick & Izask, 2008).  Instead, they 

propose changing the focus of algebra to functions and minimizing instructional time 

spent on symbolic manipulation (Kieran, 2007).  Kilpatrick and Izsak (2008) suggest 
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three reasons for moving away from symbolic manipulation toward a functions-based 

approach to algebra.  First, moving to functions may be more motivating for students. 

Next, a shift to functions represents a shift from memorizing procedures toward a 

conceptual understanding of problem situations. Lastly, students may use technology 

(i.e., calculators and computer software) to create graphs and to perform symbolic 

manipulations.  Yerushalmy and Gafni (1993) believe that, “function in its multiple 

representations is the [italics added] fundamental object of algebra which ought to be 

present through the learning and teaching of any algebra topic” (p.319).   

 The current debate between traditional polynomial-based algebra and reformist 

functions-based algebra has lead to wide variations in the content of school algebra 

between states in the U.S. and between countries worldwide (Kieran, 2007).   As a result, 

students are often required to demonstrate competency in both contexts.   Advocacy 

groups, such as NCTM, ADP, NMAP, and CCSSI promote aspects of both polynomial-

based and functions-based school algebra. For example, the NCTM (2000) promotes 

functions-based algebra by defining algebra as the study of relationships among 

quantities, while acknowledging the use of symbolic notation in this process.  The CCSS 

(2010) for high school mathematics include a category entitled Algebra, (i.e., 

expressions, polynomials, and equations) and a category entitled Functions, (i.e., linear, 

quadratic, exponential, and trigonometric).  Both the ADP and NMAP include functions 

and polynomials in their benchmarks (ADP, 2004; NMAP, 2008).  Additionally, college 

placement tests, such as ACT and SAT, include content from both a functions-based and 

a polynomial based algebra curriculum (ACT, 2011; The College Board, 2009).  
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Therefore, to support all students in algebra, effective instructional practices addressing 

topics from both approaches toward algebra need to be investigated.  

Algebra and typical student learning.  Many typically developing students 

struggle with the content found in secondary algebra courses.  Challenges arise from a 

poor understanding of foundational algebra ideas such as the negative sign (Kieran, 1989; 

Vlassis, 2004), variables (Kieran, 1989; NMAP, 2008; Russel, O‟Dwyer & Miranda, 

2009; MacGregor & Stacey, 1997; Wagner, 1981), equality and the equal sign (Kieran, 

1989; NMAP, 2008; Russel, et al., 2009; Stacey & MacGregor, 1997), commutative and 

distributive properties (Carraher & Schliemann, 2007; Saul, 2008), an implicit coefficient 

of one (Anderson, 1995), and algebraic expressions (Clements, 1982; Kieran, 1989; 

NMAP, 2008).   Because of poor understanding of these foundational ideas, students 

struggle with complex algebra processes, such as quadratics (Kotsopoulo, 2007; 

MacDonald, 1986).  

 Specifically, according to Kotsopoulo (2007), students have difficulty with 

quadratics because of poor retrieval of multiplication facts and their inability to recognize 

and understand varied representations of the same quadratic relationship (i.e., standard 

form and factored form).    Additionally, traditional teaching tools may interfere with 

students‟ development of an in-depth conceptual and procedural understanding of 

quadratics.  For example, FOIL is a traditional instructional tool for teaching students to 

multiply binomials and produce a quadratic expression.  However, many mathematics 

educators and researchers oppose the use of this mnemonic as it does not apply to 

multiplying polynomials of varying terms and it does not generalize to factorization 

(Kennedy, Curtin, & Warshauer, 1991; Nataraj & Thomas, 2006; Rauff, 1994; Tanner & 
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Hale, 2007).   Instead, experts in mathematics education promote the use of general-

purpose tools (Cuoco, 2008).  For example, an expansion box is a general-purpose tool 

that can be used to multiply polynomials with any number of terms (CME Project, 2009; 

Tanner & Hale, 2007).   Future research is needed to determine if general purpose tools, 

such as an expansion box, improve student performance on tasks involving quadratics.  

Constructivist theory of learning.  According to the constructivist theory of 

learning, students learn by an active process of constructing their own understanding of 

the subject matter (Greeno, Collins, & Resnick, 1996; Woodward & Montague, 2002).  

This active construction of knowledge is influenced by their environment, interactions 

with others, and their previous experiences and understandings (Gurganus, 2007).   

According to Gurganus (2007), teaching is constructivist when students are active 

learners, the curriculum is relevant, the curriculum connects to previous learning, and the 

teacher actively facilitates and monitors learning.  These elements are found in variety of 

pedagogies.   For instance, in the explicit instruction model, students are positioned as 

active learners, the curriculum connects to previous and future learning with the use of an 

advanced organizer, and the teacher actively facilitates and monitors learning through 

guided practice.   

According to Mushman (1982), constructivism is a continuum including three 

variations (See Appendix A).  Endogenous constructivism is at one end of the continuum 

and promotes pure discovery learning with student-centered instruction and the teacher 

taking a peripheral role.  On the other end of the continuum is exogenous constructivism, 

which includes teacher-directed instruction with active student engagement.  In between, 

there is dialectical constructivism, which involves the teacher guiding the students as they 
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discover the targeted skills and concepts.  Choosing the type of constructivist approach 

depends on the content being taught and the previous experiences and knowledge of the 

students.  Regardless of instructional practice (i.e., student-centered instruction, teacher-

directed instruction), all students must construct their own understanding of a skill or 

concept (Kieran, 1994).   

Reification. In this study, reification means to regard an abstract mathematical 

object, such as a quadratic function, as concrete.  Sfard and Linchevski (1994) suggests 

that reification occurs through the process-object theory, in which computational 

processes, such as determining the output value of f(x) = x
2
 + 3x + 2 when x = 1, 

proceeds students‟ understanding of the quadratic expression as a mathematical object.  

In fact, students‟ understanding of the object (i.e., quadratic function) is strengthened by 

practicing computational techniques, even if these techniques are not yet fully understood 

(Sfard, 1995).   A particular representation, such as an input-output table for a quadratic 

function, may be perceived as both a process (i.e., filling in missing values) and an object 

(i.e., the quadratic function).  The process and the object are complementary views and 

mutually depend on one another for reification.  As algebra is hierarchical, concepts that 

are understood as a process at one level must be understood as an object at a higher level 

(Sfard & Linchevski, 1994).  For example, functions may be initially perceived as a 

series of processes (i.e. filling in tables, graphing, and transforming equations); however, 

functions must be perceived as an object within the study of calculus (Thorpe, 1989).   

Additionally, the reification of a mathematical object may be developed through 

examining its properties.  Slavit (1997) states that a property-oriented view of functions 

begins with an awareness of specific functional properties and is followed by the ability 
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to recognize and analyze functions by identifying the presence or absence of these 

properties.  Through this process, students reify a function as a mathematical object.  

Slavit also blends this theory with Sfard‟s process-object theory by stating that reification 

occurs when students shift from identifying properties of processes to identifying 

properties of objects.  

When focusing on quadratic functions, students may experience various examples 

of quadratic functions and then develop an understanding of this type of function as an 

object either possessing or not possessing the required properties (i.e., square term is the 

highest degree).  As students identify critical properties, they are developing an 

understanding of a quadratic function as a mathematic object either with or without the 

necessary properties (Ronda, 2009).  As reification is difficult to achieve (Sfard & 

Linchevski, 1994), appropriate levels of scaffolds may support learners during this 

process.     

Rationale for Current Study   

 Competency in algebra is required for all secondary students‟ success in school.  

Additionally, all students who wish to attend college must demonstrate knowledge of 

algebra, including quadratics.  Therefore, to prepare students with LD for post-secondary 

education, instructional interventions for accessing quadratics within the algebra 

curriculum are essential. Currently, no studies within the special education literature 

examine interventions that address algebra tasks involving quadratics expressions for 

secondary students with LD and specific mathematics difficulties.  To develop 

competency in quadratics, students need to develop both procedural and conceptual 

understanding.  Procedural skills focus on the syntactic aspects of algebra, such as the 
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manipulation of symbols (Yerushalmy & Gafni, 1993).  Syntactic aspects are important 

as they represent general relations and procedures in concise and unambiguous terms, 

which is a primary goal of algebra (Booth, 1989).  Specifically in this study procedural 

skills refer to the process of multiplying linear expressions to form a quadratic expression 

and factoring quadratic expressions into two linear expressions. 

Conceptual knowledge is linked to semantic aspects, or the structural properties of 

an algebraic objective such as a quadratic expression (Yerushalmy & Gafni, 1993).  

Semantic aspects of algebra provide the rationale and the justification for the 

manipulations and provide an understanding of what the algebraic expressions represents 

(Booth, 1989).  In this study, conceptual knowledge refers to student recognition of the 

equality of a quadratic expression in standard form and in factored form and recognizing 

that a quadratic expression is a generalizing statement reflecting a context such as area.   

Conceptual knowledge and procedural fluency are equally important (CCSSI, 

2010).  Based on process-object theory, practicing procedures, such as factoring quadratic 

expressions, will strengthen students understanding of quadratics as an object (Sfard & 

Linchevski, 1994).  Additionally, identifying semantic properties of quadratics, such as 

understanding that the quadratic expression represents the area context, will support 

students‟ conceptual understanding of quadratics (Slavit, 1997; Yerushalmy & Gafni, 

1992).  The semantic properties of quadratics may be represented through various 

representations such as narrative contexts and tables of data, which corresponds to a 

functions-based approach to algebra.  Both procedural fluency and conceptual 

understanding of quadratic functions are necessary as students are required to 
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demonstrate competency in both symbolic manipulation and functions-based content on 

state exams and college placement tests.     

 The current study examined the effects of blended instruction and multiple visual 

representations of quadratics on the performance of secondary students with LD or at-risk 

for LD and mathematics difficulties (MD) to complete tasks associated with quadratic 

expressions.  Blended instruction incorporated components of EI and the NCTM process 

standards.  Multiple visual representations included Algebra Lab Gear, sketches of Lab 

Gear, drawings of areas using discrete numbers, tables of data, and graphic organizers 

(e.g., expansion box). Constructivist theory, as outlined by Gurganus (2007) and Sfard‟s 

theory of reification provided the theoretical groundwork. The intervention included 

components of instruction that were found to be effective in this review, including the use 

of components of explicit instruction, a specified sequence and range of examples, and 

graphic organizers.  A combination of teacher-directed and student-directed instruction 

were implemented, emphasizing a procedural and conceptual understanding of quadratic 

expressions.   
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Chapter 3: Methodology 

The current study was developed in light of reform efforts and recent legislative 

mandates that espouse research-based methods to support the algebra development of 

students with mathematics disabilities or difficulties (MD).   By expanding the existing 

special education research literature, this study focused on higher level algebra content 

(i.e., quadratic expressions) with the use of blended instruction and multiple visual 

representations.  Critical supports for secondary students with MD embedded in the 

instructional package included: (a) components of explicit instruction; (b) concrete to 

representational to abstract integration strategy (CRA-I); (c) graphic organizers; and (d) 

graphing calculators.  This study addressed algebra content that aligns with the NCTM, 

NMAP, ADP, CCSS, and the State of Maryland standards and benchmarks for algebra 

for all learners (see Appendix B), as well as the NCTM process standards of problem-

solving, representations, reasoning, communication, and connections (see Appendix C).  

The specific algebra content addressed included: (a) the procedural fluency of 

transforming quadratic expressions in standard form to factored-form and vice versa; and 

(b) the conceptual understanding of quadratic expressions through the exploration of 

multiple visual representations and tabular data embedded in area word problems. See 

Appendix D for unit objectives.   

This study employed a concurrent embedded mixed methods design, which 

incorporated a quantitative single-subject design and supplemental qualitative data from a 

case study design (Creswell & Clark, 2011).  Single-subject research has a long, 

productive history in the field of special education (Tawney & Gast, 1984) and is 

particularly well suited to establish evidence-based practices for students with disabilities 
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(Horner, Carr, Halle, McGee, Odom, & Wolery, 2005) who represent a small percentage 

of the student population.  Single-subject research is experimental and documents causal 

or functional relationships between independent and dependent variables (Horner, et al., 

2005).  The qualitative strand provided a secondary, supportive role to the predominately 

single-subject design study (Creswell & Clark, 2011). Qualitative research involves a 

systematic approach to understanding the nature of a phenomenon within a particular 

context (Brantlinger, Jimenez, Klinger, Pugach, & Richardson, 2005).  In this 

investigation, the phenomenon under investigation is the participants‟ understanding of 

quadratic expressions as an outcome of blended instruction and multiple visual 

representations within the context of the intervention.  Qualitative data validate the 

quantitative outcomes by representing the voices of the participants.  Additionally, the 

qualitative data help the investigators to understand the impact of the intervention on 

participants and depicts the processes experienced by the participants (Creswell & Clark, 

2011).  

The joint use of the single-subject design and the qualitative analysis were 

complementary as the single-subject design allowed the investigator to determine if the 

intervention was effective in teaching the participants how to accurately complete tasks 

involving quadratic expressions, while the qualitative data provided insight into their 

thinking and understanding that impacted their change in performance.  Therefore, using 

both designs concurrently within an embedded mixed method design provided a thorough 

representation of the phenomenon. See Appendix E for the organization of the research 

design.  
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This chapter provides a description of the: (a) participants and setting; (b) 

instructional package and materials; (c) concurrent mixed method design including single 

subject design, (i.e., experimental design, independent variable, dependent variable, and 

data analysis) and supplemental case study, (i.e., procedures, data collection, and data 

analysis).  

Participants and Setting 

 This section provides an overview of the participants and setting of the study.  

Additionally, obtaining Internal Review Board approvals, informed consent from 

parents/legal guardians, and informed assent from participants are discussed.  

Participation eligibility.  Five high school female students participated in this 

study.  Three participants had a documented learning disability as determined by a 

discrepancy between scores on achievement and aptitude tests and their school 

performance.  The other two participants were at-risk of failure in algebra. Administrators 

suggested that these two participants were in fact LD, however, as these participants had 

always attended private schools that met their learning needs, parents never pursued a 

formal evaluation.  All participants shared a common learning history of difficulty in the 

algebra content domain throughout their secondary school experience, as evidenced by 

input from teachers, the math department chair, the learning specialist, and the principal.  

Additionally, participants demonstrated a need for this intervention as evidenced by low 

scores (range = 0% - 25%) on an investigator-developed domain probe (see Appendix F). 

Demographic data including gender, age, grade, race, disability status, and scores from 

intelligence and achievement tests, are reported in Table 3. 



71 

 

Table 3 Demographic Information 

Characteristics  ____________________________________Participants_______________________________   

   Cheryl    Cindy   Sasha _   _  Anna___   Marcia  

Demographic:   

Gender   Female    Female   Female   Female    Female 

Race   White    White   White   White    White 

Age   16 yrs    16 yrs   16 yrs   17 yrs    16 yrs 

Grade   11
th

    11
th

   11
th

    11
th

     11
th

  

Disability  SLD    At-Risk  SLD; ADHD  At–Risk   SLD; ADHD 

 

Achievement:  

 Broad Reading SS = 97    NA   NA   NA  103 

   (WIAT)           (WJ – III) 

 Broad Math  SS = 97    NA   NA   NA  75 

   (WIAT)           (WJ – III) 

 

Aptitude: Wechsler Intelligence Scale for Children 4
th

 edition 

Full Scale  116    NA   94   NA    107 

Verbal   110    NA   77   NA    104 

Perceptual Reasoning 100    NA   NA   NA    102 

Processing Speed 112    NA   98    NA    94 

Working Memory 132    NA   93   NA    120 

 

IEP Math Goals: Yes    No   Yes   No    Yes_______ 

 
SLD = specific learning disability; ADHD = attention deficit with hyperactivity disorder; NA= not available; GE = Grade Equivalent; SS = Standard 

Score which classifies relative standings; NA = Not available; WIAT = Wechsler Individual Achievement Test; WJ-III = Woodcock Johnson, third 

edition 
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Instructor and setting. The intervention was implemented by the investigator 

who assumed the role of teacher-researcher for the duration of the study.  Teacher-

researcher is defined as “systematic and intentional inquiry carried out by teachers” 

(Cochran-Smith & Lytle, 1990, p. 3).  Specific to this study, data were systematically 

gathered and all activities were planned rather than spontaneous.  Additionally, this 

research resulted from previous experiences I had as an algebra teacher of 12 years to 

students with high incidence disabilities and low mathematic achievers.  Specifically, I 

observed that students with disabilities struggle to demonstrate competency in algebra 

content when taught using symbolic manipulation only.  Additionally, I had a pre-

existing relationship with two of the participants (Marcia and Anna) as their seventh-

grade mathematics teacher.  

The study took place in a private school located in the greater Washington, DC 

area. During the baseline condition of the study, participants were removed from the 

classroom to complete the pretest domain probes and then returned to  their typical 

mathematics classroom but received no instruction in the content covered in the study.  

During the intervention, participants were removed from their mathematics class and 

received instruction in small groups.  Primarily, the intervention occurred in a conference 

room, which contained a table and a white board.  On occasion, we were moved to a 

classroom in which we utilized a table and the white board for instruction.      

Internal Review Board.  Prior to the beginning of the investigation, I submitted 

plans for approval to the Internal Review Board at the University of Maryland, College 

Park.   
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Informed consent.  Participants and their parents/legal guardian received a letter 

(see Appendix G) that stated the purpose of the study, the algebra content addressed 

during the study, and the risks and benefits of the study.  Additionally, I asked for access 

to each participant‟s educational records (i.e., IEP, scores from IQ and achievement tests, 

grades in previous math courses).  Participants and their parents/legal guardians were 

informed that participants may withdraw from the study at any time without penalty.  

Parents/legal guardians signed a permission form (see Appendix H) and participants 

signed an assent form (see Appendix I).     

Instructional Materials 

 This section provides a description of the instructional materials that were used to 

develop students understanding of quadratics expressions.  The intervention included an 

investigator-developed instructional unit that incorporated materials and instructional 

supports to help students with MD access the curriculum.  

Manipulative materials. Concrete manipulatives were used in this intervention 

by way of Algebra Lab Gear (Picciotto, 1990), a comprehensive manipulative program 

designed for the teaching of algebra concepts.  Color-coded blocks included constants, x-

bars, and x
2
-blocks.  

Graphic organizer. Students were provided a graphic organizer, specifically an 

expansion box (see Appendix J) to expand and factor polynomials of varying terms.  An 

expansion box emphasizes the distributive property and may be used to multiply whole 

numbers as well as polynomials of various terms (CME Project, 2009), thus creating 

arithmetic to algebra connections. Additionally, graphic organizers are beneficial 

instructional materials for students with language-based learning disabilities (Ives, 2007).  
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Calculators. Throughout the instructional unit, participants used calculators, 

which served two purposes.  First, as lesson objectives were not related to computation, 

participants were provided calculators to perform computations for discrete numbers.  For 

example, they used a calculator to determine the area of a square bedroom with each side 

10 meters long.  Second, when transforming quadratic expressions from standard form to 

factored form and vice versa, participants created tables of data.  If they successfully 

transformed the expressions, then the values in the tables were identical.  Additionally, 

participants graphed each expression to determine if their transformations were correct.  

If they successfully transformed the expressions, then the lines on the graph were 

identical.  If they incorrectly transformed the expression, then two different lines 

appeared and participants used this visual feedback to correct their work.  Yerushalmy 

(1991a) found graphic feedback to be a beneficial and motivational tool for checking 

transformations, particularly since students did not notice if they made a mistake with 

symbolic transformations unless provided feedback.   

Instructional Unit and Lesson Plans 

 The investigator-developed instructional unit included lesson plans that 

addressed age- and grade-level appropriate algebra content consistent with the NCTM 

Standards (2000), the Maryland Voluntary State Curriculum (2007), the American 

Diploma Project Benchmarks (2004), and the Common Core State Standards (2010).  

Appendix B outlines the NCTM standards, the state curriculum, the ADP benchmarks, 

and the CCSS.    The goal of the instructional unit was to promote the conceptual 

understanding of quadratic expression which supported the procedural fluency of 

multiplying linear expressions and factoring quadratics.  Additionally, the NTCM (2000) 
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Process Standards (see Appendix C), which describe ways students acquire and apply 

content knowledge, were included to promote values held by the mathematics education 

community.  The NCTM Process Standards included: (a) problem solving; (b) reasoning 

and proof; (c) communication; (d) mathematic connections; and (e) representations of 

mathematics ideas and concepts.   

Additionally, the lesson plans incorporated instructional practices that have 

demonstrated positive effects for the acquisition of various mathematics processes for 

students with LD within the special education research.  These instructional practices 

include visual representations (i.e., concrete manipulatives, sketches, graphic organizers), 

and components of explicit instruction (e.g., teacher-directed investigations, multiple 

practice opportunities).   

Many general educators do not receive training on adapting or modifying their 

curricula or instructional methods for students with LD (Maccini & Gagnon, 2002), 

despite the recommendation from the National Council of Teachers of Mathematics 

(2001) to do so. As part of their Principles and Standards for School Mathematics, 

NCTM has identified an equity principle as a critical theme of school mathematics.  This 

principle identifies equity as high expectations and strong support for all students 

(NCTM, 2000, p.11).  “Equity does not mean that every student should receive identical 

instruction; instead, it demands that reasonable and appropriate accommodations be made 

as needed to promote access and attainment for all students” (p. 11).  Incorporating 

instructional practices identified by the special education research community into the 

mathematics classroom promotes the equity principle.  Therefore, this intervention 
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incorporated instructional practices from the special education literature and the NCTM‟s 

five process standards.  See Appendix K for an example of a lesson plan.   

Single-Subject Design 

The primary research design within Embedded Mixed Methods was a single 

subject research design. Single subject research incorporates an experimental design that 

documents causal or functional relations between independent and dependent variables  

(Horton, et. al., 2005; Kennedy, 2005) through documenting patterns of performance 

during phases of the study (i.e., baseline and intervention).  Many variations of single 

subject design (i.e., reversal, multiple baseline, multiple probe) are included in this broad 

category of research, however, all designs share three common characteristics: (a) 

continuous assessment over time; (b) replication of intervention effects over multiple 

participants, behaviors, or settings; and (c) data evaluated through visual analysis 

(Kazdin, 1982).    

Single subject research is largely based in the field of behavior analysis and 

includes three underlying assumptions.  First, this research approaches the subject matter 

by understanding how individuals behave, not by describing mathematical averages of 

groups (Kennedy, 2005).  The individual remains the focus, unlike group research 

designs where the individual‟s performance may be lost when only the group average is 

reported (Kazdin, 1982).  The second assumption is that the variables being studied must 

be operationalized, or concretely described (Kennedy, 2005).  Operational definitions 

must be provided for independent and dependent variables, as well as participants and 

settings (Horton, et al., 2005).  In fact, quantifying a behavior is fundamental.  In 

educational research, the academic performance on a particular task is the quantified 



77 

 

behavior.  This behavior must be (a) defined; (b) measureable; and (c) physically 

recorded.  The third assumption is that single-subject research uses an inductive approach 

to understanding human behavior as single-subject designs explore the nature of behavior 

and develop theories from the data collected (Kennedy, 2005).   

I choose to use a single-subject design for two reasons.  First, this design has a 

history of establishing evidence-based practices for students with disabilities (Horton, et 

al., 2005), which is critical as federal mandates require the use of scientifically-validated 

practices (IDEIA, 2004).  Although experimental group designs also establish evidence-

based instructional practices, group designs report only group performance and neglect 

the individual.  I am most interested in the individual; therefore, my second reason for 

choosing a single-subject design is that this design focuses on the individual and will 

support a detailed analysis of nonresponders as well as responders to the intervention 

(Horton, et al., 2005).  The following section will describe the:   (a) experimental design; 

(b) independent variable; (c) dependent variables and measurement procedures; and (d) 

data analysis that will be used in the single-subject component of the proposed study.  

Experimental design and study procedures. This study used a multiple probe 

design across two groups over five participants. This design consisted of two phases, 

baseline and intervention, (although maintenance and transfer data were also collected) 

and involved the systematic and sequential introduction of the independent variable to 

one group at a time (Tawney & Gast, 1984).  In this design, baseline data are collected 

intermittently prior to the introduction of the intervention.  A stable baseline followed by 

a change in performance after the introduction of the intervention replicated over multiple 

participants establishes internal validity (Tawney & Gast, 1984). A multiple probe design 



78 

 

is appropriate and advantageous when prolonged baseline measures are unnecessary, 

reactive, or impractical (Horner & Baer, 1978; Tawney & Gast, 1984).   

Baseline phase.  The baseline condition consisted of the participants in their 

typical mathematics classroom with no instruction relating to quadratic functions.  During 

this phase, I had no contact with the participants.  Randomly chosen parallel versions of 

domain probes were administered by school staff, specifically the learning specialist and 

the math department chair. Participants were removed from their typical classroom to 

complete the baseline domain probes. According to Kennedy (2005), “baseline needs to 

be as long as necessary, but no longer” (p. 38).  Therefore, a minimum number of 

baseline probes were administered to establish stability.  During probe sessions, the 

participants were given pencil, paper, calculator, and algebra blocks.  If asked, the word 

problems were read to participants, as my goal was to assess algebraic ability not reading 

ability.  However, the word problems were read verbatim and without additional 

explanation or prompting.  If a participant asked a question regarding a problem, the staff 

member was asked to respond by saying “Do the best you can.”  Probes were collected 

for scoring.  When the performance of all group members reflected stability in level and 

trend (i.e., at or below 60% accuracy for at least two data points, little variability in 

scores, and trends in data did not reflect a significant increase in scores), the intervention 

was introduced to the first group.   

Intervention phase. During the intervention phase, participates were removed 

from their mathematics class in groups of two or three to receive instruction via the 

independent variable.  I provided all of the instruction during the intervention phase; 

however all domain probes were administered by school personnel.  Two groups of 
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students participated in the study. Group 1 consisted of Cheryl and Cindy and Group 2 

consisted of Sasha, Anna, and Marcia. The introduction of the independent variable was 

staggered and each group of participants received the intervention after demonstrating 

stability in level and trend during baseline probes.   Specifically, an initial probe was 

collected for each group during the baseline phase.  Then an additional consecutive probe 

was collected for Group 1.  Stable baseline was demonstrated, therefore, I introduced the 

intervention to Group 1 only.  When Group 1 completed the intervention, three additional 

probes were collected on participants in Group 2 so that there was one more consecutive 

probe than the number of probes collected for Group 1.  I then introduced the intervention 

to Group 2.   

During the intervention phase, participants received instruction on target 

objectives as outlined in the scope and sequence of objectives (see Appendix D).  The 

group of participants advanced to the next lesson after each participant scored 80% or 

higher on the objective probe during the lesson (Hudson & Miller, 2006).  Additionally, 

an error analysis was completed on each probe to confirm that participants mastered the 

skills and concepts necessary to move forward in the instructional unit.  The intervention 

ended after the participants reached criterion on all lesson objectives.  Parallel versions of 

posttest domain probes were administered over the next three consecutive sessions 

immediately following the end of the intervention.   

Interrater reliability. Interrater reliability was obtained on 33% of the domain 

probes, lesson probes, and transfer measures to monitor the consistency in which the 

dependent variables are being measured.  A trained graduate student and I independently 

scored each probe to allow for an objective comparison.  Each domain probe was scored 
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using an answer sheet which stated specific point assignments for each task.  The 

investigator provided mock domain probes with the answer sheet to the graduate student 

to practice scoring.  The graduate student was considered trained after scoring a 

minimum of three mock probes with at least 90% agreement with the investigator.  The 

percentage of scorer agreement was determined by: (a) summing the total number of 

correct responses recorded by each observer, (b) dividing the smaller total by the larger 

total; and (c) multiplying by 100 (Kennedy, 2005).  

Fidelity of treatment. Fidelity of treatment refers to the extent to which critical 

components of the intervention are implemented as planned (O‟Donnell, 2008).  An 

independent observer (i.e., trained graduate student) conducted fidelity of treatment 

observations by using a checklist that included the components of the intervention (see 

Appendix L). Training was provided by the investigator via explanation and review of 

scripted lesson plans and accompanying video recorded instructional sessions.  The 

graduate student was considered trained after successfully identifying components of the 

intervention from three scripted lesson plans and accompanying video recorded 

instructional sessions with at least 90% agreement with the investigator.  Fidelity 

observations were conducted on 33% of the instructional sessions, via video recordings.  

Fidelity of treatment was calculated by dividing the number of components present by the 

number of total components and multiplying the quotient by 100 (Kennedy, 2005).   

Additionally, interobserver agreement was obtained for one of every three fidelity 

observations.  During these sessions, two independent observers will conduct fidelity of 

treatment observations.  Specifically, an additional independent observer (i.e., doctoral 

student) viewed three of the eight fidelity observations and completed a checklist that 
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included the components of the intervention (see Appendix L). Training was provided by 

the investigator via explanation and review of the scripted lesson plans and the fidelity 

checklist.  The doctoral student was considered trained after successfully identifying 

components of the intervention from one scripted lesson plans with at least 90% 

agreement with the investigator.  Percentage of interobserver agreement will be 

calculated by (a) summing the total number of correct components recorded by each 

observer; (b) dividing the smaller total by the larger total; and (c) multiplying by 100 

(Kennedy, 2005).  

Independent variable.  In single-subject research, the independent variable is the 

intervention which is actively manipulated during the study (Horton, et al., 2005). In this 

study, the independent variable combined the process standards promoted by the 

mathematics education community (NCTM, 2000) and critical instructional practices 

identified by the special education research community.  Specifically, the independent 

variable combined the use of blended instruction and multiple visual representations (e.g., 

manipulatives and graphic organizers) to develop conceptual knowledge of quadratic 

expressions and the procedural fluency in transformations of quadratics expressions. The 

following sections describe elements of the instructional package.  

Instructional procedures. Critical instructional practices identified by the special 

education research community and the process standards promoted by the mathematics 

education community (NCTM, 2000) were used in instructional delivery.  Components 

included providing a(n): 

1) Advanced organizer, which consisted of a review of pre-requisite skills, the 

objective of the current lesson, and motivation for learning the skill; 
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2) Investigation, which consisted of the investigator facilitating the completion 

of a new task using critical instructional practices and materials from both the 

special education and mathematic education research; 

3) Multiple practice opportunities with appropriate scaffolds, which included 

opportunities for students to work on similar problems with the teacher, a 

peer, or individually.  

4) Closure, which consisted of a review of the lesson and assessment.  

Lesson plans were developed to include each component to ensure a systematic 

implementation of the lessons. Only one target skill/concept was presented for each 

lesson as recommended by Hudson and Miller (2006).  Additionally, the NCTM process 

standards were embedded in each lesson plan.  Lesson plans included word problems 

reflecting real-world situations and problems using symbolic notation only, as suggested 

by the National Mathematics Advisory Panel (2008).   

Throughout the instructional sessions, the teacher-researcher primarily acted as a 

facilitator.  Specifically, participants were guided toward concepts and skills through 

discussions with the teacher-researcher and other participants in the group.  For example, 

when participants completed a task such as factoring a quadratic expression, they were 

asked to compare their responses with their group members and to confirm using the 

instructional methods embedded within the intervention (i.e., Lab Gear, Box Method).   

The process was emphasized rather than the answer, therefore, students were required to 

communicate with their peers and justify their responses when their answers were correct 

or incorrect.  Specific questions included, “Explain how you got your solution” and 

“Confirm your solution by using another representation.”  These prompts were provided 
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for correct, partially correct, and incorrect responses.  Participants were provided explicit 

instruction in the form of teacher modeling and teacher think alouds if they were unable 

to attain the correct response through questioning and discussions. 

Blended instruction.  Procedural fluency and conceptual knowledge were 

targeted through the components in the blended instructional format.  Components of 

explicit instruction in blended instruction included: (a) an advanced organizer; (b) 

teacher-directed investigation;   (c) multiple practice opportunities; and (d) explicit 

sequencing of tasks.  An advanced organizer provided students with a review of 

prerequisite skills, the objective of the current lesson, and rationale for learning the skill.  

The teacher-directed investigation involved maximizing students‟ engagement via 

questions and prompts, while modeling the thinking and action procedures needed to 

solve the problem. Multiple practice opportunities included a variety of activities 

including hands-on activities, completion of real-world problems, group work, or 

individual work.  I continually checked for student understanding of the content being 

taught and provided corrective feedback, which took the form of prompting questions or 

reteaching.  Explicit sequencing referred to the break down of a mathematical concept 

into instructional bites that were taught in a predetermined sequence (Scheuermann, et. 

al., 2009).  See Appendix D for a break down of the content for this intervention.  

Additionally, the quadratics were first introduced as discrete, fixed values and then as 

continuous functions, as suggested by experts in mathematics education (Picciotto, 2010; 

Sfard & Linchevski, 1994).   Additionally, the NCTM process standards were embedded 

throughout blended instruction as students were provided opportunities to: (a) problem 

solve; (b) demonstrate reasoning by formulating conjectures and justifying solutions; (c) 
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communicate using mathematics language; (d) connect new algebra content to previously 

learned mathematics and/or to other mathematical content (e.g., geometry); and (e) work 

with various representations of the task.    

Multiple visual representations. In this study, multiple visual representations of 

quadratics included concrete manipulatives, sketches of manipulatives, sketches of 

qualitative representations on graph boards, and an expansion box.   Multiple 

representations of a mathematic concept is recommended by NCTM (2000) and special 

education researchers (Bryant, Bryant, Kethley, Kim, Pool, & Seo, 2008; Jitendra, 

Salmento, & Haydt, 1999; Jitendra, Griffin, Deatline-Buchman, Sczesniak, Sokol, & Xin, 

2005). Research in special education has identified the concrete-representational-abstract 

graduated instructional sequence as an effective strategy for teaching algebraic 

procedures and concepts such as integers (Maccini & Hughes, 2000; Maccini & Ruhl, 

2000) and linear equations (Witzel, 2003).  In the current study, the CRA sequence was 

modified to and simultaneously introduce multiplying linear expressions through 

concrete manipulatives, sketches of the manipulatives, and symbolic notation as 

suggested by Pashler and colleagues (2007).   

Procedural fluency was targeted through the use of concrete manipulatives (i.e., 

algebra tiles), which provided a visual representation of the algebraic expressions, 

promoting a meaningful understanding of the abstract symbolism involved in the 

procedures.  Additionally, procedural knowledge at the abstract level was targeted 

through the use of a graphic organizer in the form of an expansion box (see Appendix J).  

The expansion box (i.e., the Box Method) supported the transition from using algebra 
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blocks to using only abstract notation when factoring a quadratic expression and when 

multiplying two linear expressions (Picciotto, 1995).   

 Prior to the intervention, the independent variable (i.e. blended instruction and 

multiple visual representations) was piloted with three high school students that met the 

inclusion criteria listed above and were not part of the actual study.  The purpose of 

piloting the independent variable was to gather input from the pilot participants on the 

enjoyment and benefit of the intervention which lead to adjustments and revisions.   

Dependent variables and measurement procedures. Dependent measures 

consisted of investigator-developed probes and included: (a) domain probes; (b) objective 

probes; and (c) transfer probes. Each probe was reviewed by experts in mathematics 

education and mathematics special education to determine internal validity.  Prior to the 

proposed study, the probes were piloted with three high school students meeting the 

inclusion criteria stated above but who were not included in the actual study.  The 

purpose of piloting these dependent measures was to evaluate their reliability and obtain 

feedback from the pilot participants regarding their ease of use.  

 Domain probes.  The investigator developed 3 parallel versions of the domain 

probe that were identical in content and addressed all objectives in the instructional unit. 

Content validity of the parallel measures was established by expert review (Huck, 2008).  

Specifically, two experts in the field of mathematics special education reviewed each 

version of the domain probes and determined that they contained the same algebra 

content and were of the same level of difficulty.  Domain probes were used to: (a) 

establish baseline performance prior to the intervention; (b) determine performance after 

intervention; and (c) determine maintenance of performance four to six weeks after the 
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intervention.  To address both conceptual and procedural knowledge, question types 

included contextualized and non-contextualized problems, tables of data, and open-ended 

questions. See Appendix F for an example domain probe containing examples of each 

question type.   

Parallel versions of the domain probe were developed and administered randomly 

as a pretest, posttest, and maintenance test.  Pretest domain probes were administered 

during baseline for all participants.  Posttest probes were administered the three sessions 

immediately following the end of the intervention.  Maintenance probes were 

administered four to six weeks following intervention.  Participants in Group 1 completed 

the maintenance probe six weeks after intervention and participants in Group 2 completed 

the maintenance probe four weeks after intervention. All participants completed the same 

version of the domain probe for their maintenance measure.  All domain probes were 

administered to participants by school personnel. See Appendix F for a sample domain 

probe.  

 Lesson probes.  Lesson probes contained items related to the objective of a 

specific lesson.  Objective probes were given to participants at the end of each session in 

which the specific objective was taught.  When all participants in a group met criterion 

(80% accuracy) on the objective probe, the next consecutive target objective was 

addressed the following session.  See Appendix D for the scope and sequence of the unit 

objectives.  See Appendix M for a sample lesson probe.   

 Transfer probes. Transfer probes addressed the participants‟ ability to transfer, or 

generalize, knowledge learned during the intervention to additional algebra tasks.  In this 

study, participants applied knowledge and procedures learned through blended instruction 
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with multiple visual representations of quadratics to three tasks.  For task one, 

participants completed a table of data incorporated perimeter and volume contexts.   

Participants multiplied a trinomial by a four-term polynomial for task two.  The final task 

required participants to factor a quadratic expression with a coefficient of three.  Transfer 

probes were administered by school personnel the session immediately following the 

session in which participants complete the posttest probe.  Additionally, the investigator 

observed this session.  See Appendix N for a sample transfer probe.    

Data analysis procedures. The traditional approach to analyzing single-subject 

research data involves visual analysis of graphic displays that provides a detailed 

summary and description of the participant‟s performance (Horton, et al., 2005; Kennedy, 

2005; Tawney & Gast, 1984).  Data were collected and graphed continually throughout 

the study for each individual participant.  Patterns in data were continuously analyzed to 

determine the next step in the study.  For example, all participants in a group needed to 

meet criterion on a lesson probe before advancing to the next objective in the sequence.  

Additionally, visual analysis allowed for independent analysis of the data to determine 

the reliability of the findings (Tawney & Gast, 1984).  Specifically, I focused on: (a) 

within-phase patterns; and (b) between-phase patterns (Kennedy, 2005).   Information 

from these analyses determined if a functional relationship existed between the 

independent and dependent variables (Horner, et al., 2005).   

 Within-phase patterns. Within a given phase (i.e., baseline or intervention), data 

points were analyzed in regard to: (a) level; (b) trend; and (c) variability.  Level referred 

to the average of the data points within a phase (Kennedy, 2005).  Trend referred to the 

slope of the data points (Tawney & Gast, 1984).  Variability was the degree to which 
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individual data points deviate from the overall trend (Kennedy, 2005).  For this study, 

within-phase patterns for baseline consisted of: (a) a low average level of performance; 

(b) stable or decelerating trend; and (c) low variability in data points (i.e., 80-90% of the 

data points within a 15% range of the mean level) (Tawney & Gast, 1984).  The within-

phase patterns for the intervention phase consisted of: (a) a higher average level of 

performance; (b) stable or accelerating trend; and (c) low variability in data points with 

80-90% of the data points within a 15% range of the mean level.   

 Between-phase patterns. The between-phase pattern determined the functional 

relation between the independent and dependent variables by an immediate change in 

level and trend (Kennedy, 2005; Tawney & Gast, 1984).  Following the introduction of 

the intervention, the visual analysis of the graphs was analyzed to determine: (a) an 

increase in level; (b) an accelerating trend; (c) the magnitude of the trend; and (d) low 

variability of data points within each phase. 

Social validity.  Social validity represents the importance, effectiveness, 

appropriateness, and/or satisfaction the participants‟ experience in relation to the 

intervention.  Kennedy (2005) identified three steps in determining social validity: (a) 

choosing a consumer; (b) choosing an assessment strategy; and (c) analyzing the data.  At 

the end of the study, participants completed an investigated-developed questionnaire 

which assessed their perceptions regarding their learning of the content, the helpfulness 

of instructional tools (i.e., manipulatives, Box Method, word problems, tables of data) 

and their likes and dislikes of the intervention (see Appendix O).  The instrument was 

developed from other social validity measures within the field of mathematics special 

education research (Maccini, 1998; Mulcahy, 2007).   
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The math department chair administered the questionnaire to all of the 

participants who were asked to share their thoughts on the intervention.  The measure 

consisted of 10 questions on a five-point Likert scale concerning the effectiveness of 

various aspects of the intervention. Participants indicated a score of “1” if they strongly 

disagreed with a statement, “2” if they disagreed, “3” if they felt neutral, “4” if they 

agreed, and “5” if they strongly agreed. Additionally, participants responded to six open-

ended questions concerning their opinion of quadratic expressions and suggestions for 

improving the intervention.  Participants were permitted to dictate or write their 

responses to these questions.  Data were analyzed by determining the mean score for each 

item on the Likert scale and reporting themes from the responses to the open-ended 

questions.  

Qualitative Design 

The overarching goal of the qualitative design for this study was to produce 

descriptive knowledge that will supplement the findings from the single-subject design to 

answer the research questions identified in chapter 1.  Although the probes from the 

single-subject design provided quantitative data indicating to what extent students with 

LD develop, maintain, and transfer procedural and conceptual knowledge associated with 

quadratic expressions, single-subject designs purposively avoid cognitive references 

(Kennedy, 2005).  Therefore, a qualitative design was necessary to provide a thorough 

understanding of participants‟ cognitive processes regarding the algebraic tasks.   

Similar to single-subject research, qualitative research focuses on the individual 

with the goal of understanding the phenomenon from the participants‟ perspective.  

However, qualitative research provides an opportunity to explore a variety of factors that 
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may influence a situation (Hancock & Algozzine, 2006), but are often overlooked in 

single-subject designs. Factors, such as past math experiences, relationships with teachers 

and peers, and overall happiness in school, are extraneous variables that effect student 

performance (Noddings, 2003) but are not easily controlled in single-subject designs 

(Kennedy, 2005).  Qualitative research methods provide an opportunity to identify these 

factors and explore their possible contributions to participant performance.   

Specifically, the qualitative method used in this embedded design was a case study 

focusing on one critical case, Marcia, who provided a rich data source that was 

representative of the group (Creswell, 2007).  The use of a single case study to highlight 

students understanding of mathematics programs has made significant contributions in 

the field of mathematics education (Erlwanger, 1973). The purpose of this case study was 

not to generalize the data, but to elucidate the specific features of the participants of this 

study (Creswell, 2007).  The case study focused on Marcia‟s thinking and understanding 

of quadratic expressions through the instructional practices and tools embedded within 

the intervention. Qualitative data provided greater insight than only the quantitative data 

collected from the probes.  Understanding how students think about a task is extraneous 

to the single-subject design.  The following section describes procedures for: (a) the data 

collection; (b) the data analysis; and (c) data validation of the case study of Marcia.   

Data collection. Qualitative data were collected through: (a) transcriptions of 

video recorded sessions; (b) work samples; (c) investigator field notes of direction 

observations (Creswell, 2007).  All instructional sessions were video recorded.  After 

viewing all recordings, segments that describe the participants‟ cognitive processes were 

transcribed.  Video recordings were transcribed to document: (a) participants‟ spoken 
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words verbatim; and (b) participants‟ behaviors (i.e., manipulation of algebra blocks).  

Additionally, work samples were collected from Marcia for analysis.  In addition, the 

investigator wrote write field notes after each section to address Marcia‟s progress and 

participation during the intervention sessions. Session recordings, work samples, and 

field notes provided descriptive data to support the research findings from the single-

subject design.   

Data analysis. My method for data analysis was based on Creswell‟s (2007) data 

analysis procedure. Specifically, I progressed through four stages of data analysis: (a) 

data managing; (b) reading and memoing; (c) describing, classifying, and interpreting the 

data; and (d) representing the data. To manage my data, I transcribed verbatim relevant 

sections of all instructional sessions. Specifically, I transcribed sections in which 

participants demonstrated their cognitive processes through verbalizations and/or 

behaviors.  Additionally, I focused on the overarching themes of representations and 

metacognition, which directly linked to my research questions and were themes that were 

evident from the pilot study.  At this point, I decided to focus my qualitative analysis on 

only one student (Marcia).  This decision was made through discussion with three 

members of my dissertation committee and with the rationale that Marcia provided a rich 

data source that was representative of the group.  To fulfill the requirements of the 

embedded mixed method design, Marcia‟s data provided the supplementary qualitative 

data to support the quantitative data from the single subject research design.  Specifically, 

Marcia‟s data provided insight into why all participants demonstrated significant gains on 

the domain probes from pre-intervention to post-intervention.   
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Next, I read and re-read the transcripts of Group 2 (i.e., Marcia‟s group), while 

making notes (i.e., memoing). My notes reflected initial analysis and possible codes 

and/or themes. For example, I observed the impact of specific components of the 

intervention on Marcia‟s mathematic development and her metacognition.  I chose to 

personally code the data rather than use a computer program, which would have caused 

an uncomfortable distance between me and the data (Creswell, 2007). Additionally, 

reliability, or dependability, of codes was established through confirmation from a second 

coder (Creswell & Clark, 2011).  Throughout this stage, I continually triangulated (i.e., 

cross-checked) my memos with my field notes and with Marcia‟s work samples.   

 In the describing, classifying, and interpreting phase, I developed possible codes 

based on my memos.  Specifically, codes focused on the multiple representations (i.e., 

area context, Lab Gear, and Box Method) included in the intervention and the impact of 

the intervention on metacognition (i.e., self regulation, strategic planning, disposition, 

socially shared metacognition).  Then I read through the transcripts again searching for 

support of these codes.  Additionally, I discussed my initial codes with two members of 

my dissertation committee.  Based on these discussions and the support from transcripts, 

field notes, and Marcia‟s work samples, I organized the data into codes (See Appendix P 

for coding description).  Through interpretation of codes, I developed two overarching 

themes (i.e., representations and metacognition) and subthemes (Creswell, 2007). Figure 

1 displays the coding and theme development process.  



93 

 

 

 

 

 

 

 

Initial codes 

 

 

 

Themes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Coding and theme development
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Data validation.  In qualitative research, validation refers to the attempt to assess 

the accuracy of the findings as described by the researcher and the participant (Creswell, 

2007; Creswell & Clark, 2011).   Creswell and Clark (2011) recommend video recording 

intervention sessions as a way to collect unobtrusive data, which minimizes bias and 

threats to internal validity.  A variety of additional validation strategies may be employed 

while conducting qualitative research and Creswell (2007) suggests that qualitative 

researchers use a minimum of two strategies.  The current study contained four validation 

strategies based on Creswell‟s procedures of validation.  Specifically, through 

triangulation, I obtained collaborating evidence of themes found in the transcripts from 

my field notes and Marcia‟s work samples.  Additionally, throughout the data analysis 

process, I continually engaged in peer debriefing sessions with my advisor.  I also 

provided rich, descriptive data in Chapter 5 to allow readers to draw their own 

conclusions.  Lastly, I had an external auditor examine both the process and the product 

of the account to assess for accuracy.  The external auditor had no connections to the 

study, but had experience with mixed methods research designs.    After reading the 

relevant sections (i.e., sections pertaining to qualitative research) of this dissertation, the 

external auditor stated that I clearly described what was happening during the study.  

Additionally, she confirmed that the themes, interpretations, and conclusions were 

supported by the data through the examples from the transcripts, work samples, and field 

notes.   
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Chapter 4: Quantitative Results 

 In this chapter I report results relative to the research questions addressed by the 

single subject design.  Specifically, the following research questions are addressed.  

When provided blended instruction with visual representations:  

1. To what extent do secondary students with mathematics disabilities or 

difficulties (MD) increase their accuracy on algebraic tasks involving 

quadratic expressions embedded within area problems?  

2. To what extent do secondary students with MD maintain performance on 

algebraic tasks involving quadratic expressions embedded within area 

problems two to four weeks after the end of the intervention?  

3. To what extent do secondary students with MD transfer their knowledge of 

quadratic expressions to problem-solving tasks?  

4. To what extent do secondary students with MD find blended instruction with 

visual representations beneficial (i.e., social validity)? 

Results on Academic Outcomes 

 

Research Question 1: Increase in Accuracy on Algebraic Tasks.  Increases in 

accuracy on algebraic tasks involving quadratic expressions were measured by 

performance on domain probes and lesson probes.  As shown in Figure 2 all participants 

substantially increased their overall accuracy on domain probes from an average of 10% 

during baseline to an average of 93% after the intervention.  Specifically, baseline scores 

ranged from 0% - 25% and scores ranged from 84% - 100% following intervention, 

indicating that all participants met criterion (i.e., 80% or greater).  
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Visual analysis of the graph indicates within-phase patterns and between-phase 

patterns.  Specifically, an analysis of within-phase patterns indicates stability in level and 

trend with little variability of data points.  An analysis of between-phase patterns 

indicates a dramatic increase in level with low variability within each phase (i.e., baseline 

and intervention), reflecting stability of performance. Table 4 provides summary data for 

each participant.   

Table 4 

Average Percentage of Accuracy and Increases in Percentages for Domain Probes 

 

 

   Baseline  Post-Intervention  Increase  

 

Cheryl   24%    89%   65 % points 

  (r = 22% - 25%)  (r = 84% - 91%)   

 

Cindy   19%    92%   73% points 

  (r = 18% - 20%)  (r = 89% - 95%) 

 

Sasha   5%    95%   90% points 

  (r = 0% - 13%)  (r = 91% - 100%) 

 

Anna   12%    93%   81% points 

  (r = 11% - 13%)  (r = 89% - 93%) 

 

Marcia   1%    94%   93% points 

  (r = 0% - 4%)   (r = 93% - 96%) 

 

             

 

To establish a greater understanding of the participant performance as relative to 

the 80% accuracy criterion, an analysis of post intervention domain probes was 

completed.  This analysis revealed that all five participants successfully transformed 

quadratic expressions in factored form to standard form and vice versa.  Specifically, the 

participants mastered the task of multiplying linear expressions and factoring quadratic 
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trinomials.  Additionally, all participants demonstrated competency in explaining the 

impact on the area after renovations (i.e., the area increased or decreased).  Additionally, 

all participants demonstrated an understanding of the equality between the standard form 

and factored form of the quadratic expressions by comparing tables of data and graphs for 

each form of a specific quadratic expression.   

An error analysis revealed that all participants missed points on the open ended 

questions based on three reasons: (a) they incorrectly responded to the question; (b) they 

provided faulty justification; or (c) they neglected to provide an explanation.  Two 

participants responded incorrectly to an open ended question.  When asked if the office 

workers would have more, less, or the same amount of classroom space after renovations, 

Cheryl responded, “The same. The shape just changed to a rectangle.”  Additionally, 

Sasha missed points on an open ended question that asked if the shape of the area will 

change after the renovation and to justify the response.  Sasha incorrectly responded that 

the shape remained a square, just a bigger square; however, the renovations changed the 

shape from a square to a rectangle.   

Cheryl also provided faulty justifications.  Specifically, when responding to the 

question, What can be said about the shape and size of each family’s backyard? Explain 

how you know this, Cheryl consistently referred to the backyards as getting bigger.  She 

explained that “the y-axis graph shows us” and “There are a lot of positives.”   

The other four participants neglected to provide justifications for some of the 

open ended questions.  For example, in response to the question Do the renovations 

change the shape or the squareness of the area of the dorm? Justify your answer, Marcia 

wrote, “shape & area is diff – bigger area & now rectangle.” but, she did not provide 
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justification for her response.  Cindy and Anna wrote “They are equal” in response to the 

question, What can you tell me about the standard form and the factored form of 

quadratic expressions?, however, no explanation was provided.   Sasha did not provide 

any justification for her incorrect response listed above.  In addition to the error from the 

open ended questions, Anna missed points on the third post intervention domain probe as 

a result of not multiplying the binomials to complete the table.  Specifically, she indicated 

that the area of any square dorm after renovations was represented as (x + 5) (x +4).   

 Increases in accuracy on algebraic tasks involving quadratic expressions were also 

measured by performance on lesson probes.  Lesson probes assessed content specific to 

each lesson objective and were administered at the end of each lesson.  All participants 

demonstrated high performance on each lesson probe and consistently met or exceeded 

the criterion (80% accuracy or greater).  Cheryl earned a mean score of 99% (r = 95% - 

100%), Cindy earned a mean score of 97% (r = 82% - 100%), Sasha earned a mean score 

of 96% (r = 82% - 100%), Anna earned a mean score of 96% (r = 89% - 100%), and 

Marcia earned a mean score of 95%   (r = 83% - 100%).  

Research Question 2: Maintenance. Maintenance of performance on algebraic 

tasks involving quadratic expressions was measured by a domain probe given four to six 

weeks after intervention.  All participants demonstrated a high degree of retention of the 

content taught during intervention and reached the criterion score of 80% accuracy or 

greater. The mean score across participants equaled 90% with a range of 80% - 100%.  

Scores for participants in Group 1 averaged 82% accuracy.  Specifically, Cheryl earned a 

score 80% and Cindy scored 84% accuracy.  Scores for participants in Group 2 averaged 
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96% accuracy. Specific scores for Sasha, Anna, and Marcia were 95%, 93%, and 100% 

respectively.   

Research Question 3: Transfer.  Transfer of the participants knowledge of 

quadratic expressions was measured by their performance on a transfer measure that 

consisted of three tasks: (a) determining perimeter and volume expressions from a 

contextualized problem with accompanying tabular data; (b) multiplication of a trinomial 

by a four term polynomial; and (c) factoring a trinomial containing a quadratic term with 

a coefficient other than one.   Participants‟ performance varied as evidenced by the 

percentage of accuracy ranging from 33% to 100% with a mean score of 66%. Scores for 

participants in Group 1 averaged 76% accuracy.  Specifically, Cheryl earned a score 73% 

and Cindy scored 78% accuracy.  Scores for participants in Group 2 averaged 59% 

accuracy, but contained a wide discrepancy among scores.  Specific scores for Sasha, 

Anna, and Marcia were 33%, 45%, and 100% respectively.    

Research Question 4: Social Validity.  The mean score from the social validity 

measure equaled 4.3 (r = 2 – 5; mode = 4; See Table 5).  All participants reported that 

they found the intervention to be beneficial and would recommend this intervention for 

other students.  Results from the social validity measure indicated that the participants 

agreed or strongly agreed that the use of manipulatives and the box method helped them 

to multiply binomials and factor quadratic trinomials.  Responses were mixed when 

asked about the benefit of word problems, tables of data, and talking about the problems 

with the teacher and/or peers.   

 Overall, participants responded positively on open-ended questions from the 

social validity measure.  For example, Cindy commented, “It was visual and I actually 
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understand it”   and Anna stated, “It helped me, the repetitiveness and the visual / hands- 

on thing.”  When asked what they liked least about the intervention, Cheryl indicated that 

the intervention “lasted too long” as she “understood it very quickly.”  Additionally, 

Sasha did not like “answering the problem after the actual work problem, like asking 

what happened to the shape.”   
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Table 5 

 

Participants’ Responses on Social Validity Measure___________________________________________________________ 

Questions      Cheryl          Cindy          Sasha          Anna          Marcia          Mean 

 

I learned to multiply binomial expressions to   5            4                    5             4     4  4.4 

form a quadratic expression. 

 

 I learned to factor quadratic trinomials.   5            4                    5             4     4  4.4 

   

The use of manipulatives helped me to multiply   5            4        5             5     5  4.8 

binomials expressions and factor quadratic expressions. 

 

The use of the box helped me to multiply binomials  5            5        5  5     5  5 

 expressions and factor quadratic expressions. 

 

The word problems helped me understand what the 4            3        3  4     5  3.8 

expressions represented.  

 

The data tables helped me understand what the  5            3        4  4     5  4.2 

expressions represented.  

 

Talking about the problems with the teacher and/or 2            3        4  3     5  3.4 

 classmates helped me understand.   

 

This intervention was worth my time.   4            4        5  4      5  4.4 

 

I would recommend this intervention to other students. 4            4        4  4      5  4.2 

 

As a result of the intervention, I feel better about my 3            4        4  4      5  4 

algebra skills.  
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Interrater reliability.  Initial reliability on lesson probes, domain probes, and 

transfer probes was 97% (range 96-100%), with a reliability of 100% following 

discussion of differences.  Disagreement occurred on the scoring of the open-ended tasks, 

specifically, when to assign full credit verses partial credit for a justification.   

Treatment fidelity.  According to an independent observer, the intervention was 

implemented as intended as 100% of the instructional components were identified.  A 

second independent observer also viewed videos of three fidelity sessions.  The 

interobserver agreement averaged 93% (range 80 – 100%) with fidelity equaling 100% 

following discussion of differences.  Disagreements occurred on one session in which the 

objective, rationale, and review of big ideas at end of the lesson was initially overlooked 

by the second observer.  
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Chapter 5: Qualitative Results 

In this chapter I report results relative to the research questions that addressed the 

qualitative data.  Specifically, the following research question is addressed.  

When provided blended instruction with visual representations:  

How do the qualitative findings provide an enhanced understanding of the 

quantitative results? Specifically, what connections and disconnections to the 

algebra content emerge as a result of the intervention and how can these 

findings improve future instruction? In what ways does the intervention 

enhance aspects of metacognition?   

To supplement the quantitative findings from the single subject design, a 

qualitative analysis of work samples, transcriptions of participation in instructional 

sessions, and my field notes were completed on one participant (Marcia). I decided to 

focus my qualitative analysis on Marcia because she provided a rich data source that was 

representative of the group, which Creswell (2007) refers to as a critical case. According 

to Creswell, a critical case refers to a significant case which permits generalization and 

application of information to other similar cases. Through a coding process and thematic 

analysis of these qualitative sources, two categories of themes (representations and 

metacognition) emerged from the data and are described in the section below (see 

Appendix P for the coding descriptions and examples; Figure 1 in Chapter 3 for the 

coding and theme development process).    

Representations 

Representations referred to processes and products that were externally 

observable within Marcia‟s work samples, as well as to those that occurred internally as 
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evidenced by statements made while she engaged in doing mathematics (NCTM, 2000).  

Processes included the steps that Marcia progressed through as she engaged with a task, 

while products referred to her final solution or response to a task, whether externally on a 

work sample or internally via her verbalizations. Internal and external aspects of 

processes and products are important to consider in school mathematics relating to 

connections and disconnections between elements of the intervention (i.e., area context, 

Lab Gear, and Box Method) and the algebra content.  Through the Connections process 

standard, NCTM (2000) stresses the importance of students making connections or 

associations within and among mathematical ideas as well as connections to the real 

world and to other disciplines.  However, Marcia did not always form these connections.  

At times she demonstrated a disconnection between the representations and the algebra 

content (i.e., a misconception regarding the representation and the algebra content).  The 

following sections describe three themes that emerged under the category of 

representations: (a) connections and disconnections between the area context and the 

algebraic knowledge; (b) connections and disconnections between the Lab Gear and the 

algebra content; and (c) connections and disconnections between the Box Method and the 

algebra content. 

Connections and disconnection between the area context and the algebra 

content. The area context referred to the representation of the length · width = area in 

three ways. First, the instructional unit incorporated contextualized word problems 

involving area situations.  For example, square bedrooms were renovated so that the 

lengths and widths would increase or decrease. Second, tables of data were included that 

contained area problem containing discrete number examples and generalizing statements 
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using variables (see Appendices F and K).  Third, all non-contextualized problems were 

written using the area formula length · width = area.   

Figure 3 displays the first task on the first pre-test domain probe Marcia was 

given. As reported in the quantitative section, her percentage correct was 0% (see Figure 

2 in Chapter 4). A further analysis of the qualitative data illuminates her difficulties. 

Marcia responded to this task by writing, “I kind of understand what this is talking about, 

but there is too many words and I can‟t break it down.”  She frequently complained about 

word problems and stated that she never understood what “they want me to do.”  

However, the area word problems, along with the tables of data, served as an anchor to 

the algebraic content as she completed tasks involving multiplying linear expressions to 

form a quadratic expression. Through this anchoring, Marcia demonstrated connections 

between the area context and three areas of algebraic content: (a) existing knowledge; (b) 

abstract symbolism; and (c) conceptualization of area quantity. Additionally, Marcia 

demonstrated disconnections between the area context the qualitative process of factoring 

and the purpose of completing tables of data in standard form and factored form.  The 

connections and disconnection are described below in the order in which the tasks were 

presented within the instructional unit. 
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Many hotels in the cities have square swimming pools that are surrounded by a 

deck. The deck increases the length of the pool area by 8 feet and increases the 

width of the pool area by 6 feet.  The dimensions of two area hotel swimming pool 

are recorded in the table below. Fill in the table below to determine the area of the 

swimming pools with the surrounding deck. 
 Side of swimming 

pool in feet 

Length of pool 

+ deck in feet 

 Width of pool + 

deck in feet 

Area of pool + 

deck in square 

feet 

Hilton Pool 10    

Double Tree Pool 15    

Any square pool x    

  

Figure 3. First task presented to Marcia during pretesting. 

 

Connection between area context and existing knowledge. On her second pretest 

domain probe (i.e., 4% accuracy, see Figure 2), Marcia appeared to be using the area 

context to anchor her existing knowledge with the new content.  When presented with the 

task in Figure 4, Marcia wrote, “I don‟t really know what I „m doing” although, her 

drawings showed a connection with the area context.  As shown in Figure 3, she chose a 

discrete number (i.e., 20) to represent the sides of the original square bedroom. Then she 

drew an example using discrete numbers; however, she did not know how to write 

generalizing statements of the algebraic expressions to represent the dimensions and the 

area. However, she demonstrated critical foundational knowledge (i.e., adding 6 to the 

length and 3 to the width) necessary for engaging in this instructional unit. 
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Figure 4. Response on Marcia‟s pretest domain probe.  

Connection between area context and abstract symbolism.  The discrete numbers 

in the tables served as an important component within the area context as it provided 

Marcia with a connection to abstract symbols.  Marcia immediately experienced success 

completing tables of data such as shown in Figure 3 as evidenced by her performance on 

posttest and maintenance domain probes in which she scored 100% accuracy on 

completing the tables of data (see Figure 2).  She realized that, “whatever I do to the 

numbers, I do to the variable” so she easily created the linear algebraic expressions. For 

example, in Figure 5, Marcia completed the table and indicated that (x + 3) (x + 2) = x
2
 

+5x + 6 was the area for any renovated classroom in this context.  She accepted the 

quadratic expression as the product of the dimensions (x + 3)     (x + 2) because she was 

able to “see” the original classroom and then the renovation within the Lab Gear 

representation.  For example, when asked where in the quadratic expression the original 

classroom was represented, Marcia pointed to the x-squared block.  However, she 

struggled to accept that the quadratic expression was “an answer” to the multiplication 

problem when no context was provided.  For example, at the end of lesson 1, participants 
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were provided non-contextualized problems to practice using the Lab Gear to solve 

without the use of accompanying data tables:   

Use the algebra blocks to multiply the following binomial expressions. Sketch the 

blocks. Then complete the area equation: length · width = area.  

 

When presented with her first non-contextualized problem, (x + 3) (x + 5), to 

multiply using the Lab Gear, Marcia immediately responded, “I don‟t get this” despite 

having successfully multiplied two linear expressions a few minutes earlier. 

Marcia: I don‟t get this.  

TS: Show me what x + 3 is going to look like. 

Marcia correctly represents this with blocks. 

TS: Show me what x + 5 is going to look like. 

Marcia correctly represents this with blocks. 

TS: Now I want you to find the area. Because this is length times width (pointing 

to blocks). So multiply these binomials. 

Marcia: I know how to make a picture, I don‟t know how to actually do this. 

TS: Well, you are doing it. 

Marcia: no you said to add to multiply these. I don‟t know how to do that. 

TS: You are doing it. 

Marcia: no I am making a picture. I‟m not equaling, I‟m not giving you an 

answer. I‟m just drawing a picture. 

TS: What would be an answer? 

Marcia: Like plus like adding it together. Making it an answer. I don‟t know. 

TS: Your answer is inside (pointing to the blocks). This represents the area. 
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Marcia: You asked me to tell you what (x + 3) (x+5) equals. I don‟t get it.  This is 

frustrating me.  

Marcia‟s connection to the concrete area context representation interfered with 

her ability to generalize to symbolic notation.  She wanted to solve for X and have a 

number as an answer.  When previously presented with tables of data, she visually saw 

that the value of X varied and accepted a quadratic expression as an answer.  Without the 

area word problem and table of data, she did not recognize that multiplication of the 

linear expressions to form a quadratic expression was the completion of the task, or in her 

words “an answer.”  Marcia was not ready to work in the purely abstract, despite given 

concrete manipulatives and the area equation.  She needed the area context to justify her 

quadratic expression as representative of the area.     
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Figure 5. Lesson 1  

Connection between area context and area quantity. The area context was also 

an anchor to help Marcia conceptualize what was happening mathematically to the area.   

When responding to the open-ended questions embedded in lesson and domain probes, 

she connected the area context to quantity as demonstrated in her explanations with a 

satisfactory degree of accuracy. Upon disaggregating data found in Figure 2, she scored 

and an average of 79% accuracy on open-ended questions relating to area quantity on her 
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posttest and maintenance domain probes and an average of 80% accuracy on open-ended 

questions on lesson probes.  However, she may have scored higher if she had chosen to 

dictate her responses as written language difficulties may have affected her score.  

Marcia‟s explanation in class clearly demonstrated a connection between the area context 

and the area quantity.  For example, when multiplying linear expressions with positive 

terms, she easily recognized that the area became larger with more space.  However, after 

the introduction of negative terms, answering the question of more, less, or the same 

amount of space became more difficult.  Marcia relied on the area context, specifically 

the use of discrete numbers, to explore this as evidenced by the transcription below.   

 TS: I am going to sketch Latanya‟s office.  Her current office is 5 by 5.  Her new 

office will be 4 feet longer in length and 2 feet shorter in width.  (I am drawing 

this on the graph board).  Will she have more or less room in her new office? 

Anna: more 

TS: How do you know that?  

Anna: She has 2 feet more.  You added 4 and took away 2. 

TS: Let‟s talk about that.   

Marcia: Multiply the diameter and see what area is bigger.  (She means 

dimensions not diameter) 

Anna: You need to take these 2 feet and move them. 

TS: Feet is a linear term.  I can represent feet as a straight line. Area is what type 

of unit? 

Pause 

TS: When we count area are we counting straight lines? 
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All: squares 

TS: So we are talking square units.  Marcia, where were you going with this? 

Marcia: Multiply the diameters to find the areas see the areas for comparisons. 

One area was 5 times 5 and the area was 25. Now you added 4 so it‟s 9 times 3 

which is 27. 

TS: So in this case it got bigger. (I draw on graph board) 

Anna: By 2 feet.  

TS: Yes, but it‟s not always going to be 2.  The other one was 6. I increase it by 4 

and decrease it by 2.  So now I have 4 times 10,and it gives me 40.  (I am drawing 

on graph board) 

Sasha: So is it more or less? 

TS: Let‟s keep talking about it.  So now I have the teeny tiny office. It‟s only 3 

feet by 3 feet. I only have 9 square feet.  I can barely squeeze my desk in it.  If I 

add 4 feet in length and take away 2 feet in width, I have a 7 by 1.  What‟s the 

area? (I am drawing this on the graph boards) 

All:  7 

TS: So here, I have less space.  What do you think the difference is?  Why were 

these more space and this one less space? (I am pointing to the graph boards with 

the sketches) 

Anna: It depends upon how much space you had to begin with.  The smaller 

office will lose space and the bigger ones will have more space.  

Marcia responded to a similar type of question on her post-test domain probe by 

drawing different size rooms on graph paper and wrote 
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I thought the same amount of space but diff shape but when I drew it out it got all 

messed up- it also depended on how long the square is.  

 

She incorporated the area context to connect mathematically to what was happening to 

the amount of space per area when multiplying linear expressions containing positive and 

negative terms.  Despite the mathematical connections between the area context and 

multiplying linear expressions, these connections did not generalize to factoring quadratic 

expressions.  

Disconnection between area context and qualitative process of factoring. 

Participants were given a specific x-value to substitute in a quadratic expression when 

learning to factor quadratic expressions, and then drew sketches of rectangles that had the 

given area.  For example, when presented the quadratic expression of x
2
 + 3x + 2, Marcia 

was given an x-value of 4, Sasha had an x-value of 3, and Anna had an x-value of 5.  The 

participants drew rectangles for their specific areas.  For example, Marcia had an area of 

30 so she drew a 1 x 30 rectangle, a 2 x 15 rectangle, and a 5 x 6 rectangle.  Sasha had an 

area of 20 and she drew rectangles that were 1 x 20, 2 x 10, and 4 x 5.  Anna had an area 

of 42 and she drew four rectangles (1 x 42, 2 x 21, 3 x 14, 6 x 7).  Using the discrete 

numbers and the area context, participants examined the qualitative representations to 

discover the generalizing algebraic expressions that represented the dimensions of a 

given quadratic expression (i.e., area).  For example, Marcia used her x-value of 4 and 

determined the dimensions of the 5 x 6 rectangle could be represented as x + 1 and x + 2.  

TS: What happens to YOUR x value for each of the dimensions?  

Marcia: What does this have to do with the dimensions?  I don‟t like this at all. 

TS: OK ladies, do we have anything that is the same? (no response from the 

students) 
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TS: So I have x + 17 and x – 2. Does anyone have that? 

Sasha: I have x-2 

TS: But do you have both of the dimensions? 

Sasha shakes her head. 

Marcia: How is that possible?  We all have different areas. 

TS: Marcia, give me one of your dimensions.  

Marcia: x + 2 and x + 11 

TS: Does anyone else have x + 2 and x + 11? 

Sasha and Anna: No 

TS: Ok, Sasha what do you have? 

Sasha: x  + 3, x – 5 

TS: Anyone have that? 

Marcia and Anna: no 

TS: Anna, give me one of yours.  

Anna: x + 1, x + 2 

TS: Does anyone have x + 1, x + 2? 

Sasha: I do! 

TS: I do too! Marcia do you? 

Marcia: maybe, yes I do 

TS: Right there is what we all have in common.  That‟s our dimensions for the 

area x
2
 + 3x + 2. 
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Despite demonstrating mastery of this process on the lesson probe (i.e., 94%), Marcia 

was not convinced that this was the best way to find the dimensions of our area.  The 

following lesson she stated; “What‟s the point of drawing all of those rectangles?  It takes 

so much time.”  She was missing the connection of the area model as a means of finding 

dimensions when given the area in the standard quadratic form. This process was 

laborious partially because Marcia was not fluent at her math facts, which may have 

interfered with her ability to make this connection and a common characteristic of 

students with math LD (Geary, 2004).    

 Disconnection between area context and factoring. Additionally, Marcia found 

the word problem and tables of data for the quadratic expressions as meaningless.  When 

presented the task in Figure 6, she stated, “All those words don‟t matter.” Prior to this, 

Marcia had already used the algebra blocks to discover the rules for factoring quadratic 

expressions. Therefore, she did not want to waste her time reading the word problem and 

completing the table, despite the contextualize problems helping her as previously noted. 

She was completely disinterested in completing this task as evidenced by the following 

transcript. 

 

 

 

 

 

 

 



117 

 

 

All of the dorms at Tower 1 at University of Silver Spring have an area that can be 

represented as x
2
 + 9x + 20.   

Fill in the table to represent the areas of the specific students’ dorms in Tower 1. 

Remember to use your cue card to help you use the graphing calculator.  

 

Name x-value in yards Area of dorm   

using x
2
+ 9x + 20 

Tzivia 4  

 

Tova 5  

 

Tricia 6  

 

 

Find the dimensions of each student’s dorm by factoring the quadratic expression that 

represents the area. You may draw your own box.   Complete the area equation: area = 

length · width.  

 

Figure 6. Contextualized problem for a quadratic expression.  

 

Marcia: All those words don‟t matter.  

TS: It gives us context.  Remember when we multiplied the length times the 

width, we got the area.  Now we have the area.  Now I want you to do is use the 

calculators, and using the y= plug  x
2
+ 9x + 20 into the calculator and fill in the 

table.   

Girls successfully complete table and look at each others to compare.  

TS: Now I want you to tell me the dimensions.  What are dimensions Sasha? 

Sasha: The outside 

Marcia: the perimeter 

Sasha: length times width 

TS: In order find the dimensions, what do we have to do?  (pause). We are given 

x
2
+ 9x + 20 
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Marcia Yawns 

Sasha:  So, oh my gosh Marcia! 

Marcia: What paper are we on? 

Sasha: So we are going to do x + 4 

Marcia: Why are we doing x plus 4? 

Sasha: We want to find the dimensions. 

When completing the lesson probe, Marcia skipped the narrative and worked only with 

the abstract symbols. Additionally, when asked to compare tables of data containing 

discrete numbers and different forms of the quadratic (i.e., standard or factored), Marcia 

only filled in the data while ignoring the context.  Despite this, she scored 100% on the 

lesson probe and only observations from the instructional session revealed this 

disconnection.   

Initially, Marcia appeared overwhelmed by the word problems and tables of data 

used within the area context.  For example, when asked to look at an area problem with 

the accompanying table of data, she responded by saying “Wow, there‟s a lot going on 

here.”  She also stated that she did not “do” word problems.  Although the area context 

provided an anchor to help her develop an understanding of representations of quadratic 

expressions, this connection was not evident when factoring quadratic expressions. In 

fact, Marcia felt that the area context “pointless.”  

Connections and disconnections between the Lab Gear and the algebra 

content.  The Lab Gear was incorporated into the instructional unit to support the process 

of multiplying linear expressions and factoring quadratic expressions.   As shown in 

Figure 7, participants physically manipulated the Lab Gear to represent the area context, 
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sketched the blocks, and then symbolically wrote the area equation.  They also used the 

Lab Gear to discover rules for factoring quadratic expressions and to factor the 

expressions using procedures based on algebraic properties and concepts.  Specifically, 

the following sections describe Marcia‟s connections with the Lab Gear to the Zero 

Principle, negativity, rules for factoring quadratic expressions, and the comparison of 

quantity.  Disconnections between the Lab Gear in relation to the distributive property 

and making literal interpretations are also described in the order in which the content was 

addressed within the unit.   

All three of us will have our bedrooms renovated.  After renovation, the length will 

increase by 2 feet and the width will increase by 1 foot.  What are the measurements of 

our renovated bedroom?   
 Side of original 

bedroom in feet 

New length in 

feet 

 New width in 

feet 

New Area in 

square feet 

Ms. Tricia  9 11 10 110 

Student 1 10 12 11 132 

Student 2 11 13 12 156 

Any square 

bedroom 

x x + 2 x + 1 x
2 
+ 3x + 2 

Use algebra blocks to determine the area of any square bedroom after it is expanded.  

Sketch the blocks. 

 
Write area equation: length · width = area___________________________________ 

 

Figure 7. Sample task using Algebra Lab Gear.  
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Disconnection between Lab Gear and distributive property. Participants were 

introduced to the procedure of multiplying binomials through the use of the Lab Gear.  

Specifically, participants were guided to use the visual cues associated with the Lab Gear 

program, such as all blocks inside the corner piece form a rectangle.  Below is an excerpt 

from Lesson 1 which demonstrates Marcia‟s initial procedural fluency with the Lab Gear. 

Marcia: Can I see my paper from yesterday?  I forget how to do this. Oh, I 

remember, you do the two things in parentheses. I know it‟s x plus 3 times x plus 

2 equals. Then don‟t you do the equals with this? (Marcia is pointing to the 

corner piece to where the blocks would go).  

Sasha is sitting there not knowing what to do. 

TS: Marcia, you are doing such a great job.  Can you tell Sasha what you are 

doing? 

Marcia: I‟m writing out my problem over here (pointing to the manipulatives.) I 

have an equation and I am breaking it up and multiplying because this is a 

multiplying bar and this is x and this is x so I have x plus 3 so  x + 3 times and 

this is timesing it plus x + 2 and that‟s going to equal x,  so now I have x (pointing 

to x squared). 

TS: what‟s this? 

Marcia: x squared. I don‟t know if I am doing it right. 

TS: You are doing beautifully.  

Marcia: So now I have x squared. So now it‟s x plus 3 times x plus 2 equals x 

squared plus 5 x plus 6. (Marcia is writing symbolically as she points to the 

manipulatives and talks out loud). 



121 

 

Although Marcia referred to “timesing” the linear expressions, she was not able to 

articulate why the blocks were placed in the position in which they were placed, other 

than to say that they “fit” and that she was “making a picture.”  Although she consistently 

scored 100% accuracy on lesson probes that assessed this content (i.e., Lesson Probes 1 

and 2), Marcia‟s initial procedural fluency did not demonstrate a connection to the 

Distributive Property, which was the critical algebraic concept in multiplying 

expressions.   

Connection between Lab Gear and the Zero Principle. During Lesson 2, Marcia 

continued to demonstrate procedural fluency when multiplying linear expressions; 

however, she also connected this procedure to the algebraic concept of the Zero Principle.  

The Zero Principle refers to two opposites equaling zero.  The transcript below 

demonstrates Marcia‟s connection between the procedure of multiplying (x + 4) (x – 2) 

with the Lab Gear and the Zero Principle.   

Marcia: So I am doing x plus 4 times x minus two so, now I have an issue. This 

doesn‟t really work.  So this is negative and this is positive so it cancels. 4 times 

negative 2 is negative 8. Negative 8.  Ok, it‟s negative 8. So it‟s x squared minus 

2x plus 4x minus 8.  I am confused. 

TS: You already told me what we are going to do with these. 

Marcia: So I cancel now.  Is this right? I don‟t think it is. 

TS: Look at the middle, linear term.  Think about what you said to me.   

Marcia works a little longer. 

TS: So we have 4 positive x‟s and 2 negative x‟s.   

Marcia: Cancel each other out.  
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TS: You are absolutely right. So how many x‟s are we left with? 

Marcia: 2 x‟s 

In this example, Marcia recognized that positive 2 and negative 2 were zero pairs that 

cancelled out and then she was left with 2x.  She physically removed the blocks from the 

representation.  However, she was initially concerned that by removing the blocks she 

was violating the rules for making the picture, (i.e., the blocks inside the corner piece 

needed to form a rectangle).  Marcia stopped physically removing the blocks, despite 

being reassured that she was still following the rules, but still correctly applied the Zero 

Principle when completing tasks on lesson probes and domain probes which assisted her 

in achieving high scores on her probes (see Figure 2).  

Connection between Lab Gear and negativity. Marcia also connected the Lab 

Gear representation to the concept of negativity.  The concept of negativity refers to the 

relationship between taking away (i.e., subtraction) and adding a negative number (i.e., a 

number less than zero). When Marcia first encountered tasks involving linear expressions 

with negative terms, she initially struggled with the Lab Gear representation.   

TS: Using your lab gear, how do you think we would multiply x times x minus 2? 

Sasha: I don‟t know what x minus to is? 

TS: Remember your negative blocks.  

Marcia: This? (Holding up a constant with a negative sign) 

TS: This is a minus 1.  I like that. What about this? (Pointing to a negative yellow 

block) 

Marcia: Well if we did minus, minus it would be plus. 

TS: Remember we are just counting them.  
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Marcia: That really makes sense because I don‟t agree with this.  I am still adding.  

Look, I am adding blocks not subtracting them. 

TS: But remember you can also write a subtraction problem as an addition.   

Marcia: So this is x plus negative 2. 

Girls set up blocks and multiple x(x-2)  

TS: Now the thing that is kind of misleading with the blocks is that even though 

these are negatives, it still makes it physically bigger. 

Marcia: Yeh, that‟s what I was saying! 

TS: Good.  Some students like to do this.  (I place the negatives on top of the x 

square block) 

Marcia: That‟s even more confusing because it looks like a square. 

TS: You don‟t have to do this.  The thought is that only what is showing 

represents the area.  But if you don‟t like to stack this, don‟t stack. It‟s just 

another way of using the blocks.  

Marcia was provided two ways to represent negative terms. First, blocks had a negative 

sign and she could “add” the negative blocks to the x-bar to indicate an expression such 

as x – 2.  Additionally, she was shown how to “stack” blocks.  For example, two constant 

blocks could be stacked on top of the x-bar to represent x – 2.  This provided students 

with a representation of the x-value decreasing in size.  Marcia chose to use the blocks 

with the negative sign and conceptualized subtraction as adding a negative as evidenced 

by the transcript above. However, on all lesson and domain probes, she consistently 

wrote the expressions with a subtraction sign (e.g., x – 2) rather than and addition sign 

(e.g., x + - 2), which was the choice Cindy, Anna, and Sasha.       
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Disconnection between Lab Gear and literal interpretation. Although Marcia 

was procedurally fluent at manipulating the Lab Gear to multiply linear expressions; her 

connections to the Lab Gear were not always linked to mathematical concepts.  Often 

Marcia was simply “making a picture” as described previously.  Additionally, she 

demonstrated a disconnection between the Lab Gear representation and the area context.  

For example, when comparing the representation of x
2
 + 5x +6 with drawings on graph 

boards of bedrooms using discrete numbers, Marcia demonstrated a desire for the Lab 

Gear to literally represent the area of the bedroom.  

TS: How is the Lab Gear representation the same as what you drew on your graph 

boards using discrete numbers? 

Anna: Because it‟s a length plus 3 and a width plus 2. 

Marcia: 3 x-bars and 2 x-bars.  This is our original room (pointing to the x
2
 block). 

This doesn‟t fully work because that‟s bigger. Like the 3 x-bars are bigger. So if I 

had a room that was 5 feet by 5 feet, and I added that, that‟s more than a foot in 

comparison to that so that‟s off. 

TS:  But we can not say anything about the relationship between this to this. We 

can‟t say 4 x-bars equals one x square block. We can‟t say 3 constants equals an 

x. Remember x could be 2 or 200. It‟s just a representation.  

   This disconnection resurfaced the following day when she was presented with the word 

problem below.  

  Everyone in our class just won the opportunity to have our bedrooms renovated 

for the TV show Extreme Makeover. Currently, all of our bedrooms are shaped 

like a square and all of us have different size bedrooms.  After the renovations, 

the dimensions of our all of our bedrooms will be increased by 4-feet in length 

and 3-feet in width.   
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Marcia successfully completed a table of data with discrete numbers and wrote the 

algebraic expressions generalizing the context.  She also used the Lab Gear to correctly 

multiply the linear expressions to produce the quadratic expression.  However, a 

disconnection emerged during our discussion of the Lab Gear representation. 

TS: Where in this representation (the blocks) is our original bedrooms? 

All girls point to the x
2
 block. 

Sasha: And here is the extra 4 feet and the 3 feet. Pointing to the other blocks. 

TS: Yeh great.  This is a representation of how we could generalize what 

happened to all of our bedrooms. 

Marcia:  It‟s not an accurate representation, like when you make a blue print. 

TS: You are absolutely right.  It‟s not like a blueprint.  It‟s a generalized 

statement saying that we all are going to have this expansion in the length and the 

width in the same way.  You are absolutely right, it‟s not like when we were using 

discrete numbers. 

Marcia: Why didn‟t they make these (pointing to x-bar) like half the size so that it 

would be? 

Again Marcia demonstrated a desire for the Lab Gear to literally represent the 

area of the bedroom, in other words, she was very literal, which is a common 

characteristic of students with LD (Bley & Thorton, 2001; Garnett, 1998; Geary, 2004; 

Witzel, 2005).  Although these were disconnections between the Lab Gear and the 

algebra content, Marcia demonstrated logic and reasoning while processing how the Lab 

Gear served as a generalized representation of the area context, as evidenced in the 

previous transcriptions.  As the intervention progressed, she developed an understanding 
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of the Lab Gear as a representative tool and did not attempt to make a “blueprint" for the 

algebraic expressions. Her sketches reflected the sizes of blocks, not proportions 

reflective of the expressions.  For example, in Figure 8, Marcia‟s sketched the six 

constants on top of the corner piece as longer than the x-bar, despite the given values of 

the x being 9 and 10.  Marcia was developed an understanding of the Lab as a generalized 

representation.   

 

Figure 8. Lesson 1 Probe.  

Connection between Lab Gear and rules for factoring quadratic expressions. 

Participants were taught to factor quadratic expressions by following the same process 
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used when multiplying linear expressions, (i.e., the blocks inside the corner must form a 

rectangle).  At this point in the instructional unit, Marcia was given the quadratic 

expression (i.e., the area), and she realized that she needed to “work backwards” to find 

the linear expressions (i.e., the dimensions).  She reached this conclusion by referencing 

the area context (i.e., the area was provided and she needed to determine the dimensions) 

and also by “undoing” the Lab Gear representation.  

During lesson 7, participants analyzed representations of the Lab Gear and looked 

for patterns that would lead to discovering rules for factoring.  Initially, Marcia only 

wanted to sketch the Lab Gear, but could not determine how to arrange the five x’s to 

form the rectangle inside the corner piece.   

Marcia working on x
2
 + 5x+ 4 

Marcia:  Makes 4 and 5? 3 and 2? No. How do you get 5?  

TS: Use the tiles if you need to. 

Marcia: Why won‟t you help me?  I‟m trying to figure out using 5 bars how do I 

get 4 inside. 

TS: Use the blocks. (giving Marcia blocks) Play around a little bit. 

Marcia wanted me to tell her the answer, but I wanted to her to discover her own patterns 

with use of the tiles.  Participants appeared uncomfortable with having a teacher whose 

role was facilitator.  Similarly to Marcia, participants were most interested in getting the 

correct answer rather than the process.  At times participants would become frustrated 

when asked to justify their responses and confirm their answers using another method 

(i.e., Lab Gear, Box Method).  However, with encouragement they discovered the 

patterns related to transforming quadratic expressions.  
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Marcia: Oh I am so stupid! Marcia, you‟re an idiot! 4 and 5 I have a picture.  Can 

I tell you my trick that I just figured out?  

TS: Yeh, yeh, what‟s your trick? 

Marcia: That, whenever you have a number, that is one more than the amount, 

than the constant, then you are multiplying basically by 1.  All the bars go here 

except for one.  

TS: Marcia that‟s a great pattern. 

Marcia observed that the factors of the constant in the quadratic added to the coefficient 

of the linear term in the quadratic.  The Lab Gear provided a visual representation that 

supported this discovery across two instructional sessions. Marcia was able to see that the 

x-bars needed to be “split up” to fit into the rectangle inside the corner piece. Below is an 

excerpt when discussing the dimension of the quadratic expression x
2
 + 4x + 3. 

 TS: How do we determine the middle term in the quadratic, your linear term? 

Marcia: That goes to how many constants are on the outside. They‟re 3 constants 

here (pointing on top of corner piece) and 3 bars here (pointing inside of corner 

piece). There‟s 1 constant here (pointing to side of corner piece) and 1 bar here 

(pointing inside corner piece). 

Anna: three plus one 

TS: does that work for every single one?  

Anna: Yeh 

TS: Let‟s confirm.  

Although Marcia previously noticed that the constants in the linear expressions multiply 

to equal the constant in the quadratic, she had difficulty discerning the relationship 



129 

 

between those factors and the coefficient of the linear term in the quadratic. This was 

developed with the Lab Gear as evidenced in the above transcription.  Marcia‟s discovery 

of the x-bars “splitting up” to fit into the Lab Gear representation further developed into 

the rules she used for factoring with only abstract symbols.  

Connection between Lab Gear and comparison of quantity. In addition to the 

Lab Gear supporting Marcia‟s development of rules for factoring, the use of 

manipulatives supported her conceptual understanding of the quantities of various 

quadratic expressions. For example, when comparing the Lab Gear representation of x
2
 + 

4x + 3 and x
2
 + 4x+ 4, Marcia initially had difficulty seeing that one area was larger.   

Marcia: Well it‟s the same shape. It‟s the same size and same shape. 

Anna: Like it got longer 

Marcia: No, this one got a little this way and a little that way.  It‟s the same 

amount of area. How is that possible? Can I tell you why this doesn‟t make sense? 

These are fillers (constants). So now look. Now it‟s 2 and 2. I took this and 

moved it here. It‟s the same amount of x bars. The only thing that changes is that 

we need one more box to fill. But this is the same amount. (pointing to number of 

xbars) 

TS: That part is the same.  But what is not the same, is the constant. 

Marcia: The area is still the same. 

TS: Almost the same, but we have gone form having 3 of these to having 4 

(pointing to constants). So what happened to the quantity? 

Marcia: Ok, more, but I‟ll tell you why it‟s confusing me.  It‟s a very low number. 

It only went up by 1 so you can like assume like when you look at the picture 
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there 3 here there‟s 1 here. There‟s 2 here, there‟s 2 here. Ok, move that one here 

and they‟re the same. Ok one makes a difference but if it was bigger you would 

be able to see that better.  

Marcia realized that the quantities were very similar with one area only “up by one.”  The 

Lab Gear also supported Marcia‟s comparison of quadratic expressions with a different 

coefficient for the linear term.  As described below, we discussed the representations of 

the quadratic expressions   x
2
 + 4x + 4 and x

2
 + 5x + 4, which occurred the same day as 

our previous discussion. 

Marcia: It‟s different because when there‟s more x‟s there‟s more constants. 

When there‟s more x‟s the whole thing changes. 

TS: Now Marcia brought up a really good point earlier. When we went looked at 

these two top ones, there was really very little change in area.  (x
2
 + 4x +  3  and 

x
2
 + 4x+ 4). What do you think adding one extra 

Marica: It can do a lot depending on where you add it.  

T: So when we change this x, depending upon what x equals when we change out 

linear term that will tell us what our change in our product is. Or the change in our 

final answer. So, if 8 is x and we change the linear coefficient from 4 to 5. It will 

increase by 8, because that is what x is. If x equaled 20, what do you think the 

change would be? 

Anna: 20 

TS: But if I change the constant, literally, the quantity is only being changed by 

one.  Changing this middle term has a greater impact in the overall area than 

changing the constant. 
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Marcia: Well yeh, you can just look at it and see that it is bigger than this. 

Marcia relied on the visual representation from the Lab Gear to discuss the impact of 

increasing the linear term on the area.  She saw that this increase resulted in a larger 

picture than the increase of only one constant. Her analysis was based on a literal 

interpretation of the Lab Gear and the x-bar being physically bigger than the constant 

block. Therefore, I used discrete numbers to help concretize the impact of changing the 

linear term of the quadratic; however, she still reverted to the visual representation of the 

Lab Gear.  These behaviors mirrored her disconnections observed while multiplying 

linear expressions. Specifically, she interpreted the Lab Gear literately (i.e., and x-bar 

was bigger than a constant) and she gained a fuller understanding of the quantities 

represented by each quadratic expression when discrete numbers were substituted for the 

variable. 

 Throughout the intervention, Marcia used the Lab Gear to strengthen her 

procedural fluency with multiplying linear expressions and factoring quadratic 

expressions by supporting her discovery of the rules for factoring.  Additionally, the Lab 

Gear assisted Marcia in conceptually understanding quadratic expressions as she engaged 

in discussions regarding the quantity of the area represented by similar quadratic 

expressions.  The procedural fluency and conceptual understanding were evidenced by 

high scores on posttest and maintenance domain probes (see Figure 2). Despite these 

connections between the Lab Gear and the algebraic content, Marcia demonstrated a 

disconnection as she attempted to interpret the Lab Gear literally. She did, though, 

develop an understanding of the Lab Gear as a generalized representation as the 

intervention progressed.  
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Connections and Disconnections between the Box Method and the Algebra 

Content. The graphic organizer used during the intervention was the Box Method, which 

was based on similar methods found in Lab Gear Activities for Algebra I (Picciotto, 

1995) and the CME Project Algebra I (2009) textbooks (See Figure 9).  The purpose for 

incorporating the Box Method into the instructional unit was two-fold: (a) to support 

participants‟ procedural fluency of multiplying linear expressions and factoring quadratic 

expressions when using only abstract symbols; and (b) to model the Lab Gear 

representation to ensure a successful transition to symbolic notation (see Figure 9). The 

following sections describe Marcia‟s connections and disconnections between the Lab 

Gear and the Box Method in the order in which the tasks were presented within the 

instructional unit. Specific subthemes that emerged include (a) connections and 

disconnections with Lab Gear; (b) connections to the Distributive Property; and (c) 

connections to factoring. 
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Our neighborhood swimming pool has a length that is 2-meters longer than the width. On 

Saturday mornings, a section of the swimming pool is roped off for swimming laps. That 

section makes the pool 1-meter shorter in width.  

Use algebra blocks to determine the area of the pool available for free swim after the lap 

lanes are roped off.  Sketch the blocks. 
 

: 

 

 
 

 

 

 

 

 

 

 

 

 

Place the algebra blocks into the box in the spaces that you think make sense.  Be 

prepared to explain why you placed the blocks in the spaces.   

 

 

 

 

 

 

 

 

 

 

Complete the box below using only symbolic notation.  Write the area equation.  

 

 

 

 

 

 

 

 

Figure 9. Transition from Lab Gear to Box Method 

 

Connection between Box Method and Lab Gear. Participants were introduced to 

the Box Method as they transitioned from working with the Lab Gear to working with 

only abstract symbolism. Initially, Marcia was reluctant to move away from the blocks, 
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as she exclaimed, “Whoa Whoa, Whoa.  What do you mean moving away from the 

blocks?”  However, she demonstrated a connection between the Lab Gear and the box 

template I provided.   

TS: I have created this template. So what would go in the first white box? Marcia: 

x squared! 

TS: Yeh, that‟s what you showed me.   

Marcia: So, 2x, negative x, and the constant 

TS: So what do you think will go in those gray spots? 

Marcia: x, no wait 

TS: Let‟s put our blocks back together.  

Marcia: x plus the numbers 

TS: You are right! 

Additionally, Marcia developed her own graphic representation that generalized the 

components within the box template (see Figure 10).   

   

Marcia: Look (showing me her paper)  

 
TS: Marcia, this is an excellent generalization.  Show the girls what you did. 

 

Figure 10. Marcia‟s first Box.   
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Similarly, she initially labeled the sketches of the Lab Gear (see Figure 11). Marcia used 

these labels to help her remember what the blocks represented.  However, by the end of 

Lesson 1, Marcia did not need to label the blocks in order to score 100% accuracy on the 

probe.   

 

 

Figure 11.  From lesson 1, Marcia labeled the sketches of Lab Gear.  

Disconnections between Box Method and algebra content. Marcia developed 

disconnections with the algebraic content when confronted with linear expressions with 

the constant before the variable and with linear expressions that had a coefficient other 

than one.  For example, when given ( – 13 + 2x) (10 + x), Marcia wanted the terms with 

the variables first in the  expression when using the Box Method. 

TS: Just set this up. Don‟t solve it yet. 

Marcia: Can I do the numbers after the x‟s? 

TS: Show me what you mean? 

Marcia: Can I do 2x – 13? 

TS: yes, why do you want to do that? 
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M: (2x – 13)(x + 10). X‟s are always in this box (pointing to the top left box of 

her graphic organizer).  

Marcia was extremely faithful to her first Box and consistently rearranged the 

expressions so that the variables would always be first.  This worked well for her as she 

was also attentive to the appropriate sign for each the term.  Marcia was rule driven and 

her Box provided the visual cues she needed to follow her rules. However, her desire to 

understand why these rules worked enabled her to develop a deeper conceptual 

understanding of quadratics.   

An additional disconnection with Marcia‟s original Box involved expressions 

with coefficients other than one.  When presented with (3x + 15) (x -2), Marcia became 

confused as her Box did not have a coefficient with the quadratic term.  

Marcia: I did x – 2 and then on the down I did 3x + 15 

TS: So, what‟s going to go in this top white box? 

Anna: x squared 

TS: It‟s not x squared. Why not? 

Anna: Because there‟s a 3x there. 

TS: So what is it? 

Marcia: 3x, x 

TS: What was x times x using our blocks? 

Sasha: Oh, x
2
 

Marcia: Oh, right. 

Sasha: So, 3x
2 

because there‟s 3 
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Marcia: How are you getting this?  This is not working for me. We never did it 

like that. It was always x
2
. I need the blocks. I can‟t do this.  

TS: Well, let‟s practice a little bit. We are going to multiply exactly like we 

multiplied the blocks but we are only using symbols.  What is the area for this 

problem?  

Marcia: I have no idea. 

Marcia gets the lab gear and sets up the problem x times 3x. 

Marcia: We never did problems like this so I didn‟t know.  

As illustrated above, Marcia displayed difficulty with generalizing the Lab Gear 

representation to the Box representation.   In fact, Marcia multiplied linear expressions 

with coefficients greater than one when using the Lab Gear in the previous session; 

however, she did not recall doing so.  However, 3x
2
 as the first term of her quadratic 

expression did not fit with Marcia‟s initial Box in Figure 10, as this representation 

contained only the term x
2
.  After confirming with the Lab Gear that 3x times x equaled 

3x
2
, she consistently multiplied similar terms correctly on probes.  

Connection between Box Method and the Distributive Property. Although 

Marcia learned to accurately fill in the provided Box Method template (see Figure 9), she 

did not draw this template when given the choice. Additionally, her first Box (see Figure 

10) was not being used as an appropriate tool to help her make the mathematical 

connections. Marcia needed to accurately conceptualize the process of multiplying linear 

expressions, which is based on the Distributive Property.  Therefore, her graphic 

organizer needed to evolve.  The transcript below describes this evolution of Marcia‟s 

Box.   
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TS: Draw your own box.  Use the box method to multiply the length and the 

width.  You won‟t have the template with you, so you need to be able to draw 

your own. 

Marcia begins to draw tiles. 

TS: I don‟t want you to draw tiles. That‟s just too many to draw.  

Marcia: I‟m not drawing tiles. I‟m drawing numbers. 

Marcia: Is this wrong? (See Figure 12) 

TS: It‟s not wrong.  It‟s incomplete.  Can I add something? 

Marcia: Yeh 

TS: What about this box and this box? (I draw squares in missing sections) 

Marcia: I know, but I already used them. 

TS: But we have to use them twice.  Remember how we did it with the algebra 

blocks?   

Marcia: Oh, I forgot about that.  
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Figure 12. Reproduction of Marcia‟s attempt at modifying her original Box.  

 

At this point in the intervention, Marcia was not associating the Distributive 

Property with multiplying linear expressions, as evidenced by her misrepresentation 

above. Similarly, Marcia demonstrated a disconnection between the Lab Gear and the 

procedural fluency of multiplying the linear expressions when she was “making a 

picture.”  She was not successfully transitioning from the Lab Gear to the abstract 

symbols.  Instead, she was consistently multiplying linear expressions and only getting 

the quadratic term and the constant, such as, (2x – 10) (x -12) = 2x
2
 + 120.  The 2x was 

being distributed to the x, but not to the -12.  Additionally, the -10 was distributed to the -

12, but not to the x.  This disconnection was apparent in her Box in Figure 12.  Marcia 

needed a Box that prompt her to distribute each term in one expression to each term in 

the other, thus connecting to the Distributive Property.  



140 

 

Figure 13 displays an emerging connection between her Box Method and the 

Distributive Property.  She understood that she needed “to use each term twice” through 

our conversations surrounding her incomplete Box in Figure 12.  Initially, Marcia drew a 

variety of arrows to help her remember to distribute each term of one expression to each 

term of the other, as shown in Figure 13; however, she became very confused by the 

arrows.  

Marcia:  The arrows are confusing me. How can I remember to do all of this? 

TS: Think of it as a grid.  Go up and over. Those are the terms you are 

multiplying to fill in those boxes.  

Marcia: That‟s helpful! 

 
 

Figure 13. Marcia‟s connection between the Distributive Property and her Box.  

Marcia needed a context that would remind her to distribute the terms. She tried arrows, 

but that was visually confusing, so the context of a grid provided Marcia with the rules 

that supported her use of the Box.  



141 

 

At the end of Lesson 4, Marcia developed the graphic organizer pictured in Figure 

13, but without the arrows. She used this Box for her posttest domain probes with 100% 

accuracy. Additionally, she successfully adapted her graphic organizer to multiply a 

trinomial by a four-term polynomial on the transfer measure (see Figure 14).  During this 

test, Marcia referred back to her original Box that generalized the position of the x
2
 term, 

the x terms, and the constant (see Figure 10).  She noticed that the diagonal terms (i.e., 

the x terms) were combined and she generalized this to assist her in indentifying terms to 

combine in this transfer task, which enabled her to multiply these polynomials with 100% 

accuracy.  

 

Figure 14.  Transfer Task using Box Method.  

Connections between the Box Method and factoring. Participants applied the 

rule for factoring (i.e., find factors of the constant that add to equal the coefficient of the 
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linear term) to the Box Method when working with abstract symbols.  Instruction was 

scaffolded so that participants were initially provided a template of the box with the 

quadratic term and the constant filled in (see Figure 15).  Then students made their own 

box to complete independently in its entirety.  

 

 

 

 

Figure 15. Box Method template with scaffolds.  

Marcia‟s transition to the Box Method for factoring quadratics without the aid of 

the Lab Gear representation was also impacted by: (a) her desire to continue using the 

Lab Gear representations; (b) her deficits in understanding the concept of factors; and (c) 

her lack of automaticity with math facts. Examples of these challenges are apparent in the 

following excerpts.  

Similarly to her use of the Box Method for multiplying expressions, Marcia 

struggled to factor quadratics when initially given the template of the Box Method 

without the use of the Lab Gear.  She needed an explicit link between the two 

representations.  Specifically, Marcia first factored a quadratic expression by sketching 

the Lab Gear.  Then she sketched each block into the template (see Figure 16).   This 

graduated process helped her establish a link to the Lab Gear representations that she 

   

 x
2 

 

  32 
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transferred to the Box Method.  When asked to factor x
2
 + 9x + 20, Marcia indicated that 

the x-bars were split up into the two inside squares of the template.   

TS: So if I am doing my box, what‟s going to go here (pointing to top left inside 

square) 

Marcia: Think about what the blocks look like (said to self). X squared.  

TS: What‟s going to go here? (pointing to lower right inside square) 

Marcia: 20.  

TS: What will go in the remaining two squares? 

Marcia: Some x and some x. This is where my x-bars go. So these x‟s add up to 

9x.  

 

Figure 16. Marcia‟s Transition to Box Method 

As Marcia developed competency in using the Box Method, she frequently 

referred to splitting up the x-bars to fill in the template. Although she wrote the symbolic 
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notation, Marcia was visualizing the manipulatives being divided into each section of the 

Box.  This was helpful because she competently and comfortably factored quadratics 

with the Lab Gear (e.g., scoring 100% accuracy on those tasks in lesson probes). 

Additionally, Marcia demonstrated a connection to the Lab Gear when factoring 

quadratic expressions containing negative terms, such as x
2
 - 4x - 5.   

Sasha: I still don‟t get how -5 plus 1 is negative 4 

TS: Let me draw these blocks.  What did we have to do with our Lab Gear when 

we had a positive and a negative, Sasha? 

Sasha doesn’t respond 

TS: What does a positive x-bar and a negative x-bar equal? 

Sasha: negative 

Marcia: Remember when there‟s positives and negatives, negatives do what to 

positives? 

Sasha: make them negative 

TS: Remember we are adding these. 

Marcia: Negative means less. So you are taking out. They cancel each other. The 

negative is going to take one of the x-bars out so the one goes away and one of the 

5 goes away (pointing to sketches on board) 

In the above transcription, Marcia was prompted to visualize the Lab Gear by my 

sketching because she was reluctant to move beyond the manipulatives. I facilitated the 

connection between the Lab Gear and the Box Method to aid in the transition to using 

only symbolic notation. The connection between the Lab Gear and the Box Method also 
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was important for understanding that the process for factoring with Lab Gear also applied 

when using the Box Method.  

Marcia demonstrated a connection between the Box Method and the rule for 

factoring quadratics, when using Lab Gear representations for support. However, she 

experienced difficulty with foundational skills, such as determining the factors of 36, 

when factoring x
2
 + 12x + 36. 

TS: Alright. Let‟s factor x
2
 + 12x + 36.  What‟s going to go here? (pointing to the 

top left square and the bottom right square in template) 

Marcia: x squared and 32 

T: Ok, that‟s my easy stuff.  It doesn‟t matter if there are negatives in the 

quadratic,  I always know these two boxes. So these two need to add to equal 

what? 

Sasha: 12 

TS: So I have to think of factors of 32. And I can use my calculator. I see this is 

an even number, so I know what will divide into it? 

Marcia: So, 2 

TS: So I could plug that into my calculator. 32 divided by 2 

Marcia: That‟s 12 + 12 + 12 

TS: But I‟m dividing it by 2. 

Marcia: Why? 

TS: Because 32 is even. 
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Marcia: Oh, so the 32 doesn‟t have to go into the 12.  The numbers that you use to 

divide 32 you add up to 12, those don‟t, the numbers that you are using are 

connecting 32 and 12. They don‟t have to do with each other. 

TS: They are connecting in that the numbers you are using will multiply to get 32 

and add to get 12.  

Marcia: The 32 and the 12 don‟t have anything in common except those numbers. 

TS: So what are my factors of 32.   

Marcia: 32 and 2 

TS: 2 times what equals 32? 

Marcia: 16. Oh.  

As Marcia continued to search for factors of 32, she also demonstrated a lack of 

automaticity with multiplication facts.   

TS: Will 3 go into it? 

Marcia: 3, 6,9, 12, 15, 18, 21, 24, 27, 30, 33 (counting using her fingers) No. 

Sasha: I was using my calculator to divide. 

TS: Ok, does 4 go into 32? 

Marcia: (counting using her fingers) 4,8, 16, 20, 24, 28, 32 (she does this really 

quickly) Yes. 4 times 8. 

TS: Ok what about 5? 

Marcia: No because it doesn‟t end in 0 or 5. 

TS: Ok, 6? 

Marcia: Yeh, 6 times, hold on. Well 4 and 8 work anyway. 

TS: Why?  
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Marcia: 4 plus 8 is 12 

TS: So 4x and 8x   

These deficits in her understanding of factors and her weak automaticity of math 

facts was not an issue when using Lab Gear representations, however, it initially 

impacted her success with the Box Method.  However, she was able to develop her 

understanding of factors through engaging in the tasks of factoring quadratics and she 

compensated for her lack of rote memory of math facts by counting with her fingers and 

using the calculator.  In Figure 17, Marcia first used the calculator to determine factor 

pairs for 54 and then again used the calculator to determine which pair would equal 15 

when added. She also demonstrated an understanding of the rules for integers by 

identifying negative 6 and negative 9 add to equal -15 and multiply to equal 54.    

 

Figure 17.  Sample Posttest Domain Probe factoring task.  

Although Marcia successfully factored quadratic expressions using the provided 

Box template, she independently moved away from the template and worked with her 

self-developed Box as shown in Figure 18, which again linked with the Lab Gear 
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representation. Marcia confidently switched to her Box method as she did not ask for 

permission to use her graphic organizer nor did she discuss this with me, which was in 

contrast to her use of her Box to multiply linear expressions when she consistently 

wanted my consent.  Ironically, Marcia used both her Box and the Box template on her 

posttest domain probe with 100% accuracy.    

Throughout the intervention, Marcia developed her own unique Box that would 

support her processes for multiplying expressions and factoring quadratic expressions.  

Marcia initially was reluctant to give up her Lab Gear to work with abstract symbols 

only.  Although she successfully multiplied linear expressions and factored quadratic 

expressions using the template I provided, she developed her own Box method which 

linked to the Lab Gear representation, but more importantly, solidly connected to the 

Distributive Property.  See Appendix Q for a summary of the evolution of Marcia‟s Box, 

which provided the support needed for Marcia‟s transition to abstract symbols.    

 

  

Figure 18. Marcia‟s Box Method for factoring.  
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Summary. Marcia demonstrated connections and disconnections between the 

representations and the algebraic concept.  Specifically, she used the area concept as an 

anchor for developing her existing knowledge (i.e., determining area with discrete 

numbers).  Additionally, she connected the area context to abstract symbolism (i.e., 

expressions as generalized statements of area context) and area quantity (i.e., determining 

if there was more, less, or the same amount of space after renovations). Although the area 

context was beneficial when multiplying linear expressions (i.e., multiplying length times 

width), Marcia did not demonstrate a connection between the area context and factoring 

(i.e., finding the dimensions when given the area).   

 Marcia also demonstrated connections and disconnections to the algebra content 

when working with the Lab Gear.  At times, she attempted to literally interpret the blocks 

for example stating that three constants equaled an x-bar and she did not recognize the 

Distributive Property in the process of multiplying expressions.  However, Marcia 

connected the visual representation of the Lab Gear to critical mathematical concepts 

such as the Zero Principle, negativity, and rules for factoring.  Additionally, she used the 

Lab Gear to compare quantities of quadratic expressions.   

 Lastly, Marcia displayed only connections between the Box Method and the 

algebraic content.   This resulted from the connections she made between the Lab Gear 

and the Box Method, from which emerged her understanding of the Distributive Property 

and the process of factoring.   

Metacognition 

In addition to themes relating to representations, themes also emerged from the 

qualitative data sources (i.e., transcripts, work samples, field notes) relating to 
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metacognition, which is a complex phenomenon with many different aspects including 

strategic behavior, disposition, and socially shared experiences.   Metacognition refers to 

a person‟s self-awareness of their cognitive abilities, steps and strategies used during a 

task, self-monitoring of task completion, and appraisal of task completion through 

checking the accuracy of work (Bley & Thornton, 1995; Mazzocco, 2007).  Additionally, 

metacognition refers to a student‟s ability to make accurate predictions of future 

performance (Mazzocco, 2007), which is linked to disposition, such as feelings of 

difficulty, confidence, and satisfaction (Iiskala, Vauras, Lehtinen, Salonen, 2011).  

Lastly, socially shared metacognitive experiences refer to those shared within a 

collaborative endeavor such as students confirming one another‟s correctness through 

reciprocal turns when in a problem-solving process (Iiskala, et al., 2011).  Marcia 

demonstrated strategic planning, self-regulation, future planning, and socially shared 

metacognition as she progressed through the intervention: Several themes emerged from 

each of these categories as described below.   

Strategic Planning.  Strategic planning refers to developing a plan to engage in a 

task and executing the plan to successfully complete the task.  Development and 

execution of plans of action occurred simultaneously and therefore are described 

concurrently below in the order in which the tasks occurred within the instructional unit. 

Marcia‟s scores on her pretest domain probes were extremely low (0% - 4%), 

partially because she was unable to develop a plan to engage in the tasks. When presented 

with a word problem and table of data, she wrote on her pretest, “I think if it was broken 

down I would be able to do it. The problem is that there a lot of words and a lot of steps 

and once I understand what to do with one part I forget the other – I guess I‟m not good 
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blending the steps.”  Additionally, when asked to transform a quadratic expression from 

standard form to factored form, Marcia wrote, “as I said this kind of stuff turns me off 

BUT I think that parts of it I really might know so again if it was explained and broken 

down I think there may be some hope.”  On an additional pretest domain probe, Marcia 

also wrote “I can‟t break it down.”  However, during the intervention, she stated that the 

Lab Gear and the Box Method helped her to break down the tasks and develop of a plan 

of action that she executed to successfully complete the tasks.  Examples of this process 

are described below.   

The Lab Gear served as a tool for “breaking up” the procedure of multiplying 

linear expressions. Marcia explained that she could “break up” did she say this? If  not, 

use another term the problem into steps by using the manipulatives.   

I‟m writing out my problem over here (pointing to the manipulatives). I have an 

equation and I am breaking it up and multiplying because this is a multiplying bar 

(pointing to the corner piece) and this is x and so I have x plus 3 so x plus 3 times 

and this is timesing it plus x plus 2 and that‟s going to equal x squared. So now its 

x plus 3 times x plus 2 equals (manipulating the blocks) x squared plus 5x plus 6. 

 

Marcia used the Lab Gear to both develop and execute a plan for multiplying linear 

expressions. First she represented her dimensions (i.e., linear expressions) using the 

manipulatives and placed them on the outside of the corner piece. Then she filled in the 

corner piece with the appropriate manipulatives to form the required rectangle to 

correctly determine the area (i.e., quadratic expression).  Marcia was pleased with her 

ability to multiply linear expressions using the Lab Gear and therefore resisted giving up 

the Lab Gear.  When told that we were moving away from the blocks to use only abstract 

symbols, Marcia replied: 
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It‟s so much more hard because it‟s not broken up then.  Like what I do is I see 

this (pointing to xbar) and this (pointing constant blocks) and I read it and I write 

it then I move it.  And then it‟s all broken up and I see the whole problem 

happening. But when it‟s all numbers then I forgot where to break it up and 

what‟s what.  

Although resistant to giving up the manipulatives, Marcia developed a graphic organizer 

(i.e., the Box) that was closely linked to the Lab Gear representation which further 

assisted with strategic planning. This was evident when presented with the task of 

multiplying (-13 +2x) (10 + x): 

Marcia: Can I do the numbers after the x‟s?  

TS: Show me what you mean. 

Marcia: Can I do 2x – 13? The x‟s are always in this box (pointing to the top left 

box of her graphic organizer) 

Marcia was able to develop her own plan of action and switch the order of the terms so 

that the terms with the variables were always in the position of the Lab Gear 

representation.  She then was able to successfully complete the task.  

When factoring quadratic expressions, the Lab Gear also supported Marcia‟s plan 

of action, which was to “go backward.”  She was able to arrange the blocks into a 

rectangle inside the corner piece and visualize, or as Marcia stated “see” the dimensions 

of this area. When transitioning to the abstract notation, she again used her Box method 

to develop her plan of action.  She always placed the quadratic term in the top left of her 

organizer and the constant in the bottom right square.  She then wrote out all of the 
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factors of the constant to find a pair that equaled the coefficient of the linear term (see 

Figure 19).   

 

Figure 19. Factoring a quadratic expression 

The Lab Gear and the Box Method also served as valuable tools when Marcia 

completed her Transfer measure (see Appendix N).  Despite being presented with tasks 

that differed from those in the instructional unit, Marcia developed a plan of action and 

successfully solved each task using the Lab Gear and the Box Method representations.  In 

the first transfer task, Marcia relied on the Box Method for planning and executing her 

solution strategy by completing a table of data for determining the perimeter and volume 

for specified numbers and for a generalized statement (see Figure 20).   
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Figure 20. Marcia‟s Transfer task 1 

For the second transfer task, Marcia also used the Box Method to develop and 

implement a plan for multiplying a trinomial by a four-term polynomial (see Figure 21).  

At first, she sketched the 3x
2
 inside the corner piece, as evidenced by the sketch in the 

upper left.  Marcia realized that this was a multiplication problem so the polynomials 

must be on the outside of the corner piece, which lead to the bottom representation.  After 

distributing all of the terms in that sketch, Marcia was confused how to combine terms.  

She then drew her representation on the top right and she recognized that she combined 
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terms that were diagonal (i.e., the x-terms).  Marcia used that process of looking at 

diagonals terms to begin the process of simplifying like terms.   

 

Figure 21. Marcia‟s Transfer task 2. 

When completing the third task on the transfer measure (see Appendix N), Marcia 

initially attempted to use the Box Method to factor a quadratic expression with a 

coefficient of 3.  She chose to use the template graphic organizer, rather than her unique 

form. When Marcia realized that “having the 3 doesn‟t let us just add anymore” she 

abandoned the Box Method and instead sketched the Lab Gear to successfully find the 

dimensions (see Figure 22).  This exemplified Marcia‟s ability give up a faulty plan and 

develop and execute an appropriate revised plan of action.  
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Figure 22. Marcia‟s Transfer task 3  

Initially, Marcia was unable to develop a plan to complete tasks on the pretest 

domain probes stating that she did not know how to “break it down.”  Throughout the 

instructional unit, she used the Lab Gear and the Box Method as tools for strategic 

planning.  These tools provided Marcia with the means for “breaking up” the tasks on the 

posttest domain probes, which she stated that she needed.  Additionally, she used the Lab 

Gear and her Box to successfully complete tasks on the transfer test.     

Self-regulation.  Self-regulation refers to monitoring and evaluating one‟s 

performance during a problem solving task (Fuchs & Fuchs, 2007). Marcia displayed 

self-regulation behaviors as she routinely checked the accuracy of her and revised as 

necessary, and evaluated the accuracy of her solution.   These two themes are discussed 

below in the order in which they occurred in the intervention.  
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Monitoring performance. Throughout the intervention, Marcia consistently 

monitored the accuracy of her solutions by using the tools provided, such as the Lab 

Gear, the Box Method, or the tables of data. For example, Marcia used the visual cues 

embedded in the Lab Gear to determine if she correctly multiplied binomials (e.g., blocks 

must form a perfect rectangle) and referred to this process as “making a picture.”  

Additionally, Marcia frequently returned to the Lab Gear for verification of solutions to 

tasks involving abstract notation.  For example, when using the Box Method to multiply 

(3x + 15) ( x – 2), Marcia confirmed that 3x times x equaled 3x
2
 by setting up the Lab 

Gear.  Additionally, she wanted to explore other examples of multiplying algebraic terms 

with coefficients other than one by using the Lab Gear.  

Marcia: I have a question. 

TS: Yes 

Marcia: So if I add more here (she places two x-bars on each side of corner piece) 

I would multiply and get 4x
2
 ?  

TS: Yes, that‟s exactly right. You got it. 

Marcia: ok (pushing away the blocks) 

Marcia reverted to using the Lab Gear to confirm the process for multiplying linear 

expressions with coefficients other than one.   After determining that her responses were 

correct, Marcia returned to working in symbolic notation.   

 Marcia frequently moved back and forth between the Lab Gear and the abstract 

notation when monitoring the accuracy of her solutions.  For example, when multiplying 

(x + 3) (x + 5) using only abstract symbolism, she first responded x
2
 + 15.  When asked 

to explain her response using the blocks, she realized her solution was incorrect and 
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revised her solution to x
2
 + 8x +15. Therefore, the Lab Gear also provided Marcia with a 

way to check the accuracy of her work and to revise incorrect solutions.  

 When factoring quadratic expressions, Marcia monitored her solution in three 

ways: (a) analyzing visual cues; (b) comparing tables of data; and (c) comparing graphs. 

First, she relied on visual cues from the Lab Gear or sketches of Lab Gear.  Marcia stated 

that she, “made a rectangle and then fit blocks up top and to the side” of the corner piece 

to factor a quadratic expression.  Although “making a rectangle” did not link to algebraic 

reasoning, she later used the Distributive property to check her factoring when using the 

Lab Gear, which also transferred to the Box Method.  After using the Box Method to 

factor x
2
 -4x -5, she checked her work by using the Distributive Property.  

 TS: Explain how you got this? (x
2
 -4x -5) = (x – 5) (x +1) 

Marcia: It checked out. X times x is x squared.  X times one is one x. Negative 5 

times x is negative 5x. Negative 5 times positive 1 is negative 5.  

Throughout this explanation, Marcia pointed to the squares within the Box template.  She 

demonstrated that multiplying the binomials was an appropriate method for checking her 

factoring.   

 The second method for monitoring accuracy of factoring tasks involved 

comparing tables of data. The last lesson of the instructional unit embedded factoring 

within a contextualized problem or task and two tables of data to complete within each 

task. One table incorporated the quadratic expression in standard form and the second 

table incorporated the quadratic expression in factored form (see Figure 23).  Marcia first 

compared their tables of data to determine that the quadratic expression in standard form 

was equal to the quadratic expression in factored form.  She then used a graphing 



159 

 

calculator to complete the tables to determine if she factored correctly and contained the 

same values.   

 

Figure 23. Comparing standard form and factored form expressions.  
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Initially, she conscientiously completed each table by inputting each form of the 

quadratic into the calculator and then graphed each expression.  However, by the end of 

the lesson, Marcia filled in the second table without inputting the factored form into the 

calculator.   

TS: You can‟t just fill in the numbers. You have to check. 

Marcia: It‟s pointless. 

TS: It‟s how you check and make sure you have factored the quadratic correctly.  

Marcia: It‟s the same numbers. 

Marcia seldom compared numbers within the tables for each form of the quadratic unless 

she completed the tasks with her peers.   

The third method for monitoring her solution was to examine the graphs of each 

form of the quadratic expression.  Using a graphing calculator, Marcia initially graphed 

each form of a quadratic, however, upon realizing that one graph appeared if they were 

factored correctly, she stopped graphing the expressions for practice tasks.  However, she 

compared the tables of data and the graphs when completing her Lesson 9 probe, in 

which she completed the tasks with 100% accuracy. 

Evaluating solutions. Despite having tools for monitoring her work, Marcia often 

made faulty evaluations of the accuracy of her solutions.  For example, she would often 

make comments such as “I‟m not good at that” and “I don‟t know if I am doing this 

right” and yet Marcia would have an accurate solution and be able to justify her answer.  

For example, during Lesson 4 Marcia was transitioning from the Lab Gear to using 

abstract symbols only with the Box Method. 

TS: Marcia, what do we have to do to find the area of something? 
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Marcia: Multiply. So x times x is x squared. 

TS: Well, do it down here using the box. 

Marcia: Oh, the parenthesis. Oh you do the inside outside. This is supposed to be 

x – 3 times x.  I don‟t get this. 

Marcia accurately completes the Box.  

Marcia: This is all wrong (handing me her paper) 

TS: This is all right! 

Marcia looks at me disbelieving. 

TS: I‟m serious. 

Marcia: No way! 

She often needed confirmation from me before she would acknowledge that she 

successfully completed a task. I regularly encouraged Marcia to relay on the tools more 

than me; however, she was resistant and accused me of not helping her.  Marcia was 

often surprised by her success as exemplified in the above transcript.  

Disposition.  Disposition refers to students beliefs about their ability to do 

mathematics including self-confidence, perseverance, and enjoyment (Van de Walle, 

Karp, & Bay-Williams, 2010).  Marcia‟s disposition evolved throughout the intervention, 

as times demonstrating a positive disposition and at other times a negative as described 

below. 

 Self-confidence. Self -confidence refers to students‟ beliefs about their ability to 

do mathematics. Throughout the instructional unit, Marcia‟s self-confidence ebbed and 

flowed.  She began the unit with low self-confidence, as she repeatedly stated that she 

didn‟t believe that she her responses to tasks were accurate.  However, the area context, 
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Lab Gear, and Box Method built her belief in her abilities and at the end of the 

intervention she felt confident that she could accurately complete every task on her 

maintenance domain probe and she was correct (see Figure 2). With every new situation, 

Marcia‟s confidence wavered and she returned to making statements that she didn‟t know 

anything and that she “sucked at math.”  However, after repeated exposure to tools such 

as the Lab Gear and the Box, Marcia was able to confidently engage in the tasks 

demonstrating mastery on all lesson and posttest domain probes.   

On the first day of the intervention, Marcia offered an explanation for her 

responses on her pretest domain probes, “I suck at math, but I am very good at telling 

why I can‟t do it.”  In many ways this was an accurate statement.  She had a history of 

poor performance in mathematics and yet she was very articulate during the intervention 

when explaining why she was confused, as evidenced by the many transcriptions 

provided thus far.   

In addition, Marcia clearly lacked confidence whenever a new task appeared.  For 

example, during the introduction to Lab Gear lesson, Marcia repeatedly stated “I‟m not 

good at this” while pulling out blocks that represented a given algebraic expression.  

However, during Lesson 1, Marcia never questioned her ability to represent the algebraic 

expressions; however, she did question her ability to multiply the binomials with the Lab 

Gear, which was the new objective for the lesson. 

Marcia: So now I have x (pointing to x square block) 

TS: What‟s this called? 

Marcia: X squared. I don‟t know if I am doing it right. 

TS: You are doing beautifully 
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Marcia: So now I have x squared. So now its‟ x plus 3 times x plus 2 equals x 

squared plus 5x plus 6 (writing the area equation symbolically)  

 Throughout this lesson, she continued to make comments showing her lack of 

confidence, such as “Anna‟s smarter, ask her.” However, by lesson 2, Marcia developed 

confidence in her ability to multiply binomials and engage in the discussions surrounding 

the area context.  After receiving praise for providing an accurate solution, Marcia stated, 

“Thanks. I feel good about myself.” 

 Marcia transitioned to the Box Method during Lesson 3 and immediately stated, 

“I‟m not good at that” at the mention of the objective.  After participating in the activity 

that transitioned from the blocks to the Box template (see Figure 7),   Marcia initially 

remarked, “That‟s pretty cool.”  But when told to practice one, she lost confidence. 

 Marcia: That‟s pretty cool 

TS: Alrighty, I want you to practice one! 

Marcia: Ahh, I „m not good at that. 

TS: I want you to set up the problem in the box 

Marcia: I can‟t. My brain‟s fried 

 Marcia‟s lack of self-confidence produced a visceral reaction.  She put her head down 

and needed a lot of encouragement to practice using the Box Method.   

Marcia: I don‟t like this. 

TS: I‟m going to give you one more to practice. 

Marcia: No, I can‟t do this. It hurts my brain. 

TS: Please, just one more then you are done for today. 

Marcia:  I need the blocks. 



164 

 

TS: No, you don‟t. The numbers are too big for blocks. 

Marcia: I can‟t do it without the blocks. I‟m going to draw them 

TS: OK. Use sketches to help you. 

Marcia sketches 

Marcia: I‟m stuck. No I‟m not. 

TS: Marcia, thank you for sticking with it. For all that complaining, you‟re 

problem is perfect.  

Although still not confident, Marcia completed the additional practice problem by 

reverting back to using sketches of the Lab Gear, a tool in which she confidently used to 

multiply linear expressions previously. She also needed repeated exposure to the Box 

method and then needed to develop her own model of the Box before confidently using it 

to multiply linear expressions.   

 Marcia appeared confident when discovering the rules for factoring in Lesson 7.  

She was actively engaged with the Lab Gear, offering suggestions for her peers, and 

exclaiming, “This is the first thing that I understand!” This lesson was student-centered 

with minimal interaction between the participants and me.  She took a leadership role by 

encouraging her peers to “work together” and offering encouraging statements such as 

“Sasha, you‟re a genius!” 

 Her self-confidence again wavered when presented with the task of factoring a 

quadratic expression via the Box Method.  She particularly struggled when the quadratic 

expression contained negative terms.  “This is too far-fetched for me.”  During the 

teacher modeling of factoring a quadratic expression containing negative terms, Marcia 

withdrew and put her head down on the desk and continually stated that she didn‟t “know 
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anything.” However, after reviewing an additional problem containing all positives, 

Marcia again became engaged and even helped Sasha with a problem.    

 Enjoyment.  Enjoyment refers to students‟ feelings of pleasure and satisfaction 

while participating in the intervention. Throughout the intervention, Marcia‟s appearance 

of enjoyment wavered, often as her confidence ebbed and flowed.  She did not enjoy 

activities in which she did not feel confident. The key to Marcia‟s enjoyment was the 

development of her self-confidence and the supports embedded in the intervention such 

as the Lab Gear and the Box Method cultivated her confidence in her math ability.  

Marcia began the intervention by saying “Math class is horrible. We don‟t learn 

anything” and ended by writing on the social validity measure “I hate math” when asked 

if she was interested in learning more about quadratics.  Despite these negative 

statements, during the intervention Marcia showed glimmers of enjoyment.   

On the second day of the intervention Marcia stated, “I hate math. The bad thing 

when I‟m with you I can‟t cut. I always cut math.” Ironically, Marcia could choose not to 

come to class, as participation in this study was voluntary.  I reminded her of this and that 

she was not receiving a grade.  She responded by saying “I‟ll learn something from you.”  

I was Marcia‟s math teacher when she was in 7
th

 grade, so we had a pre-existing 

relationship for her to make this assumption.  Additionally, I believe she enjoyed not 

receiving a grade.  Marcia was perceptive regarding the procedures of the study.  For 

example, she inferred which activities I was scoring during the lessons (i.e., lesson 

probes).  

TS: I want you to sketch the blocks for this.  Sometimes I don‟t care, but this time 

I want you to. 
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Marcia: So it‟s a quiz 

TS: It not really a quiz.  You aren‟t getting grades for this. 

Marcia: True.  We shouldn‟t ever get grades.  It would be less stress. 

TS: I agree 

Marcia: We should start a new school.  

This study was less stressful than her typical math class because she was not being 

graded and therefore more enjoyable. These factors may also have contributed to her high 

achievement on the probes.  

She was smiling and engaging during activities in which she felt comfortable.  For 

example, in Lesson 2, Marcia was confident in her ability to multiply linear expressions 

with the Lab Gear and replied, “Thanks, I feel so good about myself” when praised.  

Marcia continued throughout the lesson actively engaged in discourse regarding 

representations of negativity, such as x – 2 equaling x + -2. Her body language was also 

reflective of enjoyment, as she smiled and laughed. 

Marcia‟s enjoyment was also evident when she created a “Starbucks commercial” 

at the beginning of class.  As I hit the record button on the video recording, Marcia began 

acting.    

Here we do intense math as you can see with this teacher over there. She‟s crazy. 

She makes us do this stuff with these blocks which is why we need our coffee.  

She makes us do this intense work because she thinks we are some kind of rocket 

science genius people. But we love her! 

Marcia was smiling throughout her commercial and all the participants were laughing by 

the end.  Marcia felt that the algebraic tasks were difficult, but she also felt confident that 

she could be successful and that pleased her.   



167 

 

However, when presented with new tasks, Marcia visibly became uneasy. Marcia 

enjoyed working with the Lab Gear and was not eager to transition to only abstract 

symbols. When I first introduced our Lesson 3 objective as transitioning from the blocks 

to using only pencil paper to multiply linear expressions, Marcia‟s responded, “We 

should be able to do that though”  when it was noted she could not take the blocks to an 

SAT testing site.  The participants gradually transitioned from using the Lab Gear to the 

Box Method by physically placing the blocks into a template I created for the Box 

Method (see Figure 9); however, Marcia was resistant.  

TS: This is exactly what we are going to be doing now.  We are going to be 

moving away from the blocks to using the box method. 

Marcia: Whoa, whoa, whoa. What do you mean moving away from the blocks? 

TS: We aren‟t going to use them anymore to multiply binomials.   

Marcia: I‟m not good at that. 

Marcia yawns really loudly.   

She immediately assumed that she would not be good at multiplying binomials 

unless she had the Lab Gear.  She also began to withdraw as she yawned, put her head 

down on her desk, and checked her phone for the time.  These were typical behaviors 

when Marcia encountered a new algebraic task.  

Despite her wavering self-confidence, Marcia always wanted to understand the 

why of the solution.  For example, she was not content simply learning the procedure for 

multiplying linear expressions with negative terms, but wanted to understand the 

representation.  Her favorite lessons involved exploration, for example discovering the 

rules for factoring using Lab Gear.  In this lesson, she visually saw why the rules worked, 
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and exclaimed, “I understand!” Marcia worked extremely hard during the instruction unit 

and at the end stated, “I am proud of myself.”  In fact, she did not want the study to end. 

The following exchange occurred as she turned in her maintenance test, which officially 

ended the study.  

Marcia: Is this over? 

TS: Yes 

Marcia: I don‟t want this to be over!  I like to do this stuff. I can‟t believe I‟m 

saying this about math. 

Marcia‟s behavior during this intervention was completely different from her behavior 

reported by her teacher and her mother. Before and after this study, Marcia consistently 

refused to attend her math class and refused to complete assignments.  In contrast, during 

this study, Marcia arrived on time, stayed late, and completed all of her tasks with a high 

degree of accuracy.   

 Perseverance.  Perseverance refers to a students‟ ability to continue working on a 

task until completion.  Marcia demonstrated perseverance on task completion throughout 

the study, specifically relating to attendance, completion of transfer probe, and 

completion of maintenance domain probe. She consistently attended sessions, arrived on 

time and stayed late to ask questions.  After our session, Marcia had a 15 minute break 

before her next class and she consistently stayed late to discuss unresolved questions 

from the instructional session.   For example, at the end of Lesson 4, Marcia was 

struggling with the transition from Lab Gear to the Box Method.  During the lesson she 

developed her own graphic organizer (see Figure 11) but continued to have questions 
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regarding how to use it.  Marcia used her entire break to discuss her graphic organizer 

with me.   

 Marcia‟s perseverance was also displayed on the transfer measure and the 

maintenance domain probe.  The transfer measure consisted of three novel tasks in which 

she needed to apply knowledge and strategies learned from the instructional unit (see 

Appendix N).  Marcia spent one hour and twenty minutes completing this task, although 

she was provided opportunities to end the task at the end of our scheduled session and at 

the end of her break time.  She continued working through the next class period and 

stated, “I‟m not stopping till I finish this test.  Can I get a note to miss my next class?”  

Her perseverance paid off as she scored 100% accuracy on the transfer measure. 

 Marcia was equally committed to her performance on the maintenance domain 

probe that she completed four weeks following the intervention.  The learning specialist 

at the school administered the test to the participants in a conference room while I waited 

in the adjacent cafeteria.  After approximately 30 minutes, Marcia brings her test to me. 

 Marcia: So, can you grade this and give me a new graph? 

 TS: I will email you a new graph. 

 Marcia: When other people‟s graphs went down, was it because they made 

mistakes on  this?  Maybe I should look over mine. I want mine to stay up. 

Marcia then returned to the conference room to continue working on the test.  All 

participants received a graph of their pretest and posttest scores. She appeared pleased 

with her progress and did not want her graph to show a decline in her performance (she 

scored 100%).   
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Socially shared metacognition.  Socially shared metacognition refers to students 

sharing the problem-solving process by confirming one another‟s correctness through 

reciprocal turns.  Marcia, Anna, and Sasha formed group 2 of the study and progressed 

through the instructional unit together.  Throughout the 13 instructional sessions for 

Marcia‟s group, there were only four incidents of socially shared metacognition between 

peers.   I intentionally chose to work with pairs or triads of students to facilitate discourse 

between peers, which proved challenging. I noted this challenge in my field notes. 

Marcia and Sasha are doing their own problem and then looking at each other‟s 

work.  This is their idea of working together, doing their own work and then 

checking to see if they get the same answer.  If they do not have the same answer 

they ask me which is correct, each saying their answer is wrong as they begin to 

erase their problem. 

Working together usually consisted of the participants telling their answer to one another 

to see if they had the same answer.  Their interaction ended if they had the same solution 

or they looked to me for guidance if they had varying responses.  At this point, I 

prompted participants to share their solutions and strategies with one another in hopes 

that they would challenge or confirm each other‟s ideas, or discover the solution together. 

Additionally, I often provided explicit guidance. 

Sasha: So what does it equal? 

TS: Marcia and Anna, explain to Sasha how you write the equation length times 

width equals area. 

Marcia: I don‟t know how to explain it. 

TS: So what is your length? 

Marcia: x + 3 

Sasha: width is x + 2 
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TS: You have your length and your width. What is inside your representation is 

your area.   

Sasha: So you have x squared plus 5 um 

TS: Show us where you are getting the 5. 

Sasha: here (pointing to 5 x-bars). But then what are these things (pointing to 6 

constants) 

TS: You said x
2
 plus 5x when you pointed to your  x-square and x-bars and now? 

Sasha: plus 6? Yeh? 

TS: Marcia and Anna, do you agree? 

Marcia and Anna nod.  

In addition to my explicit guidance in the exchange above, Marcia frequently 

demonstrated the ability to tutor her peers.  For example, in the excerpt below, Marcia 

explained to Sasha how to set up the Lab Gear to represent length that is two meters 

longer than the width.  

Marcia: So this is the length (an x-bar and 2 constants) and this is the width (an 

x-bar) 

TS: So how do you know that? 

Marcia: Because we don‟t know what the width is. 

Sasha: What are you saying? How do you know what is the length? 

Marcia: We don‟t have an answer so we can use X.  Remember when we had the 

square, we used X. Because the square wasn‟t a size.  

Sasha: So this is the length and this is the width (setting up blocks for each on 

corner piece) 
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However, the socially shared aspect was limited in these examples as the participants did 

not engage in any turn taking of ideas, nor did they develop a solution or response based 

on sharing their ideas.  In the first excerpt I asked leading questions and in the second 

excerpt Marcia provided her explanation but Sasha did not offer any of her ideas to revise 

that solution.   

 The first incident of socially shared metacognition occurred during Lesson 3 

when the participants were multiplying (x – 2) (3x + 15) using the Box Method. 

Sasha:  -2 times 3x. Negative 6x. 

Marcia: -2 times 3 is -6 

Sasha: x times 15 is 15x. -2 times 15 is -30. 

Marcia: What? 13 

TS: How did you get 13? 

Marcia: 15 – 2 

Sasha: we‟re multiplying 

Marcia: Multiplying. Oh, I really don‟t like this at all.  I need the blocks. I can‟t 

do this.  I need to make my own chart. No, my own blocks. 

TS: Well, let‟s practice a little bit. We are going to multiply exactly like we 

multiplied the blocks but we are only using symbols. What is the area for this 

problem? 

Marcia: I have no idea 

Sasha looks at Marcia and sighs. 

Sasha: 3x
2
-6x+15x-30. 

Marcia: How are you doing this? 

Although I provided some probing questions, the majority of this exchange occurred 

between Sasha and Marcia.  Ultimately, Marcia revised her solution strategy by 

multiplying the terms rather than adding.  Unfortunately, Sasha became impatient with 

Marcia and then Marcia switched her attention away from Sasha toward me.    
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Marcia and Sasha displayed another attemptat shared metacognition during 

Lesson 4.  Participants were provided with the following directions for a warm-up task 

which was similar to a problem from the previous lesson.  

Today we are going to continue our transition from using the blocks to using the 

box method to multiply binomials.  We want to multiply x plus 5 times x plus 3.  

Put the blocks into the box.  Then write the area equation somewhere for me.  So 

work on this together while I go get pencils from Mrs. Brown.  

I then left the room, but continued video recording.  All participants began working 

individually on the problem; however, Sasha and Marcia looked at each other‟s work. 

 Marcia: This is hard. 

 Sasha: How‟d you get a negative? 

 Marcia: Oh, I thought it was negative three. 

 Marcia makes revisions to her work. 

 Marcia: Do we have the same? 

 Marcia and Sasha: Yeh!  (give each other high five) 

Since I left the room, the participants did not have me to provide prompts or to confirm 

responses.  They needed to rely on each other for verification.  Marcia applied Sasha 

comment, “How‟d you get a negative?” to reevaluate her solution and then made the 

necessary revision.   

 Lesson 7 involved participants discovering the rules for factoring while looking 

for patterns in a series of factoring tasks using the Lab Gear representations.  This was a 

student-centered activity and I was hoping to see evidence of socially shared 

metacognition.  In the beginning, Marcia encouraged her peers to “help each other out.”  
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They compared answers and Marcia praised Sasha for successfully arranging a set of 

blocks in the corner piece.  

Marcia: We don‟t have ones. 

TS: you don‟t have any ones. 

Anna: You can add ones. 

TS: You can‟t add ones.  

Marcia: So what do we do? 

TS: Why don‟t you look and see what other people are doing. 

Marcia looks at Sasha’s paper 

Marcia: Oh you are a genius. 

TS: Your (Sasha’s) area is perfect.  Now you have to figure out the dimensions.  

You can help each other. 

Marcia: Ok let‟s help each other.  Ok it would have to be an x and an x and  3 

ones. 

Sasha: No there are no ones 

Marcia: Yes, because if you put 3 here (pointing to the x-bars inside the corner 

piece) there has to be 3 here (pointing to constants above the corner piece)  

Sasha revised her Lab Gear representation based on Marcia‟s explanation.  

Unfortunately, Marcia proceeded to complete this activity independently and much 

quicker than the other two participants, exclaiming, “Done! I was on a roll there!” when 

she completed the activity. Then Marcia took on the role of tutor and explained her 

strategy for factoring with the blocks.  For example, she told Sasha, “Don‟t make the 



175 

 

blocks, it takes too much time. Look at this.”  Marcia explained her strategies and 

observations but did not give Sasha and Anna the opportunity to respond.   

Marcia: Yes, so we had 7xbars so technically if there wasn‟t any of these 

(constants) I could just go 7 across. Since you have the constants you are basically 

making a multiplication problem that the answer is the amount of squares that is 

needed. So now what it really is I am doing 12 divided by, 4 times 3 is 12 so my 

bars fit in.  That‟s how I figured out what each thing is. And also when, when, 

yeh, I had another thing, but I don‟t remember.  

TS: Do you hear what she is saying about the constants? When she was looking at 

the 12 here, she said 4 times 3 is 12. 

Marcia: Yeh, that‟s how I had to figure it out (said something I can’t understand) 

because one could go here and 12 across, and 12 times 1 is 12. But since you have 

this x bar here, this gets all filled up , since everything has to connect, everything 

has to have a place to go but if I would have gone 5 across and only 2 down that 

wouldn‟t have been even space to fill out because there wouldn‟t be enough 

numbers.  You have to make sure that you are distributing everything evenly so 

that it fills everything.  

Anna: Yeh, I did notice this a little bit but I didn‟t put it into words. I just 

followed my instincts. 

Marcia monopolized all conversation, speaking very quickly and so I attempted to restate 

what she said to give the other participants an opportunity to provide feedback.  

However, they continued to work independently and share their ideas only when I asked 

specific questions.  
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 One final example of socially shared metacognition occurred during Lesson 8 

when participants were factoring a quadratic expression with negative terms               

(i.e., x
2
 - 4x – 5) using the Box Method.  They had agreed on the factor pair but did not 

agree which factor needed to be the negative.  

Marcia: negative 5 

TS: Good!  I‟m glad you said negative 5. So we need to figure out factors of 

what? 

Anna and Sasha: -5 

TS: Give me factors of negative 5 

Marcia: one times 5 

Anna: Negative 5. 1 times 5 is 5. One times -5 is -5 and 1 plus -5 is -4. 

Sasha: Why can‟t it be the one? 

Marcia: Because 5 is the bigger number. 

Anna: Because that problem is  -4. 

Marcia: if you look at a number line, 5 is way down lower on the number line. 

Sasha: No if you do -1 times 5 it‟s the same number 

Marcia: No cause then the 5‟s not negative.  So if you look at the number line, the 

5 is here and if you add one you move it one this way to the negative 4 (using 

fingers to draw on table). 

TS: So tell me what to put here. 

Marcia: plain old 1 and negative 5 

Sasha: I still don‟t get how -5 plus 1 is negative 4 
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TS: Let me draw these blocks.  What did we have to do with our Lab Gear when 

we had a positive and a negative, Sasha? 

Sasha doesn’t respond. 

TS: What does a positive x-bar and a negative x-bar equal? 

Sasha: negative 

TS: Marcia, help her out. 

Marcia: Remember when there‟s positives and negatives, negatives do what to 

positives? 

Sasha: make them negative 

TS: Remember we are adding these. 

Marcia: Negative means less. So you are taking out. They cancel each other. The 

negative is going to take one of the x-bars out so the one goes away and one of the 

5 goes away (referring to sketch on board) 

Sasha confused the rules of adding integers and multiplying integers.  When Marcia 

asked, “negatives do what to positives?” Sasha replied, “make them negative.”  However, 

through discourse with Marcia and Anna, Sasha was able to revise her solution for the 

factors and agreed with the group that “- 4x and one x” completed the box, therefore, the 

area equation was x
2
 - 4x – 5 = (x – 4) (x + 1).  

Summary.  Marcia demonstrated enhanced metacognition throughout the 

intervention.  Enjoyment appeared linked to her confidence whereas perseverance 

consistently improved throughout the intervention, peaking on the transfer and 

maintenance probes. By the end of the intervention, she was very confident in her ability 

to complete tasks associated with the content in the instructional unit and when met with 
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a new challenge in the transfer measure, persevered for over an hour to complete the 

tasks.  Marcia believed she could solve the transfer tasks and persevered despite never 

receiving explicit instruction on the tasks.  This is in contrast to her pretests in which, 

instead of mathematically attempting to solve the tasks, she wrote explanations for why 

she could not solve them. Additionally, by the end of the intervention, Marcia appeared 

to enjoy learning about quadratic functions and requested that I stay and continue to work 

with her.  Although Marcia enjoyed the intervention overall, stating that, “I don‟t want 

this to be over!  I like to do this stuff” her enjoyment of math did not transfer to her 

regular math class.  Her teacher reported that Marcia refused to return to her math class.  

Socially shared metacognition is the only area that did not develop as the 

intervention progressed, despite my attempts to facilitate the process.  Marcia revised her 

solution or strategy based on the feedback of a peer on one occasion during the 

intervention.  However, she was willing to discuss with peers and provided insight into 

tasks which assisted Sasha in revising her solutions as noted above.  In those examples, 

Marcia was very confident in her knowledge and eagerly tutored her peers.  However, 

when not confident, Marcia appeared to prefer to engage in discourse with me rather than 

her peers as evidenced by her choosing to remain after class to work with me.    
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Chapter 6: Discussion 

 

The purpose of this study was to investigate the effectiveness of blended 

instruction and visual representations on area problems involving quadratic expressions 

for secondary students with mathematics disabilities or difficulties (MD).  Overall, 

participants learned to multiply linear expressions to form a quadratic expression and to 

factor a quadratic expression to form two linear expressions.  They all demonstrated an 

understanding of the relationship between the linear expressions (i.e., dimensions) and 

the quadratic (i.e., area).  Additionally, three participants transferred their knowledge to 

problems involving more complex procedures and to problems involving perimeter and 

volume.  In the first section of this chapter, I summarize the findings from the study and 

discuss their importance relative to the current literature.  Next, I interpret the major 

findings as they relate to the research questions.  Finally, I discuss the limitations of the 

study and implications for research and practice.   

Summary of the Study Results Relative to Current Research Literature 

Since the publication the National Council of Teacher‟s of Mathematics (NCTM) 

Curriculum and Evaluation Standards for School Mathematics in 1989, only 11 studies 

have been published examining algebraic interventions for secondary students with LD or 

at-risk of LD.  Additionally, this research focused on more foundational content including 

integers (Maccini & Hughes, 2000; Maccini & Ruhl, 2000) and linear equations 

(Allsopp, 1997; Bottge, Heinrichs, Chan, & Serlin, 2001;  Bottge, Rueda, LaRoque, 

Serlin, & Kwon, 2007a; Bottge, Rueda, Serlin, Hung, & Kwon, 2007b; Hutchinson, 

1993; Mayfield & Glenn, 2008; Scheuermann, Deshler, & Schumaker, 2009; Witzel, 

Mercer, & Miller, 2003).  These studies did not examine student performance on more 
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advanced algebra content that is also inline with the content proposed by NMAP (2008), 

Achieve (2004), and CCSSI (2010).  The current study was designed to address this gap 

in the research literature by applying a package of research-based instructional practices 

to quadratic expressions, which is a common algebra topic from the high school math 

curriculum. This was the first documented study with secondary students with LD or at-

risk for LD that: (a) addressed quadratic expressions from both a polynomial-based 

approach and a functions-based approach, which aligns with Common Core Standards 

(CCSSI, 2010); and (b) incorporated a mixed methods research design that included 

qualitative data to enhance the understanding of the quantitative results. Specifically, the 

quantitative data revealed the extent of the participants‟ academic performance, while, 

the qualitative data explains why they performed the way they did.   

An exhausted review of the current literature led to the development of an 

instructional package which incorporated the following research-based practices: (a) 

contextualized instruction (Allsopp, 1997; Bottge, et. al., 2001; Bottge, et.al., 2007a; 

Bottge, et. al., 2007b; Hutchinson, 1993; Maccini & Hughes, 2000; Maccini & Ruhl, 

2000); (b) CRA instruction (Maccini & Hughes, 2000; Maccini & Ruhl, 2000; 

Scheuermann, et.al., 2009; Witzel, et.al., 2003); and (c) a graphic organizer (Ives, 2007).  

Additionally, the instructional package was delivered through blended instruction, which 

included components of explicit instruction (Hudson & Miller, 2006) and the NCTM 

process standards (2000).  As recommended by the NMAP (2008), students received 

some explicit instruction while having opportunities to engage in constructivist-based 

activities that required them to problem-solve, justify their solutions, and make 

connections between mathematics topics (i.e., algebra and geometry).  The current study 
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incorporated research-supported practices to address the advanced algebra content of 

quadratic expressions.   

Emphasis on quadratics. Many typical students have difficulty with quadratics 

because of poor understanding of foundational ideas (e.g., negativity, equality, variables) 

and their inability to recognize and understand varied representations of the same 

quadratic relationship (i.e., standard form and factored form) (Kotsopoulo, 2007; 

MacDonald, 1986).  The topic of quadratics was introduced in the current study via a 

functions-based approach as students were provided tables of data relating to the 

contextualized problem situation.  This aligns with recommendations from experts in 

mathematics education that algebra should be functions-based (Kilpatrick & Izsak, 2008) 

and be present in the learning and teaching of any algebra topic (Yerushalmy & Gafni, 

1993).  Additionally, the current study included polynomial-based algebraic 

manipulations of the quadratic expression from factored-form to standard form and vice 

versa. Many experts in mathematics education continue to value polynomial-based 

algebra, believing that through symbolic manipulations and computational processes, 

students develop a deeper understanding of mathematical objects (Kieran, 2007; 

Kilpatrick & Izsak, 2008; Sfard & Linchevski, 1994).   Addressing quadratics through a 

functions-based approach and a polynomial-based approach is critical as these topics are 

aligned with state and national standards (CCSSI, 2010; NMAP, 2008). In addition both 

approaches are needed for students to obtain a deeper understanding of the content.  

Contextualized instruction.  The instructional package implemented in this 

study included contextualized problems situated in the context of area.  Many problem 

situations included renovations of a square-shaped room in which the lengths and widths 
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were increased or decreased by a specified amount.  Participants completed tables that 

included examples using discrete numbers and were required to write an algebraic 

expression to generalize each dimension (i.e., linear expression) and the area (i.e., 

quadratic expression).  The use of contextualized instruction has proven to be an effective 

practice for teaching algebraic concepts such as linear equations (Allsopp, 1997; Bottge, 

et. al., 2001;  Bottge, et.al., 2007a; Bottge, et. al., 2007b; Hutchinson, 1993) and integers 

(Maccini & Hughes, 2000; Maccini & Ruhl, 2000) to secondary students with LD and 

students at-risk.  Furthermore, Nathan and Koedinger (2000) found that typically 

developing secondary students performed better on algebraic word problems than on 

symbolic-equation problems. When presented with word problems, students used 

informal strategies such as guess-and-test and unwinding rather than symbolic 

manipulation to solve the problem.  Nathan and Koedinger suggest that use of 

contextualized word problems may serve as models for developing algebraic reasoning,  

Use of multiple visual representations. The instructional package implemented 

in this study included the use of multiple visual representations of quadratics specifically 

in the form of concrete manipulatives (i.e., concrete representation using the  Lab Gear), 

sketches of the manipulatives (representational using pictures), and a graphic organizer 

(abstract notation), which also formed the three components of the CRA strategy.  The 

use of manipulatives as an effective tool for teaching mathematics to students is 

documented in the special education literature (Gersten, et al., 2009a; Hudson & Miller, 

2006) and the mathematics education literature (NRC, 2001; Van de Walle, 2010). 

Additionally, four previous studies in the special education literature determined that the 

CRA instructional sequence was a beneficial strategy for teaching algebraic content such 
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as integers with use of the Lab Gear (Maccini & Hughes, 2000; Maccini & Ruhl, 2000) 

and linear expressions (Scheuermann, et al., 2009; Witzel, et al., 2003) to secondary 

students with LD.  

Maccini and colleagues (2000) and Witzel et al. (2003) implemented the CRA 

sequence as three separate stages with each stage tied to mastery performance (i.e., 

concrete, representational, abstract). However, Pashler and colleagues (2007) 

recommended integrating and connecting the concrete and the abstract representations 

during instruction to support student‟s conceptual understanding and to promote transfer 

of the concept to a range of novel situations.  Integrating the phases expedites the 

progress from the concrete to the abstract which is recommended by Gersten and 

colleagues (2009a). Therefore, this study modified the CRA sequence and simultaneously 

introduced the concrete manipulatives, sketches of the manipulatives, and the abstract 

symbols, which is also referred to as the CRA Integration strategy (Strickland & Maccini, 

2011). 

  A graphic organizer, the Box Method, was used to support participants‟ transition 

from the concrete to the abstract, as students with LD often find this challenging (Hudson 

& Miller, 2006).  Specifically, many students with LD have experienced difficulty 

generalizing learned material (Gagnon & Maccini, 2001) and conceptualizing abstract 

algebraic concepts and algebraic tasks (Witzel, 2005).  The Box Method was 

incorporated in numerous mathematics curricula such as Lab Gear Activities for Algebra 

1 (Picciotto, 1995) and the CME project Algebra 1 (2009) for multiplying linear 

expressions and factoring quadratics.   
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Use of blended instruction. This study blended instructional practices found 

within the special education literature (i.e., CRA instruction, graphic organizers, 

contextualized tasks, and explicit instruction) with the NCTM process standards 

emphasized in mathematics education.  Specifically, the CRA sequence and graphic 

organizers have been identified as effective strategies for teaching mathematics and 

algebra to students with LD (Maccini et al., 2008; Strickland & Maccini, 2010).  These 

instructional strategies link to the NCTM process standard of multiple representations. 

Additionally, the use of area problems offered another representation of the quadratic 

expression and allowed participants to make connections between mathematical ideas.  

Further, the NCTM emphasizes reasoning and sense-making to support the mathematics 

progress for all students, including students with disabilities (Dieker, Maccini, Strickland, 

& Hunt, 2011). The NCTM process standards of reasoning and communication offer 

opportunities for students with LD to engage in sense-making.  

In addition, this study blended components of explicit teacher-directed instruction 

with student-centered activities. For example, the investigator modeled the process of 

multiplying linear expressions using the Lab Gear and provided participants with 

multiple practice opportunities to develop mastery.  Participants then applied their 

knowledge of multiplying linear expressions and the Lab Gear representations to verify 

the process of factoring quadratic expressions. Specifically, participants worked together 

to discover the process of factoring quadratic expressions in standard form (i.e., 

determine factors of the constant that add to equal the coefficient of the linear term) by 

comparing various quadratic expressions containing the same linear term but different 

constant or containing the different linear terms but the same constant. Participants were 
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provided guiding questions as needed, however, no direct modeling was given.   Using 

both explicit instruction and student-center activities aligns with the recommendations 

from the NMAP for students with learning disabilities and mathematics difficulties 

(2008).  Blending the instructional practices supported by special education research and 

the NCTM process standards supported by mathematics education research is critical as 

more students with LD participate in general education classrooms.  

The current study investigated the effects of blended instruction and visual 

representations on participants‟ accuracy on algebraic tasks involving quadratic 

expressions embedded within the area context and the extent to which their knowledge 

was maintained over time and transferred to more complex tasks.  Additionally, a 

qualitative analysis provided insight into why the participants made substantial gains on 

their accuracy on algebraic tasks involving quadratic expressions.     

Interpretations of Findings Relative to Research Questions 

The research questions were addressed using an embedded mixed methods 

design. The quantitative data served as the primary source while the qualitative data 

provided supplementary information.  Specifically, a multiple probe design across two 

groups replicated over 5 students provided the quantitative data which addressed the first 

four research questions.  Transcripts of instructional sessions, field notes, and the work 

samples of one representative participant (Marcia) provided the qualitative data which 

addressed the fifth research question.   

Research Question 1.  Research Question 1 was: When provided blended 

instruction with visual representations, to what extent do secondary students with 

mathematics difficulties (MD) increase their accuracy on algebraic tasks involving 
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quadratic expressions embedded within area problems? The effectiveness of this 

intervention on the algebraic accuracy is evident in the drastic changes each participant 

demonstrated from pre-to-posttest on the domain probes (see Figure 2).  All participants 

scored below the inclusionary criterion on pretests with scores ranging from 0% - 25% 

accuracy; however they demonstrated mastery of the content on all post-intervention 

domain probes with scores ranging from 84% - 100% accuracy.  Increases in percentage 

points on domain probes from baseline to post-intervention ranged from 65 percentage 

points to 93 percentage points.   

The ability of each of participant to demonstrate mastery on post-intervention 

domain probes suggests that the instructional package, including blended instruction and 

multiple visual representations through CRA-I instruction, positively affected 

performance on algebraic tasks involving quadratic expressions embedded within area 

problems.  Furthermore, between-phase patterns indicate an increase in scores only after 

the intervention, which establishes a functional relationship (Kennedy, 2005).  

Replication of the findings across both groups and all participants demonstrated 

experimental control and generality to other participants (Horton, et. al., 2005; Kennedy, 

2005).  

The results of this study related to algebraic accuracy are similar to previous 

research in which students with LD demonstrated increased performance as a result of 

contextualized problems, the CRA sequence, and explicit instruction (Maccini & Hughes, 

2000; Maccini & Ruhl, 2000; Scheuermann, et al., 2009) as participants receiving this 

package of instructional practices demonstrated mastery of the content.  The results of 

this study differed from previous research in which students with LD participated in 
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student-centered activities with explicit instruction provided as needed.  For example, 

Bottge and colleagues found that students with LD demonstrated improvements on 

problem solving tasks, however they did not improve performance (Bottge, et. al., 2007a; 

Bottge, et. al., 2007b) or declined in performance (Bottge, et. al., 2001) on computational 

measures.  Unlike previous research, participants in this study also demonstrated 

improved performance on both problem-solving and computational (i.e., symbolic 

manipulation) tasks. A possible explanation may relate to the design of the instructional 

unit in the current study.  Specifically, the use of explicit instruction was an intended 

practice rather than remediation for students who were unsuccessful in the student-

centered activities (Bottge, et al., 2007a; Bottge, et. al., 2007b; Bottge, et. al., 2001).  

Additionally, the current study included multiple visual representations of the targeted 

algebraic concept (i.e., quadratic expressions) that were linked to a familiar geometric 

concept of area.   

All participants demonstrated mastery of the content as evidenced by earning 80% 

or greater on post-intervention domain probes.  This criterion is recommended by experts 

in special education (Hudson & Miller, 2006).  An error analysis provided meaning to 

this quantitative percent.  An analysis of post intervention domain probes revealed that all 

five participants successfully transformed quadratic expressions in factored form to 

standard form and vice versa.  Specifically, the participants mastered the task of 

multiplying linear expressions and factoring quadratic trinomials.  This is an important 

finding as many typically developing students find these manipulations challenging 

(Banchoff, 2008; Cuoco, 2008; MacDonald, 1986).  Participants‟ mastery performance 

resulted from their ability to check their work through the use of the Lab Gear and the 
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Box Method.  Both methods provided students with visual cues to check the accuracy of 

their work (i.e., making a rectangle with the blocks and completed all sections of the 

Box).   Students‟ ability to implement procedures, such as those used to multiply linear 

expressions and factor quadratic expressions, and to check their work throughout the 

procedure is a desired mathematical behavior for all students (Banchoff, 2008).   Only 

one participant (Anna) missed points on tasks relating to transformation of quadratic 

expression as a result of not checking her work.  Anna did not multiply the two binomials 

as requested when completing the table of data.  This oversight significantly impacted her 

score on the final post-intervention domain probe as the scoring rubric contained points 

for showing the process in which the binomials were multiplied. She demonstrated her 

ability to multiply binomials on another task on this specific domain probe as well as on 

the other post intervention probes.  

An error analysis of post-intervention domain probes revealed that all participants 

missed points on the open-ended questions based on three reasons: (a) they responded 

incorrectly to the question; (b) they provided faulty justification; or (c) they neglected to 

provide an explanation. Participants‟ incorrect responses reflected a misconception 

between rectangles and squares. For example, Sasha missed points on an open ended 

question that asked if the shape of the area changed after the renovation.  She incorrectly 

responded that the shape remained a square, just a bigger square; however, the 

renovations changed the shape from a square to a rectangle.  When these errors occurred, 

participants were focusing on the appearance of the shape not the properties of the shape, 

which indicates immature geometric thinking based on van Hiele‟s level of geometric 

thought (Van de Walle, et al., 2010).  Additionally, students with LD often demonstrate 
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visual-spatial deficits (Garnett, 1998; Geary, 2004) which may have also impacted 

Sasha‟s visual perception of the pictures of the rooms.     

Participants did not always make connections with the tasks embedded within the 

instructional sessions and the tasks on the domain probes, which lead to faulty 

justifications. Faulty justifications were frequently linked to an inappropriate reasoning 

based on linear measurements.  For example, if the length of the room increased by four 

feet and decreased by two feet, then participants assumed that the renovated room 

increased by two feet. However, during the instructional sessions, participants drew 

numerous area models for discrete numbers on graph boards to determine if a particular 

set of similarly renovated rooms had more, less, or the same amount of space.  When 

encountering this question on the domain probes, they did not consistently generalize that 

method when responding to the question. This is consistent with previous research which 

reports that students with LD have difficulty in problem solving tasks as a result of poor 

recall and generalization of previously learned materials (Bley & Thorton, 2001; Bryant, 

et. al., 2000; Gagnon & Maccini, 2001). 

Finally, participants lost points for not provided explanations for their responses 

on the open-ended tasks.  Although the school staff members who administered the post-

intervention domain probes were informed that students could dictate responses, no 

participant did so. The reason for this is unknown; perhaps participants did not feel 

comfortable dictating to the school staff members.  Possibly they would have scored 

additional points on these tasks if they had dictated their explanations, as one-half to two-

thirds of students with mathematics difficulties also have co-morbid language deficits 

(Jordan, 2007).   
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Research Question 2.  Research Question 2 was: When provided blended 

instruction with visual representations, to what extent do secondary students with MD 

maintain performance on algebraic tasks involving quadratic expressions embedded 

within area problems four to six weeks after the end of the intervention? All participants 

demonstrated a high degree of maintenance of the content taught during intervention and 

reached the criterion score of 80% accuracy or greater four to six weeks following the 

intervention. The mean score across participants equaled 90% accuracy with a range of 

80% - 100%.  This finding is consistent with previous research in which students with LD 

demonstrated maintenance of mastery performance as a result of contextualized 

problems, the CRA sequence, and explicit instruction (Maccini & Hughes, 2000; Maccini 

& Ruhl, 2000; Scheuermann, et al., 2009).   

Group 1 participants outperformed Group 2 participants as evidenced by mean 

group scores on the maintenance domain probe (82% and 96%, respectively).  Two 

possible explanations for this include: (a) the number of instructional sessions per group; 

and (b) level of engagement.  Although both groups completed the exact same tasks, 

Group 1 completed the unit in 10 instructional sessions while Group 2 completed the unit 

in 13 sessions.  Group 1 participants were consistently on time and worked steadily.  In 

contrast, one participant (Sasha) in Group 2 was consistently late by 10 – 15 minutes the 

first six sessions.  Sasha was informed that she would not be permitted to continue in the 

study if she continued to be late.  Fortunately, she was consistently on time beginning 

session seven. However, Sasha‟s tardiness resulted in the Lab Gear introductory lesson 

and Lessons 1 through 3 extending into two days rather than completing during one 
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session. Perhaps spreading the instructional unit over the additional three sessions may 

have improved students‟ retention of the content.  

The level of engagement as determined by the amount of comments and questions 

asked by participants may have also contributed to the mean level difference across 

participants in Group 1 and Group 2.  Although participants in both groups struggled to 

work cooperatively (i.e., finished tasks independently and then checked their response 

with their peers), participants in Group 2 may have benefited from the verbal 

participation of Marcia. She consistently asked questions and spoke aloud while engaging 

in the task, even though she did not consistently engage in tasks with her peers.  Other 

research has shown similar results with peers benefiting from hearing the verbalizations 

of other group members (Van de Walle, et al., 2010).  Additionally, according to 

Vygotsky, social interactions within a classroom create a zone of proximal development, 

in which students learn new concepts by interacting with a teacher and/or other students 

(Gurganus, 2007; Kozulin, 1998; Van de Walle, et al., 2010).   

An analysis of maintenance domain probes revealed all participants recalled how 

to multiply linear expressions and how to factor a trinomial quadratic expression with a 

high degree of accuracy.  However, Cheryl, Cindy, and Sasha missed points for not 

providing explanations for their responses on the open ended tasks.  Anna again missed 

points as a result of not multiplying the linear expressions to complete the table as 

requested. Instead she indicated that the area of any square classroom after renovations 

was represented as (x + 6) (x +3).  The oversight was a result of not following written 

directions, rather than her algebraic ability, which significantly impacted her score as the 

scoring rubric contained points for showing the process in which the linear expressions 
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were multiplied. She demonstrated an ability to multiply linear expressions on another 

task on the maintenance domain probe.  

Although participants in Group 2 outperformed participants in Group 1, all 

participants demonstrated a high level of retention on the maintenance domain probe.  

This is an important finding as poor retention is characteristic of students with LD (Bley 

& Thornton, 2001; Geary, 2004; Hudson & Miller, 2006).  To compensate for memory 

issues, this intervention provided participants with ways of experiencing the algebra 

content through the manipulatives, which is a recommended practice when teaching 

students with LD (Bley & Thornton, 1995).   Through a combination of explicit 

instruction and exploratory activities, participants were able to construct their own 

understanding of quadratics which supported maintenance.   

Research Question 3.  Research Question 3 was: When provided blended 

instruction with visual representations, to what extent do secondary students with MD 

transfer their knowledge of quadratic expressions to problem-solving tasks? Results on 

the transfer measures were mixed as two participants (Anna and Sasha) demonstrated 

minimal ability to transfer the algebra content to novel situations, while two additional 

participants (Cheryl and Cindy) demonstrated a satisfactory performance.  Only one 

participant (Marcia) demonstrated competency on all three transfer tasks.   

For the first task, all participants successfully found the perimeter and the volume 

using discrete numbers and wrote algebraic expressions to represent the length, width, 

and height for the set of data.  This task included a contextualized word problem and 

tabular data, which was a format that participants recognized from the instructional unit.  

Although all participants accurately represented the dimensions using an algebraic 
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expression, only Marcia performed the accurate computations with the algebraic 

expressions to determine the volume and perimeter.  The other participants did not 

generalize the Lab Gear representations and the Box Method to determining perimeter 

and volume when represented by algebraic expressions. Difficulty with generalization of 

mathematical concepts and skills is characteristic for students with LD (Bley & Thornton, 

1995; Fuchs & Fuchs, 2007).       

For task two, Sasha replied, “Can‟t put it in the Box Method too many numbers.”  

She did not attempt to modify the Box Method and gave up easily.  Therefore, Sasha 

demonstrated two characteristics of students with LD, poor generalization (Bley & 

Thornton, 1995; Fuchs & Fuchs, 2007) and passivity (Gagnon & Maccini, 2001).  Anna 

did not attempt to use the Box Method and incorrectly used the distributive property.  

Instead she multiplied the first term of the trinomial with the first two terms of the 

polynomial, then multiplied the second term of the trinomial with the second term of the 

polynomial, and finally multiplied the last terms of each expression.   Anna demonstrated 

procedural deficits which are characteristic of students with MD who have deficits in 

working memory (Geary, 2004).  Marcia, Cindy, and Cheryl modified the Box Method to 

multiply a trinomial by a polynomial with four terms.  Cindy and Cheryl made 

computational mistakes when multiplying expressions with exponents and when 

simplifying like terms, which is characteristic of students with LD who may have 

semantic memory deficits which interfere with the ability to retrieve facts and skills from 

long term memory (Geary, 2004). Marcia was the only participant to complete the task 

correctly. 
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For the third task, all participants attempted to use the Box Method to factor a 

trinomial quadratic expression with a coefficient of three.  Sasha gave up quickly when 

she could not generalize the learned procedure (i.e., find factors of the constant that add 

to the coefficient of the linear term).  Anna incorrectly applied this procedure and 

recognized that she did not have the correct response as she wrote “wrong” on her paper.  

Cindy, Cheryl, and Marcia reverted back to sketching the Lab Gear when they had 

difficulty with the Box Method and then were able to accurately factor the quadratic 

expression.  The movement between representations demonstrates a depth of 

understanding (Van de Walle, et al., 2010).  

Difficulty with transferring mathematical concepts and skills to novel situations is 

characteristic for students with LD (Bley & Thornton, 1995; Fuchs & Fuchs, 2007).  In 

fact, many typical students fail to transfer learned material to new problems (Greeno, 

Collins, & Resnick, 1996). Fuchs and Fuchs (2007) suggest explicitly teaching transfer to 

increase students‟ awareness of the connections between novel and familiar problems.  In 

the current study, no explicit instruction was provided on the three transfer tasks.  Despite 

this, all participants were able to transfer their knowledge on the first transfer task.  

Hudson and Miller (2006) suggest that teaching conceptually aids in transfer.  The first 

transfer task was conceptually linked to familiar concepts of volume and perimeter.  In 

contrast, the other transfer tasks were procedural tasks involving only abstract symbols.  

Previous research shows that the students with LD have difficulty understanding abstract 

symbols (Bley & Thorton, 2001; Garnett, 1998; Geary, 2004; Witzel, 2005), and poor 

understanding of procedures (Garnett, 1998; Geary, 2004). Regardless, three of the five 

participants were able to transfer their knowledge from the instructional unit to tasks 2 
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and 3 on the transfer measure with some degree of accuracy (see Figure 2).  To do so, 

they used the Box Method which is a general purpose tool that can be used to multiply 

polynomials of varying degrees (Cuoco, 2007).  Participants‟ recognition of the Box as a 

general method for solving tasks with similar features promoted their success on the 

transfer measure, which is consistent with research in mathematics education (Greeno, et 

al., 1996). 

Research Question 4.  Research Question 4 was: When provided blended 

instruction with visual representations, to what extent do secondary students with MD 

find blended instruction with visual representations beneficial (i.e., social validity)?  The 

math department chair at the participating school administered the social validity measure 

to each group of participants.  The measure consisted of two parts: (a) a 5-point Likert 

scale; and (b) open-ended questions.  All participants reported that they found the 

intervention to be beneficial and would recommend this intervention for other students.  

They particularly enjoyed the Algebra Lab Gear, which is consistent with previous 

research (Maccini & Hughes, 2000; Maccini & Ruhl, 2000).  Responses were mixed 

when asked about the benefit of word problems, tables of data, and talking about the 

problems with the teacher and/or peers, which may have been influenced by their 

previous experiences with these instructional tasks.  Specifically, students with LD 

characteristically struggle to complete word problems (Bryant, et. al., 2000).  

Additionally, the participants of this study had no experience with tabular data nor were 

they required to discuss and justify their responses in their current math class.   

Research Question 5.  Research Question 5 was: How do the qualitative data 

findings provide an enhanced understanding of the quantitative results?  Specifically, 
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what connections and disconnections to the algebra content emerge as a result of the 

intervention and how can these findings improve future instruction? In what ways does 

the intervention enhance aspects of metacognition?  An analysis of Marcia‟s 

transcriptions, field notes, and work samples provided insight into why participants‟ 

performance on domain probes increased. Specifically, two main themes emerged: 

representations and metacognition.  

Representations.  Within the theme of representations, numerous subthemes 

surfaced involving Marcia‟s use of the area context, the Lab Gear, and the Box Method.  

Specifically, she developed connections and disconnections between these types of 

representations and the algebraic content.  

Area context. Marcia established connections between the area context and her 

previous knowledge, abstract symbolism, and the concept of area as a quantity.  

Additionally, a disconnection was observed between the area context and factoring. First, 

the area context provided a connection to Marcia‟s previous knowledge of area as length 

times width using discrete numbers.  The ability to build on existing knowledge is a 

critical component in both explicit instruction (Hudson & Miller, 2006) and constructivist 

teachings (Clements & Battista, 1990; Knight, 2002).  The area context also served as an 

anchor to the abstract symbols. After discussing the area context through the word 

problem and the tabular data, Marcia developed a generalized algebraic expression to 

represent the area context and was able to perform the symbolic manipulation to 

transform the factored-form (i.e., dimensions) into the standard-form (i.e., the area).  

However, when presented with a noncontextualized quadratic in factored-form, she 

struggled to associate the symbolic manipulation as “the answer” or the final result to the 
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task.  Although we continued to write the symbolic-equation using the area formula, there 

was no story situation to anchor her response. This finding is consistent with previous 

research (Nathan & Koedinger, 2000) as the researchers found that typically developing 

students solved contextualized algebraic word problems with a higher degree of accuracy 

than symbolic-equation problems because of their use of informal strategies. For 

example, students frequently used the common informal strategy of guess and check 

when provided a contextualized problem. Nathan and Koedinger stated that informal 

methods may facilitate performance when technical skills are lacking, however, informal 

strategies were insufficient for solving complex algebraic tasks.      

In addition Marcia also made connections between the area context and the area 

quantity. When completing open-ended questions asking if the renovated rooms now had 

more, less, or the same amount of space, she consistently substituted discrete numbers 

into the factored-form of the quadratic expression to confirm her answer.  Although she 

developed an understanding of quantity when comparing quadratic expressions later in 

the unit, she always reverted back to the area context to confirm her responses to these 

types of opened-ended questions on the post-intervention and maintenance domain 

probes. Marcia was more comfortable working with discrete numbers rather than the 

abstract algebraic expressions, which is a typical response as many students with LD 

struggle to conceptualize abstract algebraic concepts (i.e., abstract symbols such as 

variables) and algebraic tasks (i.e., solving complex equations) (Bley & Thorton, 2001; 

Garnett, 1998; Witzel, 2005).    

Although the area context enhanced Marcia‟s connections to algebraic content, 

she also demonstrated a disconnection between the area context and factoring.  Marcia 
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stated that “All those words don‟t matter” when presented with a contextualized task 

involving factoring.  As factoring is often considered a difficult topic for students 

(Banchoff, 2008; Cuoco, 2008; MacDonald, 1986), Marcia‟s inability to see a connection 

between the area context and the process of factoring is consistent with previous research.  

Additionally, the use of word problems for more complex algebraic equations is not as 

helpful as informal strategies such as guess-and-check break down (Nathan & Koedinger, 

2000).    

Lab Gear. Marcia established connections between the Lab Gear representations 

and the Zero Property, negativity, rules for factoring, and comparison of quantity 

between different quadratic expressions. She also demonstrated disconnections to the 

Distributive Property and the abstract nature of the Lab Gear representation. Marcia 

recognized many connections between the Lab Gear and algebraic concepts.   

Specifically, she was able to act on the manipulatives to demonstrate the Zero Principle 

by removing equal numbers of positive blocks and negatives blocks.  Additionally, she 

recognized this principle in her drawings when she no longer needed to physically 

manipulate the blocks, indicating a transfer of this concept to a sketch.  She also 

successfully modeled the concept of negativity as adding a negative by using the negative 

blocks.  This is an important observation as many typically developing students struggle 

with concept of negativity (Kieran, 1989; Vlassis, 2004).  

  Marcia also established a connection between the Lab Gear and the rules for 

factoring.  She identified factoring as “working backwards” and “undoing” the 

multiplication of the linear expressions (i.e., the dimensions).  During this process, 

Marcia identified patterns that developed into the process of factoring quadratics with a 
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coefficient of one, such as the factors of the constant must add to equal the coefficient of 

the linear term.  Additionally, she was able to use a sketch of the Lab Gear to modify her 

process on the third task of the Transfer measure, which required her to factor a quadratic 

with a coefficient of three.   The use of multiple representations provided Marcia with a 

deeper understanding of factoring (NCTM, 2000; Van de Walle, 2010) which helped her 

connect the procedural rules with conceptual understanding of “working backwards” and 

“undoing.” These are important findings as typical students struggle to factor (Banchoff, 

2008; Cuoco, 2008; MacDonald, 1986).   

The last connection Marcia made between the Lab Gear and the algebra content 

involved comparing quantities of various quadratic expressions.  For example, when 

comparing the Lab Gear representation of x
2
 + 4x + 3 and x

2
 + 4x+ 4, Marcia initially 

had difficulty seeing that one area was larger.  She realized that the quantities were very 

similar with one area only “up by one.”  When presented with the representations of the 

quadratic expressions  x
2
 + 4x + 4 and     x

2
 + 5x + 4, Marcia observed that x

2
 + 5x + 4 

resulted in a larger picture than the increase of only one constant in the example above. 

Her analysis was based on a literal interpretation of the Lab Gear and the x-bar being 

physically bigger than the constant block. Therefore, I used discrete numbers to help 

concretize the impact of changing the linear term of the quadratic; however, she still 

reverted to the visual representation of the Lab Gear.  When combining the visual 

representation and the area context, Marcia developed an understanding of the quantity of 

given quadratic expressions. The use of multiple representations to develop an algebraic 

concept is consistent with best practices for teaching math to students with math 

difficulties (Maccini & Gagnon, 2000).  
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In addition to the connections between the Lab Gear and the algebra content, 

Marcia also developed two disconnections involving the Distributive Property and literal 

interpretations of the Lab Gear representation.  Although she was procedurally fluent 

manipulating the Lab Gear to multiply linear expressions; she stated that she was 

“making a picture.”  At this point in the intervention, she was not focusing on the process 

of the Distributive Property that was represented with use of the Lab Gear.  Van de 

Walle, Karp, and Bay-Williams (2010) warn teachers about this “mindless procedure” 

(p.29) when using manipulatives.  Additionally, Marcia wanted the Lab Gear to literally 

represent measurements “like a blueprint.”  Despite being a concrete manipulative, the 

Lab Gear representation required students to make abstract interpretations.  For example, 

students can not assume that three constant blocks equals an x-bar, even though they are 

almost the same size.  This was initially challenging for all participants, as students with 

LD often demonstrate difficulty understanding abstract algebraic concepts (Garnett, 

1998; Geary, 2004; Witzel, 2005). 

Box Method. The Box Method was used to support the transition from concrete 

representations of the Lab Gear to abstract symbolic representations. Initially, Marcia 

developed disconnections between the Lab Gear and the Box Method.  However, as the 

intervention progressed, Marcia established connections between the Box Method and the 

Distributive Property and factoring. Explicit instruction regarding how to apply principles 

from the Lab Gear to the Box Method was provided, which aligns with suggestions from 

Fuchs and Fuchs (2007) to explicitly teach transfer to increase student‟s awareness of the 

connections between novel and familiar tasks.  
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Despite this explicit instruction, disconnections emerged.  For example, when 

presented with tasks such as (– 13 + 2x) (10 + x), Marcia placed the terms with the 

variables first in the expression because the linear term always appeared first in the 

expressions when using the Lab Gear.  Expressions with the constant as the first term 

were not presented when using the Lab Gear, which was a limitation in the instruction 

unit. The instructional unit should have included multiply opportunities for participants to 

multiply linear expressions such as (– 13 + 2x) (10 + x) with the use of the Lab Gear so 

as not to reinforce a misconception that the term with the variable must come before the 

constant.  An additional disconnection between the Lab Gear and the Box Method 

revolved around multiplying linear expressions with a coefficient greater than one.  For 

example, when presented with (3x + 15) (x -2), Marcia became confused as she was 

accustomed to having x
2
 as the first term in the quadratic expression when working with 

the Lab Gear.  The instructional unit should have included additional problems in this 

form when using the Lab Gear to promote an easier transition to the Box Method.    

Despite these initial disconnections, Marcia used the Box Method to make many 

connections to the algebra content including the Distributive Property and factoring.   

Although explicit instruction, including a template, was provided, Marcia chose to 

develop her own form of the Box which was closely linked to the Lab Gear 

representation. The connection between the two representations helped her generalize the 

procedures from using the Lab Gear to using the Box Method.  This was an important 

criterion for her Box Method as generalizing was challenging for Marcia, which is typical 

of students with LD (Gagnon & Maccini, 2001).   As she developed her unique Box 

Method, the connection to the Distributive Property emerged.  When using only abstract 
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symbols, Marcia consistently multiplied linear expressions to generate only the quadratic 

term and the constant, such as (2x – 10) (x -12) = 2x
2
 + 120.  The 2x was being 

distributed to the x, but not to the -12.  Additionally, the -10 was distributed to the -12, 

but not to the x.  Marcia then began thinking of the Box as a grid, which supported the 

Distributive Property.  Her process of developing a Box that accurately represented the 

Distributive Process exemplifies Vygotsky‟s zone of proximal development in that she 

developed a personal tool that she use to make sense of the process of multiplying linear 

expressions. She needed scaffolds, such as the context of the grid, to develop her full 

understanding of this process of distributing. Marcia also developed connections between 

the Box Method and factoring.  Again explicit instruction was provided to demonstrate 

how the Lab Gear representation generalized to the Box Method template; however, she 

continued to use her own model of the Box Method. 

  Although Marcia demonstrated an understanding of factoring quadratic 

expressions as “working backwards” to find the dimensions, deficits in prerequisite skills 

impacted her progress as she did not have an understanding of the concept of factors as 

they relate to whole numbers.  Therefore, a review of this concept was needed during the 

instructional sessions.  A review of fundamental skills is important for preparing students 

with LD for success in new mathematical topics (Hudson & Miller, 2006).   

Furthermore, Marcia demonstrated a lack of automaticity with multiplication 

facts, which is a characteristic of students with mathematics LD (Garnett, 1998; Geary, 

2004).  Although Marcia experienced these deficits, she compensated by efficiently using 

her fingers and the calculator to determine factors.  At times this appeared laborious; 

however, these deficits did not impact her performance as evidenced by her high 
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percentage of accuracy on probes.  This is consistent with research reporting that students 

with MD may learn to compensate for their disability and may achieve proficiency with 

laborious struggles (Mazzocco, 2007). Additionally, the use of calculators helped Marcia 

access grade-appropriate content, which is mandated by federal legislation (IDEIA, 2004; 

NCLB, 2001) for students with disabilities. Furthermore, NCTM views calculators as 

essential tools for doing and learning mathematics and allows students to focus on the 

mathematical ideas (NCTM, 2000; Van de Walle,et al., 2010).   

The transition from the concrete manipulatives to abstract symbols is challenging 

for typically developing students (Pashler, et. al., 2007) and for students with LD 

(Hudson & Miller, 2006).   Therefore, use of the Box Method supported the transition 

from the concrete to the abstract phase as it provided organizational support and 

prompted Marcia to use the Distributive Property.  This is consistent with previous 

research which identifies the use of graphic organizers as tools that help students to 

understand the procedures necessary to solve algebraic tasks (Maccini, et. al., 2008)  This 

is particularly beneficial for students with LD who may have semantic memory deficits, 

which is characterized by difficulty remembering procedures (Geary, 2004).  

Additionally, graphic organizers support working memory deficits, which are also 

characteristic of students with LD (Strickland & Maccini, 2010).  

Metacognition.  In addition to representations, the theme of metacognition 

emerged from the qualitative data.  Within the theme of metacognition, the following 

subthemes emerged: (a) strategic planning; (b) self-regulation; (c) disposition; and (d) 

socially shared metacognition.   
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Strategic planning. Marcia indicated on her pretest domain probes that she did not 

know how to break up the task into steps that would enable her to reach a solution. On 

three of the four pre-test domain probes, she did not attempt to solve any of the tasks.  

This is typical behavior of students with LD as they are characteristically passive in their 

learning and do not actively attack a problem (Gagnon & Maccini, 2001; Hudson & 

Miller, 2006).  An explanation for this may be that students with LD have procedural and 

working memory deficits (Geary, 2004) which interfere with strategic planning. 

  During the intervention, Marcia stated that the Lab Gear and the Box Method 

helped her break down the tasks and develop a plan of action that she executed to 

successfully complete the tasks, as evidenced by her high scores on post-intervention 

domain probes.  Additionally, she was able to incorporate her knowledge from the 

instructional unit to develop and execute strategic plans for solving tasks on the transfer 

measure.  This is an important finding as students with LD (Bley & Thornton, 1995; 

Fuchs & Fuchs, 2007) and without LD (Greeno, Collins, & Resnick, 1996) typically 

struggle to transfer learned material to novel situations.  However, Marcia used multiple 

ways of expressing the algebraic content (i.e., sketches of Lab Gear, the Box Method, and 

symbolic notation) which supported her strategic planning (CAST, 2008). 

  Self-regulation.  Marcia demonstrated self-regulation when monitoring her 

performance on tasks and when evaluating her solutions.  Specifically, she relied on 

visual cues from the Lab Gear to help monitor her performance on tasks involving 

multiplication of linear expressions. After transitioning to using only abstract symbols in 

the Box Method, she frequently returned to the blocks to verify the answer from the Box 

Method.  The integration of the concrete and abstract representation is recommended in 
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the mathematics literature (Pashler, et. al., 2007), although previous research has shown 

that a graduated approach from the concrete, semi-concrete, to abstract representations is 

also beneficial (Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Scheuermann, et. al., 

2009).  Additionally, Gersten and colleagues (2009) recommend that use of 

manipulatives with older students should be expeditious as the goal should be facility in 

abstract symbolism.  Therefore, there are benefits to both the graduated and the integrated 

approach to CRA instruction and the determination of which approach to use should 

depend on the characteristics of the students and the mathematics topic.    

Marcia did not always monitor her performance, especially when factoring 

quadratic expressions. For example, when factoring quadratic expressions, she was 

instructed to monitor her solution in three ways: (a) analyze visual cues; (b) compare 

tables of data; and (c) compare graphs. First, she relied on visual cues from the Lab Gear 

or sketches of Lab Gear (i.e., a perfect rectangle represented the quadratic expression).  

Next, when transitioning to the Box Method, she was instructed to compare tables of data 

for each form of the quadratic (standard-form and factored-form).  Third, she compared 

graphs created on the graphing calculator (i.e., correct transformation produced one 

graph).  After determining that the tables and graphs would be the same, Marcia only 

completed a table for one form of the quadratic and then copied the numbers into the 

second table.  Additionally, she stopped graphing the quadratics expressions.  Marcia‟s 

lack of self-monitoring her performance is characteristic of students with LD (Gagnon & 

Maccini, 2001).   

Another component of self-monitoring involved the evaluation of accuracy of 

one‟s solutions.  Marcia often made faulty evaluations of the accuracy of her performance 
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and would often say, “This is all wrong” and yet she would have an accurate solution and 

be able to justify her answer.  This is consistent with previous research which reported 

that students with mathematics LD were less accurate than their non-disabled peers when 

evaluating the accuracy of their solutions (Mazzacco, 2007).  

Disposition.  Aspects of Marcia‟s disposition observed during the intervention 

included self-confidence, perseverance, and enjoyment. Throughout the instructional unit, 

Marcia‟s self-confidence ebbed and flowed.  She began the unit with low self-confidence, 

as she repeatedly stated that she didn‟t believe that her responses to tasks were accurate.  

This lack of confidence returned with every new objective.  Lack of confidence in 

mathematics is characteristic of students with LD (Gagnon & Maccini, 2001).  However, 

her use of the area context, Lab Gear, and Box Method built Marcia‟s belief in her 

abilities and at the end of the intervention she felt confident that she could accurately 

complete every task on her maintenance domain probe.  In this case, Marcia accurately 

evaluated her ability as she scored 100% accuracy on her maintenance domain probe.  

Marcia‟s enjoyment of the intervention coincided with her self-confidence.  The 

key to Marcia‟s enjoyment was the development of her self-confidence and the supports 

embedded in the intervention, such as the Lab Gear and the Box Method, which 

cultivated her confidence in her math ability. Marcia‟s behavior during this intervention 

was completely different from her behavior reported by her teacher and her mother. 

Before and after this study, Marcia consistently refused to attend her math class and 

refused to complete assignments.  In contrast, during this study, she arrived on time, 

stayed late, and completed all of her tasks with a high degree of accuracy. Sasha and 

Cheryl also displayed similar behaviors in that they did not consistently attend math class 
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prior to the intervention and upon completion of the intervention continued to miss class 

and not complete assignments. In the beginning of the intervention, Sasha was 

consistently late and was told that she would be removed from the study if this continued.  

She was adamant in her desire to continue with the intervention and arrived on-time or 

early for all other sessions.  Additionally, Cheryl‟s teacher reported that she was 

frequently off-task and disruptive in class, which were behaviors that were not observed 

during the intervention.     

In a survey study by Kortering, deBettencourt, and Braziel (2005), over half of 

high school students with LD identified math as their least liked subject and stated the 

type, complexity, and amount of work as the most difficult part of algebra class.  

Additionally, these students stated that more help, a change in teacher style, and making 

the class more enjoyable would enable them succeed in algebra.  Perhaps the instructional 

practices embedded in the intervention provided Marcia with the assistance she needed to 

succeed.  Additionally, we had a very good rapport and she enjoyed my teaching style.  

Marcia felt a sense of pride in her achievements in the content covered in the 

instructional unit as she was engaging in grade appropriate algebra content.  In contrast, 

her math teacher informed me that she was teaching word problems from a fourth grade 

textbook.  Marcia felt that her regular math class was not preparing her for her future, as 

she asked me to stay and teach her the material that will be on the mathematics placement 

test for community college.  Marcia did not see a value in the material that was being 

taught in her typical math class and therefore she refused to attend.    

Students who value mathematics and feel confident in their abilities are more 

likely to persevere and accurately complete algebra problems than their counterparts 
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(Van de Walle, et al., 2010).  During the intervention, Marcia valued the algebra that she 

was learning and developed confidence in her ability to improve her performance.  As a 

result, Marcia demonstrated perseverance as she consistently attended sessions, arrived 

on time and stayed late to ask questions.  In contrast to her pretest domain probes in 

which she only attempted one problem on four probes, Marcia completed each question 

on the post-intervention and maintenance probes with a high degree of accuracy.  

Additionally, she persevered for over an hour to complete the transfer measure with 

100% accuracy.  Marcia‟s perseverance is not typical of students with LD who 

characteristically demonstrate low motivation when engaging in mathematics (Gagnon & 

Maccini, 2001), however, this perseverance was representative of the participants in this 

study.  Additionally, Marcia‟s motivation is not characteristic of female high school 

students in general education, who display less motivation in mathematics and report 

more negative attitudes regarding mathematics than males (Royer & Walles, 2007).  

However, her motivation was characteristic of the participants in this study.   

Socially shared metacognition.  Previous research shows that socially shared 

metacognition is likely to occur in situations where peers are at approximately the same 

ability level and given problems that are difficult but within students‟ zone of proximal 

development (Goos, Galbraith, & Renshaw, 2002; Iiskala, Vauras, Lehtinen, Salonen, 

2011).  Although the grouping of students and the problem difficulty were aligned with 

this research, there were only four incidents of socially shared metacognition among 

peers in Marcia‟s group.  Rather than engaging in reciprocal problem solving, Marcia and 

her peers engaged in peer tutoring or ignored each other completely and relied on my 

responses. Marcia revised her solution or strategy based on the feedback of a peer on only 
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one occasion during the intervention.   When confident in her knowledge, she eagerly 

tutored her peers.  However, when not confident, Marcia appeared to prefer to engage in 

discourse with me rather than her peers.   

As students with disabilities typically have poor metacognitive skills, it is not 

surprising that Marcia did not demonstrate socially shared metacognition.  Research 

suggests that high-achieving students are more likely to engage in socially shared 

metacognition (Iiskala, et.al., 2011).  Students‟ lack of confidence in their mathematics 

abilities and their lack of confidence in their peer‟s abilities may impede their 

engagement in socially shared metacognition.   

Summary  

This study suggests that blended instruction with visual representations can 

improve the algebra performance of secondary students with mathematics learning 

disabilities and difficulties when working with quadratic expressions embedded in area 

problems.  Each participant substantially improved their percent accuracy from baseline 

to post-intervention and consistently performed at 80% or above on post-intervention 

domain probes.  Additionally, all participants performed at 82% or above on all lesson 

probes throughout the intervention. All participants demonstrated a high degree of 

retention of the content taught during intervention and reached the criterion score of 80% 

accuracy or greater on the maintenance domain probe four to six weeks following 

intervention.   

The intervention yielded mixed results on the transfer measure. Participants‟ 

performance varied as evidenced by the percentage of accuracy ranging from 33% to 

100%.   A possible explanation for this mixed result on the transfer measure may stem 
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from individual differences regarding strategic planning and perseverance.  Anna and 

Sasha scored the lowest on the transfer measure and they spent the least amount of time 

completing the test.  When confronted with an unfamiliar task, they attempted to use the 

tools (i.e., the Box Method) from the intervention.  When their method was unsuccessful, 

they did not attempt to revise their strategy, but instead immediately proceeded to the 

next task.  In contrast, the other participants persevered with the task, revising their 

strategies many times and providing a solution that varied in accuracy.   

A qualitative analysis of transcribed instructional sessions, work samples, and 

field notes focusing on Marcia supplemented the quantitative findings.  Marcia was 

chosen because she provided a rich source data that was representative of the group.   

Specifically, she demonstrated connections between the instructional practices (i.e., Lab 

Gear, Box Method) and the algebraic concept.  Additionally, the intervention enhanced 

metacognition as demonstrated by her improved strategic planning, self-regulation, and 

disposition.  Similar to all participants, she did not demonstrate any growth in socially 

shared metacognition and relied on discourse with her teacher rather than her peers to 

revise her strategy or solution.   

Limitations and Future Research  

Although the results of this study are promising, limitations and suggestions for 

future researcher should to be addressed.  First, participant attrition led to a design 

change.  The original study proposal involved a multiple probe design across three pairs 

of participants.  Although six participants were selected based on the eligibility 

requirements, one participant left the study due to an extended medical leave after 

completing one baseline probe.  Therefore, the study design was revised and a multiple 
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probe across two groups replicated over five students was implemented.  While three 

groups (i.e., an initial demonstration replicated by two additional demonstrations) may be 

desirable (Horner, et. al., 2005), two groups (i.e., an initial demonstration with only one 

replication) is acceptable to establish a functional relationship (Kennedy, 2005).  Future 

research should include an increased number of participants with additional replications.   

Additionally, the low number of baseline probes warrants discussion. Tawney and 

Gast (1984) recommend a minimum of three probes per participant during baseline.  

However, Kennedy (2005) states that “baseline needs to be as long as necessary but no 

longer” (p. 38).  As the pretest scores for Cheryl and Cindy (Group 1) demonstrated 

stability in level, low variability, and a slight decelerating trend, only two baseline probe 

were collected.  To demonstrate experimental control, one more additional consecutive 

probe was collected on the participants in Group 2 as recommended by Horner & Baer 

(1978).  

The current study was conducted in a small group setting with a student-to-

teacher ratio of 2-1 for Group 1 and 3-1 for Group 2.  This small student-teacher ratio 

provided participants with the focused attention of the researcher.  Additionally, the 

location of the study was an isolated conference room which limited distractions.  

Therefore, replication with a large group of students in a typical classroom is needed to 

generalize the results to a typical classroom environment.  

This study contained five participants who displayed common characteristics 

including a history of difficulty in mathematics and a need for the intervention as 

evidenced by the low scores on baseline domain probes.  However, the participants also 

differed on characteristics such as being identified with a specific disability (e.g., learning 
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disability, attention deficit disorder, at-risk for a learning disability).  Therefore, caution 

must be taken when generalizing these findings to other students with disabilities.  Future 

research is needed to determine the effectiveness of the intervention for students with 

specific mathematics learning disabilities.  

The current study utilized dependent measures that were developed by the 

investigator and aligned with the instructional unit.  Therefore, familiarity with the tasks 

may be an additional explanation for the improvements in domain probe scores from 

baseline to post-intervention.  Additionally, dependent measures in future replications 

should include released test questions from the National Assessment of Educational 

Progress, States‟ high school exit exams, and the Silicon Valley Initiative, as well as 

standardized tests (i.e., KeyMath).   

An additional limitation to the study was the investigator served as the teacher.  

Therefore, my biases may have influenced the study.  I attempted to control for biases by 

following the designed lesson plans and collecting treatment fidelity data.  Additionally, 

school personnel administered all domain probes while I waited outside of the room.  

Transfer measures were also administered by school personnel, although I observed the 

session to collect qualitative data.  To address the potential bias of the investigator in this 

study, future replications should include trained teachers, not investigators, as the 

implementers of the intervention. Replications with trained teachers should occur prior to 

scaling up the study.   

A possible limitation involving the qualitative method involved the analysis of 

only Marcia‟s data.  Case studies typically include more than one participant (Creswell, 

2007).  As the qualitative data was supplemental to the quantitative data, I chose to focus 
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on Marcia as she provided a rich source of data which was representative of the group of 

participants.  However, each participant experienced the intervention in their own way 

and themes that emerged from analyzing Marcia may not be generalizable to all 

participants.  Future qualitative research should include a larger sample so that common 

themes among participants may emerge.   

The intervention was successful for participants in pairs and triads when used 

with algebra content focusing on quadratic expressions embedded in area problems.  

Replicating the package with different algebra topics (i.e., linear or exponential 

functions) and with other students with mathematics difficulties would be necessary for 

generalization (Horton, et. al., 2005; Kennedy, 2005).  Additionally, a component 

analysis would be worthwhile to determine if any particular aspect of the intervention 

was more effective than other components.  Finally, although single-subject research is a 

viable option for establishing research-based practices (Horton, et. al., 2005), scaling up 

to a group design investigation is recommended by experts in educational research 

(Gersten, et. al., 2009b).   

Implications for Practice 

The present study contributes to the literature in five ways: (a) addresses age 

appropriate algebra content for high school students with LD and at-risk for LD; (b) 

includes procedural fluency and conceptual understanding of an algebraic concept; (c) 

incorporates research-supported instructional practices for greater accessibility; (d) shows 

promise as a Tier II intervention for Response to Intervention; and (f) addresses ease of 

use in terms of affordability and feasibility.   
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First, this study addressed algebra content consistent with state high school exit 

exams and college placement exams and aligned with Common Core Standards and 

benchmarks suggested by the NMAP and ADP.  Most of the previous research in algebra 

for students with LD focused on basic concepts and skills, such as integers (Maccini & 

Hughes, 2000; Maccini & Ruhl, 2000) and linear equations (Allsopp, 1997; Hutchinson, 

1993; Mayfield & Glenn, 2008; Scheuermann, et al., 2009; Witzel et al., 2003).  The 

current study extends to more complex concepts and skills and fills the gap in the 

literature base.  This is critical as students with LD are being held accountable for the 

general education curriculum; therefore, researching strategies to support these students 

in demonstrating competency in high-level algebra content is critical for their success in 

high school and beyond.   

Second, this study addressed both procedural fluency related to multiplying linear 

expressions and factoring quadratic expressions, as well as conceptual understanding of 

the quadratic expression.  Procedural knowledge is necessary to develop conceptual 

understanding, as procedures strengthen conceptual development. In fact, students‟ 

understanding of the object (i.e., quadratic function) is strengthened by practicing 

computational techniques, even if these techniques are not yet fully understood (Sfard, 

1995).  Both procedural fluency and conceptual understanding are necessary to establish 

a network of skills and concepts to link new material in the development of problem 

solving abilities (NRC, 2001).  Participants developed procedural fluency through the use 

of the Lab Gear and the Box Method.  Additionally, the Box Method served as a method 

for organizing symbolic notation and sequencing of multiple steps in abstract algebraic 
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manipulations. Graphic organizers may be easily developed by either the teacher or the 

student for a variety of algebraic tasks (Strickland & Maccini, 2010).   

Additionally, participants developed a conceptual understanding of the quadratic 

expressions by embedding the task within area problems and providing participants with 

opportunities to explore quadratic expressions via tabular data, algebraic expressions, and 

qualitative data (i.e., drawings on graph paper). Conceptual knowledge goes beyond 

memorization of procedures to provide students with an in-depth understanding of a 

mathematic idea (Hudson & Miller, 2006; NRC, 2001), while supporting retention of 

procedures (NRC, 2001).  

Third, this study blended instructional practices (i.e., CRA instruction, explicit 

instruction, graphic organizers) and the NCTM process standards. The Lab Gear and the 

Box Method link to the NCTM process standard of multiple representations. The use of 

area problems offered an additional representation of the quadratic expression and 

allowed participants to make connections between mathematical ideas.  Further, the 

NCTM emphasizes reasoning and sense-making to support the mathematics progress for 

all students while engaging in mathematics communication (Dieker, Maccini, Strickland, 

& Hunt, 2011). Additionally, tasks within the instructional unit included both research-

based teacher-directed investigations (Maccini, et. al., 2008; Strickland & Maccini, 2010) 

and student-centered activities (NCTM, 2000; Van de Walle, et. al., 2010). This blending 

of instructional delivery is recommended by the NMAP (2008) for students with 

disabilities and mathematics difficulties.    

The results of the current study are promising and should be further examined as a 

Tier 2 intervention for Response to Intervention (RtI).  RtI is a systematic and data-based 
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method for identifying and resolving students‟ academic difficulties (Brown-Chidsey & 

Steege, 2005). Typically, RtI consists of three tiers.  Tier 1 is the general education 

classroom.  If students demonstrate difficulty in Tier 1, then they may be provided small 

group instruction in Tier 2.  Students who do not respond to the small group instruction, 

then proceed to Tier 3, which may include individualized instruction and special 

education services (Fuchs, Fuchs, & Stecker, 2010).  Unfortunately, little research has 

been conducted addressing Tier II mathematics interventions at the high school level.  

Participants in the current study demonstrated a need for small group instruction as all 

were at risk of failing their algebra course.  Additionally, they all made substantial gains 

in their performance on post-intervention domain probes.  Furthermore, the single-subject 

design is a recommend method for collected data within the RtI process (Brown-Chidsey 

& Steege, 2005).   

Finally, this intervention is both affordable and feasible for teachers to implement. 

This study exemplified action research as it incorporated a teacher-researcher. Action 

research is a critical form of inquiry conducted by the teacher to gather information 

regarding student learning and teacher effectiveness (Gay, Mills, & Airasian, 2006).  

Additionally, this study incorporated materials that were affordable and feasible.  

Specifically, commercial algebra blocks such as Algebra Lab Gear (Picciotto, 1990) may 

be purchased; however, teachers may also make their own algebra blocks using laminated 

construction paper. Further, participants in this study learned to multiply linear 

expressions in four lessons and learned to factor quadratic expressions in five lessons 

using the CRA – I strategy.  This is an important finding as experts in special education 

research previously suggested spending a minimum of three days at each stage of the 
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CRA sequence (Hudson & Miller, 2006), while, Gersten and colleagues (2009a) 

recommended the expeditious use of manipulatives as abstract symbolism is the goal for 

older students.  

Conclusion 

Federal legislation mandates that students with disabilities have access to the 

general education curriculum and are held accountability for proficiency of the content 

(IDEIA, 2004; NCLB, 2001).  These mandates are necessary as students with disabilities 

and those at-risk are not demonstrating proficiency of the algebra content. The use of 

research-based instructional practices may assist secondary students with MD progress 

through the algebra curriculum.  The current study investigated the effects of blended 

instruction and visual representations on area problems involving quadratic expressions 

for secondary students with MD. Prior to the study, no research existed that targeting 

quadratic expressions with secondary students with MD.  The results of this study 

provide promising evidence that students with MD can improve their performance on 

grade-level algebra content when instruction is delivered through an instructional 

package.  Additionally, participants maintained a high level of performance and 

transferred at least some of the strategies to novel problems.   

Additional research is critical to identify instructional practices to make the 

general education algebra curriculum accessible and achievable for all students.  Students 

with disabilities must demonstrate competency in rigorous algebra content in order to 

graduate from high school with a standard diploma and to pursue postsecondary 

education and employment opportunities.  Therefore, a set of research-supported 

instructional practices for students with mathematics difficulties may contribute to more 
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favorable outcomes, such as improved performance in high algebra courses, increased 

enrollment in higher level mathematics courses, increased high school completion rates, 

increased college completion rates, and improvements on state, national, and 

international mathematics assessments.   
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Appendix A 

 

Constructivist Continuum  

 
 Exogenous Dialectical Endogenous 

Current Examples Bandura 

 

Vygotsky Piaget 

Major Emphasis Learning 

 

Dynamic 

Interactionism 

Development 

Source of 

Knowledge 

External Structures  

(environment) 

 

Interaction 

(subjective 

experience) 

Internal Coordinations 

(previous knowledge) 

Role of Teacher Directive 

 

Supportive Peripheral 

Role of Learner Engaged 

 

Interactive Self-Regulated 

Content Explicit skills Skills, concepts, 

relationships 

Concepts, 

relationships 

 

Adopted from Gurganus (2007) and Moshman (1982) 
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Appendix B 

 

Common Core State Standards, NCTM Standards,  

ADP Benchmarks, Maryland Voluntary State Curriculum  

 

Common Core State Standards  

 

 

Interpret the structure of expressions 

1. Interpret expressions that represent a quantity in terms of its context. 

a. Interpret parts of an expression, such as terms, factors, and 

coefficients. 

b. Interpret complicated expressions by viewing one or more of their 

parts as a single entity. 

2. Use the structure of an expression to identify ways to rewrite it.  

3. Choose and produce an equivalent form of an expression to reveal and explain 

properties of the quantity represented by the expression.  

a. Factor a quadratic expression to reveal the zeros of the function it 

defines. 

Perform arithmetic operations on polynomials 

 

 

 

ADP Benchmarks 

 

 

J1. Perform basic operations on algebraic expressions fluently and accurately. 

 

J1.1. Understand the properties of integer exponents and roots and apply these 

properties to simplify algebraic expressions. 

 

J1.3. Add, subtract and multiply polynomials; divide a polynomial by a low-

degree polynomial. 

 

J1.4. Factor polynomials by removing the greatest common factor; factor 

quadratic polynomials. 

J5. Solve problems by converting the verbal information given into an appropriate 

mathematical model involving equations or systems of equations; apply appropriate 

mathematical techniques to analyze these mathematical models; and interpret the solution 

obtained in written form using appropriate units of measurement. 

  

 J5.3. Recognize and solve problems that can be modeled using a quadratic 

equation.  
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Maryland Voluntary State Curriculum 

 

 

Pre-requisites 

Standard 1.0 Knowledge of Algebra, Patterns, or Functions 

 Write, simplify, and evaluate expressions 

 Describe a real-world situation represented by an algebraic expression 

 

Algebra/Data Analysis VSC 

CLG1. The student will demonstrate the ability to investigate, interpret, and communicate 

solutions to mathematical and real-world problems using patterns, functions, and algebra. 

1.1.3 The student will apply addition, subtraction, multiplication, and/or 

division of algebraic expressions to mathematical and real-world problems. 

 

Additional Topics 

Polynomial expressions in one or two variables. 

 1.1.3.3 The student will add, subtract, and multiply polynomials. 

 1.1.3.4 The student will divide a polynomial by a monomial. 

 1.1.3.5 The student will factor polynomials: 

 Using the greatest common factor 

 Using the form ax
2
 + bx + c 

 Using special product patterns 

1. Difference of squares 

a
2
 + b

2 
 = (a-b)(a+b) 

2. Perfect square trinomials 

a
2
 + 2ab + b

2
 = (a + b)

2
 

a
2
 - 2ab + b

2
 = (a - b)

2
 

________________________________________________________________________ 

 

 

NCTM Standards 

 

 

Students will represent and analyze mathematical situations and structures using 

algebraic symbols.  

 

Students will use mathematical models to represent and understand quantitative 

relationships.  
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Appendix C 

National Council of Teacher’s of Mathematics Process Standards  

Embedded within Blended Instruction 

NCTM Standard Definition 

 

Problem Solving Engaging in a task for which the solution method is not 

known in advance  

Reasoning Making mathematical conjectures, justifying answers, 

and/or using alternative solution methods 

Communication Using the language of mathematics (i.e., binomial, 

polynomial, product, etc.) to express mathematical ideas 

and/or articulating reasoning to peers and/or teacher 

Connections Making connections among mathematical ideas (i.e. 

geometry) and/or applying mathematics in contexts outside 

of mathematics (i.e. language arts, science, social studies) 

Representations Problems requiring students to generate, select, or apply 

text about a representation to solve a problem. 

Representations include diagrams, graphs, models, 

symbolic notation construed from these representations 
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Appendix D 

 

Unit Objectives 

 

Lesson 1: Given algebra blocks, students will represent and sketch area problems 

involving linear expressions containing positive terms only to produce a quadratic 

expression with 80% accuracy. 

 

Lesson 2: Given algebra blocks, students will represent and sketch area problems 

involving linear expressions containing positive and negative terms to produce a 

quadratic expression with 80% accuracy. 

 

Lesson 3: Given a graphic organizer (the box), students will solve area problems 

involving linear expressions to produce a quadratic expression with 80% accuracy.    

  

Lesson 4: Given a graphic organizer (the box), students will solve area problems 

involving linear expressions to produce a quadratic expression with 80% accuracy. 

     

Lesson 5: Given algebra blocks, students will identify quadratic expressions as a  

product of two linear expressions with 80% accuracy. 

 

Lesson 6: Given an area problem involving a quadratic expression, students will use 

algebra blocks to determine the dimensions (length and width) with 80% accuracy.  

 

Lesson 7: Given algebra blocks, students will explore the relationship between  

quadratic expressions that share the same quadratic and linear terms and discover  

the following rules for factoring. 

 

Lesson 8: Given a partially completed graphic organizer (the box), students will factor 

quadratic trinomials with 80% accuracy. 

     

Lesson 9: Given an area problem with narrative and tabular data, students will transform 

a quadratic expression in standard-form to factored-form using the box method with 80% 

accuracy.  
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Appendix E 

Concurrent Embedded Mixed Method Design

Quantitative 
Pre-tests

Quantitative 
Post tests

Quantitative 
Transfer 

Quantitative 
Maintenance

Intervention

Procedures:
Single Subject
Multiple Probe Design

Product:
Visual Analysis of Graph
Social Validity

Product:
Thematic Analysis

Procedures: 
Participatory Observer (Field Notes)
Outside Observer (video-recordings)
Artifacts

Qualitative 
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Appendix F 

 

Sample Domain Probe 

 

Directions: Answer each question.  If you choose, you may have the word problems read 

to you and you may dictate your responses for the essay questions.  You may use a 

calculator to assist with computations. Show all of your work.   

 

Part I:  

All of the classrooms at the Yeshiva are currently square shaped.  All of these 

classrooms will be renovated so that the length will be increased by 6 feet and the 

width will increase by 3 feet.  The dimensions of two classrooms are recorded in the 

table below. 

 

Fill in the table below to determine the area of the renovated classrooms at the Yeshiva. 

To find the area, multiply the length · width. Show all of your work.    

 Side of the current 

classroom in feet 

Length of new 

classroom in 

feet 

 Width of new 

classroom in 

feet 

Area of new 

classroom in 

square feet 

Room 205 

 

8    

Room 206 

 

9    

Any Yeshiva 

classroom 

after 

renovations 

x     

 

  

Do the renovations change the shape or the squareness of the area of the classrooms? 

Justify your answer.   

 

Part II: 

All dorms in Tower 1 of the University of Silver Spring are being renovated to 

include a bathroom.  Currently, all the dorms are square shaped.  After 

renovations, the length of each dorm will be 4 feet longer, while the width will be 3 

feet shorter.  
 

Write area equation for the renovated dorms: length · width = area.  Show all of your 

work. 

 

Will the residents of Tower 1 have more, less, or the same amount of classroom space 

after renovations?  Explain your answer.  

 



226 

 

 

Part III: 

 

In a neighborhood Columbia, the area of all the backyards can be represented as               

x
2 

+ 8x + 15.  

 

Fill in the table to represent the areas of the specific families‟ backyards.  

 

Name x-value in yards Area of backyards   

using standard form  

Jacoby‟s backyard 

 

10  

Brown‟s backyard 

 

11  

Strickland‟s 

backyard 

12  

 

What can be said about the shape and size of each family‟s backyard? Explain how you 

know this.   

 

Find the dimensions of each backyard by factoring the quadratic expression that 

represents the area.  Complete the area equation: area = length · width. Show all of your 

work. 

 

area = ____________________________________________________________ 

 

Complete the table below  

Name x-value in yards Area of backyards   

using factored-form  

Jacoby‟s backyard 

 

10  

 Brown‟s backyard 

 

11  

Strickland‟s 

backyard 

 

12  

 

What can you tell me about the standard form and the factored form of quadratic 

expressions?  Explain.  

Part IV: 

Transform the following quadratic expression in standard form to factored form.  

Complete the equation: area = length · width.  Show all of your work.  

x
2
 - 16x + 54  
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Appendix G 

 

Letter to Parents and Students 

 

 

Date: October 18, 2010 

 

Dear Parents and Students: 

 

We are conducting a study on the effectiveness of an algebra instructional package for 

high school students with learning disabilities and/or difficulties in mathematics.  The 

instructional package will target algebra skills and content aligned with the state 

mathematics curriculum and college placements exams.  The instructional package will 

be taught by Ms. Strickland who is a certified special educator and graduate student from 

the University of Maryland, College Park.    

We are looking for students to participate in this study.  The study will last about four 

weeks.  Students will be taught every day for approximately 45 minutes during normal 

school hours.  Ms. Strickland will also access confidential student education records to 

obtain pertinent data from the IEP, as well as IQ and achievement scores.  All data 

regarding your child will be kept confidential and only accessed by the researcher.  Data 

will be destroyed two years after the study ends.  

 

Risks associated with this study include possible frustration with difficult tasks and the 

possibility of your child‟s likeness being viewed in research presentations, publications, 

and/or teacher trainings, if permission for video recording is granted. Participation will 

not affect your child‟s grades.  Benefits may include improvements in understanding and 

performance of grade level algebra objectives.   

 

By signing the attached permission form, you are agreeing to allow your child to 

participate in this study, if your child meets all of the eligibility requirements.   

 

If you have questions about this study, please contact Tricia Strickland at: 1308 Benjamin 

Building, College Park, MD 20742; (office telephone) 301-405-6498; (mobile telephone) 

443-604-1963; (email) tstrickl@umd.edu.  

Sincerely, 

 

Tricia K. Strickland 

Student Investigator  

 

 

 

Dr. Paula Maccini 

Faculty Advisor 

Associate Professor 

 

mailto:tstrickl@umd.edu


228 

 

 

Appendix H  

 

PARENT / LEGAL GUARDIAN PERMISSION FORM 

 

Page 1 of 4           Initials _______ Date ______ 

Project Title The Effects of Blended Instruction and Visual 

Representations on Area Problems Involving Quadratic 

Expressions for Secondary Students with Mathematics 

Difficulties  

Why is this 

research being 

done? 

This is a research project being conducted by Tricia 

Strickland, a doctoral student at the University of Maryland, 

College Park, under the supervision of Dr. Paula Maccini. 

We are inviting your child to participate in this research 

because he or she has a history of difficulty in mathematics, 

particularly algebra.  The purpose of this research project is 

to advance current knowledge on effective algebra 

interventions for secondary students with learning 

disabilities and/or difficulties in algebra. 

 

What will my 

child be asked to 

do? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The procedures involve the collection of information from 

your child‟s confidential school file, including IQ scores, 

achievement scores, and grades from past and current 

mathematics courses to determine if your child is eligible for 

the intervention.  

Your child will be asked to complete a minimum of three 

pretests before instruction is provided.  

Your child will be asked to participate in daily instructional 

sessions in algebra 45 minutes per day for a period of 4 

weeks. Sessions will be scheduled during your child‟s regular 

school day and content will be directly related to the algebra 

curriculum.   

After completing all instructional sessions, your child will 

complete a minimum of three posttests and one test to 

determine if he or she is able to apply what was learned to 

new algebraic questions.  

Two to four weeks after the end of the intervention, your 

child will be asked to complete a short test to see if he or she 

remembers the content he or she has been taught.  

Your child will be asked his or her opinion regarding the 

instruction. For example, your child will be asked if the 

intervention helped him/her learn the targeted algebra topics.  

Additionally, your child will be asked what he/she liked most 

and least about the intervention.  
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Page 2 of 4                                                     Initials____________Date___________                                                                                                                                                                                                        

Project Title The Effects of Blended Instruction and Visual 

Representations on Area Problems Involving Quadratic 

Expressions for Secondary Students with Mathematics 

Difficulties 

  

What will my 

child be asked to 

do? 

 

During this study, we will be video recording the instructional 

sessions only. We would like your permission to use portions 

of these videos in three ways: 

1. To determine your child‟s thinking about the algebra 

topics 

2. To determine if the intervention is being implemented 

as planned 

3. In research presentations, publications, and/or teacher 

trainings 

If you choose not to have your child video recorded, he or she 

may still participate in the study. 

What about 

confidentiality? 

 

 

We will do our best to keep your child‟s personal 

information confidential.  To help protect your 

confidentiality, all information collected in this study is 

confidential to the extent permitted by law.  The data 

obtained about your child will be grouped with data from 

other students for reporting and presentation and your 

child‟s name will not be used.  All data collected will be 

kept in a file cabinet in a locked office at the University of 

Maryland.  Two years after the conclusion of the study, data 

from student records, test results, and other data will be 

destroyed by the student investigator. If we write a report or 

article about this research project, your child‟s identity will 

be protected to the maximum extent possible.  Your 

information may be shared with representatives of the 

University of Maryland, College Park or governmental 

authorities if you or someone else is in danger or if we are 

required to do so by law. 

 

What are the 

risks of this 

research? 

 

There may be some risks from participating in this research 

study. Risks associated with this study include possible 

frustration with difficult tasks and the possibility of your 

child‟s likeness being viewed in research presentations, 

publications, and/or teacher trainings.   
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Page 3 of 4          Initials _______ Date__________ 

 

Project Title The Effects of Blended Instruction and Visual 

Representations on Area Problems Involving Quadratic 

Expressions for Secondary Students with Mathematics 

Difficulties  

What are the 

benefits of this 

research? 

This research is not designed to help your child personally, but 

the results may help the investigator learn more about algebra 

instruction for students with learning disabilities and/or 

difficulties in algebra.  We hope that, in the future, other people 

might benefit from this study through improved understanding 

of instructional practices in algebra. Your child may benefit by 

participating because the study is designed to improve algebra 

competencies.  

Does my child 

have to be in this 

research? 

Can my child stop 

participating at 

any time? 

Your child‟s participation in this research is completely 

voluntary.  You may choose not to have your child take part at 

all.  If you decide to have your child participate in this research, 

he/she may stop participating at any time.  If you decide not to 

have your child participate in this study or if he/she stops 

participating at any time, your child will not be penalized or 

lose any benefits to which he/she otherwise qualifies. Your 

child‟s participation or nonparticipation in this study will not 

affect his or her grades.  

What if I have 

questions? 

 

 

 

This research is being conducted by Tricia K. Strickland, a 

doctoral student from the Department of Special Education at 

the University of Maryland, College Park, under the supervision 

of Dr. Paula Maccini.  If you have any questions about the 

research study itself, please contact Dr. Maccini at: 1308 

Benjamin Building, University of Maryland, College Park, MD 

20742, (telephone) 301-405-7443, (email) maccini@umd.edu.   

If you have questions about your rights as a research subject or 

wish to report a research-related injury, please contact: 

Institutional Review Board Office, University of Maryland, 

College Park, Maryland, 20742;  (e-mail) irb@umd.edu;  

(telephone) 301-405-0678 

This research has been reviewed according to the University of 

Maryland, College Park IRB procedures for research involving 

human subjects. 

 

 

 

 

 

mailto:maccini@umd.edu
mailto:irb@umd.edu
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Project Title The Effects of Blended Instruction and Visual 

Representations on Area Problems Involving Quadratic 

Expressions for Secondary Students with Mathematics 

Difficulties  

Statement of Age 

of Subject and 

Consent 

 

Your signature indicates that: 

you are at least 18 years of age and you hereby give permission 

for your child or legal ward to participate in an educational 

study; 

the research has been explained to you; 

your questions have been fully answered; and 

you freely and voluntarily choose to participate in this research 

project. 

Signature and 

Date 

Printed Name of 

Child 

 

 

 

 

I agree to:  

 

 

 

 

_______ have my child video recorded 

to determine his or her thinking 

processes about the algebra topics.  

_______ have my child video recorded 

to determine if the intervention is being 

implemented as planned.   

_______ have my child‟s video likeness 

used in research presentations, 

publications, and/or teacher trainings. 

Printed Name of 

Parent 

 

 

Parent Signature 

 

 

Date  
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Appendix I 

 

STUDENT ASSENT FORM 

 

The Effects of Blended Instruction and Visual Representations  

on Area Problems Involving Quadratic Expressions for  

Secondary Students with Mathematics Difficulties 

 

We are requesting your participation in an educational project done by Ms. Tricia 

Strickland from the University of Maryland, College Park.  You are under 18 years of 

age, and your parent or legal guardian has agreed that you can participate in this study.   

 

The purpose of this study is to learn more about good algebra instruction for high school 

students with learning disabilities and/or difficulties in math.  You will participate in 

daily 45 minute sessions for about four weeks.  Instruction will take place at school, 

during your regular school hours and the instructional sessions will be videotaped.  Video 

recordings may be used for three reasons: (1) to determine how you think about the 

algebra questions; (2) to determine how I am teaching the algebra topics; and (3) to use 

your likeness in research presentations, publications, and/or teacher trainings. If you do 

not want to be video recorded, you may still participate in the study.  You will complete 

tests before, during, and after the study.  You will also be asked your opinion about the 

study, such as what you liked best and what you would change. Ms. Strickland will also 

collect information from your confidential school records, such as IQ scores, 

achievement scores, and current math grades.  Any information collected by Ms. 

Strickland will be confidential, which means it will not be shared with anyone.   

 

Participation in this study will not affect your math grade.  You may feel frustrated with 

some of the algebra work.  You may benefit from this study because the project is 

designed to improve your algebra skills.  You are free to ask questions anytime and you 

may stop participating at any time. If you stop participating, your grades in class will not 

be affected.   

 

 

_____________________________________                   _______________________ 

Print Name        Date 

 

 

 

 

_____________________________________ 

Signature 
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Appendix J 

 

The Box Method 

Directions:  

1. Use the box method to multiply the following polynomials.   

2. Complete each equation. 

 

 

(x – 8) (3x + 7) = ____ 3x
2
- 17x - 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 x -8 

3x 3x
2 

-24x 

7 7x -56 
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Appendix K 

 

Sample Lesson Plan 

 

Lesson 1 Objective:  

Given algebra blocks, students will represent and sketch area problems involving linear 

expressions containing positive terms only to produce a quadratic expression with 80% 

accuracy. 

 

I. Launch: Using the following information, draw a diagram of each bedroom 

on graph paper. Then fill out the table below.  

Student 1’s bedroom is a square with each side 10 feet.  Student 2’s bedroom is a square 

with each side measuring 11 feet.  Ms. Tricia’s bedroom is a square with each side 

measuring 9 feet.   

 X = Side of 

bedroom in feet 

Side · Side Y = Area of bedroom in 

square feet 

Ms. Tricia  9 9 · 9 81 

Student 1 10 10 · 10 100 

Student 2 11 11 · 11 121 

 

Discussion questions include:  

How did you determine the area of each of our bedrooms?  

 

Lesson Objective:  Today we are beginning our unit on quadratics.  We will 

explore quadratic expressions by using a functions approach, meaning the 

variable, x, will truly be a variable.  The value x will truly vary.  We will not be 

solving for x.  We need to review some vocabulary before we begin our unit.  A 

quadratic function is a product of two linear expressions. 

 

II. Investigation: Refer back to the warm up question 

Refer back at the warm – up situation:  A quadratic expression involves a square 

as the highest power.  It is an expression in the second degree.   What number did 

we square in the warm-up? We will learn how to square algebraic expressions.   

All three of us will have our bedrooms renovated.  After renovation, the length 

will increase by 2 feet and the width will increase by 1 foot.  What are the 

measurements of our renovated bedroom?  

 

Make the renovations to your drawings on the graph paper. 

 

What happened to the size of each of our bedrooms? What about the shape?   

  

Fill in the table below.    
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 Side of original 

bedroom in feet 

New length in 

feet 

 New width in 

feet 

New Area in 

square feet 

Ms. Tricia  9 11 10 110 

Student 1 10 12 11 132 

Student 2 11 13 12 156 

Any square 

bedroom 

x x + 2 x + 1 (x + 2)(x +1)   

 

Write an algebraic expression to represent the new length and width of any size bedroom 

going through this renovation.   

 

To multiply the two linear expressions, we will use algebra blocks and our corner piece. 

Teacher models problem representation and solution using Algebra Lab Gear, 

emphasizing the use of the Distributive Property.  Discussion questions include:  

 

 

 

 

 

 

 

 

 

 

 

 

1. Write out the area equation: length · width = area 

2. Where are the linear expressions in the equation?  Explain. 

3. Which part of the equation represents the quadratic expression?  Explain 

4. How is the distributive property involved in the procedure?  

5. How do the tiles represent the area of the new bedroom? 

6. What happened to the area of the bedroom?  Is the bedroom bigger or smaller?  

What about the shape? 

7. How does the shape of the tiles compare to your drawings of our renovated 

bedrooms?  

Throughout the unit, during discussions students will be asked to: (a) share their 

approaches and strategies; (b) agree or disagree with their peers’ approaches and 

strategies; and (c) share their preference for a particular strategy.  All responds will 

require an explanation or justification.  

III. Additional Practice:   

We all have a square shaped rec room where we like to hang out with our friends.  

We would like to buy a ping pong table but will need to expand all of our basements 
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so that the length is increased by 4 feet and the width is increased by 2 feet.  Fill in 

the table below.   

  

 Side of original rec 

room in feet 

New length in 

feet 

 New width in 

feet 

New Area in 

square feet 

Ms. Tricia  9 13 11 143 

Student 1 10 14 12 168 

Student 2 11 15 13 195 

Any square 

bedroom 

x x + 4 x + 2 (x + 4)(x +2)   

 

Use algebra blocks to determine the area of any rec room after it is expanded.  Sketch 

the blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

Write area equation: length · width = 

area________________________________________ 

 

 

 

 

Use algebra blocks to multiply the following binomials expressions.  Sketch the blocks. 

Then complete the area equation: length · width = area 

 

(x + 3) (x + 5) = _____________________________ 
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IV. Closure:  

Big Ideas:  

Review vocabulary.  Have students explain each vocabulary in their own 

words or giving their own example.   

Ask students to identify which property we use to multiply two linear 

expressions. Ask students “How did we form a quadratic expression?”   

Link to Future Instruction: We will not always have positive numbers in the 

linear expressions so tomorrow we will learn how to multiply linear 

expressions with negative integers to form quadratic expression.   
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Appendix L 

 

Treatment Fidelity Checklist 

 

Observer:  

 

Date: Time: 

Directions: 

Indicate the observed behaviors by placing a check mark in the spaces below. 

 

Item Description Observed

? 

Notes 

Advanced Organizer: 

1 Review of prerequisite mathematics 

skills 

 

 

  

2 Objective stated at the beginning of the 

lesson 

 

 

  

3 Rationale for learning the skill/concept 

as it connects to other mathematical 

concepts 

 

 

  

Teacher-lead Investigation 

4 Maximizing students‟ engagement 

via questions and prompts 

 

 

  

5 Modeling the thinking and action 

procedures needed to solve the 

problem.  

 

  

6 Prompting questions to facilitate 

student exploration of topic.  

 

 

  

Multiple Practice Opportunities  

7 Opportunities for students to 

practice tasks completed during 

teacher-lead investigation.  Teacher 

serves as facilitator. May include 

group work or individual work. 
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Visual Representations: 

8 Visual representations presented 

simultaneously with abstract 

notation.  Visual representations 

include algebra blocks, sketches of 

algebra blocks, or expansion box  

  

NCTM Process Standards: 

9 Representations, generating, 

selecting, or applying text about a 

representation to solve a problem. 

Representations include diagrams, 

graphs, models, symbolic notation 

construed from these representations 

  

10 Communication, in which the 

language of mathematics (i.e., 

binomial, polynomial, product, etc.) 

is used to express mathematical 

ideas and/or articulating reasoning 

to peers and/or teacher 

  

11 Making connections among 

mathematical ideas (e.g.,  geometry) 

and/or applying mathematics in 

contexts outside of mathematics 

(e.g., language arts, science, social 

studies) 

  

12 Reasoning, which includes making 

mathematical conjectures, justifying 

answers, and/or using alternative 

solution methods 

  

13 Problem solving, which includes 

engaging in a task for which the 

solution method is not known in 

advance 

  

Closure: 

14 Review big ideas at end of lesson.   

15 Assessment, which includes students 

completing an independent task or 

orally responding to teacher‟s 

questions.  

  

 

 

Percentage of observed behaviors _________/15 = _______________% 
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Appendix M 

 

Lesson 1 Probe  

 

Student Name: ___________________________________ 

 

All of us will have our bedrooms renovated.  The current shape of our bedroom is 

square.  After renovation, the length will increase by 6 feet and the width will 

increase by 2 feet.   

 

Fill in the table below.    

 Side of original 

bedroom in feet 

New length in 

feet 

 New width in 

feet 

New Area in 

square feet 

Ms. Tricia  9    

Sima  10    

Any square 

bedroom 

x    

 

Use algebra blocks to determine the area of any bedroom after renovations.  Sketch the 

blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identify the quadratic expression from the table  ____________________________ 

 

After renovations, will we have more, less, or the same amount of area in our bedrooms?  

Explain your answer.  
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Appendix N 

 

Transfer Probe 

 

Directions: Complete the following tasks. Show all of your work.  
 

All of the houses in the Sun Shine Valley neighborhood have rectangular swimming 

pools in which the length is 4 feet longer than the width and the height that is 3 feet 

longer than the width.  Fill in the table below to determine the perimeter and the volume 

of the pools.   

Remember: 

 length · width · height = volume 

2(length) + 2(width) = Perimeter 

 Length in 

feet 

Width in 

feet 

Height in 

feet 

Volume in 

cubic feet 

Perimeter in 

feet 

Berger‟s 

Pool 

 

 

10    

Joffe‟s Pool  

 

12    

Any pool in 

Sun Shine 

Valley 

     

 

 

Multiply the polynomial expressions and explain your strategy using words, 

pictures, or symbols. 

( 3x
2
 + 2x + 7 ) ( 4x

4
 – 2x

3
 + 3x + 2) = ________________________________________ 

 

Factor the following quadratic. Please notice that the quadratic term has a 

coefficient of three. Complete the following area equation: area = length · width.  

Explain your strategy using words, pictures, or symbols. 

3x
2
 + 14x + 8 = ______________________________________________________ 
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Appendix 0 

Social Validity Measure  

Part 1: 

Please indicate the degree to which you agree with the following statements. 

 

Strongly Disagree Neutral Agree  Strongly  

Disagree        Agree 

 

     1       2      3      4      5  I learned to multiply binomial expressions to form a  

          quadratic expression. 

 

     1       2      3      4      5  I learned to factor quadratic trinomials.   

 

     1       2      3      4      5  The use of manipulatives helped me to multiply 

 binomials expressions and factor quadratic 

 expressions.  

 

     1       2      3      4      5  The use of the box helped me to multiply binomials  

 expressions and factor quadratic expressions. 

 

     1       2      3      4      5  The word problems helped me understand what the 

 expressions represented.  

 

     1       2      3      4      5  The data tables helped me understand what the 

 expressions represented.  

 

     1       2      3      4      5  Talking about the problems with the teacher and/or 

 classmates helped me understand.   

 

     1       2      3      4      5  This intervention was worth my time. 

 

     1       2      3      4      5  I would recommend this intervention to other 

 students. 
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     1       2      3      4      5  As a result of the intervention, I feel better about 

 my algebra skills.  

 

Part 2:  

Are you interested in learning more about quadratics?  Why or Why not?   

 

 

 

How did the intervention help you understand quadratic expressions?   

 

 

 

What did you like best about the intervention?   

 

 

 

What did you like least about the intervention?  

 

 

 

What suggestions do you have for improvement?
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Appendix P 

Codes 

 

Representations 

Code Description 

 

Example 

 Lab Gear  

   

Connections Student constructed 

mathematically sound 

connections through the use 

of the Algebra Lab Gear.  

Student generalized the Lab 

Gear to rules and/or 

concepts.  

Marcia working on x
2
 + 

5x+ 4  

Marcia:  Makes 4 and 5? 3 

and 2? No How do you get 

5?  

TS: Use the tiles if you 

need to. 

Marcia: Why won‟t you 

help me?  I‟m trying to 

figure out using 5 bars how 

do I get 4 inside. 

TS: Use the blocks. (giving 

Marcia blocks) Play around 

a little bit. 

Marcia: Oh I am so stupid! 

Marcia you‟re an idiot. 4 

and 5. I have a picture.  Can 

I tell you my trick that I just 

figured out?  

TS: Yeh, yeh, what‟s your 

trick? 

Marcia: That, whenever 

you have a number, that is 

one more than the amount, 

than the constant, then you 

are multiplying basically by 

1.  All the bars go here 

except for one.  

 

Dis -Connections Student constructed 

mathematically 

inappropriate connections 

(i.e., misconceptions) when 

using the Lab Gear.   

Marcia: This doesn‟t fully 

work because that‟s bigger. 

Like the 3 x-bars are 

bigger. So if I had a room 

that was 5 feet by 5 feet, 

and I added that, that‟s 

more than a foot in 

comparison to that so that‟s 

off. 
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Representations 

 

Code Description 

 

Example 

 Box Method  

Connections Student constructed 

mathematically sound 

connections through the use 

of the Box Method.  Student 

generalized the Box Method 

to rules and/or concepts. 

 

 

Marcia: Look (showing me 

her paper). 

TS: Marcia this is an 

excellent generalization.  

Show the girls what you 

did. 

 

X
2 

X 

X C 
 

Dis -Connections Student constructed 

mathematically 

inappropriate connections 

(i.e., misconceptions) when 

using 

the Box Method.  

Marcia’s first attempt at her 

own design of the box 

method: 

Marcia: Is this wrong? 

 

 

 

 

TS: It‟s not wrong.  It‟s 

incomplete.  Can I add 

something? 

Marcia: Yeh 

TS: What about this box and 

this box?  

Marcia: I know, but I 

already used them. 

TS: But we have to use 

them twice.  Remember 

how we did it with the 

algebra blocks?  Now we 

have to multiply x times -

10. 

Marcia: Oh, I forgot about. 

that.  
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Representations 

 

Code Description Example 

Area Context 

Connections Students construct 

mathematically sound 

connections to the Area 

context, (i.e., word 

problems, tables of data, and 

discrete numbers).  

TS: What is a situation 

within a word problem that 

we would need to subtract? 

Marcia: Jodi needed room 

to make a bathroom. She 

added 4 feet to the length 

and she subtracted, brought 

the room in 2 feet.  

 

Dis -Connections Students construct 

mathematically 

inappropriate connections to 

the Area context, (i.e., word 

problems, tables or data, and 

discrete numbers).  

TS: What happens to 

YOUR x value for each of 

the dimensions?  

Marcia: What does this 

have to do with the 

dimensions?  I don‟t like 

this at all. 

TS: OK ladies, do we have 

anything that is the same? 

So I have x + 17 and  x – 2. 

Does anyone have that? 

Sasha: I have x-2 

TS: But do you have both 

of the dimensions? 

Sasha shakes her head. 

Marcia: How is that 

possible?  We all have 

different areas. 
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Metacognition 

 

Code Description Example 

Self Regulation 
Checking solution for 

accuracy 

Students use the intervention 

to check the accuracy of their 

problem solution.  

 

 

 

When presented with (3x + 5) 

(x – 2) using the box method: 

TS: It‟s not x
2
 Why not? 

Anna: because there‟s a 3x 

there. 

TS: so what is it? 

Marcia: 3x, x 

TS: what was x times x using 

our blocks? 

Sasha: Oh, x
2
 

Marcia: Oh, right. 

Sasha: So, 3x
2 
because there‟s 

3 

Marcia: I need the blocks. I 

can‟t do this. This is not 

working for me. We never did 

it like that. It was always x
2
 

Marcia gets the lab gear and 

sets up the problem x times 3x 

to confirm. 

 

 

Solution Revisions  Student uses the intervention 

to revise her solution. 

TS: Will teachers and students 

have more, less, or the same 

amount of classroom space 

after renovations? 

Marcia: I thought the same 

amount of space but different 

shape but when I drew it out it 

got all messed up.  It also 

depended on how big the 

square is. They could have 

more space or less space.  
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Metacognition 

 

Code Description Example 

 Strategic Planning  
Planning Students use the intervention 

to develop a plan to engage in 

an algebraic task.  

 

  

When presented with (-13 

+2x) (10 + x): 

Marcia: Can I do the numbers 

after the x‟s?  

TS: Show me what you mean. 

Marcia: Can I do 2x – 13? The 

x‟s are always in this box 

(pointing to the top left box of 

her graphic organizer) 

Executing Students use the intervention 

to execute a plan to engage in 

an algebraic task.  

 

Marcia: I‟m writing out my 

problem over here (pointing to 

the Lab Gear).  I have an 

equation and I am breaking it 

up and multiplying because 

this is a multiplying bar and 

this is x and this is x  so I have 

x + 3 so x + 3 times and this is 

timesing (pointing to the 

corner piece of Lab Gear) x + 

2 and it‟s going to equal x
2
 + 

3x + 6 (pointing to blocks as 

she states her quadratic 

expression)  
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Metacognition 

 

Code Description 

 

Example 

 

Disposition 

Self-confidence Student‟s beliefs about their 

ability to do mathematics.  

 

TS: I want you to practice 

using the box to multiply 

binomials. 

Marcia: Ah, I‟m not good at 

that. 

TS: Just set up the problem in 

the box. 

Marcia: I can‟t. My brain is 

fried. 

TS: Is this (pointing to a 

binomial) going to go in the 

grey or the white boxes? 

Sasha: White, no grey because 

the grey represents the length 

and the width. 

Marcia: I don‟t really get this. 

Marcia is correctly filling in 

the box.   

 

Perseverance Student‟s ability to continue 

working on a task until 

completion.  

Marcia worked steadily for 

one hour and twenty minutes 

to complete the transfer test 

with 100% accuracy.  

Marcia: I‟m not stopping till I 

finish this test.  Can I get a 

note to miss my next class?  

After the completion of the 

intervention, Marcia has 

refused to attend her regular 

math class.  

 

Enjoyment Student‟s feeling of pleasure 

and satisfaction while 

participating in the 

intervention.  

 

After completing the 

maintenance test. 

Marcia:  Is this over? 

TS: Yes 

Marcia: I don‟t want this to be 

over!  I like to do this stuff. I 

can‟t believe I am saying this 

about math. 
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Metacognition 

 

Code Description 

 

Example 

 

Socially shared metacognition 
Collaborative peer solutions.  Students share the problem-

solving process, by 

confirming one another‟s 

correctness through reciprocal 

turns.   

(x – 2) (3x + 15) 

Sasha:  -2 times 3x. Negative 

6x. 

Marcia: -2 times 3 is -6 

Sasha: x times 15 is 15x. -2 

times 15 is -30. 

Marcia: What? 13 

TS: How did you get 13? 

Marcia: 15 – 2 

Sasha: we‟re multiplying 

Marcia: Multiplying. Oh, I 

really don‟t like this at all.  I 

need the blocks. I can‟t do 

this.  I need to make my own 

chart. No, my own blocks. 

TS: Well, let‟s practice a little 

bit. We are going to multiply 

exactly like we multiplied the 

blocks but we are only using 

symbols. What is the area for 

this problem? 

Marcia: I have no idea 

Sasha looks at Marcia and 

sighs. 

Sasha: 3x
2
-6x+15x-30. 

Marcia: How are you doing 

this? 

 

Lack of peer collaboration Students do not confirm one 

another‟s correctness through 

reciprocal turns.    

Field journal entry: Marcia 

and Sasha are doing their own 

problem and then looking at 

each other‟s work.  This is 

their idea of working together, 

doing their own work and then 

checking to see if they get the 

same answer.  If they do not 

have the same answer they ask 

me which is correct, each 

saying their answer is wrong 

as they begin to erase their 

problem.  
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Appendix Q 

The Evolution of Marcia’s Box 
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