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Department of Mathematics

This dissertation is divided into two parts. In the first part we consider the

general multivariate multiple sample semiparametric density ratio model. In this

model one distribution serves as a reference or baseline, and all other distributions

are weighted tilts of the reference. The weights are considered known up to a pa-

rameter. All the parameters in the model, as well as the reference distribution, are

estimated from the combined data from all samples. A kernel-based density estima-

tor can be constructed based on the semiparametric model. In this dissertation we

discuss the asymptotic theory and convergence properties for the semiparametric

kernel density estimator. The estimator is shown to be not only consistent, but also

more efficient than the general kernel density estimator. Several ways for selecting

the bandwidth are also discussed. This opens the door to regression analysis with

random covariates from a semiparametric perspective where information is combined

from multiple multivariate sources. Accordingly, each multivariate distribution and

a corresponding conditional expectation (or regression) of interest is then estimated

from the combined data from all sources. Graphical and quantitative diagnostic



tools are suggested to assess model validity. The method is applied to real and sim-

ulated data. Comparisons are made with multiple regression, generalized additive

models (GAM) and nonparametric kernel regression.

In the second part we study mortality rate prediction. The National Center

for Health Statistics (NCHS) uses observed mortality data to publish race-gender

specific life tables for individual states decennially. At ages over 85 years, the re-

liability of death rates based on these data is compromised to some extent by age

misreporting. The eight-parameter Heligman-Pollard parametric model is then used

to smooth the data and obtain estimates/extrapolation of mortality rates for ad-

vanced ages. In States with small sub-populations the observed mortality rates are

often zero, particularly among young ages. The presence of zero death rates makes

the fitting of the Heligman-Pollard model difficult and at times outright impossible.

In addition, since death rates are reported on a log scale, zero mortality rates are

problematic. To overcome observed zero death rates, appropriate probability mod-

els are used. Using these models, observed zero mortality rates are replaced by the

corresponding expected values. This enables using logarithmic transformations, and

the fitting of the Heligman-Pollard model to produce mortality estimates for ages

0− 130 years.
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Chapter 1

Introduction

This dissertation is divided into two parts. The first part evolves around the

semiparametric density ratio model. In particular we extend the existing asymptotic

results for the semiparametric kernel density estimator to the general multivariate

multiple sample case. We propose a new estimator for E[y|x] based on the semi-

parametric model, study its asymptotic properties and propose goodness of fit tests

to check the validity of the model. Simulation results and real data applications are

also considered. More details for the semiparametric density ratio models are given

in Section 1.1. In the second part of the dissertation we are interested in States

with small subpopulations where the observed mortality rates are often zero. The

zero death rates pose difficulties in the construction of life tables which has resulted

in the non publication of some life tables for one fifth of the States. We present a

methodology that overcomes these difficulties. An introduction to this problem is

given in Section 1.2. Section 1.3 gives an outline of this dissertation.

1.1 Semiparametric density ratio models

Assume that data from multiple related sources are available. Examples of

such data are case-control data, numerous related time series, weather measurements

from different instruments, data from factorial designs and data from many sensors
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in a surveillance system. A question of interest is how to combine information from

multiple sources in such a way so as to improve distribution inference and hypothesis

testing. In this dissertation we focus on a system of distributions, representing

multiple data sources, of which one serves as a reference distribution and the rest

are distortions or deviations from the reference. We refer to this model as the

semiparametric density ratio model. See equation (2.1) for a mathematical definition

of the model. The model has the advantage it can accommodate both continuous

and discrete distributions with minimal assumptions. It is semiparametric because

it involves both finite parameters and infinite dimensional parameters. Different

forms of model (2.1) have been studied and applied by many authors including

Prentice and Pyke [57] (case-control studies), Qin and Zhang [60] (logistic model

validation), Qin [61] (case-control studies), Gilbert et al [21] (AIDS vaccine trials),

Zhang [80] (goodness of fit), Fokianos et al [18] (analysis of variance), Fokianos [19],

Cheng and Chu [11], Qin and Zhang [62] (kernel density estimation), Phue et al

[56] (microarrays evaluation), Kedem and Wen [35] (cluster detection), Kedem et

al [36] (mortality rate forecasting). The picture which emerges from all this and

related work is that, under the density ratio model, by combining all the samples

we get both better estimates and more powerful tests. The increase in efficiency

has been studied rigorously in Gilbert [22] and Fokianos [19]. We are particularly

interested in how fusion of information from multiple sources can be used to create

a more efficient kernel density estimator and how we can approach some well known

statistical procedures (such as regression and analysis of variance) in a novel way

bypassing linearity and the normal assumption.
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1.2 The problem of zero death rates in U.S. states with small sub-

populations

The National Center for Health Statistics (NCHS) publishes sex- and race-

specific state decennial life tables for all U.S. states and the District of Columbia

(DC) based on the Census of Population and mortality data since 1900. However,

in one fifth of the states, life tables are not published due to their small population

size [12]. Small populations raise concerns regarding reliability of their mortality

rate estimates and fidelity of mortality patterns after smoothing.

The age-specific mortality rate is a key variable in life tables. As a biological

feature of human populations, it is expected to have a smooth pattern as a function

of age. Hence, based on observed mortality data, age-specific mortality rates are

estimated and smoothed in the process of generating life tables. For populations

in large states, the estimation/smoothing procedure based on current data is quite

reliable because of sufficient data at each age and because the observed mortalities

have relatively clear patterns. Usually a non-parametric smoothing procedure is

sufficient for providing reliable mortality estimates [6]. However, in small states,

observed mortality rates are often interrupted by gaps of zero death observations

for some ages. In these cases, non-parametric smoothing is not sufficient in providing

smoothed mortality curves. In contrast, by using parametric models the problem

can be overcome [13].

Parametric models in mortality estimation have been studied extensively by

Hartmann [25], Lambert [41], McCullagh and Nelder [45], Rosenwaike and Hill [66]
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and Siller [68]. Almost all reported parametric models use data on a logarithmic

scale. This leads to a difficulty with observations of zero deaths in some ages. Zero

death rates cannot be ignored. In one pilot study, the Heligman-Pollard model was

fitted to data in states with small populations, resulting in overestimated mortalities

because the zeros were treated as missing values [76]. A sensible way to overcome

the “zeros” problem is to estimate their corresponding (extremely low) death rates

before model fitting. This can be done by appropriate probability models which

take zero observations into account.

A parametric model is also necessary for extrapolating mortality rates of old

age populations for which the reported ages are deemed not accurate [12]. For ages

over 85, it has been demonstrated that the reliability of death rate is compromised to

some extent by age misreporting. This is increasingly problematic as age increases

[12], [17], [58], [66]. For ages between 85 and 100, data from the Medicare program

were used to supplement vital statistics and census data in NCHS Life Tables’

estimation [5].

The reliability of the Medicare data deteriorates for ages over 100 [38],[39]. In

these cases parametric models can be used to estimate mortality rates in advanced

ages. There are several benefits that arise from such models, such as biological

interpretation of human mortality, comparison of mortality rates across populations,

and continuous interpolation of death rates between ages. In addition, the models

assist in the study and forecasting of population mortality trends. For examples

of these models see [24], [30], [43], [48], [68] and [71]. A pilot study [75], [76]

found that the eight-parameter Heligman-Pollard model is a practical model which,

4



overall, captures well the age death patterns in US race-gender specific populations.

However, in states with small population size, often convergence of the estimation

algorithm is not achieved. A major problem in these states is insufficient mortality

data; frequently the data are quite variable and do not track the patterns observed in

states with large population sizes. Moreover, the occurrence of zero deaths, common

for young ages, makes the problem even more complicated since the logarithmic

transformation of zero deaths is problematic. The nature of the problem makes it

necessary to obtain accurate estimated death numbers or death rates by resorting

to sophisticated statistical methods prior to fitting parametric models to the data.

In states with small populations, observed zero deaths result from extremely

low mortality rates at some ages and short data collection periods (e.g. 1−3 years).

But as a biological feature of the human population, age specific death rates are

in general continuous and non zero, without interruptions of zero death rates. It

is sensible to think that if the data collection time is extended, at least one death

will always be observed. Therefore, using data from an extended time period could

improve the estimation of death rates by considering methods where time variations

are taken into consideration. NCHS has well documented mortality data for over 30

years, which permits an application of the methodology proposed in this dissertation.

1.3 Outline of the thesis

This dissertation is organized as follows. Chapters 2 − 5 are devoted to the

semiparametric density ratio model. In particular, in Chapter 2 we define the gen-
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eral multidimensional semiparametric density ratio model, review the procedure for

estimating the parameters of the model, and discuss the asymptotic behavior of

the estimators. In Chapter 3 we define the combined (from many samples) semi-

parametric kernel density estimator and extend the work of Fokianos [19], Cheng

and Chu [11], and Qin and Zhang [62] for the general multivariate multiple sample

case. Chapter 3 contains the main mathematical results of this dissertation. In

Chapter 4 we discuss how the semiparametric model can be used in regression with

random covariates and analysis of variance problems. We propose a new way to

estimate E[y|x], as well as various measures of goodness of fit to check the validity

of the model. The new estimator may be viewed as a semiparametric extension of

the Nadaraya-Watson nonparametric estimator. Chapter 4 ends with a simulation

study. In Chapter 5 we apply the results presented in Chapters 3 and 4 to Testicu-

lar Germ Cell Tumor (TGCT) data. Chapter 6 discusses the problem of zero death

rates in States with small subpopulations.
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Chapter 2

Introduction to semiparametric density ratio models

In this Chapter we review some basic results for the general semiparametric

density ratio model. In Section 2.1 we give the formal definition for the model and

some examples of distributions that follow this particular model. In Sections 2.2-2.3

we describe the inference procedure and the asymptotic properties of the estimators.

For more details on the methodology see for example [18], [19] and [42].

2.1 Introduction

Suppose we have m = q + 1 independent data sets or random samples of

p-dimensional vectors x = xp×1 = (x1, x2, . . . , xp)
′. Let gi(x1, x2, . . . , xp) be the

probability function corresponding to the ith sample. Assume that the ith sample

size is ni and n =
∑m

i=1 ni is the total sample size. Thus, for i = 1, . . . , q,m, j =

1, . . . , ni, we have that

xij = (xij1, xij2, . . . , xijp) ∼ gi(x1, . . . , xp)

and

xi1, xi2, . . . , xini

iid∼ gi

7



where xij,xij′ are independent for j ̸= j′ and xij,xi′k are independent for i ̸= i′

and all j and k. We choose xmj as the reference sample. Then g ≡ gm(x) ≡

gm(x1, . . . , xp) is called the reference or baseline probability density function (pdf).

We assume that gi(x), i = 1, . . . , q satisfy the density ratio model :

gi(x)

gm(x)
= w(x,θi) (2.1)

or equivalently

gi(x) = w(x,θi)gm(x) (2.2)

where gi(x), gm(x) are not specified, w is a known positive continuous function, and

θi is an unknown vector of parameters with finite dimension equal to d. Rao [63] and

Patil and Rao [55] refer to the gi as weighted distributions. This construction has the

advantage it can accommodate both continuous and discrete distributions, whereas

at the same time it does not require normality or even symmetry of continuous

distributions. Model (2.1) involves both finite dimensional parameters (θ’s) and

infinite dimensional parameters in the form of probability density gm, and hence a

semiparametric approach is appropriate.

Remark 2.1. Model (2.1) is identifiable if and only if for all θ, θ̃ with θ ̸= θ̃,

there is an i ∈ {1, . . . , q} such that w(x,θi) and w(x, θ̃i) are linearly independent

as functions of x (for more details see [21]). For the remainder of this dissertation

we will assume there are no identifiability issues.

Example 2.1. K-Parameter exponential families. Consider the general k-parameter

8



exponential family

g(x,θ) = d(θ)S(x) exp

{
k∑

i=1

ci(θ)Ti(x)

}

where θ = (θ1, ..., θk). For simplicity, consider only two distinct values of θ. Then,

with α = log[d(θ1)/d(θ2)], β = (c1(θ1) − c1(θ2), ..., ck(θ1) − ck(θ2))
′, and h(x) =

(T1(x), ..., Tk(x))
′, we obtain the ratio

g1(x)

g2(x)
≡ g(x,θ1)

g(x,θ2)
= exp{α+ β′h(x)} (2.3)

or

g1(x) = exp{α+ β′h(x)}g2(x). (2.4)

In the normal case with mean µ and variance σ2, θ = (µ, σ2), we have

g1(x) = exp{α1 + β1x+ γ1x
2}g2(x)

where h(x) = (x, x2)′ and

α1 = ln

(
σm

σ1

)
+

µ2
m

2σ2
m

− µ2
1

2σ2
1

, β1 =
µ1σ

2
m − µmσ

2
1

σ2
1σ

2
m

, γ1 =
σ2
1 − σ2

m

2σ2
1σ

2
m

In the gamma case with shape parameter r and scale parameter λ, θ = (r, λ),

α = log
λr1
1 Γ(r2)

λr2
2 Γ(r1)

, β = (λ2 − λ1, r1 − r2)
′ , h(x) = (x, log x)′

9



As for the Rayleigh distribution with scalar parameter θ, (2.4) holds with

α = log
θ22
θ21
, β =

1

2θ22
− 1

2θ21
, h(x) = x2.

Example 2.2. Logistic regression. Prentice and Pyke [57] studied logistic regression

models in case-control studies. Let D = i denote the development of the ith disease

during a defined accession period, i = 1, . . . , q, and let D = m indicate disease-free

state at the end of the accession period. The probabilities πi = P (D = i) satisfy∑m
i=1 πi = 1. Let P (D = i | x) denote the conditional probability that an individual

with covariate vector x has disease D = i, where x ∼ f(x). In a prospective study,

if x is chosen in advance, we would sample directly from P (D = i | x), whereas in

case-control studies we sample directly from gi(x) = P (x | D = i), i = 1, . . . , q,m.

In case-control data we often assume that P (D | x) follows a logistic regression

model:

P (D = i|x) = exp(α∗
i + β′

ix)

1 +
∑q

i=1 exp(α
∗
i + β′

ix)
, i = 1, ..., q,m (2.5)

where α∗
m = 0 and βm = 0 for (2.5) to be well defined. Then, from Bayes Theorem,

gi(x)

gm(x)
= exp(αi + β′

ix), i = 1, ..., q (2.6)

where αi = α∗
i + log(πm/πi).

10



2.2 Inference

Let G(x) ≡ Gm(x) denote the reference cdf. The problem is to estimate gi and

θi from the entire combined data, and not just from the corresponding samples xij

and xmj. The method of constrained empirical likelihood estimates pij = dG(xij) =

dGm(xij) ([19], [37], [52], [59], [60], [72], [73]). The weight functions w(xij,θi) are

considered known up to a parameter. The empirical likelihood based on the pooled

data xij, i = 1, . . . ,m, j = 1, . . . , ni, is:

L(θ, Gm) =

[
n1∏
j=1

p1jw(x1j,θ1)

][
n2∏
j=1

p1jw(x2j,θ2)

]
· · ·

[
nm∏
j=1

pmj

]

=

[
m∏
i=1

ni∏
j=1

pij

][
q∏

i=1

ni∏
j=1

w(xij,θi)

]
. (2.7)

Let θ = (θ′
1, . . . ,θ

′
q)

′, a vector of dimension of qd. The log-likelihood is given by:

l = logL =
m∑
i=1

ni∑
j=1

log(pij) +

q∑
i=1

ni∑
j=1

log(w(xij,θi)) (2.8)

and is subject to the constraints:

pij ≥ 0,
m∑
i=1

ni∑
j=1

pij = 1,
m∑
i=1

ni∑
j=1

pijw(xij,θk) = 1 for k = 1, . . . , q. (2.9)

Remark 2.2. An equivalent form for the constraint
∑m

i=1

∑ni

j=1 pijw(xij,θk) = 1 is∑m
i=1

∑ni

j=1 pij(w(xij,θk)− 1) = 0

In order to find estimators for pij and θi we follow a two step procedure:

First we express pij as a function of θi, where the θi are treated as fixed. Then

11



we substitute the pij’s back in the log-likelihood to produce a function of the θi

only. For the first step it suffices to maximize
∑m

i=1

∑ni

j=1 log(pij) subject to all the

constraints. The Lagrangian up to a constant is:

Φ(pij,θ) =
m∑
i=1

ni∑
j=1

log(pij)+λ0

(
m∑
i=1

ni∑
j=1

pij − 1

)
−λ1

(
m∑
i=1

ni∑
j=1

pij(w(xij,θ1)− 1)

)

− · · · − λq

(
m∑
i=1

ni∑
j=1

pij(w(xij,θq)− 1)

)
.

If we differentiate the Lagrangian with respect to pij and set the derivative equal to

0:

∂Φ(pij,θ)

∂pij
= 0

⇒ 1

pij
+ λ0 − λ1(w(xij,θ1)− 1)− · · · − λq(w(xij,θq)− 1) = 0

⇒ 1 + λ0pij − λ1pij(w(xij,θ1)− 1)− · · · − λqpij(w(xij,θq)− 1) = 0 (2.10)

⇒
m∑
i=1

ni∑
j=1

(1 + λ0pij − λ1pij(w(xij,θ1)− 1)− · · · − λqpij(w(xij,θq)− 1)) = 0

⇒ n+ λ0 = 0 ⇒ λ0 = −n

To express pij as a function of θi substitute λ0 = −n in (2.10):

1− npij − λ1pij(w(xij,θ1)− 1)− · · · − λqpij(w(xij,θq)− 1) = 0

⇒ pij =
1

n+ λ1(w(xij,θ1)− 1) + . . .+ λq(w(xij,θq)− 1)
(2.11)
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Remark 2.3. By substituting (2.11) back to the constraints we get:

m∑
i=1

ni∑
j=1

pij = 1 ⇒
m∑
i=1

ni∑
j=1

1

n+ λ1pij(w(xij,θ1)− 1) + . . .+ λqpij(w(xij,θq)− 1)
= 1

and for k = 1, . . . , q

m∑
i=1

ni∑
j=1

pijw(xij,θi) = 1

⇒
m∑
i=1

ni∑
j=1

w(xij,θi)

n+ λ1(w(xij,θ1)− 1) + . . .+ λq(w(xij,θq)− 1)
= 1

⇒
m∑
i=1

ni∑
j=1

w(xij,θi)− 1

n+ λ1(w(xij,θ1)− 1) + . . .+ λq(w(xij,θq)− 1)
= 0

For the second step we substitute (2.11) back in the log-likelihood (2.8):

l(θ, λ1, . . . , λq) = −
m∑
i=1

ni∑
j=1

log(n+ λ1(w(xij,θ1)− 1) + . . .+ λq(w(xij,θq)− 1))

+

q∑
i=1

ni∑
j=1

log(w(xij,θi) (2.12)

Notice that the log-likelihood (2.12) depends only on the unknown Lagrange mul-

tipliers λ1, . . . , λq and on θ. To express the Lagrange multipliers as a function of θ

we differentiate (2.12) with respect to λ1, . . . , λq and set equal to 0:

∂l

∂λk

= 0

⇒ −
m∑
i=1

ni∑
j=1

w(xij,θi)− 1

n+ λ1(w(xij,θ1)− 1) + . . .+ λq(w(xij,θq)− 1)
= 0
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⇒ − 1

n

m∑
i=1

ni∑
j=1

w(xij,θi)− 1

1 + µ1(w(xij,θ1)− 1) + . . .+ µq(w(xij,θq)− 1)
= 0

⇒
m∑
i=1

ni∑
j=1

w(xij,θi)− 1

1 + µ1(w(xij,θ1)− 1) + . . .+ µq(w(xij,θq)− 1)
= 0

where µk ≡ λk/n for k = 1, . . . , q. Denote by µ the vector (µ1, . . . , µk)
′. Using µk

instead of λk, (2.11) becomes:

pij =
1

n

1

1 + µ1(w(xij,θ1)− 1) + . . .+ µq(w(xij,θq)− 1)
. (2.13)

The log-likelihood can be written in terms of µ1, . . . , µk as follows:

l(θ, µ1, . . . , µq) = −
m∑
i=1

ni∑
j=1

log(1 + µ1(w(xij,θ1)− 1) + . . .+ µq(w(xij,θq)− 1))

− n log(n) +

q∑
i=1

ni∑
j=1

log(w(xij,θi) (2.14)

The following lemma implies the existence of the maximum empirical likeli-

hood estimators. Let h(x,θ) = (w(x,θ1) − 1, . . . , w(x,θq) − 1)′. Fokianos ([19])

and Qin and Lawless ([59]) gave conditions guaranteeing that, with probability ap-

proaching 1, there is a maximum in a small neighborhood of the true parameter

θ0:

Lemma 2.1. Assume that

(a) Em(h(x,θ0)h
′(x,θ0)) is positive definite,

(b) ∂h(x,θ)/∂θ is continuous in a neighborhood of the true value θ0,
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(c) ||∂h(x,θ)/∂θ|| and ||h(x,θ)||3 are bounded by some integrable function H(x)

with respect to Gm(x) in this neighborhood,

(d) the rank of E(∂h(x,θ)/∂θ) is qd,

where Em(·) and V arm(·) denote expectation and variance with respect to Gm. Then,

as n → ∞, the log-likelihood (2.14) attains its maximum value at some point θ̂ in

the interior of the ball ||θ− θ0|| ≤ n−1/3 and θ̂ and µ̂ = µ(θ̂) can be estimated from

the score equations:

∂l(θ, µ1, . . . , µq)

∂θl

= −
m∑
i=1

ni∑
j=1

µl∂w(xij,θl)/∂θl

1 +
∑q

k=1 µk(w(xij,θk)− 1)

+

nl∑
j=1

1

w(xlj,θl)

∂w(xlj,θl)

∂θl

(2.15)

∂l(θ, µ1, . . . , µq)

∂µl

= −
m∑
i=1

ni∑
j=1

w(xij,θl)− 1

1 +
∑q

k=1 µk(w(xij,θk)− 1)
(2.16)

for l = 1, . . . , q.

If we replace µk and θk with their estimators from the score equations to

(2.13), we can estimate pij by:

p̂ij =
1

n

1

1 +
∑q

k=1 µ̂k

[
w(xij, θ̂k)− 1

] . (2.17)

The maximum likelihood estimator for the reference cdf Gm is:

Ĝm(x) =
m∑
i=1

ni∑
j=1

p̂ijI(xij ≤ x) =
1

n

m∑
i=1

ni∑
j=1

I(xij ≤ x)

1 +
∑q

k=1 µ̂k

[
w(xij, θ̂k)− 1

] (2.18)
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where I(xij ≤ x) is defined componentwise and I(B) is the indicator of the event

B. More generally, for l = 1, . . . ,m and w(xij, θ̂m) ≡ 1:

Ĝl(x) =
m∑
i=1

ni∑
j=1

p̂ijw(xij, θ̂l)I(xij ≤ x)

=
1

n

m∑
i=1

ni∑
j=1

w(xij, θ̂l)

1 +
∑q

k=1 µ̂k

[
w(xij, θ̂k)− 1

]I(xij ≤ x) (2.19)

Summarizing, using the method of empirical likelihood, one can obtain score

estimating equations for θ (2.15) and µk (2.16) and a semiparametric estimator

(2.18) for the cdf Gm.

2.3 Asymptotic theory for θ̂ and µ̂

In this section, we study the asymptotic properties of θ̂ and µ̂. Let θ0 be the

true value of θ under model (2.1). Define the sample size ratio ρi = ni/nm and set

w(x, θ̂i) = wi(x) for i = 1, . . . ,m. Then ρm ≡ 1, wm(x) ≡ 1. We assume that ρi

is positive and finite and remains fixed as n → ∞. Let ζ denote the true value of

µ. Set ζn = (ζ1n, . . . , ζqn) and ζln = nl/n for l = 1, . . . , q. As n → ∞, assume that

ζln → ζl. Then ζn → ζ.

Remark 2.4. Notice that:

1 +

q∑
k=1

ζkn(w(xij,θk)− 1) = 1 +

q∑
k=1

ζknw(xij,θk)−
q∑

k=1

ζkn

= 1 +

q∑
k=1

ζknw(xij,θk)−
n− nm

n
=

q∑
k=1

ζknw(xij,θk) +
nm

n
=

m∑
k=1

ζknw(xij,θk).
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Fokianos [19] proved the following theorem:

Theorem 2.1. Assume that the conditions of Lemma (2.1) hold. In addition assume

that

(a) ∂2h(x,θ)/∂θ∂θ′ is continuous in a neighborhood of the true parameter,

(b) there is a function Ḣ(x) which is integrable with respect to Gm and which bounds

||∂2h(x,θ)/∂θ∂θ′||.

Then

√
n

(
θ̂ − θ0

µ̂− ζ

)
D→ N(0,W) (2.20)

as n → ∞. The matrix W can be found in the Appendix.
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Chapter 3

Density estimation using the semiparametric density ratio model

3.1 Introduction

Fokianos [19], Cheng and Chu [11], and Qin and Zhang [62] constructed a

kernel-based density estimator by smoothing the increments of Ĝi, i = 1, . . . ,m.

In [19], Fokianos studied the statistical properties of the proposed kernel density

estimator (mean, variance) and showed that combining data leads to more efficient

kernel density estimators when the univariate case of the general model (2.1) was

considered. Qin and Zhang [62] considered the univariate version of model (2.1)

with w(x, α, β) = exp(α+ r(x)β). For this special case they studied some statistical

properties and the convergence in distribution of the estimator. Cheng and Chu

[11] studied the same special case as Qin and Zhang [62] but they used a different

approach. They also used the new estimate to define a procedure for testing the

goodness of fit of the density ratio model. In all three papers, the authors discussed

the problem of bandwidth selection and proposed different methods, all for the

univariate case.

In this chapter we aim to extend their results for the general multivariate

multiple-sample case model (2.1) and to study the corresponding asymptotic theory

and convergence properties of the proposed kernel density estimator. The estimator

is shown to be not only consistent, but also more efficient than the traditional
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kernel density estimator. In addition, several methods for calculating the optimal

bandwidth are discussed.

This chapter is organized as follows. In Section 3.2 we review the classical

kernel estimator and in Section 3.3 we introduce the semiparametric kernel density

estimator ĝl. Specifically, in Section 3.3.1 we examine the asymptotic behavior of ĝl

and in Section 3.3.2 we compare it with the classical kernel estimator. In Section

3.3.3 we discuss the advantages and disadvantages of several methods for selecting

the bandwidth for ĝl.

3.2 The classical kernel estimator

The traditional kernel density estimator is a convolution of the jumps in the

empirical distribution function obtained from a single sample of size n and a kernel

function taken as a symmetric probability density function parameterized by a band-

width parameter ([54]). Specifically, the kernel density estimator of a probability

density f(x) is given by

f̂(x) =
1

nhp
n

n∑
i=1

K

(
x− xi

hn

)
(3.1)

where hn is a sequence of bandwidths such that hn → 0 and nhp
n → ∞ as n → ∞.

The kernel functionK(x) is defined for p-dimensional x. It is nonnegative, symmetric

around 0 and satisfies
∫
Rp K(x)dx = 1. The standard multivariate normal density

is a convenient choice for the kernel K(x). Under certain conditions, f̂(x) is a

consistent estimator of f(x) and is asymptotically normal ([54], [67]). As such,
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the traditional kernel density estimator is a “single sample” estimator. Improved

estimators can be obtained when multiple data sources are available.

3.3 Combined semiparametric density estimators

Using a similar idea to (3.1), we may use the expressions for the probabilities

in (2.17) as the basis to form kernel estimates for the probability distributions gl(x):

ĝl(x) =
1

hp
n

m∑
i=1

ni∑
j=1

p̂ijŵl(xij)K

(
x− xij

hn

)
(3.2)

where hn is a sequence of bandwidths such that hn → 0 and nhp
n → ∞ as n → ∞,

wl(x) ≡ w(x,θl), ŵl(x) ≡ w(x, θ̂l), and K is a nonnegative kernel function that

satisfies the following requirements:

1.
∫
K(x)dx = 1 and

∫
|K(x)|dx < ∞;

2.
∫
xK(x)dx = 0 and

∫
|xK(x)|dx < ∞;

3.
∫
x′xK(x)dx = k2 and

∫
|x′xK(x)|dx < ∞.

Notice that ĝl depends on both the unknown reference distribution function

and the parameter θ̂l of the model, and is therefore a semiparametric density esti-

mator. Moreover, it is easy to verify that ĝl is a proper probability function. Indeed

from (2.9):
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∫
ĝl(x)dx =

∫
1

hp
n

m∑
i=1

ni∑
j=1

p̂ijŵl(xij)K

(
x− xij

hn

)
dx

u=
x−xij
hn=

m∑
i=1

ni∑
j=1

p̂ijŵl(xij)

∫
K(u)du =

m∑
i=1

ni∑
j=1

p̂ijŵl(xij) = 1

Therefore (3.2) defines a proper probability density function.

3.3.1 Asymptotic results for ĝl

In this section we will prove some asymptotic results for ĝl. To facilitate the

study of ĝl, it is convenient to define first g̃l(x):

g̃l(x) =
1

hp
n

m∑
i=1

ni∑
j=1

pijwl(xij)K

(
x− xij

hn

)
. (3.3)

Lemma 3.1. Assume θ and pij are known for i = 1, . . . , q,m, j = 1, . . . , ni. Then

g̃l(x) =
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)
(3.4)

where ζk = nk/n.

Proof.

g̃l(x) =
1

hp
n

m∑
i=1

ni∑
j=1

pijwl(xij)K

(
x− xij

hn

)

=
1

hp
n

m∑
i=1

ni∑
j=1

1

n

wl(xij)

1 +
∑q

k=1 ζk [wk(xij)− 1]
K

(
x− xij

hn

)
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=
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)

1 +
∑q

k=1 nk/n [wk(xij)− 1]
K

(
x− xij

hn

)

=
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)

1 +
∑q

k=1(nk/n)wk(xij)− 1 + nm/n
K

(
x− xij

hn

)

=
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)
.

Lemma 3.2. Assume that K(·) is a nonnegative bounded symmetric function with∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x′xK(x)dx = k2 > 0,

∫
K2(x)dx < ∞. Assume

that gl is continuous and bounded at x. Then

(a) As n → ∞ and hn → 0,

Eg̃l(x) =
1

hp
n

∫
K

(
x− y

hn

)
gl(y)dy = gl(x) + o(1).

(b) If gl is twice continuously differentiable in a neighborhood of x, then as n → ∞

and hn → 0,

Eg̃l(x) = gl(x) +
1

2
h2
n

∫
u′ ∂2

∂x∂x′ gl(x)uK(u)du+ o(h2
n).

(c) As n → ∞, hn → 0 and nhp
n → ∞,

Var(g̃l(x)) =
1

n(hn)2p

∫
w2

l (y)∑m
k=1 ζkwk(y)

K2

(
x− y

hn

)
g(y)dy

− 1

n

m∑
i=1

ζi

[∫
1

hp
n

wl(y)∑m
k=1 ζkwk(y)

K

(
x− y

hn

)
wi(y)g(y)dy

]2
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=
1

nhp
n

wl(x)gl(x)∑m
k=1 ζkwk(x)

∫
K2(u)du+ o

(
1

nhp
n

)
=

1

nhp
n
σ2(x) + o

(
1

nhp
n

)

with

σ2(x) =
wl(x)gl(x)∑m
k=1 ζkwk(x)

∫
K2(u)du.

Proof. (a)

Eg̃l(x) = E

[
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)]

=
1

nhp
n

m∑
i=1

niEi

[
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)]

=
1

hp
n

m∑
i=1

ζi

∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)dG(y)

=
1

hp
n

∫ ∑m
i=1 ζiwi(y)∑m
k=1 ζkwk(y)

wl(y)K

(
x− y

hn

)
dG(y)

=
1

hp
n

∫
K

(
x− y

hn

)
gl(y)dy

u=x−y
hn=

∫
K(u)gl(x− hnu)du

where Ei(x) is the expected value of x with respect to sample i. Next, fix ε, ε1,

ε2. By continuity, for ε > 0, there exists δ > 0 such that if

|(x− hnu)− x| < δ ⇔ |hnu| < δ ⇔ |u| < δ/hn
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then |gl(x− hnu)− gl(x)| < ε.

For ε1 > 0 and for δ > 0, there exists h1 > 0 such that for every h ≤ h1:

∫ −δ/h

−∞
K(u) · |gl(x− hnu)− gl(x)| du < ε1

because gl is bounded and K(x) is integrable. Similarly for ε2 > 0 and for δ > 0,

there exists h2 > 0 such that for every h ≤ h2:

∫ ∞

δ/h

K(u) · |gl(x− hnu)− gl(x)| du < ε2.

Set hn ≤ min(h1, h2) and notice that:

|Eg̃l(x)− gl(x)| =

∣∣∣∣Eg̃l(x)− gl(x)

∫
K(u)du

∣∣∣∣
=

∣∣∣∣∫ K(u)gl(x− hnu)du−
∫

gl(x)K(u)du

∣∣∣∣
≤

∫
K(u) · |gl(x− hnu)− gl(x)| du

=

∫ −δ/hn

−∞
K(u) · |gl(x− hnu)− gl(x)| du

+

∫ δ/hn

−δ/hn

K(u) · |gl(x− hnu)− gl(x)| du

+

∫ ∞

δ/hn

K(u) · |gl(x− hnu)− gl(x)| du → 0 (3.5)

pointwise by the discussion above. In conclusion, as hn → 0, n → ∞,

Eg̃l(x) = gl(x)

∫
K(u)du+ o(1) = gl(x) + o(1),
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where o(1) → 0 as hn → 0, n → ∞.

(b)

Eg̃l(x)
part (a)
=

∫
K(u)gl(x− hnu)du

2nd Taylor exp.
=

∫
K(u)

[
gl(x)− hnu

′∂gl(x)

∂x
+

h2
n

2
u′ ∂2

∂x∂x′ gl(x)u+ o(h2
n)

]
du

= gl(x) +
h2
n

2

∫
u′ ∂2

∂x∂x′ gl(x)uK(u)du+ o(h2
n).

(c)

Var(g̃l(x)) = Var

[
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)]

=
1

n2(hn)2p
Var

[
m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)]

=
1

n2(hn)2p

m∑
i=1

niVar

[
wl(xi1)∑m

k=1 ζkwk(xi1)
K

(
x− xi1

hn

)]

=
1

n2(hn)2p

m∑
i=1

ni

{
Ei

[
w2

l (xi1)

(
∑m

k=1 ζkwk(xi1))
2K

2

(
x− xi1

hn

)]

−E2
i

[
wl(xi1)∑m

k=1 ζkwk(xi1)
K

(
x− xi1

hn

)]}

=
1

n(hn)2p

m∑
i=1

ζi

[∫
w2

l (y)

(
∑m

k=1 ζkwk(y))
2K

2

(
x− y

hn

)
wi(y)g(y)dy

]

− 1

n(hn)2p

m∑
i=1

ζi

[∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)g(y)dy

]2
=

1

nhp
n

{
1

hp
n

∫
w2

l (y)∑m
k=1 ζkwk(y)

K2

(
x− y

hn

)
g(y)dy

− 1

hp
n

m∑
i=1

ζi

[∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)g(y)dy

]2}
(3.6)
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We will examine each term in (3.6) separately. Notice the following:

• The term

w2
l (x− hnu)∑m

k=1 ζkwk(x− hnu)
g(x− hnu)

is bounded. Indeed:

w2
l (x− hnu)∑m

k=1 ζkwk(x− hnu)
g(x− hnu) =

1

ζl

ζlwl(x− hnu)∑m
k=1 ζkwk(x− hnu)

gl(x− hnu)

≤ 1

ζl
sup
x∈Rp

| gl(x) | .

Then

1

hp
n

∫
w2

l (y)∑m
k=1 ζkwk(y)

K2

(
x− y

hn

)
g(y)dy

u=x−y
hn=

∫
w2

l (x− hnu)∑m
k=1 ζkwk(x− hnu)

K2 (u) g(x− hnu)du

By Dom. Conv. Thm
=

as hn→0

w2
l (x)g(x)∑m

k=1 ζkwk(x)

∫
K2(u)du+ o(1).

• The terms

ζiwi(x− hnu)∑m
k=1 ζkwk(x− hnu)

and

wl(x− hnu)g(x− hnu) = gl(x− hnu)

are bounded. Then
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1

hp
n
ζi

[∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)g(y)dy

]2
u=x−y

hn= hp
nζi

[∫
wl(x− hnu)∑m

k=1 ζkwk(x− hnu)
K (u)wi(x− hnu)g(x− hnu)du

]2
By Dom. Conv. Thm

=
as hn→0

hp
nζi

[(
wl(x)gi(x)∑m
k=1 ζkwk(x)

)2(∫
K(u)du

)2

+ o(1)

]

= hp
nζi

(
wl(x)gi(x)∑m
k=1 ζkwk(x)

)2

+ o(hp
n).

Therefore

Var(g̃l(x)) =
1

nhp
n

[
w2

l (x)g(x)∑m
k=1 ζkwk(x)

∫
K2(u)du+ o(1)

−
m∑
i=1

hp
nζi

(
wl(x)gi(x)∑m
k=1 ζkwk(x)

)2

+ o(hp
n)

]
=

1

nhp
n

w2
l (x)g(x)∑m

k=1 ζkwk(x)

∫
K2(u)du+ o

(
1

nhp
n

)
+ o(n−1)

=
1

nhp
n

wl(x)gl(x)∑m
k=1 ζkwk(x)

∫
K2(u)du+ o

(
1

nhp
n

)

since the term
∑m

i=1 h
p
nζi (wl(x)gi(x)/

∑m
k=1 ζkwk(x))

2
is finite.

Lemma 3.3. Assume that K(·) is a nonnegative bounded symmetric function with∫
K(x)dx = 1,

∫
x′xK(x)dx = k2 > 0. Assume that gl is continuous at x and

bounded, and that the conditions of Lemma 2.1 hold. If the quantity

Ir(θ, µ) =
∂

∂θr

w(xij,θl)

1 +
∑q

k=1 µk[w(xij,θk)− 1]
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is bounded, then ĝl(x) = g̃l(x) +Op(n
−1/2) as n → ∞ and hn → 0.

Proof.

ĝl(x)− g̃l(x) =
1

hp
n

m∑
i=1

ni∑
j=1

p̂ijŵl(xij)K

(
x− xij

hn

)

− 1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)

=
1

nhp
n

m∑
i=1

ni∑
j=1

[
ŵl(xij)

1 +
∑q

k=1 µ̂k(ŵk(xij)− 1)
− wl(xij)∑m

k=1 ζkwk(xij)

]
×K

(
x− xij

hn

)
= Rn(xij)

1st Order
=

Taylor

q∑
r=1

R1nr (µ̂r − ζr) +

q∑
r=1

R2nr

(
θ̂r − θr

)

where

Ir(θ
∗, µ∗)

=
∂

∂θr

w(xij,θl)

1 +
∑q

k=1 µk[w(xij,θk)− 1]

∣∣∣∣ µk=µ∗
k

θk=θ
∗
k

=

∂w(xij ,θ
∗
r)

∂θr
[1 +

∑q
k=1 µ

∗
k (w(xij,θ

∗
k)− 1)] I(r = l)− w(xij,θ

∗
l )µ

∗
r
∂w(xij ,θ

∗
r)

∂θr

(1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1])

2

and

R1nr = − 1

nhp
n

m∑
i=1

ni∑
j=1

w(xij,θ
∗
l )[w(xij,θ

∗
r)− 1]

(1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1])

2K

(
x− xij

hn

)

R2nr =
1

nhp
n

m∑
i=1

ni∑
j=1

Ir(θ
∗, µ∗)K

(
x− xij

hn

)
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and (µ∗
k,θ

∗
k) is on the line segment between (µ̂k, θ̂k) and (ζk,θk). Define

p∗ij =
1

n

1

1 +
∑q

k=1 µ
∗
k [w(xij,θ

∗
k)− 1]

,

g∗l (x) =
1

hp
n

m∑
i=1

ni∑
j=1

p∗ijw(xij,θ
∗
l )K

(
x− xij

hn

)
.

Since (µ∗
k,θ

∗
k) is on the line segment between (µ̂k, θ̂k) and (ζk,θk), we may assume

that µ∗
k > 0 and that p∗ij is close to p̂ij or pij, and therefore, it is a positive bounded

quantity. A similar statement holds for g∗l (x). Then

|R1nr(xij)| =

∣∣∣∣∣− 1

nhp
n

m∑
i=1

ni∑
j=1

w(xij,θ
∗
l )[w(xij,θ

∗
r)− 1]

(1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1])

2K

(
x− xij

hn

)∣∣∣∣∣
≤ 1

hp
n

m∑
i=1

ni∑
j=1

p∗ijw(xij,θ
∗
l )

∣∣∣∣ [w(xij,θ
∗
r)− 1]

1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1]

∣∣∣∣K (x− xij

hn

)

=
1

hp
n

m∑
i=1

ni∑
j=1

p∗ijw(xij,θ
∗
l )

∣∣∣∣ 1µ∗
r

µ∗
r [w(xij,θ

∗
r)− 1]

1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1]

∣∣∣∣K (x− xij

hn

)

≤ 1

µ∗
rh

p
n

m∑
i=1

ni∑
j=1

p∗ijw(xij,θ
∗
l )K

(
x− xij

hn

)
=

1

µ∗
r

g∗l (x) = Op(1)

It remains to show why

µ∗
r [w(xij,θ

∗
r)− 1]

1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1]

≤ 1.

Notice the following:

µ∗
r [w(xij,θ

∗
r)− 1]

1 +
∑q

k=1 µ
∗
k[w(xij,θ

∗
k)− 1]

≤ 1

⇔ µ∗
r [w(xij,θ

∗
r)− 1] ≤ 1 +

q∑
k=1

µ∗
k[w(xij,θ

∗
k)− 1]
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⇔ 1 +

q∑
k=1
k ̸=r

µ∗
kw(xij,θ

∗
k)−

q∑
k=1
k ̸=r

µ∗
k > 0,

which holds since µ∗
k is close to µ̂k, ζk = nk/n and 1−

∑q
k=1
k ̸=r

ζk ≥ 0. Similarly:

∥R2nr(xij)∥ =

∥∥∥∥ 1

nhp
n

m∑
i=1

ni∑
j=1

Ir(θ
∗, µ∗)K

(
x− xij

hn

)∥∥∥∥
=

∥∥∥∥ 1

nhp
n

m∑
i=1

ni∑
j=1

∂

∂θr

w(xij,θl)

1 +
∑q

k=1 µk[w(xij,θk)− 1]

∣∣∣∣ µk=µ∗
k

θr=θ
∗
r

K

(
x− xij

hn

)∥∥∥∥
≤ 1

nhp
n

m∑
i=1

ni∑
j=1

∥∥∥∥ ∂

∂θr

w(xij,θl)

1 +
∑q

k=1 µk[w(xij,θk)− 1]

∣∣∣∣ µk=µ∗
k

θr=θ
∗
r

∥∥∥∥K (x− xij

hn

)
= Op(1)

The above holds because

∥∥∥∥ ∂

∂θr

w(xij,θl)

1 +
∑q

k=1 µk[w(xij,θk)− 1]

∣∣
µk=µ∗

k

θr=θ
∗
r

∥∥∥∥
is by assumption bounded.

From [19] we have that
√
n
( ˆθ−θ
µ̂−ζ

)
→ N(0,W), so

Rn(xij) =

q∑
r=1

R1nr (µ̂r − ζr) +

q∑
r=1

R2nr

(
θ̂r − θr

)
= Op(1)Op(n

−1/2) +Op(1)Op(n
−1/2) = Op(n

−1/2).

Remark 3.1. The proof of Lemma 3.3 can be greatly simplified depending on the

choice for w(x,θi) in the general model (2.1). Qin and Zhang [62] take w(x, α, β) =
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exp(α+ r(x)β). In this case Ir(θ, µ) is clearly bounded.

The following lemma will be used in the proof of Theorem 3.1:

Lemma 3.4. Let Ei(x) denote the expected value of x with respect to sample i.

Then

Ei

∣∣∣∣∣wl(xi1)K
(

x−xi1

hn

)
∑m

k=1 ζkwk(xi1)

∣∣∣∣∣
2+δ

= O(hp
n),∣∣∣∣∣

∫ wl(y)K
(

x−y
hn

)
∑m

k=1 ζkwk(y)
wi(y)dG(y)

∣∣∣∣∣
2+δ

= O(hp(2+δ)
n ).

Proof. Define

Hαβγ(x) =
1

nhp
n

m∑
i=1

ni∑
j=1

wα
l (xij)D(xij)

(
∑m

k=1 ζkwk(xij))
β
Kγ

(
x− xij

hn

)

where D(·) is some measurable function. Then

E (Hαβγ(x)) =
1

nhp
n

m∑
i=1

niE

(
wα

l (xij)D(xij)

(
∑m

k=1 ζkwk(xij))
β
Kγ

(
x− xij

hn

))

=
1

nhp
n

m∑
i=1

ni

∫
wα

l (y)D(y)

(
∑m

k=1 ζkwk(y))
β
Kγ

(
x− y

hn

)
wi(y)dG(y)

=
1

hp
n

m∑
i=1

ζi

∫
wi(y)D(y)

(
∑m

k=1 ζkwk(y))
β
Kγ

(
x− y

hn

)
wα

l (y)dG(y)

=
1

hp
n

∫
wα

l (y)D(y)

(
∑m

k=1 ζkwk(y))
β−1

Kγ

(
x− y

hn

)
dG(y), (3.7)

assuming the integral is finite. Set α = β − 1 = γ = 2 + δ and D(y) = wi(y) in
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(3.7). Then

Ei

∣∣∣∣∣wl(xi1)K
(

x−xi1

hn

)
∑m

k=1 ζkwk(xi1)

∣∣∣∣∣
2+δ

= hp
nE(H2+δ.3+δ,2+δ) = O(hp

n).

Also, if we replace α = β − 1 = γ = 1 and D(y) = wi(y) in (3.7),

∣∣∣∣∣
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
wi(y)dG(y)

∣∣∣∣∣
2+δ

=
∣∣∣E(H1,2,1)h

p
n

∣∣∣2+δ

= O(hp(2+δ)
n ).

Theorem 3.1. Assume that K(·) is a nonnegative bounded symmetric function

with
∫
K(x)dx = 1,

∫
x′xK(x)dx = k2 > 0. Assume that gl is continuous at x. If∫

[K(u)]2+δ du < ∞ for some δ > 0, then

√
nhp

n (ĝl(x)− Eg̃l(x))
D→ N(0, σ2(x))

as n → ∞, hn → 0 and nhp
n → ∞ with

σ2(x) =
wl(x)gl(x)∑m
k=1 ζkwk(x)

∫
K2(u)du

for any fixed x.

Proof. It suffices to show that

√
nhp

n (g̃l(x)− Eg̃l(x))
D→ N(0, σ2(x))
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since, by Lemma 3.3, we have that

√
nhp

n (ĝl(x)− Eg̃l(x)) =
√

nhp
n(g̃l(x)− Eg̃l(x)) +Op(

√
hp
n).

Then

√
nhp

n (g̃l(x)− Eg̃l(x)) =
√

nhp
n

[
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)

− 1

hp
n

m∑
i=1

ζi

∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)dG(y)

]
=

m∑
i=1

[
1√
nhp

n

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)
−

√
n√
hp
n

ζi

∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)dG(y)

]
=

m∑
i=1

ni∑
j=1

[
1√
nhp

n

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)
− 1√

nhp
n

∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)dG(y)

]
=

m∑
i=1

Uni(x)

where

Uni(x) =
1√
nhp

n

∑ni

j=1

[
wl(xij)∑m

k=1 ζkwk(xij)
K
(

x−xij

hn

)
−
∫ wl(y)∑m

k=1 ζkwk(y)
K
(

x−y
hn

)
wi(y)dG(y)

]
.

Notice that for i = 1, . . . ,m:

EUni(x) = E

[
1√
nhp

n

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)]

− 1√
nhp

n

ni∑
j=1

∫
wl(y)∑m

k=1 ζkwk(y)
K

(
x− y

hn

)
wi(y)dG(y) = 0.
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Clearly,

E
[√

nhp
n (g̃l(x)− Eg̃l(x))

]
= 0.

Moreover, from Lemma 3.2:

• Var(
√
nhp

n(g̃l(x)− Eg̃l(x))) = nhp
nVar(g̃l(x)) = σ2(x) + o(1)

• Var(
√
nhp

n(g̃l(x)− Eg̃l(x))) =
∑m

i=1 Var(Uni(x)) = s2n(x)

where x is fixed. So s2n(x) = σ2(x) + o(1). Observe that:

√
nhp

n(g̃l(x)− Eg̃l(x)) =
m∑
i=1

Uni(x)

=

n1∑
j=1

1√
nhp

n

(wl(x1j)K
(

x−x1j

hn

)
∑m

k=1 ζkwk(x1j)
−
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
dG1(y)

)

+

n2∑
j=1

1√
nhp

n

(wl(x2j)K
(

x−x2j

hn

)
∑m

k=1 ζkwk(x2j)
−
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
dG2(y)

)
...

+
nm∑
j=1

1√
nhp

n

(wl(xmj)K
(

x−xmj

hn

)
∑m

k=1 ζkwk(xmj)
−
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
dGm(y)

)
.

We will show that Lyapunov’s Condition ([7], p. 362) holds using the cr-inequality:

E|x+ y|r ≤ cr[E|x|r + E|y|r], where cr =


1, if 0 < r ≤ 1

2r−1, if r > 1

We have already showed that E(Uni), Var(Uni) are finite for i = 1, 2, . . . ,m. For
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some δ > 0, the Lyapunov condition becomes:

1

s2+δ
n

[
n1∑
j=1

E

∣∣∣∣ 1√
nhp

n

(wl(x1j)K
(

x−x1j

hn

)
∑m

k=1 ζkwk(x1j)
−
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
w1(y)dG(y)

)∣∣∣∣2+δ

+

n2∑
j=1

E

∣∣∣∣ 1√
nhp

n

(wl(x2j)K
(

x−x2j

hn

)
∑m

k=1 ζkwk(x2j)
−
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
w2(y)dG(y)

)∣∣∣∣2+δ

...

+
nm∑
j=1

E

∣∣∣∣ 1√
nhp

n

(wl(xmj)K
(

x−xmj

hn

)
∑m

k=1 ζkwk(xmj)
−
∫ wl(y)K

(
x−y
hn

)
∑m

k=1 ζkwk(y)
wm(y)dG(y)

)∣∣∣∣2+δ
]

≤ 1

s2+δ
n

1

n1+ δ
2h

p(1+ δ
2
)

n

[
n12

δ+1E1

∣∣∣∣wl(x11)K
(

x−x11

hn

)
∑m

k=1 ζkwk(x11)

∣∣∣∣2+δ

+ n12
δ+1

∣∣∣∣∫ wl(y)K
(

x−y
hn

)
∑m

k=1 ζkwk(y)
w1(y)dG(y)

∣∣∣∣2+δ

+ n22
δ+1E2

∣∣∣∣wl(x21)K
(

x−x21

hn

)
∑m

k=1 ζkwk(x21)

∣∣∣∣2+δ

+n22
δ+1

∣∣∣∣∫ wl(y)K
(

x−y
hn

)
∑m

k=1 ζkwk(y)
w2(y)dG(y)

∣∣∣∣2+δ

...

+ nm2
δ+1Em

∣∣∣∣wl(xm1)K
(

x−xm1

hn

)
∑m

k=1 ζkwk(xm1)

∣∣∣∣2+δ

+nm2
δ+1

∣∣∣∣∫ wl(y)K
(

x−y
hn

)
∑m

k=1 ζkwk(y)
wm(y)dG(y)

∣∣∣∣2+δ
]

Lemma 3.4
=

1

s2+δ
n

1

n1+δ/2h
p(1+δ/2)
n

[
n12

δ+1O(hp
n) + n12

δ+1O(hp(2+δ)
n ) + . . .

+nm2
δ+1O(hp

n) + nm2
δ+1O(hp(2+δ)

n )

]
= O((nhp

n)
−δ/2),

where Ei is the expected value with respect to the i sample.
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Therefore, as hn → 0, n → ∞ and nhp
n → ∞, by the Lyapunov condition:

√
nhp

n (g̃l(x)− Eg̃l(x))

sn(x)

D→ N(0, 1).

By Slutsky’s theorem:

√
nhp

n (g̃l(x)− Eg̃l(x))

σ(x)
=

√
nhp

n (g̃l(x)− Eg̃l(x))

sn(x)

√
σ2(x) + o(1)

σ(x)

D→ N(0, 1).

Corollary 3.1. Assume that K(·) is a nonnegative bounded symmetric function

with
∫
K(x)dx = 1,

∫
x′xK(x)dx = k2 > 0. Assume that gl is continuous at x and

twice differentiable in a neighborhood of x. If, as n → ∞, hn = O(n− 1
4+p ), then

√
nhp

n

(
ĝl(x)− g(x)− 1

2
h2
n

∫
u′∂

2gl(x
∗)

∂x∂x′ uK(u)du

)
D→ N(0, σ2(x))

as n → ∞

Proof. From Theorem 3.1 and Lemma 3.2 we have:

√
nhp

n (ĝl(x)− Eg̃l(x))
D→ N(0, σ2(x)),

or equivalently

√
nhp

n

(
ĝl(x)− g(x)− 1

2
h2
n

∫
u′∂

2gl(x
∗)

∂x∂x′ uK(u)du− o(h2
n)

)
D→ N(0, σ2(x)).
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Therefore

√
nhp

n

(
ĝl(x)− g(x)− 1

2
h2
n

∫
u′∂

2gl(x
∗)

∂x∂x′ uK(u)du

)
− o(

√
nh4+p

n )
D→ N(0, σ2(x)).

Since, as n → ∞, hn = O(n− 1
4+p ), then also o(

√
nh4+p

n ) goes to 0, as n → ∞.

3.3.2 Comparison of ĝl and the traditional f̂

Definition 3.1. The mean integrated square error (MISE) is defined as:

MISE(ĝl(x)) = E

(∫ ∣∣ĝl(x)− gl(x)
∣∣2dx) (3.8)

Theorem 3.2. Assume that K(·) is a nonnegative bounded symmetric function

with
∫
K(x)dx = 1,

∫
x′xK(x)dx = k2 > 0 and

∫
K2(x)dx < ∞. If gl is twice

continuously differentiable at x and the conditions in Lemma 2.1 hold, then

(a) as n → ∞, hn → 0 and nhp
n → ∞

MISE(ĝl) =
1

nhp
n

∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du

+
h4
n

4

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx+ o

(
1

nhp
n

)
+ o(h4

n),

(b) by minimizing the sum of the two leading terms in (a) with respect to hn, the
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asymptotically optimal bandwidth is:

h∗
n =

(p/n)
∫
wl(x)gl(x)/ [

∑m
k=1 ζkwk(x)] dx

∫
K2(u)du∫ (∫

u′(∂2gl(x)/∂x∂x′)uK(u)du

)2

dx


1

4+p

. (3.9)

The mean integrated square error of ĝl with optimal bandwidth h∗
n is:

MISE∗(ĝl) = n− 4
4+p

(
p−

p
4+p +

1

4
p

4
4+p

)(∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du

) 4
4+p

·
(∫ (∫

u′∂
2gl(x)

∂x∂x′ uK(u)du

)2

dx

) p
4+p

+ o
(
n− 4

4+p
)
.

Proof. (a)

MISE(ĝl) = E

∫ ∣∣ĝl(x)− gl(x)
∣∣2dx

= E

∫ ∣∣ĝl(x)− g̃l(x) + g̃l(x)− gl(x)
∣∣2dx

= E

[∫ (
ĝl(x)− g̃l(x)

)2
dx+

∫ (
g̃l(x)− gl(x)

)2
dx

+2

∫ (
ĝl(x)− g̃l(x)

)(
g̃l(x)− gl(x)

)
dx

]
=

∫ [
E
(
ĝl(x)− g̃l(x)

)2
+ E

(
g̃l(x)− gl(x)

)2
+2E

(
ĝl(x)− g̃l(x)

)(
g̃l(x)− gl(x)

)]
dx

However

• By construction: E
(
ĝl(x)− g̃l(x)

)2
= O(n−1) (see also [62])
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• From Lemma 3.2:

E
(
g̃l(x)− gl(x)

)2
= Var(g̃l(x)) +

(
Eg̃l(x)− gl(x)

)2
=

1

nhp
n
σ2(x) + o

(
1

nhp
n

)
+

(
h2
n

2

(∫
u′∂

2gl(x)

∂x∂x′ uK(u)du+ o(h2
n)

)2

=
1

nhp
n
σ2(x) +

h4
n

4

(∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

+ o

(
1

nhp
n

)
+ o(h4

n)

• Using Schwartz inequality

| E
(
ĝl(x)− g̃l(x)

)(
g̃l(x)− gl(x)

)
|

≤
√

E
(
ĝl(x)− g̃l(x)

)2
E
(
g̃l(x)− gl(x)

)2
=

√
O(n−1)

[
σ2(x)

nhp
n

+
h4
n

4

(∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

+ o

(
1

nhp
n

)
+ o(h4

n)

]

=

√
O

(
1

n2hp
n

)
= O

(
(n2hp

n)
−1/2

)

Therefore

MISE(ĝl) =

∫ [
1

nhp
n
σ2(x) +

h4
n

4

(∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2]
dx+ o

(
1

nhp
n

)
+ o(h4

n)

=
1

nhp
n

∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du

+
h4
n

4

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx+ o

(
1

nhp
n

)
+ o(h4

n)

(b) Differentiate MISE(ĝl) with respect to hn and set equal to 0. We may ignore
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the terms o ((nhp
n)

−1), o(h4
n).

∂

∂hn

MISE(ĝl) = 0

⇒ −p

nhp+1
n

∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du+ h3

n

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx = 0

⇒ p

n

∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du = h4+p

n

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx

⇒ h∗
n =


p
n

∫ wl(x)gl(x)∑m
k=1 ζkwk(x)

dx
∫
K2(u)du∫ (∫

u′ ∂2gl(x)
∂x∂x′ uK(u)du

)2

dx


1

4+p

Therefore the mean integrated square error of ĝl with optimal bandwidth h∗
n is:

MISE∗(ĝl) =

=
1

n


n
∫ (∫

u′ ∂2gl(x)
∂x∂x′ uK(u)du

)2

dx

p
∫ wl(x)gl(x)∑m

k=1 ζkwk(x)
dx
∫
K2(u)du


p

4+p ∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du

+
1

4

 p
∫ wl(x)gl(x)∑m

k=1 ζkwk(x)
dx
∫
K2(u)du

n
∫ (∫

u′ ∂2gl(x)
∂x∂x′ uK(u)du

)2

dx


4

4+p ∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx

+o
(
n− 4

4+p
)

=

(∫(∫
u′ ∂2gl(x)

∂x∂x′ uK(u)du

)2

dx

) p
4+p
(∫ wl(x)gl(x)∑m

k=1 ζkwk(x)
dx
∫
K2(u)du

) 4
4+p

(n4pp)
1

4+p

+
1

4

(
p

n

∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du

) 4
4+p
(∫ (∫

u′∂
2gl(x)

∂x∂x′ uK(u)du

)2

dx

) p
4+p

+o
(
n− 4

4+p
)
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= n− 4
4+p

(
p−

p
4+p +

1

4
p

4
4+p

)(∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(u)du

) 4
4+p

·
(∫ (∫

u′∂
2gl(x)

∂x∂x′ uK(u)du

)2

dx

) p
4+p

+ o
(
n− 4

4+p
)

Theorem 3.3. If f̂(x) = 1
nlh

p
n

∑nl

i=1 K
(

x−xi

hn

)
is the classic multivariate kernel

density estimator of gl and AMISE is the asymptotic mean integrated square error,

then

(a) As n → ∞, hn → 0 and nhp
n → ∞

AMISE(ĝl) ≤ AMISE(f̂)

(b) Using optimal bandwidths, the proposed semiparametric density estimator ĝl(x)

is more efficient than f̂(x), i.e for every l

eff(f̂ , ĝl) ≡
AMISE∗(ĝl)

AMISE∗(f̂)
≤ 1

where AMISE∗ is the optimal AMISE

Proof. (a) According to [10], if f̂(x) = 1
nlh

p
n

∑nl

i=1 K
(

x−xi

hn

)
is the classic multivari-

ate kernel density estimator of gl, then, as n → ∞, hn → 0 and nhp
n → ∞:

AMISE(f̂) =
1

4
h4
n

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx+
1

nlh
p
n

∫
K2(x)dx
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In Theorem 3.2 we proved that:

AMISE(ĝl) =
1

4
h4
n

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx

+
1

nlh
p
n

∫
ζlwl(x)gl(x)∑m
k=1 ζkwk(x)

dx

∫
K2(x)dx

Since for every l,
∫ ζlwl(x)gl(x)∑m

k=1 ζkwk(x)
dx ≤ 1, it follows that

AMISE(ĝl) ≤ AMISE(f̂).

(b) AMISE(f̂) is optimized for hn =

[
p
nl

∫
K2(x)dx∫ (∫

u′ ∂2gl(x)
∂x∂x′ uK(u)du

)2
dx

] 1
p+4

. Indeed, if we

differentiate AMISE(f̂) and set equal to 0:

h3
n

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx =
p

nlh
p+1
n

∫
K2(x)dx

⇒ hp+4
n =

p

nl

∫
K2(x)dx∫ (∫

u′ ∂2gl(x)
∂x∂x′ uK(u)du

)2

dx

.

The optimal AMISE∗(f̂) is therefore,

AMISE∗(f̂) =
1

4

[
p

nl

∫
K2(x)dx∫ (∫

u′ ∂2gl(x)
∂x∂x′ uK(u)du

)2
dx

] 4
p+4 ∫ (∫

u′∂
2gl(x)

∂x∂x′ uK(u)du

)2

dx

+
1

nl

[
nl

p

∫ (∫
u′ ∂2gl(x)

∂x∂x′ uK(u)du
)2
dx∫

K2(x)dx

] p
p+4 ∫

K2(x)dx

=
1

4

[
p

nl

∫
K2(x)dx

] 4
p+4
[∫ (∫

u′∂
2gl(x)

∂x∂x′ uK(u)du

)2

dx

] p
p+4

+

[
1

nl

∫
K2(x)dx

] 4
p+4
[
1

p

∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx

] p
p+4
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=

[(
ppn4

l

)− 1
p+4 +

1

4

(
pn−1

l

) 4
p+4

][∫ (∫
u′∂

2gl(x)

∂x∂x′ uK(u)du

)2

dx

] p
p+4

·
(∫

K2(x)dx

) 4
p+4

.

Therefore the asymptotic relative efficiency of f̂ with respect to ĝl is given by:

eff(f̂ , ĝl) ≡
AMISE∗(ĝl)

AMISE∗(f̂)

=
n− 4

4+p

[
p−

p
4+p + 1

4
p

4
4+p

] [∫ wl(x)gl(x)∑m
k=1 ζkwk(x)

dx
] 4

4+p

n
− 4

4+p

l

[
p−

p
4+p + 1

4
p

4
4+p

]
=

[∫
ζlwl(x)gl(x)∑m
k=1 ζkwk(x)

dx

] 4
4+p

≤ 1 for every l.

Thus, unless only the lth sample is available, the proposed semiparametric den-

sity estimator is more efficient than the traditional kernel density estimator.

3.3.3 Bandwidth selection for ĝl

In section 3.3.1 it was shown that, as is the case with the traditional single

sample estimator, the pooled estimator ĝl also suffers from a similar bias-variance

trade-off problem where a smaller hn reduces the bias at the expense of the variance,

whereas a larger hn increases the bias but reduces the variance.

From equation (3.9), we have a formula for the asymptotically optimal band-

width h∗
n. In practice though, it is difficult to use it since gl is not known. In the one

dimensional case Silverman [69] proposes to either use the normal density N(µ,Σ),
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where µ and Σ are estimated from the data, or f̂ to approximate gl. Following

Silverman [69], Fokianos [19] and Qin and Zhang [62] both use ĝl to approximate

gl. However things become more complicated in the multidimensional setting. The

computational burden is heavier and, as Silverman [69] remarks, it is somewhat

hazardous to estimate ∂2gl(x)/∂x∂x
′ by ∂2ĝl(x)/∂x∂x

′ unless very large samples

are available.

Another way to select the bandwidth is using cross validation. Cross validation

minimizes with respect to hn an estimate for the integrated squared error (ISE):

ISE(hn) =

∫
(ĝl(x)− gl(x))

2 dx =

∫
ĝ2l (x)dx− 2

∫
ĝl(x)gl(x)dx+

∫
g2l (x)dx

The last term does not depend on hn, so we may drop it in the minimization of ISE.

To minimize ISE we need to rewrite the first and second term as a function of hn

and the data. Denote by t = [x′
11, . . . ,x

′
1n1

, · · · ,x′
m1, . . . ,x

′
mnm

]′n×1 = (t′1, . . . , t
′
n)

′

the combined data. So t has n rows. The first term can be written:

∫
ĝ2l (x)dx =

∫ [
1

hp
n

m∑
i=1

ni∑
j=1

p̂ijŵl(xij)K

(
x− xij

hn

)]2
dx

=
1

h2p
n

∫ m∑
i=1

ni∑
j=1

m∑
i′=1

ni∑
j′=1

p̂ijŵl(xij)K

(
x− xij

hn

)
p̂i′j′ŵl(xi′j′)K

(
x− xi′j′

hn

)
dx

=
1

h2p
n

m∑
i=1

ni∑
j=1

m∑
i′=1

ni∑
j′=1

∫
p̂ijŵl(xij)K

(
x− xij

hn

)
p̂i′j′ŵl(xi′j′)K

(
x− xi′j′

hn

)
dx

z=
x−xij
hn= h−p

n

m∑
i=1

ni∑
j=1

m∑
i′=1

ni∑
j′=1

∫
p̂ijŵl(xij)p̂i′j′ŵl(xi′j′)K(z)K

(
z+

xij − xi′j′

hn

)
dz

= h−p
n

m∑
i=1

ni∑
j=1

m∑
i′=1

ni∑
j′=1

p̂ijŵl(xij)p̂i′j′ŵl(xi′j′)

∫
K(z)K

(
z+

xij − xi′j′

hn

)
dz
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= h−p
n

n∑
i=1

n∑
i′=1

p̂(ti)ŵl(ti)p̂(ti′)ŵl(ti′)

∫
K(z)K

(
z+

ti − ti′

hn

)
dz

For the second term notice that
∫
ĝl(x)gl(x)dx = Eĝl(x). Following Silverman [69]

and Cheng and Chu [11] we can estimate Eĝl(x) using the leave one out estimator:

Êĝl(x) =
1

nl

nl∑
i=n1+...+nl−1+1

ĝl,i(ti)

where ĝl,i(ti) is ĝl(ti) with ti dropped from the combined data. Therefore, in order

to find a value for the bandwidth hn, it suffices to minimize

h−p
n

n∑
i=1

n∑
i′=1

p̂(ti)ŵl(ti)p̂(ti′)ŵl(ti′)

∫
K(z)K

(
z+

ti − ti′

hn

)
dz

− 2

nl

nl∑
i=n1+...+nl−1+1

ĝl,i(ti) (3.10)

Equation (3.10) can have many local minima so it is better to use grid methods

rather than Newton-Raphson methods for the minimization. The above procedure

should be used for each l, l = 1, . . . ,m to determine the optimal bandwidth. For

the special case of the reference distribution ĝm, where by assumption ŵm ≡ 1, we

choose hn by minimizing:

h−p
n

n∑
i=1

n∑
i′=1

p̂(ti)p̂(ti′)

∫
K(z)K

(
z+

ti − ti′

hn

)
dz− 2

nm

nm∑
i=n1+...+nq+1

ĝm,i(ti) (3.11)

In general, cross validation using the leave one out estimator is computationally

inefficient. However, for sufficiently large samples and l = 1, . . . , q,m notice the

45



following heuristic argument:

∫
ĝl(x)gl(x)dx =

∫ (
g̃l(x) +O(n−1/2)

)
gl(x)dx

=

∫
g̃l(x)gl(x)dx+

∫
O(n−1/2)gl(x)dx

n→∞→
∫

g̃l(x)gl(x)dx

where
∫
g̃l(x)gl(x)dx =

∫
1

nhp
n

∑m
i=1

∑ni

j=1
wl(xij)∑m

k=1 ζkwk(xij)
K
(

x−xij

hn

)
gl(x)dx. Moreover:

E

[ ∫
g̃l(x)gl(x)dx

]
= E

[ ∫
1

nhp
n

m∑
i=1

ni∑
j=1

wl(xij)∑m
k=1 ζkwk(xij)

K

(
x− xij

hn

)
gl(x)dx

]

=
1

nhp
n

m∑
i=1

∫ ∫
niwl(y)∑m
k=1 ζkwk(y)

K

(
x− y

hn

)
gl(x)wi(y)g(y)dxdy

= h−p
n

∫ ∫ ∑m
i=1 ζiwi(y)∑m
k=1 ζkwk(y)

K

(
x− y

hn

)
gl(x)gl(y)dxdy

= h−p
n

∫ ∫
K

(
x− y

hn

)
gl(x)gl(y)dxdy

= E

[
h−p
n K

(
x− y

hn

)]
= E

[
1

nl(nl − 1)hp
n

∑
i̸=j

K

(
xli − xlj

hn

)]

Thus, for sufficient large n, an unbiased estimator for
∫
g̃l(x)gl(x)dx is

1

nl(nl − 1)hp
n

∑
i̸=j

K

(
xli − xlj

hn

)
.

Therefore, an alternative way to find hn is by minimizing

h−p
n

n∑
i=1

n∑
i′=1

p̂(ti)ŵl(ti)p̂(ti′)ŵl(ti′)

∫
K(z)K

(
z+

ti − ti′

hn

)
dz

− 2

nl(nl − 1)hp
n

∑
i̸=j

K

(
xli − xlj

hn

)
(3.12)
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Cross validation has the advantage that equations (3.10), (3.11) and (3.12)

can easily be modified if we wish to use different bandwidths h1, . . . , hp to smooth

each variable. All the results presented in this Chapter still hold in this case.
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Chapter 4

Semiparametric regression

4.1 Introduction

In this Chapter we discuss a novel approach to regression analysis with ran-

dom covariates from a semiparametric perspective where information is combined

from multiple multivariate sources. The approach assumes a semiparametric den-

sity ratio model where multivariate distributions are “regressed” on a reference

distribution. Each multivariate distribution and a corresponding conditional ex-

pectation/regression of interest is then estimated from the combined data from all

sources. An advantage of the method is that we avoid making any explicit distribu-

tional assumptions and that all quantities are estimated from the combined data.

Graphical and quantitative diagnostic tools are suggested to assess model validity.

Comparisons are made with multiple regression, generalized additive models (GAM)

and nonparametric kernel regression. Some of the results of this Chapter were first

discussed for the two-dimensional case in [37].

This Chapter is organized as follows: In Sections 4.2 and 4.3 we introduce the

model we are considering, which is a special case of the general model (2.1), provide

the score equations for the parameters and discuss hypothesis testing. Section 4.4

discusses the estimation of the conditional expectation based on the semiparametric

model, whereas Section 4.5 gives a literature review for other ways of estimating the
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conditional expectation. In Section 4.6 we propose a coefficient of determination R2

to assess the goodness of fit of the semiparametric model. Finally in Section 4.7 we

conduct a simulation study where we apply the results of Chapters 3 and 4.

4.2 Statistical formulation

Suppose we have m = q + 1 data sets or samples of p-dimensional vectors,

where each vector consists of p − 1 covariates and one response, and assume that

the ith sample size is ni. Thus, for i = 1, . . . , q,m, j = 1, . . . , ni we have

(xij1, xij2, . . . , xij(p−1), yij) ∼ gi(x1, . . . , x(p−1), y).

We choose g ≡ gm(x1, . . . , x(p−1), y) as a reference or baseline probability density

function (pdf), and let each gi(x1, . . . , x(p−1), y), i = 1, . . . , q be an exponential

distortion or tilt of the reference distribution,

gi(x)

g(x)
= exp(αi + β′

ix), i = 1, ..., q (4.1)

where x = (x1, . . . , x(p−1), y)
′ and βi = (βi1, . . . , βip)

′. Since the gi(x), i = 1, . . . , q,m

are probability densities, βi = 0 implies αi = 0, j = 1, ..., q. It follows that the hy-

pothesis H0 : β1 = · · · = βq = 0 implies equidistribution: all the gi are equal.

Remark 4.1. Model (4.1) is a special case of model (2.1) with w(x,θi) = w(x, αi,βi) ≡

exp(αi + β′
ix).

Example 4.1. Two-dimensional normal distributions. Suppose we have m = q+ 1
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two-dimensional data sets,

(xj1, yj1), (xj2, yj2), . . . , (xjnj
, yjnj

) ∼ gj(x, y), j = 1, ..., q,m

where gj(x, y) is the probability density of N(µj, Σ), with

µj =

 µjx

µjy

 , Σ =

 σxx σxy

σxy σyy

 , j = 1, ...m.

Then, choosing gm(x, y) as a reference density we have

gj(x, y)

gm(x, y)
= exp[(µj − µm)

′Σ−1x− 1

2
(µ′

jΣ
−1µj − µ′

mΣ
−1µm)], (4.2)

where x = (x, y)′. Notice that (4.2) is a special case of model (4.1) where

αj = −1
2
(µ′

jΣ
−1µj − µ′

mΣ
−1µm)

βj =

 βj1

βj2

 = Σ−1(µj − µm)

To estimate the parameters and the reference density g, or equivalently the

reference distribution function G, we follow the same procedure described in Section
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2.2. First the data are combined in a single vector t of length n = n1+n2+ · · ·+nm,

t = ((xij1, xij2, . . . , xij(p−1), yij) : i = 1, . . . , q,m, j = 1, . . . , ni)
′

= (t′1, t
′
2, · · · , t′n)′ (4.3)

where ti ≡ (tix1 , . . . , tixp−1 , tiy)
′. The idea is to approximate the reference distribu-

tion function by a step function G with jumps pi at all the observed points ([72],

[73]). For the two dimensional case the pi’s can be defined as:

dG(ti) = pi = G(tix, tiy)−G(ti−1,x1 , tiy)−G(tix, ti−1,y)+G(ti−1,x, ti−1,y), i = 1, ..., n.

whereas for the three dimensional case:

dG(ti) = pi = G(tix1 , tix2 , tiy)−G(ti−1,x1 , tix2 , tiy)−G(tix1 , ti−1,x2 , tiy)

− G(tix1 , tix2 , ti−1,y) +G(ti−1,x1 , ti−1,x2 , tiy) +G(ti−1,x1 , tix2 , ti−1,y)

+ G(tix1 , ti−1,x2 , ti−1,y)−G(ti−1,x1 , ti−1,x2 , ti−1,y), i = 1, ..., n.

Generally, the pi are the jumps in the p-dimensional step function G at t1, ..., tn.

The empirical likelihood is a function of pi, α = (α1, ..., αq)
′ and β = (β′

1, ...,β
′
q)

′:

L(α,β, G) =
n∏

i=1

pi

n1∏
k=1

exp(α1 + β11x1k1 + · · ·+ β1(p−1)x1k(p−1) + β1py1k)

· · ·
nq∏
k=1

exp(αq + βq1xqk1 + · · ·+ βq(p−1)xqk(p−1) + βqpyqk) (4.4)
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subject to the constraints

n∑
i=1

pi = 1,
n∑

i=1

w1(ti)pi = 1, . . . ,
n∑

i=1

wq(ti)pi = 1 (4.5)

where wj(ti) = exp(αj + β′
jti), j = 1, ..., q.

Estimates for α̂j and β̂j are obtained by solving the score equations:

∂l

∂αj

= −
n∑

i=1

ρjwj(ti)

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)
+ nj = 0 (4.6)

∂l

∂βj

= −
n∑

i=1

ρjwj(ti)ti
1 + ρ1w1(ti) + · · ·+ ρqwq(ti)

+

nj∑
i=1

(xji1, . . . , yji)
′ = 0 (4.7)

for j = 1, . . . , q and ρj = nj/nm. Then

p̂i =
1

nm

· 1

1 + ρ1ŵ1(ti) + · · ·+ ρqŵq(ti)
(4.8)

Ĝ(t) =
1

nm

·
n∑

i=1

I(ti ≤ t)

1 + ρ1ŵ1(ti) + · · ·+ ρqŵq(ti)
(4.9)

where (ti ≤ t) is defined componentwise, ŵj(ti) = exp(α̂j + β̂
′
jti), and I(B) is the

indicator of the event B.

Theorem 4.1. As n → ∞, the estimators θ̂ = (α̂1, · · · , α̂q, β̂1, · · · , β̂q)
′ are asymp-

totically normal

√
n(θ̂ − θ0)

D→ N(0,Σ), (4.10)

where θ0 denotes the true parameters and Σ = S−1VS−1 is defined in the appendix.

Proof. For a detailed proof see Lu [42].
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Remark 4.2. Gj(ti) and gj(ti), j = 1, . . . , q can be estimated as exponential tilts

of Ĝ, p̂i as in (2.19).

4.3 Hypothesis testing

There are several ways to test the hypothesis H0 : β1 = β2 = · · · = βq = 0

for the model (4.1). One way is to use the likelihood ratio test:

LR ≡ −2[l(0, 0)− l(α̂, β̂)]

= −2
n∑

i=1

log[1 + ρ1ŵ1(ti) + ...+ ρqŵq(ti)]

+2

q∑
i=1

ni∑
j=1

[αi + βi1xik1 + · · ·+ βi(p−1)xik(p−1) + βipyik]

+2n log[1 +

q∑
i=1

ρi] (4.11)

Under H0, the likelihood ratio is asymptotically approximately distributed as χ2

with qp degrees of freedom, and H0 is rejected for large values. Power considerations

of (4.11) have been studied in [35] and [77]. Another test that can be used is based

on the X1 statistic. For more details see [35].
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4.4 Computing E[y|x] using the density ratio model

Under the p-dimensional density ratio model we can predict the response y

given the covariate information x1, x2, . . . , x(p−1) for any of them data sets as follows:

Êj(y | x1, . . . , x(p−1)) =

nj∑
i

yi
ĝj(x1, . . . , x(p−1), yi)∑
yi
ĝj(x1, . . . , x(p−1), yi)

, j = 1, . . . , q,m. (4.12)

The ĝj in (4.12) are the semiparametric kernel density estimates described in Section

3.3,

ĝj(z0) =
1

hp

n∑
i=1

p̂iŵj(ti)K((ti − z0)/h), j = 1, ...,m. (4.13)

where z0 is p-dimensional.

Theorem 4.2. Assume that the data are bounded. Then:

(a) As n → ∞, h → 0 and nhp → ∞,

∫
|Ê(y|x)− E(y|x)|g(x)dx → 0

in the mean square sense.

(b) If, in addition 0 < A < g(x), then

∫
|Ê(y|x)− E(y|x)|dx → 0

in the mean square sense.
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Proof. (a) Let x be a vector of size k = p−1 of bounded covariates, and y a bounded

response. We wish to prove Ê(y|x) p→ E(y|x). We have:

Ê(y|x)− E(y|x) =
1
n

∑n
i=1 yiĝ(x, yi)

1
n

∑n
i=1 ĝ(x, yi)

−
∫
yg(x, y)dy

g(x)

Or for sufficiently large n

Ê(y|x)− E(y|x) =
∫
yĝ(x, y)dy

ĝ(x)
−
∫
yg(x, y)dy

g(x)
∼
∫
y[ĝ(x, y)− g(x, y)]dy

g(x)

Thus by Cauchy-Schwarz,

[∫
|Ê(y|x)− E(y|x)|g(x)dx

]2
∼

[∫
|
∫

y[ĝ(x, y)− g(x, y)]dy | dx
]2

≤
[∫ ∫

|y||[ĝ(x, y)− g(x, y)]|dydx
]2

≤
∫ ∫

|y|2dydx
∫ ∫

|[ĝ(x, y)− g(x, y)]|2dydx

≤ C

∫ ∫
|[ĝ(x, y)− g(x, y)]|2dydx

Therefore E
[∫

|Ê(y|x)− E(y|x)|g(x)dx
]2

≤ C · MISE(ĝl). But by Theorem

3.2, MISE(ĝl) converges to 0 as n → ∞, h → 0 and nhp → ∞, so:

∫
|Ê(y|x)− E(y|x)|g(x)dx → 0

in mean square.

(b) It follows directly from (a) since g(x) is uniformly bounded away from 0.
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4.5 Other ways of computing E[y|x]

In this section we will briefly give an introduction to three other ways that

could be used to estimate E[y|x]. A comparison of the four different methods can

be found in Section 4.7.3 and in Section 5.3.

4.5.1 Multiple regression with random covariates

In multiple regression we assume there is a linear relationship between the

response variable y and the random covariates x1, . . . , x(p−1). The model we are

trying to fit is the following:

Y = β0 + β1X1 + . . .+ βp−1Xp−1 + error. (4.14)

It is further assumed that the data are independent and uncorrelated; however,

x1, . . . , x(p−1) and y are correlated. For this section only, set x = (x1, . . . , x(p−1)).

Although we don’t need any distributional assumptions to estimate the parame-

ters β0, . . . , βp−1, however, for reasons of convenience, we often assume that (x, y)

follows a multivariate normal distribution Np(µ,Σ) with µ = (µx, µy)
′ and Σ =σxx σ′

xy

σxy σyy

. Then it can be easily shown (see for example [65]) that y|x is normal
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with

E(y | x) = µy + σ′
xyΣ

−1
xx(x− µx) (4.15)

= β0 + β1x (4.16)

where

β0 = µy − σ′
xyΣ

−1
xxµx

β1 = Σ−1
xxσxy

Moreover Var(y|x) = σyy − σ′
yxΣxxσyx. Notice that the mean E(y|x) is a linear

function of x but the variance Var(y|x) is constant. Therefore, under the multivari-

ate normal assumption, model (4.14) has constant variance, as in the fixed x-case.

The mean is linear in the x’s and in the β’s and thus, it does not allow curvature.

Although the model (4.14) has been used extensively, it is overly restrictive

in its assumptions of a linear relationship between x and y and the multivariate

normal joint distribution and it is easy to run into misspecification problems.

4.5.2 The Nadaraya-Watson estimator

The Nadaraya-Watson estimator ([51], [74]) is a nonparametric estimator of

the conditional expectation of Y relative to a vector of covariates X, E[Y |X]. The

idea is to estimate E[Y |X] as a locally weighted average using a kernel as a weighting
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function:

Ê[Y |X] =

∑n
i=1 K(H−1(Xi − x))yi∑n
i=1 K(H−1(Xi − x))

(4.17)

where K(x) is the kernel function and H is the bandwidth matrix for x which is

positive and symmetric. The motivation for equation (4.17) is the same as for the

semiparametric estimator (4.12): In the equation:

E[Y |X = x] =

∫
yf(x, y)dy

f(x)
(4.18)

replace f(x, y) and f(x) with their kernel estimators f̂(x, y) = 1
n|H|hy

∑n
i=1 K(H−1(Xi−

x))K
(

yi−y
hy

)
and f̂(x) =

∫
f̂(x, y)dy = 1

n|H|
∑n

i=1 K(H−1(Xi − x)) respectively.

Remark 4.3. The Nadaraya-Watson kernel estimate and the estimated conditional

expectation (4.12) are both of the form
∑

iwiyi, where the wi are positive weights

which sum to 1, except that in (4.12) the wi also depend on the yi.

4.5.3 Generalized additive models (GAM’s)

Generalized additive models (GAM’s) were first developed by Hastie and Tib-

shirani ([26], [27], [28]). They are blending properties of generalized linear models

with additive models. The model has a structure of the form

g(µi) = X∗
iθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + · · · (4.19)

where µi ≡ E[Yi] and Yi is the response variable which follows some exponential

family distribution, g is a link function relating the expected value of the distribu-
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tion to the predictors, Xi is a row of the model matrix for any strictly parametric

components, θ is the corresponding parameter vector, and fj are smooth functions

of the covariates xk. In order for these kinds of models to be estimable, it is nec-

essary to impose some identifiability conditions. A general method, which can deal

with any choice of bases for the smooths, is described in [78]. By allowing nonpara-

metric fits, GAM’s allow good fits to the data. GAM’s can be represented in various

ways: using penalized regression splines, thin plate spines, tensor product smooths

etc. The appropriate degree of smoothness for the fj can be estimated using cross

validation. GAM’s are described in detail in [29] and [78]. For the simulation studies

in Section 4.7 and the data analysis in Chapter 5 we fitted GAM’s using the library

mgcv in R [78].

4.6 Diagnostic plots and measures of goodness-of-fit

The density ratio model motivates graphical and quantitative diagnostic tools

for measuring both goodness-of-fit of the model and the quality of the regression

(4.12). Goodness-of-fit tests have been proposed by Gilbert [23], Qin and Zhang [60],

and Zhang ([79], [81], [82]), where the appropriateness of the model is judged by the

closeness of the estimated reference distribution to the corresponding empirical dis-

tribution. Bondell [8] suggests a reformulation of this in terms of the corresponding

kernel density estimates. We suggest data analytic tools to measure discrepancies

stemming from all case and control (reference) groups.

Graphical evidence of goodness-of-fit can be obtained from the plots of Ĝi ver-
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sus the corresponding empirical multivariate distribution function G̃i, i = 1, . . . , q,m,

evaluated at some selected p-dimensional points as to obtain two dimensional plots.

Figures 4.1 and 4.2 in the next section are examples of this. We refer to these plots

as diagnostic plots.

We found the following measure of goodness-of-fit useful. Consider the ith

sample of size ni. The variance of the empirical cdf Ĝi is Gi(1 − Gi)/ni which

can be estimated by Ĝi(1 − Ĝi)/ni. Let xα be the number of times the estimated

semiparametric cdf falls in the estimated 1 − α confidence interval obtained from

the corresponding empirical cdf, both evaluated at the sample points. Define

R2
α,k = 1− exp

{
−
(

xα

ni − xα

)k
}

(4.20)

where k > 0, and k and α are free parameters, which can be set by the user. Observe

that:

• R2
α,k takes values between 0 and 1, being close to 1 when xα approaches ni

and close to 0 when xα is close to 0.

• R2
α,k is a flexible criterion that can be adjusted by changing the parameters α

and k. Larger α means smaller confidence interval bounds.

• Computing R2
α,k is both simple and fast.

We now describe three natural alternatives to R2
α,k. First, as in multiple

regression, goodness-of-fit may be approached by residual analysis. In this vein,
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consider the decomposition

E[y − E(y)]2 = E[y − E(y|x)]2 + E[E(y|x)− E(y)]2. (4.21)

Therefore, replacing ȳ ≈ E(y) and ŷ ≡ E(y|x) in (4.21),

1

n

∑
(yi − ȳ)2 ≈ 1

n

∑
(yi − ŷi)

2 +
1

n

∑
(ŷi − ȳ)2

we define “R2” as in linear regression:

R2
1 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

(4.22)

Next, define

R2
2 = corr(y, ŷ)2 (4.23)

Lastly, following Qin and Zhang [60], define

R2
3 = exp(−

√
n ·max |G̃i − Ĝi|) (4.24)

Clearly, R2
3 takes values between 0 and 1. Alternatives to R2

3 are exp(−
√
n ·

median|G̃i − Ĝi|) or exp(− 1
n

∑
|G̃i − Ĝi|2).

The following simulation study suggests that R2
α,k is a more useful indicator

of goodness-of-fit compared to R2
1, R

2
2, and R2

3. An interesting problem would be to

study the convergence of R2
α,k.
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4.7 Some simulation results

In the present simulation study m = 2, and g2 denotes the reference distribu-

tion. To conform to the real data analysis in Chapter 5 we use the terms “case” and

“control”, referring to the reference data as control. We considered the following

bivariate simulation cases (runs):

1. g1 from N((0, 0)′,Σ)) and g2 from N((0, 0)′,Σ)) with Σ =

 2 0.5

0.5 1

 . The

corresponding sample sizes were n1 = 90 and n2 = 70.

2. g1 from N((0, 0)′,Σ1)) and g2 from N((1, 1)′,Σ2)) with Σ1 =

 1 0

0 1

 and

Σ2 =

 3 1

1 2

 . The corresponding sample sizes were n1 = 200 and n2 = 200.

3. g1 from standard two dimensional multivariate Cauchy and g2 from two di-

mensional Multivariate Cauchy with µ = (1, 1)′ and V =

 5 5

5 10

 . The

corresponding sample sizes were n1 = 200 and n2 = 200.

4. g1 from standard two dimensional multivariate Cauchy and g2 from uniform

distribution on the triangle (0, 0), (6, 0), (−3, 4). The corresponding sample

sizes were n1 = 200 and n2 = 200.

4.7.1 Comparison of the different measures of goodness-of-fit

The normal distribution follows the density ratio model, but this is not true

for the Cauchy and the uniform distributions. Hence we expect to see straight lines
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in the diagnostic plots and high R2’s, as defined above, in cases (1) and (2). On the

other hand, we expect to see deviations from straight lines in the diagnostic plots

and lower R2’s in cases (3) and (4).
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Figure 4.1: Case-control plots of Ĝi vs. G̃i, i = 1, 2, simulations (1) and (2)
.
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Figure 4.2: Case-control plots of Ĝi vs. G̃i, i = 1, 2, simulations (3) and (4)
.

Figures 4.1-4.2 show the estimated Ĝ1 and Ĝ2 (where Ĝ1 is the exponential tilt

of Ĝ2 defined in (4.9)) versus the empirical cdf G̃1 and G̃2, respectively, all obtained
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from one run of the simulated case-control data, and evaluated at selected points in

R2. As expected, in cases (1),(2), there is almost a perfect agreement between Ĝi

versus G̃i, i = 1, 2, whereas Figure 4.2 shows clearly that the density ratio model is

not appropriate for the data from cases (3) and (4).

A comparison of the different measures of goodness of fit for one run is given

in Table 4.1. Apparently here R2
1 and R2

2 are misleading as measures of goodness

of fit. They are erroneously higher at the cases where the simulated distributions

do not follow the density ratio model. It seems that R2
3 is more appropriate than

both R2
1 and R2

2 but it is sensitive to outliers and can give low values even for data

that follow the density ratio model (e.g. case 2). On the other hand, the proposed

measure R2
α,k classifies correctly the four cases, giving high values for simulations

(1) and (2) and low values for (3) and (4). The values of R2
α,k in Table 4.1 were

calculated with k = 2 and 1 − α = 90%. In general, R2
α,k gets closer to R2

3 by

lowering 1− α.

Table 4.1: Comparison of goodness of fit measures for case and control.

Run Group R2
1 R2

2 R2
3 R2

.10,2

(1) Case 0.0098 0.1556 0.6193 1
Control 0.0462 0.0761 0.6056 1

(2) Case 0.0290 0.0470 0.3281 0.9998
Control 0.1214 0.2356 0.3651 0.9999

(3) Case 0.6948 0.8441 0.1390 0.1469
Control 0.6792 0.7537 0.1294 0.1219

(4) Case 0.4978 0.5662 0.0340 0.0999
Control 0.4277 0.4372 0.0305 0.0001

We also run 100 repetitions of the four simulations and for each repetition we

evaluated R2
3 and R2

α,k with k = 2 and 1− α = 90% for case and control. Table 4.2
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shows the mean value of R2
3 and R2

.95,2. The results agree with the results presented

in table 4.1.

Table 4.2: Comparison of R2
3 and R2

.05,2 for 100 repetitions of case and control.

Run Group R2
3 R2

.05,2

(1) Case 0.6307 1
Control 0.5976 1

(2) Case 0.3912 0.9353
Control 0.3766 0.9718

(3) Case 0.1080 0.3342
Control 0.1129 0.3324

(4) Case 0.0507 0.3361
Control 0.0495 0.0033

4.7.2 Bandwidth selection

In Chapter 3 we discussed several ways for selecting the bandwidth h. One

way is to use equation (3.9) for the asymptotically optimal bandwidth and replace

gl with the normal density N(µ,Σ), where µ and Σ are estimated from the data.

The other option is to use cross validation and minimize either (3.10) or (3.12).

Cross validation has the advantage that it allows us to use different bandwidths

h1, . . . , hp to smooth each variable. Tables (4.3)-(4.5) summarize the results for the

estimated h using equations (3.9), (3.10) and (3.12) for one run of the simulations.

The integrals in (3.9) were calculated using Mathematica. However, certain integrals

failed to converge and the results obtained are not trustworthy (see table (4.3)).

In Simulation 1 we used bandwidth 0.46 for case and 0.47 for control. In

Simulation 2 we used bandwidth 0.33 for case and 0.51 for control. The bandwidth

was selected after comparing visually the results for the fitted E[y|x] and comparing
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Table 4.3: Bandwidth selection using (3.9). Results in bold indicate cases where the
integrals did not converge.

Case Control
BW BW

Simulation 1 0.46 0.47
Simulation 2 0.33 0.51
Simulation 3 6.23 3.84
Simulation 4 7.37 0.31

Table 4.4: Bandwidth selection using the cross validation method (3.10).

Case Control
Same BW Diff. BW’s Same BW Diff. BW’s

h h1 h2 h h1 h2

Simulation 1 0.61 0.90 0.40 0.59 0.31 0.61
Simulation 2 0.38 0.50 0.20 0.61 0.36 0.71
Simulation 3 0.34 0.40 0.30 2.11 2.51 0.96
Simulation 4 0.60 0.30 1.10 0.32 0.61 0.06

the MSE and MAE results. We also tried using different bandwidths for the variables

but there wasn’t any significant difference in the results.

4.7.3 Comparison with Nadaraya-Watson, GAM’s and multiple re-

gression

Using the semiparametric model, the standard normal distribution for ker-

nel and (4.12), we estimated E[Y |X] for a single predictor. Table (4.6) provides a

comparison of the MSE and MAE between the different methods for the first two

simulations. In this table S.P. stands for Semiparametric Regression, M.R. for multi-

ple regression, GAM for generalized additive model, and NW for Nadaraya-Watson.

We did not estimate E[Y |X] for simulations 3 and 4 because the semiparametric
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Table 4.5: Bandwidth selection using the cross validation method (3.12)

Case Control
Same BW Diff. BW’s Same BW Diff. BW’s

h h1 h2 h h1 h2

Simulation 1 0.64 0.90 0.50 0.63 0.21 0.71
Simulation 2 0.30 0.40 0.20 0.74 0.11 0.96
Simulation 3 0.30 0.30 0.30 3.33 4.76 0.96
Simulation 4 0.30 0.30 0.30 0.15 0.36 0.06

model is not applicable in these cases (and was rejected as we saw from the R2

comparison). In simulations 1 - 2, for both case and control, we fitted a thin plate

regression spline GAM assuming normal distribution and identity link. Another

possible choice could have been a tensor product, but the results were almost iden-

tical. In simulation 1 the GAM line was almost exactly the same as the multiple

regression line.

Table 4.6: MAE and MSE Comparison of the semiparametric prediction, multiple
regression, GAM and Nadaraya-Watson estimators for Simulations 1 and 2. G1, G2

signify case and control respectively.

MSE MAE
S.P. M.R. GAM NW S.P. M.R. GAM NW

Simulation 1 G1 0.913 0.834 0.834 0.851 0.752 0.741 0.741 0.736
G2 0.856 0.892 0.892 0.849 0.750 0.786 0.786 0.740

Simulation 2 G1 0.820 0.841 0.799 0.792 0.723 0.730 0.709 0.704
G2 1.740 1.482 1.429 1.388 1.001 0.992 0.958 0.946

Figures 4.3-4.6 show the estimated E[Y |X] using equation (4.12). The pre-

diction line is apparently influenced by the endpoints but otherwise it is a smooth

curve. Superimposed are the lines obtained from multiple regression, GAM and

the Nadaraya-Watson estimator and the true E[Y |X] line calculated from the the-

oretical distributions. From Table 4.6, we see that the semiparametric estimator
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performs comparably with the other estimators in terms of the MSE and MAE.
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Figure 4.3: Comparison of E[Y |X] for G1 in simulation 1.
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Figure 4.4: Comparison of E[Y |X] for G2 in simulation 1.
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Figure 4.5: Comparison of E[Y |X] for G1 in simulation 2.
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Figure 4.6: Comparison of E[Y |X] for G2 in simulation 2.
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Chapter 5

The Testicular Germ Cell Tumor data set

5.1 Introduction

In this chapter we apply many of the results and methods discussed in Chapters

3 and 4 to testicular germ cell tumor (TGCT) data set. Testicular cancer is the most

common solid malignancy affecting mainly Caucasian men between the ages 15 and

35. It is rare among men of African or Asian descent. The cure rate is more

than 90%, approaching 100% if it has not metastasized. Even for the relatively

few cases in which malignant cancer has spread widely, chemotherapy offers a cure

rate of at least 85%. A major risk factor for the development of testicular cancer

is cryptorchidism (undescended testicles). Other risk factors include seminoma,

prior history of TGCT, family history of TGCT. Physical activity is associated with

decreased risk, whereas sedentary lifestyle and early onset of male characteristics is

associated with increased risk. Other possible risk factors include body size, dairy

consumption, and age at puberty [46], [47].

The TGCT data set consists of 763 cases and 928 controls enrolled in the

Servicemen’s Testicular Tumor Environmental and Endocrine Determinants Study

(2002− 2005). In [47], McGlynn et al determined that increased height was signif-

icantly related to risk (odds ratio (OR) = 1.83, 95% confidence interval (CI): 1.36,

2.45), where this OR is for men with height greater than 182.88 cm compared to
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those with less than or equal to 172.72 cm. On the other hand, body mass index

(BMI: weight in kilograms divided by height in meters squared) was not significant

(OR = 1.06, 95% CI: 0.66, 1.69), where this OR is for men with body mass index

greater than or equal to 30 compared to those with less than 18.5. Furthermore,

there was no association found for age at puberty (based on ages at first shaving),

voice changing, nocturnal emissions, and dairy consumption at any age between

birth and 12th grade.

The original TGCT data set had several variables [47] but the portion made

available to us consisted of the following eight variables: subject ID, age at reference

date, an indicator for case or control group (0=case, 1−4=control), the participant’s

height in cm, participant’s weight in kg, participant’s BMI (kg/m2), family history

of testicular cancer (0=no, 1=yes) and race/ethnicity (1=white, 2=black, 3=other).

We focused on three variables: height, weight and age. Out of these, height and

weight had undergone some kind of discretization: there were 21 unique values

for height and 89 unique values for weight. Table (5.1) gives summary statistics for

height and weight for both groups. We notice that the variance-covariance structure

in the two groups is quite similar.

Table 5.1: Case-control summary statistics regarding height (cm) and weight (kg),
and the correlation between them.

Height Weight
min max ave sd min max ave sd corr

Case 160.0 203.2 179.6 7.0 50.8 131.5 81.4 11.7 0.521
Control 152.4 215.9 178.3 7.1 38.6 127.0 80.1 11.1 0.505
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This Chapter is organized as follows: In Section 5.2 we discuss the problems

encountered in the bandwidth selection process for both the 2D and the 3D TGCT

data set. Section 5.3 presents the results of the data analysis.

5.2 Bandwidth selection for the TGCT data set

We used equations (3.9), (3.10), (3.12) with kernelK = N(0,1) and w(x,θi) ≡

exp(αi+β′
ix) from Chapter 3 to calculate the bandwidth in the same way as we did

in Section 4.7.2. We considered two cases: the 2D TGCT data set with variables

height and weight and the 3D TGCT data set with variables height, weight and age.

The integrals in (3.9) were calculated using Mathematica. However, Mathematica

failed to calculate the integrals for the TGCT data set when using all three variables

age, height and weight. When applied to both the 2D and the 3D TGCT data

set, equations (3.10)-(3.12) were strictly increasing, which means they lead to the

degenerate choice of h = 0 of smoothing parameter. An obvious solution is to add a

little bit of noise to the data, enough to break the ties in the data without changing

the data too much. The results in tables (5.3) and (5.4) were obtained by adding

noise generated by N(0, 0.12) to age, N(0, 0.72) to height, N(0.062) to weight. This

resulted in a change of about ±0.3 for age, ±2 cm for height and about ±1.8 kg for

weight. However it should be noted that if we used noise generated from normal

distribution with smaller variance the results changed. Generally the smaller the

variance used, the smaller was the optimal bandwidth obtained from minimizing

equations (3.10)-(3.12). However, by looking at the nature of the data and the
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distance between the discretized values of the variables, we would not recommend

adding less noise. For the 3D TGCT data set the optimal bandwidth was calculated

using only equation (3.12) since equations (3.10) and (3.11) are not time efficient.

For the 2D TGCT data set, for case, we decided to smooth the data using 1.01 and

3.51 for height and weight respectively, whereas, for control, we used 2.02 and 1.01.

The results would be similar if we had used bandwidths 2.06 and 1.61 for case and

control respectively. For the 3D TGCT the best results were produced when using

bandwidth 2.24 for control and 2.5 for case.

Table 5.2: Bandwidth selection using (3.9). Mathematica failed to calculate the
integrals in (3.9) for the 3D TGCT data set.

Case Control
BW BW

2D TGCT (height, weight) 4.60 2.11
3D TGCT (age, height, weight) - -

Table 5.3: Bandwidth selection using the cross validation method (3.10). The
method was not used to calculate the bandwidth in the 3D TGCT data set be-
cause it is not time efficient.

Case Control
Same BW Diff. BW’s Same BW Diff. BW’s

h h1 h2 h3 h h1 h2 h3

2D TGCT 2.06 1.01 3.51 NA 1.61 2.01 1.01 NA
3D TGCT - - - - - - - -
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Table 5.4: Bandwidth selection using the cross validation method (3.12)

Case Control
Same BW Diff. BW’s Same BW Diff. BW’s

h h1 h2 h3 h h1 h2 h3

2D TGCT 2.85 1.01 4.26 NA 1.53 2.01 1.01 NA
3D TGCT 2.24 0.1 4.3 4.5 2.5 0.1 4.1 6.85

5.3 Data analysis

In [37] the 2D TGCT data set was analyzed with variables height and weight.

Assume the density ratio model (4.1) which in the present case can be written as,

g1(x, y)

g2(x, y)
= exp(α1 + β′

1x) (5.1)

where g1 is the distribution of the case group, and g2 is the reference distribution of

the control group. From the score equations (4.6)-(4.7) we obtain:

(α̂, β̂11, β̂12) = (−4.676, 0.025, 0.002) (5.2)

with respective standard errors (0.914, 0.006, 0.004), indicating dissimilarity between

the two groups. We can test the hypothesisH0 : β1 = 0 using the likelihood ratio test

(4.11). In this case, the likelihood ratio (4.11) is equal to 15.108, and with 2 degrees

of freedom the corresponding p-value is 0.0005. Thus, when height and weight are

considered jointly, we reject the null hypothesis H0 : β1 = 0 of equidistribution

quite conclusively. This means that jointly height and weight are significant risk

factors. An advantage of the method is that we can find estimates for the joint
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probabilities of height and weight in both the case and the control group as in table

5.5. The table shows there are differences between the two groups, thus verifying

the likelihood ratio test.

Table 5.5: Some joint probabilities of height and weight in the case and control
groups.

Probability Case Control

Pr(H ≤ 152.40, W ≤ 58.967 ) 0.000374 0.000770
Pr(H ≤ 165.10, W ≤ 58.967 ) 0.005829 0.009216
Pr(H ≤ 177.80, W ≤ 65.317 ) 0.052177 0.067014
Pr(H ≤ 185.42, W ≤ 70.307 ) 0.185290 0.218345
Pr(H ≤ 180.34, W ≤ 79.832 ) 0.376876 0.434745
Pr(H ≤ 180.34, W ≤ 89.811 ) 0.558730 0.627897
Pr(H ≤ 187.96, W ≤ 94.801 ) 0.819068 0.857814
Pr(H ≤ 200.66, W ≤ 99.790 ) 0.945452 0.958643
Pr(H ≤ 203.20, W ≤ 117.934 ) 0.995568 0.997178
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Figure 5.1: 2D problem: Plots of Ĝi versus G̃i, i = 1, 2 evaluated at (height,weight)
pairs for the case and control groups from the TGCT data.

Before applying the three-dimensional density ratio model to the TGCT data,

it is interesting to apply the two-dimensional model to get a prediction of weight
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Figure 5.2: Comparison of E[Y |X] for G1 in the 2D TGCT data set.
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Figure 5.3: Comparison of E[Y |X] for G2 in the 2D TGCT data set.
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given height only. As Figure 5.1 shows, the density ratio model is a suitable model

for the TGCT data: there is almost a perfect agreement between the plots of the

estimated semiparametric Ĝi and the corresponding empirical G̃i, i = 1, 2. The

value of R2
.20,1 is 1 for both case and control. Figures 5.2-5.3 show the estimated

E[Y |X] using equation (4.12) for the case and control groups, where in the 2D

TGCT data set Y is the variable weight and X is the height. If we had used the

bandwidth given by equation (3.9), then the conditional expectation lines would

have been smoother but the MSE and MAE would have been higher. Superimposed

is the regression line obtained from linear regression under the normal assumption,

the GAM line and the Nadaraya-Watson regression line. For the 2D TGCT data,

assuming normal distribution and identity link, we fitted a tensor product GAM,

although there were not a lot of differences between the different kinds of splines. We

notice that all models give similar results. The residual plots for the semiparametric

model in Figure 5.4 are centered around zero.

Next we fitted the 3D TGCT data with variables age, height and weight. The

semiparametric model is an appropriate model for this data set as Figure 5.5 shows.

The value of R2
.20,1 is 1 for both case and control. Again we used equation (4.12)

to calculate E[Y | X] for the case and control groups, where in the 3D TGCT data

set Y is the weight and X represents jointly height and age. Figure 5.6 shows the

residual plots for the semiparametric model. Table 5.6 gives the MSE and MAE

comparison between the different estimators for the 2D and the 3D TGCT data.

For the 3D TGCT data, assuming normal distribution and identity link, we fitted

a thin plate regression spline GAM because it produced better looking residual
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Figure 5.4: Residual plots for the semiparametric model in the 2D TGCT data set.
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Figure 5.5: Case-control plots of Ĝi versus G̃i, i = 1, 2 for the 3D TGCT problem:
the Ĝi, G̃i are evaluated at selected (age,height,weight) triplets.
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Figure 5.6: Residual plots for the semiparametric model in the 3D TGCT data set.

and Q-Q plots. The semiparametric estimator performs comparably with the other

estimators, although somewhat worse. These results can be explained under the

light that our method consists of an extra step of density estimation. However we

have the extra advantage that we also calculate the joint probabilities of the variables

without making any distributional assumptions like multiple regression and GAM’s.

Table 5.6: MAE and MSE comparison of the semiparametric prediction and multiple
regression for 2D and 3D TGCT data.

MSE MAE
S.P. M.R. GAM NW S.P. M.R. GAM NW

2D TGCT G1 104.003 99.510 99.250 98.648 7.947 7.784 7.770 7.774
G2 93.010 92.264 90.284 90.332 7.347 7.296 7.246 7.241

3D TGCT G1 98.283 96.367 96.091 89.124 7.770 7.679 7.672 7.390
G2 91.643 90.291 88.147 86.932 7.280 7.244 7.173 7.139

Tables 5.7 and 5.8 give some predicted values for weight given age and height

for the two models.
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Table 5.7: Predicted control values of weight given height and age.

Case
Age Height Weight S.P. M.R. GAM NW

26 193.04 102.058 89.81775 92.47554 92.80697 95.96000
24 167.64 72.575 73.59282 70.00329 70.68805 71.90371
29 180.34 65.771 81.41551 82.42360 82.17237 81.60395
38 185.42 81.647 86.29762 89.46406 89.50287 89.70666
34 195.58 89.811 89.03635 97.03194 98.08814 92.45555
27 162.56 58.967 68.53652 66.51540 67.76775 65.18988

Table 5.8: Predicted case values of weight given height and age.

Control
Age Height Weight S.P. M.R. GAM NW

29 180.34 90.718 81.11841 82.06293 83.06542 82.35544
39 175.26 77.111 79.40282 80.36549 79.78087 80.05940
19 172.72 63.503 74.76493 73.58821 72.76199 73.40060
33 177.80 83.915 80.51759 80.97707 81.4916 81.14195
31 190.50 102.058 86.0598 90.67494 90.69862 87.47080
25 165.10 58.967 72.08147 68.90777 68.0279 69.49050

We end this section by noting that, as expected, Ê(y|x) in (4.12) tends to be

close to the average of y’s which correspond to the same x. This is demonstrated

in Tables 5.9 and 5.10 which give the case-control weight predictions (4.12) and the

actual weights. Empty entries in the table correspond to subjects with the same

height and age (i.e. same x), but possibly different weights. The averaging property

can be seen by averaging the run of weights in the “empty cells” and the run upper

bound. Thus, for example, the control-weights corresponding to age 22 and height

175.26 average to 74.3894 and the prediction is 76.62195.
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5.4 Conclusion

In this Chapter we have demonstrated that the multidimensional density ratio

model has several advantages. It provides estimates of the joint probabilities in

both the case and the control groups. All the parameters and the reference cdf are

estimated from the combined data, and not just from the reference sample, leading

to more precise estimates. The process of fitting the model and obtaining estimates

for the parameters is very simple, straightforward and quick. Moreover, the semi-

parametric model provides a way for determining the difference between two or more

multivariate distributions and for testing multivariate equidistribution. Going one

step further it can be used in estimating the conditional expectation of a response

variable given random covariates when multiple data sources are available without

making any distributional assumptions. In addition the suggested graphs and quan-

titative validation measures are useful in assessing the suitability of the method.

The method works best for a small number of covariates since technical difficulties

can arise in the bandwidth computation as the number of variables increases.

The approach offers a way of understanding how multivariate distributions

representing many different data sources are related to each other. This leads to a

ramification of the notion of regression where the objective is to model relationships

between distributions. Relationships between response variables and their covari-

ates, corresponding to the data sources, are byproducts.
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Table 5.9: Case-control weight and Ê[weight|height, age]. Empty entries in the table
correspond to subjects with the same height and age, but possibly different weights.

Control Case

Age Height Weight Ê[W | H,A] Weight Ê[W | H,A]

27 162.56 58.967 69.08335 58.967 68.53652
28 162.56 77.111 69.05132 65.771 68.59858

68.039
30 165.10 68.039 72.20524 72.575 72.0028
37 165.10 69.40 72.42138 63.503 71.8504
25 167.64 86.183 73.68129 72.575 73.69978

90.718
63.503

30 167.64 72.575 74.81333 88.451 74.93543
18 170.18 61.235 73.67032 72.575 73.67518
32 170.18 70.307 76.53351 81.647 76.64543

63.503
37 172.72 74.843 77.88598 88.451 77.9417
40 172.72 70.307 77.97789 90.718 78.0441

77.111
22 175.26 77.111 76.62195 86.183 76.70862

65.771 65.771
79.379 86.183
83.915
65.771

25 175.26 68.039 77.14234 79.379 77.21755
83.915 72.575
74.843 83.915
83.915 74.843
79.379 72.575
86.183 74.843

61.235
61.235
65.771
79.379
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Table 5.10: Case-control weight and Ê[weight|height, age] continued. Empty entries
in the table correspond to subjects with the same height and age, but possibly
different weights.

Control Case

Age Height Weight Ê[W | H,A] Weight Ê[W | H,A]

26 177.80 79.379 78.74752 77.111 78.92705
81.647 104.326
58.967 77.111
81.647
79.379
74.843
88.451
68.039

42 177.80 70.307 80.50100 91.626 80.67493
20 180.34 79.832 79.17623 84.368 79.35688

65.771 68.039
77.111 79.379
79.379 81.647

72.575
33 180.34 79.379 81.92536 77.111 82.17689

81.647
18 182.88 77.111 80.23013 68.039 80.29011
41 182.88 79.379 83.65558 86.183 84.06475
19 185.42 63.503 81.45580 68.039 82.09186

94.347
68.039

21 185.42 86.183 82.46773 79.379 82.78140
72.575 77.111
102.058 97.522

22 190.50 97.522 85.23493 86.183 85.64845
95.254 71.668

31 190.50 102.058 86.05980 104.326 86.27744
74.843

22 193.04 86.183 86.73352 102.058 87.18440
80.739

24 193.04 99.337 87.50020 108.862 88.23938
86.183
99.790
108.862

34 193.04 113.398 87.72937 88.451 88.58960
117.934

34 195.58 83.915 88.81524 89.811 89.036535
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Chapter 6

Estimation of death rates in U.S. States with small subpopulations

6.1 Introduction

In this Chapter we use historical death rate data from states with small pop-

ulations to fit appropriate probability models supported discretely at zero in order

to replace zero death rate observations with estimates of their expected values.

Since expected mortality is positive, its logarithmic transformation is not a prob-

lem. Then, we use a combination of the actual and the estimated points to fit the

eight parameter Heligman-Pollard model [30] to smooth the data and get estimated

values of mortality for older ages. In some cases this procedure is useful in relaxing

the minimum sample size criteria for the publication of state-race-sex specific life

tables.

In Section 6.2 we give a detailed description of the probability models that were

used to estimate the expected number of deaths, or the corresponding expected

death rate, when the observed value was zero, and of the procedures used to fit

the Heligman-Pollard model. In Section 6.3 we present the results of our analysis,

including a comparison of the performance of the probability models relative to the

percentage of observed zeros in the data set, and figures of mortality curves fitted

for each data set.
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6.2 Models and methods

This Section consists of three parts: In the first part we describe the concept

of the mixed distribution, on which most of the probability models are based. In

the second part we present the probability models, and in the third part we give a

brief description of the Heligman-Pollard model.

6.2.1 Mixed distributions

The response variable in our data is either the number of deaths or the corre-

sponding mortality rate (death rate) for a given year and age. Because we address

zero− valued observations, almost all our probability distribution models are mix-

tures of a discrete component defined at 0, and a second component defined for

values greater than 0. The latter can be either discrete or continuous depending on

the response variable. To introduce this basic feature of the present work, it suffices

to consider a continuous second component only. The discrete component is a spike

at zero whose magnitude is equal to the probability of admitting the value zero.

Some useful references on mixed models include [2], [3], [31], [33] and [53].

Let Y be the variable of interest representing mortality rate. A natural model

for Y is a mixed distribution probability model: Y = 0 with probability 1−p, where

0 < p < 1, but otherwise, for positive rate, Y follows a continuous distribution with

cumulative distribution function (cdf) F (y,θ1). Here, θ1 represents a vector of

parameters. Then, the distribution of Y is a mixture of discrete and continuous
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components,

P (Y ≤ y) ≡ Gm(y; p,θ1) = (1− p)H(y) + pF (y;θ1) (6.1)

where H(y) is a step function:

H(y) =


0, y < 0

1, y ≥ 0.

The corresponding generalized probability density is:

gm(y; p,θ1) = (1− p)1−I[y>0][pf(y;θ1)]
I[y>0], y ≥ 0 (6.2)

where f(y;θ1) is a probability density function conditional on Y > 0 corresponding

to F (y;θ1), and I[A] is the indicator of the event A. That is, I[A] = 1 if A occurs,

and I[A] = 0 if A does not occur.

In this setup, the goal is to estimate the mean of the mixed distribution,

E(Y ) = pE(Y | Y > 0) ≡ pα (6.3)

which is a function of θ ≡ (p,θ1). Observe that (6.3) is a product of two factors, p

and α ≡ E(Y | Y > 0), corresponding to the two distribution components. We can

estimate (6.3) using the maximum likelihood estimates of p and α, as in the mixed

lognormal distribution, or by regressing each of the two factors on covariates and
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then taking the product of the two regressions, as in the so called two-part, hurdle,

and zero-inflated models. All these models are discussed next.

6.2.2 Probability models

In the models below the response variable Y can be either the number of

deaths for a given age and year, or the corresponding death rate. Thus, in the mixed

lognormal distribution and the two-part model we model death rate, whereas the

Poisson, Hurdle and the Zero-inflated models address the closely related number of

deaths, from which expected death rate can be estimated. In the regression models

we used, the independent variables are continuous, binary , or a mixture of the two.

6.2.2.1 Mixed lognormal distribution

Let Y denote death rate. Referring to the general mixed distribution (6.1), a

useful model is the mixed lognormal distribution where the continuous part of the

distribution of death rate is lognormal LN(µ, σ2), with density,

f(y;µ, σ) =
1√
2πσy

exp{−(log y − µ)2/(2σ2)}, y > 0 (6.4)

Let θ = (p, µ, σ). Then the mean of Y is a function, say g, of θ,

g(θ) = E(Y ) = p exp{µ+ σ2/2}, (6.5)
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and we have to estimate θ = (p, µ, σ). Assuming that the data are independent and

identically distributed (iid), the maximum likelihood estimators for p, µ, σ are:

p̂ =

∑
i I[yi > 0]

n
, µ̂ =

∑
i ln(yi)I[yi > 0]∑

i I[yi > 0]
, σ̂ =

√∑
i (ln(yi)I[yi > 0]− µ̂)2∑

i I[yi > 0]
,

where n is the sample size and −∞ · 0 ≡ 0. For the sake of meaningful discussion,

we rule out the case that
∑

i I[yi > 0] = 0. The estimated mean death rate is then

Ê(Y ) = p̂ exp{µ̂+ 0.5σ̂2}. (6.6)

Estimation of the parameters in mixed distributions is discussed in detail in [3], [31],

[33], [53].

We note that the data are not iid since death rates are decreasing moderately

as a function of time. Hence there is dependence in annual rates [36]. We therefore

must view our maximum likelihood estimates in a partial sense [32]. Our data

analysis indicates that despite of this difficulty, the prediction results are quite

satisfactory.

In order to overcome the time and age trends, the mixed lognormal model is

applied to non-overlapping windows of either 10 or 11 years and two consecutive

ages. For this short window of time×age it is reasonable to assume that death rates

are approximately equidistributed. Each sample consists of all the observations for

the length of the window in time and for two consecutive ages, for example, ages
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1 and 2, 3 and 4, and so on over 10 or 11 years. This gives 20 to 22 observations

per sample. For every sample the maximum likelihood estimators for p, µ, σ are

computed and then used in the estimation of (6.6).

The continuous part of the distribution of death rate can also be modeled by

the Gamma or Beta distributions. However, since there is no noticeable significant

improvement, the mixed lognormal model is preferable for reasons of computational

efficiency.

The precision of the maximum likelihood estimates is obtained from the diag-

onal of the Fisher information matrix per observation,

If = −E

(
∂2 log g(y,θ)

∂θ∂θ′

)
. (6.7)

In particular, for the mixed lognormal distribution the Fisher information matrix is

If =


1

p(1−p)
0 0

0 p
σ2 0

0 0 2p
σ2


and

√
n{(p̂, µ̂, σ̂)′ − (p, µ, σ)′} → N(0, I−1

f ).

Using the delta method [64] the variance of the mean estimator (6.6) is

Var(Ê(Y )) ≈ 1

n
exp(2µ+ σ2)[p(1− p) + pσ2 + pσ4/2]. (6.8)

89



Equation (6.8) can be estimated by replacing (p, µ, σ) by their ML estimates. Then

approximate 95% confidence intervals can be calculated as

Ê(Y )± 1.96 ·
√
widehatVar(Ê(Y )).

6.2.2.2 Two-Part model

Let Y denote death rate. In the two-part model the regression of p on covari-

ates is referred to as the “hurdle component,” and the regression of α on covariates

is referred to as the “levels component” [4]. The hurdle component is different from

the “hurdle model”. In the general case when both numerical variables and fac-

tors are available, the hurdle component can be modeled by logistic regression. An

example (using the logit link) is given by

P(Yage, year > 0) =
exp(η)

1 + exp(η)

where

η = µ+ αage + γyear + β log(population sizeage,year),

or, in matrix notation we write,

P(Y > 0) =
exp(Zα+Xβ)

1 + exp(Zα+Xβ)
, (6.9)

where Z is a matrix consisting of 0’s and 1’s, and X contains the covariate values.

Model (6.9) is a general hurdle component in matrix form. The levels component
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is an exponential model mimicking the lognormal mean. In matrix notation the

general form of the levels component is,

E(Y | Y > 0) = exp(Z̃α+ X̃β) · λ, (6.10)

where Z̃ is a matrix containing 0’s and 1’s, X̃ contains the covariate values and

λ is the smearing factor estimated by the average of the exponentiated residuals

ε̂ = log(Y )− (Z̃α̂+ X̃β̂) ([15],[44]).

Given the year and age, the expected death rate is the product of the two

components (6.9) and (6.10). Zero death rates then are replaced by the estimates

of the corresponding products.

Let

p = P(Yage, year > 0)

α ≡ E(Yage, year | Yage, year > 0)

and let p̂ and α̂ be their corresponding estimates. Then

Ê(Y ) = p̂ · α̂ = (p̂− p+ p)(α̂− α+ α) ⇒

p̂ · α̂− p · α = p(α̂− α) + α(p̂− p) + (p̂− p)(α̂− α)

For large samples p̂ → p and α̂ → α so the magnitude of Var((p̂ − p)(α̂ − α)) is

much smaller than that of Var(p̂ − p) and Var(α̂ − α). If p̂, α̂ independent, then
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asymptotically:

V̂ar(p̂ · α̂) ≈ p̂2Var(α̂) + α̂2Var(p̂) (6.11)

Approximate 95% confidence intervals can be calculated as

Ê(Y )± 1.96
√

p̂2Var(α̂) + α̂2Var(p̂).

In our data analysis, the smearing factor was very close to 1, and thus had no

bearing either on Ê(Y ) or on the confidence intervals. It is interesting to compare

this interval with that obtained formally from the mixed lognormal case using (6.8),

replacing p, µ, σ2 with their estimates under the two-part model.

6.2.2.3 Poisson regression

We assume that Y , the number of deaths, follows a Poisson distribution with

some mean µ:

f(y;µ) =
exp(−µ)µy

y!
, y = 0, 1, 2 . . .

Using the Poisson GLM we model

g(µ) = Zα+Xβ,

where Z, α, X and β are defined as in the two-part model, and α and β are

estimated using maximum likelihood. Observe that under the Poisson distribution

the mean is equal to the variance. However count data often show greater variability
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than is possible under the Poisson model. In this case a negative binomial GLM

model is more appropriate. Then,

f(y;µ, θ) =
Γ(y + θ)

Γ(θ)y!

µyθθ

(µ+ θ)y+θ
, y = 0, 1, 2, . . .

which gives E(Y ) = µ, Var(Y ) = µ+µ2/θ and we let g(µ) = Zα+Xβ. Regression

analysis of count data is discussed in detail in [1],[9],[32], [45].

Standard errors and confidence intervals for the mean number of deaths can

be obtained using the estimated Fisher information matrix. Confidence intervals

for the mean death rate are obtained from the previous expressions by dividing the

variances by the square of the population size for a given age and year.

6.2.2.4 Hurdle model

Let Y denote the number of deaths. Hurdle models are two-component models,

where a truncated count component is employed for positive counts, and a hurdle

component models the zeros. Formally,

fhurdle(y;µ, γ) =


fzero(0, γ), y = 0

(1−fzero(0,γ))·fcount(y,µ)
(1−fcount(0,µ))

, y > 0

(6.12)

Ordinarily, the count component is modeled as a left truncated Poisson distribution

truncated at 0 and defined for y > 0, or, if there is overdispersion in the data,

as a left truncated negative binomial distribution, again truncated at 0. Then, if

µ is the mean of the distribution, we use the GLM model g(µ) = Zα + Xβ to
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estimate µ. The hurdle component is naturally modeled using a binomial GLM.

The model parameters are estimated by maximum likelihood. Since the likelihood

for the general hurdle model is the product of the likelihood of the zero component

and the likelihood of the count component, the two components can be maximized

separately using GLM theory [50].

Suppose we model the hurdle component using binomial GLM, such that 1−

fzero = p, and fcount is the Poisson distribution with mean µ. Then

E(Y ) =
pµ

1− exp(−µ)
.

If fcount is the negative binomial distribution with mean µ and dispersion parameter

θ, then

E(Y ) =
pµ

1− ( θ
µ+θ

)θ
.

From (6.1) we obtain the useful formula for the variance,

Var(Y ) = P(Y > 0)Var(Y | Y > 0) + P(Y > 0)(1− P(Y > 0))(E(Y | Y > 0))2.

(6.13)

Let fc(0) = fcount(0, µ) and let σ2 be the variance of fcount(y, µ). Then, in the

general hurdle model (6.12):

Var(Y ) = p

[
σ2 + µ2

1− fc(0)
− µ2

(1− fc(0))2

]
+ p(1− p)

(
µ

1− fc(0)

)2

. (6.14)
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6.2.2.5 Zero-inflated model

Zero inflated models were first suggested by Lambert [41]. As before, they are

also two-component models, except that a point mass at zero is now combined with

a count distribution such as Poisson or negative binomial, which are supported at

zero as well. Therefore, the probability of a zero is constructed from two sources:

the point mass at zero and the count distribution. Let π ≡ 1− p be the unobserved

probability of belonging to the point mass component. Then the distribution of the

number of deaths Y is modeled as

fzeroinfl(y;µ) = πI{0}(y) + (1− π)fcount(y;µ), y = 0, 1, 2, . . . . (6.15)

The probability π can be modeled using binomial GLM. Let µ be the mean

of the count distribution. Then we can use the GLM model g(µ) = Zα +Xβ to

estimate µ. However it is difficult to estimate the model parameters directly from

the log likelihood. For this reason Lambert proposed to use the EM algorithm [41],

[83]. Assume Zi = 1 when Yi is from the point mass component and Zi = 0 when

Yi is from the count component. Then at the E step we estimate Zi by its expected

value under the current estimates of the model parameters and at the M step, with

Zi’s fixed, we maximize the complete log likelihood. The process is iterated until

both the estimates for the model parameters and for the Zi’s converge. These are the

MLE estimates for the zero-inflated model. In the case that the count component

is Poisson distribution with mean µ, the mean of Y is E(Y ) = pµ.

It should be noted that if there are only a few positive counts and π and µ
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are not related then only simple models should be considered for the count compo-

nent. The parameters of a zero-inflated model can be estimated only if the observed

information matrix is nonsingular [41].

If the count component is Poisson distribution with mean µ then directly from

(6.15) the approximate 95% confidence interval for the mean number of deaths is

Ŷ ± 1.96
√
p̂µ̂+ p̂(1− p̂)µ̂2. (6.16)

6.2.3 The Heligman-Pollard model

In 1980 Heligman and Pollard [30] proposed modeling the graduation of the

age pattern of mortality using the eight parameter curve:

qx
1− qx

= A(x+B)C +De−E(log x−logF )2 +GHx, (6.17)

where qx is the probability of dying within one year for a person aged x exactly.

All the parameters in (6.17) have demographic interpretations and are therefore

considered to take non-negative values [25]: A, B, C reflect early age mortalities,

D, E, F reflect mid-life mortality components, and G, H are late age mortality

components. Let qx = dx
nx

be the death rate for a person aged x, where dx is the

number of people aged x who died at a certain year and nx is the total number of

people aged x who were alive at the beginning of the year. Then if we plot log qx as

a function of age x for a certain year, we observe that the mortality curve has the
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three components that Heligman and Pollard described in their paper and can be

modeled using (6.17). Wei et al. [75] showed that the Heligman-Pollard model can

be used to smooth the observed mortalities in race-sex U.S. sub-populations and

provide estimates for the mortality in large age groups.

Heligman and Pollard suggested estimating the values of the parameters in

(6.17) by least squares using Gauss-Newton iteration. We estimated the parameters

using the following objective functions:

S2 =
∑
x

wx(qx − q̇x)
2, with wx =

1

q2x
(6.18a)

S2 =
∑
x

(
qx
q̇x

− 1)2, (6.18b)

S2 =
∑
x

(log(qx)− log(q̇x))
2 (6.18c)

where qx is the fitted value at age x and q̇x is the observed mortality rate. In (6.18a)

the weights are updated in each iteration. Since a large number of parameters

has to be estimated, and the Gauss-Newton algorithm is sensitive to the starting

values, we try minimizing (6.18a)-(6.18c) using a series of different starting values.

The objective function (6.18a) is easy to fit, however, the estimated values for the

parameters B, D, E are sometimes negative.

6.3 Data application

For our analysis, we used data from the NCHS public-use mortality files from

1970 to 2002. The models described above were applied to the population of black
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females in California (CA), Iowa (IA), Minnesota (MN), Nevada (NV), New Mexico

(NM), Nebraska (NE), Oregon (OR), and Rhode Island (RI) for the period 1970−

2002. With the exception of California, life tables for 1989−91 were not published for

the black population in these states. The population of black females in California

contains only a small number of zeros and is used to check the model quality, whereas

the other data sets contain a medium to large proportion of zeros, even for older

ages. The largest proportions of zeros are observed in New Mexico and Nevada. For

each state, the race-sex specific population size is available annually only for ages in

five year intervals e.g. 0− 4, 5− 9 etc. The exact annual population size for every

age and for race-sex specific groups is available at the national level only. Using

interpolation we can obtain estimates of the race-sex specific sub-population size for

every age at the state level. Therefore, for each state available are the population

size, number of deaths, and death rate, corresponding to each age (1 − 84) and

year (1970− 2002) combination. Data for age 0 and for ages 85+ are also available

but are excluded from the present analysis because they exhibit a much different

behavior. In ANOVA type regressions, the “as factors” main effects are represented

below by capital letters: Age, Year.

AIC, BIC as well as the root mean square error criterion’s were used to select

the most appropriate models within the families of Poisson, hurdle, and zero-inflated

models, for each state separately. For the family of two-part models the selection

was based on root mean square error (RMSE) and mean absolute error (MAE). The

mixed lognormal distribution was fitted to non overlapping windows as described

in section 6.2.2.1. The levels component of the two-part models was fitted to non
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Table 6.1: Covariates in the fitted two-part, Poisson, and negative binomial models
for the indicated states.

Two-Part Model Poisson Model Neg. Binomial Model
State Hurdle Comp. Levels Comp.
CA log(pop) Age, Year NA Age, Year, log(pop)
IA Age, Year Age, Year Age, Year NA
MN Age, Year, pop Age, Year Age, Year, log(pop) Age, Year, log(pop)
NE Age, Year, log(pop) Age, Year Age, Year, log(pop) NA
NM Age, Year, log(pop) Age, Year Age, Year, log(pop) NA
NV Age, Year, log(pop) Age, Year Age, Year, log(pop) Age, Year, log(pop)
OR Age, Year, log(pop) Age, Year Age, Year, offset=log(pop) Age, Year, log(pop)
RI Age, Year, log(pop) Age, Year Age, Year, log(pop) Age, Year, log(pop)

Table 6.2: Covariates in the fitted hurdle and zero-inflated models for the indicated
states. The count distribution was Poisson in all cases except for the hurdle model
under California, where negative binomial was used.

Hurdle Model Zero-Inflated Model
State Hurdle Comp. Count Comp. Hurdle Comp. Count Comp.
CA log(pop) Age, Year, log(pop) NA NA
IA Age, Year, log(pop) Age, Year, log(pop) Year, log(pop) Age, Year, log(pop)
MN Age, Year, pop Age, Year, log(pop) constant Age, Year, log(pop)
NE Age, Year, log(pop) Age, Year, log(pop) Year Age, Year, log(pop)
NM Age, Year, log(pop) Year, log(pop) Age, Year Year, log(pop)
NV Age, Year, log(pop) Age, Year, log(pop) constant Age, Year, log(pop)
OR Age, Year, log(pop) Age, Year, log(pop) log(pop) Age, Year, log(pop)
RI Age, Year, log(pop) Age, Year, log(pop) log(pop) Age, Year, log(pop)

zero observations only, and then the fitted model was applied in the estimation of

the mean death rate in the cases where the observed value was zero. The hurdle

component was modeled as a binomial GLM with logit link fitted to the whole data

set. The expected death rate was then the product of the levels and the hurdle

components. Poisson, hurdle, and zero-inflated models were fitted to the whole

data set. In Poisson and negative binomial GLM’s the log link was used. The

hurdle component for the hurdle models was always modeled as binomial GLM with

logit link. The count component for zero-inflated models was taken as Poisson with

log link, and for the hurdle models it was either Poisson or negative binomial with log

link. A zero-inflated model was not fitted to the California mortality data because

the data displayed a very small number of zeros.
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Table 6.3: Estimated expected values of log(death rates) provided by the different
models for black females living in Nevada in 2000.

Age Two-Part Mixed Log. Poisson Neg. Bin. Hurdle Zero-Infl.
2 -6.94314 -7.24543 -7.08009 -7.08116 -6.94178 -7.07965
5 -7.34094 -8.14984 -7.92234 -7.92250 -7.59846 -7.92195
6 -8.21745 -8.14984 -8.69531 -8.69691 -8.36856 -8.69501
7 -7.82242 -8.96718 -8.70695 -8.70730 -8.04079 -8.70665
8 -7.98267 -8.96718 -8.69763 -8.69820 -8.21543 -8.69740
10 -8.74442 -9.06976 -9.58980 -9.59023 -9.18880 -9.58959
11 -8.83071 -9.96421 -9.55804 -9.55884 -9.20170 -9.55774
12 -7.74899 -9.96421 -8.42722 -8.42850 -8.24954 -8.42683
13 -7.67346 -7.89281 -8.10648 -8.10796 -7.99588 -8.10606
14 -7.87022 -7.89281 -8.24168 -8.24430 -8.12569 -8.24123
15 -7.67390 -8.12793 -7.97005 -7.97250 -7.88955 -7.96961
17 -7.20033 -7.17614 -7.40813 -7.41028 -7.26214 -7.40760
19 -7.18161 -7.29072 -7.30322 -7.30589 -7.21920 -7.30263
21 -6.88942 -6.86785 -6.93396 -6.93748 -6.90148 -6.93335
23 -7.11821 -7.18543 -7.14420 -7.14751 -7.15275 -7.14357
24 -7.19266 -7.18543 -7.34725 -7.35005 -7.25640 -7.34666
27 -6.88141 -6.95996 -6.91894 -6.92108 -6.92245 -6.91838

6.3.1 Selection of the models

In Section 6.3.2 it will be shown that simpler models perform sufficiently well.

Tables 6.1 - 6.2 show the parameters which were used to fit each model for the

indicated states. In Nevada, Oregon and Rhode Island, there was some evidence of

overdispersion for the older age groups. For these states, we fitted hurdle models

with negative binomial count distribution. However, the fitted points were almost

identical to the points produced from hurdle models with Poisson count distribution.

Table 6.3 provides a comparison of the estimated expected values of log(death

rates) obtained from the different models for black females living in Nevada in 2000,

when the observed number of deaths is zero. The estimates show small differences.

Figures 6.1-6.8 show examples of some of the models fitted and the appropriate

confidence intervals for the year 2000. The points on the x-axis correspond to the
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ages where the observed death rates were 0. Despite the zeros, the age pattern

of mortality is captured well. Mixed lognormal was applied to non overlapping

windows of 11 years and two consecutive ages. The models give similar estimates

in all states and capture the pointed hook pattern for lower ages. In California

there are few zero death rates and the estimated points follow the actual points

closely apart from ages 35− 40 where there is some overestimation. In New Mexico

during the period 1970-2002 the observed death rate for age 12 was always zero, i.e.,

there were no deaths documented for black females during this period. The mixed

lognormal and two-part models could not produce expected values for age 12 and

the hurdle and zero-inflated models could not be fitted with the factor Age in the

count part because the observed information matrix was nonsingular. The expected

values for age 12 produced by Poisson, hurdle and zero-inflated model are indeed

much lower than the other data points. For this data set the simplest model to fit,

the Poisson model, performs very well, as seen from figure 6.5.

In some states, the observed nonzero death rates for young ages (up to 25 years)

are located higher than the predicted points. These are inflated points caused by

the small size of the population and the fact that the observed number of deaths

can be either zero or an integer number, not a fraction.

In Section 6.2 it was shown how to obtain asymptotic or approximate confi-

dence intervals for the models. These intervals are in general quite wide, and since

the death rate (or the corresponding number of deaths) can take only nonnegative

values, the lower 95% confidence interval is often zero. For this reason we also use

parametric bootstrap to obtain confidence intervals as follows:

101



0 20 40 60 80

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

Mortality curve for black females living in CA in 2000

age

lo
g

 D
e

a
th

 R
a

te

Actual points
Two−part model
95% Approx. CI
95% Fisher CI
95% Parametric bootstrap CI

Figure 6.1: Two-part model: CA, 2000
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Figure 6.2: Mixed lognormal: IA, 2000
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Figure 6.3: Poisson model: MN, 2000
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Figure 6.4: Hurdle model: NE, 2000
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Figure 6.5: Poisson model: NM, 2000
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Figure 6.6: Neg. binomial model: NV, 2000
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Figure 6.7: Zero-inflated model: OR, 2000
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Figure 6.8: Hurdle model: RI, 2000
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Suppose that the observations Y follow distribution fθ(y) and θ̂ is the ML

estimator of θ. We draw B samples of size n from the density fθ̂. For each sample

we calculate the maximum likelihood estimate of θ and we estimate E(Y ). The

sample variance of these B values of Ê(y) estimates the variance of Ê(y). A standard

reference for the bootstrap is [16]. In practice we construct parametric bootstrap

confidence intervals by selecting 1000 samples of size n = 33.

For the two-part models and the mixed lognormal distribution, parametric

bootstrap is used to calculate 95% confidence intervals for the log(death rate). For

the Poisson, hurdle and zero inflated models, parametric bootstrap is performed on

both the mean number of deaths and also on the corresponding log(death rate). By

performing bootstrap on log(death rate) directly we manage to calculate a lower

95% confidence interval. Obtaining bootstrap confidence intervals for log(death

rates) from bootstrap confidence intervals for the mean number of deaths proves

to be problematic as the lower confidence limit is often −∞, especially for young

ages. In Figures 6.1-6.8 parametric bootstrap 1 refers to the case where confidence

intervals were computed on the mean number of deaths and then using suitable

transformations we managed to calculate confidence intervals for log(death rate).

Parametric bootstrap 2 refers to the case where confidence intervals were computed

directly on log(death rate). An indication that the values selected for B and n work

well comes from the fact that the upper Fisher and the upper parametric bootstrap

confidence interval in mixed lognormal almost coincide. This is also the case for

the upper asymptotic and the upper parametric bootstrap confidence interval in

Poisson. In Poisson, hurdle, and zero-inflated models the two parametric bootstrap
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Table 6.4: California RMSE and MAE. Black females, ages 1-84, period 1970-2002.
RMSE MAE

CA Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. 3.401 0.242 0.700 5.314 1.493 0.180 0.516 3.226
Two-part 4.449 0.249 0.686 6.969 1.912 0.180 0.503 4.269
Neg. Bin. 3.520 0.270 0.643 5.505 1.530 0.195 0.474 3.328
Hurdle 3.519 0.270 0.643 5.503 1.529 0.195 0.473 3.328

Table 6.5: Iowa RMSE and MAE. Black females, ages 1-84, period 1970-2002.
RMSE MAE

IA Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. 16.696 1.251 3.962 26.040 7.713 0.838 2.901 16.609
Two-part 16.656 1.276 4.023 25.971 7.681 0.877 2.967 16.459
Poisson 15.410 1.277 4.002 23.996 7.357 0.869 2.965 15.665
Hurdle 15.543 1.275 4.018 24.207 7.365 0.858 2.952 15.702
Zero-infl. 15.613 1.275 4.011 24.318 7.380 0.859 2.964 15.733

confidence intervals are very similar, but the second parametric bootstrap produces

lower confidence intervals even for young ages.

For the two part model, equation (6.11) gives a crude approximation for the

variance when p and α are independent. We can sidestep the assumption of inde-

pendence by constructing parametric bootstrap confidence intervals. In retrospect,

(6.11) gives confidence intervals very close to the Fisher confidence intervals, but

somewhat larger than the confidence intervals obtained from bootstrap. The Fisher

confidence interval is wide and contains most of the actual points (observations).

This generally holds for the asymptotic and approximate confidence intervals pro-

duced from all the models. In the hurdle model the lower 95% approximate confi-

dence interval is almost always missing, whereas the upper 95% approximate con-

fidence interval is quite large for some ages. In the zero inflated model the lower

95% approximate confidence interval is also missing and the upper 95% approximate

confidence interval is large for some ages, but not as wide as in the hurdle model.
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Table 6.6: Minnesota RMSE and MAE. Black females, ages 1-84, period 1970-2002.
RMSE MAE

MN Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. 14.203 0.944 3.111 22.179 6.614 0.684 2.286 14.394
Two-part 14.407 0.944 3.135 22.553 6.698 0.653 2.281 14.631
Poisson 13.630 0.937 3.134 21.270 6.386 0.661 2.301 13.840
Neg. Bin. 13.630 0.937 3.134 21.270 6.386 0.661 2.301 13.840
Hurdle 13.643 0.930 3.143 21.291 6.350 0.650 2.299 13.762
Zero-infl. 13.629 0.937 3.134 21.269 6.386 0.661 2.301 13.840

Table 6.7: Nebraska RMSE and MAE. Black females, ages 1-84, period 1970-2002.
RMSE MAE

NE Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. NA NA 3.477 24.266 NA NA 2.590 15.647
Two-part 15.357 1.135 3.485 23.966 7.243 0.844 2.576 15.635
Poisson 14.961 1.133 3.492 23.339 7.112 0.845 2.596 15.298
Hurdle 14.985 1.130 3.484 23.378 7.090 0.832 2.590 15.258
Zero-infl. 14.963 1.133 3.491 23.341 7.110 0.845 2.595 15.293

When the amount of information is substantial (few points with zero death rate) as

in California, the confidence intervals contain most of the actual points.

6.3.2 Model comparison

Tables 6.4 to 6.11 provide model comparison in terms of root mean-square

error (RMSE) and mean absolute error (MAE) computed for death rate and broken

down by period, state, model, and age group 1 − 30, 31 − 50 and 51 − 84 years.

In tables 6.9- 6.11, NA in the mixed lognormal or the two-part model refers to

cases where the RMSE and MAE were not calculated. In these cases, some of the

samples consisted only of zeros and therefore no estimators could be produced by

these models for these ages. Since the models are based on ramifications of a basic

mixed distribution with an atom at zero, there are small differences between the

models as judged by overall RMSE and MAE for the indicated age grouping and

period. Thus, we cannot point to a clear winner among the models. However, for
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Table 6.8: New Mexico RMSE and MAE. Black females, age 1-84, period 1970-2002.
RMSE MAE

NM Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. NA NA 4.495 31.459 NA NA 3.431 19.883
Two-part NA NA 4.515 32.408 NA NA 3.372 20.197
Poisson 20.474 1.831 4.503 31.949 9.315 1.116 3.427 20.013
Hurdle 21.920 1.840 4.523 34.235 9.698 1.161 3.511 20.871
Zero-infl. 22.628 1.832 4.677 35.343 9.926 1.173 3.688 21.319

Table 6.9: Nevada RMSE and MAE. Black females, age 1-84, period 1970-2002.
RMSE MAE

NV Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. NA NA 3.582 31.442 NA NA 2.559 18.615
Two-part 20.055 1.142 3.505 31.390 8.351 0.792 2.510 18.455
Poisson 20.165 1.144 3.512 31.563 8.350 0.800 2.535 18.432
Neg. Bin. 20.153 1.143 3.511 31.543 8.348 0.800 2.535 18.427
Hurdle 19.900 1.139 3.488 31.146 8.234 0.785 2.502 18.177
Zero-infl. 19.898 1.139 3.488 31.142 8.233 0.785 2.502 18.177

some individual years there can be appreciable differences in the estimated mean

death rates from the different models. To simplify the presentation of the numerical

results, all entries in the tables are multiples of 10−3.

It is interesting to observe that the mixed lognormal model, which requires no

covariates, performs well when there is a large proportion of non-zero observations.

It is the best model in California, a data set with few zeros, and it performs con-

sistently well in the windows 31 − 50 and 51 − 84 for most of the other data sets,

where the percentage of zeros decreases rapidly. On the other hand, the two-part

model, although very similar to mixed lognormal and equally easy to fit, performs

consistently somewhat worse (“below average” as it were) than the rest of the mod-

els. When the number of zeros is not too high, the Poisson GLM is quite adequate.

It has the advantage that it is very easy to fit and obtain confidence intervals for

the mean number of deaths. The hurdle model often offers a small improvement,

especially for data sets which contain many zero observations, but computation-
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Table 6.10: Oregon RMSE and MAE. Black females, age 1-84, period 1970-2002.
RMSE MAE

OR Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. NA NA 4.178 25.522 NA NA 3.163 16.358
Two-part 16.837 1.286 4.226 26.238 7.784 0.877 3.071 16.651
Poisson 16.698 1.298 4.199 26.019 7.755 0.870 3.131 16.550
Neg. Bin. 16.704 1.299 4.201 26.028 7.759 0.871 3.137 16.557
Hurdle 16.682 1.283 4.193 25.994 7.702 0.856 3.073 16.467
Zero-infl. 16.665 1.294 4.202 25.967 7.749 0.879 3.146 16.519

Table 6.11: Rhode Island RMSE and MAE. Black females, age 1-84, period 1970-
2002.

RMSE MAE
RI Total 1-30 yrs 31-50 yrs 51-84 yrs Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed log. NA NA 4.724 27.252 NA NA 3.313 17.380
Two-part 17.916 1.403 4.691 27.899 8.184 0.898 3.193 17.549
Poisson 17.496 1.402 4.683 27.233 8.149 0.893 3.305 17.401
Neg. Bin. 17.499 1.402 4.683 27.238 8.150 0.893 3.304 17.403
Hurdle 17.577 1.397 4.693 27.361 8.115 0.877 3.208 17.388
Zero-infl. 17.447 1.400 4.681 27.155 8.129 0.901 3.308 17.342

ally it is time consuming. Moreover, in the presence of a large number of zeros,

the variance covariance matrix of the estimates has often missing values. In this

case confidence intervals could only be calculated using approximate methods or

parametric bootstrap. Zero-inflated models are appropriate when there is an excess

number of zeros, except that computational difficulties are encountered when the

observed information matrix is singular or close to being one, as was often the case

with our data. Our experience indicates that in general no appreciable improvement

is achieved over the Poisson or the hurdle models.

It should be noted that, fitting the models required a certain amount of exper-

imentation, and that in the tables we report the results corresponding to successful

fits.
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California: From Table 6.4, in terms of RMSE and MAE, apparently all the

models perform quite similarly for the California data set. However, in some age

categories the two-part model gives slightly higher RMSE and MAE.

Iowa: From Table 6.5, notwithstanding the overall slight advantage of the Poisson

and the hurdle models, and the slight advantage of the mixed lognormal model in

the age categories 1-30 and 31-50, the models perform similarly.

Minnesota: From Table 6.6, the MAE points to the hurdle model as a slightly

better model, however, the models’ performance is practically the same.

Nebraska: From Table 6.7, the Poisson and the hurdle models perform well in

this data set. The NA’s in the mixed lognormal refer to cases where RMSE/MAE

could not be calculated because one or more of the samples consisted entirely of

zero observations.

New Mexico: From Table 6.8, the Poisson model fits the data quite well. Another

possible model is mixed lognormal for the window 51-84 yrs.

Nevada: From Table 6.9, hurdle and zero-inflated models have smaller RMSE

and MAE than the rest of the models. In the 31-50 and 51-84 window the two-part

model performs also well.

Oregon: From Table 6.10, we observe that the Poisson, hurdle, and zero-inflated

models perform well for young ages. For older ages, where more nonzero observations
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Figure 6.9: H-P curve: CA, 2000
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Figure 6.10: H-P curve: OR, 2000

are available, the mixed lognormal model is quite adequate.

Rhode Island: As before, from Table 6.11, the Poisson, hurdle, and zero-inflated

models perform reasonably well.

6.3.3 Fitting the Heligman-Pollard model

The next step was to fit the Heligman-Pollard (H-P) model to the death rates

for black females living in California, Iowa, Minnesota, Nebraska, New Mexico,

Nevada, Oregon and Rhode Island for the year 2000. The points q̇x used to fit

the curve were the actual non zero observed death rates and, when the observed

death rates were zero, the predicted death rates from one of the probability models

mentioned above for ages 1 week, 1 month and 1-84 years. There was no restriction
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Figure 6.11: Comparison of H-P curves: NE,
2000
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Figure 6.12: Comparison of H-P curves: NM,
2000

on the number of iterations but the minimum step-size factor allowed on any step

in the iteration was restricted to be at least 1/10,000. In the vast majority of cases

the iteration stopped before it converged. In each state a total of five or six curves

were fitted, depending on whether a negative binomial model was fitted to the data.

We tried to minimize the objective functions (6.18a)-(6.18c). Since each objective

function gives different estimates for the parameters A, B, C, D, E, F , G and H,

we selected the set of parameters that had the lowest MSE (calculated on the death

rates). The set of initial values plays a significant role in the fitting of the H-P

model because the number of parameters is large and the parameters are dependent

on each other. The initial values used were provided by Wei et al (2003) [75]. We

also tried to use the final parameter values obtained by (6.18a) as initial values
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in minimizing (6.18b), (6.18c). We did the same for the final values obtained by

(6.18b).

The parameters obtained by minimizing (6.18b) lead consistently to a curve

that doesn’t fit as well as the curves obtained by minimizing (6.18a), (6.18c). The al-

gorithm also makes fewer iterations. The best curve is most often given by minimiz-

ing (6.18c). Minimizing the objective function (6.18c) has the additional advantage

that the estimated parameter values were almost always positive.

Figures 6.9-6.10 show two examples of the curves fitted. In 2000 in California,

where the population of black females is large, deaths were observed for all ages so

only the actual points were used to fit the H-P curve. The mortality points are more

concentrated and there is not much variation. The estimated H-P curve follows the

points closely and capture the pattern of mortality during early childhood and at

older ages, as well as the “accident hump”. On the other hand, in 2000, in Oregon

there were very few deaths observed for the ages 0 − 30. The population of black

females for this year ranged approximately from under one hundred up to eight

hundred. We observe that the mixed lognormal managed to “reconstruct” all the

missing part, and then the fitted H-P curve smoothed the data.

Since there are small differences between the probability models, the different

H-P curves fitted for the same state are very close. The most important differences

are observed in the drop in mortality during early childhood (e.g. in Oregon, New

Mexico, Minnesota and Rhode Island). For example, consider figures (6.11), (6.12).

New Mexico is a state where the population of black females ranges between 7−547

and therefore only a very small number of deaths is observed. During the period
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1970-2002, only one death for age 11 and no deaths for age 12 are observed. The

probability models gave different predictions for these ages, which affected in turn

the shape of the curve. However all the curves did capture the distinct components

of mortality.

In Nebraska, New Mexico and Rhode Island the mixed lognormal model failed

to produce estimates for some ages. In this case we still use the estimates obtained

for other ages and fitted the H-P model. When suitable estimates of the parameters

are found, the H-P model is used to produce estimates for all ages between 0 and

130.

6.4 Discussion and Conclusions

We have applied a variety of probability models to mortality data from eight

states with small populations to compensate for zero observed death rates. Most

of the models are based on mixed distributions. In general it is difficult to select

a superior model. A model may be best for a certain age group only to be out-

performed by another model at another age group. Mixed lognormal models with

non-overlapping windows use subsets of the data to produce estimates, whereas the

rest of the models are fitted using all available data. Generally, the mixed lognormal

model is easy to fit, but it performs well only when there is sufficient non-zero data

available, whereas the hurdle and zero-inflated models “thrive” when there are many

zero observations. The Poisson model was found useful in all cases. All this leads

to the practical conclusion that, whenever possible, it is sensible to apply routinely
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all the above models.

The size of the population can be an indication of which model would be more

appropriate to apply to the data. In states with extremely small subpopulations

(less than 1,000 for fixed year and age) there is an abundance of zero observations;

so this is an indication that more complicated models (hurdle, zero-inflated) would

fit the data better. However, if we are interested in estimating death rates for older

ages (51−84 yrs), a mixed lognormal model is easier to fit and gives equally good re-

sults. For larger subpopulations, provided that the samples in the non-overlapping

windows contain both zero and nonzero observations, it is worth considering the

mixed lognormal model as a plausible model. Regardless of the size of the subpopu-

lation, the two-part model is usually outperformed by the other models, whereas the

Poisson model is robust and can be used to compare results with the other models.

For each model confidence intervals were constructed using asymptotic meth-

ods and parametric bootstrap. From the figures, and in particular from the tables,

it is seen that for the most part the application of the different models yielded very

similar results, except for some individual years where the models produced very

different estimates.

From the figures, our probability models capture well both the time and the age

trends, and provide results consistent with the three basic characteristics of mortality

curves. Therefore, in some cases these models can help to relax the minimum sample

size requirements in the publication of reliable state race-sex specific life tables.

The probability models have to capture three distinct components of mortality:

the fall in mortality during early childhood, the “accident hump” between ages
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15 and 30 which is a distinct hump reflecting accident mortality, and the gradual

rise in mortality at older ages. The eight-parameter, non-linear Heligman-Pollard

equation can be used to describe the age pattern of mortality. In our application,

the Heligman-Pollard model was used to smooth the data and predict/extrapolate

mortality rates for older age groups. The curves were fitted to the observed nonzero

death rates and (in case of zero mortality) the estimated expected death rates for

each state. Usually the fitted curves were very similar regardless of the probability

models used.

Frequently, the algorithm for the estimation of the parameters in the Heligman-

Pollard equation did not converge. In some cases, the fitted curves did not capture

the vast drop in mortality in young ages, as it is seen by the estimated points.

These problems were caused by the fluctuation and the inflation of the observed

death rates. The fluctuation in the observed death rates is inversely related to the

size of the subpopulation. For small subpopulations there is noticeable variation in

the observed death rates, whereas the observed nonzero death rates for young ages

are often inflated.

Life tables are one of the most important products of the National Center

for Health Statistics (NCHS). They summarize mortality patterns and characteris-

tics, and as such, they have numerous actuarial applications. They also are widely

used in the formulation of public health policies. Their publication on state and

national levels is therefore crucial. In the previous methodology used to generate

State subpopulation tables, a subjective and labor intensive procedure limited the

reliability of death rate estimation, resulting in the non-publication of one fifth of
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the subpopulations with total deaths fewer than 700. Based on the work presented

in this article, we recommend a two-stage estimating/smoothing procedure: Firstly

apply a suitable probability model on the data to get an estimate of the mortality

rate for all ages. Secondly apply the Heligman-Pollard equation on the estimated

data to obtain parameter estimates and smooth the mortality curve, covering the

whole life span. In addition, the confidence interval from both stages could be used

to establish a criterion for publication of final life tables. This new methodology

will not only raise the reliability of estimation, but will also permit more efficient,

repeatable, and comparable results in generating US life tables.
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Chapter A

Appendix

A.1 Computing W

Fokianos [19] utilized a Taylor expansion and the central limit theorem to

show Theorem 2.1. Then, W = D−1SD′−1, where S = var

 1√
n
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 =
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Cov

(
1√
n

∂l(θ0, ζ)

∂θl

,
1√
n

∂l(θ0, ζ)

∂θl′

)
=

=
1

n
Cov

(
−

m∑
i=1

ni∑
j=1

ζl
∂w(xij ,θ0l)

∂θl∑m
k=1 ζkw(xij,θ0k)

+

nl∑
j=1

∂w(xlj ,θ0l)

∂θl

w(xlj,θ0l)
,

−
m∑
i=1

ni∑
j=1

ζl′
∂w(xij ,θ0l′ )

∂θl′∑m
k=1 ζkw(xij,θ0k)

+

nl′∑
j=1

∂w(xlj ,θ0l′ )

∂θl′

w(xl′j,θ0l′)

)

=
1

n

m∑
i=1

niCovi

 ζl
∂w(x,θ0l)

∂θl∑m
k=1 ζkw(x,θ0k)

,
ζl′

∂w(x,θ0l′ )

∂θl′∑m
k=1 ζkw(x,θ0k)


−nl′

n
Covl′

 ζl
∂w(x,θ0l)

∂θl∑m
k=1 ζkw(x,θ0k)

,

∂w(x,θ0l′ )

∂θl′

w(x,θ0l′)


−nl

n
Covl

 ∂w(x,θ0l)

∂θl

w(x,θ0l)
,

ζl′
∂w(x,θ0l′ )

∂θl′∑m
k=1 ζkw(x,θ0k)


=

m∑
i=1

ζiζlζl′Covi

 ∂w(x,θ0l)

∂θl∑m
k=1 ζkw(x,θ0k)

,

∂w(x,θ0l′ )

∂θl′∑m
k=1 ζkw(x,θ0k)


−ζlζl′Covl′

 ∂w(x,θ0l)

∂θl∑m
k=1 ζkw(x,θ0k)

,

∂w(x,θ0l′ )

∂θl′

w(x,θ0l′)


−ζlζl′Covl

 ∂w(x,θ0l)

∂θl

w(x,θ0l)
,

∂w(x,θ0l′ )

∂θl′∑m
k=1 ζkw(x,θ0k)



For l = 1, . . . , q, the elements of S22 are calculated as follows:

• for l = l′

var

(
1√
n

∂l(θ0, ζ)

∂µl

)
=

1

n
var

(∑m
i=1

∑ni

j=1(w(xij,θ0l)− 1)∑m
k=1 ζkw(xij,θ0k)

)
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=
1

n

m∑
i=1

nivari

(
w(x,θ0l)− 1∑m
k=1 ζkw(x,θ0k)

)
=

m∑
i=1

ζivari

(
w(x,θ0l)− 1∑m
k=1 ζkw(x,θ0k)

)

• for l ̸= l′

Cov

(
1√
n

∂l(θ0, ζ)

∂µl

,
1√
n

∂l(θ0, ζ)

∂µl′

)
=

=
1

n
Cov

(∑m
i=1

∑ni

j=1(w(xij,θ0l)− 1)∑m
k=1 ζkw(xij,θ0k)

,

∑m
i=1

∑ni

j=1(w(xij,θ0l′)− 1)∑m
k=1 ζkw(xij,θ0k)

)
=

1

n

m∑
i=1

niCovi

(
w(x,θ0l)− 1∑m
k=1 ζkw(x,θ0k)

,
w(x,θ0l′)− 1∑m
k=1 ζkw(x,θ0k)

)
=

m∑
i=1

ζiCovi

(
w(x,θ0l)− 1∑m
k=1 ζkw(x,θ0k)

,
w(x,θ0l′)− 1∑m
k=1 ζkw(x,θ0k)

)

For l = 1, . . . , q, the elements of S12 are calculated as follows:

• for l = l′

Cov

(
1√
n

∂l(θ0, ζ)

∂θl

,
1√
n

∂l(θ0, ζ)

∂µl

)

=
1

n
Cov

(
−

m∑
i=1

ni∑
j=1

ζl
∂w(xij ,θ0l)

∂θl∑m
k=1 ζkw(xij,θ0k)

+

nl∑
j=1

∂w(xlj ,θ0l)

∂θl

w(xlj,θ0l)
,

−
∑m

i=1

∑ni

j=1(w(xij,θ0l)− 1)∑m
k=1 ζkw(xij,θ0k)

)

=
1

n
Cov

( m∑
i=1

ni∑
j=1

ζl
∂w(xij ,θ0l)

∂θl∑m
k=1 ζkw(xij,θ0k)

,

∑m
i=1

∑ni

j=1(w(xij,θ0l)− 1)∑m
k=1 ζkw(xij,θ0k)

)

− 1

n
Cov

( nl∑
j=1

∂w(xlj ,θ0l)

∂θl

w(xlj,θ0l)
,

∑m
i=1

∑ni

j=1(w(xij,θ0l)− 1)∑m
k=1 ζkw(xij,θ0k)

)

=
m∑
i=1

ζiζlCovi

( ∂w(x,θ0l)

∂θl∑m
k=1 ζkw(x,θ0k)

,

∑m
i=1

∑ni

j=1(w(x,θ0l)− 1)∑m
k=1 ζkw(x,θ0k)

)
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−ζlCovl

( ∂w(x,θ0l)

∂θl

w(x,θ0l)
,

w(x,θ0l)− 1∑m
k=1 ζkw(x,θ0k)

)

• for l ̸= l′

Cov

(
1√
n

∂l(θ0, ζ)

∂θl

,
1√
n

∂l(θ0, ζ)

∂µl′

)

=
1

n
Cov

(
−

m∑
i=1

ni∑
j=1

ζl
∂w(xij ,θ0l)

∂θl∑m
k=1 ζkw(xij,θ0k)

+

nl∑
j=1

∂w(xlj ,θ0l)

∂θl

w(xlj,θ0l)
,

−
∑m

i=1

∑ni

j=1(w(xij,θ0l′)− 1)∑m
k=1 ζkw(xij,θ0k)

)

=
m∑
i=1

ζiζlCovi

( ∂w(x,θ0l)

∂θl∑m
k=1 ζkw(x,θ0k)

,

∑m
i=1

∑ni

j=1(w(x,θ0l′)− 1)∑m
k=1 ζkw(x,θ0k)

)

−ζlCovl

( ∂w(x,θ0l)

∂θl

w(x,θ0l)
,

w(x,θ0l′)− 1∑m
k=1 ζkw(x,θ0k)

)

MatrixD is the limit, as n → ∞, of− 1
n

(
∂2l(θ0,ζ)

∂θ∂µ

)
=

 − 1
n

∂2l(θ0,ζ)

∂θ∂θ′ − 1
n

∂2l(θ0,ζ)

∂θ∂µ′

− 1
n

∂2l(θ0,ζ)

∂µ∂θ′ − 1
n

∂2l(θ0,ζ)

∂µ∂µ′


It is easy to show that:

• For l = l′

∂2l(θ0, ζ)

∂θ2
l

= −
m∑
i=1

ni∑
j=1

∑m
k=1 ζkw(xij,θk)ζl

∂2w(xij ,θl)

∂θ2

l

−
(
ζl

∂w(xij ,θl)

∂θl

)2
(
∑m

k=1 ζkw(xij,θk))
2

+

nl∑
j=1

∂2 logw(xij,θl)

∂θ2
l

∂2l(θ0, ζ)

∂µ2
l

=
m∑
i=1

ni∑
j=1

(w(xij,θl)− 1)2

(
∑m

k=1 ζkw(xij,θk))
2

∂2l(θ0, ζ)

∂θlµl

= −
m∑
i=1

ni∑
j=1

∂w(xij,θl)

∂θl

ζl +
∑m

k=1
k ̸=l

ζkw(xij,θk)

(
∑m

k=1 ζkw(xij,θk))
2
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• For l ̸= l′

∂2l(θ0, ζ)

∂θl∂θl′
=

m∑
i=1

ni∑
j=1

ζl
∂w(xij ,θl)

∂θl
ζl′

∂w(xij ,θl′ )

∂θl′

(
∑m

k=1 ζkw(xij,θk))
2

∂2l(θ0, ζ)

∂µl∂µl′
=

m∑
i=1

ni∑
j=1

(w(xij,θl)− 1) (w(xij,θl′)− 1)

(
∑m

k=1 ζkw(xij,θk))
2

∂2l(θ0, ζ)

∂θlµl

=
m∑
i=1

ni∑
j=1

ζl
∂w(xij,θl)

∂θl

w(xij,θl′)− 1

(
∑m

k=1 ζkw(xij,θk))
2

Notice that since
∫
w(x,θi)dGm(x) = 1, for fixed i, then by differentiating twice we

have that
∫ ∂2w(x,θi)

∂θ2

i

dGm(x) = 0.

For l = 1, . . . , q, the elements of D are calculated as follows:

• For l = l′

− 1

n

∂2l(θ0, ζ)

∂θ2
l

=
m∑
i=1

ni

n

1

ni

ni∑
j=1

∑m
k=1 ζkw(xij,θk)ζl

∂2w(xij ,θl)

∂θ2

l

−
(
ζl

∂w(xij ,θl)

∂θl

)2
(
∑m

k=1 ζkw(xij,θk))
2

−nl

n

1

nl

nl∑
j=1

∂2 logw(xij,θl)

∂θ2
l

WLLN→
ni→∞

m∑
i=1

ζi

∫ ∑m
k=1 ζkw(x,θk)ζl

∂2w(x,θl)

∂θ2

l

−
(
ζl

∂w(x,θl)

∂θl

)2
(
∑m

k=1 ζkw(x,θk))
2 dGi(x)

−ζl

∫
∂2 logw(x,θl)

∂θ2
l

w(x,θl)dGm(x)

= Em


∑m

k=1 ζkw(x,θk)ζl
∂2w(x,θl)

∂θ2

l

−
(
ζl

∂w(x,θl)

∂θl

)2
∑m

k=1 ζkw(x,θk)


−ζl

∫
∂2 logw(x,θl)

∂θ2
l

w(x,θl)dGm(x)

= ζl

∫ (
∂2w(x,θl)

∂θ2
l

)2(
1

w(x,θl)
− ζl∑m

k=1 ζkw(x,θk)

)
dGm(x)
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= ζl

∫ (
∂2w(x,θl)

∂θ2
l

)2
∑m

k=1
k ̸=l

ζkw(x,θk)

w(x,θl)
∑m

k=1 ζkw(x,θk)
dGm(x) = D11

− 1

n

∂2l(θ0, ζ)

∂µ2
l

= −
m∑
i=1

ni

n

1

ni

ni∑
j=1

(w(xij,θl)− 1)2

(
∑m

k=1 ζkw(xij,θk))
2

WLLN→
ni→∞

−
m∑
i=1

ζi

∫
(w(x,θl)− 1)2

(
∑m

k=1 ζkw(x,θk))
2w(x,θi)dGm(x)

= −Em

[
(w(x,θl)− 1)2∑m

k=1 ζkw(x,θk)

]
= D22

− 1

n

∂2l(θ0, ζ)

∂θlµl

=
m∑
i=1

ni

n

1

ni

ni∑
j=1

∂w(xij,θl)

∂θl

ζl +
∑m

k=1
k ̸=l

ζkw(xij,θk)

(
∑m

k=1 ζkw(xij,θk))
2

WLLN→
ni→∞

m∑
i=1

ζi

∫
∂w(x,θl)

∂θl

ζl +
∑m

k=1
k ̸=l

ζkw(x,θk)

(
∑m

k=1 ζkw(x,θk))
2 w(x,θi)dGm(x)

=

∫
∂w(x,θl)

∂θl

ζl +
∑m

k=1
k ̸=l

ζkw(x,θk)∑m
k=1 ζkw(x,θk)

dGm(x)

= Em

∂w(x,θl)

∂θl

ζl +
∑m

k=1
k ̸=l

ζkw(x,θk)∑m
k=1 ζkw(x,θk)

 = D12

• For l ̸= l′

− 1

n

∂2l(θ0, ζ)

∂θl∂θl′
= −ζlζl′

m∑
i=1

ni

n

1

n

ni∑
j=1

∂w(xij ,θl)

∂θl

∂w(xij ,θl′ )

∂θl′

(
∑m

k=1 ζkw(xij,θk))
2

WLLN→
ni→∞

−ζlζl′
m∑
i=1

ζi

∫ ∂w(x,θl)

∂θl

∂w(x,θl′ )

∂θl′

(
∑m

k=1 ζkw(x,θk))
2w(x,θi)dGm(x)

= −ζlζl′Em

 ∂w(x,θl)

∂θl

∂w(x,θl′ )

∂θl′∑m
k=1 ζkw(x,θk)

 = D11

− 1

n

∂2l(θ0, ζ)

∂µl∂µl′
= −

m∑
i=1

ni

n

1

ni

ni∑
j=1

(w(xij,θl)− 1) (w(xij,θl′)− 1)

(
∑m

k=1 ζkw(xij,θk))
2

WLLN→
ni→∞

−
m∑
i=1

ζi

∫
(w(x,θl)− 1) (w(x,θl′)− 1)

(
∑m

k=1 ζkw(x,θk))
2 w(x,θi)dGm(x)

= −Em

[
(w(x,θl)− 1) (w(x,θl′)− 1)∑m

k=1 ζkw(x,θk)

]
= D22
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− 1

n

∂2l(θ0, ζ)

∂θlµl

= −
m∑
i=1

ni

n

1

ni

ni∑
j=1

ζl
∂w(xij,θl)

∂θl

w(xij,θl′)− 1

(
∑m

k=1 ζkw(xij,θk))
2

WLLN→
ni→∞

−
m∑
i=1

ζi

∫
ζl
∂w(x,θl)

∂θl

w(x,θl′)− 1

(
∑m

k=1 ζkw(x,θk))
2w(x,θi)dGm(x)

= −Em

[
ζl
∂w(x,θl)

∂θl

w(x,θl′)− 1∑m
k=1 ζkw(x,θk)

]
= D12

A.2 Computing S,V

Define

∇ ≡
(

∂

∂α1

, · · · , ∂

∂αq

,
∂

∂β1

, · · · ∂

∂βq

)′

Then E[∇l(θ)] = E[∇l(α1, . . . , αq,β1, . . . ,βq)] = 0. Let

Ej(t) ≡
∫

twj(t)dG(t)

A0(j, r) ≡
∫

wj(t)wr(t)

1 +
∑q

k=1 ρkwk(t)
dG(t)

A1(j, j
′) ≡

∫
wj(t)wj′(t)t

1 +
∑q

k=1 ρkwk(t)
dG(t)

A2(j, j
′) ≡

∫
wj(t)wj′(t)tt

′

1 +
∑q

k=1 ρkwk(t)
dG(t)

for j, j′ = 1, . . . , q. The entries in

V ≡ var

[
1√
n
∇l(α1, . . . , αq,β1, . . . ,βq)

]
(A.1)

are

1

n
var(

∂l

∂αj

) =
ρ2j

1 +
∑q

k=1 ρk
[A0(j, j)−

m∑
r=1

ρrA
2
0(j, r)]
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1

n
Cov(

∂l

∂αj

,
∂l

∂αj′
) =

ρjρj′

1 +
∑q

k=1 ρk
[A0(j, j

′)−
m∑
r=1

ρrA0(j, r)A0(j
′, r)]

1

n
Cov(

∂l

∂αj

,
∂l

∂β′
j

) =
ρ2j

1 +
∑q

k=1 ρk
[A0(j, j)Ej(t

′)−
m∑
r=1

ρrA0(j, r)A
′
1(j, r)]

1

n
Cov(

∂l

∂αj

,
∂l

∂β′
j′
) =

ρjρj′

1 +
∑q

k=1 ρk
[A0(j, j

′)Ej′(t
′)−

m∑
r=1

ρrA0(j, r)A
′
1(j

′, r)]

1

n
Cov(

∂l

∂βj

,
∂l

∂β′
j′
) =

ρjρj′

1 +
∑q

k=1 ρk
[−A2(j, j

′) + Ej(t)A
′
1(j, j

′)

+ Ej′(t)A1(j, j
′)−

m∑
r=1

ρrA1(j, r)A
′
1(j

′, r)]

+
1

n

nj∑
i=1

nj′∑
i=1

Cov[(xji1, . . . , yji), (xj′k1, . . . , yj′k)
′]

The last term is zero for j ̸= j′. As n → ∞,

− 1

n
∇∇′l(α1, . . . , αq,β1, . . . ,βq)] → S (A.2)

where S is a q(1+ p)× q(1+ p) matrix with entries corresponding to j, j′ = 1, . . . , q

− 1

n

∂l2

∂α2
j

→ ρj
1 +

∑q
k=1 ρk

∫
wj(t)[1 +

∑q
k ̸=j ρkwk(t)]

1 +
∑q

k=1 ρkwk(t)
dG(t)

− 1

n

∂l2

∂αj∂αj′
→ −ρjρj′

1 +
∑q

k=1 ρk

∫
wj(t)wj′(t)

1 +
∑q

k=1 ρkwk(t)
dG(t)

− 1

n

∂l2

∂αj∂β
′
j

→ ρj
1 +

∑q
k=1 ρk

∫
wj(t)t

′[1 +
∑q

k ̸=j ρkwk(t)]

1 +
∑q

k=1 ρkwk(t)
dG(t)

− 1

n

∂l2

∂αj∂β
′
j′

→ −ρjρj′

1 +
∑q

k=1 ρk

∫
wj(t)wj′(t)t

′

1 +
∑q

k=1 ρkwk(t)
dG(t)

− 1

n

∂l2

∂βj∂β
′
j

→ ρj
1 +

∑q
k=1 ρk

∫
wj(t)tt

′[1 +
∑q

k ̸=j ρkwk(t)]

1 +
∑q

k=1 ρkwk(t)
dG(t)

− 1

n

∂l2

∂βj∂β
′
j′

→ −ρjρj′

1 +
∑q

k=1 ρk

∫
wj(t)wj′(t)tt

′

1 +
∑q

k=1 ρkwk(t)
dG(t)
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