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The highway alignment optimization problem is modeled to identify the 

preferred alignment alternatives which minimize total cost and satisfy the highway 

design standards. Several mathematical models have been developed during the past 

decades, among which the Highway Alignment Optimization (HAO) model has been 

used in several practical highway design projects with satisfactory results. However, 

several major cost components, such as vehicle operating cost and environmental cost 

are estimated roughly, and should be improved to yield more precise cost estimates 

and to allow optimization of lane widths. These are the HAO model features which 

this thesis seeks to improve. 

Lane width is an important factor in highway design, which is related to the 

travel speed, safety, as well as earthwork cost. This thesis employs Newton’s method 

and Finite Difference method to search for the appropriate lane width. The preferred 



  

lane width found in the case study is 10.6 feet, for which the total cost is $233 million, 

and 12.5% less than the total cost at 12 feet lane width. In addition, this thesis 

improves the vehicle operating cost prediction by calculating the vehicle resistance 

force and horsepower, and estimating the fuel consumption based on the fuel 

consumption rate (g/hp-hr). Moreover, the environmental cost, particularly the 

vehicle emissions cost is incorporated in the newly improved HAO model. It is found 

that the vehicle emission cost decreases by 9% after including the environmental cost 

component in the model objective function.  

The results of the case study and sensitivity analyses indicate that the 

improved HAO model can find good highway alignments efficiently in tough 

topographic environmental. Moreover, the model can jointly consider the social, 

economic and environmental consequences, and result in less fuel consumption and pollutant 

emissions. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Highway alignment optimization has attracted intensive research over the past three 

decades due to the complexity of design procedures, and the potential economic benefits of 

improving alignments (Jong, 1998). 

Highway design projects are usually started by clarifying the traffic problems and project 

scope. Conventionally, if right-of-way purchases were needed for a project, the CAD 

technician would generate a map showing property locations and construction limits. Based 

on this map and the project purposes, the potential alignment location was selected by the 

highway designers, followed by the preliminary highway alignment design including 

horizontal alignment, vertical alignment, typical cross sections, designed cross section and 

preliminary earthwork computations (FHWA, 1997). Though several popular computer-aided 

design software tools, e.g. Auto CAD and MicroStation have been applied to assist in the 

design procedure, the detailed geometric design still relied mainly on the professional 

experience of designers, rather than on automatic optimization by design software. However, 

it is difficult to generate the best design merely based on subjective adjustment of designers 

since there are many possible alignment alternatives, and the optimization procedure is too 

complex and repetitive to be solved manually. The challenges were overcome with the 

development of efficient mathematical models. Several elaborate and effective mathematical 

models were proposed to improve the highway design optimization (Parker, 1977; Jong, 1998; 

Chew 1998, Jha, 2000; Kim, 2001; Kang, 2008). GIS (Geographic Information Science) 

technology was also applied to provide a platform for visualized design and optimization 

(Lamm, 1994; Maidment, 1998; Jha, 2000a 2000b 2004). 

The existing optimization models and applications speed up the highway design 

procedure, but they still need to be further improved. For instance, not all design factors are 
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considered and optimized by the current design models and additional road features, such as 

lane width, should be examined and optimized. Moreover, given energy shortages and severe 

environmental problems, a well-designed highway should jointly consider the social, 

economic and environmental consequences, and result in less fuel consumption and pollutant 

emissions.  

1.2 Problem Definition 

Highway alignment optimization can be modeled as follows: given two points as start 

point and end points, find the optimal alternative connecting them which minimizes the total 

costs and also satisfies the design standards. There are many alternatives connecting those 

two points, as shown in Figure 2-1, and the optimization algorithms try to find the optimal 

one. The total cost considered in highway design consists of agency cost, user cost and other 

cost (Jong 1998). The agency cost include right-of-way cost, construction cost, pavement 

cost, and maintenance cost; the user cost are the travel time cost, vehicle operating (fuel 

consumption) cost and accident cost; and other cost here stands for the environmental cost, 

e.g. air pollution and noise, which is rarely comprehensively considered in previous models. 

Constraints on highway design may include the project budget, and design standards 

specified in the AASHTO Highway Design Manual (1997a, 1997b, 1997c) as well as 

different local standards. The highway alignment design is also affected by local terrain, soil 

type and land use.  The comprehensive objective function and constrains indicate that the 

highway alignment problem is a typical optimization problem which is solvable by well-

designed optimization algorithms. Figure 2-2 presents two highway alignment alternatives. 

Both of them are able to avoid the mountainous area and wetland protection area while 

minimizing cost and satisfying design rules. 
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Figure 1-1 Multiple Alignment Alternatives Connecting the Endpoints 

 

Figure 1-2 Effects of Terrain and Land Use on Highway Alignment Design 

1.3 Research Objective and Scope 

The review of current highway alignment methodologies indicates that the existing 

highway alignment models and applications speed up the design procedures. Among them, 

the Highway Alignment Optimization Model (HAO) developed at the University of Maryland 

can yield feasible and optimized highway alignment results and had been applied to several 

practical highway design projects in Maryland. However, there is still room to improve the 

HAO by incorporating more design features into the optimization procedure, and replacing 

the conventional models with the latest ones. Hence, this thesis seeks to improve the current 

Highway Alignment Optimization (HAO) model by (1) incorporating the lane width in the 

optimization procedure through the evaluation of lane width impacts on travel speed, safety 

and cost, (2) improving the vehicle operating cost prediction, (3) quantifying the effect of 

highway alignment on the environment in more details in terms of pollutant emissions. 

: Wetland protection area 

End 

Start 

             : Mountainous area 

Start 

End 



 

 4 

 

1.4 Research Methodology 

This research seeks to answer the following questions: 

(1) What are the conventional and current methodologies for highway alignment 

optimization? What are the advantages and disadvantages of the existing HAO model? 

(2) What are the cost components affecting highway alignment? How should the HAO model 

be improved to design highway with lower vehicle operating cost and environment cost, 

particularly the fuel consumption and pollutant emissions?  

(3) How should the lane width factor be incorporated in the optimization procedure inside the 

HAO model? 

(4) How does the newly improved HAO model perform in practical highway alignment 

projects with different design parameters?  

The aforementioned questions set the outline of this thesis. Each question will be 

analyzed and answered in each chapter of the thesis. Emphasis will be placed on the 

improvement of the current HAO model and its application in a practical highway alignment 

project. 

1.5 Thesis Organization 

The thesis is organized as follows: 

Chapter 1 outlines the research background and motivations, defines the research problem 

and scope, and states the questions to be addressed in this thesis. Chapter 2 reviews the 

current highway optimization modeling approaches, evaluates the major cost components 

which are associated with highway transportation, and examines the advantages and 

disadvantages of the existing HAO model. The various cost components constituting the 

objective function of the problem are formulated in Chapter 3, with emphasis on the user cost 

and environmental cost. Chapter 4 discusses the solution algorithm for optimizing non-

backtracking 3-dimensional alignments, and the impacts of lane width on vehicle speed, 
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accident rate and cost. Newton’s method and finite difference method are employed to solve 

the lane width optimization problem.  In Chapter 5, a case study is presented to test the 

improved HAO model in a real world highway alignment project, followed by a discussion 

about the sensitivity analysis results. The thesis ends with a summary of the performance and 

outputs of the improved HAO model, the conclusions of the highway alignment study, and a 

discussion of possible future research. 
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Chapter 2: Literature Review 
 

The literature review in Chapter 2 is divided into 6 sections. First, the existing 

alignment optimization models are reviewed, and their advantages and disadvantages are 

analyzed. Second, a chronological sequence of the HAO model’s development is presented 

and the desired improvements are identified. The cost associated with highway alignment are 

discussed and classified in the Section 3. In Section 4, design constraints are presented. 

Section 5 analyzes the effects of lane width on travel speed and safety. Finally the summary 

of literature review is presented in Section 6.   

2.1 Models for Optimizing Highway Alignments 

A number of optimization methods (including dynamic programming, linear 

programming, and enumeration) have been found in the literature on highway alignment 

optimization. Most models are only able to optimize either the horizontal alignment (Lee and 

Cheng, 2009; Liatsis, 1999) or vertical alignment (Goh, 1988; Fwa, 1989; Lee, 2001). Models 

for simultaneously optimizing three dimensional alignments are rarely found. The earliest one 

found was developed by Parker (1979). It is a two-stage approach to select a route corridor. 

The major constraint for the alignment is the gradient constraint. In the first stage, a smooth 

cost surface is established according to the centroids’ elevation of each cell in the region of 

interest. Meanwhile, the cost surface should ensure that the vertical profile of any horizontal 

alignment intersecting with the cost surface satisfies the gradient constraint.  In the second 

stage, a shortest-path algorithm is used to find the optimal path. However, the alignment is 

not smooth, but consists of piecewise linear segments. Besides, the optimization method 

neglects the horizontal constraint, but only considers the gradient constraint. Moreover, only 

the earthwork cost is considered in Parker’s model, and other cost components e.g. right-of-

way cost, travel-time cost, and vehicle operating cost are excluded. 
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One of the most successful three-dimensional models is developed by Chew et al 

(1989). Instead of using a grid, the alignment is parameterized by a series of cubic spline 

polynomial function.  The constraints are transformed into a one-dimensional constraint by 

using constraint transcription methods from optimal control theory. Then the model is 

formulated as a non-linear programming structure. The optimization problem is solved using 

a quasi-Newton descent algorithm. The advantages of Chew’s model are that it is able to 

optimize the horizontal alignment and vertical alignment simultaneously. It can also generate 

a smooth alignment compared with those found with the shortest path or dynamic 

programming methods. However, the choice of the initial variables affects the rate of 

convergence, but selecting a good initial solution is difficult. Moreover, the algorithm is only 

able to optimize non-backtracking alignments, and has no ability to optimize a backtracking 

alignment, which is frequently needed in mountainous areas.  

Cheng and Lee (2006) employ the neighborhood search-heuristic approach to solve 

the complex 3-dimensional highway alignment problem. The number of intersection points 

(PIs) in the optimization procedure is not fixed. The IPs are added, deleted, or moved slightly 

randomly each iteration, in order to search for the preferred horizontal alignment alternatives. 

If an infeasible alignment is generated, it will be abandoned. Otherwise, the layout of the 

alignment is determined, and the goal is to generate a more accurate horizontal alignment by 

performing more iterations. The corresponding vertical alignment then will be generated 

according to the horizontal alignment layout.  

None of the aforementioned algorithms are able to consider comprehensive design 

constraints and cost components. Therefore the HAO model uses a different approach for 

simultaneously optimizing 3 dimensional highway. Since the problem is complex and non-

differentiable, it cannot be solved using traditional methodology such as Newton’s method. 

Jong (1998, 2003) develops an evolutionary algorithm which is modified from classic genetic 

algorithm to solve the optimization problem. Kim and Jha (2005) improve the computational 
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efficiency by using a stepwise genetic algorithms approach. Kang (2007, 2008) further 

improves the computing efficiency and results quality by developing the feasible gate 

approach. 

2.2 Evolution of Highway Alignment Optimization (HAO) Model 

The earliest version of HAO model is developed by Jong (1998, 2003). It is usually 

very difficult to describe the highway alignment problems due to its complex geometric 

features, and Jong proposes an efficient representation of highway alignment. (Details will be 

discussed in Section 3.1.) After defining the presentation of highway alignment, he identifies 

the design factors associated with highway cost. Then he formulates the optimization problem 

with objective function and design constraints, and solves it by designing genetic algorithms. 

Four models are proposed for optimizing non-backtracking horizontal alignment, non-

backtracking 3-dimensional alignment, a backtracking horizontal alignment model and 

backtracking 3-dimensional alignment. Those two 3-dimensional alignment models are more 

suitable for hilly areas. Four evolutionary programs are proposed to solve these four models 

respectively, and eight genetic operators were applied. The case study indicates that Jong’s 

model and algorithm can generate smooth highway alignments efficiently in different 

topographic environments. Also, the model can optimize the 3-dimensional alignment (both 

horizontal and vertical) simultaneously or separately, which is a great improvement since 

none of the previous models could do so.  

Although Jong’s model performs very well and yields satisfactory results, there is 

room for further improvement. First, the model is too abstract to be applied, and a 

combination with GIS should be considered in order to provide a user-friendly interface and 

useful spatial data management and analysis functions. Second, several cost functions should 

be improved to get better precision in estimating cost, e.g. the accident prediction model and 

bridge structure cost.  
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Jha (2000a) further improves the HAO model by introducing realistic GIS techniques 

into the HAO model and connecting the optimization algorithm with the GIS software 

ArcView 3. Four major components constitute his improved HAO model: the cost module, 

optimization module, GIS module, and communication module. The connection with GIS 

provides users with a graphic and user-friendly interface. Moreover, the GIS technology is 

good at managing and analyzing spatial data, which assists the optimization. For instance, Jha 

proposes the GIS-based algorithm to estimate the environmental cost using spatial relations. 

He overlays the wetland and floodplain layers with the property map, and calculates the 

fraction of each property taken by the alignment using GIS spatial analysis function. He also 

developes a method to enable more precise computation of right-of-way cost based on the 

spatial features of a GIS. With the integration of GIS, the model can be applied to real 

highway project directly. Moreover, Jha improves the genetic algorithm by introducing a 

bidirectional communication link between GIS and GA to enable continuous data exchange.  

Both Jong, and Jha’s research are applied to design new highways. However, most 

transportation improvement projects are based on existing network and aim to enhance the 

whole network performance by upgrading existing highways or building new segments 

connecting existing ones. Therefore, Kim (2001) further improves the model by incorporating 

bridge and intersection structure and maintenance cost in the objective function. Kang (2008) 

proposes alignment model to find a preferred highway which best improves the existing 

network at minimum cost. The model is capable of optimizing the highway alignment and 

junction points with existing roads. This model considers the impacts of new highways on 

traffic and other factors associated with construction during the optimization procedures. 

Moreover, Kang (2007; 2008) improves the optimization algorithm by developing the 

feasible gate optimization method, and by applying a prescreening and repairing method in 

the genetic algorithm. This method improves the computation efficiency and optimization 

solution quality. 
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The existing HAO model has been applied in several practical highway alignment 

projects. It was employed in designing the Brookeville Bypass in 2004 (Kang et al 2006), and 

the Maryland section of Route US 220 in 2010. 

The review of the HAO model development indicates that the existing HAO model is 

well designed. It has also been applied into several practical highway alignment projects, and 

yields satisfactory results. However, there are several aspects which have not been addressed 

properly and should be further improved. First, the existing HAO model has no ability to 

optimize lane width. However, lane width is an important factor affecting the vehicle safety, 

travel speed and cost, and it should be optimized in highway alignment procedures. Second, 

the operating cost in the existing HAO model is estimated based on vehicle speed. However, 

for the highway alignment optimization problem, the most appropriate method for estimating 

the fuel consumption is to derive the function based on highway geometric features. Thus, a 

new fuel consumption prediction methodology with road geometric features consideration is 

needed. Moreover, the environmental cost in existing HAO model is considered as the 

penalty of crossing floodplains and wetlands. The cost resulting from vehicle emissions is 

expected to be addressed in the new HAO model.  

2.3 Cost Associated with Highway Transportation and Its Classification 

The objective of highway alignment optimization is usually to minimize the total cost 

of preferred alignment alternative. According to the Organization of Economic Co-operation 

and Development (OECD, 1973), the following cost components are significant in road link 

design: 

1. Construction cost 

2. Maintenance cost 

3. Traffic cost 

4. Social cost 
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5. Design and administrative cost 

The HAO model developers Jong (1998), Jha (2000a) and Kang (2008) group cost 

into two basic categories from the perspective of supply-consumer, and name them as agency 

cost and user cost. The existing GIS-based HAO software provides users with two options to 

determine the objective function, either agency cost only or agency cost and consumer cost 

combined. In the existing HAO model, the agency cost is subdivided into different types 

according to their relationships with highway geometric, including length-dependent cost, 

location-dependent cost, area-dependent cost, volume dependent cost, and bridge and cross-

section construction related cost.  The user cost consists of travel time cost, vehicle operating 

cost and accident cost. Detailed classifications are listed in Table 2.1. As Table 2.1 indicates, 

the environmental cost is viewed as a location-dependent cost. Initially, the environmental 

cost is grouped into length-dependent cost by Jong (1998) since he employs an equation to 

estimate the net present value of the environmental cost per unit length, which is a function of 

average annual daily traffic (AADT) and vehicle miles traveled (VMT). The unit 

environmental cost per VMT is derived from summing up the unit costs of air pollution, 

water pollution, and noise pollution. Jha (2000a) re-examines the environmental cost 

estimation and divided them into two types 1) those requiring separate analysis, and 2) those 

obtainable from a GIS, which can be also incorporated into highway optimization models. He 

improves the HAO model by calculating the second type environmental cost using GIS. The 

environmental cost in Jha’s model is the penalty resulting from intersecting with the 

floodplain and wetland. It is associated with the fraction of protected land taken by the 

alignment. Therefore Jha groups the environmental cost into the location-dependent cost. 

However, he also comments that some environmental impacts, e.g. air pollution and noise, 

are difficult to quantify by GIS directly, and can be included in the extension of his research. 

Hence, one of objectives of this thesis is to improve the environmental cost estimation by 

considering the environmental impacts resulting from vehicle pollutants emissions.  
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Agency Cost 

1. Length-Dependent 

 Construction Cost 

 Pavement Cost (lane width and depth are 

assumed fixed) 

2. Location-Dependent 

 Right-of-way acquisition Cost 

 Environmental Cost  

3.Volume-Dependent 

 Earthwork Cost 

4. Bridge Construction Related  

 Structure Cost 

 Maintenance Cost 

User Cost 

1. Travel Time Cost 

2. Vehicle Operating Cost 

3. Accident Cost 

Table 2-1 Cost Classifications of Existing HAO Model 

2.4 Constraints and Operational Requirements in Highway Alignment 

AASHTO publishes several books and reports addressing the design constraints and 

standards for highway alignment (1997a, 1997b, 1997c). Those design standards should be 

followed strictly, and can be formulated as constraints in the highway alignment optimization 

problem.  

The design of a highway includes the horizontal alignment and the vertical 

alignment. A horizontal alignment consists of tangent section, transition curve and circular. 

Major constraints for horizontal alignment are minimum radius of curves and sight distance 

on curves. Vertical alignment consists of tangents connected with each other by parabolic 

curves. Important constraints on vertical alignment are maximum gradient, sight distance on 

crest and sag vertical curves, and headlight sight distance and motorist comfort on sag 

vertical curves.  
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2.5 Effects of Lane Width on Speed, Safety and Earthwork 

Lane width is an important factor in highway design, which is related to the travel 

speed, safety, as well as earthwork cost. AASHTO provides flexibility of lane width in 

highway design procedures. For example, according to AASHTO (2004), lane width usually 

varies from 9ft to 12 ft, and lanes narrower than 9ft are still acceptable for rural roads and 

highways with lower speeds and volumes. Therefore, such variability of lane width requires 

assessment inside HAO model to find the optimal value, in order to generate the best fit 

alignment alternative.  

Speed is one of the driver choices affected by lane width since narrower lanes lead to 

more influence from interactive traffic and obstacles along the side of the road, and result in 

slower speed (Martens, 1997; Parsons Transportation Group, 2003). There is no consensus on 

the relation between lane width and speed yet since there is wide variability among sites. 

However, most studies indicate that a wider lane can increase the travel speed. According to 

Ferreri’s (1968) research, a higher speed is observed for 3.4 m wide lanes than for 3.0 m 

lanes in Philadelphia. Yagar (1983) also finds that the speed decreases by 5.7 km/h for every 

meter of reduction in lane width. Therefore, wider lanes can decrease travel time cost. 

In addition, wider lanes are associated with fewer accidents with lane with ranges 

from 9 feet to 12 feet (FHWA, 2000). Labi (2006) proposes the crash prediction models for 

rural major collectors, rural minor arterials and rural principal arterials in India. All models 

show that wider lanes are associated with crash reduction in both frequency and severity. He 

stated that the result is consistent with expectation since wider lanes serve more space and 

opportunities to avoid other vehicles and therefore reduce the risk of crash. . The Interactive 

Highway Safety Design Model (IHSDM) (1998), which is a suite of software analysis tools 

developed by FHWA for evaluating safety and operational effects of geometric design on 
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highways, also indicates that wider lanes lead to fewer accidents. Thus wider lanes should 

reduce vehicle operating cost. 

Lane width is also related to earthwork. According to the earthwork cost prediction 

model employed in existing HAO model (Jong, 1998; Jha, 2000a), the earthwork cost 

increases with wider lanes.  

In conclusion, wider lanes can reduce both travel time cost and vehicle operating cost, 

but increase earthwork cost. Therefore, the optimization of lane width should be included 

inside HAO model.  

2.6 Summary 

The first section discusses the existing highway alignment optimization models. The 

four generations of HAO model are introduced in the second section. The existing HAO 

model is a useful software tool for highway alignment optimization with a graphic interface, a 

reliable cost function and an efficient optimizing algorithm. However, several aspects still 

need to be improved. The major components associated with highway alignment cost are 

discussed in Section 2.3.  The Section 2.4 presents the design constraints for horizontal 

alignment and vertical alignment. Effects of lane width on speed safety and cost are discussed 

in Section 2.5.  
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Chapter 3: Model for Optimizing Three-Dimensional Non-

Backtracking Highway Alignments 
 

The existing HAO model can optimize both two-dimensional (horizontal) alignments 

and three-dimensional (both horizontal and vertical) alignments. The two-dimensional 

alignment only considers the horizontal alignment optimization, and it is applicable for 

relatively flat study areas, while the three dimensional one enables us to estimate more 

precise earthwork cost. Also, the user cost in the two-dimensional alignment only depends on 

the horizontal profile, and several variables have to be excluded. For example, the speed 

prediction model employed in HAO model is a function of road features. However, no 

information is provided about the vertical profile in two-dimensional alignment, and the 

vertical distance variable has to be omitted in the analysis. Hence the three-dimensional 

highway alignment can yield better alignment alternatives with better information, and this 

thesis employs the three-dimensional alignment model.  

This chapter starts with basic idea and method for presenting and formulating the 

highway alignment optimization problem. An overview of cost function is given in Section 

3.2. Detailed agency cost, user cost and environmental cost formulations are addressed 

separately in the following three sections. A completed optimization formulation is given in 

the last section. The agency cost is sufficiently well designed in the current HAO model, and 

emphasis in this chapter is placed on modeling user cost and environmental cost.  

3.1 Data Format 

The three-dimensional non-backtracking highway alignment model is subdivided into 

horizontal alignment and vertical alignment, which are discussed explicitly in Chapter 4 and 

Chapter 8 of Jong’s dissertation (Jong, 1998). The basic concept of horizontal alignment 

design is to apply vertical cuts perpendicular with the line segment SE , which connects the 
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origination S and destination E, as shown is Figure 3-1. The cut line must intersect with the 

optimal alignment at exactly one point, denoted as Pi. (The proof can be found in Chapter 3 

of Jong’s dissertation.) Since we apply several vertical cuts, the intersecting points of these 

cuts along with S and E yield a candidate alignment. Therefore the highway alignment 

optimization problem is formulated to find the optimal Pi points. Let di to be the coordinate of 

the intersection point pi on the i
th
 vertical cut. The upper and lower bounds of di are discussed 

in four cases separately in Jong’s dissertation. Then, pi can be obtained as  

pi oi

i

pi oi

X X cos
d

Y Y sin





     
      

     

                                                        (3.1) 

where:  is the angle between the cutting line and the X axis 

 Oi is the intersection point of cutting line and segment SE , and can be calculated 

based on the coordinates of original S. (Details can be found in Jong’s dissertation.) 

 

Figure 3-1 Decision Variables of Two-dimensional Highway Alignment (Jong 1998) 

The path of the alignment is outlined by the set of pi points. A piecewise linear 

trajectory is generated by connecting pi points with straight-line (tangents), as shown in 

Figure 3-1. However, in order to yield a smooth road alignment, at these pi points the 

tangents must be connected with horizontal curves, as shown in Figure 3-2. The calculations 
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of curves and tangents are constrained by design standards, e.g. minimum radius and sight 

distance, and the detailed calculation is given in Algorithm 4.1 and 4.2 of Jong’s dissertation. 

T0 = P0 =S

CN+1 = PN+1 =E

C1

C2

C3

C4
C5

T1

T2

T3

T4

T5

 

Figure 3-2 Smooth Road Alignment Connected by Curvatures and Tangents (Jong 1998) 

Similarly to the horizontal alignment, the vertical alignment is determined by 

applying vertical cutting planes instead of cutting lines to the line segment SE, as shown in 

Figure 3-3. The potential optimal vertical control points must be located on each vertical 

cutting plane, denoted as Pi. The vertical alignment is formed by connecting all these Pi 

points, and the alignment algorithm is intended to find the optimal Pi points. The relation 

between Pi points and the horizontal alignment on XY plane is given in Figure 3-4. 

 

Figure 3-3 Decision Variables of Three-dimensional Highway Alignment (Jong 1998) 

p1 

P2 P3 

P4 

P5 
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Figure 3-4 Geometric Relations of Reference Point for an Alignment on the XY Plane (Jong 

1998) 

3.2 An Overview of the Cost Function 

As reviewed in Section 2.2, the cost associated with three-dimensional highway 

alignment is categorized into agency cost and user cost in the existing HAO model. The 

environmental cost is grouped into location-dependent agency cost and computed using GIS 

spatial functions. However, as Jha suggests (2000), some environmental impacts, e.g. air 

pollution and noise, are difficult to quantify by GIS directly, and can be included in the 

extension of his research. Therefore, the environmental cost in this research is studied as 

vehicle pollution emissions. It is then isolated from the location-based cost. The cost 

classification for the newly improved HAO model is presented in Table 3.1.  

Agency Cost 

1. Length-Dependent 

 Construction Cost  

 Pavement Cost (lane width is determined 

by the lane width optimization analysis 

result) 

2. Location-Dependent 

 Right-of-way acquisition Cost 

3.Volume-Dependent 

 Earthwork Cost  

4. Bridge Construction Related  

 Structure Cost 

 Maintenance Cost 
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User Cost 

1. Travel Time Cost 

2. Vehicle Operating Cost 

3. Accident Cost 

Other Cost 

Environmental Cost 

Table 3-1 Cost Classifications of Newly Improved HAO Model 

The objective function of highway alignment optimization is to minimize the total 

cost as presented in equation 3.2.  

agency user environmentC C C C                                                         (3.2) 

where:  C = total highway alignment cost ($) 

Cagency = agency cost ($) 

Cuser = user cost ($) 

Cenvironment = environmental cost ($) 

Each type of cost consists of different components.  Meanwhile, it is important that 

the design variables are related to the objective function.  Detailed cost formulations are 

discussed in the following subsections.  

3.3 Agency Cost 

The agency cost of the existing HAO model is composed of right-of-way cost, 

earthwork cost, length-dependent cost, structure cost and maintenance cost. Table 3.2 shows 

the examples of each cost. The first three components are proposed by Jong(1998) and further 

improved by Jha(2000a), and the last two components are proposed by Kim (2001) and Kang 

(2008) for predicting the costs associated with bridges and intersections while optimizing the 

existing highway network. 

 Type of Agency Cost Examples 

 

 

Length-dependent cost Pavement costs, median installation cost 

Right-of-way cost Land acquisition and property damage cost 
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Agency 

costs 

Earthwork cost Cut and fill cost 

Structure cost Bridge and interchange construction cost 

Maintenance cost Maintenance cost for highway basic segments and 

bridges 

Table 3-2 Agency Costs Associated with Highway Construction 

 The calculation of total agency cost is given in equation 3.3. Evaluation of each 

component of agency cost is discussed in Sections 3.3.1 to 3.3.5 

agency L R E S MC C C C C C                                             (3.3) 

where: Cagency is the total agency cost ($/year) 

 CL is the total length-dependent cost ($/year) 

 CR is the right of way cost ($/year) 

CE is the earthwork cost ($/year) 

CS is the structure cost ($/year) 

CM is the maintenance cost ($/year) 

3.3.1 Length-dependent Cost 

The Length-dependent cost (CL) in HAO model is first proposed by Jong (1998). It is 

formulated by multiplying the highway length with the unit cost. 

As mentioned in Section 3.2, the smooth alignment consists of successive circular 

curves and tangents. Hence, the total alignment length is calculated by summing up all curves 

with radius R, and straight-line. The length is denoted as Ln, and can be expressed as: 

1 1

2 2

0 1

( ) ( )
i i i i

n n

n T C T C i i

i i

L x x y y R
 

 

                             (3.4) (Jong, 1998) 

where:  Ln = total length of the alignment 

(XCi,YCi) = coordinates of Ci, which are shown in figure 3-2 

(XTi,YTi) = coordinates of Ti, which are shown in figure 3-2 
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Ri = the radius of the circular curve from Ci to Ti. 

Δi = the intersection angle at intersection point Pi 

Kang (2008) further improves the alignment length calculation by considering spiral 

transition curves between the horizontal circular curves and the tangents. His model is 

employed when the horizontal curve includes one circular and two spiral transition curves. 

Equation 3.4 is used when only a circular curve is used.  

The unit cost of existing HAO model consists of unit construction cost, unit 

pavement cost and unit environmental cost. The unit construction cost includes miscellaneous 

items, such as fences and guardrails.  The unit pavement cost is grouped into length-

dependent cost since the lane width is a given fixed value. The optimization of lane width is 

discussed in Chapter 4. The environmental cost in Jong’s model is estimated based on the 

unit cost per VMT and AADT data. Jha improves the environmental cost estimation by using 

GIS spatial analysis, and separates it from length-dependent cost. This thesis discusses more 

details about the environmental cost in terms of vehicle emissions in Section 3.5. Therefore, 

the length dependent cost here only includes the construction cost and pavement cost. The 

calculation is given in equation 3.5.  

L L nC K L                                                             (3.5) 

where: KL = unit length dependent cost ($/ft) 

Ln = total length of the alignment (ft), obtained with equation (3.4)  

3.3.2 Earthwork Cost 

Jong (1998) analyzes the earthwork cost explicitly and includes it in the HAO model. 

The earthwork cost refers to the cut and fill cost, and hauling cost. The cut and fill cost is 

associated with highway elevation and ground elevation, and it is sensitive to topography. 

The ground elevation in Jong’s research is calculated on curves and tangents separately. Jha 

(2000) improves it by using GIS. The ground elevation is continuous and retrieved from 
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DEM data directly without any mathematical calculation. The vertical alignment is comprised 

of parabolic curves and tangents, and the highway elevation was analyzed on parabolic 

curves and tangents separately. Detailed analysis can be found in Chapter 8 of Jong’s 

dissertation and Section 4.1.3 of Jha’s dissertation. The methodology used for calculating cut 

and fill volume is “average-end-area” method. The calculation of earthwork volume, either 

excavation or embankment is determined by the differences between road elevation and 

ground elevation.  

Besides considering the cut and fill cost, Jha also considers the hauling cost, which is 

calculated by multiplying the haul (cubic yard-feet) with the unit hauling cost ($ per cubic 

yard per mile). The haul, namely the volume of shrinkage and swell, is primarily determined 

by the soil type.  

The calculation of earthwork cost is given in equation 3.6: 

1 1

n m

E H ci ci fj fj

i j

C C K E K E
 

                                                (3.6) 

where:  CH = total hauling cost ($) 

n = number of excavation sections 

m = number of embankment sections 

Kci = unit cut cost for the ith excavation section ($ per cubic yard per mile) 

Kci = unit fill cost for the jth embankment section ($ per cubic yard per mile) 

Eci = cut volume in segment i (cubic yard) 

Efj = fill volume in segment j (cubic yard) 

Detailed analysis of earthwork cost estimation can be found in Jong and Jha’s 

dissertations and their early publications. 
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3.3.3 Right-of-way Cost 

The right-of-way cost component is studied comprehensively by Jha (2000a, 2000b, 

2004). The right-of-way cost prediction is quite complex, and requires more than summing up 

all the land property values intersected by a highway alignment. Jha formulates the right-of-

way cost with 3 items, which are costs of the property take for temporary easement, just 

compensation paid for property, and appraisal fee associated with property.  The fraction of 

property taken by highway construction is identified and measured by the GIS. The just 

compensation cost consists of damage to the value and structures on properties,  cost of 

properties improving, and cost of the fraction of property taken for alignment. The right-of-

way cost function applied in this thesis is: 

1

( )
Rn

R TEi JCi AFi

i

C C C C


                                                          (3.7) 

where: CTEi = cost of the friction of property i taken for temporary easement ($) 

CJCi = just compensation paid for property i ($) 

CAFi = appraisal fees for property i ($) 

nR = total number of properties affected by the alignment 

Detailed description and algorithm can be found in Jha’s PhD dissertation and Jha 

and Schonfeld’s early publications (2000a, 2000b, 2000c, 2004).   

 3.3.4 Structures Cost 

Besides the earthwork cost, structure cost is also one of the major components of 

construction cost. The structure cost in this thesis refers to the cost of bridge crossing the 

rivers and valleys, and cross-structures for intersecting existing highways. It is added to HAO 

model by Kim (2001) and the calculation is given in equation 3.8. 

S BR IC IS GSC C C C C                                                      (3.8) 

where: CBR = Bridge construction cost 



 

 24 

 

CIC = Interchange construction cost 

CIS = Intersection construction cost 

CGS = Grade separation cost                

The bridge construction cost depends on the bridge type. Kyte et al (2003) and 

Menn’s (1990) model are employed to estimate the cost of small bridge used for grade 

separation of existing bridge, and O’Conner’s (1971) model is used to access the cost of 

bridge designed for crossing rivers and valleys. Three types of cross-structures are 

considered, which are interchange, intersection and grade separation structures. Kim’s model 

(2001, 2004 and 2007) is employed to evaluate the cost of 4-leg cross-structures. Kang (2008) 

also develops a model for estimating the cost of 3-leg cross-structures.  

3.3.5 Maintenance Cost 

The highway maintenance cost is also considered and incorporated in the HAO 

model. Jha (2003) studies the trade-offs between initial and maintenance cost of highway 

design. He formulates the maintenance cost as the function of sideslope width of highway 

cross section and AADT, so as to optimize highway alignment. The maintenance cost is 

further subdivided into two categories by Kim (2001, 2004): highway basic segments and 

highway bridges. The maintenance cost for road segment is associated with the length of 

segment. Therefore, the highway segment maintenance cost can be estimated if the segment 

length and unit maintenance cost (normally $ per unit distance per year) are given. The bridge 

maintenance cost is formulated by summing up all components, which include the annual 

inspection cost, annual maintenance cost and periodic rehabilitation cost. Kang (2008) 

employs the bridge operating cost calculation proposed by Menn (1990), in which the 

maintenance costs are estimated as percentages of bridge construction cost separately. 

Equation 3.9 presents the calculation of maintenance cost: 

M HM BOC C C                                                           (3.9) 
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where: CHM = present value of maintenance cost for highway basic segments 

 CBO = present value of bridge operating cost 

3.4 User Cost 

User cost consists of travel time cost, vehicle operating cost and accident cost. All 

three components are associated with the road geometric features, and formulated with the 

alignment variables. It is expected that the user cost can be significantly reduced with a well-

designed alignment. The user cost can be estimated with the following equation:  

user T O AC C C C                                                        (3.10) 

where: CT = total travel time cost ($) 

CO = total operating cost ($) 

CA = total accident cost ($) 

3.4.1 Travel Time Cost 

The vehicle travel time cost is associated with time spent for traveling and users’ 

perceived time value. There are many methods for estimating the vehicle travel time for given 

network and traffic conditions. Kang (2008) estimates the travel time based on the BPR 

function (Bureau of Public Roads, 1964). The traffic volume-capacity ratio can be calculated 

after assigning the traffic into the given network. Based on the assigned real traffic volume, 

Kang uses the BPR function to estimate the real travel time. Jong utilizes another travel time 

prediction method, which is straightforward: The travel time is calculated by using highway 

alignment length divided by vehicle travel speed. One of the advantages of Jong’s method is 

that the vehicle running speed is related to road features, which is helpful for establishing 

relation between geometric feature and optimization problem. Therefore, this dissertation 

employs this method to predict travel time. It is also important to note that Kang’s model is 
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better for dealing with a network, while Jong’s model is only applicable to a single road 

segment.  

Two variables, which are alignment length and vehicle running speed, are required 

for estimating the travel time cost. The alignment length is discussed in Section 3.3.1 and the 

calculation is given in equation 3.3. Vehicle speed is influenced by many factors, e.g. vehicle 

characteristics, road geometry, traffic condition and drivers’ behaviors. For the highway 

alignment optimization research, the vehicle speed is desired to be related to the highway 

geometric directly. Jong employs Polus’ (1984) research of accessing the effect of traffic and 

geometric on highway average running speed in existing HAO model. The speed function is 

given in equation 3.11: 

55.124 0.0363 0.0332 0.0081 0.0137

2.4737 0.1678

NV C H G T

D Q

    

 
                    (3.11) 

where:  V  = average running speed (miles/hr) 

C = average curvature (degrees/mile) 

 H = average hilliness (ft/mile) 

 
NG = net gradient (ft/mile) 

 T = T factor, the percentage of heavy vehicles in the traffic stream 

 D = D factor, the directional distribution of traffic 

  Q = hourly one-way traffic volume (vehicle per hour) 

Polus states that the lane width does not affect the average running speed since it is 

an insignificant variable in his speed prediction model. However, after reviewing the dataset 

used for his analysis, it is noted that the data was only collected from 16 sites, and the lane 

widths only ranged from 3.5 meters to 3.65 meters. It is not surprising that the lane width is 

insignificant when the observations are limited to such a narrow range. However, as 

discussed in Section 2.5, the effects of lane width on travel speed cannot be neglected. 
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Therefore, new speed prediction model with lane width consideration is desired.  Yagar 

(1982) studies the geometric and environmental effects on speed of 2-lane highway. He finds 

that lane width has positive effects on vehicle travel speed, and the speed decreases by 1.1 

mph for every foot of reduction in lane width below 13.12 feet. (Units are converted from 

metric.) Yagar’s adjusted speed prediction model is given in equation 3.12 

57.97 1.12 1.1 5.16 4.97 0.43W spV G L LU A V                               (3.12) 

where: V  = average running speed (miles/hr) 

 G = grade factor (%) 

LW = difference between actual lane width and 13.12 feet (4 meter)  

 LU = land use 

 A = Access factor 

 Vsp = Speed limit lower than 55mph/hr (miles/hr) 

Yagar’s model is able to capture the impacts of lane width on travel speed, and the 

statistic test indicates that this model can yield reasonable results. However, it is difficult to 

replace the previous Polus’ speed prediction model with this one since Yagar’s model 

excludes the traffic condition variable, which is an important factor for determining vehicle 

speed as well. A better speed prediction model, which is able to consider both traffic and road 

geometry impacts, has not been found yet. Hence the combination of these two speed 

prediction models is used in this thesis.  According to Yagar’s model, the speed reduces by 

1.1 mph for every foot of reduction. This thesis assumes that such effect of lane width on 

speed is still exist in Polus’ model, and the lane width variable is incorporated in Polus’ 

model with the same parameter as in Yagar’s model. Polus’ model is thus adjusted as  

55.124 0.0363 0.0332 0.0081 0.0137

2.4737 0.1678 1.1

N

W

V C H G T

D Q L

    

  
              (3.13) 
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The traffic volume in the current HAO model is considered in three different cases, 

which are peak hour traffic in the prevalent direction, peak hour volume in the non-prevalent 

direction and off-peak volume. These three traffic volumes per hour are denoted as Qpp Qpn 

and Qo separately. The calculation of traffic volumes in different cases are given in equation 

3.14. 

                                     (1 )

0.5 (1 )

18

pp

pn

p

o

p

Q AADT K D

Q AADT K D

AADT H K
Q

H

  

   

  




                                     (3.14)                                 

where:  AADT = annual average daily traffic (two-way) (vehicle/day) 

 K = the percentage of daily traffic occurring during the peak hour (%) 

 D =the directional distribution of traffic in peak hour (%) 

 Hp = number of peak hour per day 

According to different traffic volumes, the vehicle speed can be expressed separately 

as follows: 

55.124 0.0363 0.0332 0.0081 0.0137

2.4737 0.1678 1.1

55.124 0.0363 0.0332 0.0081 0.0137

2.4737 0.1678 1.1

55.124 0.0363 0.0332 0.0081 0.0137

2.4737 0.1678 1.1

pp N

pp W

pn N

pn W

o N

o W

V C H G T

D Q L

V C H G T

D Q L

V C H G T

D Q L

    

  

    

  

    

  

              (3.15) 

As discussed at the beginning of this section, there are two factors determining the 

vehicle travel cost, which are travel time and unit travel time cost. The vehicle travel time can 

be calculated after estimating the travel speed, as shown in equation 3.16.  
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                                                     (3.16) 

  The unit time value varies depending on the vehicle types. The classification of 

vehicle type in current HAO model employs the AASHTO’s categorization of representative 

vehicle classes for economic analysis of highway projects, which are medium car (for 

passenger car), 2-Axle single-unit truck and 3-S2 truck. The first two types of vehicle 

consume gasoline, while the 3-S2 truck consume diesel. The T factor is usually used to 

present the percentage of heavy trucks. Therefore the composition of traffic can be denoted as 

follows: 

2

3

(1 )

A

s

T

T P T

P T

 
 


 
  

                                                      (3.17) 

where: T is the vector of traffic composition 

 P2A = percentage of 2A truck in total heavy trucks 

P3s = percentage of 3-S2 truck in total heavy trucks, and P2A+P3S=1 

The value of one-hour of vehicle travel time depends on type of vehicle, vehicle 

occupancy, purpose of the trip. The travel time values of three different vehicle types are 

given in AASHTO, as shown in equation 3.18

. 
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   
   
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   
     

                                                         (3.18) 

                                                 

 The value of travel time given in AASHTO is using 1975 dollars and is converted to 2010 dollars. 

Details are provided in appendix A 
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The final model for predicting the travel time cost in the base year is given in 

equation 3.19. 

       

B

T PP TP pp pn TP pn

o TO o

C Q H t v T Q H t v T

Q H t v T

         

    
                       (3.19) 

where:  
B

TC  = total vehicle travel time cost in the base year ($/year) 

Qpp = traffic volume the prevalent direction per hour during peak hour 

Qpn = traffic volume the non-prevalent direction per hour during peak hour 

Qo = traffic volume both way during off-peak hour 

tpp = average travel time the prevalent direction per hour during peak hour 

tpn = average travel time the non-prevalent direction per hour during peak hour 

to = average travel time both way during off-peak hour 

 T = vector of vehicle composition 

v = vector of travel time value for three different types of vehicle 

 HTP is the total peak hour per year

; 309 ( )TP pH H hours  

HTO is the total off-peak hour per year; 6570 309 ( )TO PH H hours   

The net present value of total travel time cost for the entire analysis period ny is: 
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


                                                  (3.20) 

where: CT = net present value of total travel time cost ($) 

 rt = the annual growth rate of AADT (%) 

 ρ = assumed interest rate (%) 

                                                 

 According to AASHTO’s (1997) assumptions, there are 253 weekdays, 104 weekends, and 8 holidays 

per year. 
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3.4.2 Vehicle Operating Cost 

AASHTO (1977) defined the vehicle operating cost as fuel and oil consumption, 

maintenance, tire wear, and vehicle depreciation. Fuel consumption is viewed as the most 

dominant and sensitive cost among all three components, and it is associated with road 

geometric design. Therefore, emphasis is placed here on fuel consumption estimation. The 

other three cost components are considered as unit costs per mile.  

Different methods are employed to estimate the fuel consumption. Chesher (1987) 

estimates the fuel consumption per unit distance based on the vehicle speed.  Jong (1998) 

employs Chesher’s model to compute the fuel consumption in the current version of HAO 

model. Kang (2008) groups vehicles into two categories (automobiles and trucks) to study the 

operating cost and estimates the vehicle fuel consumption based on the “speed-fuel 

consumption” rate table accessed from reliable reference. Those two methodologies are quite 

similar since both of them estimate the fuel consumption based on the vehicle speed. 

However, speed is not the only factor affecting fuel consumption. Other factors that should be 

considered include vehicle characteristics and road conditions. Moreover, for the highway 

alignment optimization problem, the best method for estimating the fuel consumption is to 

derive the function from highway geometric features. Deriving such equation is not easy. 

Therefore the thesis starts by calculating the resistance force for running vehicles, which is 

affected by vehicle types and road geometric features, then estimating the required 

horsepower, and combining fuel consumption rate to obtain fuel cost.  

As mentioned in Section 3.4.1, vehicles are grouped into three classes according to 

AASHTO (1997): medium car, 2-Axle single-unit truck and 3-S2 truck. The vehicle 

resistance consists of three major sources: (1) aerodynamic resistance, (2) rolling resistance 

and (3) grade or gravitational resistance. Detailed analysis of each component is addressed in 

Mannering (2004)’s book, and the final vehicle resistance model is given in equation 3.21.  
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                                 (3.21) 

where: R = vehicle resistance (lb) 

ρ = air density (slugs/ft
3
), the value of ρ is in table 3.3 

CD = coefficient of drag (unit less), the value of CD is in table 3.4 

Af = frontal area of the vehicle (projected area of the vehicle in the direction of 

travel) (ft
2
), the value of Af is in table 3.5 

V = speed of the vehicle (ft/s) 

W = total vehicle weight (lb), the value of W is in table 3.6 

G = percent grade (%) 

Altitude (feet) Temperature (°F) Pressure (lb/in
2
) Air Density (slugs/ft

 
) 

0 59.0 14.7 0.002378 

5,000 41.2 12.2 0.002045 

Table 3-3 Value of Air Density ρ 

Vehicle Type Drag Coefficient (CD) 

Medium Car 0.25-0.55 

Bus 0.5-0.7 

Tractor-trailer 0.6-1.3 

Table 3-4 Value of Drag Coefficient (CD) 

Vehicle Type Frontal Area (ft
2
) 

Medium Car 22 

2 Axle Single-unit Truck 35 

3-S2 Truck 56 

Table 3-5 Vehicle Frontal Area (ft
2
) 
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Vehicle Type Vehicle Weight (lb) 

Medium Car 3,000 

2 Axle Single-unit Truck 12,200 

3-S2 Truck 33,600 

Table 3-6 Vehicle Weight (W) 

Horsepower is determined by the resistance force and vehicle running speed, and can 

be calculated as shown in equation 3.22: 

  
375 308

R V R V
P



 
 



1
                                                         (3.22) 

where:   P = horsepower (hp) 

   R = vehicle resistance (lb)  

 V = running speed (ft/s) 

η= transmission efficiency0.83 

The horsepower is a function of vehicle running speed, and the speed is considered in 

three conditions as discussed in the last section. Thus the horsepower can be denoted as 

follows: 
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                                                       (3.23) 

Fuel consumptions vary among different vehicle types due to the variation of 

required horsepower and fuel consumption rates, as expressed in equation 3.24. 
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                        (3.24) 

                                                 
1
 The value 308 in Equation 3.22 is an approximate one, which is calculated by using the approximate 

transmission efficiency 0.83. 
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where: FMC = Fuel consumption per hour of motorcar (lb/hr) 

F2A = Fuel consumption per hour of 2A-truck (lb/hr) 

F3S = Fuel consumption per hour of 3-S2-truck (lb/hr) 

PMC = horsepower of motorcars (hp) 

PAC = actual horsepower of 2A-trucks (hp) 

P3S = actual horsepower of 3-S2trucks (hp) 

sfcMC = fuel consumption rate of motorcars (lb/hp-hr) 

sfc2A= fuel consumption rate of 2A-trucks (lb/hp-hr) 

sfc3S= fuel consumption rate of 3-S2 trucks (lb/hp-hr) 

The fuel consumption rate for cars consuming gasoline is 0.45 lb/hp-hr, and trucks 

consuming diesel is 0.35 lb/hp-hr.  

 t = vehicle travel time, given in equation 3.16 

The fuel consumption cost per vehicle per hour is equal to the amount of fuel 

consumption multiplied by the fuel prices, as expressed in equation 3.25. 
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                                                (3.25) 

 

where:  FC = fuel consumption cost per vehicle per hour ($/hr) 

Ug = gasoline price ($/gallon) 

Ud = diesel price ($/gallon) 

ρg = density of gasoline = 6.073 (lb/gallon) 

ρd = density of diesel = 6.943 (lb/gallon) 

Other operation costs, including maintenance, tire wear, and vehicle depreciation are 

calculated as equation 3.26: 
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                                                              (3.26) 

where:  Fo-o = maintenance cost, tire cost and vehicle depreciation cost ($/mile) 

UMC = maintenance and tires cost of motorcar ($/mile) 

U2A = maintenance and tires cost of 2A truck ($/mile) 

U3S = maintenance and tires cost of 3-S2 truck ($/mile) 

Ln = length of alignment (miles) 

Ug , Ud , UMC , U2A , and U3S are given in table 3.7 

Cost Motorcar 2A Truck 3-S2 Truck 

Fuel

 (2010 dollars/gallon) 2.993 2.993 3.243 

Maintenance

 (2010 cents/mile) 4.06 4.69 13.31 

Tires (2010 cents/mile) 1.09 1.21 4.25 

Depreciation (2010 cents/mile) 6.24 7.05 8.05 

Total operating cost (except fuel 

consumption) (2010 cents/mile) 

11.39 12.95 25.61 

Table 3-7 Maintenance and Tires Costs of Motorcar, 2A Truck and 3-S2 Truck 

The vehicle operating cost is calculated as: 
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                           (3.27) 

where: 
O

BC  = total fuel consumption cost in the base year ($/yr) 

Qpp = traffic volume the prevalent direction per hour during peak hour 

                                                 

 Maintenance, tires and depreciation cost per mile data is accessed from the research report “The Per-

mile Costs of Operating Automobiles and Trucks”, data are converted to 2010 dollars from 2003 

dollar. Details are provided in appendix A 
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Qpn = traffic volume the non-prevalent direction per hour during peak hour 

Qo = traffic volume both way during off-peak hour 

t = average travel time per vehicle (hr), given in equation 3.16 

T = traffic composition, given in equation 3.17 

FC= fuel consumption per vehicle per hour, given in equation 3.26 ($/hr) 

FO-O = maintenance cost, tire cost and vehicle depreciation cost, given in equation 

3.27 ($) 

The net present value of total travel time costs for the entire analysis period ny is: 
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                                                     (3.28) 

where: CO = net present value of total vehicle operating cost ($) 

 rt = the annual growth rate of AADT (%) 

 Ρ = assumed interest rate (%) 

Highway geometric features affect the vehicle travel speed, resistance, horsepower, 

and further influence the fuel consumption. Therefore, a well-designed highway may 

decrease the vehicle operating cost. 

3.4.3 Accident Cost 

Many factors contribute to the accident rate, and the highway geometric feature is 

recognized as one of the major sources. Generally, sharper curves, narrower lanes and 

inadequate sight distance may all lead to higher accident rates. Jong (1998) employs the 

model developed by Zegeer (1992) to estimate the number of accidents on curves of a two-

lane highway in each 5-year period. The drawback of this model is that it is not able to 

predict the accidents occurring on tangents.  

Jha (2000) replaces the accident prediction model by using the accident analysis 

module of the Interactive Highway Safety Design Model (IHSDM) developed by Vogt and 
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Bared (1998).  This model is developed with negative binomial regression analysis for rural 

road traffic data collected in the states of Minnesota and Washington. It is able to estimate the 

impacts of two-lane highway characteristics on accident rate of current and future highway 

projects. This model is evaluated by different studies, and the results indicate it is a reliable 

model. Vogt’s model is given in equation 3.29: 

ˆ 1.92 ( ) (0.045 ) (0.465 )

(0.105 )

j cj i ij i

i ii

y A exp F B exp D C exp V

D exp g

      

 

 


            (3.29) 

where: ŷ  = predicted mean number of accidents on the segment 

A = traffic exposure (million vehicle miles) 

 F = 0.0084D +0.668H -0.0591S-0.0846W 

 W = lane width (feet) 

 S = average of left and right shoulder width (feet) 

 H = average roadside hazard rating along the alignment 

 D = driveway density (driveway per mile) 

Bj = fraction of the total alignment length occupied by the j
th
 horizontal curve 

Dcj = degree of curvature of the j
th
 curve 

Cj = fraction of the total alignment length occupied by the i
th
 vertical crest curve 

Vi = absolute change in grade 

Di = fraction of the total alignment length occupied by the i
th
 uniform grade section 

Gi = absolute value of the i
th
 grade 

Therefore, the base accident cost per year is: 

ˆB

A aC U y                                                           (3.30) 

where:  CA = total accident cost per year ($/year) 

 Ua = average accident cost ($) 
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According to AASHTO, the average accident cost is $53,000 in 2003 dollars, which 

is equal to $63,900 in 2010 dollars.
2
  

The net present value of total accident costs for the entire analysis period ny is: 
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                                                  (3.31) 

where: CA = net present value of total accident cost ($) 

 rt = the annual growth rate of AADT (%) 

 Ρ = assumed interest rate (%) 

3.5 Environmental Costs 

The impacts of a new highway on the environment should not be neglected. Jha 

incorporates environmental cost considerations into HAO model by identifying and avoiding 

floodplains, wetlands and other environmentally sensitive areas in GIS while designing new a 

highway, as discussed in Chapter 2. Other major environmental impacts such as emissions 

and noise are excluded in current HAO model. However, vehicle emissions are recognized as 

one of the major sources of air pollution. For instance, passenger cars contribute 60% of total 

carbon monoxide (CO) emissions, 60% of hydrocarbon (HC) emissions, and more than one 

third of oxides of nitrogen (NOX) emissions (Tsunokawa and Hoban, 1997). Freight 

transportation is responsible for 27% of total NOx emissions in the U.S. The emissions 

adversely affect public health and the environment. Therefore, the air pollution resulting from 

transportation should be considered for all projects in which a new road or an improvement in 

road capacity of existing road is proposed.
35 

The prediction of vehicle emissions cost should 

be incorporated into HAO model. Extensive research has been conducted on modeling and 

mitigating the vehicle emissions. The emissions are found to be associated with many factors, 

which include vehicle characteristics, driver behavior, environmental conditions, and 

                                                 
2
 The adjustment is listed in Appendix A 
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roadway classification (CA DOT, 1999). Basically, there are three methodologies to compute 

pollutants. One type of model uses lookup tables of emission rate at various speeds for 

different vehicle types. One example is the software StartBENCOST (CA DOT, 1982).  

StartBENCOST calculates the vehicle emission based on the emission rate table for each 

pollutant for each vehicle type (three types: small vehicle, trucks and buses, and for both peak 

and off-peak time periods. The unit of emission rate is in grams per mile, and the pollutant 

emitted is calculated by manipulating vehicle miles traveled with emission rates. The second 

type of the emission prediction model operates with aggregate traffic statistics and considers 

the dispersion of pollutant. The software MOVES developed by U.S. Environmental 

Protection Agency (EPA, 2009) is a typical example. The third kind of model predicts vehicle 

emission based on detailed vehicle parameters, and second-by-second acceleration and 

deceleration data. Neither of the above three methodologies are associated with road 

geometric characterizes directly. It is noted that the vehicle emissions are also closely related 

to road design since the emissions are associated with vehicle horsepower, which is affected 

by road features, as shown in equations 3.21 and 3.22. It is also expected that the emissions 

could also be reduced by well-designed highway. Therefore this thesis incorporates the 

emissions cost in the HAO model. The emissions analysis starts by calculating the required 

horsepower for running vehicles with given roadway geometric features, and then estimates 

the vehicle emissions based on the emission rate per horsepower-hour.  

The major pollutants of significance to air quality in vehicle emission are nitrogen 

oxides (NOX), carbon monoxide (CO), sulfur oxides (SOX) and particulate matter (PM10). 

Vehicle emissions are determined by the horsepower of running the car and the emission rate 

of certain pollutants. The calculation of horsepower is addressed in equation 3. 22. To 

estimate the amount of different pollutants, the emission rate per horsepower-hour is desired. 

EPA published several documents addressing the emission rate and emission rate standards of 
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passenger cars, light trucks and heavy trucks. The vector of emission rate is expressed as 

equation 3.32.  
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                                                                 (3.32) 

where:  Er = vector of emission rate of three types of vehicles 

Er-MC = the emission rate of motorcar (lb/hp-hr) 

 Er-2A = the emission rate of 2A truck (lb/hp-hr) 

Er-3S = the emission rate of 3-S2 truck (lb/hp-hr) 

The accuracy of emission rates of different pollutants and vehicle types is critical in 

predicting the highway emission. The unit of emission rate is desired to be “weight (e.g. lb) 

per horsepower hour” since the computation is based on the horsepower required for 

running the vehicle. EPA (1997) and U.S. Department of Transportation (2011) released the 

heavy truck emission rate standards for different heavy truck engines with the unit “g/brake 

horsepower-hour” as shown in Table 3.8.  

Year CO (g/bhp-hr) HC (g/bhp-hr) NOX (g/bhp-hr) PM10(g/bhp-hr) 

1990 15.5 1.3 6.0 0.6 

1991-93 15.5 1.3 5.0 0.25 

1994-97 15.5 1.3 5.0 0.1 

1998+ 15.5 1.3 4.0 0.1 

Table 3-8 Emission Rate for Heavy-Duty Highway Engines (EPA, 1997; U.S. DOT, 2011) 

The estimated average emission rates of motorcar and light-duty truck are usually 

given in units of “g/mile”, rather than “g/bhp-hr” (EPA, 2010). The emission rates with unit 

“g/bhp-hr” for non-road industry engines are presented in Table 3.9 (EPA,1995). The 

emission rates of industrial engines are higher than for vehicles. Before finding a more 

reliable reference, we calculate the gasoline fuel emission based on the emission rates in 

Table 3.9, and the diesel fuel emission rate based on the emission rate in Table 3.8. Model 

users can also input the emission rate themselves if a more reliable reference is found. 
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Pollutant Gasoline Fuel 

Emission Rate (lb/hp-hr) 

Diesel Fuel 

Emission Rate (lb/hp-hr) 

NOX 0.011 0.031 

CO 6.96 E-03 6.68 E-03 

SOX 5.91 E-04 2.05 E-03 

PM10 7.21 E-04 2.20 E-03 

Table 3-9 Emission Rate for Gasoline and Diesel Industrial Engines (EPA, 1995) 

The emissions per vehicle per hour then can be calculated with equation 3.34: 
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                                                  (3.33) 

where: E = vector of emissions per vehicle per hour (lb/hr) 

 Epp = peak hour emissions per vehicle per hour in the prevalent direction (lb/hr) 

Epn = peak hour emissions per vehicle per hour in the non-prevalent direction (lb/hr) 

Eo = off-peak emissions per vehicle per hour (lb/hr) 

The total emissions of three pollutants are: 
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      (3.34) 

where:  i =0 to 3, stands for pollutants NOx, CO, SOx, and PM10 

ET = emission of each pollutant (lb) 

The economic cost of each pollutant per unit is denoted as Ui, and the value is given 

in Table 3.10 (CA DOT, 1999). 

Pollutant Rural Area Urban Area 

Dollar Value of Motor Vehicle  

Emissions (year 2010$/ton) 

Carbon monoxide (CO) 68 75 

Nitrogen oxides (NOx) 12,847 16,016 

Sulfur oxides (SOx) 50,321 69,745 

Particulate matter (PM10) 78,618 110,258 

Table 3-10 Pollutants Cost per Ton in 2010 dollars
 
 

                                                 

 Data were given in 2000 dollars, and had been converted to 2010 dollars. Refer to Appendix A 
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Total base emission cost per year can be expressed as:  
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The net present value of total accident costs for the entire analysis period ny is: 
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where: Cenvironment = net present value of total environmental cost ($) 

 rt = the annual growth rate of AADT (%) 

 Ρ = assumed interest rate (%) 

3.6 Final Model 

The objective function minimizes the sum of all components of total cost. Therefore 

the final model can be formulated as:  

             
1 2 nd ,d ,...d

  Minimize T agency user environmentC C C C                                (3.37) 

subject to  ,  for all 1,.....iL i iUd d d i n    

where:  CT = total cost per year ($) 

 Cagency = total agency cost per year ($), given in equation 3.3 

 Cuser = total user cost per year ($), given in equation 3.10 

 Cenvironment = total environmental cost per year ($), given in equation 3.27 

diL and diU are lower and upper bound of the i
th
 decision variable as discussed in 

Section 3.1. 

The objective function and constraints are all associated with alignment variables. 

The solution and results are discussed in the following two chapters.  
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Chapter 4: Solution Algorithm for Optimizing Non-

backtracking 3-Dimensional Alignments 

4.1 Genetic Algorithm for Solving Non-backtracking 3-dimensional Alignments  

Many search methods are available for solving optimization problems. Jong (1998) 

develops a special genetic algorithm to solve the non-backtracking 3-dimensional alignment 

optimization problem. Jha uses the same method in his research and he also improves the 

HAO model as a combined genetic algorithm and GIS highway alignment optimization 

model. Kang utilizes the same genetic algorithm as the base search-method in his research, 

and he also improves the computing efficiency by developing his feasible gate approach and 

by employing a prescreening and repairing method.  

The basic principle of a genetic algorithm is “survival of fittest”.  It starts with an 

initial set of solutions called the “population”. Individual solutions are selected through the 

fitness-based process, and solutions with better fit of fitness function are more likely to be 

selected. The fitness function is also called the objective function of the optimization 

problem. In this research, the total cost of a highway alignment is the objective function to be 

minimized, as shown in equation 3.37. Surviving solutions are used to generate new solutions 

based on genetic operators. Newly generated solutions then go through the fitness-based 

selection process again until after many generations, further improvements are considered too 

small or unlikely. The genetic operators can defined differently according to the inherent 

differences of the optimization problems. Jong (1998) develops eight different types of 

genetic operators which are customized to solve the highway alignment optimization 

problem. The first four genetic operators are mutation-based, while the last four are 

crossover-based. Detailed descriptions can be found in Chapter 8 of Jong’s PhD dissertation 

(1998).  
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Kang (2007, 2008) improves the computing efficiency of HAO model by developing 

the feasible gate search method, which is used in the current version of the HAO model. 

Initially, the HAO model utilized the penalty approach to satisfy constraints. However, such a 

method is computationally expensive. Therefore Kang defines the representation of feasible 

area to handle the geographic constraints and to avoid generating infeasible solution outside 

the boundary. The feasible gates were designed for horizontal and vertical alignment 

separately. An input data preparation module (IDPM) was developed to assistant users to 

define the feasible study area. The feasible area is defined as the area inside the study area, as 

well as outside the environmentally sensitive area. Considering the user preferences, e.g. 

political issues, the IDPM also enables users to define the feasible area themselves. As 

discussed in Section 3.1, Jong formulated the problem by treating the intersection points (PIs) 

for a candidate alignment as design variables whose locations on cutting planes must be 

optimized. Thus the search range for intersection points is the entire area of cutting planes. 

Fortunately, the feasible gate method enables us to reduce the search ranges to only the 

feasible areas. The cutting lines are divided into several sub-segments based on their 

feasibility, and the searching is only conducted on those feasible sub-segments. Compared 

with the feasible range for horizontal alignment, the range for vertical alignment is relatively 

easy, which is usually constrained by the maximum allowed gradient. The key contribution 

with the feasible gates search is that it improves the search efficiency and quality. According 

to some test results, the model with feasible gates saves about 28% in computation time.   

4.2 Lane Width Optimization 

As discussed in Section 2.5, the lane width is interrelated with several cost 

components in alignment optimization problem. The costs associated with lane width include 

accident cost, travel time cost, vehicle operating cost, environmental cost, and earthwork cost. 

According to the IHSDM model (equation 3.29) employed in the current HAO model to 
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predict the accident rate, wider lanes contribute to lower accident rates and improve speed. 

According to Yagar’s research (equation 3.12), travel speed increases by 1.1 mph for every 

foot of increase in lane width. The increased speed decreases the travel time cost (equation 

3.19). However, it increases the required horsepower for a vehicle, which increases vehicle 

operating cost (equation 3.27) and environmental cost (equation 3.34). Moreover, wider lanes 

increase earthwork cost. Overall, wider lanes decrease accident cost and travel time cost, but 

also increase vehicle operating cost, environmental cost and earthwork cost. Thus it is 

important to optimize lane width in order to minimize the total cost of an alignment.  

The detailed computation of accident cost, travel time cost, vehicle operating cost, 

environmental cost and earthwork cost are addressed in Chapter 3. The objective function to 

the highway alignment optimization problem is presented in equation 3.37, which is also 

denoted as  ( )LC f W  in the lane width optimization procedure, where 
LW is lane width, 

and ranges from 9 feet to 12 feet.  

The total cost is higher with narrower lanes because the accident cost is high and 

dominates other costs. With wider lanes, the accident cost decreases while other costs, 

especially earthwork cost, increase. The total cost is minimized with a reasonable lane width. 

Wider lanes increase other costs rapidly while no significant accident cost decrease can be 

observed, and thus increases the total cost. 

Newton’s method is used to find the lane width that minimizes the total cost. The 

iterative relation is: 

       
 1  

'( )

''(  )

L n
L n L n

L n

f W
W W

f W
                                                      (4.1) 

 It is quite hard, if not impossible, to calculate derivatives of ( )Lf W analytically. 

Hence, the finite difference is used to approximate them, as shown in equations 4.2 and 4.3. 
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The approximation is calculated with decreasing h until the result is close enough to 

the actual derivative.    

In summary, the optimal lane width determination procedure is as follows:  

Step 1: Specify the objective function. 

Step2: Determine the lane width that minimizes the total cost using Newton’s 

method. 

Step 2.1: Begin with an initial lane width value based on experience or observation, 

and calculate the total cost with this lane width. 

Step 2.2: Calculate the approximation of the first and second order derivatives with 

equations 4.2 and 4.3 and calculate the next lane width with equation 4.2. Calculate the total 

cost with this lane width. 

Step 2.3: If the two total costs are close enough, stop. Use the lane width with the 

smaller objective function value (i.e. total cost)  as the optimal lane width. 

Step 2.4: If not, return to 2.2 and recalculate the next lane width, which is
LW h .  

Example study: 

One scenario is tested for the McCooler case. (Detailed information regarding the 

topography and land use information of the region of interest is introduced in Chapter 5.) The 

design parameters used in this case study are a two-lane road, 65mph as design speed, 8% 

superelevation, and 5% maximum allowable gradient. In order to find an appropriate initial 

value which is close to the optimal one, four lane width values (9, 10, 11, 12 feet) are tested 

to obtain the corresponding total cost. The total costs with different lane widths are listed in 

Table 4.1 and are plotted in Figure 4-1.  
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Lane width (feet) Total cost (million dollars) 

9 260.42 

10 243.77 

11 246.16 

12 267.20 

Table 4-1 Total Cost with Different Lane Widths 

Based on the curve shown in Figure 4-1, the minimum cost is achieved when lane 

width is equal to 10 feet. Therefore, the initial value of lane width is set at 10 feet, and h is set 

at 0.1.  

 

Figure 4-1 Total Costs with Different Lane Widths 

The total cost of 
5( )Lf W is very close to

4( )Lf W after searching for five iterations. 

The optimized lane width for the region of interest with given design parameters is 10.6 feet, 

for which the total cost is $233.91million.  

To verify if 10.6 is the optimal lane width, the total cost with 10.8 and 10.5 feet, and 

9.5, 10.5 and 11.5 feet are also calculated, and plotted in Figure 4-2. This shows that the total 

costs are higher at all lane widths other than 10.6 feet. 
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Figure 4-2 Costs with Different Lane Widths 

The breakdown of detailed objective values in Figure 4-2 shows that the lane width 

effects accident cost and earthwork cost significantly. It is expected that the earthwork cost 

decreases with narrower lane. The HAO model outputs do show that the earthwork cost 

decreases while the lane width reducing from 12 feet to 10 feet. However, it also finds that 

the earthwork cost increases with narrower lanes when the lane width is narrower than 10 feet. 

It can be explained that the accident cost increases while the lane width is narrower than 10 

feet, and the HAO model seeks to design longer and smoother curves to minimize the impacts, 

which consequently leads to the increase in earthwork cost. Figure 4-2 also indicates that the 

environmental cost and vehicle operating cost are not affect by the lane width considerably in 

the case study. 

The above analysis indicates that this proposed method can find the optimized lane 

width, for which the total cost is minimum. However, one must also be aware that this 

method cannot guarantee finding the global optimal value, and the choice of initial value 

affects the convergence rate. It is difficult to identify the appropriate initial lane width value 

merely based on experience. In the given case study, the lane width is selected based on the 

observations of total costs using seven different lane widths from 9 to 12 feet. The minimum 
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total cost is found with 10 feet lane. Therefore 10 feet is set as the initial value. However, it 

cannot be guaranteed that 10 feet is a good initial value which leads to quick convergence. 

More observations is required to identify the appropriate initial value which leads to quick 

convergence, but the calculating is time consuming.  
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Chapter 5:  Case Study and Sensitivity Analysis 
 

This chapter provides a case study to demonstrate the new HAO model for non-

backtracking 3-dimensional alignment optimization. First, the study area is described, with a 

summary of the input geographic data, design criteria and parameters. Second, the solutions 

generated by the new HAO model are presented and analyzed. A goodness test of the 

optimized solution found by the proposed HAO model is performed in Section 5.3. The 

outputs include the cost of each component, horizontal alignment, vertical alignment, and 

fractions of each land use type taken by the alignment. In order to assess the model’s 

capability of finding the best fit alignment with various critical inputs and constraints, 

sensitivity analyses with different optimization objective functions, fuel prices, and maximum 

allowable grades are comprehensively investigated in Section 5.4.  

5.1 Problem Description 

The objective of this case study is to test the performance of the new HAO model in 

finding the best fit alignment with the given study area and design parameters, especially in a 

hilly area. The optimized alignment should be the one that minimizes total costs while 

satisfying the design standards and other constraints. The major improvements in the new 

HAO model are vehicle operating cost estimation, environmental impacts assessment, and 

lane width optimization. The methodology developed for lane width optimization and its 

results are addressed in Chapter 4. Emphasis in this chapter is on analyzing the alignment 

results and the model’s sensitivity. The vehicle operating cost in the new HAO model refers 

to the fuel consumption, maintenance, tier wear, and depreciation cost. Environmental cost is 

defined here as the vehicle emission cost. Both of the two costs are determined by the vehicle 

characteristics and road geometric characteristics (particularly the alignment length, 

curvatures and gradients). Therefore, an area with complex topography (hilly area), diverse 
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landforms and lane use patterns would be the ideal area of interest for testing the new HAO 

model’s performance and for assessing the impacts of those two new cost components on the 

optimized alignments.  

5.1.1 Study Area 

The region of interest for optimizing 3-dimensional non-backtracking alignment is 

selected as 4 miles north-east from the town of McCoole, Maryland. A new highway segment 

which is approximately 4 miles long is designed as one of the segments of the highway 

connecting McCoole and Cumberland. Figure 5-1 shows the location of the study area.  

 

 

Figure 5-1 Map of Study Area 
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As mentioned previously, the study area is hilly with diverse land use patterns. The 

area of interest selected for the case study is located in the Appalachian Mountains area, and 

the ground elevation varies greatly from 548 feet to 2930 feet. According to the legend, the 

darker area in left graph of Figure 5-2 represents higher elevation. The slopes range from 0 to 

61 degrees. Digital Elevation Model (DEM) data is used for conveying the terrain data of the 

study area. DEM data is a digital presentation of the ground surface. It divides the area into 

rectangular cells and stores the elevation of each pixel.  

The location of the start and end points are shown separately on two sides of the 

mountain in Figure 5-2. Since the algorithm is non-backtracking optimization algorithms, the 

alignment has to cross the mountain. How and where to cross the mountain is critical in 

minimizing total cost. Therefore, this case study is well suited for verifying the capability and 

effectiveness of the new HAO model in optimizing alignments in tough topography. Figure 

5-2 shows the elevation and slope map of the study area. 

           

Figure 5-2 DEM Map and Slope Map of Study Area 
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The original horizontal map is the property map which is provided by the Maryland 

State Highway Administration (MSHA). In order to present the existing sensitive area and 

land use types, the data have been digitalized in ArcMap 9.3. As shown in Figure 5-3, the 

land use patterns in the given region are quite diverse, which are good for testing whether the 

new HAO model can design alignments with minimized right-of-way cost. The study area is 

composed of 920 geographic entities. There are eight different types of land use 

characteristics: floodplains, protected forests, deciduous forest, residential area (high, 

medium and low density), commercial area, cropland, and other properties, as shown in the 

left graph of Figure 5-3. The unit cost of each property is assigned for calculating the right-

of-way cost. The cost of crossing floodplains, protected land and other geographically 

sensitive area are extremely high, and the interaction with such area should be avoided. The 

land use information is conveyed by GIS data. The information assigned to the GIS layer 

includes parcel ID, land use type, area and unit cost. The land use layer will be overlaid with 

the alignment results in GIS module, in order to identify the areas taken by each alignment 

segment, and to calculate the right-of-way cost. The land use type is shown in the left graph 

of Figure 5-3, and the unit cost is rendered with different colors in right graph of Figure 5-3.  
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Figure 5-3 Land Use Map and Unit Cost Map of Study Area 

5.1.2 Input Spatial Data and Design Parameters 

The objective function for the optimization problem includes the agency cost, user 

cost and environmental cost. Many design features and parameters must be pre-specified, for 

instance, number of lanes, lane width, design speed, maximum allowable superelevation, and 

maximum allowable grade. The two endpoints in this case study are (764008, 667496, 754) 

and (777516, 68198, 1000). The road is designed as a two-lane highway, with 37.2 feet width 

(10.6 feet for lanes, and 8 feet for shoulder). The design speed limit is 65 mph. The maximum 

allowable superelevation is 8%. Unit cost of cutting and filling, fuel price and length-

dependent cost are user-defined. The input parameters used in the case study are summarized 

in Table 5-1. It is noted that the optimization results vary depending on the input parameters. 

Therefore users need to determine the parameters carefully. Different input variables are also 

used for sensitivity analyses in Section 5.4. 
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Inputs variables Assumed Value 

Number of points of intersection (PI’s) 12 

Number of generation 300 

Lane width 10.6 feet 

Shoulder width 8 feet 

Number of lane 2 

Design speed 65 mph 

Maximum superelevation 8% 

Maximum allowable grade 5% 

Fill slope 0.4 

Cut slope 0.5 

Earth shrinkage factor 0.9 

Unit cut cost 35 $/yard
3
 

Unit fill cost 20 $/yard
3
 

Cost of moving earth from borrow pit 2 $/yard
3
 

Cost of moving earth to fill 3 $/yard
3
 

Unit length-dependent cost 600 $/yard
3
 

Terrain height range  548 – 2929.79 feet 

Unit land use cost range  0 – 100 $/ft
2
 

AADT 8000 vehicles per day 

D factor 0.5 

K factor 0.15 

T factor 0.05 

Number of peak hour per day 3 

Percentage of 2A-SU trucks in heavy 

vehicles 

0.5 

Percentage of 3-S2 trucks in heavy vehicles 0.5 

Traffic growth rate 5% 

Interest rate 3% 

Analysis period 5 years 

Value of travel time     Motor car 

         ($/hr)                   2A  truck 

                                     3S   truck 

12 $/hr  

(See equation 3.19) 28 $/hr 

34 $/hr 

Vehicle weight            Motor car 

       (lb         )              2A  truck 

                                    3S   truck 

3,000 (See Table 3-6) 

12,200 

33,600 

Fuel consumption rate     Motor car 

       (lb/hp-hr)                  2A  truck 

                                         3S   truck 

0.45  

0.45 

0.35 

Fuel price                    Gasoline 

      ($)                          Diesel  

2.993  

3.243 

Table 5-1 Design Parameters for Case Study 
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Figure 5-4 Possible Alignment Alternatives 

After the geographic data and input parameters are prepared, the HAO model is ready 

to optimize the road alignment. There are countless possible alignments connecting two 

endpoints. Figure 5-4 shows some of the possible alignments. According to the map, 

Alignment 1 is the shortest one. However, the alignment crosses through the high elevation 

area and protected land, which results in higher earthwork cost and right-of-way cost. As for 

Alignments 2 and 3, both avoid the hilly area, and Alignment 3 is shorter. It is noted, 

however, that Alignment 3 passes through a dense residential area, which increases right-of-

way cost. Alignment 4 avoids the high land cost area successfully. However, it is difficult to 

tell if the total cost is smaller than for the other 3 options. Therefore, it is hard to optimize 

alignment in areas with complex topography and land use patters based on experience 

merely. Fortunately, the HAO model was designed to assist the optimization procedures. It is 

expected that areas with high unit cost and high elevation are avoided by HAO model. The 

model outputs are shown and discussed in the following section. 

Alignment 1 

Alignment 2 

Alignment 3 

Alignment 4 
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5.2 Optimization Results 

The number of PI’s (points of intersection) used in this case study is 12. The more 

PI’s, the better alignment results are expected to get, especially in areas with complex 

topography and land use patterns. However, the computation time will then increase.  

The model outputs include the optimized horizontal alignment and vertical alignment, 

and the objective function value. Cost breakdown by categories are obtained as well.  

The optimal horizontal alignment is generated with the new HAO model after 

searching for over 300 generations. Figure 5-5 plots the objective function values over the 

successive generations. At the initial stage, the objective function value is extremely high. 

The reason is that the genetic algorithm is designed to generate alignments randomly, and 

those alignments will very probably pass through the high cost areas. The values drop 

dramatically during first 90 generations. The improvement in the objective function value 

becomes slower after 100 generations, and reaches $233 million as the final total cost. This 

indicates that the HAO model works efficiently and has the potential to find a near-globally 

optimal solution quickly.  

 

Figure 5-5 Changes in Objective Function over Successive Generations 
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Figure 5-6 presents the optimized horizontal alignment. The total alignment length is 

21267.6 feet (4.03 miles). As shown in the left graph of Figure 5-6, the alignment skirts most 

high elevation areas to minimize the earthwork cost, and it crosses part of the mountain area 

as highlighted in Figure 5-6 since only non-backtracking highway alignment are considered.  

Thus it unavoidably connects the end points by crossing the mountain. However, the 

alignment crosses the hill at a relatively flat area, which demonstrates that the model is 

capable to guide the optimization search towards the alignment with minimum earthwork cost 

in a hilly area. As shown in the right graph, the alignment is able to avoid most high unit cost 

areas (darker red areas), which indicates that the HAO model succeeds in reducing the right-

of-way cost.  

    

Figure 5-6 Horizontal Alignment Generated by the Improved HAO Model 

Figure 5-7 compares the vertical alignment at the first generation (upper graph) and 

the final vertical alignment after searching for 300 generations. As shown in the upper graph, 

the alignment elevation does not match with the ground elevation very well, which may lead 

to high cut and fill volumes, and high earthwork cost. However, the final vertical alignment 
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indicates the road alignment follows the ground profiles in order to minimize the earthwork 

cost.  
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Figure 5-7 Vertical Alignment of the Improved HAO Model 

The objective function consists of several cost components, including right-of-way 

cost, earthwork cost, length-dependent cost, accident cost, penalty cost, vehicle operating 

cost, travel time cost and environmental cost. Table 5.2 presents the detailed breakdown of 

the costs. The percentages of each cost component in the model objective function value are 

shown and analyzed in Figure 5-8.  

Total Length 

(feet) 

 21267  

4.03 (miles) 

Total Cost  

( million $) 

 233.91 

 

 

 

 

 

 

Agency Cost  

(million $) 

Right-of-way Cost  1.75 

Length-dependant Cost  12.76 

Earthwork Cost  128.53 

Location penalty Cost 0 

Horizontal penalty Cost 0 

Length of Vertical Curve Penalty  0 

Gradient Penalty Cost 0 

(The first generation) 

(The 300th generation) 
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Cross Structures Cost 0 

Bridge Cost 0 

User Cost 

 (million $) 

Accident Cost 8.64 

Travel time Cost 15.12 

Vehicle operating Cost 28.61 

Environmental  

(million $) 

Environmental impacts Cost  38.49 

Table 5-2 Cost Calculation of the Newly Improved HAO Model 

 
Figure 5-8 Percentages of Each Cost Component 

 

The optimization results indicate that the dominant cost in the case study is the 

earthwork cost. The net present value of the earthwork cost is $ 128.53 million, which 

constitutes about 55% of the total cost. The user costs, which include accident cost, travel 

time cost and vehicle operating cost, are about 22.4% of the total cost.  

The accident cost (about 17% of the user cost) is estimated based on the IHSDM 

model, which has been tested in different studies, and proved to be a reliable model. 

The earthwork cost per mile varies depending on the location. A mile of road through 

mountains may cost hundreds times more than the one on flat ground. The average earthwork 

cost in the case study is $16 million per lane mile when lane width is 10.6 feet and shoulder 

width is 8 feet.  

The annual vehicle operating cost (5-year period) is $28.6 million, which constitutes 

12% of the total cost. The computation in the newly improved HAO model is based on the 
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vehilce horsepwower and fuel consumption rate, as shown in equations 3.27 and 3.28. This 

method replaces Jong’s (1998) model in the existing HAO model, which is the function of 

road grade and vehicle speed. The comparision of results generated by the new model and 

Jong’s approach is shown in Figure 5-9.  The comparision indicates that the vehicle operating 

cost estimated with the two approaches are quite different. The cost estimated by Jong’s 

method is much samller than the result calculated by the new model. One of the reasons is 

that Jong’s model only considers the fuel consumption cost, while the new method includes 

fuel consuption, maintenance, tire wear, and vehicle depreciation costs. 

 

Figure 5-9 Comparison of Vehicle Operating Cost for Existing and New Improved HAO 

Model 

A mannual calculation is performed to test if the vehicle operting cost is estimated 

correctly by the new model. There are 2 endpoints and 12 IP points, and thus there are13 

horiziontal alignment segments conneting these 14 points. The vertical profiles of the 13 

segments after searching for 300 generations are given in Table 5-3.  
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Table 5-3 Average Grade of Each Segment 

Other varialbes required for calculating the vehicle operating cost are listed in Table 

5-1. The operating costs of each segment are calucated based on equations 3.27 and 3.28. The 

results are given in Table 5-4. As Table 5-4 shows, the total vehicle operating cost calculated 

manually is the same as the output of the HAO model, which is $28.61 million. This result 

indicates that the vehicle operating cost function in the newly improved HAO model is coded 

correctly.  
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Table 5-4 Manual Calculation of the Vehicle Operating Cost 

The environmental cost is estimated by calculating the vehicle emissions cost. The 

pollutants considered here are NOx, CO, SOx and PM10. The emission cost is $38.49 million, 

which constitutes 16.5% of the total cost. This magnitude indicates that the environmental 

cost cannot be neglected in highway alignment optimization.   

If the vehicle emission is incorporated in the objective function, then the HAO model 

is expected to optimize the highway alternatives with less emission cost. A test is performed 

to examine the effects of environmental cost component on highway alignment and emission 

reduction. Two scenarios are designed. The environmental cost is included in the objective 

function in the first scenario, while it is excluded in the section scenario. The cost in the first 

scenario can be got form the model output directly, and is calculated manually based on the 

equations 3.34 and 3.35 in the second scenario. Table 5-5 shows the comparison between the 

environmental costs in the two scenarios. It can be seen from the Table 5-5 that the emission 

cost increases from $38.49 million to 41.95 million, with an increase rate is 9%.  Therefore, if 
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the environmental cost component is designed and coded correctly, the incorporation of 

environmental cost in the objective function is able to yield alignment solutions with reduced  

vehicle emissions.  

Environmental Cost (million dollars) Scenario 1  Scenario 2 Changes 

 38.49 41.95 9% 

Table 5-5 Effects of Environmental Cost Component on Environmental Cost Reduction 

In addition, the horizontal penalty, length of vertical curve penalty and gradient 

penalty cost are all zero, which means the optimized alignment satisfies all the design 

constraints, which are horizontal curvature, gradient and minimum length of vertical curves 

(vertical sight distance).  

The right-of-way cost is estimated by multiplying the area (feet
2
) of land use taken by 

alignment with the unit cost ($/ft
2
). The fraction of area taken by alignment of each land use 

parcel is calculated in the GIS module. Most alignment segments are located in residential 

areas, and avoid floodplains and protected areas. Table 5-6 presents the areas of different land 

use types impacted by the alignment and the corresponding right-of-way cost.  

                               Area 

(feet
2
) 

Cost 

($) 

Total 723358.12 1753506.26 

Residential 303325.02 1003452.00 

Protected 

Forest 

420033.10 750054.26 

Commercial  0 0 

Cropland 0 0 

Floodplains 0 0 

Deciduous 

Forest 

0 0 

Table 5-6 Area taken by Alignment and the Right-of-way Cost 

It is also noted that among all the cost components, the user cost and environmental 

cost together account for almost 39% of the total cost. However, most highway agencies only 

consider the agency cost, without considering the user and environmental cost in the highway 
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construction projects. Therefore, the choice of an appropriate objective function is very 

important. The goodness test for the best solution is given in Section 5-4.  

5.3 Goodness Test for the Best Solution 

Although both the horizontal and vertical alignment found by the proposed HAO 

model seem reasonable, the goodness of the solution should still be tested and demonstrated, 

since a genetic algorithm cannot guarantee finding the globally optimal solution. Therefore a 

statistical experiment is designed to test the goodness of the best solution found by the HAO 

model. The experiment is initiated by generating solutions randomly, and calculating their 

objective values. 20,000 observations are representative and independent of each other. The 

best object value is $1,053 million, while the worst solution yields an objective value of 

$34,259 million. The sample mean is $9,566 million and the standard deviation is $5,127 

million. The descriptive statistics and the distribution of random sample are presented in 

Table 5-7, and Figure 5-10. The optimized solution found by the proposed algorithm, which 

is $233.91 million is also shown in Figure 5-10.  

Variable Min Max Mean Standard Deviation 

Random Search 1,053 34,259 9,566 5,127 

Model 233.91    

Table 5-7 Comparison of Solutions Found by Random Search and HAO Model (unit: 

$ million) 
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Figure 5-10 Distribution of Objective Function Values (unit: $ million) 

The results show that the offset (minimum value) of the sample distribution is $1,053 

million, which is much higher than the best solution ($233.91 million) found by HAO model. 

It indicates that the optimized solution found by the proposed algorithm is remarkably good 

when compared to other possible results. 

5.4 Sensitivity Analysis 

5.4.1 Sensitivity to Model Objective Function 

This analysis tests how the HAO model satisfies different objective functions, in 

order to evaluate the effects of each cost component on alignment optimization results. Three 

scenarios are designed to evaluate how different cost components affect optimization results. 

The input parameters for all three scenarios are the same. The three scenarios are: 

Scenario 1:  C = Cright-of-way 

Scenario 2:  C = Cagnecy 

Scenario 3:  C= Cagency + Cuser + Cenvironment 

1,053        34,259 233.91 
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It is expected that the algorithm with only right-of-way cost as the objective function 

generates the alignment which is able to avoid all the areas with high land costs. However, 

the alignment might also cross the high elevation area, with large gradient and sharp curves 

since the agency costs and user costs are excluded in the objective function. The alignment 

using agency cost as objective function is expected to have sharper curves and larger gradient 

to minimize earthwork cost and length-dependent cost than the one generated combining 

agency cost and user cost in the objective function. Moreover, the road is expected to be very 

close to the ground to decrease earthwork cost. The outputs of Scenario 3 should have 

smoother and longer curves since the HAO model seeks to reduce all the user costs, and most 

user costs, e.g. vehicle operating cost, can be decreased with smaller gradients and a 

smoother alignment. 

The horizontal alignments are presented in Figure 5-11, while the vertical alignments 

are shown in Figure 5-12. According to Figure 5-11, Alignment 1 succeeds in skirting all the 

high land cost areas, while Alignments 2 and 3 affect some high-cost areas. However, 

Alignment 1 is the longest one. A possible reason could be that agency and user costs are 

excluded in Scenario 1. Hence the model fails to reduce the alignment length, in order to 

decrease the agency and user costs. It also can be seen from Figure 5-11 that the Alignment 3 

is smoother than Alignments 1 and 2 since a smoother alignment and longer curves are able 

to decrease the user costs, while in Scenario 2 the algorithm only considers the agency cost, 

and generates sharp curves and steep gradient to only reduce earthwork cost and length-

dependent cost.  

Figure 5-12 shows the three vertical alignments. The vertical alignment is improved 

successfully after running for 300 generations in both Scenarios 2 and 3. However, there is 

still considerable difference between the ground and the alignment elevation in Scenario 1 

since the objective function in Scenario 1 is not able to consider the topography of the study 

area, but only the land values. Both vertical Alignments 2 and 3 adhere closely to the ground, 
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in order to minimize the earthwork cost. The alignment results conform to expectations and 

reveal no real surprises. This sensitivity analysis shows that decision makers should consider 

using different objective functions or weighting factors in one objective function to reflect 

different concerns. For instance, even if Alignment 1 has the longest road, if the decision 

maker is more concerned with minimizing protected land and floodplain impacts, the first 

alignment should be preferred. 

   

Figure 5-11 Sensitivity of Optimized Horizontal Alignment to Objective Function 
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Figure 5-12 Sensitivity of Optimized Vertical Alignment to Objective Function 

5.4.2 Sensitivity to Fuel Price 

Beyond the objective functions, the sensitivity to other parameters of the HAO model 

is also examined. The sensitivity to fuel price is tested in this section to demonstrate the effect 

of vehicle operating cost on alignment optimization. This is aimed at checking how the 

proposed alignments vary depending on expected fuel price, as well as to assess the effects of 

vehicle operating cost on alignment. Three scenarios are designed: 

Scenario 1: Fuel prices in Dec. 2010  

Scenario 2: Fuel prices in April 2011 

Scenario 3: Fuel prices increase by 50% compared with Scenario 2 

 Fuel price is a user specified input parameter in the HAO model, and it is associated 

with the vehicle operating cost mainly. The fuel prices in three scenarios are given in Table 5-

8. The gasoline price per gallon increases 26.97% from 2.993 $/gallon to 3.8 $/gallon since 
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Dec. 2010 to April 2011, while the diesel price per gallon grows 25.32% from 3.243 $/gallon 

to 4.064 $/gallon. The fuel prices in Scenario 3 are set to be increased by 50% compared with 

the prices in Scenario 2.  

 Scenario 1 

(December 2010) 

Scenario 2  

(April 2011) 

Scenario 3 

(Increased by 50%) 

Gasoline ($/gallon) 2.993 3.8 5.7 

Diesel ($/gallon) 3.243 4.064 6.096 

Table 5-8 Fuel Prices in Three Scenarios 

The horizontal alignments for all three scenarios are displayed in Figure 5-13 to 

investigate the differences in the alignment configuration. All three horizontal alignments are 

designed in the low land cost areas successfully. Moreover, it can be seen from the left graph 

in Figure 5-13 that the horizontal alignments are almost the same in a relatively flat area. 

However, in the hilly area, as highlighted in Figure 5-13, the horizontal alignments with 

higher fuel price are smoother, with longer curves. The reason for such alignment results is 

that sharper curvatures increase the fuel consumption. The vehicle operating cost increases 

with higher fuel price. The algorithm therefore seeks to reduce the vehicle operating cost by 

designing smoother and longer curves, at the expense of increased earthwork. 
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Figure 5-13 Sensitivity of Optimized Horizontal Alignments to Fuel Price 

  Recall from the table 5-9 and Figure 5-14 that the model outputs for the three 

scenarios do show a significant difference in objective values. Especially, the vehicle 

operating cost in Scenarios 2 and 3increase by 14.1%, and 48.6% separately comparing with 

the operating cost in Scenario 1. Smoother and longer alignments are designed to reduce the 

operating cost. The alignment lengths keep increasing with higher fuel price. However they 

requires higher earthwork cost as well. The earthwork cost in Scenarios 2 and 3 increase by 

17.5% and 23.1% respectively comparing with the value in Scenario 1. The accident cost and 

environmental cost don’t show significant differences among all three scenarios. Possible 

reason is that the smoother curves and grade can reduce both the accident rate and vehicle 

emissions, however the alignment length increase, which may lead to higher accident rate and 

emissions as well.  The total cost increase with higher fuel prices. Figure 5-14 plots the 

changes of total cost, vehicle operating cost and earthwork cost over different gasoline prices. 
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  Scenario 1 Scenario 2 Scenario 3 

Total length 

(feet) 

 21267.6 21336.1 21531.4 

Total cost 

(million $) 

 233.90 258.72 275.35 

 

 

 

 

Agency cost 

(million $) 

Right-of-way cost 1.75 1.73 1.72 

Length dependent cost 12.76 12.80 12.92 

Earth work cost 128.53 151.01 158.23 

Location penalty cost 0 0 0 

Horizontal penalty cost 0 0 0 

Length of vertical curve 

penalty cost 

0 0 0 

Gradient penalty cost 0 0 0 

Cross structure cost 0 0 0 

Bridge cost 0 0 0 

User cost 

(million $) 

Accident cost 8.64 8.57 8.65 

Travel time cost 15.12 15.06 15.20 

Vehicle operating cost 28.61 32.63 42.51 

Environment 

(million $) 

Environmental cost 38.49 36.92 36.21 

Table 5-9 Cost Estimated with Different Fuel Prices 

 

Figure 5-14 Changes of Cost Values with Different Gasoline Prices 

5.4.3 Sensitivity to Maximum Allowable Grade 

The vertical alignment in hilly area is quite sensitive to the maximum allowable 

grade. Increases in the maximum allowable grade may decrease the (initial) earthwork cost, 
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but result in shorter vertical curves, which increase fuel consumption and accidents. A 

sensitivity analysis is designed to test the impacts of different maximum allowable grade on 

alignment optimization.  

Scenario 1: maximum allowable grade is 5% 

Scenario 2: maximum allowable grade is 6% 

Scenario 3: maximum allowable grade is 7% 

Scenario 4: maximum allowable grade is 8% 

The vertical alignment results are shown in Figure5-15. It is obvious that the 

Alignments 3 and 4 have more vertical curvature than Alignments 1 and 2.  
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Figure 5-15 Sensitivities of Optimized Vertical Alignments to Maximum Allowable Grade 

The objective values estimated with HAO model are presented in Table 5-10. The 

earthwork cost decreases dramatically with the increases maximum allowable grades. It drops 

from $128.53 to $68.59 million when the maximum allowable grade increases from 5% to 

8%. The earthwork cost is the dominant cost in this highway alignment optimization case 

study, and the HAO model always seeks to decrease the earthwork cost. The increase in 

maximum allowable grade enables HAO model to design alignment alternatives with shorter  

vertical curves to decrease the earthwork cost dramatically. However, it also increases the 

accident cost, vehicle operating cost, and environmental cost since vehicle speed and 

horsepower are related with road grade. According to Table 5-10, the increases in accident, 

vehicle operating and environmental cost are not significant. However, higher vehicle 

operating cost and environmental cost are expected in reality, since frequent changes of 

curves and gradients lead to frequent acceleration, deceleration and changes in speed, which 

consequently increase the accident rate, fuel consumption and emissions. However, the speed 

in the current HAO model is assumed to be steady in each segment, and not influenced by the 

changing road geometric features. Therefore the current HAO model underestimates the 

accident, vehicle operating and environmental costs.  Since there is considerable decrease in 

earthwork cost, the increases in the maximum allowable grade decrease the total cost in this 

case study. 

Maximum 

Allowable 

Grade (%) 

 5 6 7 8 

Agency cost 

(million $) 

 

Earthwork cost 128.53 85.64 79.56 68.59 

 

 

User cost 

(million $) 

 

Accident cost 8.64 9.00 9.53 10.04 

Travel time cost 15.12 15.08 15.24 15.15 

Vehicle 

operating cost 28.61 29.97 30.72 31.64 

Environmental 

cost 

 

Environmental 38.49 40.32 41.12 42.55 
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(million $) cost 

Table 5-10 Breakdown of Cost Calculated with Different Allowable Maximum 

Grade 

 

Figure 5-16 Changes of Cost Values with Different Maximum Allowable Grade 
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Chapter 6:  Conclusions and Recommendations 
 

This chapter presents the findings of this research, its conclusion, and some 

recommendations for future research.  

6.1 Summary 

The contribution made in this research and the results obtained can be summarized as 

follows: 

6.1.1 Lane Width Optimization 

Lane width is one of the most important design parameters and is associated with 

several cost components in the HAO model. The original HAO model had no ability to 

optimize the lane width. Newton’s method and a finite difference method are employed to 

find the appropriate lane width, in order to minimize the total cost. For the given inputs in our 

case study, the optimization algorithm optimizes lane width at 10.6 feet, which yields the 

minimum total cost of $210.93 million. However, it should be noted that this method cannot 

guarantee finding the global optimum, and the choice of initial value affects the convergence 

rate.  

6.1.2 More Accurate Operating Cost Estimation  

The vehicle operating cost prediction is revised in the new HAO model. The 

operating cost in the original HAO model only included fuel consumption. However, 

according to AASHTO, it consists of fuel consumption, maintenance, tire wear and vehicle 

depreciation. The later three cost components are now incorporated in the vehicle operating 

cost. Moreover, the fuel consumption in the original HAO model is estimated based on the 

vehicle speed and road grade. This research improves the fuel consumption prediction by 
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calculating the resistance force and horsepower for running vehicles, and then estimating the 

fuel consumption based on the fuel consumption rate per horsepower hour. The fuel 

consumption model is a function of several road geometric features. The relation allows this 

research to access the impacts of fuel consumption costs for various designs of alignments, as 

well as to optimize design features in order to minimize fuel consumption cost.  

6.1.3 Consideration of Environmental Impacts 

The environmental cost in the original HAO model is defined as the cost of taking the 

environmentally sensitive areas, e.g. floodplain, wetland and historical properties for highway 

alignment. However, many other environmental impacts, e.g. air pollution, are excluded in 

the environmental impacts study. This research assesses the environmental cost in terms of 

vehicle emissions. Three major emission pollutants are studied, which are NOX, CO, SOX and 

PM10. The emission rates are specified per horsepower per hour. The required horsepower for 

running vehicles is calculated based on vehicle characteristics and road geometry. The 

environmental cost constitutes 16.46% of total highway alignment cost in the case study, 

which is a non-negligible component in highway alignment optimization. (The analysis 

period is 5 years, with 5% annual AADT increase rate, and 3 % interest rate.) 

6.2 Conclusions 

6.2.1 Alignment Optimization Results 

The objective function for the highway alignment optimization problem consists of 

agency cost, user cost and environmental cost. The percentage of each cost component varies 

depending on the study area and input parameters. The case study in Chapter 5 is located in a 

mountainous area. Hence, the earthwork cost is the dominant cost, which accounts for about 

55% of total cost. The user cost constitutes 22.4% of total cost, among which the vehicle 

operating cost is more than half. In terms of the environmental impacts, the vehicle emissions 
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cost $38.49 million, which is 16.46% of total cost. The road is optimized with small gradients 

and smooth curves to decrease the user cost and environmental cost. The horizontal 

alignment in the case study is able to avoid areas with high land use cost and high elevation. 

Moreover, the vertical alignment result shows that the alignment is close to the ground to 

minimize earthwork cost. Overall the HAO model yields reasonable and unsurprising results. 

6.2.2 Sensitivity Analysis 

Three different sensitivity analyses are performed to examine the behavior of the 

newly improved HAO model. In the first sensitivity analysis, three scenarios are designed 

with different objective functions. The alignment which only considers the right-of-way cost 

is able to avoid the expensive areas successfully, but fails to yield an acceptable vertical 

alignment. The test using the agency cost as the objective function generates a good vertical 

alignment that closely adheres to the ground elevation. However, the horizontal alignment 

consists of relatively sharp curves in order to minimize the earthwork cost. Smoother 

horizontal and vertical curves are designed when both agency cost and user cost are 

combined in the objective function. This sensitivity analysis indicates the model is quite 

sensitive to the objective function, and yields reasonable results with different objective 

functions. Moreover, it should be noted that an appropriate objective function is critical for 

optimizing alignments in various situations.  

Effects of different fuel prices are demonstrated in the second sensitivity analysis. In 

order to reduce the impacts of fuel price, both horizontal and vertical alignments are designed 

to be smoother. However, such an alignment increases the earthwork cost. Since the 

earthwork cost is the dominant cost, the increase in earthwork cost raises the total cost. 

Overall, the alignment outputs are as expected and show no unexplainable surprises. 

Maximum allowable grade is one of the most influential design parameters for 

alignments in mountainous areas. The third sensitivity analysis explores the alignment 
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changes after increasing the maximum allowable grade from 5% to 8%. The model outputs 

match expectations. Higher allowable grade reduces earthwork cost. However, it results in 

higher user costs. The optimization results show the total cost is decreased since the 

earthwork cost, which is the dominant cost, drops significantly from 128.53 to 98.59 million 

dollars. 

6.3 Recommendations for Future Research 

Although the new HAO model performs well in optimizing highway alignments, it 

can still benefit from various improvements in order to become more realistic and flexible. 

Possible future enhancements are listed below. 

6.3.1. Lane Width Optimization 

The lane width optimization problem is solved by using Newton’s method and finite 

difference methodology in this thesis. The limitation of such methodology is that adequate 

observations are required to identify the appropriate initial value. However, such calculation 

is time consuming. Moreover, the search for optimal lane width using Newton’s method and 

finite difference is repetitive and it cannot guarantee the result is global optimal. A more 

efficient search method or incorporating the lane width optimization into the alignment 

optimization using genetic algorithm should be considered in future research. 

6.3.2. Environmental Cost Estimation and Analysis 

The environmental cost in this research refers to the vehicle emissions cost. It is 

suggested to also consider the dispersion of the pollutants, and their effects on human health 

and society. Besides the air pollution, other environmental impacts, such as water pollution 

and noise, should be included in future research. 
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6.3.3 Traffic Considerations in Highway Alignment Optimization Model 

The traffic volume data has been incorporate in the cost functions, in order to access 

its impacts on highway alignments. However, more detailed traffic information is required for 

accurate user cost estimation. For example, the horsepower is a function of vehicle speed, and 

the speed is affected by the continuously changed road geometric features. However, the 

speeds in the current HAO model are steady on each segment, which affects the accuracy of 

horsepower, and consequently decrease the accuracy of fuel consumption and emission. A 

simulation-based approach may be incorporated in the proposed HAO model for more precise 

user cost estimation. Moreover, it may benefit the analysis of the geometric effects on vehicle 

speed. However, one cannot neglect the expected extensive computing load.  
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APPENDIX A 
Converting the 1975 value of travel time per hour to 2010 dollars 

Year CPI 

 Adjusted CPI Motorcar ($/mi) 2A Truck ($/mi) 3-S2 Truck ($/mi) 

1975 53.825 0.246813756 3 7 8 

2010 218.0794167 1 12.15491407 28.36146617 32.4131042 

 

Converting the 2003 vehicle maintenance cost per mile to 2010 dollars 

Year CPI (vehicle 

maintenance)

 

Adjusted CPI Motorcar ($/mi) 2A Truck ($/mi) 3-S2 Truck ($/mi) 

2003 195.5916667 0.788822389 3.2 3.7 10.5 

2010 247.954 1 4.056679988 4.690536236 13.31098121 

 

Converting the 2003 vehicle tires costs per mile to 2010 dollars 

Year CPI (tires) Adjusted CPI Motorcar ($/mi) 2A Truck ($/mi) 3-S2 Truck ($/mi) 

2003 101.7166667 0.823408937 0.9 1 3.5 

2010 123.5311667 1 1.093017041 1.214463379 4.250621825 

 

Converting the 2003 vehicle depreciation costs per mile to 2010 dollars 

Year CPI (new and 

used vehicle) 

Adjusted CPI Motorcar ($/mi) 2A Truck ($/mi) 3-S2 Truck ($/mi) 

2003 96.49166667 0.993231205 6.2 7.0 8.0 

2010 97.14925 1 6.242252526 7.047704465 8.054519389 

                                                 

 CPI data is accessed from Bureau of Labor Statistics website http://www.bls.gov/cpi 

 CPI data is accessed from Bureau of Labor Statistics website http://www.bls.gov/cpi/#data, in March 

2011 
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