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The behavior of fluorescent materials coupled to surface plasmon supporting surfaces 

and structures is an area of active research due to their fluorescence enhancing 

properties.  The inherent field enhancements present near structures and interfaces 

where surface plasmons are excited provide great potential for increasing the 

response of many optical interactions.  While many studies focus on the application 

of plasmonic nanoparticles or finite metallic structures the use of dielectric structures 

on a continuous metallic film has received little attention.  A comprehensive 

experimental study using dielectric gratings on gold films is presented illustrating the 

fundamental properties of fluorescence enhancement on such structures.  A process 

for fabrication of samples using Electron Beam Lithography is demonstrated and 

comparisons between various quantum dot deposition methods are made to determine 

the best conditions for surface coating.  Conditions for optimization of the 

fluorescence enhancement phenomena for practical application are explored for 



 

gratings with square function profile illustrating the influence of gratings on 

fluorescence behavior and identifying conditions for optimal enhancement.  

Complementing these results, an understanding of the underlying physical 

phenomena is developed by differentiation between enhanced emission and enhanced 

absorption effects using measurements of fluorescence decay lifetime and emission 

spectra.  Using these observations a thorough description of these systems and the 

requirements for their practical application is illustrated. 
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1 Introduction 

Since their theoretical description by Ritchie [1] in 1957, the study of surface 

plasmon polaritons (SPPs) has advanced over the subsequent decades to become one 

of the most active research and development areas.  A subset of more general surface 

wave phenomena known as surface polaritons, surface plasmons arise from 

interaction between electromagnetic waves and charge oscillation near the interface 

of metal and dielectric regions.  Over the past decade these surface excitations have 

been linked to many novel concepts of significant scientific importance such as 

surface enhanced Raman scattering [2,3,4,5], negative index materials and 

superlenses [6,7], enhanced transmission through subwavelength apertures [8,9,10], 

and surface enhancement of nonlinear optical effects [11].  Not limited to such 

fundamental studies, surface plasmons have also found application across a range of 

more immediately practical areas from biodetection and telecommunications to 

semiconductor optical sources and spectrographic analysis.  Due to strong 

confinement of the surface plasmon fields to the interface, the field amplitude is 

strongly enhanced over micrometer scale distances directly adjacent to the interface 

the effect of which is the observation of surface enhanced behaviors such as SERS 

[2,3,4,5] and enhanced second harmonic generation [11].  With the development of 

techniques that take advantage of this special property it is important that a greater 

understanding of how surface plasmons interact with optically active materials that 

have been placed in close proximity to the boundary region be developed.  

Unfortunately, effective excitation of surface plasmons requires special coupling 

apparatus or structures to overcome the inherent phase mismatch between waves 
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incident from vacuum and surface plasmons at the interface.  One simple way to 

overcome this problem is through the use of periodic corrugations in the plane of the 

interface, which allow relaxation of the phase matching condition.  The work 

presented herein will attempt to address some aspects of this complex problem.  In 

order to examine the interaction between grating coupled surface plasmons and 

materials in close proximity to the interface quantum dots will be deposited onto the 

surface of samples that have had surface corrugations defined on them using electron 

beam lithography.  This allows us to study how surface plasmons interact with the 

quantum dots on the surface and also evaluate what effect the surface structures have 

on the emission behavior of the particles.  Due to the close proximity of the surface 

plasmon fields the quantum dots can experience strong enhancement of their 

fluorescence intensity and the conditions under which this effect can be observed are 

presented to explore the more practical aspects of the problem.  Coupled to this is the 

presence of a metallic interface, required for surface plasmon propagation, which 

strongly affects the relaxation behavior of excited fluorophores at such short distances 

from the interface.  This will be observed using both the fluorescence intensity as 

well the behavior of fluorescence lifetime measurements under varying conditions.  

Finally, in addition to the previous points, quantum dots are rising in popularity as a 

fluorescent source with the potential to augment or supplant fluorescent dyes in 

coming years and studies of their behavior in this context will be of interest for 

development in upcoming applications. 
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2 Surface Plasmon Polaritons 

2.1 Basic Theory 

Surface plasmon polariton modes can be derived directly by examining classical 

solutions to Maxwell’s equations that are confined to the boundary between two 

different dielectric materials.  To begin, consider the interface between two semi-

infinite dielectric regions with dielectric constants ߝଵ(߱) and ߝଶ(߱) respectively.   

 

Figure 1 Graphical representation of the basic interface construction 
and orientation of electric and magnetic fields for P-polarized 
electromagnetic radiation 

 
The boundary conditions at the interface of the two media are well known, and in the 

absence of free charges and currents are expressed in terms of the electric and 

magnetic field components as: 

 1 2 1 2

1 2 1 2

n n n n

t t t t

D D B B
E E H H
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 [2.1.1] 



 

 4 
 

For a boundary along the x-direction the tangential fields are conserved and so the 

field component in the x-direction ܧ௫ is continuous across the interface.  Along the 

normal direction however, continuity of the electric displacement ܦഥ dictates that the 

electric field ܧ௭ be discontinuous across the boundary according to the relation  

௭ଵܧ௢ߝଵߝ =  ௭ଶ.  When the electric displacement is expressed in an equivalentܧ௢ߝଶߝ

form as ܦഥ = തܧ௢ߝ + തܲ, where തܲ is the macroscopic polarization density it becomes 

apparent that the electric field discontinuity gives rise to polarization changes at the 

interface.  From this simple analysis it becomes clear that incident light which is S-

polarized will not normally cause the creation of charge located at the interface.  P-

polarized light, on the other hand, will clearly produce surface charge at the boundary 

directly due to the inherent boundary conditions of the system.  Thus, to a first 

approximation the excitation of surface plasmons would be anticipated primarily for 

light which is P-polarized in nature.  Now consider the situation illustrated in Figure 1 

for P-polarized light incident onto the interface between two media with different 

dielectric constants ߝଵ and ߝଶ.  If the positive z half space is taken to be the region 

within medium 2 then the electric and magnetic fields for a wave propagating solely 

in the x-direction will take the form 

 

1

1

2

2

( )
1 1 1

( )
1 1

( )
2 2 2

( )
2 2

[ ,0, ]

[0, ,0]

[ ,0, ]

[0, ,0]

x z

x z

x z

x z

i k x t ik z
x z

i k x t ik z
y

i k x t ik z
x z

i k x t ik z
y

E E E e e

H H e e

E E E e e

H H e e

























 [2.1.2] 



 

 5 
 

The expressions relating the different field components to one another are obtained by 

applying Maxwell’s equations to [2.1.2].  Applying Gauss’s law gives the 

relationships between the electric field components 

 0 0yx zEE EE
x y z

 
      

  
 [2.1.3] 
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Then, applying Faraday’s law results in the relations linking the electric and magnetic 

fields 
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Finally, from equation [2.1.1] the boundary conditions at ݖ = 0 dictate that the 

tangential fields of both the electric and magnetic fields are continuous across the 

boundary.  This leads to a simple relationship between the relative permittivity and 

the normal components of the wavevectors in both media 

 1 2 1 2x x y yE E H H   [2.1.7] 
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In order to obtain a bound solution to the equations it is necessary for the fields in 

both media to decay with increasing distance away from the boundary. The result of 

this restriction is a set of conditions on the z-components of the wavevector such that 

݅݇௭ଵ > 0 and i݇௭ଶ < 0.  This constrains the z-components ݇௭ in both media to be 

simultaneously imaginary and of opposite sign and therefore, from equation [2.1.8] 

the dielectric constants of the media must also be of opposite sign.  Decomposing the 

wavevectors in each medium and expressing ݇௭in terms of the other components 

gives the following expressions when ߤ௥ = 1 as is the case for many materials at 

optical wavelengths. 

  
1

2 2 2 2 2 2
i o x z z x i ok k k k k k      [2.1.9] 
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 [2.1.10] 

As the analysis has already indicated that the dielectric constants of the two media are 

of opposite sign the positive sign can be assigned to medium 1 in the upper region 

and the negative sign to the lower region of medium 2 without loss of generality.  The 

relations derived in [2.1.10] then tell us that the magnitude of the surface mode 

wavevector ݇௫ is greater than ݊ଵ݇௢, the maximum photon wavevector available in the 

upper dielectric.  To look at this another way, if we express the in-plane wavevector 

as 1x eff o ok n k n k   
then the surface mode experiences an effective index that is 

higher than either of the component indices in the system.  At the same time the 

effective wavelength of the surface mode sp  is shorter than that of radiation 

propagating in both of the semi-infinite media.  The difference can be very significant 
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depending on how large the deviation from the light line the dispersion relation is at 

the point of interest.  The second condition will be satisfied automatically in region 2 

with 2 0  .  This is a very important result because it specifies that it is not possible 

to excite a surface plasmon directly from a dielectric medium using light incident on 

the boundary from medium 1 into medium 2.  The momentum mismatch is a 

fundamental consideration in the application of surface plasmons to any practical 

situation as it necessitates the use of additional phase matching apparatus to enable 

coupling between the incident radiation and the surface mode of interest.  Substituting 

equation [2.1.10] into [2.1.8] yields the expression for the dispersion relation of 

surface plasmons propagating along the boundary between the two regions 

 

1
2

1 2

1 2
x ok k  

 
 

   
 [2.1.11] 

In order to obtain a propagating mode the in-plane wavevector xk must be real, which 

from the expression above leads to the additional condition that 2 1  .  This 

analysis provides the fundamental basis for the conditions under which surface 

plasmon polariton excitation can occur.  It is important to note that the relations 

above are valid for an arbitrary combination of dielectric constants for both the upper 

and lower regions and are valid for both solely real valued as well as complex 

dielectric constants and so can be used to consider the dielectric constants of real 

materials, which are characterized with an imaginary component describing 

absorption.  When considering complex valued dielectric constants the propagation 

length is defined as the distance over which the intensity decays by a factor of 1
e .  
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The intensity varies as the square of the electric field and so it decays at a rate 

proportional to 
"2 xk xe .  The propagation length of the surface wave is then 

 "
1

2 x
L

k
  [2.1.12] 

2.2 Dispersion 

As indicated earlier the dispersion relation given in [2.1.11] is subject to two 

important constraints.  These are 2 1   and 2 0   both of which must be satisfied 

in order for the interface to support surface plasmon propagation at a wavelength of 

interest.  At optical wavelengths both of these conditions can be satisfied by using a 

metal such as gold, silver or aluminum as the medium characterized by 2 .  The 

Drude model of electrical conduction is a simple model, which is commonly used to 

illustrate the behavior of the surface plasmon dispersion relation.  It models electron 

transport through the medium using a classical analog of light electrons bouncing off 

of heavier immobile positive ions.  Using this model in the limit where the product of 

the radial frequency and electron relaxation time 1  the dispersion relation for 

the metal dielectric function reduces to  

 
2

1 p
m





 

   
 

 [2.2.1] 

The plasma frequency p is the frequency above which electrons are no longer able to 

respond quickly enough to the incident field causing the metal to behave like a 

dielectric for frequencies above this point.  For an ideal layer of gold, the plasma 

frequency occurs at ωp = 9eV however it is important to note that in practice this 

value varies widely depending on the quality and properties of the deposited film and 
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has been shown to vary to values as low as 6eV due to the presence of defects in the 

material[12].  Substituting [2.2.1] into [2.1.11] for 2 and taking the bounding 

medium to be air so that 1 1d   allows us to plot the dispersion behavior for a 

surface plasmon propagating along the interface of such a metal under these 

simplified conditions.  The dispersion relation then becomes 
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 [2.2.2] 

Examining this expression shows that the resulting dispersion curve will tends 

towards infinity as the frequency approaches point where the denominator goes to 

zero which will occur when 1p d    . 

 

Figure 2 Dispersion relation for surface plasmon using Drude model 
for dielectric constant of gold, εd = 3.5 and ωp = 9eV 
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Examination of the resulting curve illustrates the general behavior of the surface 

plasmon resonance.  At lower frequencies the dispersion curve closely follows the 

light line and gradually diverges at higher values frequencies always remaining to the 

right of the light line as dictated by the previous analysis.  In spite of the presence of 

the singularity mentioned earlier, which causes the results to be unphysical near the 

asymptote, this model is useful for describing the behavior of surface plasmons in 

general terms, especially for examining coupling from an outside medium into 

surface waves.   

 

Figure 3 Complex index of refraction for gold and silver from 
Johnson and Christy [13] 

 

 

Figure 4 Complex dielectric constant calculated from Johnson and 
Christy data [13] 
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In practice, the dielectric properties of metals are complex-valued parameters, which 

vary according with wavelength in a fashion not completely described by the simple 

Drude model.  Measurements of these properties for metals have been performed by 

many groups and accepted values have been used widely in the literature, most 

notably from the work of Johnson and Christy [13] and compiled data from the 

Handbook of Optical Constants of Solids by Palik [14].  The complex index of 

refraction is represented as n n ik  and is related to the dielectric constant by 

2n   where i     .  The components of the dielectric constant can therefore 

be calculated from the complex index by the relations 2 2n k    and 2nk   .  

As mentioned in the previous section complex valued dielectric properties can be 

handled easily by direct substitution into the dispersion relation of equation [2.1.11].   
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 [2.2.3] 

Including the complex nature of the dielectric constant result in the wavevector for 

the surface excitation also taking on a complex form x x xk k ik   where the 

propagation constant for the surface wave along the interface is xk and absorption as 

the wave travels is described by xk  .  The conditions for surface plasmon excitation 

under these conditions are slightly modified to account for the additional complex 

component so that 2 0   and 2 1    with an additional condition that for the two 

components of the in-plane wavevector x xk k  in order for the surface wave to 
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propagate a significant distance across the interface.  By defining a material for the 

upper layer the dispersion relation can be plotted just as before for the case of the 

Drude model.  Calculations of the dispersion curves for gold and chromium are 

plotted in Figure 5.  Including the imaginary components of the dielectric constant 

into the analysis results in the formation of an additional region in the dispersion 

relation, this can be seen as a reverse bending in the curve for gold.  In this case, the 

dispersion relation can be divided into three regions.  For energy below the region of 

anomalous dispersion surface plasmon modes can be considered just as previously 

described and the only additional consideration is attenuation of the surface wave as it 

propagates across the surface. 

 

Figure 5 Surface plasmon dispersion curve calculated using 
measured values for gold [13] and chromium [15] as well as the light 
line for a dielectric overlayer with index n = 3 
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At energies above the anomalous dispersion feature the surface waves are able to 

couple to radiation in the surrounding media and behave as radiative plasmon 

polaritons.  This same behavior appears when considering the Drude model although 

it has not been explicitly included in Figure 2.  Within the region of anomalous 

dispersion are a set of modes that have mathematically real components and exhibit 

negative phase velocity.  These modes are often labeled as quasi-bound modes and 

are of interest for study of backward wave propagation and associated effects such as 

negative refraction.  Adding the imaginary components of the dielectric constant to 

the analysis causes the surface plasmon wavevector to take on a complex valued 

form.  As a result absorption of the wave as it propagates is a significant 

consideration, as a large portion of the mode’s energy propagates within the confines 

of the absorptive metal layer.  In addition to the dispersion curve for the surface 

plasmon modes it is important to consider the relative magnitude of the real and 

imaginary components of the wavevector.  An example of this can be seen when 

comparing the propagation of surface plasmons on the surface of gold and chromium 

layers.  From Figure 5 it would appear that both chromium and gold are capable of 

supporting viable surface plasmon modes with chromium lacking the distinctive 

region of anomalous dispersion observed in gold.  However, further examination of 

the complex components of the wavevector shows that chromium is actually not an 

effective medium for observation of surface plasmon related phenomena.  The ratio 

between the real and imaginary components for these two materials is plotted in 

Figure 6 and illustrates that despite the apparent compatibility of chromium to support 
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surface plasmon propagation the imaginary component is significantly large such that 

propagation is not possible and any excited modes decay rapidly.   

 

Figure 6 Ratio of the real and imaginary components of the surface 
plasmon wavevector calculated using measured values for gold [13] 
and chromium [15] and a surrounding dielectric of index n = 3. 

 
2.3 Coupling to Surface Plasmon Polaritons 

2.3.1 Prism Coupling 

In order to take advantage of the special properties that surface plasmons possess, the 

first obstacle that must be overcome is satisfying the conditions for coupling of 

radiation into the surface mode.  To solve this problem requires the use of additional 

structures or apparatus through which sufficient additional quasi-momentum is 

provided to the incident waves to offset the momentum mismatch.  One of the oldest 

and most widely used methods for exciting surface plasmons on a surface is through 
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the use of a high index prism which has been coated on one face with a material that 

supports surface plasmon propagation at the outer interface.   

 

Figure 7 Simple schematic of prism coupling geometry for surface 
plasmon excitation using a prism with dielectric constant p , metal 

film with m , and dielectric overlayer of d  
 
The basic geometry for prism mediated surface plasmon coupling is illustrated above 

in Figure 7.  It is well established that a wave incident onto the prism-dielectric 

interface at an angle greater than the critical angle experiences total reflection off of 

the interface.  For these angles the magnitude of the incident wavevector within the 

prism is too large to be supported in the lower index medium outside.  As a 

consequence the incident wave is totally reflected from the interface and the fields in 

the second region take on an exponentially decaying form in the direction normal to 

the interface.  These two properties provide a means by which it is possible to realize 

excitation of surface plasmon waves by conversion from incident radiation.  The 

analysis presented earlier demonstrates that according to the dispersion relation for 
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surface plasmon propagation the in-plane wavevector is always of greater magnitude 

than a wave propagating in either medium.  For angles greater than the critical angle 

the wave momentum in the x-direction is 1 sin in k  .  Above the critical angle

2
1

sin sin n
i c n   , this corresponds to the momentum relation 1 2sin in k n k  

which results in an enhancement of the in-plane momentum above the limit for a 

wave propagating outside of the prism.  This increase in momentum can be used to 

provide phase matching between the incident waves and surface modes provided that 

the material selection falls within the appropriate ranges.  In addition to the 

momentum shift, the evanescent field structure at the boundary provides a partial 

match to the evanescent nature of the surface fields.  This allows the field from the 

first interface to couple evanescently to a surface plasmon wave at the interface 

between the metal and the outer dielectric.  Coupling using this method can be 

accomplished in several configurations with the prevalent methods being the Otto 

geometry, where the prism is separated from the metal by a small gap, and 

Kretschmann-Raether, where the film is deposited directly onto the prism face.  In the 

Kretschmann geometry the film itself forms an evanescent tunneling barrier between 

the two interfaces of the metal.  Since the field couples evanescently between the two 

surfaces of the metal film the thickness of the metal layer plays a critical role and 

must be thin enough for fields on one interface to reach across through the film.  The 

basic reasoning behind this coupling behavior can be seen graphically by considering 

the dispersion curve for plasmons propagating on the upper interface along with the 

light lines for light propagating in the dielectric media bounding the metal film.   
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Figure 8 Dispersion relation for surface plasmons at the interface 
between gold and dielectric layers of index n = 1 (black) and n = 2 
(red) using dielectric constants from the Drude model.  Coupling can 
occur in a prism geometry when the light line in the higher index 
material matches the surface plasmon wavevector at the metal 
interface to the lower index.  This point is denoted by the box. 

 

This graphical relationship can be seen in Figure 8 using the Drude model for a prism 

with an index of 2 and air as the dielectric overlayer.  Within the high index prism the 

light line shifts towards higher momentum values and moves to the right of the 

plasmon dispersion curve at the metal-air interface.  At the point within the box this 

light line and the plasmon dispersion curve intersect indicating the point where phase 

matching between light propagating through the prism and surface waves on the 

upper interface is possible.  Modulating the angle of incidence θi modifies the slope 

of the line and shifts the coupling point along the dispersion curve.  The limits of this 
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coupling range are defined by the lines for sin i
ck   and 

p
c

nk   representing the 

values at the critical angle and normal incidence respectively.  This results in different 

angular coupling behavior for different wavelengths.  For a single wavelength the 

reflection measured for light exiting the prism at the face opposite the input plane is 

used to examine the surface plasmon coupling behavior of the prism-film system.  

Unlike the analyses presented earlier, which assumed an interface between two semi-

infinite media the configuration here requires consideration of a finite metal layer 

bounded by the prism below and a dielectric above.  For simplicity the software 

WINSPALL [16] is used in Figure 9 to plot the resulting reflectivity curves.   

 

Figure 9 Reflectivity curves for 50nm thick gold film deposited onto 
a prism with a refractive index of 1.5.  Curves are plotted for 532nm 
and 632nm P-polarized light in red and black respectively.  The 
dielectric constant of the bounding dielectric is taken as n=1 for air 
(solid) and n=1.01 (dotted). 
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The reflectivity of this system can be calculated using Fresnel’s equations for a three-

layer system (see Section 2.4).  For a film of thickness d the reflectivity R for P-

polarized light can be written as: 
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Here the layer indices are organized with the prism as layer 0, the metal layer 1, and 

the overlying dielectric layer 2.  The angle at which coupling to the surface plasmon 

resonance occurs can be clearly distinguished from the associated reflectivity curves 

as sharp dip in the reflectivity curves.  Comparing different wavelengths it is clear 

that the quality and position of the resonance is strongly dependent on the wavelength 

used to excite the surface waves.  Under appropriate conditions the resonance can be 

quite sharp, as in the curve shown above for 632nm.  By changing the dielectric 

constant of the bounding dielectric layer we can also see that the position of the 

resonance dip is very sensitive to the value of the surrounding index with a clearly 

defined shift resulting from an index change of 0.01.  This has made the prism 

geometry popular in many applications, especially for sensing where high sensitivity 

is required [17,18].  However, these beneficial properties are not without cost and 

utilization of prism coupled surface plasmon techniques often requires construction of 

relatively complicated apparatus, especially when the ability to scan with angle is 

necessary. 
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2.3.2 Coupling by Gratings 

For applications where space is limited or it is desirable to integrate plasmonic effects 

into existing systems the prism type of apparatus may be too cumbersome or complex 

for implementation.  An alternative method for surface plasmon coupling which 

provides the capability for plasmon excitation without the requirement for such 

complex apparatus is to use a periodic surface corrugation to provide phase matching 

to the surface mode.  In this configuration, instead of using the intrinsic properties of 

a second medium to overcome the momentum mismatch the properties of the 

interface are modified by the introduction of surface structures that interact with 

incident radiation.  If the structures on the surface are distributed randomly in such a 

way that each site may be considered as a point defect surface plasmon excitation can 

occur without any additional arrangements [19].  In this case, the conversion is 

facilitated by the presence of diffracted components with all wavevectors in the near 

field due to diffraction at the defect location.  Unfortunately the random nature of the 

distribution means that the coupling condition is ill defined so that coupling occurs in 

a random uncontrollable fashion resulting in low efficiency.  This problem can be 

alleviated by imposing control over the characteristics of the surface geometry and 

introducing periodic corrugations at the interface rather than a random distribution.  A 

grating defined this way can then be used to provide the additional in-plane 

momentum through constructive reinforcement along the direction of its periodicity.  

Due to the translational symmetry of the periodic structure, phase matching to surface 

plasmons can occur when the sum of the incident in-plane wavevector, ko, combined 

with an integer multiple of the grating vector, kG, matches the momentum of surface 
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plasmon ksp.  For a grating with period Γ this condition is expressed mathematically 

as: 
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 [2.3.3] 

 

 

Figure 10 Momentum space representation of surface plasmon 
coupling via grating.  The light line for incident light (▬) is matched 
to surface plasmon dispersion curve (▬) by repetition due to the 
translational symmetry of the surface structure (�•).  Coupling 
occurs at the points where the repeated light line intersects with the 
dispersion plasmon dispersion curve (•). 

 
The principles of this coupling condition can be seen graphically in Figure 10.  The 

effect of the grating’s translational symmetry is to repeat the dispersion relation of the 

light line by spacing equal to the magnitude of the grating vector kG.  The result of 

this replication is that the light line for incident radiation, which is normally unable to 

intersect the dispersion curve for surface plasmons, is offset to momentum values 

outside its normal range.  As a result of this shift additional intersection points arise 
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between the plasmon dispersion curve and the offset light line.  Unlike the prism 

coupling geometry where the angle required for conversion is fixed by the dielectric 

properties of the materials bounding the interface, excitation of surface plasmons via 

a grating is dependent on the periodicity and relative orientation of the surface 

structure as well as the angle of incidence.  For a prism coated with a planar metal 

film, coupling occurs coplanar to incident excitation with no additional preference 

imposed on the plasmon propagation direction in the plane of the film besides the 

plane of incidence.  In the case of grating coupling, phase matching is represented in 

momentum k-space as the vector sum of the incident wave and grating vectors.  As a 

result, propagation of the surface plasmon wave excited by this interaction is 

constrained to the direction dictated by the orientation of the grating vector to the 

plane of incidence.  For a particular wavelength, the angle that the surface plasmon 

wave propagates at with respect to the grating vector can be determined by 

considering the vector diagram for the coupling process.  Light incident onto the 

grating with in-plane component kx can couple to surface plasmons by satisfying the 

condition from [2.3.3].  Graphically the possible values for the vector combination of 

contributions from the grating and incident light are represented by the black circle.  

The possible values for the surface plasmon wavevector occur along the path outlined 

by the red circle.  Coupling occurs at the points of intersection between the two 

circles shown in Figure 11 with the allowed directions for surface plasmon 

propagation illustrated by the red vectors.  The vector that satisfies the coupling 

condition is defined by the wavelength, amplitude of the in-plane component of the 

incident light, and the orientation of the grating.   
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Figure 11 Vector diagram for surface plasmon excitation by phase 
matching via grating.  Light is incident onto the grating with in-
plane component kx.  Coupling is allowed at the intersection points 
for light incident at an angle φ relative to the grating line and excites 
plasmons travelling at angle θ. 

 

Results to this effect have been presented in the literature to produce structures which 

focus excited surface plasmons [20] as well as the use of gratings to provide phase 

matching for surface plasmon enhanced second harmonic generation [11].  It is 

important to note that the coupling to surface plasmons in this way is a reciprocal 

problem.  Just as it is possible for incident photons to couple into surface waves at the 

grating, surface waves propagating across the grating can undergo the reverse 

transition and transfer their energy into radiating photons.  This interaction occurs 

under the same conditions described previously for the in-coupling process except 

that the photons generated travel at angles defined by Equation [2.3.3].  Unlike the 

prism coupling method, which requires the excitation to be incident on the interface 

from a higher index medium, grating coupling can be performed from either the upper 

or lower dielectric medium provided that a suitable match can be found by 

combination with the grating vector.  This can provide a significant reduction in 
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system complexity by removing the need for additional apparatus aside from 

requirements for fabrication of the surface structure.  The cost of this reduction comes 

in the form of additional complexity in sample preparation to produce a controlled 

surface rather than the normal planar interface.  The additional coupling restrictions 

described above also introduce the need for careful design and characterization to 

properly control the properties of the structure and facilitate practical application.   

2.4 Field Enhancement 

In many applications the practical advantages of using surface plasmon waves derive 

from the special field structure they possess due to their character as bound wave 

solutions.  The electric field of the surface plasmon perpendicular to the interface 

decays exponentially into both media in an asymmetric fashion defined by the 

dielectric properties of the media on either side of the interface.  A direct 

consequence of this field structure is that the majority of the energy propagating in 

the surface wave is bound to the region closest to the interface on either side of the 

boundary.  For the case of two semi-infinite media the z-components of the wave 

vector can be expressed in terms of the dielectric constants of the two materials.  This 

is accomplished by simply considering the vector relation between the incident wave 

and the x and z components of the surface wave from [2.1.10].  The contribution from 

the y-component of the wavevector is removed by orienting the coordinate system 

appropriately without loss of generality due to isotropic symmetry in the material 

geometry.  For the interface between two semi-infinite regions with the metal 

occupying the half-space 0z   the relations take the form: 

 2 2 2
i o x zik k k    [2.4.1] 
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Figure 12 Decay characteristics of surface plasmon field away from 
metal-dielectric interface for air-gold at λ = 640nm.  It is clear that 
the field resides primarily in the upper dielectric medium (black) 
and decays rapidly within the metal (red).   

 
The transverse field decay characteristics for an air-gold interface are plotted in 

Figure 12 for light with a wavelength of 640nm.  It is clear from the figure that most 

of the energy propagates on the upper side of the interface within the air.  As 

expected the component of the field within the metal decays rapidly away from the 

interface and penetrates less than 500nm into the lower region.  The choice of upper 

dielectric affects the relative penetration into the two media and higher index 
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materials push the field towards the interface and further into the metal layer.  This 

can play an important role in the propagation length as the majority of the losses 

occur from attenuation in the metal.  Regardless of the material selection, the field is 

clearly at maximum value directly on the interface which makes it important to 

examine the value of the electric field at this point.  In order to provide a comparison 

between the amplitude of an incident wave and the peak surface plasmon field let us 

return to the three layer system described previously for the prism coupling geometry.  

If the reflectivity of the incident wave reaches its lowest value the intensity of the 

electromagnetic field at the surface reaches a maximum.  A comparison of the 

incident and peak surface fields can be obtained by examining the ratio of the field 

intensity at the dielectric side of the metal-dielectric interface to the incident field 

intensity.  This can be accomplished by considering the transmission and reflection 

for a thin dielectric film bounded between two semi-infinite dielectric media. 

 

Figure 13 Oblique incidence onto a thin dielectric layer 
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The solution for a wave propagating at oblique incidence through a thin dielectric 

layer can be obtained through the use of layer recursions to transform the fields 

exiting the layer in medium 2 back towards the input in medium 0.  This solution 

accounts for both the forward and backward propagating components within each 

layer and the sum of all reflection and transmission from each interface.  Here the 

analysis will be limited to the case of propagation of P-polarized light as this is the 

only polarization that is capable of exciting surface plasmons directly on a plane 

interface.  Assuming that no fields are incident onto the structure from the right, the 

only fields in medium 2 are propagating away from the interface in the positive 

direction.  The reflection and refraction angles at each interface are related to one 

another by Snell’s law applied to each interface. 

 1 1sin sini i i in n    [2.4.4] 

It is convenient here to define the thickness of the layer in terms of the phase 

thickness that wave experiences as it propagates. 

 i zi ik d   [2.4.5] 

The field transmission and reflection coefficients at each interface can be derived 

from the boundary conditions for P-polarized light and can be expressed in terms of 

the angles and refractive indices. 
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The layer recursion is implemented by taking the fields to the left of interface i+1 and 

applying a propagation matrix to transfer them to the right of interface i.  A matching 
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matrix is then applied to pass the fields back across the interface to the left side of 

interface i where the process can be repeated for successive layers. 
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For the case of a single layer the recursion process requires only a few steps 

beginning with the transformation of the forward propagating fields in the rightmost 

layer back across the last interface.   
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The fields can then be propagated across layer 1 and back across the first interface to 

obtain the expressions for the overall transmitted and reflected fields. 
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 The intensity enhancement at the right of interface 2 can be observed by calculating 

the value of the transmission coefficient T.  Values of T using gold as the medium are 

shown in Figure 14 for light incident from inside a prism for light with a 632nm 

wavelength.  The field is strongly enhanced for angles close to the minimum 



 

 29 
 

reflection point of the resonance dip and exhibits a peak value of 10.49 at the angle 

coinciding with minimum reflection.  This value can be increased or decreased 

depending on the properties of the metal layer at the wavelength of interest.  The 

capability to produce strongly enhanced fields near the metal surface has driven 

interest in surface plasmons for many applications which rely on optical fields for 

excitation.  Interest in studying the effect of the local field on the behavior of optical 

materials and devices has resulted in the publication of scientific results in many 

areas such as surface enhanced Raman scattering [2,3,4,5], enhanced fluorescence 

[21,22,23], nonlinear optics [11], and more recently plasmon enhanced solar cells 

[24,25].  It is the interplay between this enhanced surface field and effects which 

occur due to the presence of the metallic interface that provides part of the motivation 

for the study which will be presented here. 

 
Figure 14 Transverse magnetic field intensity enhancement at metal-
air interface for 50nm gold layer on a prism of index 1.5 with air 
above.  The index of gold is taken to be .18508-3.42329i at a 
wavelength of 632nm.  
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3 Quantum Dots 

Over the past two decades great strides have been made in the fabrication and 

characterization of nano-structured materials and nano-scale features on surfaces.  

Progressive development and proliferation of commercially available high resolution 

fabrication and imaging technologies such as electron-beam lithography, ion-beam 

lithography, and various scanning probe technologies, along with improvements in 

SEM and TEM capabilities have expanded our ability to manipulate devices and 

materials on a near atomic scale.  An important consequence of this progress has been 

the realization of quantum confinement structures where modulation of structural 

dimensions has a direct impact on the electronic states of materials.  While two 

dimensional quantum wells have been used in devices for some time, one 

dimensional quantum lines and zero dimensional quantum dots are currently an active 

source of ongoing research.  In particular, quantum dots are of great interest for use in 

optics applications as they exhibit many desirable traits compared to bulk materials.  

These typically consist of semiconductor nanocrystals, which can be synthesized 

using a variety of techniques [26,27,28,29].  Quantum dots fabricated through 

colloidal techniques are easily obtained commercially and have been studied 

extensively by many groups.  In a bulk semiconductor electron-hole pairs generated 

by injection of energy into the material will dissociate from one another to a degree 

where their separation exceeds the exciton Bohr radius which is determined by the 

strength of the electron-hole coulomb interaction.  This results in delocalization of the 

carriers within the bulk of the material and decoupling of the individual charges such 

that the electron and hole which have been cogenerated are considered to be 
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independent of one another.  Unlike the bulk case, in a quantum confinement 

structure the dimension of the semiconductor material are reduced until the physical 

dimensions of the structure are confined to an area smaller than the Bohr radius of 

generated carrier pairs.  As a result, the electron and hole are no longer able to escape 

from one another after generation and instead form an exciton due to their opposite 

charges, which is similar to a hydrogen atom where the mass of the positive charge is 

given by the hole effective mass rather than a proton.  Instead of the conduction and 

valence bands of the bulk semiconductor material the coupled interaction of the 

carriers results in the formation of a series of excitonic energy states, which derive 

their characteristics from the overlap of the electron-hole wave functions within the 

nanoparticle.  Due to the strong spatial confinement of the carriers in all three 

dimensions these energy states are directly correlated to the physical dimensions of 

the material system and this is known as the quantum size effect.  The result is that 

the energy gap as well as the absorption and emission properties of these materials 

can be directly modified by exercising control over the physical dimensions of the 

particle rather than being directly correlated only to the properties of the constituent 

materials.  As in an atomic system, the energy states for excitonic interactions within 

the particle are characterized by a series of discrete energy levels which replace the 

continuum of states which would normally be observed.  This property along with 

their size dependent absorption and emission behavior has led to the analogy of 

quantum dots as materials which simulate designer atoms.  This ability to control 

their optical properties as well as their physical characteristics has made quantum dots 

popular as a potential substitute for fluorescent dyes in many applications. 
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3.1 Quantum Dot Fundamentals 

The basic structure of a colloidal quantum dot consists of a small nanocrystal of 

semiconductor material containing roughly 100-10,000 atoms which is typically 

encapsulated using surfactant molecules for passivation and stabilization of the 

surface chemistry.  Synthesis of the particles using chemical techniques has become a 

relatively mature technology with solutions containing suspended crystallites widely 

available from commercial sources.  Using these methods various research groups 

have been able to demonstrate fabrication of nanoparticles in a variety of shapes such 

as spherical [27,30], elongated rods [31], and other more complex shapes such as 

tetrapods [32].  Due to the ultra-small dimensions of the particles, carriers generated 

within the core of the quantum dot experience strong interaction with the surface of 

the particle as a result of the extension of the carrier wave functions beyond the 

physical boundaries of the crystalline core material.  As a consequence, the 

performance quality and internal carrier dynamics in these materials is especially 

sensitive to perturbation at the interface between the crystallite and the surrounding 

material.  Surface regions have difficult surface chemistry, which is often 

complicated by the presence of dangling bonds and uncontrolled attachment of 

various undesirable substances, which can introduce local traps and perturbations that 

serve to interfere with the performance of the bulk material.  The presence of the 

surfactant molecules can also introduce additional complications if carriers within the 

core are able to couple into the various molecular states present in the chains.  In 

particular, the presence of local traps presents an avenue for non-radiative carrier loss 

that can result in reduction of the particle’s quantum efficiency as well as 
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modifications in the carrier decay dynamics measured during experiments.  In order 

to avoid these complications it is desirable to confine the carriers within the core 

material of the quantum dot as much as possible in order to isolate them from the 

effects of surface imperfections.  This has led to the development of core-shell 

quantum dots which alleviate many of the surface related problems [33].  These 

consist of the quantum dot core, which is subsequently encapsulated inside a shell of 

material with a wider bandgap, onto which the surfactant layer is then added for 

stabilization.  This shell facilitates the formation of a multi-step potential well, which 

increases confinement of the carriers within the core material and isolates them from 

the outer surface encouraging efficient light emission and significantly reducing 

nonradiative contributions to the lifetime originating at the surface.  Surface 

passivation is typically achieved by attachment of various capping layers to the outer 

surface can be used to alter the solubility properties of the particles in different 

solvents notably to provide solubility in water rather than organic solvents such as 

toluene or chlorobenzene. 

 

Figure 15 Simple depiction of a typical colloidal quantum dot. 
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3.2 Electronic Structure and Carrier Dynamics 

The electronic structure within a quantum dot differs significantly from the 

conduction and valence band structure of its bulk constituents due to size dependent 

quantum effects, which modify the behavior of the electron and hole wave functions.  

The behavior of carriers confined within these semiconductor nanocrystals has been 

studied by several groups in recent years, leading to significant developments in 

understanding the underlying carrier physics, and the study of various multiexciton 

dynamics continues to be an active area of current research.  If band-mixing effects 

can be neglected each bulk energy band gives rise to a series of quantized energy 

states.  Early work in this area by Efros [34] using spherical Bessel functions to 

characterize spherically shaped crystallites demonstrated that for a simple model 

these states can be classified using two quantum numbers.  The first quantum number, 

L, describes the angular momentum of the carrier envelope wave function and the 

other, n, denotes the energy of the state within a given symmetry.  This nomenclature 

can be considered as analogous to the electronic states within a hydrogen atom and a 

similar naming convention may be adopted for state numbering with angular 

momentum indicated by letter (L=0 is S, L=1 is P, etc.).  This basic model provides a 

reasonable approximation to the nanocrystal conduction band however given the 

complex multi-subband characteristics of the valence band in most semiconductors 

description of the valence-band structure in quantum dots requires consideration of 

confinement induced inter-subband mixing [35,36].  
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Figure 16 In a bulk semiconductor the electronic structure results in 
the formation of large bands of electron and hole states which from 
the conduction and valence bands.  These bands are separated by the 
energy gap Eg which is derived from the lattice properties of the 
crystal structure.  Reduction of the material to a nanocrystal 
geometry modifies this structure into a series of discrete energy 
levels.  The new electron and hole states are separated by a larger 
gap Eg(NC) which is related to the spatial dimensions of the crystal 
through quantum size effects.  Energy levels for CdSe are shown. 

 
In this case, the angular momentum quantum number from the simplified model is 

replaced by the quantum number describing the total angular momentum, F


, which 

is the sum of the Bloch function orbital momentum from the crystal lattice, J

, and the 

orbital momentum of the hole envelope function, L


.  With this modification the 

valence band states are now denoted by their energy and total angular momentum nLF.  

The size dependent hole energies in CdSe have been calculated by Ekimov et al. [36] 

with the inclusion of mixing between the heavy, light, and spin-orbit split-off valence 

subbands.  According to these calculations the lowest hole states are characterized by 

total angular momentum of 3
2F 


 and subsequently the three lowest hole states are 

3
2

1S , 3
2

1P , and 3
2

2S .  The presence of these states has been experimentally 
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confirmed by Klimov et al. through transient absorption measurements of carrier 

relaxation dynamics [37].  The energy of the electron-hole interaction is proportional 

to the electron and hole wave function overlap, which is strongly enhanced in the 

close confines of a quantum dot.  Consequently, in the presence of this strong 

exchange interaction the lower energy states within the nanoparticle are coupled and 

cannot be considered independently, and should be considered as combined 

exchange-correlated excitons with a combined total angular momentum.  This 

situation is further complicated in non-spherical nanocrystals where the energy 

structure due to breaking of symmetry results in splitting of the band-edge exciton 

fine structure.  This results in perturbation of the energy state degeneracy which splits 

the exciton ground state into an optically “dark” triplet state and a “bright” singlet 

state [38,39].  The presence of this additional fine structure in the excitonic bands of 

the nanoparticle can be used to explain the strong temperature dependence observed 

in time resolved photoluminescence decay measurements made at various 

temperatures.  At liquid helium temperatures the decay lifetime ranges from hundreds 

of nanoseconds up to approximately 1 microsecond, whereas this value decreases at 

room temperature to a value around 20ns [38,40,41].  The presence of the “dark” 

triplet state, which lies at a lower energy state than the “bright” singlet state acts as a 

trap for carriers when the phonon population in the lattice is low.  This restriction is 

relaxed as temperatures are increased both through thermal promotion of carriers up 

into the singlet state as well as increased phonon meditated relaxation of the triplet 

state down to the ground level.  Under conditions of intense excitation it has also been 

shown that relaxation of photo generated multiexcitons is strongly influenced by 
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nonradiative energy loss via Auger recombination [42].  At suitably high excitation 

intensities this can be seen as a rapid decay of the carrier populations, which is very 

quickly changed to a much slower decay after the initial onset of relaxation.  In 

practice the intrinsic radiative decay properties of the quantum dot core are further 

complicated by the presence of various defects within the semiconductor structure, as 

well as the close proximity of the surface, which lies within range of the electron and 

hole wave functions.  Impurities, defects and other trapping sites at the core-shell 

interface as well as vacant bonds and surface attachment of undesirable elements can 

significantly perturb quantum dot behavior if not carefully controlled.  The 

intrinsically rich excitonic structure of the quantum dot combined with these 

additional effects results in complex decay dynamics, which can only be described by 

simultaneous contributions from multiple sources.   

 

Figure 17 Radiative decay curve measured using time correlated 
confocal fluorescence microscopy.  Measured data shown in red 
exhibits clear multiexponential behavior and correlates well to a 
biexponential fit illustrated in black.  A short lifetime of of 2.4ns and 
long lifetime of 13.3ns are extracted from the fit. 
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Figure 17 illustrates the complex nature of quantum dot relaxation dynamics typically 

observed in optical measurements of their decay lifetimes.  Many groups have 

reported fluorescence lifetime measurements supporting this behavior and efforts to 

fully understand the origin of the various decay dynamics at work in these 

nanoparticles are a continuing area of investigation [43,44].  As previously stated 

contributions to the lifetime from “dark” and “bright” exciton states have been 

experimentally demonstrated using low temperature measurements of the Stokes shift 

between absorption and emission as well as the magnetic field dependence of the 

decay behavior [38,39].  Temperature dependence measurements have shown that 

while extended lifetimes are observed at temperatures in the liquid helium range (~3-

9K) the component of the lifetime that can be attributed to relaxation of these 

excitonic states is significantly reduced at increased temperatures [41,45].  The 

lifetime has been observed to increase for temperatures up to 70K above which the 

value saturates and remains fixed [41] which is consistent with emission from a three 

level system with a weakly emitting lower state and a strongly emitting higher state as 

in the “bright” and “dark” exciton model.  This can be attributed to thermalization of 

the lower state, which occurs more efficiently at higher temperatures and on a shorter 

time scale relative to the long triplet relaxation lifetime.  The effects of surface 

morphology on the decay lifetime components has been studied by many groups and 

correlations between longer lifetime contributions and modification of the surface 

have been illustrated in many of these results [45,46,47,48,49].  Deliberate exposure 

of nanocrystals to oxygen [48] and controlled photooxidation [46] have shown that 

longer lifetime components of the radiative decay are likely associated with migration 
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of delocalized carriers inside the core to the outer surfaces of the particle where they 

are affected by the presence of defects and other surface effects.  This is in contrast to 

the shorter contributions, which are typically associated with the intrinsic excitonic 

structure and are unperturbed by deliberate surface perturbation [48].  Other results 

have shown that the surface ligands that are used for passivation to terminate loose 

bonds at the surface can strongly affect quantum dot relaxation properties [49].  These 

types of behavior suggest that while recombination within the core of these particles 

can be well explained by exciton spin states, the overall particle dynamics are a 

complex mixture of intrinsic properties along with empirical effects derived from the 

quality of synthesis, as well as less controllable factors such as adsorption of 

impurities at the dot surface.  These effects can be further complicated by effects such 

as the Quantum-confined Stark effect, which has been observed to modify the 

emission properties of quantum dots based on the presence of internal fields 

generated by carriers distributed within the core [50,51].  Finally, it has been shown 

that the quantum yield and lifetime of individual quantum dots can vary over time for 

the same particle [52] on short time scales.  While a basic theoretical description of 

quantum dot decay mechanics has been presented in the literature for some time and 

verified by many experimental results, the dynamical and multifaceted nature of the 

overall decay process has prevented the emergence of a comprehensive description.  

This has important consequences for many applications including the use of quantum 

dots as substitutes for fluorescent dyes which will be discussed in Section 3.3. 
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3.3 Comparison to Fluorescent Dye 

Fluorescent materials have found widespread application in the life sciences for their 

ability to provide fast and consistent detection of biomolecular interaction in a 

reliable and reproducible fashion.  The majority of materials used for this application 

have normally included small organic dyes, metal-ligand complexes, lanthanide 

chelates, and biologically derived fluorophores such as fluorescent proteins like green 

fluorescent protein (GFP).  Over the course of their use, these materials have been 

studied extensively and a complex understanding of their mechanics and properties 

has been developed.  Unfortunately, these studies have also illustrated some of the 

shortcomings that can lead to undesirable effects or make them difficult to work with.  

The optical properties of fluorescent dyes are dependent on the electronic and 

vibrational transitions involved in the absorption and emission process.  Emission in 

most common dyes originates primarily from singlet S1 to singlet S0 transitions of  

electrons in ring structures in the molecule, or intramolecular charge transitions in CT 

dyes [53].  Ring-based dyes encompass most of the commonly used organic dyes and 

are characterized by closely spaced asymmetrical emission and absorption peaks, 

which are spaced by a small Stokes shift and emission spectra that are broadened on 

the red-shifted side.  Unfortunately, due to the discrete nature of the transitions 

involved in organic dye photo-dynamics the spectrum of usable pump wavelengths is 

limited to a relatively small region around the absorption peak.  In addition, for most 

common dyes the spacing between the absorption and emission peaks is only around 

50-100 nm with some overlap occurring for wavelengths falling in the region between 

the peaks, which favors cross-talk between individual dye molecules [53].  
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Figure 18  Absorption (dotted) and emission (solid) spectra for 
Rhodamine 6G (red) and Cyanine 5.5 (black) from [54]. 

 
Figure 19 Absorption and emission spectra for CdSe/ZnS core/shell 
quantum dots.  From NN-Labs CZ640 [55]. 

 



 

 42 
 

These features are evident in the spectra of Rhodamine 6G and Cyanine 5.5 and are 

presented in Figure 18 where the close spacing of the absorption and emission peaks 

is clearly visible along with the asymmetry of the peaks.  A direct consequence of 

these properties is difficulty in selecting viable fluorescent dyes for use in spectrally 

multiplexed applications.  For this type of application it is desirable for a single 

excitation wavelength to be used to excite multiple fluorophores, which can then be 

distinguished by examining their emission spectra and separating labels by their 

individual emission wavelengths.  Use of organic dyes clearly presents two obstacles 

in this situation.  First, given the close proximity of the absorption and emission 

spectra of most dyes it is very difficult to find a selection of dyes across a broad range 

of wavelengths that can all be excited using a single wavelength.  This is further 

complicated by the necessity for the pump signal to be located as far as possible from 

the emission wavelengths in order to prevent the pump channel from leaking into the 

desired measurements.  Aside from these spectral considerations, in applications 

where long time exposures are required the inherent susceptibility of organic dye 

materials to photobleaching under conditions of prolonged exposure to optical 

stimulus can make it difficult to obtain meaningful data.  As an example, emission 

from the fluorophore Alexa 488 has been experimentally shown to drop off rapidly 

from the onset of excitation and decays sharply within the first 60 seconds to less than 

20% of its initial intensity, which can be seen in Figure 20B.   



 

 43 
 

 

Figure 20 (A) Top row:  Nuclear antigens labeled with QD 630–
streptavidin (red), and microtubules labeled with AlexaFluor 488 
(green) simultaneously in a 3T3 cell.  Bottom row: Microtubules 
labeled with QD 630–streptavidin (red), and nuclear antigens stained 
green with Alexa 488.  (B) Quantitative analysis of changes in 
intensities of QD 608–streptavidin (stained microtubules) and Alexa 
488–streptavidin (stained nuclear antigens) using specimens 
mounted with glycerol or antifade mounting medium Vectashield.  
Reprinted from [56] 

 
The use of quantum dots as a substitute for organic dyes in fluorescence imaging 

applications offers an alternative solution which can address some of these 

considerations.  Quantum dot emission spectra are typically narrow and symmetric 

without the structure and asymmetric tail associated with many dyes.  This is coupled 

with a small excitonic absorption peak that is blue shifted relative to emission and 
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more importantly increasing absorption for shorter wavelengths below the first 

absorption band.  Size controlled tunability of the absorption and emission peak 

positions allows the spectral properties to be tailored to specific applications while 

still maintaining the same material system.  Molar absorption coefficients for 

quantum dots are also generally large when compared to organic dyes [53,57] and 

exhibit high quantum yields for wavelengths from the visible all the way to the NIR 

region.  This advantage is particularly pronounced for wavelengths in the NIR band 

where organic dyes suffer from poor quantum yields and limited photostability [53].  

The wide absorption spectrum of quantum dots enables selection of pump sources 

from a wide variety of wavelengths.  This, in turn, makes it much more 

straightforward to utilize pumps that are spaced spectrally far from the emission peak 

thereby reducing or eliminating pump signal crossover into the wavelength regime of 

interest, something which is difficult or impossible to implement using organic dyes.  

Taking advantage of this capability makes spectrally multiplexed measurements using 

a single pump wavelength relatively direct compared to dyes, provided that a suitable 

source can be selected for the emission wavelengths of interest.  Photostability in 

quantum dots is also greatly improved over organic dyes as noted previously.  Due to 

their inorganic surface layers and shielding of the core material by using epitaxial 

shell layers quantum dots are significantly more resistant to thermal and 

photochemical degradation as shown in Figure 20.  This is especially important for 

applications requiring high intensity excitation or long term exposure of samples, and 

has been experimentally verified in various studies [53,58].  The need for surface 

passivation layers on the surface nanoparticle can be of advantage when 
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functionalizing the particles to facilitate selective attachment to target analytes both 

by tailoring the surfactant layer as well as attaching additional molecular chains to 

whatever layer is already in use.  While quantum dots offer many potential 

advantages, these advancements do not come without corresponding difficulties.  

Quantum dots are generally characterized by complex carrier dynamics, discussed in 

Section 3.2, which can introduce severe complications for applications where 

discrimination of multiple probes through non-spectral means is desirable.  In 

addition, interactions between the dots and their surrounding environment are not 

fully understood, especially in the context of carrier dynamics occurring at the surface 

of the particle.  Geometrically the dots are much larger than the corresponding dyes 

and typically range from 1-50nm in diameter in comparison to molecular dyes, which 

are often dimensionally on the scale of angstroms.  This can cause problems for 

introduction of dyes into cells or other small structures without collateral damage to 

the target assembly.  Additionally, many of the materials used in quantum dot 

synthesis are highly toxic and care must be taken to prevent leeching of the quantum 

dot constituents into the surrounding environment.  In spite of these considerations 

quantum dots have found increasing application in many areas thanks to their 

versatility and capability to provide improvements in stability and spectral output. 
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4 Fluorescence Enhancement  

The presence of strongly enhanced fields near the metal-dielectric interface is one of 

the properties that make application of surface plasmon effects attractive.  As 

described previously in Section 2.4 if the requirements for surface plasmon excitation 

can be appropriately satisfied it is possible to achieve field enhancement of several 

orders of magnitude simply by the presence of surface waves at the interface.  The 

performance of optically active materials placed in close proximity to the interface 

thus has the potential to subsequently experience enhancement of their performance 

through exposure to these intense fields.  One of the areas which has garnered 

significant attention in recent years is the application of surface plasmon supporting 

structures and interfaces for the enhancement of fluorescence yields from dyes and 

other materials placed near metallic interfaces and nanostructures  [21,22,23,59]  .  

However, the study of these effects involving surface plasmons and such materials is 

fundamentally complicated due to the inherent need to use metallic structures, which 

perturb the behavior of such emitters by their very presence.  It is well known from 

past studies that emitters placed in close proximity to metallic surfaces can experience 

quenching of their fluorescence, which occurs as a function of the source-interface 

separation.  It is therefore of critical importance when studying the interaction of 

surface plasmons and fluorescent emitters that care is taken to consider the complex 

interplay between the advantages offered by the enhanced surface field and 

degradation of system performance from the presence of a strongly absorbing 

medium.  In order to understand the results, a basic understanding of how fluorescent 

materials interact with these surfaces is a logical starting point.  
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4.1 Fluorescence Near Metallic Interfaces 

The behavior of fluorescent materials placed in close proximity to metallic interfaces 

can be altered drastically in comparison to their behavior in a uniform non-absorbing 

medium.  Depending on the geometry of the system and the surrounding materials 

decay of the excited fluorophore can exhibit either an increase or decrease in time 

response as well as radiative efficiency.  Interaction with the boundary causes 

modifications to the way the excited molecule loses energy by altering the local 

conditions experienced by the emitter.  First, by modifying the boundary conditions 

of the electromagnetic field both the radiative decay rate and spatial distribution of 

radiation can be altered.  Next, the presence of the boundary may provide a route for 

the excited particle to lose its energy through non-radiative energy transfer.  In the 

simplest case the emission properties of a fluorescent emitter can be considered as an 

excited dipole, which will relax by converting its energy to a photon or transferring it 

to another excitation.  The effect that the presence of the metal will have depends on 

both the properties of the material as well as the relative distance and orientation of 

the dipole with respect to the boundary.  Theoretical investigations of dipoles near 

dielectric and metallic interfaces have been presented in the literature 

[60,61,62,63,64,65] and have illustrated how the field structure and spatial 

distribution of emission from a dipole is altered under such conditions.  However, 

more interesting from the standpoint of fluorescence enhancement effects is the effect 

that the metallic interface has on the decay lifetime of fluorescent emitters.  

Fluorescence is an example of the spontaneous emission process, which means that 

the probability of spontaneous emission can be given by Fermi’s golden rule [66] as: 
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  2
ij ij ijM     [4.1.1] 

Here Γij is the rate for transitions between the excited state i and the lower-energy 

state j, Mij is the matrix element corresponding to the transition between these energy 

levels, and ρij(υij) is the density of states at the transition frequency, which we can be 

referred to as the photonic mode density (PMD).  This correlation between 

spontaneous decay rate and PMD was first pointed out by Purcell in the context of 

radio frequency emission from nuclear magnetic moment transitions coupled to a 

resonant electrical circuit [67].  Modification of the matrix elements Mij would require 

that the interface perturb the emitter wavefunction.  While possible, it is highly 

unlikely that this will occur as such interactions would require angstrom-scale 

separations.  Therefore, it is primarily through modification of the photonic mode 

density that we would expect the interface effects manifest themselves.  Experimental 

work characterizing the behavior of fluorescent emitters in the presence of a planar 

interface was pioneered by Drexhage [68,69,70,71,72] in the 1960’s with subsequent 

contributions from other groups in later years [60,73,74,75,76,77].  These 

measurements demonstrated that significant modification of the spontaneous emission 

lifetime occurs as well as a strong dependence of the lifetime modification on the 

emitter-interface separation.  Figure 21 illustrates the behavior typically observed in 

experiments of this type.  From the figure it is clear that the emission lifetime has a 

strong dependence on the interface separation, which approaches a steady state value 

at larger distances corresponding to the lifetime of emitters in a homogeneous 

medium.   
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Figure 21 Lifetime of Eu3+ ions in front of a silver mirror as a 
function of separation between Eu3+ ions and the mirror.  Reprinted 
from [74] 

 
At shorter distances the lifetime experiences a sharp decrease once the separation 

drops below 50 nm, which corresponds to strong quenching of the fluorescent 

emission.  For larger separations the spontaneous emission lifetime can clearly be 

seen to oscillate around the isotropic value and this can be explained by considering 

constructive and destructive interference between fields emitted by the dipole and 

fields which are emitted then reflected back by the metallic interface.  In order to 

understand this effect we can consider a dipole placed near a mirror as depicted in 

Figure 22.  The presence of the metallic interface affects both the spatial distribution 

of radiation as well as the lifetime for emission of radiation.  Changes to the spatial 

distribution of emitted radiation can be described by considering the two cases shown 

in Figure 22(a) and (b).  Radiation emitted from the dipole interferes with part of the 

emitted light that is reflected by the metal surface.   
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Figure 22 Amplification and quenching of a dipole (shown in blue) 
near a metal surface.  Interference between fields emitted from the 
dipole and reflected fields causes modification of the angular 
distribution of emission (a)-(b) as well as the decay lifetime (c)-(d).  
[68] 

 
If the angle is such that the reflected light returns 180 degrees out of phase from light 

leaving the dipole as in (a) then radiation from the dipole into that direction is 

quenched and will not occur.  Conversely, if the reflected light returns to the source 

in-phase then the power radiated in that direction is doubled and emission at such an 

angle is amplified.  A similar argument can be made when considering the lifetime 

for emission from a dipole near the mirror’s surface.  If the dipole is placed at the 

center of a spherical mirror instead of a planar mirror then the same effect can be 

extended for all points in the upper half-space as in (c) and (d).  If the radius of the 

mirror is an integer multiple of a wavelength light that is reflected from the mirror 
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surface interferes destructively with emission from the dipole resulting in quenching 

of all emission in the upper half space outside the mirror.  As a result the dipole is 

unable to radiate its energy and it will remain in its excited state infinitely in the 

absence of nonradiative deactivation processes.  Similarly if the radius of the mirror is 

instead taken as an odd multiple of a half wavelength then constructive interference 

occurs resulting in a doubling of the field amplitude at the dipoleand correspondingly 

the probability for radiation would increase by a factor of four since radiated intensity 

is proportional to the square of the amplitude.  The fluorescent decay of an emitter 

above a plane mirror is affected in a similar manner and produces the characteristic 

oscillation of the emitter lifetime observed for larger distances in Figure 21.  For 

small separations between the dipole and metal near-field coupling between the 

excited dipole and loss channels within the metal has a strong influence on emission 

lifetime.  This effect manifests in Figure 21 as a rapid decrease in fluorescence 

lifetime as the particle approaches the metal surface and results in strong quenching 

of emitters residing directly at the interface.  For a planar metallic interface the dipole 

transfers its energy primarily into surface plasmons or lossy evanescent fields 

depending on the degree of separation and dipole orientation [60].  Here, the presence 

of the surface plasmon mode increases the photonic mode density by creating an 

additional pathway for the dipole to lose its energy non-radiatively and contributes to 

losses in the system.  For very small separations the near field of the dipole couples 

increasingly into evanescent waves propagating into the metal where the energy is 

dissipated by the material losses. 
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Figure 23  Modification of fluorescence lifetime for a dipole above a 
gold-air interface emitting at 640nm calculated using Lumerical  
FDTD simulation software [78]. 

 
Figure 24  Modification of spontaneous decay rate for a dipole above 
a gold-air interface emitting at 640nm calculated using Lumerical 
FDTD simulation software [78]. 
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As a result, the dipole is strongly quenched as it rapidly loses any excitation by 

conversion to surface plasmons or radiation into the metal.  The degree of lifetime 

modification that a dipole experiences in the presence of a metal or other surface can 

be determined by examining changes in the power radiated by a dipole in a given 

configuration.  Since the excited dipole has a finite amount of energy its lifetime is 

inversely proportional to the total radiated power. 

 ( )
( )

Pz
P z





  [4.1.2] 

This property allows us to predict the lifetime behavior of a fluorescent emitter as 

long as the emitted power for a dipole can be determined in the desired configuration. 

Calculations made using the Lumerical commercial FDTD simulation software [78]  

are presented in Figure 23 and Figure 24 for a dipole over gold oriented parallel and 

perpendicular to the interface.  In a more practical setting the dipole orientation is 

often randomly distributed across the surface.  Under these conditions an average 

over the dipole orientations can be obtained by taking the average of the lifetime for a 

perpendicular orientation plus twice the value for a dipole oriented parallel to the 

interface which is depicted by the dotted black line. 

4.2 Enhanced Emission vs. Enhanced Absorption 

The enhancement of fluorescent emission can be separated into two categories based 

on the nature of the underlying physical phenomena that facilitate the increase in 

photon flux.  As discussed in Section 4.1 modification of the local photonic mode 

density has a strong effect on the lifetime of emitters.  Introduction of additional 

nonradiative decay channels causes a reduction in the efficiency of radiation from the 

emitter out into the surrounding media.  Under normal circumstances the presence of 
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these additional losses has a negative impact on the performance of fluorophores and 

results in a reduction of the net photon flux.  However, depending on the properties of 

the emitter and the geometry of the system it is possible to observe an increase in 

emission in spite of the additional losses in the system.  An example of this can be 

seen when considering a fluorescent particle with low quantum efficiency and long 

lifetime near a gold surface.  For this type of situation the emitter has a high chance to 

lose its energy to a non-radiative process instead of by photon emission, but remains 

excited for an extended period before it can be excited again.  When looking at the 

distance dependence of the fluorescence signal, whether it is enhanced or reduced 

depends on two competing factors.  On one hand the presence of the metal film 

introduces pathways for nonradiative loss, which reduce the radiative efficiency of 

the particle.  This would most likely be detrimental if the emitter had either high 

efficiency or a short lifetime or both but in this situation the reduction in the overall 

lifetime can open up the opportunity for enhancement to occur.  Since the lifetime of 

the source is long, reduction of the lifetime results in increased availability for the 

emitter to absorb an incoming photon.  In this way it can be possible to increase the 

overall photon flux by increasing the number of opportunities for the emitter to 

produce a photon despite reductions in the overall efficiency.  Alternatively, the 

presence of a resonant structure can be used to transfer the excitation and either 

transfer energy back to the emitter or facilitate conversion into a photon by scattering 

or other processes.  If the fluorescence enhancement can be attributed to the influence 

of the local environment on the emission properties of the source then such an effect 

can be attributed to enhanced emission.  In contrast, it is also possible to increase the 
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observed fluorescence from a source by modifying the fields to enhance the driving 

field seen by the emitter.  In this case, the observation of enhanced fluorescence 

signals occurs due to modification of the local environment without perturbation of 

the fundamental behavior of the source.  For such a situation the fluorescence 

enhancement is said to be caused by enhanced absorption effects.  Discrimination 

between these two effects can be done by examining the spectral and time correlated 

behavior of fluorescent emission, as well as the conditions under which enhancement 

is observed.  Modification of the source lifetime can be observed using time 

correlated methods and manifests as an increase or reduction as in the case of an 

emitter above a mirror.  Aside from the case of a planar interface the additional 

photonic modes are often introduced by the presence of a cavity or structure that has 

its own frequency dependent response.  In such a situation, coupling between the 

source and structure occurs only when the spectral output matches the frequency 

response of the structure.  Measurements of the spectral emission will then exhibit 

increased signal at frequencies corresponding to the optical response of the structure.  

Experimental [21,22] and theoretical [79,80,81,82] studies of enhanced emission 

effects have shown that appreciable enhancements can be obtained for low efficiency 

sources but that high efficiency sources exhibit little benefit from such techniques.  

High efficiency sources can, however, benefit from enhanced absorption type effects 

depending instead on how efficiently they are able to absorb incident radiation.  This 

can be an important consideration when observing the performance of quantum dots, 

as core/shell configurations typically exhibit high quantum efficiency compared to 

bare cores which can have very poor efficiency due to carrier dissociation to the 
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interface.  Finally, since enhanced emission effects arise due to interaction between 

the emitter and its local environment they should occur consistently regardless of the 

orientation of the exciting source provided that selectivity in the emitter’s absorption 

properties is taken into account.  As a consequence distinction between the two 

effects can be made by observing the effect that orientation of the sample has on the 

observed fluorescence signal. 
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5 Surface Plasmon Enhanced Fluorescence on 

Nanostructured Gold Surfaces 

5.1 Introduction 

Over the course of the past decade surface plasmon polaritons (SPP’s) have garnered 

increasing attention in the scientific community.  These surface wave solutions to 

Maxwell’s Equations at the boundary between semi-infinite dielectric and metallic 

regions are localized and propagate in the plane of the interface.  The characteristic 

strongly enhanced fields near the boundary, which decay exponentially away from the 

surface, offer an attractive means for enhancing the performance of optical 

interactions.  Field enhancement near the boundary plays a critical role in surface 

enhanced effects with enhancements reaching up to 100 times or greater compared to 

propagating waves in either medium [83].  This strong local field enhancement near 

plasmonic structures and surfaces supporting SPPs is capable of significantly 

enhancing optical effects which take place in the vicinity of the boundary.  

Fluorescent materials have found widespread application in the life sciences as probes 

that provide fast and consistent detection of biomolecular interactions in a reliable 

and reproducible fashion.  Regardless of the measurement technique used, the 

fluorescence intensity produced by a fluorescent probe is of key importance in 

determining its capability to provide specific detection of materials of interest in the 

presence of unknown amounts of other substances.  Techniques that enhance 

fluorescent emission can reduce measurement times, increase sensitivity, or reduce 

the amount of material required for accurate detection.  It is well known that the 
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presence of a metal surface in close proximity to a fluorophore can significantly 

modify its emission [60,84].  This has been attributed to several factors but depends 

strongly on the distance separating the fluorophore and metal.  For large separations, 

fluorescence is not affected and behaves as it would in free space.  As separation 

decreases, increased nonradiative relaxation of the excited fluorophore occurs as 

energy is coupled into surface plasmons (SPPs or localized plasmons) on the surface 

of the metal.  For very small separations, quenching of emission is well known and is 

attributed to damping of dipole oscillators and coupling of energy into evanescent 

waves at the surface of the metal.  While coupling to surface plasmons is viewed as 

an undesirable loss mechanism for experiments that rely on emission from 

fluorophores, the interaction of surface plasmons with fluorophores may be used to 

modify and enhance their utility.  Coupling of excited fluorophores into surface 

plasmons is well known to occur for intermediate metal-particle separations [60].  

This effect is the basis for surface plasmon coupled emission (SPCE) [85,86,87] 

which takes advantage of coupling between excited emitters and surface plasmons to 

excite surface plasmons that are then scattered into photons and detected.  By placing 

emitters in close proximity to surface plasmon-supporting substrates it is also possible 

to increase their emission by taking advantage of localized high surface fields.  

Fluorescent enhancement by localized plasmons excited in metallic nanoparticles has 

also been a topic of active research for several years [23,88,89].  Experimental studies 

have shown over 20 times enhancement in emission intensity for emitters coupled to 

surface plasmon supporting nanoparticles compared to sources placed on glass or 

other non-plasmon supporting substrates [21,22,23,88,89].  SPPs propagating on the 
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surface of a metal film may also be used to produce a similar enhancement effect if 

the fluorescent material is placed in close proximity to the films.  However, the use of 

SPPs in this way imposes phase matching restrictions that constrain the conditions for 

SPP excitation.  As explained in previous chapters, the surface plasmon wavevector 

component parallel to the boundary is greater in magnitude than the wavevector of 

light in either of the bounding media [90], which requires additional phase matching 

structures to enabling coupling into SPPs.  Surface gratings allow us to provide the 

additional momentum for coupling incident photons into surface plasmon excitations 

without the additional complexity required for prism coupling schemes.  Fluorescence 

enhancement using grating-coupled SPPs has been demonstrated previously by Hung 

et al [59] and Tawa et al [91] using commonly available fluorescent dyes placed onto 

substrates patterned with periodic grating structures.  In both of these experiments it 

has been shown that enhancement of fluorescent emission was due to excitation of 

SPPs propagating along the grating surface.  The results detailed here will serve to 

extend and refine the results of these previous studies by examining the performance 

of quantum dots placed in close proximity to dielectric gratings patterned onto a 

planar surface plasmon supporting metallic interface.  The purpose of doing so will be 

to examine the conditions under which enhanced fluorescence can be obtained and to 

illuminate the underlying physical phenomena which contribute to the effect. 

5.2 Experiment Design 

In this work PMMA surface gratings defined using EBL patterned onto the surface of 

gold coated substrates are used to excite surface plasmon polaritons at the metal film 

surface.  The use of such periodic phase matching structures is known to be effective 
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for exciting surface plasmons as demonstrated in the literature [11,83] and discussed 

in Section 2.3.2.  Samples are fabricated using thin glass cover slips that have been 

sputtered with a 50nm thick film of gold on one surface to support surface plasmon 

propagation.  Chromium adhesion layers are omitted from fabrication due to 

sufficient wetting of the surface from plasma cleaning during film deposition.  After 

deposition of the gold film the samples are then spincoated with either PMMA 

(Microchem PMMA495A4) or a composite mixture consisting of PMMA and 

CdSe/ZnS QDs in Toluene to a thickness of approximately 150nm.  Grating 

structures are defined using a Raith E-line EBL system and structures are 

subsequently developed using a 3:1 IPA:MIBK solution, (also from Microchem) as 

developer.  Depending on the sample, introduction of QDs is performed by deposition 

of a PMMA/QD mixed composite or by low speed spincasting before exposure and 

development of the grating pattern via EBL.  The distinction between these 

introduction methods will be discussed in more detail later.  QDs used for the 

experiment are obtained commercially from NN-Labs and consisted of CdSe/ZnS 

(NNLabs CZ640) dots suspended in toluene with emission peak at 640-660nm.  

These QDs are high quantum efficiency fluorescent emitters with radiative 

efficiencies in the range of 40-50% as specified by the manufacturer which agrees 

well with values presented in the literature[92].  Prior to deposition the solution 

containing QDs is further diluted from its original concentration to 10-3 M CdSe in 

toluene.  Because of solubility considerations, QDs that have been deposited onto the 

surface of the sample prior to electron beam patterning will primarily remain on the 

sample as they are insoluble in the developer solution and are not carried away.  The 
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resulting samples consist of unpatterned regions consisting of QD-coated resist 

combined with patterned regions defined in the film with QDs coating both regions.  

The use of EBL allows the physical parameters of the gratings to be controlled very 

precisely with nanometer scale precision.  When coupled with high resolution nano-

imaging techniques such as AFM and SEM individual parameters of the grating 

structure can be independently varied while maintaining tight control over the 

remaining properties.  This capability is crucial for enabling the isolation of 

individual physical parameters in order to study their effect on the fluorescence 

enhancement phenomena.  

 

Figure 25  Illustration of fabrication steps used in sample 
preparation.  Gold and PMMA films are deposited onto glass cover 
slips as substrates.  Quantum dots are then spincoated onto the resist 
surface at low speed from 1mM solution in toluene.  Finally, EBL is 
performed to define patterned regions and create QD-coated linear 
gratings. 

 
Sample analysis is performed using standard fluorescence optical microscopes 

(FOMs) with no additional special optics required.  For imaging of the samples both a 

Leica MZFLIII and Leica INM100 FOM are used.  Light for fluorescence excitation 
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on both microscopes is provided by a mercury discharge lamp filtered to provide the 

appropriate excitation wavelength range.  The MZFLIII is equipped with filters for 

observation using excitation in the green at 400-540 nm and emission in the red at 

600-680 nm and uses a 1.0x plano objective with N.A. 0.125.  For the INM100 a 

filter set for red excitation at 596-634 nm and emission at 653-702 nm is used with a 

20× Leica Fluotar objective with N.A. 0.4.  Image analysis was performed using the 

Gwyddion [93] AFM image analysis package to extract profiles as well as statistical 

measurements of image values with associated errors.  Samples required no special 

preparation prior to imaging and proved resilient to long-term exposure for periods of 

time exceeding three hours without noticeable degradation of fluorescence signal.  

The application of the nanostructured substrates presented here is straightforward, 

requiring no special hardware outside commonly available standard fluorescence 

measurement equipment. 

5.3 Quantum Dot Deposition 

In order to examine the potential for application of this technique to fluorescence 

from quantum dots several samples were fabricated using gold, chromium and ITO 

film substrates in order to distinguish between enhancement due to surface plasmons 

and other effects such as guided modes and enhancement due to the presence of 

gratings.  The control materials chromium and ITO were selected due to their optical 

properties at the wavelengths of interest.  Examination of the dielectric constant of 

chromium, -12.33 - 24.53i in the green [15] and -6.90 - 30.35i in the red [14], 

indicates that while chromium may support surface plasmons at these wavelengths 

the high absorption of the material in this range causes them to decay rapidly and thus 
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we treat the material as a non-SPP supporting material.  ITO, on the other hand, 

supports SPPs at longer wavelengths [94] but does not support plasmons in the 

wavelength region of interest being transparent in this range.  The control samples 

were fabricated by substitution of a 50nm thick chromium layer in place of the usual 

gold layer for chromium samples.  ITO samples used commercially acquired ITO on 

glass substrates with the ITO layer of indeterminate thickness.  Unlike gold and 

chromium the thickness of the ITO layer is less important as ITO is transparent at the 

wavelengths of interest.  These initial samples were coated using a composite resist 

solution consisting of a 50:50 combination of PMMA495A4 in anisole and 10 mM 

quantum dots in toluene.  Samples were subsequently patterned with a test pattern 

consisting of square regions containing linear dielectric strip gratings of various 

periodicities along with triangular marks denoting the upper edge of the pattern for 

image recognition under the microscope as depicted in Figure 26a.  Observation of 

the resulting patterns was performed using the MZFLIII fluorescence optical 

microscope with a camera gain setting of 16.  The images, shown in Figure 26, 

demonstrate a clear distinction between the application of the composite material to 

surface plasmon supporting substrates and non-plasmon supporting materials.  A 

significantly stronger fluorescence signal can be clearly identified when viewing the 

sample containing a gold thin film when compared to both of the control substrates.  

We must note, however, that the chromium coated substrate does exhibit low levels 

of enhanced fluorescence in the regions where gratings have been fabricated.   
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Figure 26 Samples coated with a PMMA/QD composite mixture on 
different substrates using a CCD camera gain setting of 16.  (a) Gold 
substrate, integration time: 240 s. (b) Cr substrate, Integration time: 
300 s. (c) ITO substrate, integration time: 300 s; the gratings visible 
correspond to the bottom right corner of the pattern.  (d) Schematic 
of test pattern layout with grating periodicities. 

  

(a) (b)

(c) (d)
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This behavior can be attributed to the possibility that the gratings may provide 

enhancement of fluorescence due to evanescent field interactions from the presence 

of the corrugated surface, and also to the potential for surface plasmons on the metal 

surface, however short-lived they may be due to the strong absorption.  Finally, for 

the case of ITO, which is transparent and does not support surface plasmon 

excitation, the grating regions have very little perceptible effect on the surrounding 

fluorescence and the grating regions are nearly imperceptible from the surrounding 

regions.  Data values extracted from the images were used to calculate the observed 

enhancement in the 600nm grating and normalized against the background 

fluorescence of the ITO sample.  The results indicate an enhancement of 

approximately 13.3 times for the gold sample compared to 5.3 times for chromium 

and only 1.3 times on ITO, with linear extrapolation used to evaluate enhancement 

values for gold due to the differing integration times.  It is very important to point out 

that although the images presented in Figure 26 may not appear to show a massive 

distinction between the three materials, the image taken for a gold substrate 

represents only 80% of the integration time required to image the other two 

substrates.  The difference in integration time was mandated by the inability of the 

CCD camera to image both sets of samples using identical imaging conditions.  This 

was a result of intensity saturation for images of the gold sample, coupled with the 

inability to clearly distinguish images of the control samples using shorter integration.  

The results from the composite film also illustrate that there is a clear periodicity 

dependence in the fluorescence enhancement behavior, as well as dark regions where 

material has been completely removed, which can be observed as dark triangular 
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regions in the figures above.  These results provide good evidence that observed 

enhancements can be attributed to interaction with surface plasmons rather than 

simple enhancement from the gratings alone.  While fabrication and characterization 

of samples coated in composite material was successful, several issues with the 

mixture motivated investigation of further techniques for quantum dot deposition.  

The volumetric distribution of fluorescent materials is not desirable for studying the 

mechanics of grating coupled surface plasmon enhanced fluorescence.  The nature of 

the deposition method causes the quantum dots within the composite to be distributed 

throughout the film thickness, and thus make it unsuitable for detailed examination.  

Furthermore, the solubility properties of quantum dots suspended within the solution 

led them to aggregate because of a low solubility of quantum dots in the resist solvent 

anisole, resulting in spotty emission from the film layer.  This type of behavior has 

been observed previously in the literature and a solution to this problem has been 

presented by Pang, et al. in [27].  In order to alleviate this problem, samples were 

fabricated using direct introduction of quantum dots by spincasting from solution.  

Samples were first coated with gold or chromium followed by spincoating of PMMA.  

After this, quantum dots were introduced by spincasting onto the sample prior to 

electron beam exposure, followed by pattern definition and removal of excess resist 

in developer.  Deposited quantum dots were expected to remain on the surface 

because of their insolubility in the developer solution.  For the remainder of this study 

these samples will be referred to as prespun QD samples.  Images from the resulting 

samples are shown in Figure 27 along with the image for the composite film on gold 

from Figure 26.  Examination of the results shows a stark contrast between the 
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performance of composite material and direct distribution methods.  Direct 

application of quantum dots onto the sample results in significant reduction of 

background fluorescence and increased uniformity in observed emission as evinced 

by the smoother appearance of the image in Figure 27b compared to Figure 27a.   

 

Figure 27  Comparison of different quantum dot deposition methods.  
All images captured using camera gain setting of 16.  (a) PMMA/QD 
Composite on Gold, Integration time: 240s.  (b) Prespun QD on 
Gold, Integration time: 30s.  (c) Prespun QD on Cr, Integration 
time: 30s. 

 
In addition to the improvements in sample quality, the observed fluorescence from 

the sample is greatly increased and can be seen from the difference in integration time 

required for successful imaging.  The composite sample requires eight times the 

integration time at the same gain setting in order to measure an image intensity value 

slightly less than the prespun sample.  While a clear distinction in behavior occurs for 

the gold substrates, observation of the chromium-coated substrates demonstrates 

behavior similar to previous samples with only a weak distinction between gratings 

and flat film regions, along with much lower intensity when compared to gold.  The 

variation between different grating periodicities is also much weaker than for 

chromium than the distinct variations in fluorescence intensity visible for gold.  
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Measurements of fluorescence enhancement required correction for camera gain and 

integration time and avoidance of camera saturation, which resulted in an estimated 

enhancement of 94 times for the center grating on gold when compared to 

background from the same image.  Similar measurement of the image in Figure 27c 

produced an enhancement factor of approximately 4 for the chromium-coated sample 

when measured against sample background.   

 

Figure 28  Fluorescence images of quantum dots deposited onto 
substrates after patterning of surface structures.  All samples have 
been spun with 10-3 M QD solution in toluene as in previous samples.  
(a) Prespun QD on gold film at 16x gain and 15s integration.       
(b) Prespun QD on chromium film at 16x gain and 120s integration.  
(c) Prespun QD on ITO film at 16x gain and 240s integration. 

 
The deposition of quantum dots onto substrates which have already been patterned 

with surface structures was also evaluated to explore the viability of such a process.  

Fluorescence images of the resulting postspun samples are shown in Figure 28.  

These images clearly demonstrate that for quantum dots deposited in this fashion, 

fluorescence within the patterned regions is suppressed even though a high 

concentration coating is clearly visible in the surrounding film regions.  In order to 

investigate this phenomenon SEM imaging of the samples was performed in order to 

determine the spatial distribution of the deposited quantum dots.   
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Figure 29 SEM images of (a) prespun and (b) postspun quantum dot 
samples on gold film substrates.  The images illustrate a distinct 
contrast in the behavior of the two samples in both quantum dot 
distribution and electron contrast between resist and metal layers.  
Evenly spaced lines of quantum dots are visible in image (b) 
(denoted by red dotted lines) and correlate roughly to the intended 
500nm grating periodicity. 

 
The images show that the behavior of prespun and postspun samples is very different, 

with respect to both the properties of the resist and quantum dot distribution within 

the patterned area.  PMMA stripes are clearly visible in images of the prespun sample 

while they become electron transparent on the postspun substrate.  The distribution of 

quantum dots is also different with strips of clustered quantum dots visible in the 

image of the postspun sample mostly likely corresponding to the positions of the 

resist ridges based on the aspect ratio observed on the other sample.  For both samples 

it is clear that quantum dots are distributed within the target region.  This is especially 

interesting for postspun samples due to their lack of observed fluorescence in these 

areas.  Based on this data it is currently unclear what causes the postspun quantum 

dots to exhibit quenching of their fluorescent emission.  Possible explanations include 

modification of the resist surface during pattern definition which may cause 

formation of pores which could allow the particles to come into close proximity with 

the gold film.  Alternatively the fabrication process could alter the surface properties, 
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changing the behavior of quantum dots located at the surface.  Explanations regarding 

this behavior currently fall into the realm of speculation, and having found a 

successful means of nanoparticle dispersal further discussion of these effects is 

deferred for later study. 

5.4 Quantum Dot Saturation 

In order to ensure the validity of the experimental results examinations were made to 

check for saturation of the quantum dots as well as coupling of light across the metal 

film layers.  Since further investigations of the fluorescence behavior are made based 

on the observed intensity of the fluorescence signal from various regions on the 

sample it is important to determine that the exciting source is not causing saturation 

of the quantum dot layer.  In order to determine that there is no saturation samples 

were observed using the INM300 with neutral density filters inserted into the exciting 

beam path to attenuate the drive signal for comparison.  ND filters with OD of 0.3 

and 0.6 were introduced into the beam with individually and in combination to 

produce transmission of 12.5%, 25%, 50%, and 100% for comparison.  Images of the 

sample through these filters were then compared to determine if the response 

observed exhibited saturation effects when exposed to the filtered mercury lamp 

excitation.  Camera settings were selected to ensure that images of the sample without 

ND filters inserted were not saturated by the imaging process so that any observed 
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5.5 Metal Film Thickness 

Selection of the appropriate metal thickness is important to prevent coupling of light 

to the back of the sample where it will not interact with the quantum dots and may be 

lost by scattering from the back side of the metal film.  At optical frequencies away 

from the plasma frequency the skin depth in a metal can be described by using the 

Drude model for the dielectric constant.  In this case the electrons are considered as 

free and damping is negligible as the oscillation frequency is much greater than the 

damping rate.  Under these conditions the penetration depth for the transverse electric 

field into the metal is roughly constant until it approaches the plasma frequency 

where the metal begins acting as a dielectric and increased transmission begins to 

occur [95].  In this regime the value of the skin depth is related to the plasma 

frequency as: 

 
p

cδ
ω

  [5.5.1] 

For the case of gold a plasma frequency of 9eV results in a skin depth of 

approximately 22nm.  The thicknesses of the gold and chromium layers used in this 

experiment were selected by considering the optimal thickness for prism coupling of 

light into surface plasmons in order to retain the flexibility to excite from either the 

top or bottom of the samples.  Since the measurements which were pursued in the 

study exclusively use topside illumination it was important to determine whether the 

thickness of the metal films has an effect on the observed fluorescence.  If the gold 

film were to be insufficiently thick it would result in loss of light through to the 

backside of the sample and produce a lower signal than could be otherwise observed.   
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Figure 31 Fluorescence images of samples with 50nm and 100nm 
thick gold film as the substrate.  Images of 550nm gratings with 
varying duty cycle on thick (a) and thin (b) metal layers as well as 
gratings of varying periodicity, (c) and (d) respectively, are shown.  
The images along with data points extracted from the images show 
that some variation in intensity is evident but that the overall 
behavior of the samples is unchanged.  All images were obtained 
using camera gain of 2 and 25s integration. 

 
In order to determine whether or not this effect was present in the experimental 

measurements samples with gold layer thicknesses of 50 and 100nm were fabricated 

in parallel and subsequently imaged under identical conditions using the INM300.  

The resulting images are shown in Figure 31 along with measurements extracted from 

the images for the different thicknesses of gold.  Visual examination of the images 

gives little evidence of significant variation between the two samples.  This 

observation is supported by the extracted values which appear consistent across both 

samples within experimental error.  Indeed the sample with 100nm thick gold 

deposited even appears to produce a slightly lower fluorescence signal for the 

measurements in Figure 31e which is in direct contradiction to what would be 

expected in the case of leakage through the thinner films.  Based on these results a 
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50nm thick gold film is sufficient to prevent significant loss of signal by coupling to 

the backside of the film. 

5.6 Spatial Dependence of Emission 

Having determined a suitable process for sample fabrication we now turn to 

investigating the behavior of QD emission from such systems.  Observations from the 

experimental samples indicated that three distinct types of region could be discerned 

from the fluorescence images.  These regions consisted of areas that were not 

patterned and contain unmodified resist which remained coated with QDs, regions 

where electron beam exposure was used to completely remove all resist and form a 

void, and regions where gratings had been fabricated and modification of 

fluorescence was observed.  These three regions correspond to the background film, 

the small triangular alignment marks visible above the grating regions, and the 

grating regions themselves in the previous images.  Characterization of these regions 

was of great importance to determine the origin of the fluorescence observed in the 

grating regions.  Emission from fluorescent particles is modified by proximity to 

metallic surfaces.  The regions within the patterned areas contained a mixture of film 

coated regions separated by areas consisting essentially of exposed metal upon which 

the particles would hypothetically be resting.  It was therefore expected that most of 

the observed fluorescence should originate from QDs whose position was some 

distance from the metal film surface, preferably at the surface of the PMMA film.  To 

make a distinction between these conditions, the behavior of QDs in and around the 

triangular alignment marks was characterized.  The lack of emission apparent in the 

fluorescence images was taken to indicate either a lack of QDs in the region where 
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From this we can conclude that the fluorescent emission observed in the samples is 

attributed primarily to QDs that remain at the surface of the PMMA layer and that 

QDs in close proximity to the metal film no longer contribute to the measured 

fluorescence signal. 

5.7 Variation of Grating Parameters 

5.7.1 Periodicity 

Having determined how the behavior of quantum dots deposited onto the sample 

surface relates to the position of the quantum dots relative to the fabricated surface 

structures we can now examine how the parameters of the grating affect quantum dot 

fluorescence.  The most obvious parameter to begin with which would be of interest 

here is the effect of grating periodicity.  Observation of the periodicity dependence of 

the enhancement effect is important in optimizing fluorescence signals.  Since  

standard fluorescence microscopes are used for observation of the samples, 

illumination is performed in a direction normal to the sample surface with light 

incident from a cone of angles corresponding to the properties of the focusing 

objective used to couple in the excitation beam.  For this portion of the study, both the 

MZFLIII and INM300 fluorescence microscopes were used to observe the same 

pattern.  The resulting images were analyzed using Gwyddion AFM analysis software 

in order to extract line scans of enhancement versus grating periodicity, shown in 

Figure 33.  Enhancement of fluorescence peaked for gratings near the wavelength of 

excitation and diminished gradually as the grating periodicity shifted away from a 

central value.  Although the data indicated that peak enhancements occurred at 

distinct grating periodicities the effect was found to be broadband in nature with  
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fluorescence microscopes contributes to broadening of the range of periodicities that 

may provide coupling to SPPs.  In addition to this, the focusing optics cause the 

exciting beam to arrive at the sample within a cone of angles dictated by the 

properties of the optical input path.  In particular, the MZFLIII has a long working 

distance objective, which has a focal length of 60 mm and an illuminated region of 

roughly 10 mm diameter for the magnification used in the images.  The INM300, on 

the other hand, uses objectives with sub-millimeter working distance and has a 

significantly smaller illumination region, on the order of 1 mm in diameter.  As a 

result, the cone of incoming rays on the INM300 system encompasses a larger range 

of angles, which may allow for coupling via a larger selection of grating periodicities, 

and part of the more broadband enhancement shown in the lower image of Figure 33 

can be attributed to this effect. 

5.7.2 Duty Cycle and Height 

Earlier measurements placing the participating fluorophores primarily at the surface 

of the resist film along with the propensity for QDs to remain on the film after 

processing enabled a more detailed study of the effect of grating parameters on the 

fluorescence enhancement effect to be performed.  While grating periodicity plays an 

important role in determining the fluorescence enhancing properties of SPP-

supporting gratings, the role that grating geometry plays has yet to be investigated.  

This study has explored the role of grating film thickness and duty cycle in order to 

ascertain how these parameters could be used in optimizing the grating-enhanced 

fluorescence signal.   
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coupling was present.  Samples were first fabricated using a fixed periodicity and 

thickness with variations in the width of the lithographically defined strips to evaluate 

the effect of grating duty cycle.  It was anticipated that as the separation was 

increased the results should reflect a balance between the coupling capability of the 

grating and removal of the grating film, which reduces the amount of area 

contributing fluorescence.  A grating periodicity of 550 nm was selected for 

maximum observed fluorescence on the MZFLIII FOM.  However, equipment 

concerns mandated that the images be taken on the INM300 system, which is still 

capable of excitation and imaging for this grating periodicity.  Fluorescence 

measurements of the sample showed that the fluorescence enhancement has a clear 

dependence on the duty cycle of the grating.  AFM measurements were taken to 

determine the width of the grating ridges and confirm consistency in the film 

thickness of 133 nm.  At either extreme, the fluorescence signal should approach a 

uniform resist film for low values of X and an exposed gold film for large values, 

which is confirmed by the experimental measurements.  From the data we can see 

that there is an optimal point where the enhancement reaches a maximum value and 

subsequently tapers off to either side in a roughly linear fashion.  The optimal design 

point for grating duty cycle was found to be roughly 50% but the number of measured 

data points prevents us from making a statement of the precise value.  Nevertheless, 

this value correlates well with other measurements taken on prior samples fabricated 

during the development of the sample shown here.  Finally, samples were prepared 

with a grating periodicity of 550 nm and duty cycle of 50% and the resist layer 

thickness was modulated using plasma etching as described earlier.  Because of 
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variation in required electron beam dose for different resist thicknesses the samples 

contained a series of gratings with varying duty cycle and electron dose.  Images of 

the sample were then taken using the INM300 along with AFM imagery of the 

structures in order to locate gratings with parameters satisfying the desired criteria.   

 

Figure 36 Measurements of sample where duty cycle X has been 
varied with grating height and periodicity fixed.  (Top)  Fluorescence 
image of sample taken on INM300 illustrating a clear dependence of 
fluorescence on the grating duty cycle.  (Bottom)  Measured 
enhancement factor for grating regions relative to surface 
background. 

 
Observation of the samples illustrated a clear variation in background fluorescence 

from the resist film surrounding the grating regions.  This was most likely due simply 

to proximity effects from the presence of the metal film as described elsewhere 

[60,84].  We are primarily interested here in the behavior of fluorescence within the 

grating regions and observations demonstrated that emission from the areas of interest 

varied strongly as a function of film thickness.  This can be plainly observed from 
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Figure 37, where the grating regions are clearly recognizable for a film thickness of 

128 nm and appear very similar to the samples shown in previous examples.  For a 

film thickness of 51 nm, however, the grating regions do not appear distinct from the 

surface and exhibit emission that is approximately equal to or less than the 

surrounding film surface.  The fluorescence in regions where QDs reside on the 

surface of unpatterned PMMA was found to vary with the thickness of the underlying 

resist layer.  This type of variation is well-known and has been observed previously 

[60,84].  As a simple model, the behavior of the QDs here may be approximated as an 

excited dipole above a conducting surface.  We represent the emission behavior of 

such a system as a quadrupole, which consists of the dipole and its image charges, 

and combine this with an exponentially decaying drive field to fit our observed 

background data.  The corresponding fitting expression is given by: 

   2 2Bzy x Ax e C   [5.7.1] 

The resulting curve is shown in Figure 37 and fits well with the fluorescence values 

observed experimentally.  To separate the effect of the gratings from variations due to 

simple distance modulation effects enhancement values were calculated and 

normalized against the intensity from the local film surface.  Extraction of the grating 

enhancement values indicated that the fluorescence enhancement effect exhibits a 

feature similar to a threshold thickness at approximately 75 nm below which the 

grating regions perform similar to the surrounding film.  Above this thickness the 

enhancement increases in an exponential or super-exponential fashion and shows no 

sign of saturation for the measured thicknesses.  The nature of these interesting 

phenomena is not fully understood at this time and further investigation would be 
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needed in order to gain a better understanding of the observed effects. Based on 

observations from Figure 35, it is possible that this effect occurs when the grating 

thickness is reduced to point where it stops providing stronger coupling when 

compared the surrounding surface roughness.  Other possible explanations for this 

behavior are additional quenching effects and changes in guided modes supported 

within the PMMA layer.  It is also important to note here that the precise nature of the 

enhancement is difficult to obtain as the film thickness increases.  For increasingly 

thick films the interaction between the grating, SPPs on the surface and guided modes 

in the film are complex and complicate analysis of the results.  Nevertheless, the 

results presented here are sufficient to provide a preliminary basis for application and 

further exploration of the fluorescence behavior of quantum dots exposed to surface 

plasmons that are excited using the grating coupled scheme. 
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Figure 37 Measurements of grating sample where grating height Z 
has been varied with duty cycle and grating periodicity fixed at 
550nm.  (Top)  Fluorescence images of samples taken on INM300 
illustrating a clear dependence of fluorescence on the grating duty 
cycle at film thicknesses of 128 and 51 nm.  Variation in background 
fluorescence is clearly visible.  (Middle)  Background fluorescence 
intensity from unpatterned resist layer fitted to a simple quadrupole 
model driven by exponentially decaying field.  (Bottom)  Measured 
enhancement factor for grating regions relative to surface 
background. 
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6 Fluorescence Lifetime 

Investigation of how contributions from enhanced emission and absorption contribute 

to the fluorescence enhancement effect can help in developing a greater 

understanding of this behavior by providing further examinations of the underlying 

phenomena responsible for fluorescence enhancement observed in these experiments.  

Determining whether one of these processes is the dominant contributor to these 

enhancement effects is an important step, which will help indicate what types of 

changes can be expected for different emitters and sample constitutions.  In order to 

obtain a simple discrimination between these two effects samples of gratings with 

varying periodicity were observed using a Nikon microscope equipped with an 

Imperx IPX-2M30 CCD camera and an appropriate filter to allow imaging of 

fluorescence at 640nm.  Samples were placed onto a rotation stage and rotated 

azimuthally while directly illuminated by a DPSS laser operating at 532nm.  

Discrimination between enhanced emission and enhanced absorption can be obtained 

in this configuration by observing variations in the fluorescence intensity with respect 

to the orientation of the grating relative to incident excitation.  Enhanced emission 

behavior should remain consistent regardless of grating rotation while enhanced 

absorption, which is influenced by the coupling of incident light by the gratings, will 

vary strongly based on grating orientation.  Images of a QD coated grating with a 

550nm period and 50% duty cycle are shown in Figure 38 and illustrate the type of 

behavior observed for gratings excited in this configuration.   
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6.1 FDTD Simulation 

Prior to presenting the experimental lifetime measurements, FDTD simulations have 

been used to provide an idea of what type of behavior can be expected for emitters 

coupled to surface structures with an ideal pattern geometry.  The magnitude of 

modifications to the fluorescence lifetime is obtained by evaluating the power emitted 

by a dipole placed near the structure as described in Section 4.1.  It is expected that 

the results of the simulation will, most likely, not accurately describe the observed 

behavior since the technique is only able to consider a single dipole source located at 

a fixed location relative to the surface geometry, and with a clearly defined 

orientation.  In reality, the samples under consideration contain a random distribution 

of dipole orientations and geographical positions which can significantly alter the 

behavior of measured quantities.  In spite of these limitations, the development of 

these simulation results can be of use in determining what kind of impact the position 

and orientation of the dipole has on its lifetime.  It will also provide an illustration of 

how the physical parameters of the grating influence the decay dynamics of the 

emitters.  The effectiveness of these simulations in emulating the response of dipoles 

in close proximity to surfaces is demonstrated in Figure 39.  The plotted field 

intensities accurately represent the behavior of a dipole in free space (a) and over a 

dielectric half-space (b).  From (c) – (f) we can see clearly that the addition of a 

grating significantly modifies the response and depends on the specific dipole 

position.  The simulations also illustrate the lack of surface plasmons propagating on 

Cr compared to Au as described previously.   
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In order to observe the influence of physical parameters on the fluorescence lifetime a 

series of simulations were performed with the dipole placed above the center of the 

grating ridge.  For each set of simulations the orientation of the dipole was fixed to be 

perpendicular to the grating surface, in-plane along the grating ridge, or in-plane 

across the grating ridge to observe distinctions caused by the orientation of the dipole.  

The material configuration for the simulations was a substrate of index 1 or 1.5 with a 

50nm layer of gold onto which rectangular dielectric regions with an index of 1.5 are 

placed to represent the grating structure.  In all simulations the background index is 

taken to be air and fixed at 1.  The emission wavelength of the dipole is set at 641nm 

to correspond to the quantum dots used in the experiment with the dielectric constant 

of gold taken from [14].  In order to represent a single dipole placed within the 

structure rather than a series of coherent sources a finite number of ridges is 

considered and PML are used at the boundaries of the simulation region to attenuate 

any fields which leave the region of interest.  Before examining the behavior of 

emitters over a grating, a series of simulations were performed emulating a dipole 

centered above a single ridge with varying width and a height of 155nm.  These 

simulations provide an illustration of how response to the periodic modulation of the 

grating differs from a single structure and underscore the significance of using a 

grating rather than individual uncoupled ridges.  The results of these simulations are 

presented in Figure 40 and show that the lifetime exhibits an oscillatory behavior as 

the width of the ridge expands away from the dipole location.  This behavior can be 

understood as interactions between the emitter and fields which are reflected from the 

sides of the ridge.   
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Figure 40 Fluorescence lifetime modification for a dipole centered 
above a single square dielectric ridge with varying width with a 
50nm gold layer underneath and a glass substrate.  All values are 
normalized to a dipole in free space. 

 
For large widths the lifetime modification clearly depends on the dipole orientation 

and can be associated with each orientation coupling differently to the underlying 

metal layer and substrate.  It is clear from these simulations that the orientation of the 

dipole has a significant impact on how the fluorescence lifetime behaves.  Further 

simulations were then performed where the parameters of a grating were varied to 

observe their influence on emitter lifetime.  As a first test, simulations of gratings 

with a varying number of grating ridges were performed in order obtain convergence 

of the simulation results.  A 50% duty cycle grating with 550 nm periodicity was 
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simulated and the calculated lifetime modification plotted as a function of grating 

cycles.  PML boundary conditions were used at the sides of the simulation region and 

offset from the sides of the grating in order to avoid coupling of reflections back into 

the structure.  The resulting curves are plotted in Figure 41 and show that the change 

in fluorescence lifetime should converge for all orientations if over 20 cycles are 

included. 

 

Figure 41 Lifetime modification of fluorescent emitters centered 
above a 550nm periodicity grating on a 50nm gold film and glass 
substrate.  Convergence in the results is obtained for gratings which 
include more than 20 cycles of the grating within the simulation 
region.  All values are normalized to a dipole in free space. 

 
Based on this finding subsequent simulations were performed using a grating 

containing 21 cycles to ensure accuracy in the simulation results.  For the first series 

of simulations the behavior of the fluorescence lifetime with respect to vertical 

separation between the dipole and grating was examined.  In these simulations a 
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grating pitch of 1 micron was selected in order to demonstrate how surface 

corrugations perturb the dipole away from the coupling point around 500-600nm.  

Results were obtained with and without the presence of a glass substrate to see how 

the addition of glass underneath the metal film affected the simulation.   

 

Figure 42 Modification of dipole lifetime as a function of the dipole-
grating separation z for three orthogonal orientations on a 1 micron 
grating for a dipole situated above the center of the ridge.  Results 
for a structure with (solid) and without (dashed) the glass substrate 
are shown.  All values are normalized to a dipole in free space. 

 
It is clear from the simulation results that emitters placed in close proximity to this 

type of dielectric grating on a metal film exhibit behavior which is very different from 

a planar metal interface which was described previously in Figure 23.  This is 

expected since the grating structure provides a richer distribution of photonic modes 

for the emitter to interact with.  The clear difference between the behavior for a 

system with and without the glass substrate was not anticipated and suggests the 
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possibility that the gold layer could be thin enough to support modes which are 

coupled between the upper and lower interfaces.  This result is in contrast with the 

experimental measurements which indicated little variation between different 

thicknesses of gold.  In practice, the excitation of these coupled modes may be 

inhibited by surface roughness.   

 

Figure 43 Modification of dipole lifetime as a function of the dipole-
surface separation z for three orthogonal orientations with the dipole 
placed above the edge (solid) and center (dashed) of the grating 
ridge.  All values are normalized to a dipole in free space. 

 
An additional set of simulations was performed with the dipole above the center and 

edge of the grating ridge without the glass substrate underneath to provide an idea of 

how the lateral placement of the dipole affects these results.  Data from this 

simulation is shown in Figure 43 and demonstrates that for these two most extreme 

cases the behavior of the dipole is significantly altered depending on its positioning 
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across the grating ridge.  Having established that dipole orientation, position, and 

substrate material can all impact its lifetime, a series of simulations emulating the 

parameter sweeps in the experiment were performed.  The dipole placement was 

fixed above the center of the grating ridge to facilitate comparison.  The results of 

these simulations are shown in Figure 44 - 46 and show that the lifetime behavior 

depends strongly on the dipole orientation as well as the physical parameters of the 

grating geometry.  However, this effect is mitigated if an isotropic combination of 

different dipole orientation responses is considered rather than the individual 

orientations.  A response of this type would be relevant if the orientation of the 

emitter were to rotate and sample different directions before decaying such as in the 

results presented in  [60] or for a distribution of randomly oriented emitters scattered 

along the center of the ridge.  The result of applying such a condition to the 

simulation results is illustrated by a dotted black line in the figures.  These curves 

show that the strong variations in fluorescence lifetime observed for clearly defined 

emitter orientations is significantly reduced for an ensemble of randomly oriented 

sources.  As a result, it would appear that in order to observe strong couplings  

between dipoles and dielectric surface gratings some measure of control would need 

to be exercised over the dipole orientation. The results presented thus far have served 

to investigate the behavior of an emitter placed at either the center or edge of the 

grating ridge.  Unlike this simplified situation the samples used in the experiment are 

randomly distributed and oriented across the surface of the grating which makes them 

unlikely to conform to such a simplified model.   
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Figure 44 Lifetime modification of fluorescent emitters centered 
above a 50% duty cycle square dielectric grating as a function of 
grating periodicity.  All values are normalized to a dipole in free 
space. 

 
Figure 45 Lifetime modification of fluorescent emitters centered 
above a 550nm square dielectric grating as a function of grating gap 
width.  All values are normalized to a dipole in free space. 
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Figure 46 Lifetime modification of fluorescent emitters centered 
above a 550nm square dielectric grating as a function of grating 
height.  All values are normalized to a dipole in free space. 
 

In order to expand the simulations to better represent the experimental conditions, the 

effect that the lateral dipole position has on the lifetime behavior is an additional 

parameter to be considered.  Unfortunately, performing a complete series of 

simulations to simultaneously represent this parameter along with variations in the 

grating structure would be both time consuming and difficult to visualize.  Instead, a 

series of simulations using a fixed 50% duty cycle for the gratings were used to 

examine the effect of the lateral grating position for the periodicities used in the 

experiment presented in Section 5.7.  An example of the results from these 

simulations is shown in Figure 47 for a grating with periodicity of 550nm and a 50% 

duty cycle.   
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Figure 47 Lifetime modification of fluorescent emitters centered 
above a 550nm square dielectric grating with 50% duty cycle as a 
function lateral dipole separation from the center of the grating 
ridge.  All values are normalized to a dipole in free space. 

 
It is clear that depending on the dipole orientation the lateral placement of the emitter 

across the ridge can either significantly perturb its lifetime or have little effect as seen 

above for a dipole oriented parallel to the plane of the grating and across the ridge.  

Once again an isotropic combination of the different orientations has been calculated 

and represented on the graph as a dotted black line.  We can see from the figure that 

similar to the previous simulations an isotropic combination of the results reduces the 

variations in the emitter lifetime once again.  Finally, in order to obtain a reasonable 

estimate for the lifetime behavior of a dipole on the experimental samples the average 

lifetime is taken across the ridge in the lateral direction for each polarization and then 

the three resulting values are averaged with each other to account for the random 
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orientation and location of the individual sources.  The results, which are shown in 

Figure 48, show that the overall lifetime modification as a function of periodicity 

which is measured from the experimental samples may not vary as significantly as 

one would presume from the previous simulations.  Observation of the drastic 

variations predicted by the earlier simulations would require control of both dipole 

orientation and placement on the surface. 

 

Figure 48 Average lifetime modification for a fluorescent emitter 
placed above gratings of varying periodicity.  The isotropic 
combination of the lifetime modification for the three dipole 
orientations is given by the black dashed line.  Values for dipoles on 
uniform PMMA film are indicated by the dotted lines.  All values are 
normalized to a dipole in free space. 
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6.2 Time Correlated Photon Measurements 

6.2.1 Measurement System and Fitting Procedure 

Measurements of the fluorescence lifetime for quantum dots deposited on the grating 

structures presented in Chapter 5 were made using a time correlated single photon 

counting (TCSPC) system.  In this technique, the sample is exposed to short pulses 

from the exciting source which are synchronized to single photon counting hardware 

which registers the temporal location of detected photons relative to the pulse timing.  

Ideally, the pulse repetition rate is selected such that the spacing between pulses is 

much longer than one lifetime allowing the system to fully relax between cycles.   

 

Figure 49 Schematic of the time correlated single photon counting 
system used in these measurements. 

 
The TCSPC system used here to determine fluorescence lifetime belongs to the 

Nanophotonics and Quantum Information Research Group here at University of 

Maryland and we thank Professor Edo Waks for allowing us access to make these 

measurements.  Excitation in this system is provided by frequency doubling of 750nm 

pulses from a mode locked Ti:Sapphire laser running at 76MHz resulting in a pulse 

train of 3-4ps pulses at 375nm.  In addition to this signal the pump signal which is 

provided by a CW Verdi system at 532nm is available for spectral measurements and 

identification of fluorescence on the sample.  These outputs are delivered to the 
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sample through an oil immersion objective with 1.3 NA and the resulting 

fluorescence signal is sent back through a dichroic element to the detection stage.  A 

small amount of the return signal is split off into a CCD camera to allow focusing of 

the objective onto the sample surface and the remainder is passed to either an Acton 

2758 Spectrometer or a single photon counting APD.  In order to generate the decay 

curves the signal from the APD is connected to a Picoharp 300 TCSPC counter unit 

which is then connected to a computer to display the results.  It is important to note 

here that the excitation used for TCSPC measurements is at 375nm rather than the 

532nm excitation used in previous experiments.  While excitation of surface 

plasmons is possible at this wavelength the quality of such surface modes is poor due 

to high absorption and it is highly likely that most plasmon coupling in these 

measurements should come from coupling between excited QDs and the metal 

interface.  Measurements of the dark count from the system demonstrate that the 

background level from the detection stage was insignificant with a range of less than 

50 counts for a 400 second measurement.  Due to the high repetition rate of the 

source used in this system successive pulses arrive before the emitters are able to full 

relax.  As a consequence, the sources are not able to fully return to their base level 

and the observed signal consists of multiple pulses arriving consecutively within the 

observation window.  In order to extract both the time constants and corresponding 

contribution amplitudes from these curves the individual pulse responses were time 

shifted by integer pulse periods and overlapped to produce a single decay curve 

which was then used to perform the fitting.  Since each pulse response represents an 

identical emission probability distribution the use of such a measure is possible 
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without perturbing the results from the fitting.  Due to the overlapping decay curves it 

is not possible to obtain the values of interest directly from a simple biexponential fit.  

In order to remedy this problem it is necessary to consider the response from an 

infinite series of exponential decay curves with the same time constant repeating at 

intervals of T and beginning at time t → -∞.  Each of these pulses can be described by 

the form 

  
( )t iT

if t Ae 
 

  [6.2.1] 

with the curve at t = 0 equal to 

   t
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The total signal observed in the interval Tt 0 consists of the signal produced by 

the pulse plus the effects of all preceding pulses.  The overall signal observed within 

the time interval is 

  
 

1 1
1

1

t
t iTt t iT

T
i i

AeF t Ae Ae Ae e
e


   




   



 

 

 
     

 
   [6.2.3] 

It is clear that the decay time constant remains unperturbed by the presence of the 

additional pulses.  The effect of pulse overlap is an increase in the amplitude which 

varies with the pulse repetition interval.  For cases where a level of background 

counts is present this should be determined independently and the resulting decay 

response fitted to: 

   t
F t A e B


   [6.2.4] 

The constant B should be fixed at the measured background value.  For the case of 

quantum dots the use of a single decay time constant was insufficient to provide a 
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good fit to the measured data and so a biexponential fit was applied as previously 

described in Section 3.1.   

6.2.2 Lifetimes on Bare Glass 

Before moving on to measurements of experimental samples the lifetime behavior of 

samples exposed to 1µW and 15µW were compared to ensure that power levels were 

sufficiently low to prevent the onset of Auger recombination effects in the sample.  

Fitting to the resulting curves resulted in an extracted lifetime of 2.40s and 2.32ns for 

the short lifetime component and 13.30ns and 12.36ns for the long lifetime.  Errors in 

the fitting parameters are roughly 0.06-0.07ns for the short lifetime component and 

0.25-0.4ns for the longer component.   

 

Figure 50 Fluorescence decay curves for quantum dots on bare glass 
exposed to 1µW and 15µW incident power at 375nm along with 
biexponential fits to the resulting data. 
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Visual examination of the curves on a linear scale and log scale give no indication of 

the rapid initial descent commonly associated with Auger recombination [96] in 

quantum dots is occurring at the higher power.  Based on this result subsequent 

measurements were made using 1 µW of power without concern of Auger 

recombination in the samples. 

6.2.3 Variation On SiO2 Layers 

Prior to measuring the behavior of quantum dots on and around the grating structures 

a series of samples were fabricated with various thicknesses of SiO2 deposited onto a 

50nm gold layer and thin glass cover slip substrate.  The purpose of these samples 

was to provide confirmation that the behavior of quantum dot lifetimes in such a 

system is similar to that previously described for fluorescent dyes.    Unlike the 

grating samples, introduction of quantum dots onto these substrates was performed by 

dropcasting of dots in solution onto the sample rather than spincasting due to lack of 

adhesion.  The resulting inhomogeneity in quantum dot dispersion prevents 

meaningful examination of the amplitude coefficients but lifetime behavior should 

remain the same provided that regions of strong aggregation are avoided.  The results, 

shown in Figure 51, show a behavior similar to that depicted in Figure 21 and 23 and 

confirm that these nanoparticles exhibit behavior similar to the simulations and 

comparable fluorescent dyes.  These measurements allow further studies of quantum 

dots on PMMA films to be correlated directly to the simulation results.   
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Figure 51 Fluorescence lifetime variations of quantum dots on 
varying thicknesses of SiO2 deposited onto gold coated glass slides 

 
6.2.4 Quantum Dots on Dielectric Gratings over Gold Films 

6.2.4.1 Fluorescence Lifetime Measurements 

Lifetime measurements of grating patterned substrates identical to those presented in 

Chapter 5 were performed in order to examine the effect that the presence of the 

gratings had on emitter behavior.  When examining the samples for enhanced 

emission effects, the presence or lack of correlation between lifetime shifts and 

emission intensity is of primary interest.  Additionally, spectral measurements of the 

sample can be used to search for spectrally resolved coupling between quantum dots 

and the underlying structures.  If strong coupling is present in a resonant system 

wavelength selective coupling results in the appearance of localized peaks within the 

emission spectrum [97].  To begin the analysis, a series of lifetime measurements 
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were taken using gratings of different periodicity and duty cycle with the same 

spacing as those in Chapter 5.  The series of decay curves were fitted and the 

resulting lifetime components plotted along with the contribution amplitudes for each 

component.  The results of these observations demonstrate clearly that the short 

lifetime contribution is the dominant factor in emission from these quantum dots as 

expected since it is correlated to emission from the “Bright” singlet exciton state 

discussed earlier.  It is also apparent that the behavior of the component amplitudes is 

consistent for both lifetimes and the values vary in the same fashion as the grating 

parameters are modulated.  This can be interpreted as an indication of absorption 

enhancement since both components are driven by the same structure independent 

absorption profile.  It is unclear at this time how the value of the longer lifetime, 

which is associated with QD surface interactions, should rely on grating modulation 

and further discussion of those results will be deferred for further study.  

Measurements of the fluorescence lifetime on gratings of varying periodicity are 

plotted in Figure 52 and show that the experimental measurements deviate from the 

simulated behavior for results measured at a periodicity of 300nm, exhibiting a higher 

lifetime than the curves predict.  For values above 300nm both simulations and 

experiment exhibit a peak in the fluorescence lifetime at 500nm followed by a 

reduction and flattening of the lifetime.  Correspondence between the experiment and 

simulation can be determined by dividing the measured lifetimes by the predicted 

lifetime modifications.   
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Figure 52 Lifetime component amplitude (top) and lifetime variation 
(bottom) for quantum dots above gratings of varying periodicity.    
Values for quantum dots on uniform PMMA film are denoted by the 
dotted lines. 
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In order for the simulation to accurately describe emitter response this should produce 

a constant lifetime for the unperturbed source.  A plot of this result in Figure 53 

shows that if error in the fitting coefficients is considered the values produce a nearly 

constant value.  This suggests positive agreement between the simulated and observed 

behavior. 

 

Figure 53 Values for the unperturbed fluorescence lifetime 
calculated by division of the measured values by the expected 
lifetime modification predicted by the simulation results.  Upper and 
lower bounds are shown evaluated by considering the error in the 
fitted coefficients from the least squares fit. 

 
Values obtained for quantum dots with varying duty cycle exhibit a lifetime variation 

which appears to oscillate as the gap width increases in approximately 150nm 

intervals.  Such behavior is not unexpected and is likely an extension of oscillations 

observed in previous simulations for a single ridge of varying width.  Once again, the 

component amplitudes vary together reinforcing support for the significant 

contributions from enhanced absorption effects.   
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Figure 54 Lifetime component amplitude (top) and lifetime variation 
(bottom) for quantum dots above gratings of gap width.  Values for 
quantum dots on uniform PMMA film are denoted by the dotted 
lines. 
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As the system is operating at a wavelength with a low probability of surface plasmon 

excitation, the increase in fluorescence intensity should be attributed to field 

enhancements from the surface grating.  This conclusion is further supported by the 

lack of correlation between variations in lifetime and the measured fluorescence 

intensity.  If significant emission enhancement was present changes in the lifetime 

should couple directly with increases in fluorescence signal.  Consideration of the 

lifetimes and corresponding component amplitudes does not appear to illustrate a 

correlation between variations in lifetime and changes in amplitude.  If long and short 

lifetime values for both measurements are considered simultaneously, no consistent 

variation in the lifetime can be coupled with the amplitudes to explain the increase in 

fluorescence intensity.  Based on these results there is no evidence that emission 

enhancement plays a significant role in this fluorescence enhancement behavior.  The 

enhancement mechanism in these structures can then be attributed primarily to 

enhanced absorption originating from plasmon excitation and the grating fields.   

6.2.4.2 Emission Spectra 

As a final verification of these conclusions spectral measurements of quantum dot 

emission were obtained using the spectrometer coupled to the TCSPC system.  For 

these measurements the 532nm CW pump signal was used to excite the samples 

instead of the pulsed source which allowed for surface plasmon excitation as well as 

coupling between the emitters and interface.  The integration time of the spectrometer 

was fixed at 10s with a spectral range from 600-700nm for quantitative comparison.   
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Figure 55 Emission spectrum of quantum dots deposited onto 
PMMA gratings over gold and excited using 532nm CW 
illumination.  Raw spectra with varying grating periodicity (a) and 
duty cycle (c) are shown along with normalized versions (b) and (d). 

 
Spectra obtained in these measurements are shown in Figure 55 for both raw data and 

peak normalized values.  It is clear from the raw curves that the gratings have a 

significant impact on the amplitude of the signal collected by the system.  In 

particular, it appears that a sizeable increase in fluorescence is obtained regardless of 

the grating periodicity present on the surface for gratings with a 50% duty cycle.  

Observations for 550nm gratings of varying duty cycle show that the duty cycle has a 

more significant impact on the fluorescence for a given periodicity.  This supports the 

results from previous images and is most likely simply a manifestation of the 

transition from a flat dielectric into a grating and then to completely bare gold region.  



 

 112 
 

Perhaps the most interesting feature of the spectral measurements is the presence of a 

clearly defined spectral shift from a peak value of 641nm, which is the 

manufacturer’s specified wavelength, to approximately 651nm which was not 

apparent from the previous measurement methodology.  Such peak shifting is known 

to occur for cases where off-peak emission is enhanced while emission near the 

normal peak is simultaneously quenched leading to an apparent shift in the overall 

emission spectrum.  An example is presented in [97] where surface enhanced 

fluorescence from localized surface plasmon supporting metallic nanostructures has 

been shown to produce significantly modified spectral emission from fluorescent 

dyes.  Interestingly the amplitude of the spectral peak shift does not appear to be 

strongly dependent on either the grating period or duty cycle with the exception of 

some smaller shifting with duty cycle which is not understood at this time.  This 

behavior suggests that the shift is related solely to the presence of a metal-dielectric 

layer rather than the gratings themselves.  The lack of localized peaks or additional 

features in the spectral curves besides shifting of the spectral peak indicates that the 

QDs are not experiencing coupling to any sharply defined resonant interactions of 

quantum dots to the gratings.  In order to further examine the spectral behavior of the 

quantum dots additional analysis of the measured spectra was performed in order to 

extract the peak enhancement as well as the spectral peak position and peak width.  

Values extracted from the data for gratings of varying periodicity are shown in Figure 

56.  Unfortunately, data extracted from observations pertaining to enhancement with 

duty cycle variation produced inconsistent results and further examination is needed 

to verify the observed behavior.   
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Figure 56 (a) Enhancement of spectral peak intensity for gratings 
relative to QDs on bare glass.  (b) Peak position as a function of 
grating periodicity.  (c) FWHM of spectral peaks as a function of 
grating periodicity. 

 
Graphical examination of the peak enhancement shown in Figure 56a shows that 

values extracted from the spectra agree well with FOM measurements performed 

earlier and demonstrates a peak enhancement of 10.68 at a grating periodicity of 

550nm.  Interestingly, the enhancement for many gratings further from the peak 

remains significant.  It is possible that this effect is related to the high NA of the 

microscope objective which can broaden the coupling range similar to comparisons 

between the MZFLIII and INM300.  This is supported by the wide enhancement peak 

around 550nm however further observations would be required to fully determine the 

effect and are deferred for later investigation.  The extracted peak position is plotted 
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in Figure 56b and shows that the peak exhibits an initial shift when going from glass 

to the grating but remains essentially constant across all of the grating periodicities.  

Fitting of the spectral peaks using Gaussian and Lorentzian lineshapes showed that 

the emission for quantum dots on bare glass corresponded more closely with a 

Gaussian while the shifted peaks were more Lorentzian in nature.  This behavior is 

not unexpected and it has been demonstrated in other systems that modification of the 

emitter behavior can lead to significant alteration of the shape of the emission 

spectrum [97].  From the extracted data it appears that there may be some small 

variation in the peak width.  However, as this variation is less than 1nm it may be 

considered to be effectively constant.  Based on the results of these measurements 

along with observations of the fluorescence lifetime it is evident that when comparing 

quantum dots on bare glass or unpatterned PMMA and the dielectric gratings some 

degree of emission enhancement is present and results in modification of the emission 

lifetime along with shifting of the spectral peak.  Once on the grating, there is little 

clear evidence that significant modification of the emission lifetime or spectral 

response can be strongly correlated to the observed variations in emission intensity.  

These results support the conclusion that enhanced emission effects do not provide 

significant contributions to the emission of quantum dots on these samples.  As a 

result, we conclude that the fluorescence enhancement observed on these samples can 

be attributed to enhanced absorption from surface plasmons excited by the grating 

geometry along with field concentrations from the dielectric gratings. 
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7 Conclusions 

The results and analysis in this study have demonstrated that enhancement of 

fluorescence from QDs can be achieved by using grating coupled SPPs excited at the 

surface of a gold film.  Experimental investigations have shown that dispersal of QDs 

may be performed by deposition of a composite particle-containing film or through 

direct deposition of QDs onto the film surface and provide a comparison of 

performance between the two techniques.  Observations have also been made 

showing that successful adhesion of particles to the grating surface are dependent on 

the timing of their deposition, although this problem can be alleviated through 

chemical modification of the surface.  Through the use of SEM and AFM imagery of 

different regions on the surface, it has been determined that QDs deposited prior to 

electron beam patterning remain on the surface after exposure and development of 

structures.  By taking advantage of this finding, a study of the relation between the 

observed enhanced fluorescence signal and the physical parameters of the grating 

structure was made possible.  The results demonstrated that an optimal duty cycle for 

maximum emission was observed as well as the presence of an apparent threshold in 

film thickness for the enhancement effect to occur.  Finally, further investigation of 

quantum dot behavior using time correlated single photon counting techniques, 

supported by FDTD simulations, along with spectral measurements have been used to 

attribute the fundamental origins of the fluorescence increase to enhanced absorption 

from strong fields near the interface.  Based on these findings the fundamental 

properties of fluorescence enhancement of quantum dots over dielectric gratings on 

gold films have been presented and the conditions under which such enhancement can 
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be practically obtained determined.  In spite of all this much work remains to be done 

in the field of fluorescence on surface plasmon supporting structures.  The work 

presented here represents an in-depth study of a single grating geometry and surface 

structure configuration which is but one of several already considered in the 

literature.  Aside from fundamental studies of the enhancement phenomena studies 

regarding details for the application of this technique to practical systems such as 

biodetection or fluorescence imaging currently remain unexplored.  Additional 

results, not presented here, have also shown that quantum dots deposited onto similar 

surfaces patterned with various structures can function as probes for examining 

surface plasmon coupling and propagation behavior which could provide an 

alternative to near field scanning.  The use of a material system containing PMMA 

and gold, both substrates with well-known surface chemistry, means that these 

samples could be suitable for direct integration into fluorescence imaging systems for 

detection of target analytes.   
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