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Polymer positive-temperature-coefficient (PPTC) resettable fuse has been used 

to circuit-protection designs in computers, automotive circuits, telecommunication 

devices, and medical devices. PPTC resettable fuse can trip from low resistance to 

high resistance under over-current conditions. The increase in the resistance decreases 

the current and protects the circuit. After the abnormal current is removed, and/or 

power is switched off, the fuse resets to low resistance stage, and can be continuously 

operated in the circuit. The resettable fuse degrades with the operations resulting in 

loss or abnormal function of the protection of circuit. This thesis is focused on the 

prognostics methods for resettable fuses to provide an advance warning of failure and 

to predict the remaining useful life.  

The failure precursor parameters are determined first by systematic analysis 

using failure modes, mechanisms, and effects analysis (FMMEA) followed by a 

series of experiments to verify these parameters. Then the causes of the observed 



  

failures are determined by failure analyses, including the analyses of interconnections 

between different parts, the microstructures of the polymer composite, the properties 

(such as crystallinity) of the polymer composite, and the coefficient of thermal 

expansion (CTE) of different parts. The revealed failure causes include the cracks and 

gaps between different parts, the agglomerations of the carbon black particles, the 

change in crystallinity of the polymer composite, and the CTE-mismatches between 

different parts.  

Cross validation (CV) sequential probability ratio test (CVSPRT) is developed 

to detect anomalies. CV methods are introduced into SPRT to determine the model 

parameters without the need of experience and reduce the false and missed alarms. A 

moving window training updating based dynamic model parameter optimization 

(MW-DMPO) n-steps-ahead prognostics method is developed to predict the failure. 

MW methods update the training data for prediction models by a moving window to 

contain the latest degradation information/data and improve the prediction accuracy. 

For each updating of the training data, the model parameters for data-trending model 

are updated dynamically. Based on the developed MW-DMPO method, a MW cross 

validation support vector regression (MW-CVSVR) n-steps-ahead prediction is 

developed to predict failures of PPTC resettable fuses in this thesis. The cross 

validation method is used to determine the proper SVR model parameters. The 

CVSPRT anomaly detection method and MW-DMPO n-steps-ahead prognostics 

method developed in this thesis can be extended as general methods for anomaly 

detection and failure prediction.  
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Chapter 1: Introduction 

A polymer positive temperature coefficient (PPTC) resettable fuse can “trip” 

from its normal operational state of low resistance to high resistance when overheated 

by ambient heat or the Joule heat generated by high current. It can reset to its normal 

operational state of low resistance when the heat is removed and/or the power is 

switched off.  

1.1 Positive Temperature Coefficient Effect 

The trip is caused by an effect of positive temperature coefficient (PTC) for 

some materials [1]-[6]. According to PTC effect, the resistance of a component 

increases (decreases) with the increases (decreases) in its temperature. A PPTC 

resettable fuse is made of polymer composites, which are mixed by conductive 

particle fillers, such as carbon black particles, and non-conductive semi-crystalline 

polymer matrix, such as polyethylene[4][5]. The mixing of the conductive particles 

into the polymer matrix changes the conductivity of the entire polymer composite and 

enables it to exhibit the PTC effect. Figure 1 is a resistance vs. temperature curve for 

a typical PPTC resettable fuse. A sharp increase in resistance is observed in a narrow 

temperature range (100°C -130°C in the example), lower than which the increase in 

resistance is not obvious with the increase in temperature. The PPTC resettable fuses 

utilize this sharp increase in resistance to reduce the current of a circuit quickly so as 

to protect the circuit.  
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Figure 1: Resistance (Log (R)) vs. temperature curve of a PPTC resettable fuse 

1.2 Operation of PPTC Resettable Fuses 

Figure 2 is a schematic picture to show the operational process of a typical 

PPTC resettable fuse [7]. Under normal ambient temperature, the fuse works in a low 

resistance state (like a wire) when the normal current (less than the hold current, Ihold, 

which is the maximum steady-state current the PPTC device can carry without 

tripping at the ambient temperature) passes through it. When a fault current (higher 

than trip current, Itrip, which is the minimum current that causes a PPTC device to trip 

at the ambient temperature) occurs, the resistance of the fuse increases sharply. 

Because of the sharp increase in resistance, the current is decreased to protect the 

circuit. The sharp increase in resistance is called trip. After the trip, a PPTC resettable 

fuse does not break as does a traditional fuse. Instead, it keeps the high resistance 

state and allows a small trickle current to pass through the circuit. The fuse will reset 
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to a low resistance state within a short time after the heat or fault current is removed 

and/or the power is switched off [1]-[7]. The trip time is defined as the time required 

for a PPTC fuse to decrease the current of the circuit to 50% of the trip current at the 

ambient temperature [6]. Typically, the hold current (Ihold ) is half of the trip current. 

When the current is higher than the trip current, the fuse will trip. When the current is 

lower than the hold current, the fuse will not trip. When the current is between the 

hold current and the trip current, the fuse may or may not trip [4][5][6]. After a 

number of trip-reset cycles, the PPTC resettable fuse will degrade and failures will 

occur [7].  
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Figure 2: Operation process of PPTC resettable fuse 
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1.3 Motivation 

As a circuit protection device, polymer positive temperature coefficient (PPTC) 

resettable fuses are widely used in automotive circuits (e.g., the protection of micro-

motors in window lifts, seats, and door locks), computers (e.g., the protection of the 

circuits in hard disk drives, interface ports, and cooling fan motors), 

telecommunication devices (e.g., cell phones), battery packs, power supplies, medical 

electronics, and so on [7]. The failure or abnormal behaviors of PPTC devices may 

cause damage to circuits, abnormal operation of circuits (e.g., inability to work at 

normal current), or unnecessary operations that force operators to switch off and on 

the power to reset the circuit. It is necessary to monitor the PPTC resettable fuses in-

situ to provide advance warning of failures and predict the remaining useful life 

(RUL) to prevent damage to the circuits.  

Prognostics and health management (PHM) has been emerging as an effective 

method to achieve these requirements. PHM is an enabling discipline consisting of 

technologies and methods to assess the reliability of a product in its actual life cycle 

conditions to determine the advent of failure and mitigate system risk [8][9]. PHM 

generally combines sensing and interpretation of environmental, operational, and 

performance-related parameters to assess the health of a product and predict 

remaining useful life. Assessing the health of a product provides information that can 

be used to meet several critical goals: (1) providing advance warning of failures; (2) 

minimizing unscheduled maintenance, extending maintenance cycles, and 

maintaining effectiveness through timely repair actions; (3) reducing the life-cycle 
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cost of equipment by decreasing inspection costs, downtime, and inventory; and (4) 

improving qualification and assisting in the design and logistical support of fielded 

and future systems[8][9]. 

1.4 Problem Statement and Research Work 

As the literature review in chapter 2 shows, the research on prognostics of 

PPTC resettable fuses has been very limited. There are no established methods to 

provide the prognostics and health monitoring for PPTC resettable fuses. Firstly, the 

failure precursor parameters to be monitored have not been determined. This causes 

the difficulty or increases the complexity of in-situ monitoring. Furthermore, the 

causes of the observed failures of PPTC resettable fuses have not been determined. 

Without the determination of the root causes of the failures, it is difficult to identify 

the failure mechanisms and is hard to improve the design and the reliability of the 

products in the future. The last one, anomaly detection and failure prediction methods 

have not been developed for PPTC resettable fuses.  

This thesis is focusing on solving these problems by the following research 

work: 1) determining the failure precursors by failure modes, mechanisms, and 

effects analysis, followed by conducting a series of experiments to verify the 

parameters; 2) Determining the root causes of the failure by failure analysis methods; 

3) Developing data-driven anomaly detection and prediction methods to detect the 

anomalies and predict the failures of the resettable fuses in time.  
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1.5 Overview of Thesis 

Chapter 2 provides the literature review on principle of PPTC effect, reliability 

of PPTC resettable fuses, prognostics of PPTC resettable fuses, and describes the 

problems not covered in literature. Chapter 3 describes the processes and results of 

determining the failure precursor parameters. Chapter 4 reports the failure analysis 

methods and results to determine the root causes of the failures. Chapter 5 describes 

the development of anomaly detection method using cross validation sequential 

probability ratio test (CVSPRT). In Chapter 6, a moving window (MW) training 

updating based dynamic model parameter optimization n-steps-ahead prognostics 

method is developed. Based on this MW method, a MW cross validation support 

vector regression (MW-CVSVR) prognostics method is developed to conduct the 

failure prediction for PPTC resettable fuses. Chapter 7 discusses the contributions and 

future work. 
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Chapter 2:  Literature Review 

The literature review includes the following aspects: 1) the operational principle 

of PPTC resettable fuses; 2) electrical characteristics of PPTC resettable fuses; 3) 

factors affecting the characteristics of PPTC resettable fuses; 4) the reliability 

evaluation of the PPTC resettable fuses; and 5) prognostics methods. After the 

literature review, the unaddressed problems are described in the summary. 

2.1  Operational Principle of PPTC Resettable Fuses 

The understanding of the operational principle of the PPTC resettable fuse can 

help to identify its failure causes and mechanisms. In general, a PPTC resettable fuse 

includes electrodes, conductive polymer composite, and outside coating. The polymer 

composite is the functional part having PTC effect. It is a mixture of non-conductive 

polymer, such as polyethylene, and conductive fillers, such as carbon black (CB) 

particles.  

 

Figure 3: Picture of a radial through-hole 
PPTC resettable fuse 

Power M

A BI

PPTC 
fuse

 

Figure 4: Connection of a PPTC 
resettable fuse in a circuit 
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Figure 3 is a picture of a radial through-hole PPTC resettable fuse. There are 

other types of PPTC resettable fuses in the market, such as surface mount 

components. The fuse is connected with other components in series in a circuit, 

shown in Figure 4.  

Both the mechanisms of the conduction of polymer composite under normal 

conditions and the mechanisms of the increase in resistance under abnormal 

conditions should be understood. Although many models [1][2][10]-[19] have been 

proposed in an attempt to explain PTC effect in polymer composites, a model that can 

explain all the phenomenon of PPTC effects is not available yet. The main models 

include conductive chain and thermal expansion model by Kohler [11], tunneling 

conductance model by Ohe et al. [17], CB aggregation structure change and 

migration model by Klason et al.[18], and Ohm conductance and phase change model 

by Allak et al.[19]. The summary of these models is shown in Table 1. Currently, the 

conductive chain and thermal expansion model is used to explain the principle in 

most of literature, for example, Wei et al. [1], Luo et al. [2], Gorniak et al.[3], 

Doljack et al. [12], because of the ease of understanding. 

Figure 5, by Cheng et al. [7], shows the schematic picture of the structure of a 

radial through-hole resettable fuse shown in Figure 3. In general, radial through-hole 

PPTC fuses include conductive polymer composites, electrodes, and outside coatings 

[4][5]. Conductive polymer composite is generally manufactured as a thin sheet and 

consists of non-conductive polymer (e.g., polyethylene) and conductive particles 

(e.g., carbon black (CB)). An electrode is used to conduct and control the flow of 

electricity and is typically composed of foils and leads.  
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Table 1: PPTC models 

Models At low temperature At crystalline to amorphous phase transition 
temperature 

Defects or cannot 
explain 

Conductive chain 
and thermal 

expansion model by 
Kohler [11] 

Polymer is in semi-crystalline 
state; conductive fillers form 

conductive chains. 

Phase transition from crystalline to amorphous 
volume is expanded  conductive chains are 

broken 

Why the sharpness of 
resistance rise is not 
a function of volume 

change 

Tunneling 
conductance model 
by Ohe et al. [17]  

Distribution of conductive 
filler is uniform; gaps 

between the conductive 
fillers are small and electron 

tunnels are formed 

Distribution becomes random gaps between 
conductive fillers increase to break the electron 

tunnels. 

Why the particle 
distribution changes 

from uniform to 
random distribution 

CB aggregation 
structure change and 
migration model by 

Klason et al.[18]  

CB aggregation structure is 
determined by crystalline 

phase of polymer; CB 
particles distribute in 

amorphous phase and form 
conductive chain. 

Phase transition from crystalline to amorphous 
breaks the CB aggregation structures  a more 

homogenous particle distribution 

Lack of enough 
experiment results to 

support 

Ohm conductance 
and phase change 
model by Allak et 

al.[19] 

Linear I-V curve (Ohm 
behavior); CB resides in 

amorphous regions  easily 
establish conductive chains 

Crystalline to amorphous with a sudden and large 
volume increasegap between new formed 
amorphous and enlarged amorphous regions 

reducemore resistive current pathwaysbreak up 
the conductive chains 

Lacks of enough 
experiment results to 

support 
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Heated, phase transition, 
and expand

Cooled down, recrystallize, 
and shrink

Conductive chains of CB 
are broken  increasing 
resistance

Non-conductive 
polymer in 
amorphous state

Conductive chains 
of carbon black 
(CB) particles 

Non-conductive 
polymer in semi-
crystalline state

Foil

Lead 

Cold (normal)
Low resistance

Hot
High resistance

SolderI I I I

 

Figure 5: Conductive chain and thermal expansion model 

The foils are attached on both sides of the polymer sheet. One lead is connected to 

each foil by soldering. The dielectric coating material provides protection for the 

outside of the device. 

According to conductive chain and thermal expansion model, at normal 

temperatures, the conductive particles in the polymer form many conductive paths, 

which allow current to flow through the fuses without interruption. However, if the 

temperature rises around the crystalline to amorphous (CA) phase transition 

temperature of the polymer, some crystalline state of the polymer will change to 

amorphous state. The expansion in volume of the polymer during the phase change 

separates the conductive particles and breaks the conductive paths. This results in a 

large nonlinear increase in the resistance of the PPTC device just in a narrow 

temperature range. The whole process of this model is shown in Figure 5 [7]. 
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2.2 Electrical Characteristics of PPTC Resettable Fuses 

Some electrical characteristics of PPTC composites should be concerned in the 

applications. For example, the relationship between resistance and temperature of the 

fuse is shown in Figure 1. The relationship between the volume (or thickness) of the 

fuse and the temperature were also introduced by Kohler [11], Doljack [12], and 

Founrnier et al.[14]. For example, Doljack [12] described that the electrical resistivity 

of conductive polymer composites was determined by the type of CBs and the 

volume ratio of total CB to polymer. The initial resistance of the devices is defined 

based on the maximum volume ratio of CB to polymer.  

Trip time is dependent upon the size of the current and the ambient temperature. 

The trip time with different current under a certain temperature should be given by 

manufacturer. This information is used to guide the users to select the proper devices 

for their applications. For example, Bourns [20] provide the curve of trip time vs. 

current under temperature 23 °C in the datasheets. Trip time under 23 °C is used as a 

reference for users to select the proper fuses for their applications. The trip time 

decreases with the increasing of the current through the fuse. Figure 6 illustrates 

schematically the hold- and trip-current behaviors of PPTC devices as a function of 

temperature [4][5]. Region A describes the combinations of current and temperature 

at which the PPTC device will trip and protect the circuit. Region B describes the 

combinations of current and temperature in which the device will allow for normal 

operation of the circuit. In region C, it is possible for the device to either trip or 

remains in the low resistance state, depending on the individual device resistance and 
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its environment. The specific hold current value under different temperature 

conditions are shown in the datasheet of the fuse. 

 

Figure 6: Trip- and hold-current vs. temperature 

 

Figure 7: Recovery of PPTC fuse 

The recovery of PPTC fuse occurs within the first several seconds. Figure 7 

show the process schematically. The resistance fully recovery is depended on both the 

design of the device and thermal environment. After tripped, the return to maximum 
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volume compaction of the polymer is a much slower process than simple cooling 

alone [11].  

2.3 Factors Affecting Characteristics of PPTC Resettable Fuses 

The factors that affect the characteristics of PPTC resettable fuses include the 

properties of the polymers, the particle fillers, and the processing conditions, which 

were mentioned by many researchers, such as Huang [21], Zhang et al. [22], Sau et 

al. [23], and Narkis et al. [24]. Different conductive particle fillers, such as metal 

powders or fibers [25], or CB [26], can be dispersed into a plastic matrix to enable the 

non-conductive plastic become conductive when the concentration of the filler 

reaches a threshold, which was discussed by many researchers, such as Zhang [22], 

Miyasakaet al. [27], and Lux [28]. Although metal particles are more conductive than 

CB, CB is applied as the common filler in the PPTC resettable fuses because of CB’s 

resistance on oxidization, which forms an insulating layer on the surface of the filler. 

CB is an amorphous form of carbon with a structure similar to disordered 

graphite. Huang [21] summarized five types of CBs in the CB industry: furnace 

black, thermal black, lamp black, channel black, and acetylene black. Over 90% of 

the CBs current produced are made by the furnace process. In this process, oil is 

thermally decomposed to form CB particles [29]. The general diameter range of the 

particles to fill in the polymer is less than 100 nm.  

Many researchers, such as Mironi-Harpaz et al. [30], Donnet [31], and Bourat 

[32], pointed out that CB particles have trends to aggregate together so that under 

electron microscope examination CB is composed of prime particles fused into 
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primary aggregates. The small aggregates also trend to aggregate together again to 

form larger agglomerates. Zhang et al. [22], Narkis et al. [24], and Xi et al. [33] 

stated that when the CBs particles or aggregates are filled into polymer matrix, they 

sit in the amorphous phase of the polymer and are separated by polymer matrix. But 

when the gap between aggregates is less than some critical distance, electrons can 

flow across the polymer barrier, and generate a high conductivity [33]. When the 

polymer is heated and the temperature increase to a certain level, the crystal in the 

polymer may change its phases from crystalline to amorphous. This phase transition 

increases the amorphous phases, which cause to the decrease in the density of CBs 

and increase in the distance between CBs, and cause to the increase in the resistance 

[33]. The CBs obtain more energy at high temperature and more of them are 

aggregating together.  

Researchers also investigated the effects of using different polymer matrix on 

the electrical and mechanical properties of PPTC polymer composites. For example 

Xi et al. [33] used polyethylene, Sumita et al. [34] and Huang et al. [35] used 

Ethylene-Vinyl Acetate Copolymer, and Tchoudakov et al. used the 

polypropylene/polyamide [36]. It is found that the threshold concentration is affected 

by the interaction between the polymer and CB, the crystallinity and melts viscosity 

of the polymer [21][34]-[37]. Huang [21] summarized that if the CB particle-to-

particle aggregation is stronger than the adhesion between CB particles and polymer, 

the CB particles will aggregate and be hard to separate and disperse into the polymer 

matrix; but in the opposite, the particles will disperse into the polymer without 

contact, which affects the form of the conductive paths if the concentration of particle 
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is not too high. So with the increase of the surface tensions of the polymers, the 

threshold concentration increased. That means more particles are needed to fill into 

the polymer with high extension to obtain high conductivity.  

The other important effect of different polymer on the conductivity of 

composite is the crystallinity. Semi-crystalline polymer contains crystalline regions 

and amorphous regions. The crystallinity is used to measure the ratio of crystalline 

regions. Researches show the threshold concentration increases with the decrease in 

the crystallinity [38]-[46]. CB particles are dispersed uniformly in the amorphous 

regions and rejected from the crystalline regions, which was reported by He et al. 

[38], Park [40], Hunag et al.[41], Xu et al. [43], and Yui et al. [45].  

Experiments were conducted to evaluate the effect of different high-crystallinity 

resin and different content of CB on the electrical conductivity of PPTC device [38]-

[40][45][46]. For example, Horibe et al. [46], investigated the relationship between 

the resistivity and the crystallinity, and the relationship between the resistivity and 

carbon content. During the test, the crystallinity of each polymer was determined by 

X-ray diffraction analysis, and the carbon particle size was directly measured by 

scanning electron microscopy (SEM). He found that high-density polyethylene 

(HDPE) has lowest resistivity at room temperature and the highest resistivity after 

polymer melting. The higher the crystallinity of HDPE is, the lower the resistivity of 

the composites. The resistivity of the composites decreased with increasing CB 

content.  
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The polymer composite tested in this thesis is made of carbon black particles 

and polyethylene (PE). PE is a semi-crystalline polymer. PE can be classified simply 

as low density PE (LDPE) and high density PE. Table 2 shows the different 

properties of them [48].  

Table 2: Some properties of LDPE and HDPE 
 

Property LDPE HDPE 

Formula –(CH2-CH2)n– –(CH2-CH2)n– 

Melting temperature 
(crystalline to amorphous 

transition temperature) 
Around 110°C Around 130°C 

Glass transition 
temperature Around -110°C Around -100°C 

Crystallinity < 50% >90% 

Density 0.91-0.94 g/cm3 0.95-0.97 g/cm3 

Researchers reported that CBs were dispersed into the amorphous region of the 

PE [38]-[42]. When the temperature is well below the CA transition point of the 

PE, the crystalline and amorphous phase is in a solid state, and the resistivity of the 

composite does not rise significantly with the rise in temperature. Close to the CA 

transition point of the polyethylene, the crystalline phase starts to form new 

amorphous regions. Such structural changes perturb the conducting pathways and 

consequently, the resistivity of the material increase. The CA transition increases 

the volume of amorphous parts, which decrease the volume percent of particle fillers, 

causes to the increase in inter-distance between particles and the increase in the 

resistance. 
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In general, the aggregate of the particles increases the resistance compared with 

the resistance when the particles are distributed in uniformly, under which more 

random conductive networks are formed to decrease the resistance. Yui et al. [45] 

used SEM to investigate the aggregation of CB particles and found that CB particles 

in HDPE aggregated together but these aggregates did not contact together to form 

conductive networks, thus increased the resistance.  

2.4 Reliability and Testing of PPTC Resettable Fuses 

The research on the reliability of PPTC resettable fuses has been very limited. 

A surface-mount PPTC manufactured by Raychem Corporation was tested by White 

et al.[49]. The trip cycle life and the trip endurance life were evaluated from trip tests. 

The distribution was assumed as an exponential distribution, in which the constant 

failure rate was estimated through the 100 cycle test. The estimation was that there 

would be less than one failure out of 276816 trips. The failure of PPTC resettable fuse 

was defined as the observation of arcing or tripping below the hold current. The 

estimation for the trip endurance was that there would be less than one failure out of 

75,900 tripped hours at 95% confidence level [49].  

This work also tested the effect of electrical aging and environmental aging on 

the trip cycling and trip endurance. The data then were fitted in a statistical model to 

calculate the time to failure. No cause analyses of the failure were conducted. The 

device resistance increased with tripping cycles. One failure mode was that, after 

number of trip cycles or trip endurance, devices would become high enough in 



 

18 
 

resistance that they would not pass the normal operating current (hold current), and 

device would nuisance trip. 

The environmental aging was generated by the effects of temperature and 

humidity. Results showed that heat aging caused devices to decrease in resistance 

from their post-reflow resistance. Higher aging temperatures caused a faster decrease. 

The results were shown in the Table 3. 

Table 3: Test results by White et al. [49] 

  Resistance (Ohm) 
Trip Time 

(Sec) 
(15V 8A) 

Trip 
Current(A) 
(15V 8A) 

6000 trip cycles 
at 15V 40A, 10 
sec on, 50 sec 
off at 20 °C 

Before 0.422±0.0219 0.013±0.0005 7.4±0.09 

After 4.25±2.24 0.004±0.0004 6.7±0.18 

125 days at 70 
°C 

Before 0.444±0.022 0.012±0.0008 7.4±0.08 

After 0.258±0.006 0.011±0.0006 7.4±0.07 

  

The failure of the fuse in field was defined as the fuse had not tripped properly. 

The possible failure modes include the device becoming high in resistance, arcing, or 

delaminating during trip. Some tests, such as trip cycle test and aging test, are 

conducted by manufacturing or certified institution based on the standard UL 1434 

[6]. Test results are listed in the datasheets of the products. However, these tests are 

not enough to evaluate the reliability of the PPTC resettable fuses. One of the reasons 
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is that the number of test cycles is not enough to observe the changes in the 

properties.  

2.5 Prognostics Methods  

Prognostics is an emerging technique in recent years. Anomaly detection and 

prognostics of PPTC have not been reported. This thesis will develop a prognostics 

method to provide advance warning of the failure of PPTC fuse and predict the 

remaining useful life of it. Cheng and Pecht [8][9] defined that PHM is an enabling 

discipline consisting of technologies and methods to assess the reliability of a product 

in its actual life cycle conditions to determine the advent of failure and mitigate 

system risk. PHM generally combines sensing and interpretation of environmental, 

operational, and performance-related parameters to assess the health of a product and 

predict remaining useful life. Traditionally, prognostics has been implemented by 

either a data-driven approach or a model-based approach. Gu et al. [50], Mathew et 

al.[51], Kumar et al. [52], and Pecht et al.[53] described these approaches and 

pointed out advantages and limitations of them.  

Data-driven methods use current and/or historical data to statistically derive 

decisions and predictions about the health and reliability of products [9]. Based on the 

type of the data available, a variety of data-driven methods can be used. These 

methods can be classified as three categories: supervised, semi-supervised, and 

unsupervised. Data-driven methods use a training process to define the healthy 

behavior or baseline of products. The training process reveals patterns or relationships 

between parameters, such as correlation, covariance, residual, and inference patterns, 
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from the historical healthy data or the initial healthy state of the detected electronic 

product [9]. The data-driven method then compares the current monitored data with 

the baseline to determine the health of the electronic product and predict its RUL. 

Data-driven methods do not require an understanding of complex failure mechanisms 

and damage assessment models. This advantage enables the data-driven methods to 

be used for the prognostics of complex products that have multiple complex failure 

mechanisms. There are many data-driven methods, such as autoregressive integrated 

moving average (ARIMA) developed by Box et al. [54] and demonstrated by Ho et 

al. [55][56], neural networks (NNs) shown by Xu et al. [57], support vector machines 

(SVMs) developed by Vapnik et al. [58], and demonstrated by Pai et al. [59], and 

Chen et al. [60], decision tree classifiers, used by Kuo et al. [61], and Freund et al. 

[62] on reliability prediction, principle component analysis (PCA), used by Choi et al. 

[63], and Cho et al. [64] on the fault detection, particle filtering (PF) used by Xu et al. 

[65], and Zhang et al. [66] on detection and prediction, and fuzzy logic used by 

Yadav et al. [67] on reliability improvement estimation, etc. However, the data-

driven methods are dependent on the training data. If the training data does not 

contain the entire range of the healthy behavior of the product, or if the training data 

contains any degradation of the product, missed or false alarms may be generated. 

The data-driven method cannot distinguish between different failure modes or 

mechanisms.  

Pecht [9] stated that PoF methods utilize knowledge of a product's life cycle 

loading conditions, geometry, and material properties to identify potential failure 

mechanisms and estimate its remaining useful life. The advantages of the PoF method 
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include that providing the estimate of damage for given loading conditions and failure 

mechanisms; identifying the components which are critical to system reliability; 

estimating remaining life for different loading conditions, as long as the failure 

mechanisms and accelerated factors are identified; predicting the remaining life even 

in non-operating conditions. Several examples about PoF methods were shown by Gu 

et al. [68][69] and Mishra et al. [70]. However, it is difficult to estimate RUL using 

the PoF method if the failure mechanisms or models are unavailable. Sometimes, 

although the individual failure mechanisms are identified, dealing with the 

interactions between different failures mechanisms is still a challenge for the PoF 

method. Models with a combination of failure mechanisms are much more 

complicated than simply being the sum of the individual failure mechanisms. 

Selection of different data-driven methods depends on the features of data. For 

example, if the data is purely linear, ARIMA model may be suitable for the 

prediction; if the data is nonlinear, the NN and support vector regression (SVR) may 

be proper. These models can forecast the future value of the data based on the 

regression of the historical data. The support vector regression (SVR) has some 

advantages compared with other non-linear forecasting method mentioned by Pai et 

al. [59], and Chen et al. [60]. However, SVR has rarely been used in the prediction 

for the reliability of electronics. Most of research showed how to improve the fitting 

on the observed data [71]-[73], not the actual application on prediction of data in the 

future. 
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2.6 Summary 

Most of research on the PPTC polymer composites was focused on the physics 

of the conductivity and the electrical characteristics under different materials, 

contents, and structures of the fillers and polymers. Different models used to interpret 

the PPTC effects and behaviors were developed although none of them can explain 

all observed phenomenon.  

Prognostics and health monitoring of the PPTC devices have not been 

developed and reported. Failure precursors that can indicate the anomalies or failures 

of the PPTC resettable fuse have not been determined. Although White et al [49] 

reported that resistance after reset and the trip time changed before and after tests, he 

did not monitor these parameters continuously so that the comparison only before and 

after a test did not reveal the trends of the parameter changes and could not draw a 

conclusion about the precursors. The causes for the degradation and failures of PPTC 

resettable fuses as a component, which includes different parts, have not been 

analyzed. The reactions of different parts of the PPTC resettable fuses were not 

considered for the degradation or failures of PPTC resettable fuses. Anomaly 

detection and failure prediction of PPTC devices have not been reported. The failure 

mechanisms and models of the PPTC resettable fuses have not been determined and 

developed.  
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Chapter 3: Failure Precursors of PPTC Resettable Fuses 

The potential failure precursor parameters are determined by a systematic 

method, failure modes, mechanisms, and effects analysis (FMMEA). A series of 

experimental tests are then conducted to verify the precursors by identifying the 

correlations among the parameters and the mapping between the observed failures 

and the parameters. The monitoring of these precursor parameters enables the 

implementation of prognostics methodologies to detect anomalies and predict the 

failure of PPTC resettable fuses. 

3.1 Potential Failure Precursor Parameters of PPTC Resettable Fuses  

It is necessary to understand the environmental and usage conditions, 

structures, materials and geometry of the PPTC resettable fuses to identify the 

potential failure modes, mechanisms, and effects. A radial through-hole PPTC 

resettable fuse, as shown in Figure 3, was used as an example to show the 

determination of the failure precursor parameters. The methodologies used in this 

thesis can be extended to any kind of PTC devices.  

 Figure 5 shows schematic cross-section image of the device shown in Figure 3. 

In general, radial through-hole PPTC fuses include conductive polymer composites, 

electrodes, and outside coating. Conductive polymer composite is generally 

manufactured as a thin sheet by mixing the non-conductive polymer (e.g., 

polyethylene) and conductive particles (e.g., carbon black), being placed in a mold, 
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and then being punched out from the mold. An electrode is used to conduct and 

control the flow of electricity and is typically composed of foils and leads. The foils 

are attached on both sides of the polymer sheet. One lead is connected to each foil by 

soldering. The dielectric coating provides protection for the outside of the device.  

An example of the material sheet of different parts of the device, shown in 

Figure 3 and Figure 5 can be found in [74]. The operational temperature range of this 

PPTC resettable fuse is from -40°C to 85°C. The highest surface temperature is 

around 125°C. The fuse works in a trip-reset cycling way, or essentially a heating-

cooling cycling way. Based on the conductive chain and thermal expansion model, 

device also works in a thermal expansion-shrink cycling way. 

The potential failure precursor parameters can be identified by failure modes, 

mechanisms, and effects analysis (FMMEA). FMMEA is a methodology used to 

identify failure mechanisms and models for all potential failure modes of a product 

under its operational and environmental conditions. Figure 8 is a schematic diagram 

of FMMEA. More detail information can be obtained from Ganesan et al.[75], Pecht 

et al.[76], and IEEE standard 1413 [77]. Identification of the potential failure modes, 

mechanisms, and models can help to determine the potential parameters to be 

monitored and the locations where the sensors should be placed. A series of 

experiment may be needed to verify the precursor parameters. 
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Figure 8: FMMEA process. 

Table 4 shows the FMMEA results of the radial through-hole PPTC resettable 

fuse shown in Figure 3. Potential failure modes include abnormal trip behaviors, 

shifts in parameters, and physical cracks and gaps. The failure criteria should be 

defined based on related standards, specifications, and customers’ requirements. In 

this thesis, a failure was defined as any of the following:  

1) Fuse trips at less than normal current (≤Ihold) at the specific ambient 

temperature. 

2) Fuse does not trip at fault current (≥Itrip) at the specific ambient temperature. 
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3) Deviations in the trip time of the fuse impact the typical operations of the 

circuit. The criterion of failure in terms of trip time is application-

dependent. A trip in a longer time increases the risk of damage to the circuit 

because of the longer exposure of the circuit to a high fault current. A 

shorter trip time makes the circuit more likely to be disturbed by noisy 

currents, which may result in unnecessary faults in circuit operation. For 

example, when a motor changes its rotating direction, a high peak current 

may be generated. If the trip time of the fuse becomes too short, the high 

peak current will trip the fuse, stop the motor, and the operator must switch 

off and on the power to reset the fuse. In some cases, the designer of a 

circuit does not consider the reliability issues of the PPTC resettable fuse, 

and therefore does not design sufficient margin for trip time changes. For 

example, the circuit may be designed to allow a 20A fault current to pass 

through the circuit for 3 to 5 seconds when the trip time of the selected 

PPTC fuse is 4 seconds. If the PPTC resettable fuse degrades, the trip time 

may become shorter than 3 seconds or longer than 5 seconds. If the trip time 

of the fuse is shorter than 3 seconds, it will stop the operation of the circuit 

even for short peak current noise. If the trip time becomes longer than 5 

seconds, it will damage the components in the circuit.  
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Table 4: FMMEA for PPTC resettable fuses 
(Structured as Figure 3) 

 

Potential 
Failure Sites 

Potential Failure 
Modes Potential Failure Causes 

Potential 
Failure 

Mechanisms 

Conductive 
polymer 

composite  

Abnormal trip 
behaviors 

(e.g., trip at 
normal current, 
no trip at fault 

current) 

Increase in the heat 
dissipation resistance, the 

cracks or gaps at the 
interconnections, the 

changes in the polymer 
properties, and the changes 
in the distribution of the CB 

particles. 

Degradation 
of the 

polymer; 
aggregation 

of CB 
particles 

 

Interconnection 
between foil 
and polymer 
composite 

Shift in resistance 
and surface 
temperature 

CTE-mismatch; gaps; 
manufacturing defects Fatigue 

Solder between 
lead and foil Shift in resistance Cracks Fatigue  

Outside 
coating 

Cracks, 
separation with 

foil, shift in 
surface 

temperature 

CTE-mismatch;  

deformation; manufacturing 
defects 

Fatigue 

 
4) A fuse becomes high in resistance after reset. One effect of the increase in 

resistance after reset is that it shortens trip time by generating more heat in 

the same amount of time. The other effect is that an increase in the 

resistance of the fuse decreases the voltage drops on other components, 

which may cause abnormal operation of the circuit.  

5) Physical cracks, breaks, separations, and/or degradation in the outside 

coating. Fuses with these types of degradation may still function; however, 

the internal parts of the fuse will lose protection due to the degradation of 
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the dielectric coating. For example, moisture will corrode the electrode 

more easily. Furthermore, degradation of dielectric materials also causes a 

safety issue for the operators. 

Potential causes of these failures include the degradation of materials include 

the increase in the heat dissipation resistance, the cracks or gaps at the 

interconnections, the changes in the polymer properties, such as the crystallinity, the 

changes in the distribution of the CB particles, and CTE-mismatch. Potential failure 

mechanisms include the degradation of the polymer, fatigue, and aggregation of CB 

particles. 

Table 5 shows the potential precursor parameters based on the FMMEA results. 

In actual applications, the current through the fuse, the voltage across the fuse, and 

the surface temperature of the fuse can be monitored in-situ. The resistance during the 

trip can be calculated by Ohm theory using the monitored current and voltage. The 

resistance after trip can be measured by a data-logger using a 4-wire connection if the 

circuit is not too complex. Trip time can be calculated by the difference between the 

time when the fault current occurs and the time when the current decreases to the hold 

current. This can be measured by a current meter or sensors. Actual hold current 

cannot be monitored in-situ based on the test method defined in standard [6] but it can 

be measured when maintenance is being conducted.  
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Table 5: Potential failure precursor parameters 
 

Potential Failure Precursors Can be monitored in-situ? 

Trip time Yes 

Resistance 

Resistance after reset Yes 

Resistance during trip Yes (by measure current and 
voltage of the device during trip) 

Surface temperature Yes 

Current 

Current through the devices at 
normal condition Yes 

Trickle current Yes 

Actual hold current No 

Voltage across the device Yes 

 

3.2 Experiments and Results 

In this thesis, the trip cycle tests and aging tests were designed to determine 

whether the trip time, current, resistance, and surface temperature are indicators of 

degradation in PPTC resettable fuses.  

3.2.1 Trip cycle test 

Referring to the manufacturer’s specifications for the fuse [20], standards [6], 

and the requirements of customers, trip cycle tests were conducted for at least 6000 

cycles at four different ambient temperature conditions, -10°C, room temperature 

(RT, 19-23°C), 60°C, and 85°C, respectively. Four samples were tested in each 
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condition, which was limited by our power supply. In each cycle, current through the 

fuse, voltage across the fuse, the surface temperature, trip time, and resistance in the 

resetting process (power switched off) of the fuse were monitored. The actual hold 

current was measured every 2000 cycles.  

Figure 9 shows the setup of the trip cycle test. The Labview program was used 

to control a data logger and the VEE program was used to control a 4-channel power 

supply. Each channel of the power supply provided power to one PPTC resettable 

fuse. The fuses were placed inside a temperature chamber or air conditioning room to 

perform the trip cycle test under different temperature conditions. The temperature in 

the chamber was constant. The VEE program recorded the time stamp when the 

initial high current occurred and the time stamp when the current reduced to the hold 

current at ambient conditions, and then calculated the trip time of each trip cycle. 

After trip, the VEE kept controlling the power supply on for additional time, and then 

switched off it. An Agilent Data Logger 34970A was used to monitor the resistance 

in the resetting process and the surface temperatures of each fuse. A 4-wire 

connection resistance measurement was used to remove the effects of the wire and the 

connection. The surface temperature was measured by thermocouples, each of which 

was attached on each side of the fuse; the maximum temperature of these two 

thermocouples was used to determine the surface temperature of the fuse.  
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Programmable 4-channel 
power supply: Agilent 
6705 (I, V, and Trip time)

PPTC resettable 
fuse (in chamber for    
-10 °C, 60 °C and 
85 °C), in air-
conditioned room 
for RT.

Thermocouple

4-wire 
connection 
resistance 
measurement

Agilent 
34970A data 
logger (surface 
temperature 
and resistance)

VEE or Labview 
programs to 
communicate with 
power supply and 
data logger

 

Figure 9: Trip cycle test setup 

Figure 10 shows the current profile in one trip cycle. When the power was 

switched on, a high current was input to the fuse (20A for all conditions). The fuse 

was heated by Joule heat and tripped to a high resistance state in several seconds. 

When the current reduced to the specified hold current at the environmental 

temperature, power supply was kept on for 1 additional minute (called 1 minute trip 

endurance). After that, power was switched off for 7 minutes to cool the fuse and 

reset it to a low resistance state. Table 6 is the test matrix, which shows the input 

current the specified hold current. During each cycle, the fuses were tripped by the 

heating of fault current and reset by the natural cooling inside the chamber or under 

room condition. 
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Power off  
7 mins

Trip time (Several seconds)

20 A

Hold 
current

Current

Time

Trip endurance (1 min)

Trickle current

 

Figure 10: Current profile in one trip cycle (current vs. time) 
 
 

Table 6: Trip cycle test matrix 
 

Temperature Input Current Specified Hold Current 

-10 °C (4 samples) 20A 4.8A 

Room Temperature 
(RT, 4 samples) 

20A 3.75A 

60 °C (4 samples) 20A 2.4A 

85 °C (4 samples) 20A 1.5A 

 

3.2.2 Aging test 

When the trip cycle tests were in process, aging tests were being conducted 

under the same environmental condition. Only the resistances were measured using 

data-logger via 4-wire connection. Table 7 is the matrix of the aging test. The 

objectives of the aging tests included the followings: 1) to investigate if the resistance 

of the PPTC resettable fuse changes with time under a constant temperature 

condition; 2) to compare the experimental and failure analysis results of the cycled 
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samples (in trip cycle tests) and non-cycled samples (in aging tests) under the same 

environmental condition. 

Table 7: Aging test matrix 
 

Temperature Number of samples 

-10 °C 8 

RT 8 

60 °C 8 

85 °C 8 
 

3.2.3 Results 

Failures were observed in trip cycle tests. No failures were observed in aging 

tests. Observed failures in trip cycle tests includes damage to the coating of the device 

(cracks and gaps) and shifting in some of the performance parameters, such as trip 

time and resistance after rest. The failures are not hard failures that stop the 

functioning of the fuse, but soft failures that affect the performance of the fuses.  

Figure 11 shows the examples of cracks and delimitation observed on the 

coating of the fuses after trip cycle tests under -10°C and RT conditions. These 

failures were not observed at any samples under 60°C and 85°C conditions. Figure 12 

to Figure 14 show the shifting in the monitored parameters, including trip time, 

resistance after reset, and surface temperature with increase in number of cycles. 

Figure 15 shows the maximum resistance that the device can reach during the trip 

endurance. Each point in these figures is the average of the corresponding parameter 

values of every 100 cycles. Figure 16 shows the changes in the offline measurements 
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of hold current, which was conducted every 2000 cycles. Figure 17 shows the 

changes in the resistance collected by every half hour in aging tests. Table 9 maps all 

the observations in trip cycle tests and aging tests and the parameter shifting under all 

test conditions. Table 8 shows the correlation coefficients between different 

parameters. 

Side view from leftObserved at all samples under -10 °C
and RT conditions

mm

 
Figure 11: Example of cracks and gaps 

Number of Cycles

Tr
ip

 T
im

e 
(s

)

200180160140120100806040201

11

10

9

8

7

6

5

4

3
(X 100)

85 °C, 20A

60 °C, 20A
RT, 20A

-10 °C, 20A

 

Figure 12: Trip time at different conditions 
(Each point is the average of every 100 cycles) 
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Figure 13: Minimum resistance after reset at different conditions 
(Each point is the average of every 100 cycles) 
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Figure 14: Maximum surface temperature at different conditions 
 (Each point is the average of every 100 cycles) 
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Figure 15: Maximum resistance during trip endurance at different conditions 
 (Each point is the average of every 100 cycles) 
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Figure 16: Actual hold current every 2000 cycles at different conditions 
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Figure 17: Resistance in aging tests at different conditions 
 

Table 8: Correlation coefficients among parameters in trip cycle tests 
 

Conditions TT vs. 
MinR 

TT vs. 
MaxST 

MinR vs. 
MaxST 

TT vs. 
MaxR 

MinR vs. 
MaxR 

MaxST 
vs. MaxR 

-10 °C -0.97 0.92 -0.90 -0.43 0.39 -0.43 

RT -0.98 0.92 -0.93 0.27 -0.32 0.36 

60 °C -0.93 -0.46 0.68 -0.33 0.37 0.41 

85 °C 0.77 0.85 0.72 -0.36 -0.42 -0.46 

 Trip time: TT, Maximum surface temperature: MaxST, Minimum 
resistance after reset: MinR, Maximum resistance during trip: MaxR 

Under -10 °C, RT, and 60°C conditions, decreases in trip times are correlated 

with the occurrences of cracks at coating or gaps between coating and foil (it was 

verified that internal gaps between coating and foil occurred in samples under 60°C 

condition). For 85 °C condition, the changes in trip time are correlated with the 

absence of cracks and gaps. Most importantly, trip time shows the decreases much 

earlier than observable cracks or gaps. This indicated that trip time is precursor for 

cracks or gaps.  
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Table 9 Summary of observations 
 

Conditions Observable 
cracks or gaps 

Changes in 
trip time 

Changes in 
min. 

resistance 
after reset 

Changes in 
max. surface 
temperature 

Changes in 
actual hold 

current 
(every 2000 

cycle) 

Changes in 
(max. 

resistance or 
min. trickle 

current) 
during trip 
endurance 

Changes 
in 

resistance 
in aging 

test 

-10 °C Yes (around 
4000 cycles) 

Increased by 
3% in the 
first 2000 

cycles, then 
decreased by 
35% of the 
initial value  

Decreased by 
7% in the first 
1000 cycles, 

then increases 
by 43% of the 

initial value  

Increased by 
4% in the 
first 3500 

cycles, then 
decreases by 
3% of the 

initial value  
 

 
Decreased by 
24% but still 
much higher 

than the 
value in 

mfr’s 
specification 
(6.5 vs.4.8A) 
 

No trends 
 

No trends 
 

RT Yes (around 
6000 cycles) 

 
Increased by 

7% in the 
first 1000 

cycles, then 
decreased 
from 5000 
cycles by 

24% of the 
initial value  

Decreased by 
4% in the first 
1000 cycles, 

then increases 
by 28% of the 

initial value  

Increased by 
3% in the 
first 4000 

cycles, then 
decreases by 
2% of the 

initial value  

Decreased by 
2% but still 
much higher 

than the 
value in 

mfr’s 
specification 

(5.8 
vs.3.75A) 

Decreased 
and then 
recover 

 

No trends 
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Conditions Observable 
cracks or gaps 

Changes in 
trip time 

Changes in 
min. 

resistance 
after reset 

Changes in 
max. surface 
temperature 

Changes in 
actual hold 

current 
(every 2000 

cycle) 

Changes in 
(max. 

resistance or 
min. trickle 

current) 
during trip 
endurance 

Changes 
in 

resistance 
in aging 

test 

60 °C 

No (after 22000 
cycles, but 

internal gaps 
were identified 

by failure 
analysis) 

Increased by 
13% in the 
first 1000 

cycles, then 
decreased 
gradually 

Decreased by 
10% in the 
first 2000 

cycles, then 
increased by 
27% of the 
initial value 

Increased 
sharply by 
4% in the 
first 1000 

cycles, then 
gradually 

increased by 
3% of the 

initial value  

 
Decreased by 
6% but still 
much higher 

than the 
value in 

mfr’s 
specification 
(4.5 vs.2.4A) 

 

No trends 
 

No trends 
 

85 °C 
No (after 21000 

cycles) 
 

Increased 
sharply by 
15% in the 
first 2000 

cycles, then 
no obvious 

changes  

Decreased by 
7% in the first 
1000 cycles, 

then increases 
by 38% of the 

start value  

Increased 
sharply by 
3% in the 
first 1000 

cycles, then 
gradually 

increased by 
3% of the 

initial value 

 
Decreased by 
10% but still 
much higher 

than the 
value in 

mfr’s 
specification 
(2.8 vs.1.5A) 

 

Gradually 
decreased 
and then 

recovered  

No trends 
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Under -10°C and RT conditions, surface temperature shows similar trends with 

trip time, shown in Figure 12, Figure 14, and Table 8, it changes in small range and 

later than the changes in trip time. For 60°C and 85°C conditions, surface temperature 

changes are not obvious (less than 5%). Although trip time can provide most of the 

information that surface temperature can provide, we suggest surface temperature 

should be monitored to be assistance for trip time. 

The increases in the trip time in the early period of experiment correlated with 

the decreases in the resistance after reset for all test conditions. This observation 

agrees with the principle of PPTC resettable fuses, in which the lower the resistance, 

the less heat is generated for the same input current, and the longer trip time is at the 

same ambient condition. After the early period, high positive correlation between the 

resistance after reset and the trip time was shown in the tests under -10°C and RT 

conditions. But weak correlation were observed for tests under the 60 °C and 85°C 

conditions, under which the resistance increased more than 30% of the initial value 

but the trip time showed no obvious changes (less than 5% of the initial value). This 

observation inferred that trip time changes were caused by not only the resistance 

changes but other impact factors, and the resistance changes may be not the dominant 

one. The increases in resistance affect the performance of other components in the 

circuit and can indicate other failures of the entire fuses, such as the defects in 

interconnections between different parts and the degradation of CB/PE polymer. Thus 

it is a failure precursor parameter. Other parameters, such as the highest resistance (or 

the minimum trickle current) during the trip endurance and the actual hold current, 

did not present obvious changes in the tests. Although the actual hold currents under -
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10 °C, 60°C and 85 °C conditions have decreasing trends, it is much higher (more 

than twice) than the manufacturer specified hold currents. The correlation analysis 

among maximum resistance during the trip endurance and other parameters is shown 

in Table 8, which indicates that the maximum resistance during trip endurance has 

low correlation with others. Not enough evidences are observed to conclude that the 

highest resistance during trip endurance and the actual hold current are precursors at 

this stage. The resistance in the aging test does not change obviously, which showes 

that under normal aging conditions, the characteristics of the PPTC fuses are stable. 

3.3 Summary  

Trip time, resistance after reset, and surface temperature show high correlations 

with the observed failures, including the cracks at the coating, the gaps between 

coating and foil, and the performance shifting of the fuses. Changes in the trip time 

and the minimum resistance after reset affect the performance of the fuses directly 

and indicate the degradation of fuses. These parameters are failure precursors and 

must be monitored. High correlation between the trip time and surface temperature 

can simplify the post-analysis of the data. For example, it is enough to use trip time to 

predict the failure. But as a side-product of the performance of the fuse, surface 

temperature can be monitored to provide assistance information for trip time. Other 

parameters, including the maximum resistance during trip endurance and the actual 

hold current, did not exhibit obvious changes in all the conducted trip cycle tests. 

They are not considered as failure precursors at this stage. The resistances at aging 

tests under different conditions were stable thus were not failure precursors. 
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Chapter 4: Determination of Failure Causes 

Failures including cracks, gaps and performance parameter shifting were 

observed in trip cycle tests. Determination of the causes of the failures helps to 

identify the actual underlying failure mechanisms, develop proper data-driven and 

physics of failure models to predict the failure, and improve the design and reliability 

in the future.  

The PPTC resettable fuse includes polymer composite as a PTC functional 

component, foils, solders, electrodes, and outside coating materials. Degradation of 

any of them contributes to the performance degradation of the fuse. No literature has 

reported the cause analysis considering the entire resettable fuse. Potential failure 

causes of radial through-hole resettable fuses (shown in Figure 3) were identified by 

FMMEA and shown in Table 4. In this chapter, failure analyses considering all the 

parts of the fuse were conducted to determine the causes of the changes in trip time, 

resistance after reset, and surface temperature.  

4.1  Failure Analysis Methods  

Based on the potential failure cause analysis, some nondestructive and 

destructive analyses were conducted. First, heating process analysis (or surface 

temperature increase process) was conducted by infrared (IR) camera to investigate 

whether the heat dissipation changed after the trip cycle test. IR pictures were also 

used to identify the location of the internal gaps between different parts and to verify 

the effect of cracks and gaps on the changes in the surface temperature and the trip 
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time. The IR pictures were taken under RT condition. For each trip cycle test 

condition, one tested sample was picked for IR test without any cutting. 

The destructive analyses included: 1) interconnection analysis in order to 

determine the effects of the defects at the interconnection on failures of the fuse; 2) 

CB/PE microstructure analysis in order to investigate the effects of the distribution of 

the CB particles on failures of the fuse; 3) CB/PE crystallinity analysis in order to 

investigate the effects of the crystallinity changes in PE on failures of the fuse; 4) 

CTE test on a new sample to investigate the CTE-mismatch. The destructive analysis 

1), 2), and 3), were conducted on the cycled samples under each test condition. A fuse 

was cut to different small parts for different analysis, shown in Figure 18.  

2

31

4

 

Figure 18: Different areas for different analyses 

Area 1 was used for interconnection analysis to identify the cracks, voids, and 

gaps, which affect the mechanical, thermal, and electrical properties of the fuse. This 

area was cut from the fuse, cross-sectioned to different locations, and then 

investigated by environmental scanning electrons microscopy (ESEM). The 

concerned interconnections include those between coating and metal foil sheets, the 
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foil sheets and the leads, and the foil sheets and the polymer composite. Area 1 was 

also used to investigate the distributions of CBs in the polymer composite after some 

special process, such as ion etching by Argon ions, which can remove a thin layer of 

the PE and keep CB at its location. Aggregation of CB particles affects the 

conductivity of the polymer composite. 

Area 2 and area 3 were used to investigate the microstructure. The parts were 

freeze fractured. In freeze fracturing process, parts were immersed in liquid nitrogen 

for 1 hour to become fragile and easy to break, and then were broken in the liquid 

nitrogen. The surface at the broken site then was coated with a thin layer of gold by 

sputter coater. Comparing with ion-etched surface, freeze fractured surface kept all 

components of the polymer composite. The gold-coated surface of the section was 

investigated by ESEM to identify the microstructure of polymer composite including 

the CBs and PE networks. 

Area 4 was used to investigate the crystalline to amorphous (CA) transition 

temperature and crystallinity of the polymer composite. These properties of the 

composite affect the heat required for the fuse trip. The polymer composite of this 

area was taken out and put into differential scanning calorimetry (DSC) to investigate 

the changes in CA transition temperature and crystallinity. DSC is a technique for 

measuring heat capacity during a programmed change of temperature. Specific heat, 

which is the amount of energy needed to change the temperature of unit mass by unit 

degree at a constant pressure, was measured using a Pyris DSC. The specific heat 

curve measured over a wide temperature range shows how much energy is required to 
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the polymer phase transitions. For semi-crystalline polymers, the overall area of the 

transition peak increases with the degree of crystallinity, whilst its shape is 

determined by the crystal population present in the specimen. In DSC tests, sample 

was heated at 10 °C /min from 30 °C to 180 °C and then cooled at 10 °C /min to 30°C 

for 6 cycles.  

CTE tests, using Pyris TMA 7, of coating material and the combination of the 

foil and CB/PE composite were conducted to investigate the CTE mismatches, which 

were the possible causes for the gaps between different parts inside the fuses.  

4.2 Analysis Results 

4.2.1 IR test results 

Figure 19 and Figure 20 are the IR pictures of a new sample and a sample with 

cracks and gaps after cycle test under -10°C condition, shown in Figure 11. IR 

pictures reveal the presents and locations of the gaps between coating and foil, as well 

as the thermal distribution in the heating process. Table 10 summarizes the time 

needed to reach the heat balance for samples after cycle tests under different 

conditions. The tests results indicate that the samples, which have cracks and gaps, 

require longer time to dissipate the heat out. This means that the heat is kept inside 

for a longer time, and causes the faster heating of the internal CB/PE composite than 

that of the sample without cracks and gaps. This verifies that the gaps does cause the 

decrease in the trip time. Table 10 can also explain the reason of the a little increase 

in the trip time under 85°C, under which the heat dissipation is faster than the new 
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sample so longer time is needed to heat the sample up. All IR pictures are shown in 

Appendix A. 
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Figure 19: IR pictures at different moments (a new sample) 
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Figure 20: IR pictures at different moments (-10°C cycled sample) 
 
 
 
 

           Gaps 



 

48 
 

Table 10: Time needed to reach heat balance 
 

Conditions Time needed to reach 
heat balance (s) 

Cracks or gaps 

New sample 8 No 

-10°C 24 Yes  

RT 15 Yes  

60°C 7 Internal gap only 

85°C 5 No 

 

4.2.2 Interconnection analysis results 

Figure 21 shows an example of new sample, in which no gaps and cracks were 

observed at all interconnections. Figure 11 shows an example of the observable 

cracks on the outside coating and gaps between coating and foil, which occurred at all 

the samples under -10 °C and RT conditions. Figure 22 and Figure 23 show examples 

of the internal gap between coating and foil, which occurred at all the samples under -

10 °C, RT, and 60 °C conditions. Figure 23 to Figure 26 show examples of different 

type of cracks and voids at the solders, which connect the electrode with the foil. The 

cracks were observed in all the samples under -10°C and RT conditions. Table 11 

summarizes the interconnection analysis results.  

Table 11: Summary of interconnection analysis 
 

Conditions Observable 
cracks and gap Internal gap Cracks at 

solder 

New No No No 
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Conditions Observable 
cracks and gap Internal gap Cracks at 

solder 

Trip cycle 
tests 

-10°C 
Yes (around 

4000 cycles, all 
samples) 

Yes (all samples) Yes (all 
samples) 

RT 
Yes (around 

6000 cycles, all 
samples) 

Yes (all samples) 
Yes 

(all samples) 

60°C 
No (after 22000 

cycles, all 
samples) 

Yes (all samples) 
No (after 

22000 cycles, 
all samples) 

85°C No (after 21000 cycles, all samples) 

Aging 
tests No (all samples under all conditions) 
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Coating 

Foil 

 

Figure 21: Normal interconnection (No cracks and gaps) 
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Figure 22: Example of internal gap 
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Figure 23: Example of cracks at solders and coatings; and gaps between coatings and 
electrodes 
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Figure 24: Example of cracks at solder 
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Figure 25: Example of crack along the solder 
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Figure 26: Example of voids and cracks at solder 
 
 

4.2.3 Microstructure analysis results 

Microstructure analysis revealed the distribution of PE and CBs. Figure 27 

shows how CBs distribute in PE matrix in a normal case using freeze fracturing 

method. The CBs have trends to aggregate together. Figure 28 shows a typical 

microstructure of a sample under 60°C aging test, in which the CBs aggregated in a 

relative low level. Figure 29 shows a typical microstructure of a sample under 60°C 

trip cycle tests, in which CBs aggregated more and formed large agglomerations. All 

microstructure analysis results using freeze fractured method are shown in appendix 

A.  

The analyses using ESEM after ion etching processing also observed the 

aggregates under different aging testing (non-cycled) conditions and agglomerations 
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of the CBs under different trip cycle test (cycled) conditions. Figure 30 shows a 

typical picture of a sample under 60°C aging condition using ESEM after etching by 

Argon ions. Figure 31 is atypical picture of a corresponding sample under 60 ° C trip 

cycle tests. All pictures of CBs aggregates and agglomerations under different 

conditions after ion etching are shown in appendix A.  

Agglomeration of CBs affects the form of CB conductive paths. Although more 

conductive paths are formed in the larger agglomeration, the gap between different 

agglomerations increases. These agglomerations actually reduce the global 

conductive paths and increase the resistance. Table 12 summarizes the microstructure 

analyses.  

 

Table 12: Summary of microstructure analyses 
 

Conditions CB Aggregates? CB Large 
Agglomerations? 

Resistance after 
reset 

Trip cycle 
tests 

-10°C Yes Yes  Increase 

RT Yes  Yes  Increase 

60°C Yes Yes  Increase 

85°C Yes Yes  Increase 

Aging 
tests 

CB aggregates were observed for all samples; No CB 
agglomerations were observed 

No obvious 
changes 
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Figure 27: Microstructure of CB/PE composite of a normal sample (Sample was 

freeze fractured in LN2) 
 

 
Figure 28: Typical CB aggregates of samples in aging test at 60°C (non-cycled, 

sample was freeze fractured in LN2) 

CB 
aggregates 

PE matrix 

CB 
aggregates 

PE matrix 

PE matrix 
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PE Matrix CB agglomerations

 
Figure 29: Typical CB agglomerations of samples in trip cycle test at 60°C (Sample 

was freeze fractured in LN2) 
 

 
Figure 30: Typical CB aggregates of samples in aging test at 60°C (Non-cycled, 

sample was etched by Argon ions) 

CB 
aggregates 
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Figure 31: Typical CB agglomerations of samples in trip cycle test at 60°C (Sample 

was etched by Argon ions) 

 

4.2.4 DSC analysis results 

DSC tests revealed the changes in the thermal properties of the CB/PE 

composite, including the CA transition temperature and crystallinity of the semi-

crystalline PE.. Sample was heated from 30 °C to 180 °C at 10 °C /min and then 

cooled to 30°C at 10 °C /min for 6 cycles. The results showed that the first heating 

curve was different with those of the other 5, which were vertically identical. All the 

cooling curves were identical.   

Figure 32 shows an example of DSC test results (only the first and the 6th cycle) 

of a sample after trip cycle test under RT condition. Table 13 summarizes the DSC 

test results and compares the CA transition temperature and crystallinity between 

CB 
aggregates 

CB 
agglomerations 
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the cycled samples and non-cycled samples (aging samples) under each ambient 

condition. The DSC result of the first scan contained the sample’s thermal history 

including the heating/cooling cycles in the trip cycle tests and the temperature 

changes from experimental condition to room condition for sample preparation of 

DSC. We assumed that the thermal effects of sample preparations for all the samples 

were the same. The first scan then revealed the effects of trip cycle and aging tests on 

the thermal properties of polymer. Based on the results, all main CA transition peak 

temperature of the cycled samples were higher than those of the aging samples. The 

percent crystallinity of the cycles samples were also a little higher than that of the 

aging samples. This indicated that the trip cycle increased the crystallinity of 

polymer. These results agreed with the results from some researchers. For example, 

Omastova et al. [78][79] conducted thermal cycle tests on polymer composite and 

found that the thermal cycles increased the crystallinity. The table also shows that the 

higher the ambient temperature, the higher the CA transition temperature and 

crystallinity are. Since the highest temperature of the sample at different conditions is 

the same, under the natural cooling style, the higher the ambient temperature, the 

lower the cooling rate is. These results agreed with a results that the faster the 

cooling, the less crystallinity under RT is [80][81]. The increase of the crystallinity 

contributes to the increase of trip time because more heat is required for CA 

transition. It also contributes to the decrease of resistance after reset because the less 

amorphous phase decreases the gaps between CB particles.  
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Figure 32: DSC curve of a sample under trip cycle test at RT 
 
 
 
 

Table 13: Summary of DSC test 
 

 MainPeak_1st 
heating (°C) 

LowPeak_1st 
heating (°C) 

MainPeak_6th 
heating (°C) 

C%_1st heating 

(=∆Hm/∆Hm
0) 

×100% 

∆ Hm
0=285.8 J/g 

C%_6th heating 

(=∆Hm/∆Hm
0) 

×100% 

∆ Hm
0=285.8 J/g 

 Aging Cycle Aging Cycle Aging Cycle Aging Cycle Aging Cycle 

-10°C 130 135 120 119 128 128 27% 29% 24% 25% 

RT 130 135 119 120 128 128 28% 30% 26% 26% 

60°C 132 136 119 120 128 128 28% 29% 26% 25% 

85°C 133 137 120 119 128 128 29% 30% 25% 25% 

       
∆Hm and ∆ Hm

0 are C-A transition 
enthalpies of sample and 100% 

crystallization sample 
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4.2.5 CTE test results 

The CTE at X and Z directions of outside coating and the combination of the 

foil and polymer, shown in Figure 33, were measured using Pyris TMA 7. The 

temperature range is from -10 °C to 140 °C by 5 °C/min.  

X Z

 

Figure 33: CTE test direction 
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Expansion Coefficient: 113.9 e-06/°C
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Expansion Coefficient: 269.2 e-06/°C

Temperature: 110 °C
Position: 0.56mm

Temperature: 130°C
Position: 0.59mm

 
Figure 34: Example of CTE test (foil/polymer, Z direction) 
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CTE tests showed non-linear expansion at both X and Z directions. Figure 34 is 

an example of the test curve of the combination of foil and polymer (foil/polymer) at 

Z direction. Table 14 summarizes the CTE test results. CTE in temperature range 

from -10°C-110°C and range from 110°C -130°C were calculated individually, and 

then the overall CTE were calculated at range from -10°C -130°C. At Z direction, 

CTE-mismatch between coating and the foil/polymer combination were high at 

temperature range from 110°C -130°C, in which the CA transition occurred and 

finished. At X direction, the CTE-mismatch was not that obvious. CTE-mismatch is 

one of the causes of the gaps and cracks shown in the interconnections.  

Table 14: Summary of CTE test 
 

 

CTE (E-06/°C) 

X direction Z direction 

Temperature range 
-10°C-

110°C 

110°C 

-130°C 

-10°C -

130°C 

-10°C-

110°C 

110°C 

-130°C 

-10°C -

130°C 

Coating 38.6 -105.4 20.6 105.4 -294.5 48.6 

Foil and CB/PE 20.2 -12.3 18.9 113.9 1063.4 269.2 

4.3 Causes for Changes in Parameters 

Table 15 shows the mapping of the changes in parameters (trip time and 

resistance after reset) and the failure analysis results. The causes for the changes in 
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the parameters can be determined based on this mapping and some theoretical 

analysis. 

4.3.1 Causes for changes in trip time and surface temperature 

Trip is caused by the PPTC effect when the temperature is increasing to a 

certain level. Trip time is affected by changes in the PTC effects and the rate of the 

temperature increase. PPTC effect is controlled by the properties of the CB/PE 

composite itself, such as the crystallinity of the polymer, which affects the heat 

required for phase transition, and the aggregation of the CBs, which affects the 

resistance changes. Increase in temperature is controlled by a heat transfer equation 

(1), and finally heating and dissipation reach to a balance shown in equation (2).  

 (1) 

(2) 

Where m = mass of the fuse, Cp = heat capacity of the fuse, ∆T = change in fuse 

temperature, ∆t = change in time, I = current flowing through the fuse, R = resistance 

of the fuse, U = overall heat-transfer coefficient, T = temperature of fuse, TA = 

ambient temperature. In equation (1), item 1 is the heat to raise the temperature of the 

fuse; item 2 is the generated Joule heat, which is the heat source; item 3 is the heat 

dissipated to environment. When the heat transfer reaches the balance, the all 

generated heat dissipates to environment, and temperature of the fuse does not 

increase any more. 

 

)(2)/( Ap TTURItTmC 

)(2
ATTURI 

      1                  2            3 
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Table 15: Mapping between changes in parameters and failure analysis results 
 

 Trip time 
changes 

Resistance 
after reset 
changes 

Interconnection analysis 
results 

CBs 
agglomerations 

Time to heat 
balance (s) Crystallinity 

compared with 
non cycled 

samples Gap Cracks at 
solder 

New sample: 
8s 

-10°C Increased 
quickly in the 
early period, 

and then 
decreased 

Decreased in 
the early 

period, and 
then 

increased 
 

Observable 
cracks and 

gaps 
Yes Yes 24 Increased 

RT 
Observable 
cracks and 

gaps 
Yes Yes 15 Increased 

60°C 

Increased 
quickly in the 
early period, 

and then 
decreased 
gradually 

Internal gaps 
(observed by 

ESEM) 
No Yes 7 Increased 

85°C 

Increased 
quickly in the 
early period, 
and increased 

gradually 

No gap found No Yes 5 Increased 
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The external influence factors for temperature increasing include the current 

passing the fuse, the ambient temperature, and heat dissipation rate around the fuse. 

Temperature increasing is also affected by some internal factors including the start 

resistance of in each trip cycle (or the resistance after the previous cycle) and the heat 

dissipation ability of the device itself. In my experiment, the external effects were 

assumed to be constant. Only the internal effects were concerned in this thesis.  

Based on the analysis above and the mapping in Table 15, the causes for the 

trip time changes can be determined as the following:  

1) The increase in the trip time in the early period was caused by the decrease 

in resistance at that time period and the increase of the crystallinity, due to 

which more heat was required for CA phase transition. 

2) The decreases in trip time after the earlier period were caused by the 

decrease in the heat dissipation ability due to the gaps and cracks at the 

interconnections between different parts. The increase of the resistance after 

reset contributed the decrease of the trip time but was not a dominant cause. 

The gaps between foil/polymer combination and coating were caused by the 

CTE-mismatch and the heating/cooling cycles. 

3) The gradually increase trend exhibited at 85 °C was caused by the increase 

of the crystallinity and the increase of the heat dissipation ability.  
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Surface temperature is a side-product of the trip of the fuse. It was high 

correlated with trip time. The causes for the changes of these two parameters were the 

same. 

4.3.2 Causes for changes in resistance after reset 

Table 15 also shows the mapping between the changes in resistance after reset 

and the failure analysis results. Resistance after reset measured in the trip cycle test 

was the entire resistance of the fuses including the resistance of the CB/PE composite 

and the resistance of interconnections. Defects at the polymer and interconnection all 

contributed the changes in resistance after reset. The causes for changes in the 

resistance after rest included the following: 

1) The early decreases in resistance were caused by the increase in the 

crystallinity. Based on some research by He et al. [38], Park [40], Hunag et 

al.[41], Xu et al. [43], and Yui et al. [45], the CBs sit in the amorphous 

phase in PE. The increase in crystallinity reduces the amorphous phases 

resulting in the increase in the resistance. Furthermore, no cracks at 

interconnections were observed in this period. 

2) Cracks and gaps at the interconnections except for that between coating and 

foil contributed to the increases in the resistance after reset. 

3)  The formation of large CB agglomerations caused the increase in 

resistance. The local conductivity inside the agglomeration increases, but 

the conductivity between different agglomerations decreases due to the 
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increase in the gaps. The agglomerations increase the global resistance of 

the CB/PE composite.  

4) With the trip cycles, the effects of crystallinity changes on the resistance 

were ignorable comparing with the effects by the cracks at interconnections 

and CB agglomerations in CB/PE composite. 

4.4 Summary 

The causes for changes in parameters were determined in this chapter. Gaps 

between different parts were the main causes for decreases in the trip time. Without 

gaps, the properties change of the CB/PE, such as the increases in crystallinity, were 

the main causes for the increase of the trip time. The agglomerations of the CBs were 

the one of the main causes for the increase in the resistance after reset. With the 

increases in the cycle numbers, the cracks at the solder and the gaps between foil and 

CB/PE composite will control the increases in the resistance and finally cause an 

open current. The further analysis by CTE revealed that the CTE-mismatch caused to 

the gaps between coating and foil/polymer combination.  
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Chapter 5: Anomaly Detection Using Cross Validation 

Sequential Probability Ratio Test (CVSPRT) 

Trip time and resistance after reset were determined as precursors for gaps, 

cracks, and prosperity degradation of CB/PE composite, which have different failure 

mechanisms. Anomaly detection for PPTC resettable fuse should monitor and detect 

the abnormal behaviors exhibited in each of the precursor parameters. In this thesis, 

sequential probability ratio test (SPRT) is used to monitor the trip time and resistance 

after reset to detect the anomalies. The difficulty of model parameter selection for 

SPRT was solved by a cross validation method.  

Sequential probability ratio test (SPRT) has been used in in-situ monitoring, 

anomaly detection, and decision making for electronics, structures, and process 

controls. For example, Gross et al. used SPRT to monitor anomalies in computer 

servers [83][84], and equipment in nuclear plants [85]. Pecht et al. [53] used SPRT to 

detect anomalies in BGA solders by monitoring the resistance in the temperature 

cycles. SPRT was also used as an anomaly detection algorithm for an ePrognostics 

sensor tag [86]. Sohn [87] applied SPRT to conduct a statistical damage classification 

of a system, such as automotive system based on monitored vibration signals. 

Stoumbos et al. [88][89] utilized SPRT to generate a statistical process control model 

to monitor the process changes.  
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However, because model parameters for this method, such as the system 

disturbance magnitudes, and false and missed alarm probabilities, are selected by 

users primarily based on experience, the actual false and missed alarm probabilities 

are typically higher than the requirements of the users. This chapter presents a 

systematic method to select model parameters for the sequential probability ratio test 

without the need of experience by using a cross validation method. The presented 

method can improve the accuracy of sequential probability ratio test by reducing the 

false and missed alarm probabilities caused by improper model parameters. 

General anomaly detection using SPRT is shown in Figure 35. The training 

data, which are healthy data of the system, can be obtained from historic data or from 

the stable operational phases when the product is known to be healthy. Statistical 

features of the training data, such as the distribution, are extracted to create a 

detection baseline. In the detection procedure, in-situ monitored data is compared 

with the baseline sequentially using SPRT to detect the anomalies.  

 
 

 
 

5. 1 Wald’s SPRT  

SPRT is a sequential statistical binary hypothesis test introduced by Wald [90]. 

SPRT is different from traditional hypothesis testing where the data collection is often 

SPRT Anomaly 
detection 

In-situ 
monitored data 

 

Training data 
 

Figure 35: Anomaly detection procedure using SPRT 
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executed without analysis, and after all the data are collected analysis is conducted 

and conclusions are drawn [87]. In SPRT, data is monitored in-situ and is analyzed 

directly once it is collected. This ability enables SPRT for the detection of statistical 

changes against a null hypothesis at the earliest possible time or with the smallest 

sample size [90][91].  

The binary hypothesis of SPRT includes one null hypothesis and one or more 

alternative hypotheses, shown in Figure 36. For a normal distribution, the null 

hypothesis H0 represents the healthy state, with mean = 0 and standard deviation = σ; 

The alternative hypothesis includes four cases: 1) H1: the mean of the test data has 

shifted high to +M, with no change in standard deviation; 2) H2: the mean of the test 

data has shifted low to –M, with no change in standard deviation; 3) H3: the variance 

of test data has increased to Vσ2, with no change in mean; 4) H4: the variance of test 

data has decreased to σ2/V, with no change in mean. M and V are the predetermined 

system disturbance magnitudes, which are decided by the user, and in general they 

are several times of the standard deviation of the training data.  

Figure 37 shows the procedure of SPRT. The SPRT calculates the SPRT index 

for each in-situ monitored data point and compares the SPRT index with the 

boundary to make a decision. The SPRT index is the natural logarithm of the ratio of 

the probability that accepts the null hypothesis to the probability that accepts the 

alternative hypothesis. Four SPRT index formulas for normal distribution are shown 

as Equations (3) to (6) [92]. 
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-M M

H0: N(0, σ2)H2: N(-M, σ2) H1: N(M, σ2)

H3:
N(0, Vσ2)

H4:
N(0, σ2/V)H0: N(0, σ2)

0

0  

Figure 36: SPRT hypotheses 
 

(3) 
 

(4) 
 

 
(5) 

 
 (6) 

 

SPRT uses the probabilities of missed alarms and false alarms to create the 

thresholds of acceptance and rejection of the null hypothesis, as shown in equation 

(7).  

 
(7) 

Each SPRT index is compared to the decision boundaries (A, B). For each 

comparison, there are three possible outcomes: 1) the lower limit is reached, in which 

case the healthy hypothesis (H0) is accepted, the corresponding index is reset, and 

sampling continues; 2) the upper limit is reached, in which case the alarm is given, 
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the corresponding index is reset, and sampling continues; or 3) neither limit is 

reached, in which case the information is not sufficient to make a conclusion, and the 

sampling continues.  

 

Figure 37: SPRT procedure 

Four model parameters should be determined for SPRT detection: the system 

disturbance magnitude, M, which is m times the standard deviation of the training 

data; the variation factor, V; the false alarm probability, α; and the missed alarm 

probability, β. In practice, these model parameters are selected by experience. Even 

though the system disturbance magnitudes selected are in this recommended range 

[92] [93], the actual false alarm probability and/or missed alarm probability may be 

higher than the user-allowed values. Developing a systematic model parameter 

selection method for SPRT is necessary to improve its performance and control the 

false alarms and missed alarms. In this thesis, a cross validation method was used as a 

systematic method to select a proper model parameter set (m, V, α, β) for SPRT 

without the need for experience.  
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5. 2  Cross Validation SPRT 

Cross validation (CV) is a statistical method that can be used to evaluate the 

performance of machine-learning-based anomaly detection and prediction algorithms. 

In the process of CV, the labeled dataset, which is a known healthy dataset, is 

partitioned into two subsets: a training subset and a validation subset [94]. Machine-

learning-based anomaly detection and prediction algorithms are trained by the 

training subset and tested by the validation subset. The performance of the anomaly 

detection algorithms can be estimated by the error rate of the detection results 

compared with the validation subset, in which data is labeled as healthy or abnormal. 

The performance of the prediction algorithms can be estimated by the mean squared 

error (MSE) calculated by the difference between the predicted data and the 

validation data. 

CV can also be applied to conduct the model parameter selection for anomaly 

detection algorithms [94] [95]. For example, it has been used to determine the number 

of neighbors of k-nearest-neighbor classification [96][97] and the number of hidden 

units for a one-layer neural network [98][99]. The performance of an anomaly 

detection algorithm with a certain model parameter can be calculated by error rate 

estimated by the CV process. The model parameter with which the algorithm has the 

lowest error rate is selected for the algorithm.  

Common CV methods include hold-out CV, k-fold CV, and leave-one-out CV 

(LOOCV) [100][101][102]. In hold-out CV, labeled data is split into two independent 

subsets randomly: a training subset and a validation subset. For example, 30% of 
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labeled data are randomly picked up as validation data and the remaining 70% of the 

labeled data is training data. The anomaly detection error rate is calculated by 

equation (8). 

(8) 

Hold-out CV avoids the overlap between the training subset and the validation 

subset. But it does not use all the labeled data to validate the model, and the detection 

error rate estimation is highly dependent on how to split the dataset. K-fold CV can 

overcome some of these problems [101][102]. In k-fold CV, a labeled dataset is 

partitioned into k equally or nearly equally sized subsets. An iterative process is then 

conducted. In each iteration, a different subset is selected as validation data to 

estimate the performance of the algorithm, and the remaining k-1 subsets are used as 

training data to train the algorithm. The detection error rate is calculated in each 

iteration using equation (9). The process is iterated k times until each of the subset has 

been selected as the validation data. After k iterations, k error rates are calculated. The 

mean of the k error rates, shown in equation (10), is considered to be the final 

detection error rate of the algorithm when the entire labeled dataset is used as the 

training data.  

 
(9) 

 
 

(10) 
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All the labeled data is used as validation data in k-fold CV; therefore, the 

accuracy of the detection error rate estimation is improved. However, with the 

increase of k, the variance of the detection error rate estimation becomes large, and 

the entire CV process is more time-consuming.  

Leave-one-out CV (LOOCV) [102] is actually the extreme condition of k-fold 

CV, in which k equals to the number of data points in the labeled data, N. In each 

iteration, 1 different data point is selected as validation data and all the remaining 

data points are the training data. LOOCV runs N iterations, and the final detection 

error rate is estimated by equation (11). LOOCV can provide an unbiased estimation 

of the error rate, but the variance in the estimation is large.  

 
(11) 

The selection of the CV method can be based on the size of the labeled dataset. 

If the size is small, LOOCV can give unbiased error rate estimation. However, if the 

size of the labeled data is large, k-fold CV may reduce the computation time and 

maintain the accuracy of the estimation.  

The model parameter set (m, V, α, β) for SPRT can be selected by k-fold CV. 

We recommend the range for each parameter as shown in Table 16. The procedure of 

model parameter selection by k-fold CV is shown in Figure 38. The first step is to 

select the training dataset, which is all healthy data and is the training data for SPRT 

after the proper model parameter set is obtained. After the training data is selected, a 

model parameter set (m, V, α, β) is assigned to SPRT. For each assigned model 
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parameter set, the actual false alarm probability (α’) and missed alarm probability (β’) 

are then calculated by k-fold CV.  

Table 16: Range and change interval of SPRT model parameters 

Parameter Range Start value Interval 
m 2 ~ 4 2 1 
V 2 ~ 4 2 1 
α 0.005 ~ 0.05 0.005 0.005 
β 0.005 ~ 0.05 0.005 0.005 
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Figure 38: Model parameter selection procedure by k-fold CV 
 
 

The total training data are partitioned into k subsets of equal or nearly equal 

size. k iterations should be conducted to calculate the actual false alarm probability 

(α’) and missed alarm probability (β’). In each of the k iterations, one different subset 

is selected as the original validation data, and the remaining k-1 subsets are the 
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training data. If SPRT is only run on the original validation data, which is all healthy 

data, only false alarm probability can be calculated. In order to calculate the actual 

missed alarm probability of SPRT, an abnormal dataset should be added into the 

original validation dataset, as shown in Figure 38 and Figure 39. The abnormal 

dataset can be generated by randomly picking up data outside of the range of [µ-m×σ, 

µ+m×σ]. Here the µ and σ are the mean and standard deviation of the training data in 

each CV iteration (the remaining k-1 subsets of the entire training data).  

In each iteration, both false alarms and missed alarms can be identified based 

on the comparison of the detection results with the validation data and abnormal data. 

The false alarm probability and missed alarm probability can be calculated by 

equations (12) and (13). The process is repeated for k times until each of the subsets 

has been selected as the original validation dataset. The mean of the k false alarm 

probabilities and the mean of the k missed alarm probabilities are calculated by 

equations (14) and (15) as the final false alarm probability, (α’), and final missed 

alarm probability, (β’), when using the total entire training data (without the abnormal 

data). 
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Figure 39: Adding an abnormal dataset into original validation dataset to calculate the 
missed alarm probability 

The actual false alarm probability and missed alarm probability are compared 

with the ones in the selected model parameter set. If both the final false alarm 

probability and the missed alarm probability are less than the user-specified false 

alarm probability and missed alarm probability, respectively, the model parameter set 

is considered as a proper model parameter set for SPRT, but may be not the optimal 

model set. The optimal model parameter set can be defined as the one with the 

minimum error probability, which is the minimum sum of the false and missed alarm 

probabilities. If the criteria are not satisfied, another model parameter set based on the 

interval in Table 16 should be re-assigned and the performance of the SPRT with the 

model parameter should be evaluated by k-fold CV again. A model parameter set 

should be updated when the training data is updated since the actual false alarm and 

missed alarm probabilities are calculated based on the specific training data. 

 

5. 3 Anomaly Detection Results of PPTC Resettable Fuses 

As demonstrations, trip time and resistance after reset under -10°C condition 

were used individually for the anomaly detection by CVSPRT. Trip time was plotted 

in Figure 12, and resistance after reset was plotted in Figure 13. Training data should 

Original validation dataset 

Abnormal dataset 
Updated validation dataset 
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be selected in the first step. It is proper to select the data in the early period as training 

data. The sequential changes in the data indicate the occurrences of failures. In this 

section, the first 20 TT data points in Figure 12, which represented the trip time 

values in the first 2000 cycles, were selected as training data for anomaly detection on 

trip time. The first 15 MinR data points in Figure 13, which represented the resistance 

after reset values in the first 1500 cycles, were selected as training data for the 

anomaly detection on resistance after reset. 

 The data may be normalized first using equation (16), where xi’ is normalized 

data, xi is original data, and μ and σ are mean and standard deviation of the training 

data, respectively. The normality of the training data should also be checked using 

some tools. If the training data is not normally distributed, a transformation, such as 

the Box-Cox transformation [103] or the Johnson transformation [104], may be used 

to transform the data into normal distribution. Here the normalized training data was 

normally distributed. 

(16) 

Then the model parameters (m, V, α, β) were determined by the 5-fold CV 

process, in which an abnormal dataset with 20 abnormal data points, which were 

randomly generated out of the range of [µ-m×σ, µ+m×σ] were added into each 

validation set. Here the µ and σ are the mean and standard deviation of the training 

data (the remaining k-1 subsets of the training data). The updated validation data set 

is used to calculate the actual false alarm and missed alarm probabilities in each 

iteration.  


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After the 5-fold CV process, SPRT model parameter set (m=4, V=4, α =0.005, 

and β=0.01) was selected for trip time data under -10°C condition. SPRT then used 

these model parameters and the training data to detect the anomalies in-situ when a 

new trip time (TT) data was collected. Figure 40 shows the trip time anomaly 

detection results on trip time. Figure 41 is a plot of anomaly detection for the trip time 

when using a different model parameter set (2, 2, 0.02, 0.01), under which some false 

alarms were detected in the training data. Similarly, after 5-fold CV process, model 

parameter set (m=3, V=2, α =0.005, and β=0.015) was selected for SPRT for the in-

situ anomaly detection of the resistance after reset data. Figure 42 shows the final 

minimum resistance after reset (MinR) anomaly detection results. All the detection 

results are shown in table and the figures are shown in Appendix B. 
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Figure 40: Anomaly detection on trip time under -10°C condition 
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Figure 41: Anomaly detection on trip time under -10°C condition using model 
parameter (2, 2, 0.02, 0.01) (False alarms detected) 
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Figure 42: Anomaly detection on minimum resistance after reset under -10°C 
condition 
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Table 17 summarizes the anomaly detection results based on trip time and 

resistance after reset for all the trip cycle test conditions. The anomaly detection for 

the component should provide the times (cycles) and the corresponding parameters, 

which triggered the alarm. The earliest anomaly alarm among all the parameters was 

used to trigger alarm for the anomaly of the component.  

Table 17: Summary of anomaly detection results 
 

 
Training 
data for 

TT 

SPRT 
model for 

TT 

First 
anomaly 
cycle for 

TT 
(x100) 

Training 
data for 
MinR 

SPRT 
model for 

MinR 

First 
anomaly 
cycle for 

MinR 
(x100) 

Earliest 
anomaly 
for the 
device 
(x100) 

-10°C 1-20 (4,4,0.005,
0.01) 30 1-15 (3,2,0.005,

0.015) 25 25 

RT 1-30 (4,2,0.005,
0.005) 61 1-30 (4,2,0.005,

0.005) 45 45 

60°C 10-34 (4,4,0.035,
0.005) 47 7-24 (4,2,0.005,

0.005) 37 37 

85°C 1-50 (4,2,0.015,
0.005) 65 1-20 (3,2,0.035,

0.005) 41 41 

 

5. 4 Summary 

CVSPRT is developed to select a proper model parameter set for SPRT without 

the need of experience, thus reduce the false alarm and missed alarm probability. 

Besides the anomaly detection for PPTC resettable fuses in this thesis, CVSPRT can 

be extended to conduct the anomaly detection for any conditions if the training data is 

available and the SPRT index can be calculated. 
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Chapter 6: Moving Window based Dynamic Model Parameter 

Optimization N-steps-ahead Prediction  

Prognostics of PPTC resettable fuses can be implemented using data trending or 

regression methods on the precursor parameters directly. When any anomalies are 

detected by the methods developed in chapter 5, failure prediction should be 

implemented to provide the information in the future. In this section, a moving 

window based dynamic model parameter optimization (MW-DMPO) n-steps-ahead 

prediction method is developed first as a general method for dynamic data trending 

and then moving window cross validation support vector regression (MW-CVSVR) 

n-steps-ahead prediction method is developed as a case study for the prediction of the 

PPTC resettable fuses. 

6. 1 Moving Window based Dynamic Model Parameter Optimization 

(MW-DMPO) N-steps-ahead Prediction  

The fixed training data can not contain the latest degradation information, thus 

cannot generate the prediction with high accuracy. Training data for prediction 

modeling should contain degradation features as much as or as latest as possible. 

Moving window method has been developed as the method to update the training 

data. For example, Djukanovic et al. [105] used MW on neural network and Ren et 

al. [106] applied MW on autoregressive quadratic model for short-term forecasting. 

Pecht and Cheng [107] used MW techniques on data driven methods for prognostics 
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of aging systems. However, the model parameter parameters, which determine the 

performance of the trending models, were not updated with each updating of the 

training data using MW. This caused the prediction inaccurate, even though the MW 

method was used to update the training data to catch the latest degradation 

information. A MW-DMPO n-steps-ahead prediction method is developed in this 

dissertation to solve this problem. 

The MW-DMPO n-steps-ahead prediction method is shown in Figure 43. Initial 

training data may be needed to transform to a certain pattern based on the requirement 

of the prediction model, and then used to train the prediction model, during the 

training process, best model parameters for the prediction model is identified by a 

model parameter optimization method. The n-steps-ahead predictions are calculated 

by the trained prediction model. N-steps-ahead predictions mean that only n values in 

the future are predicted in one prediction. If any of the n-steps predictions reaches the 

threshold, alarm is triggered and a failure is predicted. If all the n predictions do not 

reach the failure threshold, a conclusion should be drawn that the product will not fail 

in the future n steps (such as, times or cycles). And then the training data should be 

updated by a MW method to re-train the prediction model when the actual n 

observations are obtained to conduct the next n-steps-ahead predictions. Most 

importantly, for each training data updating, the model parameters should be 

optimized. That is called the dynamic model parameter optimization with each 

updating of training data.  
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Figure 43: Moving window training updating based prediction method 

Two MW methods were developed in this thesis to update the training data. 

The first one is called double-side MW updating, shown as the upper right in Figure 

43. In this method, actual observations in the n-steps-ahead prediction window are 

added into the training data, but at the same time, the same amount of the oldest 

training data is discarded. It looks like a fixed size of training window slide n-steps 

ahead. The second method, shown in the middle right of the Figure 43, called 

extending window updating, does not discard the oldest training data, but keep all the 

data when the actual observations in the n-steps-ahead window are added in. The 

selection of the MW updating methods depends of the features of the data itself, if the 

features do not change so much, the double-side moving window method maybe 

enough. If more historic data are needed to present the features, the extending 
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window method is suitable. After the training data is updated, the next n-steps-ahead 

prediction will be conducted. 

The most valuable information that n-steps-ahead prediction can provide is 

whether the product will fail in the n steps (such as, times or cycles) in the future. 

Most of researchers in prognostics try to calculate when the product will fail. But 

sometimes, it is more valuable to tell the heath information (health or failure) of a 

product in the near future. Then operators can have enough time but not too early to 

conduct maintenance or replacement. Besides this, n-steps-ahead may be more 

accurate than long-term prediction because of the accumulation of uncertainty of 

predictions. Furthermore, n-steps-ahead predictions can be conducted for individual 

products. It predicts the behavior in n steps in advance based on the historical 

information of the individual product itself. 

This MW-DMPO n-steps-ahead prediction method can be implemented by 

using different data trending and regression models, such as autoregressive integrated 

moving average (ARIMA), neural networks (NN), and support vector regression 

(SVR). As a case study, the MW-DMPO n-steps-ahead prediction method was 

applied on support vector regression (SVR) to predict the failure of PPTC resettable 

fuses in this chapter. This chapter also developed a cross validation method to select 

proper SVR model parameters, selections of some of which have not been considered 

in literature. The entire method was called moving window cross validation SVR 

(MW-CVSVR).  
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6. 2 Development of MW-CVSVR 

Many models have been used for time series forecasting in recent years, 

including ARIMA model [54][55] and neural network [56][57]. Selection of different 

modeling depends on the features of the data. For example, if the data is linear, 

ARIMA model is suitable, but if the data contains nonlinear components, neural 

network model has been thought as a universal approximator with an arbitrary 

accuracy [58][60]. 

 The data shown in Figure 12 and Figure 13 presented nonlinear features and 

ARIMA model may be not a good choice. As a novel neural network technique, 

support vector regression (SVR), developed by Vapnik [58], has some advantages 

compared with traditional neural network modeling. SVR can achieve an optimum 

network structure by balancing between the empirical error and the confidence 

interval. This balance eventually leads to better generalization performance than other 

neural-network models. Additionally, the SVR training process is equivalent to 

solving linearly constrained quadratic programming problems, and the SVR 

embedded solution meaning is unique, optimal and unlikely to generate local 

minima[58][60].  

However, using SVR for remaining useful life prediction of a product has been 

very limited in literature. Most of applications of SVR were focused on the 

forecasting of the time series data in financial area, such as stock price. Although 

Chen et al. [60], Tian et al. [71], Hong et al. [72], and Yang et al. [73] used SVR for 
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the reliability estimation, SVR was used only to predict the next reliability value 

based on the reliability values in the history. The research on using SVR for a real-

time tool for the remaining useful life prediction based on actual in-situ monitored 

data directly has been very limited.  

In this chapter, a MW-CVSVR model was developed to capture the updating 

degradation features of the data and predict the future values. MW-CVSVR can solve 

the problems of traditional SVR on model parameter selection and training data 

updating.  

 

6.2.1 SVR modeling for precursor parameters  

The basic idea for SVR includes mapping the input data X into a high-

dimensional feature space F by kernel functions, and then solve a linear regression 

problem in the feature space. This process is shown in Figure 44. The linear 

regression in the feature space is presented as equation (17): 

(17) 

Where, φ(x) is the feature in the feature space of data x in the input space. ω 

and b are coefficients, which are solved from the training data. Assuming a training 

data set including n data points, in which xi is the input vector and yi is target: 

Training = {(xi , yi ),i = 1,2,…, n} 

bxxf  )()( 
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In ε-SVR (Vapnik [58]), the objective is to find a function f (x) to estimate the output 

of input x. The requirements for the function f(x) include two points: 1) for all the 

training data (xi,yi), the output estimation of input xi, f(xi), can only have at most ε 

deviation from the actually obtained targets yi; In other words, errors are not 

concerned as long as they are less than ε; 2) at the same time f(x) must be as flat as 

possible, which requires small ω. [108].  

f(x)

x
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f(x)

(x)
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Figure 44: Non-linear SVR 

A regularized risk function can be defined by balancing these two requirements 

as equation (18), in which the first item is used as a measure of the flatness, and 

second item is used to measure empirical risk. Equation (19) defines a ε-insensitive 

loss function. The loss is zero if the estimate is within the ε-tube, shown in Figure 44. 

C is called cost function, which specifies the trade-off between the empirical risk and 

the model flatness. Both C and ε are user-determined parameters.  
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Where fi is the estimated output of input xi and yi is the actual output of xi. 

(19) 

The equation (19) has an assumption that function f actually exists and 

approximates all training data within ε-tube. However, sometimes, this may not be the 

case, or some small errors may be allowed. Slack variables, ξi and ξi
*, are introduced 

into to form a soft margin, shown in Figure 44. The slack variables assume non-zero 

values outside ε-tube. The SVR fits f(x) to the data to satisfy that 1) the training error 

is minimized by minimizing ξi and ξi
*, and 2) (ω•ω)/2 is minimized to raise the 

flatness of f(x). The entire task is to minimize the equation (20) 

(20) 

Subject to: 

(21) 

 

The minimization can be solved by introducing Lagrange multipliers and 

exploiting the optimality constraints [108].  

(22) 
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Finally, by applying Karush-Kuhn-Tucher (KKT) conditions for regression, the 

optimize formulation can be transformed into a Dual problem: 

Maxing:  

(23) 

Subject to  

(24) 

 Where, αi and αi
* are Lagrange multipliers, and satisfy the equality, αi• αi

*=0. 

By solving the Lagrange multipliers αi and αi
*, the optimal weight vector of the 

regression is expressed as: 

(25) 

Then the regression is: 

(26) 

The nsv denotes the number of total support vectors. For ε-insensitive SVR, the 

vectors in the tube are not considered as support vectors. The training vectors, whose 

corresponding coefficients (αi-αi*) are non-zero values, have approximation error 

equal or larger than zero (on or outside the tube). Only these vectors are called 

support vectors. That means SVR do not need all training data as support vector, only 

a few vectors may generate a good regression. 
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  K(xi,xj) is the Kernel function, which is the inner product of two vectors xi and 

xj in the feature space, φ(xi ) and φ(xj), meaning that K(xi,xj)= φ(xi)• φ(xj). The kernel 

function is intended to handle any dimension feature space without the need to 

calculate φ(x) accurately. Any function can satisfy the Mercer’s conditions then can 

perform the non-linear mapping. Common kernel functions used in SVR are listed in 

Table 18.  

Table 18: Common Kernel functions 
 

Kernel Function Formula 

Polynomial  

Gaussian Radial Basis Function  

Exponential Radial Basis Function  

Multi-layer Perceptron  

Fourier Series  

B Splines  

Based on the understanding of the concepts of SVR, Figure 45 summarizes the 

procedures of SVR modeling [108]. In the training process, training data is used to 

obtain a model including the solutions of ω and b, support vectors, and all the 

corresponding mapped vectors in feature space. Support vectors are a subset of 
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training data. When a new vector is input to the model, it is mapped into the feature 

space by φ(X), and then the dot product of φ(X) with each existing mapped vectors in 

the feature space φ(Xi) obtained from training data are calculated. These two 

processes are conducted by kernel function, K(X,Xi), the output is the summation of 

the weighted dot products and the constant item b. The entire process is similar to 

regression in a neural network. The advantage over neural network is that SVR does 

not need all the training vectors but only a subset of it. 

 

∑ 
 

X1 
 

X2 
 

Xm 
 

X 

φ(X1) φ(X2) φ(X) φ(Xm) …  

…  

( • )  ( • ) ( • ) …  

Support vectors (subset 
of training data) 

A new input vector 

Mapped vectors in 
feature space 

Dot product of φ(X) 
and φ(Xi), =K(X, Xi) 

 

Output 
f(X)=∑(αi-αi

*)K(X, Xi)+b 
 

α1, α1
* 

 α2, α2
* 

 

αm, αm
* 

 

b 
 

f(X) 

Figure 45: Schematic flowchart of SVR model 



 

92 
 

For the prediction model of univariate time series data, such as trip time or 

resistance after reset, the inputs data are past values, the lagged observations of the 

time series, while the outputs are the future values, shown in equation (27) 

(27) 

Table 19: Input and output pattern transformation for training data and process for n-
steps-ahead prediction 

 

 Index of Pattern 
(i) 

Input Vector Xi Output (Target 
or Prediction) 

Training 

1 x1, x2, x3, …, xp xp+1 

2 x2, x3, x4, …, xp+1 xp+2 

3 x3, x4, x5, …, xp+2 xp+3 

   

t-p xt-p, xt-p+1, xt-p+2, …, xt-1 xt 

n-steps -
ahead 

prediction 

t+1 xt-p+1, xt-p+2, xt-p+3, …, xt x’t+1 

t+2 xt-p+2, xt-p+3, xt-p+4, …, x’t+1 x’t+2 

t+3 xt-p+3, xt-p+4, …, x’t+1, x’t+2 x’t+3 

   

t+nstep x(’)
t-+nstep-p, …, x’t+nstep-2, x’t+nstep-1 x’t+nstep 

Where data vector X: {xt-1, xt-2, …, xt-p} is the input data, which is p lagged 

values, while xt is output or target. After training data is selected, it must be 

transformed into the certain XY pattern, in which X is the input vector and Y is the 

target, by a moving fixed-length window. The lag, which represents the number of 
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previous data or the length of the window, must be determined first. The 

transformation of the training data if the lag is p is shown in Table 19. Unfortunately, 

no systematic methods have been proposed to select the lag value.  

6.2.2 Cross validation SVR (CVSVR) 

In this thesis, Gaussian RBF is selected. It has only one variable to be 

determined, which can simplify the optimization of the model. In addition, SVR using 

RBF has excellent nonlinear regression ability. Four parameters, C, ε, σ, and lag, 

should be determined before the application of SVR model. Cross validation (CV) 

method has been used to select a proper C, ε, and σ for SVR. But the selection of lag 

value has not been considered in literature. In this thesis, all of four model parameters 

including the lag were selected by CV process. 

Transformed Training data

Subset 1 Subset 2 Subset k… 

Subset iRemaining k-1 subsets

Train SVR model

Trained SVR model

MSEi of ith iteration

i=k?

i=i+1
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No

Yes

Yes

Randomly 
split

Training data Best 
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Figure 46: k-fold CV for SVR parameter optimization 
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Figure 46 shows the procedure using k-fold CV to select parameters for SVR. 

For each model set (C, ε, σ, lag), k-fold CV is used to calculate the prediction 

accuracy. When the accuracy reaches the criteria, the SVR model with that parameter 

set is used to predict the output of new input data. Before the k-fold CV process, the 

training data should be transformed (shown in Table 19) based on the value of lag. In 

k-fold CV, the transformed training data set is split into k equal or nearly equal sized 

subsets, then an iterated process is conducted to calculate the prediction accuracy. In 

each iteration, one subset is selected as validation data, and the other k-1 subsets are 

used as training data to train the SVR model. The trained SVR model then is working 

on the validation data to predict the output for each input. The accuracy of prediction 

in the ith iteration is calculated by mean squared error (MSE), shown in equation (28): 

(28) 

Where nVal is the number of validation data.  

After k iterations, the prediction accuracy of the SVR model with the parameter 

set (C, ε, σ, lag) can be calculated by equation (29): 

(29) 

When the MSEfinal reaches the stop criteria, which can be defined as the minima 

of the MSEfinal, the selection process is stopped and the SVR model with the 

corresponding parameter set is the final trained model, which is used for the 

prediction of a new test data. If the criteria are not reached, a new updated model 
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parameter set is input to the CVSVR to repeat the process. Table 20suggests the range 

of each parameter and how the CV updates the model set.  

Table 20: Ranges of SVR model parameters 
 

Parameter Range Start value Interval 
Log2(C) -10 ~10 -10 0.5 

ε 0.01 ~ 0.2 0.01 0.01 
Log2(σ) -10 ~10 -10 0.5 

lag 5 ~15 5 1 
 

6.2.3 MW-CVSVR 
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Figure 47: MW-CVSVR procedure 

For failure prediction, training data for CVSVR modeling should contain the 

latest degradation features as much as possible. Using the developed MW training 

updating based prediction method in this thesis, a MW-CVSVR model was 

developed, shown in Figure 47.  
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Initial training data is transformed (shown in Table 19) and then used by k-fold 

CVSVR to select an optimal model parameter set for SVR. Then the training data is 

transformed again based on the optimal model parameters and used to train the SVR 

model, in which process the support vectors are identified and the coefficients and 

bias item are calculated. The n-steps-ahead predictions then can be calculated by this 

trained model. If any of the n-steps predictions reaches the threshold, alarm is 

triggered and a failure is predicted. If all the n predictions do not reach the failure 

threshold, a conclusion should be drawn to state that the fuse would not fail in the 

future n cycles. And then the training data for the prediction model should be updated 

by a MW method (double-side MW or extending window method) when the actual n 

observations are obtained. A new optimal model parameter set should be selected by 

cross validation process again. The model with the updated optimal model parameters 

should be trained by the updated training data to conduct the next n-steps-ahead 

predictions. This process is repeated until a failure is predicted. The prediction error 

is estimated by the residuals between the training data and its estimations. The actual 

application shows that the residuals are normally distributed. This MW-CVSPRT can 

always give the n-steps-ahead prediction to determine if failure will occur in near 

future, and the RUL prediction may be much closer to the actual failure.  

6. 3 Prognostics of PPTC Resettable Fuses Using MW-CVSVR 

The result of using MW-CVSVR on the failure prediction based on trip time 

data of PPTC fuses under -10°C condition is demonstrated in this section. Anomaly 

in terms of trip time under -10°C condition was detected at the 30th point (around 
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3000 cycles). So the prediction could be start at this point. The first 30 data points 

were used as the initial training data for MW-CVSVR. Gaussian radial basis function 

was chosen as the kernel function for MW-CVSVR and 3-fold cross validation was 

used to select the model parameters (C, ε, σ, lag).  

The accuracy of prediction is affected by the number of steps, n, and the MW 

methods (DMW and EW). The number of steps, n, also determines the number of 

predicted data in the future and the number of data used to update the training data (or 

steps in the window moving). The selection of n should be considered with a balance 

between the prediction error and the prediction distance. Figure 48 shows MSEs of 

predictions with different prediction steps, from 1 to 10, and different MW methods 

(DMW and EW) for trip time under -10°C conditions. Figure 49 shows the MSEs of 

predictions with different prediction steps and MW methods for minimum resistance 

after reset under -10°C conditions. Based on these two figures, 5-steps-ahead 

prediction is recommended as it balances accuracy and prediction distance. 
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Figure 48: MSEs vs. number of prediction steps (trip time, -10°C). 
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Figure 49: MSEs vs. number of prediction steps (min. resistance after reset, -

10°C). 

For comparison of accuracy for all conditions, 5-step-ahead prediction and 10-

step-ahead prediction were conducted by MW-CVSVR. Both double-side MW 

updating and extending window updating methods were applied on this data. Figure 

50 to Figure 53 are examples of 5-step-ahead prediction using double-side MW 

updating and extending window updating methods at different moments, in which the 

Figure 50 and Figure 51 are the predictions at the start moment, and Figure 52 and 

Figure 53 show the predictions when failure occurred based on the failure criteria. 

The predicted failures were exact the same with the actual failure, but the failures 

were predicted in 3 points (300 cycles) in advance.  

The accuracy of prediction was evaluated by comparing the prediction results 

of all the n-steps-predictions at different moments with the original data, shown in 

Figure 54, Figure 55, Figure 56, and Figure 57. The figures indicate that the MW-

CVSVR can catch the trends of the original data and the n-steps-ahead predictions 
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were close to the original data. Different training data updating methods and different 

prediction steps have different prediction accuracy. By comparing the MSE of 

different prediction methods, 5-step-ahead prediction with 5-step extending window 

training data updating had the best performance for the trip time data under -10°C 

condition.  

Table 21 summarizes the prediction results for the trip time and resistance after 

reset under all conditions. The figures of the applications using MW-CVSVR model 

on trip time and resistance after reset under all the conditions are shown in Appendix 

C. The failure criteria for trip time for each environmental condition are defined as 

the 25% increase or decrease of the mean of the trip time used as training data for 

anomaly detection, shown in Table 17. The failure criteria for minimum resistance 

after reset (MinR) is defined as the 25% increase of the mean of the MinR values 

used as the training data for anomaly detection, shown in Table 17. The prediction 

results show that n-steps-ahead predictions by MW-CVSVR can capture the trends of 

the data and the predicted failures were very close to the actual failure. The alarmed 

cycles that were the number of cycles when the prediction was conducted were not 

later than the actual failures. It means that the n-steps-ahead prediction using MW-

CVSVR can predict the actual failure in advance but not too early. It is also shown 

that 5-step-ahead prediction was better than 10-step-ahead prediction based on the 

MSE values.  

Table 22 shows the comparison of 5-step-ahead prediction using MW-CVSVR 

and MW-SVR, in which the model parameters are not optimized for each updating of 
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training data. The MSEs of MW-CVSVR are smaller than those of MW-SVR. The 

alarmed cycles by MW-CVSVR are earlier than the actual failures while MW-SVR 

failed to predict some of the conditions. The comparisons indicate that the MW-

CVSVR have much better performance than MW-SVR because of the contribution 

from dynamic model parameter optimization for each training data updating.  

6. 4 Summary  

Moving window based dynamic model parameter optimization (MW-DMPO) 

n-steps-ahead prediction method was developed in this chapter. This method keeps 

updating the training data by a moving window to contain the latest data so that the 

latest degradation information can be captured by the model. This method also 

optimizes the model parameters for the data trending models for each updating of the 

training data to ensure its high performance. As a case study of the developed MW-

DMPO method, a moving window based cross validation support vector regression 

(MW-CVSVR) was developed for the prediction of PPTC resettable fuses. The cross 

validation technique solved the model parameter selection for SVR including the lag 

value. The application of MW-CVSVR on the PPTC resettable fuse shows that the 

developed method worked well on the prediction. The MW-DMPO method can be 

extended to apply on any data trending and regression methods, such as ARIMA and 

Neural networks.  
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Figure 50: Example of double-side MW 5-step-ahead prediction 
(1-305-35, -10°C) 
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Figure 51: Example of extending window 5-step-ahead prediction 
(1-301-35, -10°C) 
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Figure 52: Example of double-side MW 5-step-ahead prediction 
(41-7046-75, -10°C) 

Training data: 1-70
5-step prediction: 71-75
Model parameters: 
(C=256,σ=0.007,ε=0.01,lag=9)
MSE:0.004Threshold

Training data: 1-75
5-step prediction: 76-80
Model parameters: 
(C=724,σ=0.02,ε=0.01,lag=5)
MSE:0.002Threshold
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Figure 53: Example of extending window 5-step-ahead prediction 
(1-701-75, -10°C) 
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 Figure 54: All 5-step-ahead predictions (-10°C,trip time, double-side MW) 
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Figure 55: All 5-step-ahead predictions (-10°C, trip time, extending window) 
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Figure 56: All 10-step-ahead predictions (-10°C,trip time, double-side MW) 
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Figure 57: All 10-step-ahead predictions (-10°C,trip time, extending window) 
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Table 21: Summary of MW-CVSVR prediction results  

Conditions Parameters 

Moving 
window style 
(double-side 
or extending) 

Moving 
steps 

Prediction 
steps 

Alarmed cycle  
(The number of cycle 
when the prediction 
is conducted (×100) 

Predicted 
failure 
cycle 

(×100) 

Actual 
failure cycle 

(×100) 
MSE 

-10°C 

TT 

Double-side 5 5 75 78 

79 

0.013 
Extending 5 5 75 77 0.007 

Double-side 10 10 70 80 0.032 
Extending 10 10 80 81 0.027 

MinR 

Double-side 5 5 100 105 

108 

1.3E-06 
Extending 5 5 95 98 9.58E-07 

Double-side 10 10 105 107 2.34E-06 
Extending 10 10 95 98 2.05E-06 

RT 

TT 

Double-side 5 5 120 121 

121 

0.02 
Extending 5 5 120 122 0.015 

Double-side 10 10 110 116 0.076 
Extending 10 10 120 121 0.076 

MinR 

Double-side 5 5 115 117 

122 

1.96E-06 
Extending 5 5 115 119 1.86E-06 

Double-side 10 10 115 117 3.06E-06 
Extending 10 10 115 119 3.23E-06 

60°C 

TT 

Double-side 5 5 

No failure based on failure criteria 

3.8E-04 
Extending 5 5 3.6E-04 

Double-side 10 10 5.1E-04 
Extending 10 10 6.6E-04 

MinR 

Double-side 5 5 165 166 

167 

8.02E-07 
Extending 5 5 165 166 6.47E-07 

Double-side 10 10 165 166 1.61E-06 
Extending 10 10 165 166 1.47E-06 
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85°C 

TT 

Double-side 5 5 

No failure based on failure criteria 

4.8E-03 
Extending 5 5 1.1E-02 

Double-side 10 10 7.9E-03 
Extending 10 10 1.2E-02 

MinR 

Double-side 5 5 120 125 

126 

4.06E-06 
Extending 5 5 125 126 5.59E-06 

Double-side 10 10 115 125 6.86E-06 
Extending 10 10 125 126 8.76E-06 
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Table 22: Comparison of 5-step-ahead predictions by MW-CVSVR and MW-SVR 

 

  

5-step-ahead 
prediction and 5-

step-ahead 
moving 

MSE Alarmed cycle (×100) Predicted failure cycle 
(×100) Actual failure 

cycle (×100) 
MW-

CVSVR MW-SVR MW-
CVSVR MW-SVR MW-

CVSVR MW-SVR 

-10 °C 
TT 

DMW 0.013 0.02 75 75  78  80  
79 

EW 0.007 0.01 75 75  77  78  

MinR 
DMW 1.3E-06 1.45E-06 100 115  105  116  

108 
EW 9.58E-07 2.4E-06 95 120  98  121  

RT 
TT 

DMW 0.02 0.03 120 125 121 126 
121 

EW 0.015 0.04 120 125 122 126 

MinR DMW 1.96E-06 2.0E-06 115 125 117 127 122 
EW 1.86E-06 7.33E-06 115 150 119 152 

60 °C  
TT DMW 3.8E-04 4.6E-04 No failure based on failure criteria  

EW 3.6E-04 8.5E-04 

MinR 
DMW 8.02E-07 9.0E-07 165  165  166 170  

167 
EW 6.47E-07 8.12E-07 165  170  166 171  

85 °C  
TT DMW 4.8E-03 5.0E-03 No failure based on failure criteria  

EW 1.1E-02 1.15E-02 

MinR 
DMW 4.06E-06 5.39E-06 120  125 125 126 

126 
EW 5.59E-06 7.49E-06 125  130 126 132 
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Chapter 7: Contributions and Future work 

Contributions of this thesis include the following:  

1) Determined the failure precursor parameters for PPTC resettable fuses, shown 

in chapter 3. Potential precursor parameters were determined by failure modes, 

mechanisms, and effects analysis (FMMEA), and then a series of experiments 

were conducted to verify these parameters. Trip time, resistance after reset, and 

surface temperature have been determined as precursor parameters for observed 

failures, including the cracks at the coating and solders, gaps between different 

parts of the fuse, and the performance shifting of the fuses, such as tripping 

faster and faster and the resistance becoming higher and higher. These precursor 

parameters should be monitored when testing or in the actual application. Other 

parameters, including the maximum resistance during trip endurance and the 

resistance in aging test did not exhibit obvious changes (<5% of the initial 

values) under all test conditions. They are not considered as failure precursors. 

2) Determined the causes of the observed failures for PPTC resettable fuses 

considering the interconnections of different parts in the fuse, shown in chapter 

4. A series of failure analyses, including the heating process analyses by 

infrared camera, the interconnection analyses by cross-section and ESEM, the 

analyses of microstructures of carbon black(CB)/polyethylene (PE) composite, 

the thermal property analyses of CB/PE composite, and the CTE analyses of 

different parts of the component were conducted. The gaps between coating and 

the foil, caused by thermal fatigue and CTE-mismatches, are the main causes 
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for decreases in the trip time. Aside from the gaps, the increases in the 

crystallinity of CB/PE composite are the main causes for the increases in the trip 

time. The agglomeration of the CB particles is one of the main causes for the 

increase in the resistance after reset. With the increases in the cycle numbers, 

the cracks at the solder and the gaps between foil and CB/PE composite will 

control the increases in the resistance and finally cause an open of current.  

3) Developed an in-situ anomaly detection method using cross validation 

sequential probability ratio test (CVSPRT), shown in chapter 5. The cross 

validation was used to select optimal model parameters for SPRT to reduce the 

false alarm and missed alarm probabilities. The value of the approach is that 

CVSPRT can be extended to conduct in-situ anomaly detection for any 

conditions if the training data is available and the SPRT index can be calculated.  

4) Developed a moving window (MW) based dynamic model parameter 

optimization (MW-DMPO) n-steps-ahead prediction method, shown in chapter 

6. This method involves the latest monitored data by a moving window to 

update the training data for data trending and regression models to capture the 

latest degradation information, and for each updating of the training data, the 

model parameters are optimized by the dynamic model parameter optimization 

methods. Besides being used in the support vector regression (SVR) in this 

thesis, the developed MW-DMPO method can be extended as general training 

data updating methods for data trending and regression models, such as ARIMA 

and NN models, to enable more accurate failure prediction.  
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5) Developed a moving window cross validation SVR (MW-CVSVR) for n-steps-

ahead prediction, shown in chapter 6. In MW-CVSVR n-steps-ahead prediction, 

the CV method is used to optimze model parameters for SVR including the lag 

value and then train the SVR model. The trained SVR model predicts n values 

of the monitored precursor parameter in the future. MW method is used to 

update the training data to ensure the SVR model capture the latest degradation 

features. MW-CVSVR was used on trip time and resistance after reset to predict 

the failures of PPTC resettable fuses in this thesis. The results of 5-step-ahead 

predictions and 10-step-ahead predictions using MW-CVSVR showed that the 

MW-CVSVR can capture the trends of the data and predict the failures 

accurately and not too early. MW-CVSVR can be used as a general method for 

nonlinear data regression. 

Future work may include the following: 

1) Determine the failure mechanisms of PPTC resettable fuses and develop PoF 

models to predict failures. The mechanisms of the polymer positive are complex 

and highly depend on the composition of the composite and the usage 

conditions. More experiments and analyses are required to reveal and model the 

formation of cracks and gaps, diffusion and aggregation of the CB fillers, and 

the changes in the properties of the polymer matrix.  

2) Develop a methodology to dynamically choose the double-side moving window 

training or extending window training for prediction.  

3) Develop a method to evaluate the uncertainty of the moving window based 

failure prediction methods. The impact factors may include the uncertainty from 
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the sensing, training, and modeling. For MW-CVSVR, the errors from the 

training data can indicate the prediction uncertainty in some degrees; however a 

better way is required to evaluate the prediction uncertainty.  
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Appendix A: Results of Failure Analyses 
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Figure 58: Typical IR pictures of a new sample 
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Figure 59: Typical IR pictures of tested sample (-10 °C, trip cycle) 
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Figure 60: Typical IR pictures of tested sample (RT, trip cycle) 
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Figure 61: Typical IR pictures of tested sample (60 °C, trip cycle) 
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Figure 62: Typical IR pictures of tested sample (85°C, trip cycle) 
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Figure 63: Typical microstructure of CB and PE of tested samples (-10°C, aging, freeze fractured) 

 
Figure 64: Typical microstructure of CB and PE of tested samples (-10 ° C, trip cycles, freeze 

fractured) 
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Figure 65: Typical microstructure of CB and PE of tested samples (RT, aging, freeze fractured) 

 
Figure 66: Typical microstructure of CB and PE of tested samples (RT, trip cycle, freeze fractured) 
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Figure 67: Typical microstructure of CB and PE of tested samples (60° C, aging, freeze fractured) 

 

 
Figure 68: Typical microstructure of CB and PE of tested samples (60 ° C, trip cycles, freeze fractured) 
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Figure 69: Typical microstructure of CB and PE of tested samples (85°C, aging, freeze fractured) 

 
Figure 70: Typical microstructure of CB and PE of tested samples (85 ° C, trip cycles, freeze fractured) 
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Figure 71: Typical microstructure of CB and PE of tested samples (-10°C, aging, etched by Argon 

ions) 

 
Figure 72: Typical microstructure of CB and PE of tested samples (-10°C, trip cycle, etched by Argon 

ions) 
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Figure 73: Typical microstructure of CB and PE of tested samples (RT, aging, etched by Argon ions) 

 

Figure 74: Typical microstructure of CB and PE of tested samples (RT, trip cycle, etched by Argon 
ions) 



 

122 
 

 

Figure 75: Typical microstructure of CB and PE of tested samples (60 °C, aging, etched by Argon 
ions) 

 

Figure 76: Typical microstructure of CB and PE of tested samples (60 °C, trip cycle, etched by Argon 
ions) 
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Figure 77: Typical microstructure of CB and PE of tested samples (85 °C, aging, etched by Argon 
ions) 

 
Figure 78: Typical microstructure of CB and PE of tested samples (85 °C, trip cycle, etched by Argon 

ions) 
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Appendix B: Anomaly Detection Results by CVSPRT 
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Figure 79: Anomaly detection results based on trip time (-10 °C, trip cycle) 
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Figure 80: Anomaly detection results based on min. resistance after reset (-10 °C, trip cycle) 

 



 

125 
 

Number of Cycles

Tr
ip

 ti
m

e 
(s

)

The number of 
cycles @ Anomalies

Number of Cycles

Trip time data

(X 100)
 

Figure 81: Anomaly detection results based on trip time (RT, trip cycle) 
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Figure 82: Anomaly detection results based on min. resistance after reset (RT, trip cycle) 
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Figure 83: Anomaly detection results based on trip time (60 °C, trip cycle) 
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Figure 84: Anomaly detection results based on min. resistance after reset (60 °C, trip cycle) 
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Figure 85: Anomaly detection results based on trip time (85 °C, trip cycle) 
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Figure 86: Anomaly detection results based on min. resistance after reset (85 °C, trip cycle) 
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Appendix C: 5-step-ahead and 10-step-ahead Predictions by MW-CVSVR 
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 Figure 87: All 5-step-ahead predictions (-10°C,trip time, double-side MW) 
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Figure 88: All 5-step-ahead predictions (-10°C, trip time, extending window) 
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Figure 89: All 10-step-ahead predictions (-10°C,trip time, double-side MW) 
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Figure 90: All 10-step-ahead predictions (-10°C,trip time, extending window) 
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Figure 91: All 5-step-ahead predictions (-10°C, min. resistance after reset, 

double-side MW) 
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Figure 92: All 5-step-ahead predictions (-10°C, min. resistance after reset, 

extending window) 
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Figure 93: All 10-step-ahead predictions (-10°C, min. resistance after reset, 

double-side MW) 
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Figure 94: All 10-step-ahead predictions (-10°C, min. resistance after reset, 

extending window) 
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Figure 95: All 5-step-ahead predictions (RT, trip time, double-side MW) 
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Figure 96: All 5-step-ahead predictions (RT, trip time, extending window) 
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Figure 97: All 10-step-ahead predictions (RT, trip time, double-side MW) 
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Figure 98: All 10-step-ahead predictions (RT, trip time, extending window) 
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Figure 99: All 5-step-ahead predictions (RT, min. resistance after reset, 

double-side MW) 
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Figure 100: All 5-step-ahead predictions (RT, min. resistance after reset, 

extending window) 
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Figure 101: All 10-step-ahead predictions (RT, min. resistance after reset, 

double-side MW) 
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Figure 102: All 10-step-ahead predictions (RT, min. resistance after reset, 

extending window) 
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Figure 103: All 5-step-ahead predictions (60°C,trip time, double-side MW) 
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Figure 104: All 5-step-ahead predictions (60°C, trip time, extending window) 
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Figure 105: All 10-step-ahead predictions (60°C,trip time, double-side MW) 
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Figure 106: All 10-step-ahead predictions (60°C,trip time, extending window) 
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Figure 107: All 5-step-ahead predictions (60°C, min. resistance after reset, 

double-side MW) 
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Figure 108: All 5-step-ahead predictions (60°C, min. resistance after reset, 

extending window) 
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Figure 109: All 10-step-ahead predictions (60°C, min. resistance after reset, 

double-side MW) 
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Figure 110: All 10-step-ahead predictions (60°C, min. resistance after reset, 

extending window) 
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Figure 111: All 5-step-ahead predictions (85°C,trip time, double-side MW) 
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Figure 112: All 5-step-ahead predictions (85°C, trip time, extending window) 

3

3.5

4

4.5

5

0 50 100 150 200
Number of Cycles (× 100)

Tr
ip

 T
im

e 
(s

)

10-step-ahead predictions.
Training updating style: 10-step-
ahead double-side moving window
MSE: 0.008

Threshold

Original data

 
Figure 113: All 10-step-ahead predictions (85°C,trip time, double-side MW) 
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Figure 114: All 10-step-ahead predictions (85°C,trip time, extending window) 
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Figure 115: All 5-step-ahead predictions (85°C, min. resistance after reset, 

double-side MW) 
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Figure 116: All 5-step-ahead predictions (85°C, min. resistance after reset, 

extending window) 
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Figure 117: All 10-step-ahead predictions (85°C, min. resistance after reset, 

double-side MW) 
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Figure 118: All 10-step-ahead predictions (85°C, min. resistance after reset, 

extending window) 



 

136 
 

References  

[1]. D. Wei, T. Zhao, and X. Yi, “Resistivity–Volume Expansion Characteristics 

of Carbon Black-loaded Polyethylene,” Journal of Applied Polymer Science, 

Vol.77, pp. 53–58, 2000.  

[2]. S. Luo, and C. Wong, “Study on Effect of Carbon Black on Behavior of 

Conductive Polymer Composites with Positive Temperature Coefficient,” 

IEEE Trans. on Component and Packaging Technologies, Vol.23, No.1, pp. 

151-155, 2000. 

[3]. M. Gorniak, and R.Masnicki, “The Estimation of the Polymer Fuses 

Features,” IMEKO TC-4, 2007.  

[4]. Tyco Electronics, “Fundamentals of PolySwitch Overcurrent and 

Overtemperature Devices,” Technical paper, 2008. 

[5]. Bourns University: Multifuse® Resettable Fuses, http://www.ruf-

electronics.com/bu/index2_3.asp 

[6]. UL 1434, Standard for Safety for Thermistor-Type Devices, August, 2002. 

[7]. S. Cheng, K. Tom, and M. Pecht, “Failure Precursors for Polymer Resettable 

Fuses,” IEEE Transactions on Devices and Materials Reliability, Vol.10, 

Issue.3, pp.374-380, 2010.  

[8]. S. Cheng, M. Azarian, and M. Pecht, “Sensor System for Prognostics and 

Health Monitoring,” Sensors, No. 10, pp.5774-5797, 2010. 

[9]. M. Pecht, Prognostics and Health Management of Electronics. New York: 

Wiley-Interscience, 2008. 

[10]. B. F. Xi, K. Chen, F. Liu, C. Xu, and Q. Zhang, “The Advance in Theory 



 

137 
 

Research of PTC Properties of Polymer/Carbon black Composites,” 

Proceedings of 1998 International Symposium on Electrical Insulating 

Materials, pp. 325-328, Toyohashi, Japan,1998. 

[11]. F. Kohler, “Resistance Element,” US patent 3,243,753, Mar. 29, 1966. 

[12]. F. Doljack, “PolySwitch PTC Devices-A New Low-resistance Conductive 

Polymer-based PTC Device for Overcurrent Protection,” IEEE Transactions 

on Components, Hybrids, and Manufacturing Technology, vol.CHMT-4, pp. 

372-378, 1981.  

[13]. B. Xi, and G. Chen, “The Mechanism of Electrical Conduction in 

Polyethylene/Carbon Black Composite,” Proc. of the 6th International 

Conference on Properties and Applications of Dielectric Materials, pp 1015-

1018, Xi’an China, 2000. 

[14]. J. Fournier, G. Boiteux, G. Seytre, and G. Marichy, “Positive Temperature 

Coefficient Effect in Carbon Black/Epoxy Polymer Composites,” Journal of 

Materials Science Letters, Vol. 16, pp.1677-1679, 1997. 

[15]. H. Horibe, T. Kamimura, and K. Yoshida, “Electrical Conductivity of 

Polymer Composites Filled with Metal,” Japanese. Journal of Applied 

Physics, Vol. 44, No. 4A, pp. 2025-2029. 

[16]. R. Striimpler, J. Skindhoj, J. Glatz-Reichenbach, J.H.W. Kuhlefelt and F. 

Perdoncin, “Novel Medium Voltage Fault Current Limiter Based on Polymer 

PTC Resistors,” IEEE Trans. Power Delivery. Vol. 14, No.2, pp. 425–430, 

1999.  

[17]. K. Ohe and Y. Natio, “A New Resistor Having an Anomalously Large 



 

138 
 

Positive Temperature Coefficient,” Japanese Journal of Applied Physics, Vol. 

10, No.1, pp. 99–108, 1971. 

[18]. C. Klason and J. Kubat, “Anomalous Behavior of Electrical Conductivity and 

Thermal Noise in Carbon Black-containing Polymers at Tg and Tm,” Journal 

of Applied Polymer Science, Vol.19, I3, pp. 831-845, 1975. 

[19]. H. Allak, A. Brinkman, and J. Woods, “I-V Characteristics of Carbon Black-

loaded Crystalline Polyethylene,” Journal of Materials Science, Vol. 28, No.1, 

pp. 117-120,1993.  

[20]. MF-RX/72 Series-PTC Resettable Fuses, 

http://www.bourns.com/pdfs/mfrx72.pdf, latest accessed on March 7, 2011. 

[21]. J. Huang, “Carbon Black Filled Conducting Polymers and Polymer Blends,” 

Advances in Polymer Technology, Vol. 21, No. 4, pp. 299–313, 2002. 

[22]. W. Zhang, A. Dehghani-Sanij, and R. Blackburn, “Carbon Based Conductive 

Polymer Composites,” Journal of Materials Science, Volume 42, Number 10, 

pp. 3408-3418, 2007. 

[23]. K. P. Sau, T. K Chaki, and D. Khastgir, “Conductive Rubber Composites 

from Different Blends of Ethylene-Propylene-Diene Rubber and Nitrile 

Rubber,” Journal of Materials Science, Vol. 32, No. 21, pp. 5717-5724, 1997. 

[24]. M. Narkis and A. Vaxman, “Resistivity Behavior of Filled Electrically 

Conductive Crosslinked Polyethylene,” Journal of Applied Polymer Science, 

Vol. 29, Issue 5, pp.1639–1652, 1984. 

[25]. S. Bhattacharya, Metal Filled Polymers, Marcel Dekker, New York, 1986. 

[26]. E. Sichel, Carbon Black-Polymer Composites, Marcel Dekker, New York, 



 

139 
 

1982. 

[27]. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Ishikawa, 

“Electrical Conductivity of Carbon-polymer Composites as a Function of 

Carbon Content,” Journal Material Science, Vol. 17, No.6, pp. 1610–1616, 

1982. 

[28]. F. Lux, “Models Proposed to Explain the Electrical Conductivity of Mixtures 

Made of Conductive and Insulating Materials,” Journal of Material Science, 

Vol. 28, No.2, pp.285-301, 1993. 

[29]. J. Donnet, R. Bansal and M. Wang, Carbon Black Science and Technology 

(2nd ed.), Marcel Dekker, New York, 1993. 

[30]. I. Mironi-Harpaz and M.Narkis, “Electrical Behavior and Structure of 

Polypropylene/Ultrahigh Molecular Weight Polyethylene/Carbon Black 

Immiscible Blends,” Journal of Applied Polymer Science, Vol. 81, pp.104-

115, 2001. 

[31]. J. Donnet, “Fifty Years of Research and Progress on Carbon Black,” Carbon, 

Vol. 32, Issue 7, pp.1305 1310, 1994. 

[32]. X. Bourrat, “Electrically Conductive Grades of Carbon Black: Structure and 

Properties,” Carbon, Vol. 31, No.2, pp.287-302, 1993. 

[33]. B. Xi, G. Chen, and A.E. Davies, “Investigation into the Positive Temperature 

Coefficient Effect in Polyethylene/Carbon Black Composites,”8th 

International Conference on Dielectric Materials, Measurements and 

Applications, pp. 480-484, 2000. 

[34]. M. Sumita, S. Asai, N. Miyadera, E. Jojima and K. Miyasaka, “Electrical 



 

140 
 

Conductivity of Carbon Black Filled Ethylene-Vinyl Acetate Copolymer as a 

Function of Vinyl Acetate Content,” Colloid & Polymer Science, Vol. 264, 

No. 3, pp.212-217, 1986. 

[35]. J. Huang and C. Wu, “Processability, Mechanical Properties, and Electrical 

Conductivities of Carbon Black-filled Ethylene-vinyl Acetate Copolymers,” 

Advances in Polymer Technology, Vol. 19, No. 2, PP.132-139, 2000. 

[36]. R. Tchoudakov, O. Breuer, M. Narkis, and A. Siegmann, “Conductive 

Polymer Blends with Low Carbon Black Loading: Polypropylene/Polyamide,” 

Polymer Engineering & Science, Vol. 36, pp. 1336–1346, 1996. 

[37]. S. Wu, Polymer Interface and Adhesion, Marcel Dekker: New York, 1982. 

[38]. H. He, P. Deng, L. Dong, and J. Sun, “LDPE/Carbon Black Conductive 

Composites: Influence of Radiation Crosslinking on PTC and NTC 

Properties,” Journal of Applied Polymer Science, Vol. 85, pp.2742-2749, 

2002. 

[39]. J. Oakey, D.W.M. Marr, K.B. Schwartz, and M. Wartenberg, “Influence of 

Polyethylene and Carbon black Morphology on Void Formation in 

Conductive Composite Materials: A SANS Study,” Macromolecules, 32, 

pp.5399-5404, 1999. 

[40]. E. Park, “Resistivity and Thermal Reproducibility of High-Density 

Polyethylene Heaters Filled with Carbon Black,” Macromolecular Materials 

and Engineering, 291, pp.690-696, 2006. 

[41]. S. Huang, J. lee, C. Ha, “Polymeric Positive-Temperature-Coefficient 

Materials: Dynamic Curing Effect,” Colloid & Polymer Science, Vol. 282, 



 

141 
 

pp.575-582, 2004. 

[42]. Z. Li, X. Xu, A. Lu, K. Shen, R. Huang, and M. Yang, “Carbon 

black/poly(ethylene terephthalate)/polyethylene Composite with Electrically 

Conductive in-situ Microfiber Network,” Carbon. Vol. 42, No. 2, pp. 428-432, 

2004. 

[43]. X. Xu, Z. Li, R. Yu, A. Lu, M. Yang, and R. Huang, “Formation of in-situ 

CB/PET Microfibers in CB/PET/PE Composites by Slit Die Extrusion and 

Hot Stretching,” Macromolecular Materials and Engineering, Volume 289, 

Issue 6, pp. 568-575, 2004.   

[44]. T. M. Tawalbeh, S. Saq’an, S. F. Yasin, A. M. Zihlif, and G. Ragosta, “Low 

Temperature Electrical Conductivity of Low-density Polyethylene/carbon 

Black Composites,” Journal of Materials Science: Materials in Electronics, 

Vol. 16, No. 6, pp. 351-354, 2005. 

[45]. H. Yui, G. Wu, H. Sano, M. Sumita, and K. Kino, “Morphology and Electrical 

conductivity of Injection-Molded Polypropylene/carbon Black Composite 

with Addition of High-Density Polyethylene,” Polymer, Vol. 47, pp.3599-

3608, 2006. 

[46]. H. Horibe, T. Kaimura, and K. Yoshida, “Electrical Conductivity of Polymer 

Composites Filled with Carbon Black,” Japanese Journal of Applied Physics, 

Vol.44, No.4A, pp.2025-2029, 2005. 

[47]. C.P. Wong and S. Luo, “Investigation on Effect of Carbon Black and Polymer 

Matrix on Conductive Polymer Composites with Positive Temperature 

Coefficient,” International Symposium on Advanced Packaging Materials, pp. 



 

142 
 

343-348, 2000. 

[48]. M. Stevens, Polymer Chemistry 3rd Ed, Oxford University Press, 1999. 

[49]. H. White, and A. Grover, “Reliability of Surface-Mount PPTC Circuit 

Protection Devices,” Proceedings of Annual Reliability and Maintainability 

Symposium, 1997, pp: 229-236. 

[50]. J. Gu, N. Vichare, T. Tracy, and M. Pecht, “Prognostics Implementation 

Approaches for Electronics,” Reliability and Maintainability Symposium, pp. 

101-106. Orlando, FL, 2007.  

[51]. S. Mathew, D. Das, R. Rosenberger, and M. Pecht, “Failure Mechanism 

Based Prognostics,” Proceedings of the 1st International Conference on 

Prognostics and Health Management, Denver, CO, Oct. 6-9, 2008. 

[52]. S. Kumar, M. Torres, M. Pecht, and Y.C. Chan, “A Hybrid Prognostics 

Methodology for Electronics Systems,” Special Session on Computational 

Intelligence for Anomaly Detection, Diagnosis, and Prognosis, IEEE World 

Congress on Computational Intelligence (WCCI 2008), Hong Kong, June 1-6, 

2008. 

[53]. M. Pecht, M. and R. Jaai, “A Prognostics and Health Management Roadmap 

for Information and Electronics-Rich Systems,” Microelectronics Reliability, 

Volume 50, Issue 3, pp. 317-323, 2010. 

[54]. G.E. Box, G.M. Jenkins, and G.C. Reinsel, Time Series Analysis Forecasting 

and Control, 4th edition, John Wiley and Sons, New York, 2008. 

[55]. S. Ho, and M. Xie, “The Use of ARIMA Models for Reliability Forecasting 

and Analysis,” Computers & Industrial Engineering, Vol.35, pp.213–216, 



 

143 
 

1998. 

[56]. S. Ho, M. Xie, and T. Goh, “A Comparative Study of Neural Network and 

Box-Jenkins ARIMA Modeling in Time Series Prediction,” Computers & 

Industrial Engineering, Vol.42, pp.371–375, 2002. 

[57]. K. Xu, M. Xie, L. Tang, S. Ho, “Application of Neural Networks in 

Forecasting Engine System Reliability,” Applied Soft Computing, Vol. 2, 

pp.255–268, 2003 

[58]. V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 

1995. 

[59]. P.F. Pai and W.C. Hong, “Software Reliability Forecasting by Support Vector 

Machines with Simulated Annealing Algorithms,” Journal of Systems and 

Software, Vol. 79, no. 6, pp. 747-755, 2006.  

[60]. K.Y. Chen, “Forecasting Systems Reliability based on Support Vector 

Regression with Genetic Algorithms,” Reliability Engineering & System 

Safety, Vol. 92, pp. 423- 432, 2007. 

[61]. Y. Kuo and K. Lin, “Using Neural Network and Decision Tree for Machine 

Reliability Prediction,” The International Journal of Advanced Manufacturing 

Technology, Vol. 50, No.9-12, pp.1243-1251, 2010. 

[62]. Y. Freund and R. Schapire, “A Decision-theoretic Generalization of on-line 

Learning and an Application to Boosting,” Journal of Computer and System 

Sciences, Vol. 55, No.1, pp.119–139, 1997. 

[63]. S. Choi, C. Lee, J. Lee, J. Park, and I. Lee, “Fault Detection and Identification 

of Nonlinear Processes based on KPCA,” Chemometrics and Intelligent 



 

144 
 

Laboratory Systems, Vol. 75, Issue 1, pp. 55-67, 2005. 

[64]. J. Cho, J. Lee, S. Choi, D. Lee, and I. Lee, “Fault Identification for Process 

Monitoring Using Kernel Principal Component Analysis,” Chemical 

Engineering Science, Vol. 60, pp.279–288, 2005. 

[65]. Z. Xu, Y. Ji, and D. Zhou, “Real-time Reliability Prediction for a Dynamic 

System Based on the Hidden Degradation Process Identification,” IEEE 

Trans. Reliability, Vol. 57, No.2, pp. 230-242, 2008. 

[66]. B. Zhang, M. Chen, D. Zhou, and Z. Li, “Particle-filter-based Estimation and 

Prediction of Chaotic States,” Chaos Solitons Fractals, Vol. 32, pp.1491–

1498, 2007. 

[67]. O.P. Yadav, N. Singh, R.B. Chinnam, and P.S. Goel, “A Fuzzy Logic based 

Approach to Reliability Improvement Estimation during Product 

Development,” Reliability Engineering and System Safety, Vol. 80, pp. 63-74, 

2002. 

[68]. J. Gu and M. Pecht, “Prognostics and Health Management Using Physics of 

Failure,” 54th annual Reliability and Maintainability Symposium (RAMS), 

Las Vegas, NV, Jan. 2008. 

[69]. J. Gu, D. Barker, and M. Pecht, “Prognostics Implementation of Electronics 

under Vibration Loading,” accepted by Microelectronics Reliability Journal. 

[70]. S. Mishra, M. Pecht, T. Smith, I. McNee, and R. Harris, “Remaining Life 

Prediction of Electronic Products using Life Consumption Monitoring 

Approach,” in Proceedings of the European Microelectronic Package 

Interconnection Symposium, pp. 136–142, Cracow, Poland, June 16–18, 



 

145 
 

2002. 

[71]. L. Tian and A. Noore, “Dynamic Software Reliability Prediction: an 

Approach based on Support Vector Machines,” International Journal of 

Reliability, Quality and Safety Engineering, vol. 12, no. 4, pp. 309-321, 2005. 

[72].  W. Hong and P. Pai, “Predicting Engine Reliability by Support Vector 

Machines,” International Journal of Advanced Manufacturing Technology, 

Vol. 28, No.1-2, pp. 154-161, 2006. 

[73]. B. Yang and X. Li, “A Study on Software Reliability Prediction based on 

Support Vector Machines,” IEEE International Conference on Industrial 

Engineering and Engineering Management, pp. 1176-1180, 2007. 

[74]. Material declaration sheet, 

www.bourns.org/data/global/pdfs/mfrx72_mds.pdf, latest accessed on March 

7, 2011. 

[75]. S. Ganesan, V. Eveloy, D. Das, and M. Pecht, “Identification and Utilization 

of Failure Mechanisms to Enhance FMEA and FMECA,” Proceedings of the 

IEEE Workshop on Accelerated Stress Testing & Reliability (ASTR), 2005. 

[76]. M. Pecht and A. Dasgupta, “Physics-of-Failure: An Approach to Reliable 

Product Development”, Journal of the Institute of Environmental Sciences, 

Vol. 38, pp. 30-34, 1995. 

[77]. IEEE Standard 1413.1-2002, IEEE Guide for Selecting and Using Reliability 

Predictions Based on IEEE 1413, IEEE Standard, 2003. 

[78]. M. Omastova, S. Podhradska, J. Prokes, I. Janigova and J. Stejskal, “Thermal 

Ageing of Conducting Polymeric Composites,” Polymer Degradation and 



 

146 
 

Stability, 82, pp. 251–256, 2003. 

[79]. M. Omastova, J. Prokes, S. Kosina and D. Hlavata, “Stability of Electrical 

Properties of Conducting Polymer Composites,” Macromolecular Symposia, 

170, pp. 241–248, 2001. 

[80]. S. Gao and J. Kim, “Cooling Rate Influences in Carbon Fibre/PEEK 

Composites. Part 1. Crystallinity and Interface Adhesion,” Composites Part A: 

Applied Science and Manufacturing, Volume 31, Issue 6, pp. 517-530, 2000. 

[81]. J. Huang, Y. Wen, C. Kang, W. Tseng, and M. Yeh, “Nonisothermal 

Crystallization of High Density Polyethylene and Nanoscale Calcium 

Carbonate Composites,” Polymer Engineering and Science, 48, pp.1268–

1278, 2008.  

[82]. A. Wald, Sequential Analysis, John Wiley & Sons, New York, NY, 1947. 

[83]. K. Gross and W. Lu, “Early Detection of Signal and Process Anomalies in 

Enterprise Computing Systems,” Proc. 2002 IEEE Int’l Conf. on Machine 

Learning and Applications (ICMLA), Las Vegas, NV,2002.  

[84]. K. Whisnant, K. C. Gross, and N. Lingurovska, “Proactive fault monitoring in 

enterprise servers,” in Proceedings of the International Conference on 

Computer Design, pp. 3-10, June 2005. 

[85]. K. Gross and K. Humenik, “Sequential Probability Ratio Tests for Nuclear 

Plant Component Surveillance,” Nuclear Technology, 93:131, 1991. 

[86]. S. Cheng, K. Tom, and M. Pecht, “A Wireless Sensor System for Prognostics 

and Health Management,” IEEE Sensors Journal, Volume 10, Issue 4, pp. 

856-862, 2010. 



 

147 
 

[87]. H. Sohn, D. Allen, K. Worden, and C. Farrar, “Statistical Damage 

Classification Using Sequential Probability Ratio Tests,” Structural Health 

Monitoring, Vol. 2(1), pp. 57–74, 2003. 

[88]. Z. Stoumbo, and M. R.Jr. Reynolds, “The SPRT Control Chart for the Process 

Mean with Samples Starting at Fixed Times,” Nonlinear Analysis, 2, pp.1-34, 

2001. 

[89]. M. R.Jr. Reynolds and Z. Stoumbo, “The SPRT Chart for Monitoring a 

Proportion,” IIE Transactions, 30, pp. 545-561, 1998. 

[90]. A. Wald, “Sequential Test of Statistical Hypotheses,” The Annals of 

Mathematical Statistics, Vol. 16, No. 2, pp. 117-186, 1945. 

[91]. A. Wald and J. Wolfowitz, “Optimum Character of the Sequential Probability 

Ratio Test,” The Annals of Mathematical Statistics, Vol. 19, pp. 326-339, 

1948. 

[92]. A. Miron, “A Wavelet Approach for Development and Application of A 

Stochastic Parameter Simulation System,” PhD Dissertation in Nuclear 

Engineering of University of Cincinnati, 2001. 

[93]. J. Herzog, S. Wegerich, R. Singer, K. Gross, “Theoretical Basis of the 

Multivariate State Estimation Technique (MSET),” Argonne National 

Laboratory NT Technical Memorandum No. 49, 1997. 

[94]. R. Kohavi, “A Study of Cross validation and Bootstrap for Accuracy 

Estimation and Model selection,” In Proceedings of International Joint 

Conference on AI, pp. 1137-1145, 1995. 

[95]. W. Zucchini, “An Introduction to Model Selection,” Journal of Mathematical 



 

148 
 

Psychology, 44, pp. 41-61, 2000. 

[96]. J. Gertheiss, and G. Tutz, “Feature Selection and Weighting by Nearest 

Neighbor Ensembles,” Chemometrics and Intelligent Laboratory Systems, 

Vol. 99, Issue 1, pp. 30-38, 2009. 

[97]. M. Mullin, and R. Sukthankar, “Complete Cross validation for Nearest 

Neighbor Classifiers,” 17th International Conference on Machine Learning 

(ICML), Stanford, California, 2000. 

[98]. R. Setiono, “Feedforward Neural Network Construction Using Cross 

Validation,” Neural Computation, 13, pp.2865–2877, 2001. 

[99]. A. Krogh and J. Vedelsby, “Neural Network Ensembles, Cross Validation, 

and Active Learning, Advances in Neural Information Processing Systems,” 

Tesauro, G., Touretsky, D., and Leen, T.., Vol. 7, Cambridge, Mass.: MIT 

Press, 1995. 

[100]. B. Efron, “Estimating the Error Rate of a Prediction Rule: Improvement on 

Cross validation,” Journal of American Statistical Association, 78:316–331, 

1983. 

[101]. M. Browne, “Cross validation Methods,” Journal of Mathematical 

Psychology, Volume 44, Issue 1, pp. 108-132, 2000. 

[102]. M. Stone, “Cross-Validatory Choice and Assessment of Statistical 

Predictions (with discussion),” Journal of the Royal Statistical Society, Series 

B, 36, pp.111-147, 1974. 

[103]. G. Box and D. Cox, “An Analysis of Transformations,” Journal of the Royal 

Statistical Society, Series B, Vol. 26, pp. 211-246, 1964. 



 

149 
 

[104]. Y. Chou, A. Polansky, and R. Mason, “Transforming Non-normal Data to 

Normality in Statistical Process Control,” Journal of Quality Technology, Vol. 

30, No.2, pp. 133-141, 1998. 

[105]. M. Djukanovic, S. Ruzic, B. Babic, D. J. Sobajic, and Y. H. Pao, “A Neural-

net based Short Term Load Forecasting Using Moving Window Procedure ,” 

Electrical Power & Energy Systems, vol. 17, no. 6, pp. 391 - 397, 1995.  

[106]. Z. Ren, and Z. Hao, “Application of Moving Windows Autoregressive 

Quadratic Model in Runoff,” International Conference on Industrial 

Mechatronics and Automation, pp. 200-203, 2009.  

[107]. M. Pecht and S. Cheng, “Prognostics and Health Management Method for 

Aging Systems”, U.S. Patent Application Publication, No. US 2010/0191681 

A1, Jul. 2010. 

[108]. A. Smola and B. Scholkopf, “A Tutorial on Support Vector Regression,” 

Statistics and Computing, 14, pp. 199-222, 2004. 

 


