
ABSTRACT

Title of dissertation: COMPUTING APPROXIMATE
CUSTOMIZED RANKING

Yao Wu, Doctor of Philosophy, 2009

Dissertation directed by: Professor Louiqa Raschid
Department of Computer Science

As the amount of information grows and as users become more sophisticated,

ranking techniques become important building blocks to meet user needs when an-

swering queries. PageRank is one of the most successful link-based ranking methods,

which iteratively computes the importance scores for web pages based on the im-

portance scores of incoming pages. Due to its success, PageRank has been applied

in a number of applications that require customization.

We address the scalability challenges for two types of customized ranking. The

first challenge is to compute the ranking of a subgraph. Various Web applications

focus on identifying a subgraph, such as focused crawlers and localized search en-

gines. The second challenge is to compute online personalized ranking. Personalized

search improves the quality of search results for each user. The user needs are rep-

resented by a personalized set of pages or personalized link importance in an entity

relationship graph. This requires an efficient online computation.

To solve the subgraph ranking problem efficiently, we estimate the ranking

scores for a subgraph. We propose a framework of an exact solution (IdealRank) and

an approximate solution (ApproxRank) for computing ranking on a subgraph. Both

IdealRank and ApproxRank represent the set of external pages with an external

node Λ and modify the PageRank-style transition matrix with respect to Λ. The

IdealRank algorithm assumes that the scores of external pages are known. We prove

that the IdealRank scores for pages in the subgraph converge to the true PageRank

scores. Since the PageRank-style scores of external pages may not typically be

available, we propose the ApproxRank algorithm to estimate scores for the subgraph.

We analyze the L1 distance between IdealRank scores and ApproxRank scores of

the subgraph and show that it is within a constant factor of the L1 distance of the

external pages. We demonstrate with real and synthetic data that ApproxRank

provides a good approximation to PageRank for a variety of subgraphs.

We consider online personalization using ObjectRank; it is an authority flow

based ranking for entity relationship graphs. We formalize the concept of an aggre-

gate surfer on a data graph; the surfer’s behavior is controlled by multiple personal-

ized rankings. We prove a linearity theorem over these rankings which can be used as

a tool to scale this type of personalization. DataApprox uses a repository of precom-

puted rankings for a given set of link weights assignments. We define DataApprox

as an optimization problem; it selects a subset of the precomputed rankings from

the repository and produce a weighted combination of these rankings. We analyze

the L1 distance between the DataApprox scores and the real authority flow ranking

scores and show that DataApprox has a theoretical bound. Our experiments on the

DBLP data graph show that DataApprox performs well in practice and allows fast

and accurate personalized authority flow ranking.

COMPUTING APPROXIMATE CUSTOMIZED RANKING

by

Yao Wu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Louiqa Raschid, Chair/Advisor
Professor Amol Deshpande
Professor Samir Khuller
Professor Bobby Bhattacharjee
Professor William Michael Rand
Professor Min Wu

c© Copyright by

Yao Wu
2009

Acknowledgments

First and foremost, I would like to thank my advisor Professor Louiqa Raschid.

It was my great fortune to be able to work under her supervision. This thesis would

not have been possible without her endless support and encouragement. I thank her

for constant words of encouragement and reassurance in my ability to complete the

research, countless hours spent reading and editing all kinds of drafts, and a lot of

constructive suggestions along the way.

I wish to thank Professor Samir Khuller for his excellent lectures and all the

help. The techniques I learned from his courses eventually became powerful tools

and enabled me to complete this thesis.

It was my great pleasure to have the opportunity working with my collabo-

rators: Professor Maŕıa Esther Vidal, Professor Vagelis Hristidis, Professor Felix

Naumann, and Dr. Panayiotis Tsaparas. I owe my sincere gratitude to Professor

Vidal, who spent a lot of time to work with me when she visited Maryland and she

was always patient to answer my questions. I would like to thank other graduate

students, Woei-Jyh (Adam) Lee, Hassan Sayyadi, Jens Bleiholder for discussion and

help.

I am indebted to Professor Amol Deshpande, Professor Min Wu, Professor

Bobby Bhattacharjee, and Professor William Michael Rand for spending their pre-

cious time to serve on my thesis committee. I thank Professor William Gasarch

for his help. I also thank Jennifer Story, Fatima Bangura, Arlene E. Schenk and

other staff members in Computer Science Department, the Institute for Advanced

ii

Computer Studies, and the Robert H. Smith School of Business. They handled the

administrative matters for me patiently.

This material is based in part upon work supported by the National Science

Foundation under Grant Numbers IIS0430915 and CMMI0753124.

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

Lastly, I appreciate the support and love from my parents and, in particular,

my husband Yingchuan for helping me through difficulties and for being there all

the time. Finally, I thank my lovely son Kesler, who has made all the difference in

my life.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Challenges of Ranking a Subgraph 2
1.2 Challenges of Personalization . 7
1.3 Contributions . 11

1.3.1 Ranking a subgraph . 11
1.3.2 Personalized authority flow rankings 13

1.4 Outline . 16

2 Related Work 17
2.1 Preliminaries . 17
2.2 Link Analysis Ranking . 18

2.2.1 The PageRank Algorithm . 19
2.2.2 The HITS Algorithm . 23
2.2.3 The SALSA Algorithm . 24

2.3 Efficiently Computing PageRank . 24
2.3.1 The adaptive method . 25
2.3.2 Extrapolation methods . 26
2.3.3 The BlockRank algorithm . 27

2.4 Computing PageRank in a distributed system 28
2.4.1 Distributed system without overlaps 28
2.4.2 Distributed system with overlaps 30

2.5 Estimating PageRank for a Subgraph 31
2.5.1 Estimating PageRank for one target node 32
2.5.2 Estimating PageRank for a subgraph 33

2.6 Updating PageRank without Global Computation 34
2.7 Authority Flow Ranking: The ObjectRank Algorithm 35
2.8 Personalized Search . 37

2.8.1 Scaling personalization with a base set 38
2.8.2 Approximation methods for personalization with a weight as-

signment . 40
2.9 Using Relevance Feedback for Authority Flow Ranking 41

3 Estimating Rank for a Subgraph 43
3.1 IdealRank Approach . 45

3.1.1 The IdealRank algorithm . 46
3.1.2 Aideal and Pideal . 48
3.1.3 Convergence of IdealRank . 51

3.2 The ApproxRank algorithm . 52
3.2.1 The ApproxRank algorithm 53

iv

3.2.2 Aapprox definition . 54
3.2.3 Error analysis of ApproxRank ranking vector Rapprox 56

4 The Evaluation for ApproxRank 62
4.1 Experiment Description . 62
4.2 Evaluation Method . 64
4.3 Performance on the TS Subgraphs . 65
4.4 Performance on the DS Subgraphs . 67
4.5 Performance on the BFS Subgraph 71
4.6 Runtime Performance . 73

5 Approximating Authority Flow Rankings in Entity-Relation Graphs 77
5.1 Authority Flow Ranking: ObjectRank 80

5.1.1 ObjectRank Revisited . 80
5.1.2 ObjectRank convergence . 83
5.1.3 Approximation methods for personalization 84

5.2 The Least Squares Problem . 85
5.3 Comparing Distances between a Target Ranking and any Candidate

Ranking . 86
5.4 The Problem Definition . 90
5.5 The Aggregate Surfer . 93

5.5.1 The Authority Transfer Weights Linearity Theorem 93
5.5.2 The intuition behind the Authority Transfer Weights Linear-

ity Theorem . 95
5.5.3 The application of the Authority Transfer Weights Linearity

Theorem . 97
5.6 The DataApprox System Architecture 97
5.7 The DataApprox algorithm . 100

5.7.1 The algorithm . 100
5.7.2 Error analysis of DataApprox ranking vector RDA 102
5.7.3 Reduce the complexity of the feasibility problem 107

5.7.3.1 One constraint per semantic type 107
5.7.3.2 Make use of skewed scores 108
5.7.3.3 The range for δ . 109

5.7.4 The time complexity of DataApprox 109

6 The Evaluation for DataApprox 111
6.1 Experiment Description . 111
6.2 The candidate ranking repository . 113
6.3 The impact of the top K on DataApprox 114
6.4 The impact of the size of the ranking repository 116
6.5 DataApprox runtime . 117

7 Conclusion and Future Direction 120

v

Bibliography 123

vi

List of Tables

3.1 Symbols used by algorithms . 45

4.1 Dataset characteristics from recent ranking papers. 63

4.2 The distance comparison for TS subgraphs on the Politics dataset. . . 66

4.3 The Spearman’s Footrule distance for DS subgraphs on the AU dataset. 68

4.4 The precision of top K lists for DS subgraphs on the AU dataset. . . 70

4.5 The runtime comparison on TS subgraphs. 74

4.6 The runtime comparison on DS subgraphs. 75

5.1 The sum of ranking scores of top K pages. 108

6.1 The samples for queries and candidates. 114

vii

List of Figures

1.1 The infrastructure of a focused crawler or a localized search engine. . 3

1.2 An example of subgraph ranking for an Entity-Relation graph. 4

1.3 The percentage of the indexable web that lies in each search engine’s
index. 5

1.4 The DBLP authority transfer schema graph in ObjectRank ([15]). . . 9

2.1 The outline of the BlockRank algorithm. 28

2.2 The outline of the ServerRank algorithm. 29

2.3 The ServerRank algorithm . 30

2.4 The JXP algorithm . 30

2.5 The outline of the JXP algorithm. 31

2.6 The expansion from the target node in [26]. 32

2.7 The layered graph ([90]) . 40

3.1 A global graph of both local pages and external pages. 47

3.2 An extended local graph without a strategy to adjust transition prob-
abilities . 47

3.3 An extended local graph marked with transition probabilities in Ap-
proxRank . 47

3.4 The outline of the IdealRank algorithm. 48

4.1 Spearman’s Footrule distance for BFS subgraphs on AU dataset. . . . 72

5.1 The DBLP authority transfer schema graph in ObjectRank ([15]). . . 78

5.2 An example of a schema graph with a weight assignment vector. . . . 82

5.3 An example of a data graph. 82

5.4 An example of a transition matrix for ObjectRank 83

viii

5.5 The correlation between δ and Spearman’s Footrule distance. 89

5.6 The correlation between σ and Spearman’s Footrule distance. 89

5.7 The correlation between φ and Spearman’s Footrule distance. 89

5.8 The correlation between π and Spearman’s Footrule distance. 89

5.9 The correlation between π and δ. 90

5.10 The aggregate surfer and two individual surfers. 96

5.11 The system architecture . 98

5.12 The outline of the DataApprox algorithm. 102

6.1 The average Spearman’s Footrule distance when the value of the top
K is varied. 115

6.2 The average Spearman’s Footrule distance for varying M (M). 116

6.3 Average runtime of DataApprox when the number of top K are varied.118

6.4 Average runtime of DataApprox for varying M (M). 118

ix

Chapter 1

Introduction

The explosion of information available on the Web has made the ranking of

Web pages an expensive but unavoidable component of query answering. Since

hyperlinks from one page to another usually implies an “endorsement” or “recom-

mendation”, link analysis plays a critical role in determining the importance of web

pages. PageRank[1, 20, 76] and HITS[61] are two seminal approaches in the area.

PageRank iteratively computes the score of a page based on the scores of its parent

pages. HITS separates the role of each web page into a hub or authority. The hub

score estimates the value of its links to other pages and the authority score estimates

the importance of the page.

While both link analysis ranking algorithms assign importance scores based on

the hyperlink structure, PageRank became the dominant ranking model because of

two main advantages: query independence and spam resistance. The first advantage

of PageRank is that PageRank is query independent, because PageRank can be

precomputed before the keyword query arrives. At query time, the precomputed

importance score for a page and relevance score are combined. HITS, on the other

hand, is query dependent. HITS first computes a local neighborhood graph and then

calculates the importance scores for the neighborhood graph. The second advantage

of PageRank is that PageRank is more spam-resistant. Compared to HITS, where

1

the ranking scores can be affected by small changes to the neighborhood graph,

PageRank is more resistant to the changes occurring on a small portion of the Web

graph. In this thesis, therefore, we consider extensions of the PageRank algorithm

to support customized rankings.

In this thesis we address the scalability challenges for two types of customized

ranking. The first challenge is to compute the ranking of a subgraph. The PageRank

computation typically takes many hours on large graphs. Various Web applications

focus on identifying a subgraph, such as focused crawlers and localized search en-

gines. These applications focus on ranking the pages contained within a subgraph

in order to avoid the global computation of PageRank. The second challenge is to

compute online personalized ranking. Personalized search improves the quality of

search results for each user. The user needs are represented by a personalized set of

pages or personalized link importance in an entity relationship graph. This requires

an efficient online computation.

1.1 Challenges of Ranking a Subgraph

We first describe the applications that identify a subgraph. In January 2005,

the indexable Web for search engines was estimated to be more than 11.5 billion

pages [50]. According to [2], the Web is growing at a rate of 25% per year. To make

ranking manageable, and to reflect the diversity of clients’ information needs, web

applications such as semantic search, focused crawlers, and localized search engines

have emerged. They all have a common objective to rank a subgraph.

2

To solve the subgraph ranking problem efficiently, our objective is to estimate

the ranking scores for a subgraph. The first intriguing application is a focused

crawler [24, 35], also called a thematic crawler. A focused crawler is interested in

collecting a subset of the Web pages that are related to a specific topic. Compared to

a standard crawler which can easily get lost and waste resources, a focused crawler

acquires relevant pages using a Best First Search; it assigns scores to outgoing links

based on the likelihood that they reach relevant pages, then selects links based on

the scores [35]. In contrast to focused crawlers which are topic specific, a localized

search engine indexes a subset of web pages that are within a specific domain.

The web fragment retrieved by the focused crawler (or localized search engine)

is a subgraph of the global web graph. Only PageRank scores for local pages in the

subgraph are of interest to users. Figure 1.1 shows the typical infrastructure of a

focused crawler (or a localized search engine). Users submit queries to the subgraph

collected by a focused crawler and local query answers are returned to the user. The

ranking on this local graph, however, should take into account the link structure of

all web pages.

Figure 1.1: The infrastructure of a focused crawler or a localized search engine.

PageRank assumes that all edges in the Web graph are of the same type.

3

ObjectRank [15] is an extension that imposes a schema or Entity-Relation graph

on an untyped graph. The details are in Section 1.2 and 2.7. An example of an

Entity-Relation graph is in Figure 1.2. In the same spirit as a focused crawler or

a localized search engine, the Entity-Relation graph of interest to ObjectRank is

a subgraph. Here, too, the objective is to compute or estimate the ranking of a

Entity-Relation subgraph.

Figure 1.2: An example of subgraph ranking for an Entity-Relation graph.

Another application that involves ranking a subgraph is peer-to-peer network.

The advent of peer-to-peer(P2P) technology has further boosted web information

retrieval by leveraging distributed computing power, storage, and connectivity[49,

86, 94]. A distributed or decentralized system has multiple peers or servers, each

of which stores its own subgraph of the Web. A user may ask queries on one peer

and ranked query answers that are available locally are presented to the user. The

ranking depends on the context of the query.

A similar situation is presented in meta-searcher as well. A study shows that

search engines are more different than expected[3]. For the 500 most popular search

terms, Google and Yahoo! shared only 3.8 of their top 10 results on average. Part of

4

the reasons behind this inconsistency is that the search engines fetch the web pages

using different crawling algorithms. According to a recent study [50], the major

search engines including Google, Yahoo!, MSN, Ask/Teoma fetch different portions

of the whole indexable web. Figure 1.3 shows the percentage of the indexable web

fetched by each search engine and their overlaps. It stands to reason that a meta-

searcher better aggregates relevant results, which may require ranking computation

on multiple subgraphs.

Figure 1.3: The percentage of the indexable web that lies in each search engine’s

index.

A final scenario is a reflection of the constant change of the Web. The ranking

of pages needs to be updated frequently, especially for the subgraph of the Web that

experiences the most change. This subgraph can be either a set of dangling pages

that crawlers have not as yet crawled, referred to as the web “frontier” [41], or the

set of pages that are most affected by updates [66]. It is desirable that any strategy

to update the ranking of this subgraph exploits existing PageRank scores for other

regions of the graph which may remain largely unchanged.

5

In response to these many motivating applications, we address the problem of

computing ranking scores for a subgraph in this thesis. The challenges of ranking a

subgraph include the follows:

• The approximate ranking for local pages should reflect the global link structure

of the Web graph, i.e. it should be close to the true PageRank.

• Due to the dramatic growth of the World Wide Web, ranking techniques for

a subgraph must be significantly computationally cheaper computation, when

compared to executing the PageRank algorithm on the global Web graph.

• PageRank scores for external pages may be available for some applications.

However, it is also possible scores for external pages are unobtainable. The

subgraph ranking algorithm should address both cases.

The problem of estimating PageRank values for a small portion of the Web

graph has been studied in [26, 34]. However, [26] estimates the PageRank value for

single target node. The approach in [26] cannot be applied directly on subgraphs,

since the expansion will quickly reach a very large graph where the computation

is expensive. The SC algorithm in [34] is the best existing approach. SC predicts

a supergraph with restricted size that will have the most significant impact on the

ranking of the nodes of the subgraph. However, SC pays a big penalty whenever it

mis-estimates and misses pages in the supergraph. In addition, the process of ex-

pansion of the subgraph brings immense extra cost to the algorithm. The details of

these approaches are in Section 2.5. Our approach to estimate the ranking of a sub-

graph has similar to superior quality to SC and it outperforms SC in computational

6

cost.

1.2 Challenges of Personalization

The idea of a personalized ranking that provides users customized views of Web

pages is attractive. Web personalization includes any action that tailors the Web

experience to a particular user, or set of users [71]. Web personalization targets to

provide users with accurate information for query answers, without always having

to obtain explicit preference descriptions from users [73]. According to [39, 71],

principal elements of Web personalization include modeling of Web pages and users,

categorization and preprocessing of objects, the extraction of correlations between

and across objects, and determination of the set of actions to be recommended for

personalization.

Personalized ranking is one of the latest trends in search engines, which adjusts

the order of Web pages presented to users and narrows down the retrieval space

for users. For instance, while PageRank gives one global ranking for all the Web

pages, users frequently have different point of views. The personalized ranking is

an ordered list for the current (active) user, which should reflect the current user’s

preference or profile. Major commercial search engines improve the search quality

by accommodating the topics of interests, prior search history, or other descriptions

of users’ preference.

There are numerous approaches to provide personalized ranking, including the

following:

7

• To describe the importance with respect to a particular topic, [51, 76] pro-

posed computing a set of PageRank vectors that are biased using a set of

representative topics. At query time, the query-specific importance scores are

combined using precomputed biased PageRank vectors.

• [15, 75] proposed capturing the importance with respect to the edge types. For

the Entity-Relation graph where the query is received, an weight assignment

of authority flow weights is used to describe the user preference.

• The concepts of trust and similarity are used to compute personalized rankings

[84]. These concepts are captured from explicit user input and implicit user

behavioral patterns to describe the users taste and preference.

• [62] considers the Web community of a specific user in personalization. In

this way, past interactions of the user with the search engine are used to

improve future search results. For each Web community, its neighborhoods

including the documents linked to, or from, documents in the community are

determined. The query answers are ordered to reflect the number of times

these community neighborhoods have been visited.

• [87, 88] proposed adapting search results by constructing user profiles based

on users’ navigational history, browsing history, or query history. There are

multiple data mining techniques can be applied to extract usage patterns from

Web logs [31, 83].

Among all these factors, the first two factors are the two key ways to achieve

8

personalization in authority flow-based search systems like PageRank. Below we

focus on the first two types of personalized ranking.

The first type of personalization involves selecting user-specific entities as the

source of authority in the graph. Topic-sensitive PageRank [51] proposed to per-

sonalize using a set of representative topics, which can be considered a personalized

base set of pages.

The second type of personalization assumes a typed graph and allows users

to assign different importance to different types of edges. We present an example

of the second personalization as follows: a biologist querying NCBI Entrez genomic

resources [4] may assign a high weight to the gene-to-protein link type whereas

a practitioner may assign a higher weight to the publication-cites-publication link

type.

ObjectRank [15] is defined on an Entity-Relation graph and was the first work

to propose personalization of the weight associated with link types. This type of

ranking is referred to as authority flow ranking. Figure 5.1 [15] shows the Entity-

Relation graph for the DBLP database, a bibliographic database for computer sci-

ence publications [5]. The values along each edge type represent the relative impor-

tance of that edge type.

Figure 1.4: The DBLP authority transfer schema graph in ObjectRank ([15]).

9

Since users submit queries and expect query answers on-the-fly, a key challenge

for personalization is to compute personalized rankings online and provide the an-

swers to the user quickly. Since the personalized ranking is an expensive algorithm

on the global graph, computing a personalized ranking at query time is infeasible.

Since the space of possible queries is very large, computing all possible personalized

rankings off-line and storing them is also impractical. Therefore, a hybrid solution

is to maintain a set ,called repository, of personalized rankings. At query time, an

approximate personalized ranking is computed using the personalized rankings in

the repository and this is the approach we explore in this thesis.

We summarize the challenges of approximate personalized ranking as follows:

• The approximate personalized ranking should be computed efficiently.

• The ranking repository of precomputed personalized rankings should be man-

aged and maintained up-to-date.

• The approximate personalized ranking should be close to the ideal personalized

ranking to guarantee quality.

The problem of achieving scalable personalization based on a personalized

base set, i.e., a personalization vector, has been studied before [23, 46, 51, 55, 57].

However, little work has addressed the problem of scalable link-based personalization

based on user-dependent authority transfer schema graph. We study the latter

problem in this thesis.

The only existing work that computes approximate authority flow ranking

is [90], where sampling techniques are applied for lgOR [79]. However, lgOR is a

10

special case of authority flow ranking, where the result graph is a layered graph.

For general case of authority flow ranking like ObjectRank, it is not straightforward

to apply sampling techniques. The details of sampling techniques are presented in

Section 2.8.2.

1.3 Contributions

We study two customized ranking problems in this thesis – approximating the

ranking for a subgraph and approximating personalized authority flow rankings. For

both problems, we present efficient algorithms and conduct analysis of the quality

and precision of the algorithms.

1.3.1 Ranking a subgraph

For the subgraph ranking problem, we present a framework based on an exact

and an approximate solution to compute PageRank on a subgraph. The IdealRank

algorithm is an exact solution. It assumes that the PageRank scores of external

pages are known. We prove that the IdealRank scores for pages in the subgraph

converge to the true PageRank scores. Since the PageRank scores of external pages

may not be available, we present the ApproxRank algorithm to estimate PageRank

scores for the subgraph. Both IdealRank and ApproxRank represent the set of

external pages with an external node Λ and extend the subgraph with links to Λ.

They also modify the PageRank transition matrix with respect to (the links to) Λ.

The IdealRank and ApproxRank framework formalizes the problem of ranking

11

a subgraph. It allows us to model multiple scenarios where ranking a subgraph is

important. IdealRank can be used to model scenarios where PageRank scores of

the global graph are known a priori and can potentially be re-used. This includes

the case where the subgraph contains the pages that have been updated, or the

subgraph represents the pages that represent all the semantic types of interest to

a domain expert in ObjectRank [15]. ApproxRank can be applied in general to all

these problems, when we do not know the PageRank scores of external pages.

For the subgraph ranking problem, our contributions are as follows:

• We define an efficient algorithm, IdealRank, to compute PageRank scores for a

subgraph when PageRank scores of the external pages are known. IdealRank

performs a random walk on a modified local graph called the extended local

graph, where an external node Λ is added to the local graph. Λ represents the

set of pages that are not local. The random walk defined by IdealRank utilizes

the PageRank scores of the external pages. The IdealRank algorithm can be

applied when the Web graph is updated.

• We prove that the IdealRank scores converge to the true PageRank scores for

all local pages in the subgraph, and the IdealRank score for the external node

Λ converges to the sum of true PageRank scores for all external pages. Since

IdealRank converges to the true PageRank, it provides a golden standard for

the approximate solution, ApproxRank.

• When PageRank scores of external pages are not known, we define an efficient

algorithm ApproxRank to estimate the PageRank scores for a subgraph. The

12

ApproxRank random walk is defined on the extended local graph as well. Since

there is no knowledge about the external pages, ApproxRank assumes the

authority flow from external pages are equally important. We conduct error

analysis for ApproxRank scores. We show that the error of the ApproxRank

scores of the subgraph depends on the accuracy of estimation of external page

ranking scores.

• We show through empirical results that the ApproxRank ranking accuracy is

similar (sometimes superior) to the best competitor SC, and it overwhelmingly

outperforms the runtime efficiency of SC. We use two real datasets, on which

we conduct experiments on three types of subgraph: topic specific subgraph,

domain specific subgraph, and BFS subgraph (gathered by a Breadth First

Search crawler). We compare ApproxRank against three algorithms, local

PageRank, LPR2, and SC. We use two ranking distance metrics to evaluate the

accuracy of the algorithms, L1 distance and the Spearman’s Footrule distance.

The experiments show that, even without assuming any knowledge about the

external pages, ApproxRank behaves well.

1.3.2 Personalized authority flow rankings

We formalize the problem of approximating authority flow ranking defined by

ObjectRank [15] for Entity-Relation graphs. A user query is associated with an

authority flow weight assignment. A ranking repository is a set of precomputed

authority flow rankings for a set of candidate authority flow weight assignment

13

vectors. We explain the ranking repository in our approximation. We define the

DataApprox and SchemaApprox problem that approximate the authority flow rank-

ing of a user-specified assignment. This thesis focuses on the DataApprox problem.

SchemaApprox can be solved as a Least Squares problem (See Section 5.2) or a

quadratic programming problem. We leave SchemaApprox as future work.

We formally define two approximate approaches, SchemaApprox and DataAp-

prox. Both algorithms target to find a combination of existing rankings such that

the combined ranking is close to the ideal personalized ranking. SchemaApprox is

defined at the schema level and considers the weight assignment vector in the Entity-

Relation graph. It is a Least Squares problem that requires quadratic programming

solution. We do not solve SchemaApprox in this thesis. The DataApprox approach

is defined at the data graph level, i.e., the actual nodes and edges described by

the Entity-Relation graph. DataApprox considers the transition matrix of the data

graph; this matrix is defined using the authority schema graph. The objective of

the DataApprox algorithm is to combine the best existing rankings such that the

transition matrix is close to the query transition matrix.

We have the following contributions as follows:

• We define two optimization problems to approximate the authority flow rank-

ings, SchemaApprox and DataApprox. SchemaApprox is defined at the schema

graph level, and DataApprox is defined at the data graph level.

• We introduce the concept of the aggregate surfer and prove the authority flow

linearity theorem for authority flow rankings. We show that, given two weight

14

assignment vectors, there exists a random walk that is defined by combining

the random walks of the two weight assignment vectors, and whose ranking

vector is a linear combination of the two ranking vectors.

• The DataApprox algorithm is defined as an optimization problem to find the

aggregate surfer that combines the best candidates from the ranking reposi-

tory. It solves the optimization problem by employing a Linear Programming

sub-procedure.

• We perform a theoretical analysis of the approximation quality of DataApprox.

We show that the L1 distance between DataApprox scores and the accurate

personalized ranking scores depends on the objective of the DataApprox algo-

rithm.

• We apply a set of heuristics to dramatically reduce the search space and the

complexity of the DataApprox and makes the computation feasible even for

very large data graphs.

• We conduct extensive experiments to evaluate the execution time and the qual-

ity for DataApprox, i.e., how close the approximate DataApprox ranking is

to the exact ranking. The experiments are conducted on the complete DBLP

data graph. We compare DataApprox algorithm with a baseline algorithm

PickOne, which chooses the best candidate with the minimum Euclidean dis-

tance in the ranking repository. We evaluate the accuracy of the algorithms

using a ranking distance metric, Spearman’s Footrule distance. The experi-

15

ments show that DataApprox performs well both in terms of execution time

as well as in terms of quality.

1.4 Outline

In Chapter 2, we survey related work and describe recent ranking techniques.

Chapter 3 presents our ranking framework for the subgraph ranking including two

ranking algorithms: IdealRank and ApproxRank, along with their properties. In

Chapter 4, we report experimental results for the ApproxRank algorithm. Chapter

5 presents two algorithms to approximate authority flow rankings in entity-relation

graphs, SchemaApprox and DataApprox. We also show the theoretical model and

properties for DataApprox. Experimental results for the DataApprox algorithm are

reported in Chapter 6. Finally Chapter 7 concludes the thesis and discusses the

future work.

16

Chapter 2

Related Work

This chapter reviews the PageRank algorithm and presents an overview of

related research in the areas of efficiently computing PageRank, computing PageR-

ank in a distributed system, approximating PageRank for a subgraph, updating

PageRank scores. We review the ObjectRank algorithm and scaling personalized

PageRank. We refer to [17, 19, 65, 63, 64] for related work.

2.1 Preliminaries

In link analysis ranking, the Web is considered to be a massive directed graph

in which web pages are represented by nodes and hyperlinks between web pages

are represented by directed edges in the graph. The Web graph is a simple graph,

i.e., even if there are multiple hyperlinks between two web pages, only one edge is

considered in the Web graph. The forward links set, Fi, of page i denotes the set of

pages reached by outgoing edges from page i. The set of backlinks, Bi, is the set of

pages that point to page i. The cardinality of the forward links set is the outdegree

for the page and the cardinality of the backlinks is its indegree. The Web graph is

unweighted.

The distribution of indegrees and outdegrees (especially indegrees) of the Web

graph follows a power law [16, 21, 45]. The power law states that the probability

17

that a node has indegree I is proportional to 1/Ix for some x > 1. The Web graph

is also shown to have the bow-tie structure [21]. The Web can be broke into four

pieces: the CORE that is a central strongly connected component (SCC), the IN

set that consists of pages reaching the CORE but not accessible from the CORE,

the OUT set that consists of pages accessible from the CORE but not linked to it,

and the TENDRILS containing pages that are not accessible from the CORE and

cannot reach the CORE.

There are two types of ranking algorithms based on how the ranking algorithm

proceeds. The HITS algorithm [61] is a query dependent ranking algorithm which

starts from a subset of the Web pages related to a query. On the other hand,

PageRank [76] is a query independent ranking which ranks all Web pages. In the

Web graph, ranking scores for all pages are represented by a ranking vector, where

each entry in the vector is the ranking score for one web page.

2.2 Link Analysis Ranking

In 1998, there were two algorithms, PageRank [20, 76] and HITS [61], that

initiated the area of link analysis ranking. Both algorithms propose to rank web

pages based on the link structure of the Web graph. The basis of these approaches

is that hyperlinks convey information about pages. A hyperlink from page A to

page B is evidence that page A suggests that page B is important. Link analysis is

a prominent approach in determining the importance of web pages.

Given a Web graph, where the pages are represented by nodes, and hyperlinks

18

are represented by directed edges, a link analysis ranking algorithm produces a score

assignment.

Link analysis ranking is applied to the context of databases. ObjectRank

considers a database as a weighted schema graph [15], where the random walk

in PageRank is adjusted according to authority transfer on the database schema

graph. [47] instead models the database and a set of queries as a weighted graph,

and applies PageRank and HITS algorithms on such graphs. There is a combination

of PageRank and HITS [36].

Link analysis ranking is also an important tool and is applied in different

areas: it is applied to evaluate the similarity between data objects [56]; it is used to

improve the quality of crawlers [30, 80]; it is used to characterize the Web structure

[77]; and it is used for relationship search operator [54].

2.2.1 The PageRank Algorithm

PageRank was introduced in [20, 76] to capture the intuition that important

pages have a large number of important pages pointing to them. [17, 19, 64] are

excellent surveys of the PageRank computation. A link from page i to page j is

evidence that i is suggesting that j is important. The importance contributed to

page j by i is inversely proportional to the outdegree of i. The PageRank score of

page j, denoted by R(j), is the sum of the PageRank scores along incoming edges

in its backlink set Bj. Let Di be the outdegree of an incoming page i and R(i) be

19

the PageRank score of page i.

R(j) =
∑

i∈Bj

R(i)

Di

(2.1)

The PageRank scores are computed through iterations. R(j) in Equation

(2.1) refers to the current iteration and R(i) at the right hand side of the equation

refers to the previous iteration. Initially all pages are assigned the same score of

1. This formula appears meaningful since the contribution of authority from all

pages in backlinks set is distinguished based on their importance and connectivity

(outdegree). However, there are a large number of pages with no outgoing links,

referred as dangling pages. According to Equation (2.1), dangling pages only receive

authority flow but they do not distribute their own weights. The consequence is

that dangling pages accumulate more and more PageRank scores, and the ranking

vector does not converge. This is the rank sinks problem [76].

To overcome the rank sinks problem, PageRank proposes to add links from

dangling pages to all other pages. This can be modeled by the behavior of a ran-

dom web surfer. With certain probability, the surfer gets bored by following links

presented in the graph and randomly jumps to any page with equal probability. Let

damping factor ǫ be the probability that a web surfer follows hyperlinks, and let

(1 − ǫ) be the probability of a surfer making a random jump to a page, where ǫ is

usually set to be 0.85. Let n be the number of web pages in the graph, Equation

(2.1) can be rewritten as follows:

R(j) = ǫ
∑

i∈Bj

R(i)

Di
+ (1 − ǫ)

1

n
(2.2)

20

The set of dangling pages is referred as “web frontier” [41]. There are multiple

reasons that one page can become dangling. 1) The page truly contains no outgoing

links, 2) the page is protected by robots.txt, 3) the crawler has not yet crawled the

page, or 4) the page does not exist any more (a 404 HTTP code). Several algorithms

in [41] are proposed for handling dangling pages.

The above random walk can be represented in matrix form. Let A denote the

transition matrix:

A[i, j] =

1
Di

if there is an edge from i to j,

0 otherwise.

(2.3)

Let R be the PageRank vector to be computed over the web pages. Initially R

can be an arbitrary vector representing the probability of visiting web pages. The

personalization vector P (also called teleportation vector) can be used to bias PageR-

ank to prefer certain pages. In standard PageRank, P is a uniform distribution to

indicate the equal probability of randomly jumping to any page; it is as follows:

P = [
1

n
]n×1 (2.4)

Let AT denote the transpose of A. The PageRank vector R is recursively

defined as follows in Equation (2.5):

R = ǫAT · R + (1 − ǫ)P (2.5)

In graph theory, a directed graph is aperiodic if there is no integer k > 1 that

divides the length of every cycle of the graph. A Markov Chain is irreducible if

its underlying graph consists of a single strongly connected component. According

21

to the Ergodic Theorem [60, 72] for Markov chains, if the graph is aperiodic and

irreducible, then a unique steady state distribution exists. Since the Web graph is

generally aperiodic, and is made irreducible by adding a damping factor, R converges

to the stationary distribution for the Web graph.

The PageRank vector R can be represented as a eigenvector for matrix GT .

Let e be a vector of all 1s, and eT be a row vector of all 1s. eeT is a matrix of all

1s. Let G = ǫA + (1 − ǫ) 1
n
eeT . The PageRank vector is the dominant eigenvector

for matrix GT [64]. Since GT is a stochastic matrix, the corresponding dominant

eigenvalue λ1 = 1. R can be written as:

R = GT R (2.6)

R is the stationary vector for a Markov Chain with transition matrix GT . The

power method is used in the original PageRank paper [20]. There are three reasons

that power method has been chosen:

• The power method is simple and easy to implement. During the computation,

there is only matrix-vector multiplication and no matrix-matrix multiplication.

• The power method is storage efficient. During the computation, only the

transition matrix and the PageRank vector for the current iteration needs to

be stored. Other iterative method for PageRank will require multiple vectors

through iterations.

• The power method only requires 50–100 for convergence for large Web graphs.

Although this number depends on the accuracy of the convergence, it is hard

22

to find other methods that beat 50 power iterations.

Edges in a graph usually are associated with weights to indicate the strength

of the relationship. Random walk on weighted graph has been considered in differ-

ent contexts. In [32], undirected weighted graph are dealt with to design on line

algorithms. In [40], usage data are considered to rank paths.

2.2.2 The HITS Algorithm

The other pioneer link analysis ranking algorithm, HITS [61], considers each

web page has two roles: hub and authority. Hub score estimates the value of its

links to other pages, and authority score estimates the importance of the page. A

page is a good hub if it points to good authorities; a page is a good authority if

it is pointed to by good hubs. Different from the PageRank algorithm, HITS is a

query-dependent algorithm – HITS builds a neighborhood graph based on a small

set of relevant pages, and then executes the ranking algorithm on this neighborhood

graph.

HITS is an iterative algorithm. Let x<p> be the non-negative authority weight

assigned for page p. Let y<p> be the non-negative hub weight assigned for page p.

There are two types of operations I and O to update authority weights and hub

weights respectively. In I operations,

x<p> =
∑

q:(q,p)∈E

y<q> (2.7)

In O operations,

y<p> =
∑

q:(p,q)∈E

x<q> (2.8)

23

HITS can provide two ranked lists to the user. This is beneficial since in

different applications, users may be interested in the best authorities or the best

hubs. However, HITS is query-dependent. For each query, HITS needs to build a

neighborhood graph and solve at least one matrix eigenvector problem. HITS is also

vulnerable to TKC effect, which will be described in 2.2.3.

2.2.3 The SALSA Algorithm

Lempel and Moran proposed SALSA (Stochastic Approach for Link Struc-

ture Analysis) algorithm [68] that combines PageRank and HITS. Similar to HITS,

SALSA algorithm creates a neighborhood graph and calculates both authority scores

and hub scores. SALSA also takes advantages of stochastic matrices which are used

by PageRank.

By defining these stochastic matrices, SALSA is able to overcome the tightly

knit community (TKC) effect. TKC effect refers to the phenomenon that a small

but highly connected sites can boost each other’s scores considerably. However,

SALSA is query-dependent, which means it is expensive to calculate at query time.

2.3 Efficiently Computing PageRank

Because the Web is constantly changing, and because web pages are crawled

periodically, the PageRank vector needs to be calculated regularly. Another reason

that obstructs the efficient computation of the PageRank algorithm is that the per-

sonalized and topic-sensitive PageRank requires the computation of many PageRank

24

vectors. The efficient computation of the PageRank scores for the global graph has

been studied in [22, 33, 58, 59, 60].

2.3.1 The adaptive method

The adaptive method is exploited in [58] where pages whose scores have con-

verged are not recomputed in a new iteration. The adaptive PageRank algorithm

partitions web pages into two sets N and C at each iteration, where N denotes

the set of m pages that have not yet converged, and C denotes the set of n − m

pages that have converged. The transition matrix A is accordingly divided into two

submatrices AN and AC , each of which corresponds to the inlinks of web pages that

have not yet converged and pages that have already converged respectively. Accord-

ing to the power method, the scores at the (k + 1)th iteration are calculated based

on scores at the kth iteration as follows in Equation (2.9):

Rk+1
N

Rk+1
C

= ǫ

AT
N

AT
C

·

Rk
N

Rk
C

+ (1 − ǫ)P (2.9)

In Equation (2.9), Rj
N denotes the PageRank scores for N at iteration j and Rj

C

denotes the PageRank scores for C at iteration j. As we expect no changes between

elements of Rk+1
C and Rk

C , the computation can be simplified as in Equation (2.10):

Rk+1
N = ǫAT

N · Rk
N + (1 − ǫ)PN (2.10)

The adaptive method simply avoids computation on the web pages that have

already converged, and the experiments report about a 20% saving in wallclock time

to compute the PageRank vectors. While the adaptive method takes a few more

25

iterations for convergence compared to the standard power method, the adaptive

method gains overall savings due to the saving on computation cost in each iteration.

2.3.2 Extrapolation methods

Two extrapolation methods, Aitken Extrapolation and Quadratic Extrapola-

tion, are proposed in [60]. The basis of these methods is that the initial ranking vec-

tor R0 can be represented as a linear combination of the eigenvectors (u1, u2, · · · , um)

of the transition matrix A. The power method converges to the principal eigenvector

of A after many iterations.

R0 = u1 + α2u2 + · · · + αmum (2.11)

Since, for Markov chains, the first eigenvalue λ1 is 1, Rk can be written as:

Rk = AkR0 = u1 + α2λ
k
2u2 + · · ·+ αmλk

mum (2.12)

Since 1 > λ2 ≥ λ3 ≥ · · · ≥ λm, an approximation can be made by truncating the

tail of the summation.

The Aitken Extrapolation method approximates u1 and therefore R by pre-

serving two terms in the summation for Rk−2, after expressing Rk−2 as a linear

combination of u1 and u2:

Rk−2 = u1 + α2u2 (2.13)

Rk−1 = u1 + α2λ2u2 (2.14)

Rk = u1 + α2λ
2
2u2 (2.15)

26

Unlike the Aitken Extrapolation method where the expansion of Rk−2 is trun-

cated by the first two eigenvectors, the Quadratic Extrapolation method assumes

Rk−3 = u1 + α2u2 + α3u3. Rk−2, Rk−1 and Rk are expressed using u1, u2, u3, α2, α3,

λ2, λ3. With some matrix computation, u1 can be approximated.

The experiments report the Aitken Extrapolation method speeds up PageRank

calculation by about 40% and the Quadratic Extrapolation speeds up PageRank

calculation by about 60%.

2.3.3 The BlockRank algorithm

[59] presents a 3-step algorithm for speeding up the PageRank computation by

exploiting the block structure of the Web. The block structure of the Web describes

that the vast majority (about 80%) of hyperlinks are intra-host links, and only a

small portion (about 20%) are inter-host links. The intuition of the BlockRank

algorithm is that we first compute local PageRank for each host, then we aggregate

local PageRank reasonably, and we finally run standard PageRank on the global

graph using the aggregated scores as starting scores.

Figure 2.1 provides the outline of the BlockRank algorithm.

The BlockRank algorithm converges fast, as local PageRank vectors converge

quickly and it allows parallel implementation. The experiments show that Block-

Rank gives a speedup of factors up to 1.55 and 2 for two datasets respectively.

In [22, 33], other graph aggregation approaches are presented to approximate

the PageRank scores.

27

Algorithm BlockRank [59]

1. Compute local PageRank scores for each host.

2. Construct a block graph, where every node represents a block and every edge

represents a set of hyperlinks from a block to another block (or itself).

Compute the importance of hosts on this block graph.

3. Run the standard PageRank on the global graph using the weighted aggregation

of the local PageRank score as its starting vector.

Figure 2.1: The outline of the BlockRank algorithm.

2.4 Computing PageRank in a distributed system

2.4.1 Distributed system without overlaps

Recent research efforts in distributed systems have addressed the case where

the Web graph is partitioned into disjoint web sites or domains [13, 91]. In the

ServerRank algorithm [91], the Web is modeled as numerous disjoint web servers.

The hyperlinks in the Web are divided into two categories, intra-sever links and

inter-server links. Intra-server links are links between pages within a server, and

these links are used to compute a local PageRank vector on each server. Inter-server

links are links between pages in different servers, and they are used to compute

ServerRank. ServerRank measures the relative importance of the different web

servers.

The outline of the ServerRank algorithm is described in Figure 2.2.

28

Algorithm ServerRank [91]

1. Each web server constructs a web link graph based on intra-server links and

computes its local PageRank vector.

2. Web servers exchange inter-server links information and compute the Server-

Rank vector.

3. Web servers use the ServerRank vector to refine their local PageRank vectors.

4. The submitting server of the query fuses the ServerRank vector and local

PageRank vectors to get a single ranked URL list.

Figure 2.2: The outline of the ServerRank algorithm.

Step 1 and 2 seem straightforward. The purpose of Step 3 (Local PageRank

Refinement) is first to update the local PageRank computed in Step 1 by consid-

ering the ServerRank acquired in Step 2 and then to use this vector as the initial

ranking vector and to run the local PageRank algorithm for a single iteration. The

local PageRank is performed for only one iteration to avoid the convergence of the

PageRank vector back to the local PageRank vector in Step 1. Step 4 (Result Fu-

sion) merges the ranking lists from all servers into a single ranked list. The basic

idea of ServerRank is visualized in Figure 2.3, where the cycles represent disjoint

web servers, and edges in the figure represent inter-server links.

A similar approach is presented in [22]. The basic idea of [22] is to partition

the Web into equivalence classes of web pages, where a class contains all the pages

of a host. For a web graph with m hosts, a m × m transition matrix T̃ is defined,

29

Figure 2.3: The ServerRank algorithm Figure 2.4: The JXP algorithm

and the stationary distribution of dimension m for T̃ is calculated. Finally, the local

stationary distribution and the stationary distribution for T̃ are aggregated.

In [13], a ranking algebra is proposed to deal with rankings at different granu-

larity levels, which can also be applied to the aggregation of local rankings and site

rankings to get global rankings.

2.4.2 Distributed system with overlaps

There has been work on PageRank approximation in a fully decentralized

system [78], in which each peer is autonomous, and peers may overlap with each

other. In the proposed JXP algorithm, each peer computes local PageRank scores,

randomly meets other peers, gradually increases its knowledge about the global web

graph by exchanging information, and then recomputes the PageRank scores on

the local peer. This meeting and recomputation process is repeated until the peer

gathers enough information. The JXP scores converge to the true global PageRank

scores if peers eventually meet a sufficient number of times to exchange information.

The assumption is that the outdegree of each page in the global graph is known. The

system is visualized in Figure 2.4, and the outline of the JXP algorithm is described

in Figure 2.5.

30

Algorithm JXP(GA, ΛA, LA) [78]

� The input for peer A includes local graph GA, world node ΛA, and score

� list LA from GA.

1. Contact a random peer B.

2. Merge graphs GA and GB, world nodes ΛA and ΛB, and score lists LA and

LB for two peers.

3. Run PageRank on Merged graph and update LA.

4. Repeat until scores converge.

Figure 2.5: The outline of the JXP algorithm.

2.5 Estimating PageRank for a Subgraph

The problem of estimating PageRank values for a small portion of the Web

graph has received recent attention in the literature [26, 34].The goal of [26] is to

estimate the PageRank value for one target node. [34] addresses the problem of

estimating the score for a subgraph. Another paper [93] aims to do link-based

ranking on a small graph exploiting users’ access patterns.

The common approach in all of these papers is to expand the subgraph to a

supergraph and then to run PageRank on this augmented graph. They differ in the

procedure for augmenting the subgraph. In [93], besides the existing hyperlinks that

indicate recommendation, implicit recommendation links determined by mining user

access patterns are also added into the supergraph.

31

2.5.1 Estimating PageRank for one target node

In [26], the expansion proceeds backwards by following reverse hyperlinks.

PageRank scores for boundary nodes in the augmented graph that have incoming

edges from outside of the subgraph are estimated. Figure 2.6 shows the expansion of

a target node to a subgraph. Then standard PageRank is performed on this graph.

Figure 2.6: The expansion from the target node in [26].

For choosing boundary nodes, several approaches are presented. The first one

is a naive method where a subgraph is built by simply following backward links

from the target node for a fixed number of levels k, which may quickly expand to

the whole Web graph. In other approaches, a fraction of the PageRank value at one

node that will eventually reach the target node without a random jump is defined as

the influence or indegree-based influence for a page and estimated in order to choose

a proper set of pages to expand.

The experiments report a reasonable estimate of the PageRank value for the

32

target node – the relative error of a target node is between 5% and 30%.

2.5.2 Estimating PageRank for a subgraph

In contrast, [34] estimates the global PageRank on a local domain, which

is motivated by Localized Search Engines. Localized search engines focus on a

particular community, for example, all computer science related websites. This

paper presents a method of approximating the global PageRank of a local graph.

From the given local graph of size n, a supergraph of size O(n) is constructed

iteratively by selecting a set of k nodes. This supergraph has the property that the

PageRank on this supergraph is close to the true global PageRank.

When the supergraph is constructed, a page selection algorithm is used to

decide which nodes are to be included. The priority order of selecting nodes is

defined as influence, with a definition different from that of [26]. For a candidate

page j, the influence is:

influence(j) =
∑

k∈L

|fj[k] − f [k]| (2.16)

where L denotes the local domain, f denotes the PageRank of the local graph, and

fj denotes the L1-normalized PageRank of the local graph extended by page j and

restricted to the local pages.

For each candidate page j, if fj is accurately calculated, then it is extremely

expensive to give the priority order for all candidate pages. The stochastic com-

plement for each page j is constructed and utilized to estimate fj ; the stochastic

complementation theory is extensively studied in [69]. The stochastic complemen-

33

tation approach is able to give an estimation of fj with a tight lower bound of

0.

The experiments show that the stochastic complementation approach outper-

forms three other methods, random selection and outlink count, and a heuristic [29]

used to choose outgoing URLs when crawling. Running the standard PageRank al-

gorithm on a carefully selected supergraph of O(n) pages provides an estimation of

global PageRank scores that is up to 10 times better than just using local PageRank.

2.6 Updating PageRank without Global Computation

Since the Web changes constantly (about 40% of all web pages changed within

a week in a sample according to [28]), the PageRank computation faces an updating

challenge in two scenarios. The first situation is that only hyperlinks changed and no

page insertion or deletion occurs. The second situation is that, aside from hyperlink

changes, the set of pages may change as well. The problem of updating PageRank

has been studied in [27, 66].

In [27], only link evolution is considered. A single edge insertion algorithm is

proposed, and an analysis of this algorithm is provided. The approach is first to

construct a small graph G that is close to the two pages involved in a hyperlink and

models the rest of the Web with one supernode Ω. Let P denote the transition

matrix for the global graph, and the transition matrix T for the new smaller Markov

chain is defined as follows [27]:

1. For two pages k and l within G, the transition probability remains the same.

34

tkl = pkl.

2. For transition probabilities from page k in G to Ω is the summation of prob-

abilities to pages represented by Ω. tkΩ =
∑

s∈Ω pks.

3. The transition probabilities from Ω to page k in G is computed using existing

PageRank scores π and P . tΩk =
∑

s∈Ω
πs

P

s∈Ω πs
psk.

The analysis of the algorithm gives a bound on the difference between the

updated PageRank score for a page s and its obsolete score. Both experiments on

synthetic data and real web data support the conclusion that this efficient algorithm

yields excellent approximation.

An Iterative Aggregation/Disaggregation (IAD) method [85] is applied to

PageRank in [66] to update PageRank scores when either the links or the pages

are changed. The Iterative Aggregation Updating Algorithm gradually improves

the quality of the ranking vector and it is shown the ranking vector eventually

converges to the true PageRank vector.

2.7 Authority Flow Ranking: The ObjectRank Algorithm

Recently personalization attracts a lot of interests in the area of ranking [15,

51, 55, 46, 23]. Topic-sensitive PageRank [51] proposes to precompute a set of

personalized PageRank vectors and boosts the ranking quality based on the use of

multiple precomputed PageRank vectors.

ObjectRank was introduced in [15] to personalize ranking in Entity-Relation

graphs. ObjectRank [15, 53] models the entity sets and semantic connections among

35

them as a schema graph, where the authority transfer assignment is defined by the

user. PopRank [75] presents a similar idea to personalize to give a personalized

ranking for web objects. Section 2.8 provides more details about scaling personalized

search.

Let AT
OR denote the transpose of AOR. The ObjectRank vector ROR is recur-

sively defined as follows in Equation (5.3):

ROR = ǫAT
OR · ROR + (1 − ǫ)P (2.17)

In ObjectRank, the transition matrix AOR depends on the authority transfer

specified on the schema graph (Figure 5.1); it defines the authority transferred along

each edge type. To demonstrate the relationship of the ObjectRank transition ma-

trix and the PageRank transition matrix, without loss of generality we assume that

the objects of the same type are grouped together. Suppose an authority transfer

schema graph contains t types of objects.

Let Θ = {α1,1, α1,2, ..., α1,t, α2,1, α2,2, ..., α2,t, ..., αt,1, αt,2, ..., αt,t} be the vector

of authority transfer weights assigned to the semantic types. We refer to this vector

as the weight assignment vector henceforth. These terms are followed in Chapter 5

and Chapter 6.

AOR can be expressed as follows: Each entry of the transition matrix for AOR

is multiplied by the authority transfer weight for the corresponding semantic type.

AOR contains t × t submatrices.

36

AOR =

α1,1A1,1 α1,2A1,2 · · · α1,tA1,t

α2,1A2,1 α2,2A2,2 · · · α2,tA2,t

...
...

...

αt,1At,1 αt,2At,2 · · · αt,tAt,t

(2.18)

The submatrix Ap,q contains authority transfer probabilities from objects of

type p to objects of type q. Let eT (vi, vj) be the semantic type of edge (vi, vj) and

let α(eT (vi, vj)) denote the weight assignment for eT (vi, vj). OutDeg(vi, e
T (vi, vj))

is the number of outgoing edges from page vi, of type eT (vi, vj). The submatrix Ap,q

is defined as follows:

Ap,q[i, j] =

1
OutDeg(vi,eT (vi,vj))

if there is an edge from i to j,

0 otherwise.

(2.19)

2.8 Personalized Search

Personalized ranking adjusts the order of Web pages based on users’ prefer-

ences, which can be implicit or explicit. The two key ways to achieve personalization

for the PageRank algorithm are:

1. Personalize with a personalized base set. This involves selecting user-dependent

entities as the source of the authority in the graph [51, 76].

2. Personalize by adjusting the authority flow weight of the edges. This allows

users to assign different importance to different types of edges [15, 75].

37

These personalization approaches suffer from scalability issues, as these al-

gorithms are as expensive as the PageRank algorithm – they all require multiple

iterations to reach convergence. While there are numerous approaches to scale the

first type of personalization, scaling the second type of personalization remains an

open problem. Next we present the existing approaches to scale personalization.

2.8.1 Scaling personalization with a base set

Personalization of PageRank using a base set has been proposed in the original

PageRank [76]. The problem of achieving scalable personalization based on a person-

alized base set, i.e., a personalization vector, has been studied in [23, 46, 51, 57, 55].

Recall that in the PageRank definition, vector vP is the personalization vector

that replaces P . Then the personalized PageRank equation can be written as follows:

RP = ǫAT · R + (1 − ǫ)vP (2.20)

RP is the personalized PageRank vector (PPV) for personalization vector vP .

Theorem 1 (The Linearity Theorem) [51, 57] For any personalization vectors

vP1 and vP2, if RP1 and RP2 are the two corresponding PPVs, then for any constants

β1, β2 ≥ 0 such that β1 + β2 = 1,

β1RP1 + β2RP2 = ǫAT · (β1RP1 + β2RP2) + (1 − ǫ)(β1vP1 + β2vP2)

[51] is the first work to scale personalized PageRank. Haveliwala proposed to

precompute a set of topic-specific PageRank vectors, and to use these vectors to

38

generate query-specific ranking scores at query time. These results are based on the

linearity theorem, which is used to combine multiple personalization vectors.

Based on Theorem 1, [57] proposed a technique that encodes personalized

ranking vectors as partial vectors, which are shared across multiple personalized

PageRank vectors. They also presented efficient dynamic programming algorithms

to compute partial vectors and an algorithm to compute personalized PageRank

using partial vectors. In [46], an algorithm that simulates random walks is used to

precompute an index database of personalized PageRank vectors (fingerprints).

Recently [23, 55] consider personalized ranking on entity-relation graphs, how-

ever, we categorize these work as personalization with a base set instead of person-

alization with a weight assignment. The reason is that these work are all based on

the same mathematical tool – linearity theorem for personalized ranking [51, 57],

therefore, the techniques do not utilize precomputed authority flow rankings with

different weight assignments.

HubRank [23] employs query log statistics to select a small fraction of nodes,

and computes and stores fingerprints for these nodes. A small subgraph is identi-

fied at query time to form approximate personalized PageRank vectors. BinRank

[55] stores subgraphs such that any keyword query can be answered by performing

ObjectRank on one subgraph.

39

Figure 2.7: The layered graph ([90])

2.8.2 Approximation methods for personalization with a weight as-

signment

The only work that approximates authority flow rankings for personalization

with weight assignments, as far as we know, is to ues sampling techniques [90] for

lgOR [79]. lgOR is a specialization of ObjectRank. In lgOR, navigational queries are

considered. A navigational query produces a layered result graph (Figure 2.7), and

the authority scores for objects are only determined based on the scores of objects in

the previous layer. The lgOR is terminated until the scores for the target objects in

the last layer are computed. Therefore, compared to ObjectRank algorithm, which

is an iterative algorithm, lgOR algorithm is computed through just one iteration

and authority flows from the first layer to the target layer.

Since lgOR [90] deals with layered graphs, a graph-sampling technique is ap-

plied to approximate the lgOR scores. The problem is reduced to estimating a

subgraph for the result graph, such that with high confidence the relative error of

computing lgOR on the subgraph is small. lgOR considers a special type of queries,

40

navigational queries. Hence, the sampling technique applied to lgOR does not apply

to the ObjectRank which is computed on general Web graphs.

PopRank [75] applied the idea of authority flow rankings to the Web objects.

A simple simulated annealing algorithm is presented to learn a good query weight

assignment. [75] does not estimate the authority flow rankings for a weight assign-

ment as well.

Although computing personalization with a base set is well-studied, computing

authority flow ranking remains an open problem. There are few research utilizes

the precomputed authority flow rankings to approximate ranking for a new weight

assignment vector. Therefore, we study approximation methods for authority flow

rankings in this thesis.

2.9 Using Relevance Feedback for Authority Flow Ranking

Authority flow ranking has been successfully applied to different scenarios,

including bibliographic databases (ObjectRank), and biological databases. These

papers assumed that the user or domain expert provide weight assignment vectors.

An extension is to use feedback from users to determine the weight assignment

vector [14, 89].

Relevance feedback has been widely used to improve result quality in Infor-

mation Retrieval [38, 81, 82]. Query expansion technique plays the dominant role

in relevance feedback, where keywords are added to the original query based on the

user’s feedback.

41

[89] proposed two types of query reformulation for ObjectRank: Content-based

Reformulation and Structure-based Reformulation. The Structure-based reformula-

tion adjusts the weight assignment vector for the schema graph. Firstly an explain-

ing subgraph is constructed, which contains all edges that transfer authority to a

given page. Intuitively, in this explaining subgraph, if the edges of a particular edge

type have high probability to be followed in random walk, then the weight for this

edge type is increased. The original weight for an edge type is adjusted based on

this intuition.

[14] considers a different random walk from ObjectRank, where the probabil-

ities of following outgoing links depend on the weight assignments solely. While in

ObjectRank, the probabilities of following outgoing links depend on two factors: the

weight assignment and the outdegree of each node (See Equation 5.1 and 5.2). In

[14], a dummy node d is added and dummy edges are added between d and every

other node in the graph. To learn the authority flow weight assignments on differ-

ent edge types, [14] defines an optimization problem. The ranking order of a pair of

pages is used to enforce the amount of authority flow to the two pages, which has

an impact on the weight assignment vector.

42

Chapter 3

Estimating Rank for a Subgraph

We present a framework of an exact solution and an approximate solution,

IdealRank and ApproxRank, for computing PageRank on a subgraph. The sub-

graph ranking problem has been motivated by a variety of applications, including

ranking for a focused crawler, personalized search, the updated ranking when the

Web is changed, and PageRank computation in distributed system like peer-to-peer

networks. These applications identify a subgraph and the ranking scores for the

subgraph are needed. The details of these applications are described in Section 1.1.

For both IdealRank and ApproxRank algorithms, the global graph and the

local graph are given and the local graph is contained in the global graph. The

IdealRank and ApproxRank framework can be used to compute ranking for the

local graph. It is also possible to execute the global PageRank algorithm to compute

ranking scores for the global graph. However, motivated by multiple applications

that focus on a subgraph, the cost of IdealRank and ApproxRank for ranking a

subgraph is orders of magnitude cheaper than applying the global PageRank, while

IdealRank achieves the exact ranking and ApproxRank achieves an approximation

with bound.

If the global graph is not available, depending on the amount of available

information about the global graph, there are a few possibilities for computing

43

ranking on a subgraph. The experimental results are reported in Chapter 6 for

different algorithms.

• When no information about the global graph is given, local PageRank is ap-

plied on the local graph.

• In some cases, partial information about the global graph is given. e.g. for

each local page, we know if it is connected to some external page in the global

graph. LPR2 algorithm (See Section 3.2.3) can be applied.

• In some cases, the neighborhood graph around the local graph is available. e.g.

the local graph can be expanded to a supergraph. SC algorithm [34] (details

in 2.5.2) can be applied.

• When the global graph is given, we can apply IdealRank and ApproxRank to

compute ranking on a subgraph.

The IdealRank algorithm assumes the scores of external pages are known, and

the IdealRank scores for pages in the local graph converge to the true PageRank

scores. The ApproxRank is an approximation with bound, without assuming the

scores of external pages. The experiments with real and synthetic data show that

ApproxRank provides a good approximation to PageRank for a variety of subgraphs.

The chapter is organized as follows. In Section 3.1, we present the IdealRank

algorithm and show that IdealRank scores converge to the true PageRank scores

which are obtained through global computation. In Section 3.2, we present the Ap-

proxRank algorithm that estimate PageRank scores for a subgraph, and we conduct

44

error analysis for the ApproxRank scores. These results are presented in [92].

3.1 IdealRank Approach

We formally define the IdealRank algorithm to compute PageRank scores for

a local graph. Our approach is inspired by research on collapsing matrices with the

same eigenvector [52].

Consider two graphs; a global graph of size N , and a local graph of size n.

The local graph is a subgraph of the global graph. The pages in the local graph are

called local pages while pages in the global graph and that are not in the local graph

are called external pages. In the IdealRank problem, we assume that PageRank

scores of all external pages in Λ are known. This assumption will be relaxed in the

next section where we present an approximate solution. The goal is to provide the

true PageRank for the local graph without running PageRank on the global graph.

Table 3.1 lists the symbols used to define our algorithms.

Symbol Meaning

Λ External node, the artificial node representing

all external pages.

Gl A subgraph of the Web with n pages

Gg The global Web graph with N pages.

Ge The extended local graph with n + 1 pages.

Table 3.1: Symbols used by algorithms

45

3.1.1 The IdealRank algorithm

IdealRank performs a random walk on a modified local graph called the ex-

tended local graph, where an external node Λ is added to the local graph. Λ represents

the set of pages that are not local. The transition matrix probabilities of IdealRank

are derived from the transition matrix of PageRank for the global graph.

Recall that in [91], an artificial node represents the external world. There are

edges between the artificial node and local nodes based on the global Web graph.

However, this solution cannot distinguish between the case of one link or multiple

links between a local page and the external pages as seen in the following example:

Let Figure 3.1 be a global graph. Node A,B,C, and D are local pages, and

node X, Y and Z in the cloud are external pages. Figure 3.2 provides an example of

adding an artificial external node to represent the external pages. Edges are added

from local pages to the external node. However, there is no strategy to adjust

the probability flow in the random walk. Ideally, the random walk should reflect

that each edge may represent multiple edges in the global graph. When computing

the standard PageRank algorithm on this graph, the probability flow from a page is

proportional to the inverse of its outdegree. Page C which has 3 incoming edges from

the external pages is treated similarly to page D which has only 1 incoming edge

from the external pages. Intuitively, however, we should expect a higher probability

of following links from the external pages to page C. Similarly, the probability

of following links from page A to Λ is 1/3. This too is lower than the transition

probability based on the global graph.

46

B

A

C

D

X

Y

Z

Figure 3.1: A global

graph of both local

pages and external

pages.

D

C

A

B

Λ

Figure 3.2: An

extended local

graph without

a strategy to

adjust transition

probabilities

B

A

D1

1/6

1

7/18

C1/2

4/9

1/2

1/2

1/4

1/4

Λ

Figure 3.3: An

extended local

graph marked

with transition

probabilities in

ApproxRank

IdealRank addresses this shortcoming with the following solution: The first

step is to add an external node Λ to the subgraph to represent all external pages.

The second step is to construct the extended local graph Ge, the Λ enriched graph

of size n + 1. There is an edge from Λ to a local page in Ge if there is an edge from

an external page to that local page. The same hold for edges out of local pages.

Similarly, there is an edge from Λ to Λ if there is an edge between external pages.

The next step is to define a transition matrix Aideal and a personalization vector

Pideal. The details will be discussed in Section 3.1.2. Finally, a random walk is

performed on Ge. The IdealRank vector Rideal is defined as follows:

47

Rideal = ǫAT
ideal · Rideal + (1 − ǫ)Pideal (3.1)

Figure 3.4 is the IdealRank algorithm outline:

Algorithm IdealRank(Gl, Gg)

1. Add external node Λ to Gl.

2. Create edges associated with Λ and get Ge.

3. Assign values to Pideal and Aideal.

4. Perform a random walk on the extended local graph according to

Formula (3.1).

Figure 3.4: The outline of the IdealRank algorithm.

3.1.2 Aideal and Pideal

We define an (n + 1) × (n + 1) transition matrix Aideal and a length (n + 1)

personalization vector Pideal. Let A represent the N × N transition matrix for

PageRank on the global graph. Entry Ai,j has the value of the inverse outdegree

of page i, if there is an edge (i, j); the value is the probability of a random surfer

following this edge from i. Without loss of generality, we consider the local pages to

be the first contiguous n pages in A and the external pages are indexed from n + 1

to N in A.

Assume that the PageRank scores for all external pages are known. The values

are {R[n+1], R[n+2], · · · , R[N]}, respectively. Let EXTSum =
∑N

i=n+1 R[i]. Aideal

48

is defined as follows, based on the entries in the original PageRank transition matrix

A:

Aideal =

A1,1 · · · A1,n

N
∑

i=n+1

A1,i

...
...

...

An,1 · · · An,n

N
∑

i=n+1

An,i

N
∑

j=n+1

R[j]Aj,1

EXTSum
· · ·

N
∑

j=n+1

R[j]Aj,n

EXTSum

N
∑

j=n+1

R[j]
N
∑

i=n+1

Aj,i

EXTSum

(3.2)

Next we explain the elements in Aideal. These values are as follows:

1. The n × n submatrix at upper left is identical to the corresponding elements

in transition matrix A for the global graph. They represent the probability of

transition between edges in the local graph.

2. The n×1 submatrix at upper right represents the probability flow from a local

page to the node Λ. We note that the probability of reaching Λ is the sum of

the probability of reaching any external page from the local page. For local

page k, the value is
∑N

i=n+1 Ak,i.

3. The 1 × n submatrix at lower left corresponds to the probability flow from Λ

to local pages. For local page k, the value is
PN

j=n+1
R[j]Aj,k

EXTSum
.

4. The entry at the lower right corner denotes the probability flow from Λ to Λ.

The last row has entries that are each a weighted sum of probabilities summed

49

over all external pages. The weight is determined by the PageRank score of the

external page. This is a key feature of Aideal and will be discussed next.

We define Aideal formally as follows: Aideal = Q1AQ2, where Q1 is an (n+1)×N

matrix and Q2 is an N × (n+1) matrix. Let Q2 be an N × (n+1) matrix as follows:

In B

C D

(3.3)

where In is an n × n identity matrix, B is an n × 1 0-matrix, C is a (N − n) × n

0-matrix, and D is a (N − n) × 1 matrix with all 1’s. The effect of AQ2 on the

ranking vector is to aggregate the authority flow from local pages to all external

pages, which indicates the authority goes to Λ.

Let Q1 be the following (n + 1) × N matrix:

In CT

BT E

(3.4)

where In is an n × n identity matrix, CT is an n × (N − n) 0-matrix and BT

is a 1 × n 0-matrix.

The matrix of interest is E, a 1 × (N − n) matrix. It considers the PageRank

scores for all external pages. Recall that EXTSum is the sum of PageRank scores

for all external pages, EXTSum =
∑N

i=n+1 R[i]. Then, E can be expressed as

follows:

E =

(

R[n+1]
EXTSum

, R[n+2]
EXTSum

, · · · , R[N]
EXTSum

)

(3.5)

The idea of multiplying the values of entries in A with the two matrices Q1

and Q2, where Q1 derived from the ranking vector for external pages, is key to the

50

approach of Aideal. It has the effect of distributing the probability flow from the

external nodes, in a manner that is proportional to the importance of each of the

external pages in the original PageRank vector.

Recall that the personalization vector in the original PageRank is defined as

a uniform vector P = [1
n
]n×1. Instead, for IdealRank we define the personalization

vector Pideal according to the number of external pages and total number of pages

in the graph. More specifically, the i-th entry of Pideal, Pideal[i] can be expressed as

follows:

Pideal[i] =

1
N

if page i is local,

N−n
N

if page i is the external node Λ.

(3.6)

3.1.3 Convergence of IdealRank

Let Rideal be the final ranking vector of IdealRank, where the first n elements

are scores for local pages and the (n + 1)-th element is the score for the external

node Λ. Let R be the PageRank vector for the global graph of N pages. We show

that the scores of first n elements are identical to the true PageRank scores. The

score for the (n + 1)th element, Λ, converges to the sum of true PageRank scores

for all external pages.

Theorem 2 For local pages with indices i = 1, 2, · · · , n, Rideal[i] = R[i]. For Λ,

Rideal[n + 1] =
∑N

i=n+1 R[i].

Proof. Let R be the true PageRank vector such that R = ǫAT · R + (1 − ǫ)P , i.e.,

R is the converged stationary distribution for A. Let R′ = QT
2 R be a vector with

51

n + 1 entries. We also know that R = QT
1 R′. It is obvious that R′[i] = R[i] for first

n elements and R′[n + 1] =
∑N

i=n+1 R[i]. We will show that R′ is the IdealRank

vector.

We know that ǫAT R + (1 − ǫ)P = R. Next consider a left multiply with QT
2

to obtain the following:

ǫAT R + (1 − ǫ)P = R ⇒

QT
2 ǫAT R + QT

2 (1 − ǫ)P = QT
2 R ⇒

ǫQT
2 AT QT

1 R′ + (1 − ǫ)QT
2 P = QT

2 R ⇒

ǫ(Q1AQ2)
T R′ + (1 − ǫ)Pideal = R′ ⇒

ǫAidealR
′ + (1 − ǫ)Pideal = R′

(3.7)

Since Aideal is stochastic and Markov Chain defined by IdealRank is irreducible

and aperiodic, there is a unique stationary distribution for Aideal. Therefore, R′ =

Rideal.

The IdealRank algorithm addresses several applications. One is where some

subgraph of the Web graph has been updated. A second case is when the personal-

ized authority transfer is limited to the subgraph. In these cases, the knowledge of

PageRank scores can be potentially relied on to estimate new ranking scores.

3.2 The ApproxRank algorithm

Unlike the previous scenario where PageRank values for external pages are

known, we now consider scenarios where the PageRank scores are not known a priori.

To cover this situation, our framework has an approximate solution ApproxRank.

52

The key difference is that for ApproxRank, the algorithm is not able to differentiate

the (previously weighted) contribution of authority from each individual external

page (since these PageRank scores are unknown). Instead, ApproxRank will consider

the authority flow from external pages assuming they are equally important. We

analyze the L1 distance between IdealRank scores and ApproxRank scores of the

subgraph and reveal that it is within a constant factor of L1 distance between

the true PageRank scores and uniform scores of the external pages. We will show

through experiments that ApproxRank is a good approximation and is superior to

the best existing approach.

ApproxRank estimates the PageRank scores for web pages within a local graph

efficiently. Google reported that they have indexed 1 trillion pages in July 2008

[6]. However, in different applications such as focused crawler, a user may be only

interested in a subgraph of size of a few thousand pages. ApproxRank applies when

the global computation is expensive and the user does not care about the external

pages. ApproxRank avoids the cost of the global computation and produce an

approximation which guarantees quality. The suitable applications include focused

crawler, personalized search, and meta-searcher (see Section 1.1).

3.2.1 The ApproxRank algorithm

The ApproxRank vector Rapprox is defined as follows:

Rapprox = ǫAT
approx · Rapprox + (1 − ǫ)Pideal (3.8)

ApproxRank adopts the same personalization vector as IdealRank. It however,

53

defines its own transition matrix Aapprox.

3.2.2 Aapprox definition

Aapprox is an (n + 1) × (n + 1) matrix. It is defined as follows:

Aideal =

A1,1 · · · A1,n

N
∑

i=n+1

A1,i

...
...

...

An,1 · · · An,n

N
∑

i=n+1

An,i

N
∑

j=n+1

Aj,1

N−n
· · ·

N
∑

j=n+1

Aj,n

N−n

N
∑

i=n+1

N
∑

j=n+1

Ai,j

N−n

(3.9)

Aapprox is different from Aideal in the last row (see Section 3.1.2), since Ideal-

Rank does not utilize knowledge about PageRank scores of external pages in the

first n rows. For the first n entries in the last row, the value represents the (aver-

age) probability flow accumulated from (N − n) external pages to each local page.

The last entry in this n-th row of the matrix is the (average) probability flow from

external pages to other external pages. Similar to Aideal = Q1AQ2, Aapprox can be

formally defined as Aapprox = Q′
1AQ2, where the vector E is replaced by a vector

Eapprox in Q′
1:

Eapprox =

(

1
N−n

, 1
N−n

, · · · , 1
N−n

)

(3.10)

In Aapprox, the values at the last row are as follows:

1. For the first n values, (1 <= k <= n), the probability from Λ to a local page

54

k is assigned the summation of flow from all external pages to k, divided by

the number of external pages. For local page k, it is
PN

j=n+1
Aj,k

N−n
.

2. For the (n + 1)-th value, the probability for the self-loop edge is determined

by the total authority flow among external pages, divided by the number of

external pages.

Given the global graph example in Figure 3.1, the probabilities assigned by

Aapprox are shown in Figure 3.3. We provide some examples of edge weight cal-

culation following these rules. According to rule 1, the authority flow on edge

AB, AC, CB, BD, CD, DA are the outdegree inverse. Since A points to page

X, Z, the authority flow on edge (A, Λ) is 1/2. The authority flow on edge

(Λ, C),
1

DX
+ 1

DY
+ 1

DZ

3
=

1

3
+ 1

2
+ 1

2

3
= 4

9
. The self-loop edge authority flow will be

2

DX
+ 1

DY

3
=

2

3
+ 1

2

3
= 7

18
.

The ApproxRank algorithm reduces the computation cost of global PageRank

dramatically. Let Eg denote the number of edges in the global graph and El denote

the number of edges in the extended local graph. Using the cheapest power method

for eigenvectors, the runtime for the PageRank algorithm is O(Eg) and ApproxRank

complexity is O(El). Note that the constant involved in the big O notation is larger

for global PageRank as well. Since El is usually a small fraction of Eg, ApproxRank

would bring significant runtime savings.

Another advantageous quality about ApproxRank is that it is suitable to adopt

precomputation for various subgraphs. With the same global graph, Aapprox can be

figured out easily from the difference between the local values and the global values.

55

This is especially beneficial for applications where there are multiple subgraphs.

ApproxRank scores converge to a unique vector Rapprox. There are two rea-

sons. First, the transition matrix AT
approx is a column stochastic matrix, as the sum

of each column is 1. Second, since we complement the random walk with jumps from

dangling pages, the Markov Chain we defined is irreducible and aperiodic. Approx-

Rank satisfies the two conditions of being irreducible and aperiodic of the Ergodic

Theorem for Markov chains [60]. Next we will investigate how close is Rapprox to

Rideal, which we have shown to be the true PageRank scores for local pages.

3.2.3 Error analysis of ApproxRank ranking vector Rapprox

In this section we provide important properties of ApproxRank scores through

iterations. We show that the L1 distance between IdealRank scores and ApproxRank

scores of the subgraph is within a constant factor of L1 distance between the true

PageRank scores and assumed scores of the external pages. This relationship can

be utilized to improve ApproxRank algorithm, which will be our future work. Our

experiments show that, however, even assume that the external pages are equally

important, ApproxRank behaves well and produces comparable results to existing

approach. To our best knowledge, similar analysis has not been conducted in pre-

vious work for PageRank estimation [34, 26, 91]. There are analysis results of the

same flavor through different approaches in the area of analysis of PageRank [18, 74]

and in the area of updating PageRank scores [27].

Let Rideal and Rapprox be the ranking vectors from IdealRank and ApproxRank

56

respectively, each with length n + 1, where the (n + 1)th elements in vectors are

scores for the external node Λ. We abuse notations and let Rideal and Rapprox be the

subvector of the first n elements, as we are interested in accuracy of ApproxRank

for the n local pages. Let Rm
ideal and Rm

approx be the ranking vectors after the m-th

iteration from IdealRank and ApproxRank.

Let E and Eapprox in Equation (3.5) and (3.10) be the vector used to define

Aideal and Aapprox. Both E and Eapprox are vectors of length N − n, where each

element denotes the relative importance of N − n external pages. We note that we

index these elements with n+1, · · · , N to reference the scores for the corresponding

external pages.

Theorem 3.2.3 states that after m iterations,

‖ Rm
ideal − Rm

approx ‖1≤ (ǫm + ǫm−1 + · · · + ǫ) ‖ E − Eapprox ‖1

When the number of iterations goes to infinity, this becomes

‖ R∞
ideal − R∞

approx ‖1≤
ǫ

1 − ǫ
‖ E − Eapprox ‖1

This shows that the accuracy of ApproxRank is dependent on the knowledge of

relative importance of external pages. When ǫ is set to be 0.85, which is usually the

case, the error of ApproxRank is bounded by a constant factor of 5.67 of the error

of Eapprox.

We first derive the base case and recurrence relation for the L1 distance be-

tween ApproxRank ranking vector and IdealRank ranking vector. Then an error

bound are obtained based on a priori error of the external pages in Theorem 3.2.3.

57

Lemma 3.2.1 After the first iteration, the ApproxRank ranking vector R1
approx sat-

isfies:

‖ R1
ideal − R1

approx ‖1≤ ǫ ‖ E − Eapprox ‖1

Proof.

‖ R1
ideal − R1

approx ‖1

=
∑n

k=1 |R
1
ideal[k] − R1

approx[k]|

=
∑n

k=1 |ǫ
∑n

i=1 Aik · 1 + ǫ
∑N

j=n+1 AjkE[j] + (1 − ǫ) 1
N

−ǫ
∑n

i=1 Aik · 1 − ǫ
∑N

j=n+1 AjkEapprox[j] − (1 − ǫ) 1
N
|

= ǫ
∑n

k=1 |
∑N

j=n+1 Ajk(E[j] − Eapprox[j])|

≤ ǫ
∑n

k=1

∑N
j=n+1 Ajk|E[j] − Eapprox[j]|

≤ ǫ
∑N

j=n+1

∑n
k=1 Ajk|E[j] − Eapprox[j]|

≤ ǫ
∑N

j=n+1 |E[j] − Eapprox[j]|

≤ ǫ ‖ E − Eapprox ‖1

To derive the inequality, we first express the L1 distance based on its definition,

then calculate R1
ideal[k] and R1

approx[k] assuming that the initial vectors for IdealRank

and ApproxRank are the same (e.g. 1) for local pages. Because transition matrix A

is row stochastic,
∑n

k=1 Ajk ≤ 1. The definition of L1 distance concludes the proof.

Next we explore a recurrence relation for the L1 distance between Rapprox

and Rideal after m iterations. Lemma 3.2.2 shows that after each iteration, the L1

distance deviate not too much.

58

Lemma 3.2.2 After an arbitrary positive integer m > 1 iterations, we have the

following recurrence relation:

‖ Rm
ideal − Rm

approx ‖1 ≤ ǫ ‖ Rm−1
ideal − Rm−1

approx ‖1 +ǫ ‖ E − Eapprox ‖1

Proof. Albeit more terms involved, the proof follows the same vein with the base

case in Lemma 5.7.1.

‖ Rm
ideal − Rm

approx ‖1

=
∑n

k=1 |R
m
ideal[k] − Rm

approx[k]|

=
∑n

k=1 |ǫ
∑n

i=1 Aik · R
m−1
ideal[i] + ǫ

∑N
j=n+1 AjkE[j] + (1 − ǫ) 1

N

−ǫ
∑n

i=1 Aik · R
m−1
approx[i] − ǫ

∑N
j=n+1 AjkEapprox[j] − (1 − ǫ) 1

N
|

= ǫ
∑n

k=1 |
∑n

i=1 Aik · (R
m−1
ideal[i] − Rm−1

approx[i]) +
∑N

j=n+1 Ajk(E[j] − Eapprox[j])|

≤ ǫ
∑n

k=1 |
∑n

i=1 Aik · (R
m−1
ideal[i] − Rm−1

approx[i])| + ǫ
∑n

k=1 |
∑N

j=n+1 Ajk(E[j] − Eapprox[j])|

≤ ǫ
∑n

k=1

∑n
i=1 Aik|R

m−1
ideal[i] − Rm−1

approx[i]| + ǫ
∑n

k=1

∑N
j=n+1 Ajk|E[j] − Eapprox[j]|

≤ ǫ
∑n

i=1

∑n
k=1 Aik|R

m−1
ideal[i] − Rm−1

approx[i]| + ǫ
∑N

j=n+1

∑n
k=1 Ajk|E[j] − Eapprox[j]|

≤ ǫ
∑n

i=1 |R
m−1
ideal[i] − Rm−1

approx[i]| + ǫ
∑N

j=n+1 |E[j] − Eapprox[j]|

≤ ǫ ‖ Rm−1
ideal − Rm−1

approx ‖1 +ǫ ‖ E − Eapprox ‖1

Theorem 3.2.3

‖ Rm
ideal − Rm

approx ‖1≤ (ǫm + ǫm−1 + · · · + ǫ) ‖ E − Eapprox ‖1

59

Proof. The proof is straightforward by combining Lemma 5.7.1 and Lemma 3.2.2.

‖ Rm
ideal − Rm

approx ‖1

≤ ǫ(ǫ ‖ Rm−2
ideal − Rm−2

approx ‖1 +ǫ ‖ E − Eapprox ‖1) + ǫ ‖ E − Eapprox ‖1

≤ ǫm−1 ‖ R1
ideal − R1

approx ‖1 +(ǫm−1 + ǫm−2 + · · ·+ ǫ) ‖ E − Eapprox ‖1

≤ (ǫm + ǫm−1 + · · ·+ ǫ) ‖ E − Eapprox ‖1

When PageRank scores of external pages are not known, ApproxRank esti-

mates the PageRank scores for local pages. We provide important properties of

ApproxRank scores. This bound shows that the quality of ApproxRank depends

on the accuracy of estimation of external page ranking scores. If we start with a

good estimation for external scores, we may approach a better approximation in

ApproxRank.

Although ApproxRank is designed to efficiently compute ranking for a sub-

graph, ApproxRank can be personalized without any extra effort, for personaliza-

tion with a base set (See Section 2.8). In ApproxRank, the personalization vector

Pideal can be adjusted based on the users’ preferences, and the algorithm remains

unchanged and the bound for ApproxRank still holds.

ApproxRank exploits the global graph structure to produce an accurate ap-

proximation, as the outdegrees for local pages and external pages are used in Ap-

proxRank transition matrix. If the outdegrees for external pages are not available,

there exists a similar approximation method LPR2 [91].

The LPR2 algorithm is a component of the ServerRank algorithm. For a

subgraph of size n, an artificial page ξ is added to construct a local graph with n+1

60

pages. If there is an edge connecting local page i to an out-of-domain page, then

page i and ξ are connected in the constructed graph. The standard PageRank is

computed on this graph. The LPR2, however, does not have any quality bound.

We compare ApproxRank and LPR2 in Chapter 4.

61

Chapter 4

The Evaluation for ApproxRank

Note that IdealRank is of theoretical interests and not applicable for estimat-

ing rank for a subgraph where the PageRank scores of the external pages are not

known a priori. Therefore, we limit our experimental evaluation in this chapter to

ApproxRank.

4.1 Experiment Description

To evaluate our approach, we consider two goals in experiments. The first goal

is to compare the ApproxRank with the stochastic complementation (SC) approach

[34], which is the best existing approach for the problem. The second goal of exper-

iments is to study the effect of size and type of the subgraphs on accuracy of the

ApproxRank vector.

Ideally we would run experiments on the whole web graph, which is obviously

infeasible. In choosing appropriate datasets, we first surveyed a few recent ranking

papers and we list the key characteristics of their datasets in Table 4.1. We will

take a similar approach of crawling a relatively small portion of the Web, and let it

reflect the whole Web.

We consider the following three types of subgraph in our experiments:

• TS subgraph: The first type of subgraph is a topic specific subgraph.

62

Paper
data #pages #links

description (million) (million)

[34]
“edu”: crawl of 100 CS domains 4.7 22.9

“politics”: crawl under politics hierarchy 4.4 17.3

[75] web objects including papers, authors etc 1.65 7

[78]
Amazaon.com data 0.055 0.237

Web crawl 0.103 1.63

[91]

A breadth first search

crawl within domain 1.05 4.98

www.standford.edu

Table 4.1: Dataset characteristics from recent ranking papers.

• DS subgraph: This type of subgraph is a domain specific subgraph, where

each subgraph contains all pages from the domain and hyperlinks between

local pages within the local domain.

• BFS subgraph: This subgraph is constructed by a Breadth First Search

(BFS) crawler which starts from a seeded URL. The crawler may follow hy-

perlinks and fetch Web pages across multiple domains.

For ApproxRank and PageRank implementation, we set the damping factor ǫ

to be 0.85. The convergence of the algorithms is identified when the absolute value

of the L1 norm is less than 0.00001. For SC experiments for a subgraph of size n,

we use the similar setting in [34] and expand the subgraph for 25 iterations to select

another n external pages. The experiments were run on a Solaris machine with 12

63

GB RAM.

4.2 Evaluation Method

We compute the PageRank vector for the global graph. This ranking vector

for the global graph is then limited to pages in the subgraph, denoted by ranking

vector R1. Let R2 be the PageRank estimation on the local graph. We evaluate

the difference between R1 and R2. Without considering the actual scores, these two

ranking vectors produce two ranked list σ1 and σ2.

We use two ranking metrics in our experiments. The SC approach [34] reported

on the L1 distance. The L1 distance is the absolute value of the differences between

the PageRank estimation and the global PageRank scores, for the subgraph.

‖ R1 − R2 ‖1= Σn
i=1|R1[i] − R2[i]|

Other research [78, 37] use the Spearman’s Footrule distance to measure the

success of their PageRank approximations. Thus, we also report on the Spearman’s

Footrule distance between the ApproxRank vector σ2 and the global PageRank

vector σ1.

Note that there may be a substantial number of tied pages with the same score.

A ranking with ties is referred to as a partial ranking. We consider an extension of

the Spearman’s Footrule distance for ranking with ties [43].

The set of pages in ties is called a bucket. Each list σ1, and σ2 can be viewed

as ranked buckets B1, B2, · · · , Bt. The bucket position for bucket Bi, pos(Bi), is

64

defined as follows:

pos(Bi) = (
∑

j<i

|Bj|) +
|Bi| + 1

2

Intuitively, pos(Bi) is the average location within the bucket. The position for a

page x, σ(x) in list σ is assigned the bucket position for B where x belongs to B.

Spearman’s Footrule distance for two partial rankings σ1 and σ2 is defined as

follows:

F (σ1, σ2) =
Σn

i=1|σ1(i) − σ2(i)|

⌊|σ1|2/2⌋

.

We use the following symbols in our figures and tables:

• ApproxRank is labeled (N).

• The first baseline algorithm, local PageRank, is labeled (�).

• The second baseline algorithm, LPR2, is labeled (•). See Section 3.2.3

• SC is labeled (�).

4.3 Performance on the TS Subgraphs

We conduct experiments on the same dataset used by the SC approach and

compare the distance from the global PageRank for the two approaches. The dataset

we consider is labeled politics. Starting from the set of pages under the “politics”

hierarchy in the dmoz open directory project [7], the dataset is a crawl of pages up to

four links away from the set of seeded pages. This dataset contains 4.4 million pages

and 17.3 million links. Within the politics dataset, we consider the following three

65

TS subgraphs, liberalism, conservatism, socialism. These subgraphs pages are

identified by their corresponding dmoz categories, as well as by crawling to all pages

within three links.

subgraph

SC (KDD) SC (Implemented) ApproxRank SC (Implemented) ApproxRank

L1 distance L1 distance L1 distance Spearman’s Spearman’s

Footrule Footrule

conservatism 0.0496 0.0476 0.0450 0.0632 0.0255

liberalism 0.0622 0.0733 0.0494 0.0917 0.0293

socialism 0.04318 0.0442 0.104 0.0316 0.0193

Table 4.2: The distance comparison for TS subgraphs on the Politics dataset.

We report on the L1 distance and the Spearman’s Footrule distance for SC and

ApproxRank in Table 4.2. We note that we have two values for the L1 distance for

SC. The values in column SC (KDD) were reported in [34] and SC (Implemented)

was our implementation of SC. Since the SC approach expands subgraphs based

on the influence scores of external pages, which may have ties, it is possible that a

subgraph is expanded to different supergraphs. This explains our SC implementation

may produce different L1 distance compared to results in [34].

For the L1 distance, ApproxRank has slightly superior behavior to SC for

the subgraphs liberalism and conservatism. SC outperforms ApproxRank for

socialism. For all the subgraphs reported in Table 4.2, ApproxRank significantly

outperforms SC for the Spearman’s Footrule distance value.

To summarize, ApproxRank shows similar (sometimes superior) behavior to

SC for the L1 distance and outperforms SC for the Spearman’s Footrule distance.

66

We note that in many applications, e.g., Top-K query answering, the accuracy of

the ordering (measured by Spearman’s Footrule distance) is more important than

the accuracy of the scores (measured by L1 distance).

4.4 Performance on the DS Subgraphs

Next, we present results of experiments on dataset AU. We report on the

Spearman’s Footrule distance on each of the DS subgraphs from the AU dataset for

ApproxRank, SC, and the two baseline algorithms, in Table 4.3. The performance

of ApproxRank (N), in the last column, is typically an order of magnitude better

compared to local PageRank (�) and significantly outperforms the SC (�) and LPR2

(•) – the distance values are at least 5 times smaller.

In AU dataset, the global graph consists of 38 domains and there are 3884199

pages and 23898513 links. Table 4.3 lists 12 domains in ascending order of number

of pages in AU dataset. The second column, (%) of global graph, reports on the

size of the domain as a percentage of the global graph; the size ranges from 0.35%

to 10.42%. We note that this is an independent variable, i.e., the domains are

pre-defined.

First, we observe that as the size increases (as a percentage of the global

graph), the distance decreases, for all algorithms. For example, the first row of

Table 4.3 is domain acu.edu.au which is 0.35% of the global graph. The distance

for local PageRank is as poor as 0.19171 whereas the distance for ApproxRank is

0.012112. The last row is domain anu.edu.au which is 10.42% of the global graph.

67

(%) of Average local

Domain global PageRank SC (�) LPR2 (•) ApproxRank

graph outdegree (�) (N)

acu.edu.au 0.35 4.71 0.19171 0.15654 0.10938 0.012112

bond.edu.au 0.50 5.31 0.11049 0.09679 0.09102 0.013611

canberra.edu.au 0.66 5.92 0.10839 0.09197 0.07839 0.012554

cdu.edu.au 0.75 8.74 0.11999 0.09418 0.07898 0.012589

ballarat.edu.au 0.82 5.80 0.07317 0.06471 0.05762 0.006625

cqu.edu.au 0.95 3.80 0.11344 0.09033 0.06722 0.011167

csu.edu.au 2.58 4.26 0.07583 0.05745 0.04826 0.008273

adelaide.edu.au 2.91 5.27 0.08901 0.08321 0.06970 0.009757

curtin.edu.au 2.91 5.55 0.05306 0.03118 0.02771 0.005799

jcu.edu.au 5.04 4.44 0.04823 0.02957 0.02719 0.004614

monash.edu.au 8.45 6.54 0.04101 0.02048 0.02022 0.003934

anu.edu.au 10.42 5.03 0.04516 0.02446 0.02760 0.004945

Table 4.3: The Spearman’s Footrule distance for DS subgraphs on the AU dataset.

68

The distance for local PageRank has now improved to 0.04516 while the distance

for ApproxRank is 0.004945.

The second and more interesting observation is that based on the Spearman’s

Footrule distance, SC shows poor accuracy of ranking compared to ApproxRank

The performance of SC lies between LPR2 and local PageRank in these domains.

For example, the distance for SC ranges from 0.02048 to 0.15654; it is similar to

the distance for LPR2 which ranges from 0.02022 to 0.10938. In contrast, the

corresponding distances for ApproxRank is significantly better (distance is less) and

ranges from 0.003934 to 0.013611.

To summarize, ApproxRank significantly outperforms SC and both baseline

algorithms for the DS subgraphs.

Below we study quality of ApproxRank with respect to top K objects. Since

users often are only concerned about the query answers that are ranked high, the

properties of the top K objects are often studied. We report the precision of top K

objects for all four algorithms in Table 4.4, where we consider the different K value

and different subgraphs for ApproxRank.

The experiments are conducted on three DS subgraphs: acu.edu.au, adelaide.

edu.au, anu.edu.au. The size of the subgraphs as a percentage of the global graph

varies from 0.35% to 10.42%. For each subgraph, we consider different top K values,

(10, 50, 100, 200, 500, 1000).

Among these four algorithms, local PageRank and PR2 have similar perfor-

mance. SC is slightly superior and ApproxRank’s performance is more robust. For

instance, for domain acu.edu.au, the precision of ApproxRank top 10 objects is 0.8,

69

Domain
(%) of

top K
local

SC LPR2 ApproxRank

global graph PageRank

acu.edu.au 0.35

10 0.0 0.0 0.0 0.8

50 0.3 0.32 0.3 0.7

100 0.44 0.47 0.44 0.74

200 0.515 0.545 0.515 0.745

500 0.632 0.656 0.632 0.864

1000 0.715 0.742 0.715 0.94

adelaide.edu.au 2.91

10 0.1 0.2 0.1 0.8

50 0.2 0.52 0.2 0.86

100 0.3 0.6 0.29 0.84

200 0.395 0.545 0.345 0.795

500 0.494 0.57 0.458 0.796

1000 0.631 0.696 0.615 0.861

anu.edu.au 10.42

10 0.1 0.1 0.1 0.2

50 0.38 0.7 0.38 0.88

100 0.35 0.7 0.35 0.84

200 0.495 0.75 0.49 0.88

500 0.666 0.776 0.652 0.87

1000 0.745 0.812 0.713 0.882

Table 4.4: The precision of top K lists for DS subgraphs on the AU dataset.

70

indicating that among the top 10 objects of ApproxRank, there are 8 top-10 objects

from the real PageRank. The precision of the other three algorithms is 0, indicating

the top 10 objects from these algorithm do not include any top-10 objects from the

real PageRank.

For each subgraph in Table 4.4, when the top K value is increased, the precision

of each algorithm is generally increased. However, the amount of the increase for

different algorithms is different – ApproxRank has the smallest increase. This is

because ApproxRank is the most robust algorithm among the four.

4.5 Performance on the BFS Subgraph

We next experiment on graphs created by a Breadth First Search crawler,

BFS subgraphs. We use a BFS crawler, where the crawl starts from seeded page

http://www.sounddesign.unimelb.edu.au/web/biogs/gallery/P000517g.htm. We con-

sider a sequence of BFS subgraphs, as the subset of pages that are reached by the

crawler ranges from 0.1%, 0.5%, 2%, 5%, 8%, 10%, 12%, 15%, to 20%. We note that

the pages in a BFS subgraph can be in different domains.

Since a majority of links in the Web graph are intra-domain links [59], and

these intra-domain links may connect local pages and external pages in BFS sub-

graphs, the interaction between local pages and the external pages can have a more

significant impact on the ranking of the subgraph. If this is true, we can expect a

negative impact on the performance of the algorithms for BFS subgraphs.

Figure 4.1 reports on the distances for the BFS datasets. We first observe

71

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

S
pe

ar
m

an
's

 fo
ot

ru
le

 d
is

ta
nc

e
to

 g
lo

ba
l P

ag
eR

an
k

Percentage of BFS graph

 local PageRank
 LPR2
 SC
 ApproxRank

Figure 4.1: Spearman’s Footrule distance for BFS subgraphs on AU dataset.

that the distances are much larger compared to those in Table 4.3 that reports

on DS graphs, for the same AU dataset. For example, for the BFS subgraph of

size 10%, the distances of ApproxRank and local PageRank are 0.0197 and 0.153,

respectively. The corresponding values for the DS subgraph for anu.edu.au, of size

21.86%, (the last row of Table 4.3), is 0.004945 and 0.04516, respectively. In general,

the distances on the BFS subgraphs appear to be an order of magnitude greater,

compared to a DS subgraph of similar size.

Our second observation is that ApproxRank generally shows an order of mag-

nitude improvement in comparison to the two baseline algorithms. Since the in-

teraction between local pages and external pages may be intra-domain links, there

are much more number of external pages for BFS subgraphs. SC becomes very

expensive to estimate the influence scores for all external pages so we did not obtain

the SC ranking for the larger subgraphs. For the smallest two BFS subgraphs in

72

Figure 4.1, ApproxRank outperforms SC significantly.

We also note that the worst accuracy was shown by LPR2 for all BFS sub-

graphs. This again can be explained by the heavy connectivity between the subgraph

and external pages. Unlike ApproxRank that modifies the transition probabilities,

LPR2 simply connects a local page to the artificial page even when there are multiple

links in the global graph. Hence on BFS subgraphs, LPR2 further underestimates

this connectivity.

4.6 Runtime Performance

We compare the runtime efficiency of ApproxRank in comparison to the SC

approach. We also report on the runtime of the global PageRank algorithm and

local PageRank to provide a context.

The disadvantage for SC runtime performance is that it computes the super-

graph for each subgraph. In the process of creating the supergraph, it expands the

local graph of size n by estimating the influence of each candidate outgoing page on

the local graph. To decide the influence of each page, it estimates the PageRank for

a graph of size (n+1). This implies that the creation of the supergraph involves the

PageRank estimation for many graphs of size (n + 1). ApproxRank, on the other

hand, processes the global graph for one time and determines the transition matrix

Aapprox for its random walk. When the rankings on multiple subgraphs need to be

computed, we can preprocess the global graph for one time, and decide Aapprox for

each subgraph with only local cost.

73

subgraph conservatism liberalism socialism

#nodes in local graph 42797 61724 12991

local PR (seconds) 63 69 7

ApproxRank (seconds) 542 571 484

SC (seconds) 3002 3483 652

k 1711 2468 519

#ext nodes in 1st expansion 25870 51283 4170

#ext nodes in 2nd expansion 55156 93653 11540

#ext nodes in 3rd expansion 71336 110481 15936

Table 4.5: The runtime comparison on TS subgraphs.

Table 4.5 and 4.6 provide runtime details for ApproxRank, SC, and local

PageRank, for the TS subgraphs and the DS subgraphs. The second column,

#nodes in local graph, reports on the number of pages in the subgraph; the third

column to the fifth column report on the runtime of local PageRank, ApproxRank,

and SC, respectively. The sixth column, the value k, shows the number of external

pages selected by SC and added to the local graph through each expansion. The

last 3 columns report the number of external pages in the first three expansions of

SC, which reveal the cost of SC to some extent.

For the global graph politics with 4382829 pages, the global PageRank com-

putation takes 5480 seconds. ApproxRank shows an order of magnitude or better

runtime performance, and its execution ranges from 484 to 571 seconds. The run-

time of the SC approach largely depends on the number of external pages reached

74

by the local graph through expansions. For example, for TS subgraph socialism,

the initial graph is 12991 pages and SC considers 15936 pages in the third expan-

sion. The runtime for SC is 652 seconds and is slightly worse than ApproxRank.

However, for the larger TS subgraphs, conservatism of 42797 pages, and liberal-

ism of 61724 pages, the SC solution is at least five times as expensive compared to

ApproxRank.

Table 4.6 reports the runtime on DS subgraphs for the AU dataset. The cost

of global PageRank on this global graph of 3884199 pages is 7035 seconds with 131

iterations. The runtime for ApproxRank ranges from 110 to 468 seconds. SC shows

subgraph

#nodes local Approx- SC

k

#ext nodes #ext nodes #ext nodes

in local PR Rank in 1st in 2nd in 3rd

graph (sec) (sec) (sec) expansion expansion expansion

acu.edu.au 13785 8 319 894 551 1172 6519 13769

bond.edu.au 19559 11 110 1310 782 1826 7918 16502

canberra.edu.au 25501 15 114 1700 1020 3590 10521 20705

cdu.edu.au 29039 25 152 2059 1161 4068 14176 24767

ballarat.edu.au 31724 22 134 2037 1268 1501 15215 27242

cqu.edu.au 36948 16 128 2047 1477 4029 15709 28955

csu.edu.au 100191 59 165 5306 4007 7609 36445 58557

adelaide.edu.au 113181 91 267 6276 4527 13714 45358 73579

curtin.edu.au 113221 80 197 6552 4528 6924 41595 67271

jcu.edu.au 195691 135 272 10327 7827 15705 60966 108644

monash.edu.au 328062 346 468 20292 13122 15489 90993 150890

Table 4.6: The runtime comparison on DS subgraphs.

75

very poor runtime performance. For the first few rows of the table the runtime

ranges from 894 to 2047 seconds. However, for the last rows, where the graph is

much larger, the performance of SC sharply degrades. In some cases, e.g., the last

two rows, the SC performance is even worse than the exact computation of global

PageRank. The high overhead of SC is a trade-off with the lack of access to the

global graph.

The runtime for SC on BFS subgraphs is much higher than the runtime on TS

and DS subgraphs. The running time of SC was 14655 seconds for the BFS subgraph

of size 19420, while for the other types of subgraphs of similar size, the runtime of

SC was 652 seconds for TS subgraph socialism of size 12991 and 1310 seconds for

DS subgraph bond.edu.au of size 19559. ApproxRank, on the other hand, seems not

as sensitive to the subgraph types. For example, the runtime for ApproxRank on

the BFS subgraph of size 19420 is 142 seconds, and ApproxRank takes 484 seconds

on socialism and 110 seconds on bond.edu.au.

76

Chapter 5

Approximating Authority Flow Rankings in Entity-Relation Graphs

The power of the Web was the ability to support efficient search and a global

PageRank score to all Web content. Personalized ranking improves on a global

ranking and further filters content and adjusts the order of pages presented to users.

A personalized ranking is an ordered list for the current (active) user which reflects

the user’s preference or profile. Search engines and e-commerce sites improve search

quality by accommodating topics of interests, prior search history, or other descrip-

tions of users’ preferences. Google [1] provides personalized ranking for users based

on user history and bookmarks. Amazon [8] recommends products to users using

Collaborative Filtering, based on their previous purchases.

A personalized base set of pages [51, 57, 76] and a weight assignment vector

(WAV) Θ of authority flow weights [15, 75] are two important factors achieving per-

sonalization for authority flow-based search and ranking such as PageRank. Scalable

personalization based on a personalized base set, i.e., a personalization vector, has

been studied [57, 51, 23, 46, 55]. However, little work has addressed the problem

of scalable personalization based on the second approach of a personalized WAV Θ;

we study this latter problem in this chapter.

Figure 5.1 [15] shows the authority transfer schema graph for the DBLP database,

a bibliographic database for computer science publications [5]. Each edge type is

77

associated with a numeric value representing the personalized authority weight in

Θ.

Figure 5.1: The DBLP authority transfer schema graph in ObjectRank ([15]).

Since users submit their queries and personalized WAV Θ on-the-fly, a key

challenge is to compute personalized rankings online and to provide the answers to

the user quickly. Two extreme solutions include 1) computing each personalized

ranking at query time, and 2) computing all possible personalized rankings a priori

and storing them. Both solutions are infeasible. A more pragmatic hybrid solution

is to maintain a repository of precomputed rankings. At query time, an approximate

personalized ranking may be computed using some chosen set of candidate rankings

from the repository.

This thesis makes the following contributions on approximate personalized

authority flow ranking:

• Consider a query q, its WAV Θq, its transition matrix for ObjectRank com-

putation Aq, and the ideal ranking Rq. We consider the following two ap-

proximation algorithms: (a) SchemaApprox is defined at the schema level and

employs a least squares formulation to choose the m-best candidates so that

the combined Euclidean distance of these m candidates Θcomb, to Θq, is mini-

mized. (b) DataApprox is defined at the data level and solves an optimization

78

problem so that the maximum norm (δ), over all elements of the aggregate

transition matrix of DataApprox and Aq, is minimized. DataApprox computes

a weighted combination of m candidate rankings.

• We introduce the concept of an aggregate surfer and prove the authority flow

linearity theorem for authority flow rankings. DataApprox’s behavior depends

on the properties of the aggregate surfer. We show that, given two WAVs

Θc1 and Θc2, there exists a random walk that is defined by combining the two

independent random walks; the resulting ranking vector is a linear combination

of the two independent ranking vectors for Θc1 and Θc2.

• We perform a theoretical analysis of the approximation quality of DataApprox.

We show that the L1 distance between DataApprox approximate rankling

scores and the ideal personalized ranking scores of Rq is bounded by the max-

imum norm objective δ of the DataApprox algorithm.

• We abuse the name of DataApprox to its approximation, which has been ap-

plied a set of heuristics to dramatically reduce the search space and the com-

plexity of DataApprox. The approximated DataApprox chooses m candidates

from the repository based on their Euclidean distance to Θq of the query. It

efficiently solves the DataApprox optimization problem by employing a Linear

Programming sub-procedure. These heuristics make the computation feasible

even for large data graphs.

• We conduct extensive experiments to evaluate the execution time and the

79

quality for DataApprox, i.e., how close the approximate ranking is to the ideal

ranking Rq. The experiments are conducted on the complete DBLP data

graph. We compare DataApprox with a baseline algorithm PickOne, which

chooses the best candidate in the repository with the minimum Euclidean dis-

tance to Θq. We evaluate the accuracy of the algorithms using the Spearman’s

Footrule distance. Our experiments show that DataApprox performs well both

in terms of execution time as well as in terms of quality.

The chapter is organized as follows. Section 5.1 revisits ObjectRank and re-

lated work to scale personalized rankings. Section 5.2 presents the Least Squares

problem, which is related to our optimization problems. In Section 5.3, we compare

various distances between a target Ranking and an existing Ranking. In Section

5.4, we present the three optimization problems. Two concrete problems are called

SchemaApprox and DataApprox. In Section 5.5, we present the mathematical model

aggregate surfer behind DataApprox. Section 5.6 and 5.7 present DataApprox ar-

chitecture and DataApprox respectively.

5.1 Authority Flow Ranking: ObjectRank

5.1.1 ObjectRank Revisited

ObjectRank [15] personalizes ranking in Entity-Relationship graphs; it mod-

els nodes as entity types and groups edges by their edge type or semantic type.

Authority flow is personalized for the semantic edge type.

The transition matrix AOR of ObjectRank depends on the authority trans-

80

fer specified on the schema graph (Figure 5.1); it defines the authority transferred

along each edge type. To demonstrate the relationship of the ObjectRank tran-

sition matrix and the PageRank transition matrix, without loss of generality we

assume that the objects of the same type are grouped together. Suppose an author-

ity transfer graph with t semantic edge types. A weight assignment vector (WAV)

Θ = {α1,1, α1,2, ..., α1,t, α2,1, α2,2, ..., α2,t, ..., αt,1, αt,2, ..., αt,t} represents the authority

transfer weights.

AOR can be expressed as follows: Each entry of the transition matrix for AOR

is multiplied by the authority transfer weight for the corresponding semantic edge

type. AOR contains t × t submatrices.

AOR =

α1,1A1,1 α1,2A1,2 · · · α1,tA1,t

α2,1A2,1 α2,2A2,2 · · · α2,tA2,t

...
...

...

αt,1At,1 αt,2At,2 · · · αt,tAt,t

(5.1)

The submatrix Ap,q contains authority transfer probabilities from objects of

type p to objects of type q. Let eT (vi, vj) be the semantic type of edge (vi, vj) and

let α(eT (vi, vj)) denote the weight assignment for eT (vi, vj). OutDeg(vi, e
T (vi, vj))

is the number of outgoing edges from page vi, of type eT (vi, vj). The submatrix Ap,q

is defined as follows:

Ap,q[i, j] =

1
OutDeg(vi,eT (vi,vj))

if there is an edge from i to j,

0 otherwise.

(5.2)

81

Let AT
OR denote the transpose of AOR. The ObjectRank vector ROR is recur-

sively defined as follows in Equation (5.3):

ROR = ǫAT
OR · ROR + (1 − ǫ)P (5.3)

Below we show an example of a schema graph, a weight assignment vector on

the schema graph, a data graph, and a transition matrix. Figure 5.2 is an example

of a schema graph, which contains four semantic types A, B, C, D. The weight

assignment vector in Figure 5.2 can be written as {0.7,0.5,0.3,0.7,0.6,0.4,0.1}. Figure

5.3 shows an example of a data graph that conforms the schema graph in Figure

5.2. For example, object A1 has outgoing links to object C1 and C2.

Figure 5.2: An exam-

ple of a schema graph

with a weight assign-

ment vector.

Figure 5.3: An example of a data graph.

According to Equation 5.2, the probability of following the edge (vA1, vC1)

should be the edge weight of 0.7 (based on the assignment in Figure 5.2) divided

by 2 (the outdegree of vA1, of type eT (vA1, vC1)). Therefore, the probability flow on

edge (vA1, vC1) is 0.35. Other entries in the transition matrix is defined similarly.

82

Figure 5.4 shows the transition matrix for Figure 5.3:

A1 A2 A3 B1 B2 C1 C2 C3 D1 D2 D3

A1

A2

A3

B1

B2

C1

C2

C3

D1

D2

D3

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0.35 0.35 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0.3 0.3

0 0 0 0 0 0 0 0 0.4 0 0

0 0.5 0 0 0 0 0 0 0.2 0.2 0

0 0 0.5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.7 0 0 0 0.1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 5.4: An example of a transition matrix for ObjectRank

5.1.2 ObjectRank convergence

Interestingly, although [53] reported that ObjectRank converges by exper-

iments, no one has proved its convergence. Next we provide a simple proof in

Theorem 3, which states that when
∑q=t

q=1 αp,q = 1, the ObjectRank converges.

Lemma 5.1.1 Each submatrix Ap,q is row stochastic.

Proof. To simplify the proof, we assume that there are no dangling pages (see

Section 2.2.1 for the definition of dangling pages). This assumption can be removed

by adding the damping factor into the ranking algorithm. It is obvious that each

row of Ap,q, the probability flow from one page of semantic type p to all pages of

semantic type q, add to 1.

83

Next we show a property in Theorem 3. Theorem 3 shows that AOR is stochas-

tic for certain weight assignment vectors, which is a requirement for the convergence

of the ObjectRank algorithm.

Theorem 3 If
∑q=t

q=1 αp,q = 1 for all 0 ≤ q ≤ t, then AOR is row stochastic.

Proof. We know that each submatrix Ap,q in Equation 5.1 is row stochastic from

Lemma 5.1.1. Given
∑p=t

p=1 αp,q = 1, it is straightforward that AOR is row stochastic.

5.1.3 Approximation methods for personalization

The problem of achieving efficient personalization based on a base set, i.e., a

personalization vector, has been studied in [51, 57, 46, 23, 55]. The approach in [51] is

based on a linearity theorem that is used to combine multiple personalized PageRank

vectors. [57] proposed a technique that encodes personalized ranking vectors as

partial vectors. They also presented efficient dynamic programming algorithms. [46]

simulates random walks to precompute an index database of personalized PageRank

vectors (fingerprints). [23, 55] consider using a personalized base set on entity-

relationship graphs. They do not consider personalized weight assignments a la

ObjectRank.

The only work that approximates authority flow rankings for personalization

with weight assignments, as far as we know, is to apply sampling techniques [90]

for lgOR [79]. Since lgOR is a special case of ObjectRank, the sampling techniques,

the sampling technique applied to lgOR does not directly apply to the ObjectRank

84

which is computed on general Web graphs, we refer to Section 2.8.2 for more details

about the sampling techniques.

5.2 The Least Squares Problem

Although scaling authority flow rankings is an open problem in ranking com-

munity, an important application of linear algebra, Least Squares Problem, is related

to our problem. In this section, we briefly review the Least Squares Problem and

its solution. We refer to [67] for a complete explanation.

In real world applications, data from experiments are often prone to errors

and are inconsistent. In consequence, these data lead to systems of equations which

are unsolvable. Least squares is a method to deal with this kind of obstacles and to

give an approximate solution.

Below we give a brief overview for the Least squares problem. A linear system

is overdetermined if there are more equations than unknowns, which often requires

an approximate solution. Below is an overdetermined system.

n
∑

j=1

Xijβj = yi, (i = 1, 2, · · · , m)

There are m linear equations, n unknowns (β1, β2, · · · , βn), and m > n. Let X be

the m×n matrix representing all coefficients Xij and β be the vector of all βj. The

system can be written as Xβ = y.

Since an overdetermined system usually has no solution, the goal is to find

the β vector that is most consistent to the constraints. Least squares is one of the

commonly used approximation criteria. The intuition is to minimize the Euclidean

85

distance between Xβ and y. Below is the least squares problem:

argminβ

m
∑

i=1

|yi −
n
∑

j=1

Xijβj |
2 = argminβ||y − Xβ||2

The least squares problem can be solved using the Singular Value Decompo-

sition (SVD) of a matrix [70]. SVD is an important factorization of matrices. The

SVD of an m×n matrix X can be computed in O(mn2) by a 2-stage algorithm [67].

The Least squares can be applied to approximate personalized rankings. Some

precomputed personalized rankings along with different user preferences provide

inconsistent information. When a new user comes with her new preference, the

approximate approach should pick a subset of precomputed personalized rankings

and combine them. We model the approximating the personalized ranking problem

as a least squares problem, SchemaApprox, in Section 5.4.

5.3 Comparing Distances between a Target Ranking and any Can-

didate Ranking

To motivate our approximation approach, we first consider the problem of

identifying the best candidate from a ranking repository. To do so we consider

some metric to identify the candidate ranking as well as a distance to determine its

quality. We compare the behavior of any candidate ranking Rcand and the target

ranking Rq for some query q.

Consider a query q, WAV Θq, the ObjectRank transition matrix Aq, and rank-

ing Rq. Further consider any candidate Θcand, Acand and Rcand from the repository

that is used to approximate Rq.

86

For SchemaApprox, which is defined at the schema level, we consider a schema

level metric to choose a candidate; it should minimize the distance of this metric

between Θcand and Θq. A natural candidate is the Euclidean distance π = ||Θcand −

Θq||2.

For DataApprox, which is defined at the level of the data graph, we must

consider an objective function that will minimize the distance between Acand and

Aq. Let matrix Adiff = Acand − Aq. The difference between Acand and Aq can be

naturally represented by the matrix norms of Adiff . The definition for entry-wise

matrix norm is equivalent to the definition for vector norm [48]. Using the p-norm

for vectors, we have the following:

‖Adiff‖p =

(

m
∑

i=1

n
∑

j=1

|Adiff [i, j]|
p

)1/p

When p = 2, this is the Frobenius norm, and when p = ∞ this is the maximum

norm. The alternatives for the distance to be considered for DataApprox are as

follows:

• The maximum norm for Adiff , δ = max{i,j}{|Adiff [i, j]|}.

• The 1-norm for Adiff , σ =
∑

i,j |Adiff [i, j]|.

• The Frobenius norm for Adiff , φ =
√

∑

i,j Adiff [i, j]2.

We consider the Spearman’s Footrule Distance between the candidate ranking

Rcand and the ideal ranking Rq as a measure of the quality of our approximate

solution.

87

To understand the correlation behavior between the potential objective func-

tion distance metrics of SchemaApprox or DataApprox, and the Spearman’s Footrule

distance, we generate the ScaleRank ranking repository of 1000 random authority

flow rankings for the DBLP dataset. We consider a test set of 20 target queries Θq.

The details of the values for Θq and Θcand used in this evaluation DBLP dataset are

described in detail in the experiment section 6.1.

We compute the average Euclidean distance π used for SchemaApprox, as

well as the 3 norms δ, σ and φ used for DataApprox, over the 20 queries. We also

compute the average Spearman’s Footrule Distance over the 20 queries. We average

the distances π, δ, σ and φ.

We first provide a scatterplot of the distances π, δ, σ and φ, plotted against

the average Spearman’s Footrule distance. For example, in Figure 5.5 through 5.8,

the X axis is the average distance π, δ, σ or φ, and the Y axis is the Spearman’s

Footrule distance. Each point in the plot is a candidate ranking in the repository.

We report distance values averaged over 20 queries. The lines in the figures are the

linear trendlines.

We fit the data in Figure 5.5 through 5.8 using a linear regression model

Yi = A + BXi, where the parameters, A and B, are estimated. The estimated

correlation coefficients for Figure 5.5 through 5.8 are 0.4191, 0.3459, 0.4036, and

0.45968 respectively. A value of 1 for the correlation coefficient means a perfect fit,

and a value of 0 means no relationship between the two variables.

We conclude that π and δ should be chosen as the distance metrics for SchemaAp-

prox and DataApprox, respectively. As a final step, problems in Section 5.4, we

88

Figure 5.5: The correlation between δ

and Spearman’s Footrule distance.

Figure 5.6: The correlation between σ

and Spearman’s Footrule distance.

Figure 5.7: The correlation between φ

and Spearman’s Footrule distance.

Figure 5.8: The correlation between π

and Spearman’s Footrule distance.

report on the scatterplot of δ − π correlation in Figure 5.9. The estimated correla-

tion coefficient is 0.894 and this appears to be a strong correlation. The correlation

indicates that although the DataApprox and SchemaApprox will solve optimization

problem at different levels, the metrics that they use to choose candidate rankings

89

Figure 5.9: The correlation between π and δ.

are correlated.

5.4 The Problem Definition

Our problem can be described informally as follows: Given a set of candidate

rankings in a repository, choose the m best candidates using some metric, so that it

provides an approximate rankings of the highest quality. We describe the problem

as follows:

Problem definition: Let S = {(Θ1, R1), (Θ2, R2), · · · , (Θm, Rm)} be the

ranking repository of m precomputed ranking vectors and their corresponding weight

assignment vectors. Let Θq be the query weight assignment vector. The goal is to

approximate the authority flow ranking for query Θq efficiently, with the maximal

quality, by utilizing the precomputed ranking vectors in the repository.

The objective for the concrete problem needs to satisfy the following require-

ments: 1) We should choose an appropriate distance metric to choose the candidate

90

rankings. 2) The distance should be easy to compute. During the search process of

the optimal objective value, it may be necessary to compute the objective function

repeatedly. 3) The distance metric should be correlated to the approximation qual-

ity. We expect that a the stronger correlation will improve the choice of candidate

rankings and the approximation quality.

SchemaApprox: to approximate at the schema graph level

Recall that we chose the Euclidean distance π for SchemaApprox. Let Θcomb

be a linear combination of m weight assignment vectors (WAVs) selected from the

repository S. The goal is to minimize the Euclidean distance between the linear

combination Θcomb and the query Θq. Let π = ||Θcomb − Θq||2. SchemaApprox is

defined as follows:

minimize π = ||Θcomb − Θq||2

subject to:

Θcomb =
∑m

l=1 βlΘl

∑m
l=1 βl = 1

0 ≤ βl for all 1 ≤ l ≤ m

(5.4)

SchemaApprox can be solved using an approach to solve the Least Squares

Problem [67]. A linear system of equations is overdetermined if there are more

equations than unknowns, which often requires an approximate solution. Below is

91

an overdetermined system.

n
∑

j=1

Xijβj = yi, (i = 1, 2, · · · , m)

There are m linear equations, n unknowns (β1, β2, · · · , βn), and m > n. Let X be

the m×n matrix representing all coefficients Xij and β be the vector of all βj. The

system can be written as Xβ = y.

Since an overdetermined system usually has no solution, the goal is to find the

β vector that is the closest to satisfying all the equations. Least squares is one of the

commonly used approximation criterion. The intuition is to minimize the distance

between Xβ and y. The least squares problem formulation is as follows:

argminβ

m
∑

i=1

|yi −

n
∑

j=1

Xijβj |
2 = argminβ||y − Xβ||2

The least squares problem can be solved using the Singular Value Decompo-

sition (SVD) of a matrix [70]. SVD is an important factorization of matrix. The

SVD of an m × n matrix X can be computed in O(mn2) using a 2-stage algorithm

[67].

We note that solving SchemaApprox is computationally expensive. Further,

there is no known properties that can be proved to describe the behavior of SchemaAp-

prox, i.e., there is no linearity theorem that describes the behavior of a random walk

based on Θcomb, with respect to the random walk based on Θq. As a result there is

no proof that SchemaApprox will converge or a bound on the quality of SchemaAp-

prox. Finally, our observation with experiments is that Θcomb is insensitive to the

properties of the data graph, in particular, the edge distribution for the different

edge types. For all of these reasons, we do not attempt to solve SchemaApprox.

92

DataApprox: to approximate at the data graph level

minimize δ

subject to:

|Aagg(S)[i, j] − Aq[i, j]| ≤ δ, for all entry (i, j)

∑m
l=1 βl = 1

0 ≤ βl for all 1 ≤ l ≤ m

(5.5)

Equation 5.7 defines the DataApprox optimization problem. Recall that we

chose the maximal norm δ over the elements of Adiff = (Acand - Aq) for DataApprox.

5.5 The Aggregate Surfer

A key result used in [46, 51, 57] to scale personalization using a base set of pages

is the linearity theorem [51] that combines multiple personalized PageRank vector.

In this section, we present some important theoretical results for personalization

based on authority transfer weight assignments. We formalize a model of aggregate

surfer whose behavior is controlled by multiple authority flow rankings and prove

the linearity theorem for authority flow ranking.

5.5.1 The Authority Transfer Weights Linearity Theorem

Without loss of generality, we show how we can combine the ranking vectors

two candidate weight assignment vectors. Multiple ranking vectors can be combined

93

in the same way. In this section we show that, given two weight assignment vectors,

there exists a random walk that is defined by combining the random walks of the

two weight assignment vectors, and whose ranking vector is a linear combination of

the two ranking vectors. The intuition can be described later as an aggregate surfer.

Theorem 4 (Authority Transfer Weights Linearity Theorem) Let R1 and

R2 be two ranking vectors for weight assignment vectors Θ1 and Θ2 respectively. Let

A1 and A2 be the corresponding transition matrices. Let β1, β2 be constants such

that β1, β2 ≥ 0 and β1 +β2 = 1. For a random walk with transition matrix A, where

A[i, j] = β1A1[i,j]R1[i]+β2A2[i,j]R2[i]
β1R1[i]+β2R2[i]

, the ranking vector R = β1R1 + β2R2.

Proof. We first show that A is row stochastic given that A1 and A2 are row

stochastic. We know that
∑n

j=1 A1[i, j] = 1 and
∑n

j=1 A2[i, j] = 1. For any row i,

we have:
∑n

j=1 A[i, j] =
β1R1[i]

Pn
j=1 A1[i,j]+β2R2[i]

Pn
j=1 A2[i,j]

β1R1[j]+β2R2[j]

= β1R1[i]+β2R2[i]
β1R1[i]+β2R2[i]

= 1

If we complement the random walk with jumps from dangling pages then the

Markov Chain we defined is irreducible and aperiodic. The ranking scores converge

to a unique vector R. Next we show that R converges to β1R1 + β2R2.

β1R1 + β2R2

= β1(ǫA
T
1 R1 + (1 − ǫ)P) + β2(ǫA

T
2 R2 + (1 − ǫ)P)

= ǫ(β1A
T
1 R1 + β2A

T
2 R2) + (β1 + β2)(1 − ǫ)P

= ǫ(β1A
T
1 R1 + β2A

T
2 R2) + (1 − ǫ)P

94

Let v1 = β1A
T
1 R1 + β2A

T
2 R2 and v2 = AT (β1R1 + β2R2) Next we show that

v1 = v2. For the j-th entry v1[j] in vector v1, we have:

v1[j]

= β1(
∑n

i=1 A1[i, j]R1[i]) + β2(
∑n

i=1 A2[i, j]R2[i])

=
∑n

i=1 β1A1[i, j]R1[i] + β2A2[i, j]R2[i]

=
∑n

i=1
β1A1[i,j]R1[i]+β2A2[i,j]R2[i]

β1R1[i]+β2R2[i]
(β1R1[i] + β2R2[i])

=
∑n

i=1 A[i, j](β1R1[i] + β2R2[i])

= v2[j]

Since β1A
T
1 R1 + β2A

T
2 R2 = AT (β1R1 + β2R2), we have:

β1R1 + β2R2 = ǫAT (β1R1 + β2R2) + (1 − ǫ)P

This concludes the proof that R = β1R1 + β2R2.

5.5.2 The intuition behind the Authority Transfer Weights Linearity

Theorem

An intuitive view of Theorem 4 (Authority Transfer Weights Linearity The-

orem) is that if we know the behavior of two individual random surfers, including

the way they walk (A1, A2) and the expected probability reaching all the pages

(R1, R2), then for another random surfer, who behaves like two individual random

surfers with probability β1 and β2 respectively, the expected probability reaching all

the pages (R) is a linear combination of R1 and R2. R = β1R1 + β2R2. We call this

random surfer an aggregate surfer. This is shown in Figure 5.10. The two surfers

95

with vertical line or horizontal lines in the figure represent two random surfers, and

the aggregate surfer mimics both surfers.

Figure 5.10: The aggregate surfer and two individual surfers.

The Linearity Theorem indicates that a ranking vector can be represented by a

linear combination of ranking vectors, which can be naturally used as a mathematical

tool to scale personalized ranking based on weight assignments.

To make the results more general, Theorem 4 is extended to multiple surfers as

follows. We are given a set of m weight assignment vectors and their corresponding

ranking vectors S = {(Θ1, R1), (Θ2, R2), · · · ,

(Θm, Rm)}. Let Al be the transition matrix for Θl. We define the behavior of an

aggregate surfer with transition matrix Aagg(S) as follows:

Aagg(S)[i, j] =

∑m
l=1 βlAl[i, j]Rl[i]
∑m

l=1 βlRl[i]
(5.6)

96

5.5.3 The application of the Authority Transfer Weights Linearity

Theorem

The Authority Transfer Weights Linearity Theorem is an important tool. Here

are two use cases.

• Given a query and some existing authority flow rankings, the theorem can

be used to approximate the ranking for the query, by combining multiple

existing rankings. Let Aagg(S) in Equation 5.6 be the transition matrix for

the aggregate surfer, and let Aq be the transition matrix for query Θq. A

combination means an appropriate β vector such that the Aagg(S) is close to

Aq.

• Given some user preferred ranking (or the top K objects), the theorem can be

used to learn a weight assignment vector. Let Ragg be the linear combination

of multiple ranking vectors. Let Rq be the preferred ranking from user input.

This problem searches for a combination, such that Ragg is close to Rq.

With the trend that personalization is considered in another dimension for

links, the Authority Transfer Weights Linearity Theorem complements the previous

linearity theorem (Theorem 1).

5.6 The DataApprox System Architecture

Figure 5.11 shows the architecture of the system, which inputs a query (a

weight assignment vector Θq) and outputs the top K objects based on their author-

ity score. The system maintains a repository of M candidate rankings. For each

97

candidate ranking we store its weight assignment vector, and its ranking vector.

Given a query, the Candidate Ranking Selector selects m candidate rankings out

of the M in the repository based on a heuristic described below. The reason that

only m are selected is that the cost of DataApprox depends on the number of input

rankings. DataApprox algorithm then computes the best way to linearly combine

these m rankings. Finally a top K algorithm is used to produce the top K objects.

Next we briefly describe the elements in the system.

Figure 5.11: The system architecture

Materializing candidate rankings in the repository:

The set of rankings in the repository affects the quality of our approximation. and

they are computed using ObjectRank. Ideally we would precompute rankings for

a set of weight assignment vectors that users are interested in; this is obviously

impossible since we do not know such a set. We use a simple randomized technique

98

to populate the repository as described in Section 6.2.

For each candidate ranking i in the repository, its weight assignment vector

Θi and its ranking vector Ri are materialized. The repository can be represented

by a set {(Θ1, R1), (Θ2, R2), · · · , (ΘM , RM)}.

The candidate ranking selector:

Among the M candidate rankings in the repository, we choose the m closest weight

assignments and DataApprox tries to combine them in an optimal way. Each weight

assignment vector can be viewed as a point in multi-dimensional space, where the

weight for each link type is the coordinate on one dimension. The intuition is

that the best candidates should be close to the query Θq, therefore we calculate

the Euclidean distance ||Θq, Θi||2 between Θq and each candidate Θi and select the

closest m candidates.

The DataApprox algorithm:

Given the m closest candidates, the DataApprox algorithm combines their rankings

to compute an approximation of the ranking vector of the query on-the-fly. The

DataApprox algorithm determines to what extent the aggregate surfer behaves like

each candidate i, βi, and produces a vector of β values, (β1, β2, · · · , βm). We will

elaborate on the DataApprox algorithm in the next section.

Top K algorithm:

The problem of combining multiple ranking vectors (sorted lists) and output the top

K objects is well studied and there are numerous efficient algorithms [25, 42, 44]. For

example, the famous TA algorithm [44] deals with monotone functions to aggregate

the ranking scores. The linear combination as a weighted sum suggested by the

99

DataApprox algorithm is a monotone function. Hence, we use TA to produce the

top K objects.

5.7 The DataApprox algorithm

5.7.1 The algorithm

Given a set of weight assignment vector and their ranking vector S = {(Θ1, R1),

(Θ2, R2), · · · , (Θm, Rm)}, and the query weight assignment vector Θq, the DataAp-

prox algorithm determines a way to combine these m candidate rankings, RDA =

∑m
l=1 βlRl. For that, DataApprox computes the aggregate surfer of S that closely

resembles the random surfer of the query.

We define an optimization problem to find the best aggregate surfer. Let Aq

be the transition matrix for the query Θq and Aagg(S) be the transition matrix for

the aggregate surfer. Let δ be the maximum difference between the entries in Aq

and Aagg(S). Formally, δ = max{i,j}{|Aagg(S)[i, j] − Aq[i, j]|}. The DataApprox

algorithm finds a linear combination that minimizes the δ value.

Let fractional variable 0 ≤ βl ≤ 1 denote the probability that the aggregate

surfer behaves like the individual random surfer (Θl, Rl). For the aggregate surfer,

∑m
l=1 βl = 1. We can then simplify 0 ≤ βl ≤ 1 to 0 ≤ βl. We define the following

optimization problem as follows:

100

minimize δ

subject to:

|Aagg(S)[i, j] − Aq[i, j]| ≤ δ, for all entry (i, j)

∑m
l=1 βl = 1

0 ≤ βl for all 1 ≤ l ≤ m

(5.7)

where Aagg(S)[i, j] =
Pm

l=1 Al[i,j]Rl[i]βl
Pm

l=1 Rl[i]βl
. The first constraint sets an upper bound for

the difference between two matrices.

Note that the above optimization problem (Equation 5.7) can be solved by

solving a series of feasibility problems without the objective function, that is, choose

a δ and check if the constraints hold. Since δ is the absolute value between two

transition matrix entries difference, it is within the range [0, 1]. Therefore, we can

use binary search to find the minimum δ with upper bound u = 1 and lower bound

l = 0. The search stops until |u − l| < τ , where τ is the user defined accuracy

requirement. Given the candidate rankings S, the data graph G, the query weight

assignment Θq, and accuracy requirement τ for δ, we describe the DataApprox

algorithm as follows:

The algorithm DataApprox finds the minimum δ such that the optimization

problem in Equation 5.7 is feasible, and stores the β vector which produces min δ

in Feasibility algorithm. The while loop is usually executed for around 10 times

if we choose accuracy requirement τ = 0.1. The Feasibility procedure in Line 5

of algorithm solves the Linear Programming problem of Equation 5.7 without the

101

Algorithm DataApprox(S, G, Θq, τ)

1. u = 1, l = 0

2. min δ = u

3. while (u − l ≥ τ) do

4. δ = (u + l)/2

5. if (Feasibility(S, G, Θq, δ))

6. min δ = δ

7. u = δ

8. else

9. l = δ

10. return min δ

Figure 5.12: The outline of the DataApprox algorithm.

objective function, that is, for a given δ.

5.7.2 Error analysis of DataApprox ranking vector RDA

In this section, we provide the error approximation analysis for the scores in the

ranking vector of the user query, computed by applying DataApprox to combine m

candidate rankings. We show that the L1 distance between DataApprox scores and

the accurate personalized ranking scores depends on the value of δ in Equation 5.7.

A similar analysis was conducted to a different algorithm to estimate the rank for a

102

subgraph [92]. Note that although the DataApprox algorithm is solved by finding

a linear combination of candidate rankings, the ranking for the aggregate surfer

can be alternatively computed by traditional iterative approach until convergence

[76, 15, 92]. Therefore, we can bound the distance through iterations. This can

be explained by a prominent feature of the DataApprox algorithm: the aggregate

surfer does not deviate much from the random walk defined by the query, which is

specified by Equation 5.7.

Let RDA and ROR be the ranking vectors from DataApprox (approximate) and

ObjectRank (exact) respectively, each with length n, where n is number of nodes in

the graph. We will derive the L1 distance between RDA and ROR, ‖ RDA −ROR ‖1.

Let Rm
DA and Rm

OR be the ranking vectors after the m-th iteration from DataApprox

and ObjectRank. We first derive the error bound for the base case when m = 1.

Lemma 5.7.1 After the first iteration, the DataApprox ranking vector R1
DA satis-

fies:

‖ R1
DA − R1

OR ‖1≤ ǫ|E|δ

103

Proof.

‖ R1
DA − R1

OR ‖1

(i) =
∑n

i=1 |R
1
DA[i] − R1

OR[i]|

(ii) =
∑n

i=1 |ǫ
∑n

j=1 ADA[j, i] · 1 + (1 − ǫ)d(i)

−ǫ
∑n

j=1 AOR[j, i] · 1 − (1 − ǫ)d(i)|

(iii) = ǫ
∑n

i=1

∑n
j=1 |ADA[j, i] − AOR[j, i]|

(iv) ≤ ǫ
∑n

i=1

∑n
j=1 δ

(v) ≤ ǫ|E|δ

We first expand the L1 distance by the definition. In inequality (ii), we cal-

culate R1
DA[i] and R1

OR[i] assuming initial scores for DataApprox and ObjectRank

are all 1s. d(i) represents the probability to jump to page vi. In ObjectRank,

d(i) = 1/|S| if page vi contains the keyword, where |S| is the number of pages that

contain the keyword; otherwise, d(i) = 0. We replace |ADA[j, i] − AOR[j, i]| by δ in

inequality (iv), which is specified by Equation 5.7. Since the number of non-zero

entries in the graph is the number of edges |E|, we concludes the proof in inequality

(v).

Next we develop the error bound for the L1 distance

‖ Rm
DA − Rm

OR ‖1 after m iterations.

Lemma 5.7.2 After an arbitrary positive integer m > 1 iterations, the DataApprox

ranking vector Rm
DA satisfies:

‖ Rm
DA − Rm

OR ‖1≤ ǫ ‖ Rm−1
DA − Rm−1

OR ‖1 +ǫδn

104

Proof.

‖ Rm
DA − R1

OR ‖1

(i) =
∑n

i=1 |R
m
DA[i] − Rm

OR[i]|

(ii) =
∑n

i=1 |ǫ
∑n

j=1 ADA[j, i] · Rm−1
DA [j] + (1 − ǫ)d(i)

−ǫ
∑n

j=1 AOR[j, i] · Rm−1
OR [j] − (1 − ǫ)d(i)|

(iii) = ǫ
∑n

i=1

∑n
j=1 |ADA[j, i] · Rm−1

DA [j]

−AOR[j, i] · Rm−1
OR [j]|

(iv) ≤ ǫ
∑n

i=1

∑n
j=1 |ADA[j, i]Rm−1

DA [j]−

ADA[j, i]Rm−1
OR [j]| + ǫ

∑n
i=1

∑n
j=1 δRm−1

OR [j]

(v) ≤ ǫ
∑n

i=1

∑n
j=1 ADA[j, i]|Rm−1

DA [j] − Rm−1
OR [j]|

+ǫδ
∑n

i=1

∑n
j=1 Rm−1

OR [j]

(vi) ≤ ǫ
∑n

j=1 |R
m−1
DA [j] − Rm−1

OR [j]|
∑n

i=1 ADA[j, i]

+ǫδ
∑n

i=1

∑n
j=1 Rm−1

OR [j]

(vii) ≤ ǫ
∑n

j=1 |R
m−1
DA [j] − Rm−1

OR [j]| + ǫδ
∑n

i=1 1

(viii) ≤ ǫ ‖ Rm−1
DA − Rm−1

OR ‖1 +ǫδn

The idea of the first three inequalities in the proof is identical to the proof for

Lemma 5.7.1, except that the scores from previous iteration are Rm−1
DA and Rm−1

OR in-

stead of all 1s in inequality (ii). The inequality (iv) is derived based on the constraint

that |ADA[j, i] − AOR[j, i]| ≤ δ. Reorganizing the terms leads to inequality (v) and

(vi). Because the transition matrix ADA is column stochastic,
∑n

i=1 ADA[j, i] = 1.

Considering
∑n

j=1 Rm−1
OR [j] = 1, the inequality is reduced to (vii). The definition of

L1 distance concludes proof.

Next we combine Lemma 5.7.1 and Lemma 5.7.2 to develop Theorem 5.

105

Theorem 5 (DataApprox)

‖ RDA − ROR ‖1≤ δ
ǫ

1 − ǫ
n

Proof.

‖ Rm
DA − Rm

OR ‖1

≤ ǫ ‖ Rm−1
DA − Rm−1

OR ‖1 +ǫδn

≤ ǫ(ǫ ‖ Rm−2
DA − Rm−2

OR ‖1 +ǫδn) + ǫδn

≤ ǫ2 ‖ Rm−2
DA − Rm−2

OR ‖1 +(ǫ2 + ǫ)δn

≤ ǫm|E|δ + (ǫm + ǫm−1 + · · ·+ ǫ)δn

When the number of iterations m becomes infinity, this gives

‖ RDA − ROR ‖1≤ δ
ǫ

1 − ǫ
n

The theorem shows that when δ is very small, the DataApprox will give accu-

rate ranking. Another interesting observation is that the error bound increases with

ǫ, whereas in the case of PageRank perturbation, it has been shown [27] that the

error decreases with ǫ. The reason is that in the case of perturbation, for large ǫ, the

scores of high-score nodes are influenced by thousands of paths and hence removing

a few edges does not make a difference. On the other hand, in our problem, larger

ǫ means that the authority transfer weights are multiplied by a larger constant and

hence small differences in authority bounds translate to large differences in weights

and hence to larger errors.

We conduct error analysis for DataApprox based on L1 distance, which is

a score-based distance. It is difficult to analyze a order-based distance, if it is

106

possible. In practice, what matters to the user is the order of ranking, instead of

ranking scores. Therefore, we will report Spearman’s Footrule distance in Chapter

6, which is a order-based distance [37].

5.7.3 Reduce the complexity of the feasibility problem

We now go back to the execution of the DataApprox algorithm, which involves

repeatedly solving a linear programming (LP) problem. It is well known that LP

problem can be solved by Simplex algorithm in linear time “in practice”. There are

|E| non-zero matrix entries, where |E| is the number of edges in the graph. Recall

that m is the number of rankings. The complexity of the LP problem is O(|E|+m),

according to Equation 5.7. In this section, we consider several methods to reduce

the number of constraints of the LP.

5.7.3.1 One constraint per semantic type

The first constraint of Equation 5.7 can be rewritten as follows:

m
∑

l=1

(|Al[i, j] − A[i, j]| − δ) · Rl[j] · βl ≤ 0 for all entry (i, j) (5.8)

The constraint of Equation 5.8 addresses the transition entry differences be-

tween the new random walk and existing random walks. For an important page

vj , if vj leads to thousands of pages, does this imply thousands of constraints? We

will show we can reduce the number of constraints dramatically. To do this, we

reformulate this constraint.

We look into the authority flow ranking definition. Let eT (vj , vi) be the seman-

107

tic type of edge (vj , vi). α(eT (vj , vi)) denotes the weight assignment for eT (vj , vi) in

the new query, and αl(e
T (vj , vi)) denotes the weight assignment for eT (vj, vi) in can-

didate weight assignment l. OutDeg(vj, e
T (vj, vi)) is the number of outgoing edges

from page vj , of type eT (vj , vi). According to the authority flow ranking definition,

A[i, j] =
α(eT (vj ,vi))

OutDeg(vj ,eT (vj ,vi))
. Equation 5.8 becomes as follows:

∑m
l=1(|αl(e

T (vj , vi)) − α(eT (vj , vi))|
1

OutDeg(vj ,eT (vj ,vi))
− δ) · Rl[j] · βl ≤ 0 (5.9)

From Equation 5.9, it is clear that for outgoing edges from page vj , if they

belong to the same semantic type, the same constraint holds. Therefore, for outgoing

edges, the number of constraints can be reduced to the number of semantic types

departing from page vj .

5.7.3.2 Make use of skewed scores

It is known that the PageRank-style ranking scores conform to a power law

distribution, therefore, the top ranked nodes/pages have very high scores. Table 5.1

lists the sum of normalized ranking scores of top K pages when K is varied from 20

to 2000, for a data graph with 1707898 nodes.

top K 20 100 500 1000 1500 2000

RankSum 0.1302 0.6349 0.9732 0.9858 0.9888 0.9905

Table 5.1: The sum of ranking scores of top K pages.

Equation 5.9 describes the constraints for type of edge eT (vj, vi). If page vj is

assigned high ranking score in existing ranking Rlh , then the similarity of the weight

108

assignment Θlh to the query weight assignment is more accredited. Since frequently

top ranked pages accumulated most ranking scores, we will focus on setting up the

LP for these pages.

5.7.3.3 The range for δ

Given the range for δ, we can use binary search to find the smallest δ such

that the above LP problem is feasible. Instead of the trivial range [0, 1] for δ, we

show that there is a better range. Let sh = maxeT (j,i){|αh(e
T (vj , vi))−α(eT (vj , vi)|}

be the largest weight assignment difference, among all edge types, for the existing

ranking of Θh. Let u = minh=1···m{sh} be the minimum sh among all m existing

rankings. Based on formula (5.9), we can see that u is a feasible upper bound. To

search a smallest value for δ such that the LP is feasible, we use the range [0, u].

5.7.4 The time complexity of DataApprox

The DataApprox algorithm (Figure 5.12) employs a Linear Programming sub-

routine to solve an optimization problem. The number of iterations for the while

loop in line 3–9 depends on the choice of the accuracy requirement τ . In experi-

ments, we choose τ = 0.001 which leads to good approximations. For all cases, the

DataApprox is executed for up to 9 iterations.

In each iteration of the while loop, DataApprox calls the linear programming

subroutine. LP problem can be solved by Simplex algorithm in linear time “in

practice”. That is, the number of iterations is linear in the number of constraints,

109

which is the union cardinality of top K objects from m candidates and objects.

The ObjectRank algorithm is computed through iterations until convergence.

In practice, it takes around 25 iterations on our data graph. In each iteration, the

ObjectRank examines all the edges in the graph.

Our analysis shows that the DataApprox is an efficient algorithm, since we

typically choose top K less than 500 which leads to good approximation. For Ob-

jectRank, however, there can be millions of links. We will report runtime for both

algorithms in Section 6.5.

110

Chapter 6

The Evaluation for DataApprox

6.1 Experiment Description

The ER dataset. Bibliographic databases (DBLP or CiteSeer) are frequently

used to evaluate authority flow ranking [15, 23, 89]. We use the DBLP dataset

(June 2008) to build a data graph that conforms to the schema graph of Figure 5.1.

Part of citation links were crawled from CiteSeerX [9] and added to the data graph;

the dataset contains 1707898 objects and 7704633 links.

Below we discuss the impact of the characteristics of the schema graph and

data graph. At the schema graph level, the Theorem 3 restricts that in the Ob-

jectRank weight assignment vector, the sum of the outgoing edge weights from the

same entity should be 1. The experiments show that when the sum is less than 1,

the ObjectRank algorithm converges to a unique ranking vector as well [53]. There-

fore, when an entity is connected to few other entities, the weight for its outgoing

link is typically larger than the rest weights in the weight assignment vector. The

consequence is that at the schema level, ObjectRank favors the semantic link types

whose outdegrees are small.

At the data graph level, similar impact exists. If for an object, the outdegree

for one link type is significantly smaller than the others, while the weights in the

weight assignment vector are comparable, then ObjectRank favors the these links

111

where the outdegrees are small at data level. In DataApprox, this skewed outdegree

distribution has an effect as well. Since Aagg(S)[i, j] =
Pm

l=1
Al[i,j]Rl[i]βl

Pm
l=1

Rl[i]βl
(Equation

5.7) is defined based on the linearity theorem, the first constraint in Equation 5.7

indicates the β vector is largely determined by the links with smaller outdegrees.

Therefore, outdegree distribution has an impact on the ranking, at both schema

graph and data graph level.

The Evaluation method. For a given query and its authority flow weight as-

signment Θq, we compute the exact ObjectRank ranking vector and the DataApprox

vector. We compute the Spearman’s Footrule distance between these two vectors.

Since there are a many tied pages with the same score, we use an extension for

ranking with ties [43]. The normalized Spearman’s Footrule distance is reported

in Figures 6.1 and 6.2. We consider 20 typical user-preferred queries; they reflect

a range of preferences for the link types. Since different weight assignment vectors

have an impact on the approximation quality, all results are an average over the 20

queries.

Baseline algorithm PickOne. We compare DataApprox against a baseline algo-

rithm PickOne. The PickOne algorithm follows the intuition that the best candidate

Θi in the repository is the closest to the query Θq (Section 5.6). PickOne calcu-

lates the Euclidean distance ||Θq, Θi||2 and chooses the candidate with the minimum

Euclidean distance. Note that PickOne does satisfy the bound in Theorem 5.

While PickOne chooses the single best candidate, it does not have minimum

value of δ. However, the DataApprox algorithm will minimize the value of δ. Theo-

retically, the DataApprox algorithm should produce a more accurate approximation

112

compared to the PickOne algorithm.

We implemented our algorithms (DataApprox and PickOne) and the Objec-

tRank algorithm in Java. Our experiments were run on a Solaris machine with two

2.8 GHz dual-core processors and 12 GB RAM.

6.2 The candidate ranking repository

The candidate rankings available in the repository will have an impact on the

quality of the DataApprox approximation. In an extreme case, the query ranking is

stored in the repository, and an accurate ranking can be retrieved free at runtime.

A natural way of materializing candidate rankings is to generate a grid to

represent all possible weight assignments, e.g., for each edge type in the semantic

graph, we can select W uniformly spread weight assignments. One drawback is that

we would have to generate a very large number of candidate rankings in order to

provide a uniform coverage of all the points in the grid. A small value of W or not

covering the grid uniformly may produce poor candidate rankings. For the experi-

ments, we generated 1000 candidate rankings; each candidate can be considered to

correspond to a randomly selected point. We will use these candidates to serve as

the ranking repository.

Note that the DataApprox algorithm does not need all the scores of the ranking

vectors, as addressed in Section 5.7.3.2. DataApprox works well even when K = 50

(see Figure 6.1). The storage requirement for the top K = 1000 objects of 1000

rankings is estimated to be 30 MB bytes. We note that we used the complete

113

ranking vector to accurately calculate the Spearman’s Footrule distance.

In Table 6.1, we show some query samples and some samples in the repository.

The second column lists the weight assignment vectors for some queries and can-

didates. The third column is the keyword used to select the base set. The weight

assignment vector assigns the link importance for 7 edge types. They are ((confer-

ence,year),(year,conference),(year,paper),(paper,year),(paper,paper),(paper,author),

(author,paper)).

weight assignment vector keyword

query1 (1, 0.5, 0.5, 0.33, 0.33, 0.33, 0.1) “OLAP”

query2 (0.3, 0.3, 0.3, 0.1, 0.7, 0.2, 0.2) “OLAP”

candidate1 (0.99, 0.18, 0.75, 0.35, 0.30, 0.23, 0.26) “OLAP”

candidate2 (0.28, 0.18, 0.75, 0.37, 0.22, 0.36, 0.088) “OLAP”

Table 6.1: The samples for queries and candidates.

6.3 The impact of the top K on DataApprox

For this experiment we consider 10 candidate rankings chosen by the Candidate

Ranking Selector and 20 queries. We report on the DataApprox quality (Spearman’s

Footrule distance) as we vary the top K objects. Recall from Section 5.7.3.2 that we

set up the constraints in the feasibility problem for the top K objects. (Note that

this parameter K is not the prefix of the top-k results that the user may request.)

Figure 6.1 reports on the DataApprox distance when K is varied from 50 to 1000.

114

The left vertical axis shows the scale for the Spearman’s Footrule distance and the

right vertical axis reports the δ values. The δ values for DataApprox are the triangles

and the DataApprox distance values are the blue crosses. The red line with squares

is the distance for the baseline algorithm PickOne. The PickOne algorithm’s choice

is indifferent to the top K objects.

We observe that the quality of DataApprox is much higher than PickOne; the

DataApprox improves the distance value typically by 30% – 40%. As K increases,

DataApprox sets up constraints in the LP for more objects and it has a more com-

plete view of the candidate rankings. Therefore, when K is larger, δ increases and

DataApprox is able to produce better approximation.

To summarize, the quality of DataApprox is very good and it outperforms the

ranking chosen by PickOne (the closest single candidate ranking).

Figure 6.1: The average Spearman’s Footrule distance when the value of the top K

is varied.

115

6.4 The impact of the size of the ranking repository

Figure 6.2 reports on the behavior of DataApprox and PickOne when we in-

crease the number of rankings in the repository. We consider 10 different ranking

repositories, whose size varies from 100 to 1000. The δ values for DataApprox are

the triangles and the DataApprox distance values are the blue crosses and the dis-

tance for PickOne are the red squares. When the size of the repository increases,

the value of δ for DataApprox decreases, since the algorithm has more candidates

to choose from, which leads to the smaller feasible δ. DataApprox outperforms

PickOne when we use repository with different sizes.

Figure 6.2: The average Spearman’s Footrule distance for varying M (M).

We notice that with more candidates, while the δ value decreases monoton-

ically, the quality of DataApprox and PickOne does not uniformly decrease. The

correlation between δ and the distance has only limited impact. To summarize,

the quality of DataApprox outperforms the baseline algorithm PickOne and both

algorithms can be improved by increasing the coverage of the repository.

116

6.5 DataApprox runtime

We report on the runtime of DataApprox and compare it to the exact Objec-

tRank algorithm. The figures show that DataApprox can be performed within 2

seconds, e.g., top K = 1000. For the comparison, the optimized ObjectRank takes

more than 5 minutes on the same dataset.

DataApprox calls the LP solver during a binary search to find the smallest

value of δ. We used an open source LP solver glpk [10] and its Java interface [11].

It is reported that the commercial LP solver CPLEX is 10–100 times faster than

glpk [12]. Thus, we conclude that despite the slower execution of glpk, the execution

times reported in Figures 6.3 and 6.4 reflect that DataApprox can be performed at

query time.

In the ObjectRank implementation, we set the damping factor ǫ to be 0.85

and the convergence of the algorithms is identified when the absolute value of the

L1 norm is less than 0.1. It usually takes 25 − 26 iterations to converge. The

average runtime for ObjectRank on 20 queries is 338 seconds, which is not shown in

Figure 6.3 and 6.4 because DataApprox is faster than ObjectRank in several orders

of magnitude. Note that this runtime does not include the preprocessing time when

the graph is loaded into memory.

Figures 6.3 and 6.4 report the runtime when we vary the top K values and

the number of rankings in the repository M respectively. The DataApprox runtime

reported in Figures 6.3 and 6.4 also does not include the preprocessing time to

load the data graph and the authority transfer weights for all candidates into the

117

memory. We report the initialization and execution time for the DataApprox with

stacked bars. The initialization is to select m rankings from the repository and to

load the top K objects for these m rankings, which is the white bar in the figure.

In DataApprox execution, the algorithm calls the LP solver multiple times (usually

9 − 10 times to satisfy the accuracy requirement of τ = 0.1).

Figure 6.3: Average runtime of DataApprox when the number of top K are varied.

Figure 6.4: Average runtime of DataApprox for varying M (M).

Compared to the ObjectRank execution time of 338 seconds, Figure 6.3 shows

118

that DataApprox can be executed at query time. As K is increased, the number of

constraints in the LP problem is increased. When K increased from 100 to 1000,

the runtime for DataApprox ranges from 0.096 second to 2.03 seconds.

Figure 6.4 shows that DataApprox runtime is within 1 second. Note that when

the size of the repository is increased, the runtime for DataApprox does not neces-

sarily increase. Adversely, it has a tendency to decrease. This can be explained as

follows: with larger ranking repository, DataApprox tends to have a better set of

rankings from the Candidate Ranking Selector. However, the runtime of DataAp-

prox does not uniformly decreasing when the repository is larger. This may be

explained by the weak correlation between δ and the Spearman’s Footrule distance.

Considering the results in Figure 6.2 where the quality of the approximation is gen-

erally improved, the DataApprox algorithm benefits from a complete repository for

accuracy gain without efficiency loss.

To summarize, despite the use of a comparatively slow LP solver glpk, DataAp-

prox execution performance is very fast and makes it an option for runtime person-

alization.

119

Chapter 7

Conclusion and Future Direction

We have addressed the challenge of computing customized ranking for two

problems. The first is subgraph ranking and the second is authority flow based

personalized ranking.

For the subgraph ranking problem, we have presented a framework based on

an exact and an approximate solution to compute PageRank on a subgraph. The

IdealRank algorithm is an exact solution and the ApproxRank algorithm is an ap-

proximate solution. The IdealRank algorithm assumes that the PageRank scores of

external pages are known, therefore it produces accurate ranking for pages in a sub-

graph. When the PageRank scores of external pages are not available, ApproxRank

algorithm estimates PageRank scores for the subgraph. For IdealRank algorithm,

we proved that the IdealRank scores for pages in the subgraph converge to the true

PageRank scores. For ApproxRank algorithm, we developed a theoretical bound of

the distance between the ApproxRank scores and the PageRank scores. We showed

through empirical results that the ApproxRank ranking accuracy is similar (some-

times superior) to the best competitor SC, and it overwhelmingly outperforms the

runtime efficiency of SC.

For the problem of computing an approximate personalized ranking, we have

defined two approximate approaches, SchemaApprox and DataApprox at different

120

level. We proved the Authority Flow Linearity Theorem for authority flow rankings

for the aggregate surfer; her behavior is controlled by multiple personalized rankings.

Based on these results, we presented the DataApprox algorithm in order to approxi-

mate authority flow rankings. We modeled DataApprox as an optimization problem

of selecting and combining the best rankings from a repository. Then we developed

a set of heuristics to dramatically reduce the search space and the complexity of

the optimization problem and makes the computation feasible even for very large

data graphs. We performed a theoretical analysis of the approximation quality of

DataApprox. We conducted extensive experiments on the complete DBLP data

graph and showed that DataApprox performs well both in terms of execution time

as well as in terms of quality, i.e., how close the approximate DataApprox ranking

is to the exact ranking.

Given the dynamic nature of the Web, being able to provide relevant, per-

sonalized ranking quickly will continue to present challenges. For both subgraph

ranking and personalized ranking, there is considerable room for enhancement and

improvement.

We summarize some of these challenges that were identified in completing

this research. For subgraph ranking, we will consider extensions to ApproxRank to

improve performance. An example is to utilize the error analysis of ApproxRank to

improve the accuracy. We expect better estimation for external pages will improve

ApproxRank. We will also investigate the possibility to cluster the external pages

into multiple external nodes rather than the single external node considered in

this thesis. We expect to perform this clustering based on the importance or the

121

PageRank score associated with the external pages. The challenge is to correctly

classify the external pages into multiple nodes (determined by their PageRank score

or other importance score) without actually having to compute these PageRank

scores. We also will determine the optimal number of such external nodes, e.g., two

external nodes, reflecting the power laws controlling the distribution of importance

on the Web. We also plan to apply a similar analysis to IdealRank when it is applied

to semantic ranking on a subgraph. ApproxRank was a centralized computation. It

can be extended in several ways. One possible extension is to adapt it in distributed

system like P2P network to speedup ranking computation. A final extension is

to extend subgraph ranking to consider updates to the graph. IdealRank can be

applied to this case, where the part of the graph that experienced the most changed

is considered as the subgraph.

For computing authority flow rankings, we will consider efficient solutions for

the SchemaApprox optimization problem. SchemaApprox is solvable as a Quadratic

Programming problem, which is very expensive to solve. We may apply some heuris-

tics to reduce the search space in future work. We can also address an inverse per-

sonalization problem. In this thesis we assumed that the user provided Θ. This is

difficult. It is simpler for the user to provide a preferred ranking. The challenge

then is to use this relevance feedback to determine the best Θ.

122

Bibliography

[1] http: // www. google. com/ .

[2] http: // www. useit. com/ alertbox/ web-growth. html .

[3] http: // www. jux2. com/ stats. php .

[4] http: // www. ncbi. nlm. nih. gov/ .

[5] http: // www. informatik. uni-trier. de/ ~ ley/ db/ .

[6] http: // googleblog. blogspot. com/ 2008/ 07/ we-knew-web-was-big.

html .

[7] http: // www. dmoz. org/ .

[8] http: // www. amazon. com/ .

[9] http: // citeseerx. ist. psu. edu/ .

[10] http: // www. gnu. org/ software/ glpk/ .

[11] http: // bjoern. dapnet. de/ glpk/ index. htm .

[12] http: // www. go. dlr. de/ pdinfo_ dv/ glpk/ GLPK_ FAQ. txt .

[13] Karl Aberer and Jie Wu. A framework for decentralized ranking in web infor-
mation retrieval. In APWeb, pages 213–226, 2003.

[14] Alekh Agarwal, Soumen Chakrabarti, and Sunny Aggarwal. Learning to rank
networked entities. In KDD ’06: Proceedings of the 12th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 14–23,
New York, NY, USA, 2006. ACM.

[15] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-
based keyword search in databases. In VLDB, 2004, 2004.

[16] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random net-
works. Science, 286:509, 1999.

[17] Pavel Berkhin. A survey on pagerank computing. Internet Mathematics,
2(1):73–120, 2005.

[18] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Pagerank as a function
of the damping factor. In WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 557–566, New York, NY, USA, 2005.
ACM.

123

[19] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis
Tsaparas. Link analysis ranking: algorithms, theory, and experiments. ACM
Trans. Inter. Tech., 5(1):231–297, 2005.

[20] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In WWW7: Proceedings of the seventh international conference
on World Wide Web 7, pages 107–117, Amsterdam, The Netherlands, The
Netherlands, 1998. Elsevier Science Publishers B. V.

[21] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph struc-
ture in the web. In Proceedings of the 9th international World Wide Web
conference on Computer networks : the international journal of computer and
telecommunications netowrking, pages 309–320, Amsterdam, The Netherlands,
The Netherlands, 2000. North-Holland Publishing Co.

[22] Andrei Z. Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen. Efficient
pagerank approximation via graph aggregation. In WWW Alt. ’04: Proceedings
of the 13th international World Wide Web conference on Alternate track papers
& posters, pages 484–485, New York, NY, USA, 2004. ACM Press.

[23] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs.
In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 571–580, New York, NY, USA, 2007. ACM.

[24] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawl-
ing: a new approach to topic-specific web resource discovery. In WWW ’99:
Proceeding of the eighth international conference on World Wide Web, pages
1623–1640, New York, NY, USA, 1999. Elsevier North-Holland, Inc.

[25] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: support-
ing expensive predicates for top-k queries. In SIGMOD ’02.

[26] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating
pagerank values. In CIKM ’04: Proceedings of the thirteenth ACM international
conference on Information and knowledge management, pages 381–389, New
York, NY, USA, 2004. ACM Press.

[27] Steve Chien, Cynthia Dwork, Ravi Kumar, Daniel R. Simon, and D. Sivakumar.
Link evolution: Analysis and algorithms. Internet Mathematics, 1(3):277–304,
2003.

[28] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and im-
plications for an incremental crawler. In VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, pages 200–209, San Fran-
cisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

124

[29] Junghoo Cho, Hector G. Molina, and Lawrence Page. Efficient crawling through
url ordering. Computer Networks and ISDN Systems, 30(1–7):161–172, 1998.

[30] Junghoo Cho and Uri Schonfeld. Rankmass crawler: a crawler with high per-
sonalized pagerank coverage guarantee. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases, pages 375–386. VLDB En-
dowment, 2007.

[31] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data preparation
for mining world wide web browsing patterns. Knowledge and Information
Systems, 1:5–32, 1999.

[32] Don Coppersmith, Peter Doyle, Prabhakar Raghavan, and Marc Snir. Random
walks on weighted graphs and applications to on-line algorithms. J. ACM,
40(3):421–453, 1993.

[33] Gianna M. Del Corso, Antonio Gulĺı, and Francesco Romani. Fast pager-
ank computation via a sparse linear system. Journal of Internet Mathematics,
2(3):251–273, 2005.

[34] Jason V. Davis and Inderjit S. Dhillon. Estimating the global pagerank of web
communities. In KDD ’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 116–125, New York,
NY, USA, 2006. ACM Press.

[35] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, and Marco
Gori. Focused crawling using context graphs. In VLDB ’00: Proceedings of the
26th International Conference on Very Large Data Bases, pages 527–534, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[36] Chris Ding, Xiaofeng He, Parry Husbands, Hongyuan Zha, and Horst D. Simon.
Pagerank, hits and a unified framework for link analysis. In SIGIR ’02: Pro-
ceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 353–354, New York, NY, USA,
2002. ACM.

[37] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation
methods for the web. In WWW ’01: Proceedings of the 10th international
conference on World Wide Web, pages 613–622, New York, NY, USA, 2001.
ACM Press.

[38] Efthimis N. Efthimiadis. A user-centred evaluation of ranking algorithms for
interactive query expansion. In SIGIR ’93: Proceedings of the 16th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 146–159, New York, NY, USA, 1993. ACM.

[39] Magdalini Eirinaki and Michalis Vazirgiannis. Web mining for web personal-
ization. ACM Trans. Internet Technol., 3(1):1–27, 2003.

125

[40] Magdalini Eirinaki and Michalis Vazirgiannis. Usage-based pagerank for web
personalization. In ICDM ’05: Proceedings of the Fifth IEEE International
Conference on Data Mining, pages 130–137, Washington, DC, USA, 2005. IEEE
Computer Society.

[41] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the web
frontier. In WWW ’04: Proceedings of the 13th international conference on
World Wide Web, pages 309–318, New York, NY, USA, 2004. ACM Press.

[42] Ronald Fagin. Combining fuzzy information from multiple systems (extended
abstract). In PODS ’96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 216–226, New
York, NY, USA, 1996. ACM.

[43] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee.
Comparing and aggregating rankings with ties. In PODS ’04: Proceedings of
the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 47–58, New York, NY, USA, 2004. ACM Press.

[44] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 102–
113, New York, NY, USA, 2001. ACM.

[45] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM ’99: Proceedings of the
conference on Applications, technologies, architectures, and protocols for com-
puter communication, pages 251–262, New York, NY, USA, 1999. ACM.

[46] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. Towards
scaling fully personalized pagerank: Algorithms, lower bounds, and experi-
ments. Internet Mathematics, 2(3), 2005.

[47] Floris Geerts, Heikki Mannila, and Evimaria Terzi. Relational link-based rank-
ing. In VLDB ’04: Proceedings of the Thirtieth international conference on
Very large data bases, pages 552–563. VLDB Endowment, 2004.

[48] Gene H. Golub and Charles F. Van Loan. Matrix Computations (Johns Hop-
kins Studies in Mathematical Sciences). The Johns Hopkins University Press,
October 1996.

[49] A. Gulli and A. Signorini. Building an open source meta-search engine. In
WWW ’05: Special interest tracks and posters of the 14th international confer-
ence on World Wide Web, pages 1004–1005, New York, NY, USA, 2005. ACM
Press.

[50] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages.
In WWW ’05: Special interest tracks and posters of the 14th international

126

conference on World Wide Web, pages 902–903, New York, NY, USA, 2005.
ACM Press.

[51] Taher H. Haveliwala. Topic-sensitive pagerank. In WWW ’02: Proceedings of
the 11th international conference on World Wide Web, pages 517–526, New
York, NY, USA, 2002. ACM Press.

[52] Donald Hooley. Collapsed matrices with (almost) the same eigenstuff. The
College Mathematics Journal, 31(4):297–299, 2000.

[53] Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou. Authority-
based keyword search in databases. ACM Trans. Database Syst., 33(1):1–40,
2008.

[54] Heasoo Hwang, Andrey Balmin, Hamid Pirahesh, and Berthold Reinwald. In-
formation discovery in loosely integrated data. In SIGMOD ’07: Proceedings
of the 2007 ACM SIGMOD international conference on Management of data,
pages 1147–1149, New York, NY, USA, 2007. ACM.

[55] Heasoo Hwang, Andrey Balmin, Berthold Reinwald, and Erik Nijkamp. Bin-
rank: Scaling dynamic authority-based search using materialized subgraphs. In
ICDE, 2009.

[56] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context sim-
ilarity. In KDD ’02: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 538–543, New York,
NY, USA, 2002. ACM.

[57] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW ’03:
Proceedings of the 12th international conference on World Wide Web, pages
271–279, New York, NY, USA, 2003. ACM.

[58] Sepandar Kamvar, Taher Haveliwala, and Gene Golub. Adaptive methods for
the computation of pagerank. Technical report, Stanford University, 2003.

[59] Sepandar Kamvar, Taher Haveliwala, Chris Manning, and Gene Golub. Ex-
ploiting the block structure of the web for computing pagerank. Technical
report, Stanford Digital Library Technologies Project, 2003.

[60] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and
Gene H. Golub. Extrapolation methods for accelerating pagerank computa-
tions. In WWW, pages 261–270, 2003.

[61] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

[62] Apostolos Kritikopoulos and Martha Sideri. The compass filter: Search en-
gine result personalization using web communities. In Bamshad Mobasher and
Sarabjot S. Anand, editors, ITWP, volume 3169 of Lecture Notes in Computer
Science, pages 229–240. Springer, 2003.

127

[63] Amy N. Langville and Carl D. Meyer. Deeper inside pagerank. Internet Math-
ematics, 1(3):335–380, 2004.

[64] Amy N. Langville and Carl D. Meyer. A survey of eigenvector methods for web
information retrieval. SIAM Rev., 47(1):135–161, 2005.

[65] Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton University Press, July 2006.

[66] Amy N. Langville and Carl D. Meyer. Updating markov chains with an eye on
google’s pagerank. SIAM J. Matrix Anal. Appl., 27(4):968–987, 2006.

[67] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems.
Society for Industrial Mathematics, 1995.

[68] Ronny Lempel and Shlomo Moran. The stochastic approach for link-structure
analysis (salsa) and the tkc effect. Computer Networks, 33(1-6):387–401, 2000.

[69] C. D. Meyer. Stochastic complementation, uncoupling markov chains, and the
theory of nearly reducible systems. SIAM Rev., 31(2):240–272, 1989.

[70] Carl Meyer. Matrix Analysis and Applied Linear Algebra. SIAM: Society for
Industrial and Applied Mathematics, February.

[71] Bamshad Mobasher, Robert Cooley, and Jaideep Srivastava. Automatic per-
sonalization based on web usage mining. Commun. ACM, 43(8):142–151, 2000.

[72] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
University Press, New York, NY, USA, 1995.

[73] Maurice D. Mulvenna, Sarabjot S. Anand, and Alex G. Büchner. Personaliza-
tion on the net using web mining: introduction. Commun. ACM, 43(8):122–125,
2000.

[74] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Link analysis, eigen-
vectors and stability. In IJCAI, pages 903–910, 2001.

[75] Zaiqing Nie, Yuanzhi Zhang, Ji-Rong Wen, and Wei-Ying Ma. Object-level
ranking: bringing order to web objects. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, pages 567–574, New York, NY,
USA, 2005. ACM.

[76] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford
Digital Library Technologies Project, 1998.

[77] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Using pagerank to
characterize web structure. In COCOON ’02: Proceedings of the 8th Annual
International Conference on Computing and Combinatorics, pages 330–339,
London, UK, 2002. Springer-Verlag.

128

[78] Josiane Xavier Parreira, Debora Donato, Sebastian Michel, and Gerhard
Weikum. Efficient and decentralized pagerank approximation in a peer-to-peer
web search network. In VLDB’2006: Proceedings of the 32nd international
conference on Very large data bases, pages 415–426. VLDB Endowment, 2006.

[79] Louiqa Raschid, Yao Wu, Woei-Jyh Lee, Maŕıa Esther Vidal, Panayiotis
Tsaparas, Padmini Srinivasan, and Aditya Kumar Sehgal. Ranking target ob-
jects of navigational queries. In WIDM ’06: Proceedings of the eighth ACM
international workshop on Web information and data management, pages 27–
34, New York, NY, USA, 2006. ACM Press.

[80] Matthew Richardson and Pedro Domingos. The intelligent surfer: probabilistic
combination of link and content information in pagerank. In In Advances in
Neural Information Processing Systems 14, pages 1441–1448. MIT Press, 2002.

[81] Ian Ruthven and Mounia Lalmas. A survey on the use of relevance feedback
for information access systems. Knowl. Eng. Rev., 18(2):95–145, 2003.

[82] Gerard Salton and Chris Buckley. Improving retrieval performance by relevance
feedback. Journal of the American Society for Information Science, 41(4):288–
297, 1990.

[83] M. Spiliopoulou and L. C. Faulstich. WUM: A tool for Web utilization analysis.
Lecture Notes in Computer Science, 1590:184–203, 1999.

[84] Lara Srour, Ayman I. Kayssi, and Ali Chehab. Personalized web page ranking
using trust and similarity. In AICCSA, pages 454–457. IEEE, 2007.

[85] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, Princeton, NJ, USA, 1994.

[86] Torsten Suel, Chandan Mathur, Jo-Wen Wu, Jiangong Zhang, Alex Delis,
Mehdi Kharrazi, Xiaohui Long, and Kulesh Shanmugasundaram. Odissea: A
peer-to-peer architecture for scalable web search and information retrieval. In
WebDB, pages 67–72, 2003.

[87] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. Adaptive web
search based on user profile constructed without any effort from users. In
WWW ’04: Proceedings of the 13th international conference on World Wide
Web, pages 675–684, New York, NY, USA, 2004. ACM.

[88] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search via
automated analysis of interests and activities. In SIGIR ’05: Proceedings of the
28th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 449–456, New York, NY, USA, 2005. ACM.

[89] Ramakrishna Varadarajan, Vagelis Hristidis, and Louiqa Raschid. Explaining
and reformulating authority flow queries. In ICDE, pages 883–892, 2008.

129

[90] Ramakrishna Varadarajan, Vagelis Hristidis, Louiqa Raschid, Maria-Esther Vi-
dal, Luis Ibanez, and Hector Rodriguez-Drumond. Flexible and efficient query-
ing and ranking on hyperlinked data sources. In EDBT, volume 360 of ACM
International Conference Proceeding Series, pages 553–564. ACM, 2009.

[91] Yuan Wang and David J. DeWitt. Computing pagerank in a distributed internet
search system. In VLDB, pages 420–431, 2004.

[92] Yao Wu and Louiqa Raschid. Approxrank: Estimating rank for a subgraph. In
ICDE, 2009.

[93] Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Wei-Ying Ma, Hong-Jiang Zhang,
and Chao-Jun Lu. Implicit link analysis for small web search. In SIGIR ’03:
Proceedings of the 26th annual international ACM SIGIR conference on Re-
search and development in informaion retrieval, pages 56–63, New York, NY,
USA, 2003. ACM Press.

[94] Demetrios Zeinalipour-Yazti, Vana Kalogeraki, and Dimitrios Gunopulos. In-
formation retrieval techniques for peer-to-peer networks. Computing in Science
and Engg., 6(4):20–26, 2004.

130

