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I used a long term collection database to compare 72 current populations of 

six species and three hybrids of Plethodon salamanders in the Great Smoky 

Mountains National Park (GRSM).  I analyzed population abundance and adjusted for 

detection probabilities, over time for each species, with respect to null models.  I also 

examined biotic and abiotic factors as potential causes for changes in population 

abundance.  Population response varied among species, Plethodon glutinosus and P. 

teyahalee declined while P. jordani x metcalfi and P. ventralis increased at a greater 

rate than what was expected by historic variation in abundance.  Declines of GRSM 

salamanders most likely began in the late 1960’s to early 1970’s and were associated 

with cooler and moister habitats.  I conclude that species’ biology may explain the 

variation in population responses and propose future research to determine the cause.  
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Introduction 

Plethodon salamanders were once immensely abundant throughout the United 

States.  In the Great Smoky Mountains National Park (GRSM), densities of Plethodon 

jordani and P. teyahalee were estimated at 8,600 and 2,300 individuals/hectare 

respectively (Merchant 1972).  In the Southern Appalachian region, salamander density 

was estimated at 5,961–9,935/ha (Hairston 1987), and salamander density in western 

North Carolina was estimated at 10,000/ha (Petranka et al. 1993).  In a New Hampshire 

forest, Burton and Likens (1975a) found that P. cinereus occurred in such large densities 

that their estimated biomass exceeded the combined biomass of all small vertebrates.   

 Because of their naturally high abundance and density, Plethodon salamanders are 

important components of forest ecosystems (Davic and Welsh 2004).  These salamanders 

are considered the dominant vertebrate predators of leaf litter arthropods (Hairston 1987) 

and function as keystone predators of leaf litter invertebrates (Davic 1983; Wyman 

1998).  Woodland salamanders also function as important prey species for birds and 

small mammals and form an important link in the food web.  Plethodon salamanders are 

able to efficiently convert small prey (e.g., forest invertebrates) into available biomass for 

larger predators (e.g., small mammals; Burton and Likens 1975b).   

 In addition to their role in forest food webs, Plethodon salamanders are important 

to forest ecosystem function.  Woodland salamanders are considered ecosystem 

engineers, because they are able to modify resource availability for other species by 

causing either physical or chemical changes in habitats (Jones et al. 1994).  The 

mechanism by which salamanders alter their habitat is through the creation or use of 

underground burrows (Brooks 1946; Heatwole 1960), which may lead to translocation of 
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nutrients underground from the forest floor (for plants), deposition of excretory nutrients 

(for bacteria and fungi), and increased dispersion of gases through the soil (Davic and 

Welsh 2004). Through control of forest floor invertebrates, salamanders may have an 

indirect effect on leaf litter decomposition and nutrient recycling (Hairston 1987; Wyman 

1998; Wyman 2003).       

Woodland salamanders are excellent study organisms for monitoring abiotic 

and biotic components of forest ecosystems because fluctuations in their populations 

can be associated with changes in leaf litter, air and water pollution, invertebrates, 

pH, and moisture (Welsh and Droege 2001).  Moreover, Welsh and Droege (2001), 

reported that salamander population trends can be detected more quickly and with 

fewer years of monitoring effort than with other vertebrates.  Therefore, successive 

surveys of terrestrial salamanders over a long period of time can provide reliable 

estimates of population changes.  These changes, therefore, will be important to 

assess the changes in the forest ecosystem. 

Studies of Plethodon population abundance over time have shown opposing 

trends for different species, times, and geographic locations (Wyman 2003).  From 

1976 to 1990 at two different sites, Hairston and Wiley (1993) found no changes in 

abundance for P. glutinosus (teyahalee; Highton 1984) and P. jordani.  Elsewhere, 

Highton (2005) described declines of both P. jordani and P. teyahalee over 40 years.  

Globally, at least 21 of 350 species within the family Plethodontidae have become 

more threatened in the last 20 years (Stuart et al. 2004).  Declines of 13 of these 

species were attributed to habitat loss, while 8 were classified as enigmatic, declining 

despite residing in suitable habitat (Stuart et al. 2004).  Currently, 22 species of 



 

 3 
 

Plethodon salamanders have an IUCN listing as “Near Threatened” or higher, 

including P. jordani (IUCN 2010). 

Synchronous, widespread declines occurred in 180 populations of 38 species of 

eastern U.S. Plethodon salamanders (Highton 2005; Figure 1); of these species only P. 

welleri is currently listed as “Endangered” (IUCN 2010).  Reductions in abundance were 

first noticed in the late 1980’s throughout these populations, which suggests that the same 

factor or factors affected these populations in a similar manner (Highton 2005).  Species 

with populations that declined occurred at sites where other species did not decline 

(Highton 2005; Figure 1), which suggest that species’ biology is an important factor in 

determining which species declined and which did not decline.  Extensive habitat 

destruction was observed at 16 sites (22 populations; Highton 2005), but it did not 

explain the other 158 population declines documented by Highton (2005), including 

populations in protected areas, in which habitat loss, land–use change and 

overexploitation cannot explain these losses. 

Plethodon salamanders face many different threats.  Six identified main threats 

are likely the cause of most amphibian population declines: overexploitation, land use 

change, alien species, emerging infectious diseases, pollution (e.g., habitat acidification), 

and global climate change (Collins and Storfer 2003).  Within Plethodon, the main threat 

to population abundance appears to be timber harvesting (Wyman 2003), although it has 

not caused any documented species extinctions (IUCN 2007); however, habitat 

acidification may be another important threat (Wyman 2003).  Additionally, global 

climate change has been implicated in declines in Central American plethodontid 



 

 4 
 

populations (Rovito et al. 2009) and Plethodon species are susceptible to emerging 

infectious diseases (Vazquez et al. 2009; Weinstein 2009) 

 Timber harvesting can create unsuitable habitat for terrestrial plethodontids (Ash 

1988) by reducing leaf litter, shade soil moisture and increasing surface temperature 

(Bury 1983; Ash 1988).  These conditions, therefore, create drier habitats that limit 

surface activity and may cause mortality due to increased physiological stress (Petranka 

et al. 1993).  Additionally, Petranka et al. (1993, 1994) reported that Plethodon 

abundance may not recover until 50 – 70 years after harvesting because younger tree 

stands create less favorable (i.e., drier and warmer) microhabitats than mature stands.  

Although protected areas (e.g., National Parks) preserve salamander habitat from 

harvesting, changes in populations may be lagged effects of this past logging.  Because 

Plethodon salamanders are lungless and rely on moist skin for cutaneous respiration, it is 

likely that all species are affected similarly to harvested forests (see Petranka et al. 1993); 

however, some evidence suggests that P. teyahalee may be less sensitive to drier forests, 

as a result of timber harvesting, than P. jordani (Ash 1997). 

Acidic habitat can affect salamanders as well as their ecosystem.  These acidic 

environments may create unsuitable habitat for terrestrial salamander populations 

(Wyman and Jancola 1992; Frisbie and Wyman 1995).  Individuals raised in low pH (< 

3.8) aquatic and terrestrial environments can experience direct mortality, increased 

deformity rates and reduced rates of growth and development (Rowe and Freda 2000; 

Wyman 2003).  Additionally, salamanders living on acidic substrates (< 3.8) lose sodium, 

water, and overall body mass more readily than salamanders living on less acidic 

substrates (Frisbie and Wyman 1991).  This disruption in sodium balance may create 
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unfavorable habitats to terrestrial salamander populations on acid soils or in areas 

receiving increased acid deposition (Wyman 2003).  

Infectious diseases can cause amphibian morbidity and mortality. 

Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal 

pathogen Batrachochytrium dendrobatidis (Bd; Longcore et al. 1999).  Bd attacks the 

keratinized epidermis of adult amphibians and the keratinized mouthparts of tadpoles 

(Berger et al. 1998).  Susceptible amphibian species with high intensity infections 

experience electrolyte depletion and osmotic imbalance, which leads to cardiac arrest and 

death (Voyles et al. 2007; 2009).   

Disease occurrence varies among different hosts and different habitats and is 

determined by the interaction between three factors: the host, the pathogen and the 

environment (Wobeser 2006).  Some amphibians can clear an infection or can persist 

without signs of disease (Daszak et al. 2004).  In terrestrial salamanders, cutaneous 

antifungal bacteria (Harris et al. 2006) produce antifungal metabolites (Brucker et al. 

2008), which can reduce the level of Bd infection (Harris et al. 2009a, b).  Bd thrives 

under cooler temperatures (Piotrowski et al. 2004) and moist environments (Johnson 

et al. 2003) and can be cleared in warmer (Woodhams et al. 2003) and drier 

conditions (Johnson et al. 2003).  Optimum growth of Bd occurs between 17 – 25°C 

(Piotrowski et al. 2004) and the critical thermal maximum of Bd is 30°C (Piotrowski 

et al. 2004).  Consistent with Bd’s environmental tolerances, infection prevalence, in 

several empirical studies, increased during cooler months compared to warmer 

months (Woodhams et al. 2003; Berger et al. 2004; Kriger and Hero 2006; Weinstein 

2009).  Variation in species response to Bd has also been attributed to differences in 
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habitat, microhabitat (Lips et al. 2003; Rowley and Alford 2007; Brem and Lips 

2008), thermoregulation (Richards–Zawacki 2010), amphibian immune response 

(Ramsey et al. 2010), skin peptides (Harris et al. 2006), and amphibian behavior 

(Longo et al. 2009), amphibian density (Briggs et al. 2010).  

Arrival of Bd into a susceptible population is followed by amphibian 

mortality, increases in prevalence and intensity of disease, and population declines 

(Lips et al. 2006; Briggs et al. 2010).  Following Bd’s arrival, amphibian communities 

experience a loss of regional and local scale diversity, in which many endemic 

species are lost (Crawford et al. 2009; Smith et al. 2009).  Declines attributed to Bd 

have occurred in amphibian populations throughout the world (Berger et al. 1998; 

Lips et al. 2006; Rachowicz et al. 2006).  Within the United States, confirmed cases 

of amphibian population declines attributed to Bd have occurred in California 

(Rachowicz et al. 2006) and Colorado (Muths et al. 2003) and mortality events 

associated with Bd have occurred in adult anurans in California, Colorado, North 

Dakota, North Carolina, and Wyoming (Green et al. 2002).  Amphibian response to 

Bd throughout the US varies.  Populations in the Western US experience epizootic 

outbreaks consistent with a naïve population, while Eastern US amphibians do not 

show the same patterns (Green et al. 2002). 

Bd has caused salamander population declines worldwide (Berger et al. 1998; 

Collins and Storfer 2003; Lips et al. 2006) and is present on every continent in which 

amphibians occur (Berger and Speare 2000; Goka et al. 2009).  In Peñalara National 

Park, Spain, Salamandra salamandra have experienced population declines (Martínez–

Solano et al. 2003), in which heavy Bd infections were confirmed in several dead 
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individuals (Bosch and Martínez–Solano 2006).  Although Bd–related declines and 

mortalities have rarely been reported for salamanders, Bd infections have been confirmed 

in many genera, including: Ambystoma (Davidson et al. 2003; Ouellet et al. 2005), 

Notophthalmus (Ouellet et al. 2005), Necturus (Speare and Berger 2000), Siren (Speare 

and Berger 2000), Pseudotriton (Speare and Berger 2000), Desmognathus (Grant et al. 

2008), Eurycea (Grant et al. 2008), Bolitoglossa (Pasmans et al. 2004; Lips et al. 2006; 

Rovito et al. 2009; Crawford et al. 2010), and Taricha (Padgett–Flohr and Longcore 

2007).   

Within the genus Plethodon, reports of infected species include: Plethodon 

neomexicanus (Cummer et al. 2005), P. cinereus (www.spatialepidemiology.net/bd/), P. 

glutinosus (Chinnadurai et al. 2009), P. yonahlossee (Chinnadurai et al. 2009) and P. 

metcalfi (Vazquez et al. 2009).  Although population declines attributed to Bd have 

occurred within Plethodontidae in Central America (Lips 1998; Lips and Donnelly 2005; 

Lips et al. 2004; Lips et al. 2006; Rovito et al. 2009; Crawford et al. 2010), there are no 

confirmed cases of Plethodon population declines directly caused by Bd in the US. 

Ranavirus and has been implicated in amphibian declines in various species 

(e.g., Collins et al. 1988; Chinchar 2002; Ariel et al. 2009).  In the US, ranaviruses 

have been associated with some amphibian mortalities (Green et al. 2002) especially 

in Ambystoma spp. (Green et al. 2002; Greer et al. 2009).  Dead amphibians with 

ranaviruses have been found in New Hampshire, Colorado, North Dakota, Minnesota, 

Maine, Utah, Idaho, Tennessee, Massachusetts, Wyoming, and North Carolina (Green 

et al. 2002). Higher ranavirus prevalence estimates are associated with higher 

elevations (Gahl and Calhoun 2008) and its virulence is likely increased through 
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natural (e.g., metamorphosis) and anthropogenic stressors (e.g., nitrogenous 

compounds; Forson and Storfer 2006; Gray et al. 2007; Gray et al. 2009a).  Within 

Plethodon, reports of susceptible species include: P. jordani, P. metcalfi and P. 

jordani x metcalfi (Gray et al. 2009b; M.J. Gray and N.M. Caruso unpublished data).   

Climate change can impact protected amphibian populations (Carey et al. 

2001; Carey and Alexander 2003; Rohr et al. 2008; Rodenhouse et al. 2009; Rohr and 

Raffel 2010).  Warmer and drier climates are likely to negatively impact many 

amphibian populations (Blaustein et al. 2003; Pounds 2001; Rohr and Madison 2003).  

In the eastern US, predictive models predict warmer and wetter climates (Girvetz et 

al. 2009).  These changes may be problematic for terrestrial lungless salamanders 

(i.e., plethodontid salamanders), which rely on moist, permeable skin to allow gas 

exchange (Whitford and Hutchison 1965).  Because of their permeable skin, 

plethodontid salamanders are prone to dehydration, are restricted to cool, moist 

microhabitats, and have limited surface activity, even during favorable conditions 

(Feder 1983; Bernardo and Spotila 2006). 

Amphibian species most at risk of global climate change include those that are 

already at their physiological limits of temperature and/or moisture (e.g., montane-

adapted terrestrial plethodontids; Bernardo and Spotila 2006), those that depend on 

ephemeral wetlands, or those that cannot disperse (Reaser and Blaustein 2005).  

Based on the degree of metabolic depression associated with reduced temperature, 

current high elevation species of plethodontid salamanders with restricted ranges 

(e.g., P. jordani) are most likely distributed near the upper limits of their thermal 

tolerances (Bernardo and Spotila 2006; Bernardo et al. 2007).  Global circulation 
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models predict that rising CO2 levels will lead to climate changes in the northern 

hemisphere, including the GRSM (IPCC 2007), in which average temperatures will 

continue to increase (Girvetz et al. 2009).  Because of these warming temperatures, 

lower elevation forest habitats may become unsuitable for southern Appalachian 

salamanders (Milanovich et al. 2010). 

Changes in climate can also affect disease dynamics by shifting the host-

pathogen relationship in favor of the pathogen (Wobeser 2006; Rohr et al. 2008).  

Decreases in temperature may reduce the host’s ability to fight infection (Vazquez et 

al. 2009) while increased precipitation may create more suitable habitat for disease 

(Rohr et al. 2008; Weinstein 2009).  Natural changes in climate, such as El Niño – 

Southern Oscillation (ENSO) events may create more favorable conditions for 

pathogen persistence and transmission (Weinstein 2009), in producing higher than 

average rainfall in the Eastern United States (NOAA 2010; NCDC 2010).  Therefore, 

ENSO years may allow a pathogen that normally exists at low levels, which do not 

cause decreases in population abundance (Vredenburg et al. 2010), to increase 

transmission and cause declines. 

 

Objectives 

 I analyzed the change in population abundance over 49 years for six species and 

three hybrids of Plethodon salamanders in the GRSM at 35 historic collecting sites.  I 

used a collection dataset to determine historic population abundance and field surveys to 

determine current population abundance.  My goal for this project was four–fold.  (1) To 

determine if changes in abundance of Plethodon salamanders differed from expected 
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based on historic population abundance and adjust count indices based on detection 

probabilities; (2) to determine the relationship among changes in population abundance 

and species, sites, and elevations as well as determine the approximate timing of 

population declines; (3) to estimate the change in diversity within each site as a function 

of species presence/absence and abundance changes; (4) to search for associations 

between these population changes and potential threats (e.g., Bd’s predicted and actual 

occurrence, forest disturbance, current temperature, precipitation patterns, and changes in 

precipitation and temperature from 1961 – 2006).  These analyses will indicate potential 

causes for declines in Plethodon salamander populations the GRSM. 

 If populations declined because of forest stand age or disturbance, I expected 

declines to have occurred in young forests, with stable or increasing populations in old 

growth forests.  Furthermore, I would expect populations of P. teyahalee to remain stable 

because this species is more tolerant of timber harvesting (Ash 1997). 

 If acid deposition has caused Plethodon salamander declines in the GRSM then I 

expected an elevational pattern, with all high elevation, which is correlated with 

increased acid deposition in the GRSM (Robinson et al. 2008), population to declined, 

while all low elevation populations would remain stable or increase. 

 I searched for associations between declines and environmental variables (Lips et 

al. 2003; Gray et al. 2009a) and spatial relationships.  If Bd were a potential cause for 

declines, declines should be associated with areas of higher Bd suitability [as predicted by 

Maxent models (Phillips et al. 2006)], I further expected that population declines would 

be spatially clustered in areas of high Bd suitability.  Furthermore, I expected populations 

which inhabited cooler temperatures and higher precipitation, which may promote Bd or 
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ranavirus persistence, will have declined, while populations which inhabit warmer 

temperatures and lower precipitation will not have declined.  Additionally, I expected to 

find these ranavirus or Bd within populations and species that have declined and at a 

lower prevalence in populations and species which have remained stable or increased.     

If changes in temperature and precipitation were a potential direct cause for 

declines, I would expect that populations will have declined in areas that have 

become warmer and drier over the last 55 years.  I expected populations to have 

remained stable or increased in areas that have become cooler and wetter since 1951.  

Additionally, I expected the timing of declines to be synchronous with extreme 

weather events (e.g., El Niño – Southern Oscillations; Pounds et al. 1999). 
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Methods 

Study Area 

The GRSM, which straddles the Tennessee–North Carolina border, 

encompasses 205,665 ha of contiguous forest, categorized into five major forest 

types: Cove Hardwood, Spruce–Fir, Northern Hardwood, Hemlock, and Oak–Pine 

(Jenkins 2007).  Approximately 95% of the park is forested and 25% of this is old–

growth forest (Davis 1993).  Forest stands, especially mature stands, are critical 

habitat for Plethodon salamanders (Dupuis et al. 1995) because they provide 

extensive canopy coverage, which inhibits sunlight penetration (Phillips and Shure 

1990) that can otherwise lead to higher temperatures and drier leaf litter (Ash 1995).  

Moreover, mature stands provide abundant coarse woody debris, which serves as 

moist retreat sites for terrestrial salamanders (Feder 1983).  Elevations in the GRSM 

range from 267 – 2,025 meters with highly variable topography, which include gentle 

and steep slopes, level valleys, talus slopes, incised drainages and rocky summits 

(Jenkins 2007).  The GRSM has a temperate climate; annual temperatures range from 

-2 to 31 oC in the low elevations (~265 meters), while at the highest elevations (2,025 

meters) annual temperatures range from -18 to 19 oC (NPS 2010).  Precipitation also 

varies with elevation; currently, the highest elevations receive an average of 2,160 

mm of precipitation per year while the lower elevations average about 1,397 mm 

annually (NPS 2010).  The GRSM is home to nearly 10% of the world’s salamander 

species (Petranka 1998); at least 30 species (5 families) reside within the GRSM 

(Tilley and Huheey 2004).  Because of the high salamander diversity the GRSM is 
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known as “The Salamander Capital of the World” (NPS 2010) and is an international 

temperate forest biodiversity refuge (NPS 2010). 

Despite its protected status, GRSM salamander diversity may be threatened by 

factors such as historic timber harvesting, acid precipitation, emerging infectious 

diseases, and climate change.  Although the GRSM is currently protected, historically, 

forest harvesting has occurred until 1939 (NPS 2010), while precipitation pH at the 

highest elevations (NPS 2010) is currently low enough to cause reduced growth or 

mortality of salamanders (Wyman 2003).  Bd has been present in the southeastern US 

since 1978 (Daszak et al. 2005) and both Bd and ranavirus are present within the GRSM 

(Chatfield et al. 2009; Gray et al. 2009b; Todd-Thompson et al. 2009).  Additionally, 

projections of future climate trends using species distribution models (SDMs) show range 

contractions for southern Appalachian salamanders as early as 2020 (Milanovich et al. 

2010). 

 

Site Selection 

From the 1960 to 2001, Richard Highton collected over 17,000 plethodontid 

salamanders at over 300 sites throughout the GRSM.  Detailed field notes were taken for 

every visit, including: geographic coordinates, date of collection, species, number of 

individuals encountered, and number of collectors.  These collected specimens as well as 

the research notes are currently housed at the US National Museum of Natural History 

(USNM).  These sites were sampled for over 50 years in the same manner, which allowed 

for unique opportunity to study multiple species throughout the GRSM for over a half 

century (Shaffer et al. 1997).   
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I selected 35 of Highton’s collecting sites that occurred within the GRSM 

(Figure 2) and which had been sampled during multiple years.  I sampled 2 plots 

within each site to the increase power for detecting changes in abundance (Smith and 

Petranka 2000).  I selected sites that encompassed a wide geographic and elevation 

range (488 to 1,972 meters) to represent a variety of climate space and include the 

distribution of the 6 species of Plethodon salamanders within the GRSM.  I collected 

sampled field sites during March, May through July and November of 2009 (Figure 

2).  I sampled seven low elevation sites (~500 m – 1,000 m), 19 mid elevation sites 

(~1,000 m – 1,500 m) and nine high elevation sites (~1,500 m – 2,000 m).   

  

Study Species 

Six species of Plethodon salamanders occur within the GRSM (Tilley and Huheey 

2001).  All six species are lungless, are completely terrestrial, and utilize natural cover 

objects as aboveground shelter on the forest floor (Wells 2007).  One to three species 

occupied the 35 study sites for a total of 72 populations of Plethodon salamanders 

(Tables 2 and 3).   

Susceptibility to Bd varies among species of terrestrial plethodontids.  Plethodon 

glutinosus has been found to be infected with Bd in the wild (Chinnadurai et al. 2009; 

Table 3) while Plethodon metcalfi shows clinical signs of chytridiomycosis and mortality 

when infected with high doses of Bd in the lab (Vazquez et al. 2009).  Susceptibility to 

Bd for the other species of GRSM salamanders is unknown, and no fully terrestrial 

plethodontid salamander has been found to be infected within the GRSM (Chatfield et al. 

2009). 
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High elevation populations of terrestrial salamanders are most likely distributed 

near the upper limits of their thermal tolerances (Bernardo and Spotila 2006; Bernardo et 

al. 2007).  High elevation species experience high rates of metabolic depression with 

increasing temperatures, which can limit their ability to disperse through lower valleys or 

adapt to warming conditions (Bernardo and Spotila 2006).  P. serratus, P. metcalfi, P. 

teyahalee, and P. jordani inhabit all three elevational bands (Table 1), while P. ventralis 

is the only species that is not found at elevations over 1,000 m (Table 1) and P. 

glutinosus inhabits elevations below 1,500 m (Table 1).  Species and populations 

inhabiting the warmer, low elevation habitats may not be able deal with the physiological 

stress associated with warming trends (Bernardo and Spotila 2006).  

 

Field Methods 

 From 1960 – 2001, R. Highton and colleagues surveyed these 35 sites at least 

once and not more than seventeen times (Figure 3).  Each site is characterized as an area 

marked by one geographic coordinate, in which Highton and colleagues searched natural 

cover objects (i.e., rocks and logs) for approximately one hour.  All salamanders were 

captured by hand, identified and usually collected (R. Highton personal communication).  

During a site visit, Highton used topographic and quadrat maps to georeference the site 

location, which allowed him to return to the same site over many years.   

I located using a combination of a handheld GPS Unit and topographic maps.  I 

sampled each site two to four times and searched two different per visit.  I surveyed each 

site multiple times to limit the chances that the number of salamanders encountered was 

not biased towards good or bad weather events but rather was a more accurate index of 
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abundance for that site during over time.  I sampled each site during optimal conditions 

(e.g., early morning or during cooler, moister weather conditions) to maximize the chance 

of encountering salamanders, consistent with the historic sampling (R. Highton personal 

communication).  Using red flagging, I marked off two 50 m x 3 m plots within each site.  

I combined relative abundance indices for the two plots for each site visit, which 

increases the power to detect population abundance changes in terrestrial plethodontids 

(Smith and Petranka 2000).  Estimated home range sizes for Plethodon glutinosus, P. 

jordani, P. metcalfi, and P. teyahalee are less than 15 m2 (Table 3; Merchant 1972; 

Nishikawa 1990; Marvin 1998), so I maintained at least 15 meters between plots within a 

site visit and between visits.  To allow comparison among Highton’s surveys and my 

surveys, I used the number of salamanders accounted for effort (the number of surveyors 

multiplied by the amount of time surveying) as abundance indices. 

In each plot, I turned all natural cover objects and captured all salamanders by 

hand.  Upon capture, I placed each salamander in a new plastic bag to prevent cross–

contamination in case of infected individuals (Hyatt et al. 2007).  I recorded the 

species identification, snout–to–vent length (SVL), tail–to–vent length (TVL), and 

mass for each individual.  Additionally, I measured the length and width of each 

natural cover object that I searched under and indicated the type of cover (i.e., rock, 

log, surface, tree bark).  To test for Bd, I used a skin swab, using a cotton–tipped 

plastic applicator (Medical Wire and Equipment, M113), I swabbed the ventral 

surface ten times and each limb five times for a total of 30 swabs per individual 

(Hyatt et al. 2007).  I stored all swabs in vials (Fisher, 02–681–374) of 75% ethanol at 
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room temperature until quantitative PCR analysis, which I performed in January of 

2010. 

After processing, I released all salamanders at their point of capture and 

replaced the natural cover object to its original position to minimize habitat 

disturbance (Smith and Petranka 2000).  I quantified the total amount of time 

searching for salamanders at a site.  I did not include time spent handling and 

processing salamanders or measuring cover objects because these actions were not 

performed during historic surveys.  Between captures, I used new powder–free latex 

gloves to prevent disease transmission. 

  

Swab Analysis 

 I performed PCR analysis on all swabs at the University of South Dakota 

under the supervision of Dr. Jake Kerby.  DNA from all swabs was extracted using a 

QIAGEN DNeasy tissue and blood purification kit (QIAGEN, 69581).  DNA was 

amplified using a FAST PCR machine using the primers and probes described in 

Boyle et al. (2004).  I pooled swabs into groups of three and ran those pooled swabs 

in triplicates to reduce the likelihood of obtaining a false negative (Hyatt et al. 2007).  

When the pooled swabs returned a positive result, we reran the three swabs 

individually in triplicates, which identified the positive sample and allowed for 

estimates of infection intensity.  I estimated the prevalence of Bd, defined as the 

number infected out of the total sample, and calculated 95% Clopper–Pearson 

binomial confidence intervals using the Hmisc package (Harrell Jr. et al. 2010) in 

Program R (R Development Core Team 2009).  Additionally, I estimated the intensity 
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of infection by multiplying the number of zoospores detected in each sample by 100 

(the dilution of the final sample) to determine the level of infection.  This value was 

used as the estimate of the number of Bd zoospores in each swab, or genomic 

equivalents (GE).  Infection intensity is an important predictor of amphibian 

population responses to Bd (Vredenburg et al. 2010).  High average infection 

intensity (> 10,000 GE) in a population is associated with individual mortality, 

population declines and extirpations (Vredenburg et al. 2010; V.T. Vredenburg 

personal communication).  

 

Data Analysis 

Detection Probabilities 

 I estimated detection probabilities for each species during survey decades to 

account for variation in amphibian detection and surface activity (Schmidt 2009).  I 

used the software program Presence version 3.0 (Hines 2006) to determine detection 

probabilities for each species using presence/absence data for each survey visit and a 

multi-season model to estimate detection probabilities during each decade of survey.  

I used these detection probabilities to adjust count indices used in subsequent 

analyses (Schmidt 2009; Bailey et al 2004). 

 

Patterns in Abundance and the Environment 

I used R (R Development Core Team 2009) and ArcMap version 10.0 (ESRI, 

Redlands, California, USA) for all statistical analyses.  I used a generalized linear 

mixed effects model (GLMM; lme4; Bates and Maechler 2010) to measure the 
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change in abundance over time and analyzed the relationship between abundance and 

changes in the environment (i.e., temperature and precipitation patterns) for each 

species. 

I ran five models for each species (Table 7).  First, I analyzed the relationship 

between population abundance and the year of survey (YEAR; Model 1) to determine 

if population abundance has changed.  Next, I included environmental variables 

(average mean temperature, annual precipitation, change in annual temperature from 

1951 – 2006, and change in annual precipitation from 1951 – 2006) as site covariates 

for the six taxa with more than one population.  To evaluate Bd and ranavirus as a 

potential cause for declines I used annual mean temperature (AMT; Model 2) and 

annual precipitation (AMP; Model 3) from WorldClim (1 km resolution; Hijmans et 

al. 2005).  These variables were chosen because they are important in determining 

patterns of Bd abundance using climatic envelope models (Puschendorf et al. 2009; 

Murray et al. 2011).  These data were interpolated from a compilation of five 

different global weather stations (Hijmans et al. 2005).  These variables demonstrate 

the magnitude of the annual temperature and precipitation at all sites, which allows 

comparison among sites based on their climate (e.g., warmer or cooler).  Higher 

values for AMT or AMP denote areas that are currently warmer or wetter than the 

lower values.     

To evaluate climate change as a potential cause for declines, I used two 

variables: the change in annual temperature (Δ Temp; Model 4) from 1951 – 2006 

and change in annual precipitation (Δ Precip; Model 5) from 1951 – 2006 (Girvetz et 

al. 2009).  These variables explain the direction (i.e., increase or decrease) and 
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magnitude that the annual temperature and precipitation over the 55 years of surveys 

at these sites.   A positive value for Δ TEMP or Δ PRECIP indicates areas that have 

become warmer or wetter over the last 55 years respectively, while negative values 

for Δ TEMP or Δ PRECIP denotes areas that have become cooler or drier over the 

last 55 years respectively.  I obtained estimates for of the climate change variables 

from Climate Wizard (4 km resolution; Girvetz et al. 2009), an online tool that 

provides an ensemble average of 16 global circulation models for future climate 

predictions, as well as provides a compilation of the last 50 years of climate trends.  

For the US, the past 55 years of climate were derived from 8,000 climate monitoring 

stations (Girvetz et al. 2009).   

To extract climate data for each site, I used ArcGIS and Geospatial Modeling 

Environment (GME; Beyer 2010).  Using ArcGIS, version 9.3.1 (ESRI, Redlands, 

California, USA), I imported my sites as a shapefile and imported the climate data as 

raster layers.  I used the insectpntrst command in GME to extract the climate data for 

each site based on geographic location (Beyer 2010). 

I modeled the relationship between the adjusted counts and the survey date 

and nested the site within the survey year as the random variable (Shaffer et al. 1997).  

Therefore I was able to evaluate each species as a composite of all populations, which 

allowed me to determine the overall change in relative abundance for that species, as 

well as compare each surveyed population at a given site.  I standardized the effort by 

the number of person hours and used a Poisson distribution (e.g., Roulin and Bersier 

2007) and fit each model using maximum likelihood.  The fixed effects varied in 

units, therefore, I standardized (i.e., subtracted the mean and divided by the standard 
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deviation) the year of survey, AMT, AMP, Δ TEMP, and Δ PRECIP (Marquardt et al. 

1980).  All models were selected in the following manner.  First, I ran each model 

with standardized year as the only fixed effect.  Next, I ran each model with the 

standardized environmental site covariates (AMT, AMP, Δ TEMP, and Δ PRECIP) 

and selected the best fit models based on the lowest Akaike's information criterion 

with second order correction for small sample sizes (AICc; Sugiura 1978). 

 

Determining Population Response 

I used a conservative approach for classifying each population’s change in 

abundance.  I calculated the model coefficients and standard error for each population 

using the results from the overall GLMM (Qian et al. 2010) and assigned each 

population as “Decline”, “Stable”, or “Increasing” based on the coefficients (β1) and 

standard error.  If the upper and lower bounds of a population’s standard error were 

negative, I considered this population to have declined.  If the upper bound of a 

population’s standard error was positive and lower bound was negative (i.e., the error 

bars crossed zero), I considered this population to be stable.  If both of the upper and 

lower bounds of a population’s standard error were positive, I considered this 

population to have increased.  Additionally, I performed pairwise comparisons on all 

species to determine if changes in relative abundance varied among species.  All 

pairwise comparisons were analyzed at the 95% confidence level.  For each species, I 

graphed population changes over time from sites that had been sampled at least 8 

times.  I chose this number because 8 years of data is sufficient to detect changes in 
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abundance for Plethodon salamanders when surveying six sites (Smith and Petranka 

2000), which was the average number of sites per species of my study. 

 

Null Models 

 I created null models of changes in population abundance for each species 

through time based on the mean and variance of the historic relative abundance of 

each species from 1960 to 1979.  I chose this time period because I wanted to know if 

my estimates for relative abundance change were within the normal fluctuations of 

relative abundance among historic sampling (Pounds et al. 1997) and during the “pre-

decline” period reported by Highton (2005).   

First, I estimated the mean and variance of adjusted relative abundance indices 

for all species with greater than one sampled populations between 1960 and 1979.  

Next, for each taxon, I generated 10,000 datasets of relative abundance during the 

total survey period (1960 – 2009).  To generate these data, I used a quasi-Poisson 

distribution because the historic data were over dispersed (variance was greater than 

the mean; Ver Hoef and Boveng 2007).  Next, I ran a generalized linear model 

(GLM), with a quasi-Poisson distribution (Ver Hoef and Boveng 2007) on each of run 

of the 10,000 datasets to determine the change in relative abundance over time.  From 

these results, I determined if a population declined (i.e., standard error of β1 were 

below 0), was stable (i.e., standard error of β1 were above and below 0) or increased 

(standard error of β1 were above 0; see Determining Population Response). 
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I performed a chi square test between the null model and my estimates, to 

determine if a species had changed more or less than expected, based on the null 

models. 

 

Maxent Predictions for Bd in the GRSM 

 I used Maxent (version 3.3.0; Phillips et al. 2006) to model the suitability of 

Bd in the GRSM based on its presence in the United States and the climate.  Maxent 

is a powerful presence-only SDM (Elith et al. 2006) that models the predicted 

environmental suitability (ES) based on the environmental conditions of the inputted 

presence localities for a given organism (Phillips et al. 2006).  Maxent generates 

output ES maps for the target organism, in which higher values indicate areas that are 

predicted to be more suitable (Phillips et al. 2006).  I obtained Bd localities from the 

Global Bd–mapping project (http://www.bd–maps.net/), an online resource providing 

information on Bd’s past and current range.  Additionally, I used the locations of Bd 

occurrence in Appalachian plethodontids from previous research (Chatfield et al. 

2009; Chinnadurai et al. 2009) and this study.  I used 75 US locations with 

documented Bd presence to model predicted range.  I used the 19 continuous 

bioclimatic variables (~5 km resolution; Hijmans et al. 2005) and followed the 

methods of Murray et al. (2009), in which all 19 variables were included in the full 

model and then selected those variables that contributed 90% of the information to 

the full model run.  Next, I re–ran the trimmed model with the most important 

variables.  I projected results of the trimmed model, using the same bioclimatic 

variables, onto the full range of the six GRSM Plethodon salamanders.  This region 
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was obtained by clipping the trimmed bioclim variables by the shapefile of those 

species’ distribution maps.  Distribution maps were obtained from International 

Union for Conservation of Nature (IUCN 2011). 

 I used the area under the curve (AUC) of the receiver operator characteristic 

(ROC) to assess model accuracy (Fielding and Bell 1997).  I used bootstrapping 

(N=100) on unique training and testing datasets (75%; 25% respectively) on the 

trimmed model to determine average and standard deviation of Bd’s suitability in the 

projected region.  

 I determined the relationship between responses for each population (i.e., 

declined, stable, and increased; see Determining Population Response) and the 

average predicted suitability of Bd.  I used a multinomial logistic regression (mlogit; 

Croissant 2010) with the population responses as the response variable and average 

predicted suitability as the explanatory variable.   

 

Elevation and Forestry Practices Patterns in Abundance 

 To obtain site elevation data, I used USGS 1–arc second National Elevation 

Dataset (NED; Gesch et al. 2002).  To obtain logging history data, I used a forest 

disturbance GIS polygon (Griggs 2009).  This shapefile shows the extent of historic 

logging in the GRSM (Griggs 2009).  Although the actual amount of logging cannot 

be derived, these data show relative amounts of logging from the most (“Heavy Cut”) 

to the least (“Undisturbed”).  I used the model coefficients and standard errors from 

the overall GLMM (see Determining Population Response) to determine population 

status and related the status to forestry practices and elevation.  I approached these 
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analyses using R (R Core Development Team 2009) and a two–sided Kendall’s 

Correlation Test (Hollander and Wolfe 1973). 

 

Community Size Patterns  

I compared pre-decline (1960 – 1979) to post-decline (2009) species richness 

(based on presence/absence of a species at a site) and determined the number of 

declined species (as determined by GLMMs; see Determining Population Response) 

at each site. 

 

Temporal Patterns in Abundance 

 I used piecewise–linear relationships on generalized linear models to 

determine the approximate timing of population changes.  First, I analyzed the linear 

relationship between the relative abundance of each species and the year of each 

survey using a generalized linear model (GLM) and fitted the data using a 

quasipoisson distribution, which fits the data to the Poisson distribution while 

accounting for overdispersion (Ver Hoef and Boveng 2007).  The GLM for each 

species was then used to find “breakpoints” in the regression, which are periods in 

which the slope changes (e.g., the beginning of a decline in population abundance 

would be signified by a change from a positive slope to a negative slope).  I 

approached this analysis using the segmented package in Program R (Muggeo 2003; 

Muggeo 2008).  I used 10,000 iterations for each segmented model.   

 

Spatial Patterns in Abundance 
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 I used ArcMap to measure spatial clustering of population responses.  First, I 

used the model coefficients and standard error for each population using the results 

from the overall GLMM (see Determining Population Response; Qian et al. 2010).  

Next, I gave each population a numeric value based on the model coefficients; “1” for 

declined, “2” for stable, and “3” for increased.  Next, I imported these coded model 

coefficients into an ArcMap shapefile using the geographic coordinates for each site.  

I projected the shapefile using “NAD_1983_HARN_StatePlane_Tennessee”.  Similar 

to the GLMMs, I did not analyze the 3 taxa (P. glutinosus x teyahalee, P. metcalfi, 

and P. jordani x teyahalee) for which I sampled one population.  I assigned the coded 

coefficients as the Input Field, and used inverse distance and Euclidean distance as 

the Conceptualization of Spatial Relationships and Distance Method respectively.  I 

analyzed each species using the High/Low Clustering (Getis-Ord General G) in the 

Spatial Statistic tools, which measures concentrations of high (increased populations) 

or low (decreased populations) values.  High Z scores indicate clustering of 

populations that increased while low Z scores indicate clusters of decreased 

populations (Getis and Ord 1992). 
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Results 

Bd Surveys 

 I swabbed 665 plethodontid salamanders, which included four genera; 12 

species (Desmognathus imitator, D. ocoee, D. santeetlah, D. wrighti, Eurycea 

wilderae, Gyrinophilus porphyriticus danielsi, Plethodon glutinosus, P. jordani, P. 

metcalfi, P. serratus, P. teyahalee and P. ventralis), and 2 hybrids (P. jordani x 

metcalfi and P. jordani x teyahalee).  I swabbed 485 Plethodon species (Table 4) and 

none were found to be infected within the GRSM (95% C.I. = 0 – 0.79).  I found one 

D. santeetlah with a low intensity of Bd infection (29 GE) near a small stream at a 

high elevation site (1504 meters) on July 10, 2009.  Prevalence for all plethodontid 

salamanders in the GRSM was 0.15% (95% C.I. = 0.007 – 0.847). 

 

Detection Probabilities 

 All GRSM Plethodon salamanders were detected imperfectly (i.e., p < 1) 

during at least one survey decade (Table 5).  Therefore, for each species, I corrected 

the relative abundance indices by the formula N = C/p (where N the true parameter 

value, C is a count index and p is a detection probability during the survey decade; 

Schmidt 2009).  I used the adjusted count indices for all subsequent analyses.   

  

Species Abundance Patterns 

Changes in population abundance varied with species (Table 6); some species 

and populations declined, some fluctuated but remained stable, while others increased 

(Figures 4 – 11).  Plethodon glutinosus (z = -0.2977; p = 0.0087), P. teyahalee (z = -
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3.1655; p < 0.0001), P. jordani x teyahalee (z = -0.3753; p = 0.0004) and P. 

glutinosus x teyahalee (z = -3.2135; p = 0.0281) decreased in abundance overall 

(Table 7).  Plethodon glutinosus declined at all 5 of the resurveyed populations (Table 

6) and P. teyahalee declined at 13 sites, increased at one site, and remained stable at 

two of the 16 resurveyed populations (Table 6).  Plethodon jordani x teyahalee (N = 

1) and P. glutinosus x teyahalee (N = 1) declined at their resurveyed populations 

(Table 6).   

Plethodon jordani (z = -0.0287.; p = 0.8100), P. metcalfi (z = -0.1461; p = 

0.4170), and P. serratus (z = 0.0409; p = 0.8640) remained stable overall (Table 7) 

although individual populations showed mixed responses (Table 6).  Plethodon 

serratus (N = 18) and P. jordani (N = 18) showed the most variation; both species 

had populations that declined, remained stable, and increased (Table 6).  Plethodon 

metcalfi was stable at the one resurveyed population (Table 6). 

Plethodon ventralis (z = 0.3560; p < 0.0001) and the hybrid P. jordani x 

metcalfi (z = 0.6195; p < 0.0001) increased in abundance overall (Table 7).  

Plethodon ventralis increased at all four of the resurveyed populations while P. 

jordani x metcalfi increased at 87% (N = 8) of the resurveyed populations and 

remained stable at 13% of the resurveyed populations (Table 6). 

 

Null Models 

 For all species, null models predicted that some populations declined, some 

increased, while others remained stable (Figures 12 – 17).  Plethodon glutinosus (χ2 = 

25.7975; df = 2; p < 0.0001) and P. teyahalee (χ2 = 50.1073; p < 0.0001) declined at a 
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greater number of populations than expected (Figures 12 and 13).  Population 

responses for Plethodon jordani (χ2 = 1.9088; df = 2; p = 0.385) and P. serratus (χ2 = 

0.9981 = 2; p = 0.6071) were not significantly different than expected from the null 

models (Figures 14 and 15).  Plethodon jordani x metcalfi (χ2 = 26.5368; df = 2; p < 

0.0001) and P. ventralis (χ2 = 20.1869; df = 2; p < 0.0001) increased at a greater 

number of populations than expected (Figures 16 and 17).   

 

Maxent Predictions for Bd in the GRSM 

 The trimmed model included seven Bioclim variables, which contributed 

~94% information to the full model.  The mean test AUC for the trimmed model was 

0.993).  BIO 2 (Mean Diurnal Temperature Range) contributed the most unique 

information to the trimmed model, while the most model training was lost when 

removing BIO 7 (Precipitation of Driest Quarter) from the trimmed model (Figures 

18 and 19). 

 The model predicts that the western portion of the GRSM is more suitable for 

Bd than the eastern portion of the GRSM (Figures 21 and 22).  Based on the 100 

models, the maximum suitability was 0.90 (Figure 20), while average suitability in 

the GRSM of Bd was 0.51 (± 0.12 standard deviation; Figure 21).  The median 

suitability was highest in the declined populations compared to the stable or increased 

populations (Figure 22).  However, the likelihood of population responses (i.e., 

declined, stable, increased) were not significantly different (χ2 = 0.8816; df = 2; p = 

0.6435) based on predicted average Bd suitability (Figure 22). 
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Elevation and Forestry Practices Patterns in Abundance 

All three elevational bands included populations that exhibited all three 

responses (Figure 23).  The mid (1000 – 1,500 m) and low (500 – 1000 m) elevation 

sites had the highest percentage of declined populations, while the low elevation sites 

also had the highest percentage of increased populations (Figure 23).  There was no 

correlation between the percentage of declined species and elevation (z = -0.9371, p = 

0.3487).  For the two species that had the largest elevational range, Plethodon jordani 

(1130 m) and P. serratus (996 m), declined populations only occurred at elevations 

greater than 1,300 m. 

Declined, stable and increased populations were found in forests of all ages 

(Figure 24) and there was no correlation between the population response (i.e., 

declined, stable, increased) and the type of disturbance at each site (z = 0.4761; p = 

0.634). 

 

Temperature and Precipitation Patterns in the GRSM 

  Populations in the lower elevations experienced the highest temperatures and 

the lowest precipitation (Hijmans et al. 2005; Table 8), which may be less favorable 

environment for Bd and salamanders than the cooler and moister higher elevations 

(Lips et al. 2003; Bernardo and Spotila 2006).  Populations at the higher elevations 

experienced decreases in annual temperatures over the last 55 years (Girvetz et al. 

2009; Table 8); these cooler temperatures may promote more suitable habitat for 

terrestrial salamanders and Bd (Lips et al. 2003; Bernardo and Spotila 2006) than the 
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lower and mid elevations, which have populations that have increased in temperature 

since 1961 (Girvetz 2009; Table 8).   

 

Acid Precipitation History in the GRSM 

Currently, the precipitation pH at low elevation (640 meters) ranges from 4.08 

– 6.05 (NADP 2010), while the highest elevations experience rainfall pH range of 

3.92 – 5.7, with an average of 4.62 (MACTEC 2010). 

 

Diversity Patterns 

 Historic salamander community composition at the 35 sites ranged from one 

to three species (Table 2; Figure 25) and averaged 1.91 species per site.  Current 

community composition ranged from zero to three species (Figure 25) and averaged 

1.23 species per site.  During my resurveys of those same populations, I encountered 

species for 41 of the 69 historic populations.  However, at 3 sites, I encountered a 

species during my surveys that was not found during any historic visit; therefore, 

adding three new populations to the 69 historic populations.  At 66% of sites (23 out 

of 35) had at least one declined species and 39% of populations (28 out of the 72) 

declined (Table 2). 

  

Temporal Patterns in Abundance 

 Breakpoints, which indicate changes in the slope of population abundance 

over time (e.g., Lips et al. 2006) that fall within the temporal bounds of this study 

(i.e., 1960 – 2009), could be determined for one species (Plethodon jordani; Figure 
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26).  Plethodon jordani began to change in 1970 (95% C.I. = 1965 – 1975; Figure 

26).  The pattern in abundance change for Plethodon jordani appears to be gradual 

over time (Figure 26). 

 

Spatial Patterns in Abundance 

Declined populations co-occurred with stable and increased populations for 

GRSM Plethodon salamanders.  For all species, the 3 population responses 

(“declined”, “stable” or “increased”) did not show any significant clustering and were 

randomly distributed throughout the GRSM (Table 9).  For a given species, 

populations that had declined or increased were not spatially clustered around other 

declined or increased populations of the same species. 

 

Patterns in Abundance and the Environment 

Based on AICc, adding the four environmental variables (AMT, AMP, Δ 

EMP and Δ PRECIP) to the separate species GLMMs, did not increase model fit (p > 

0.05) for Plethodon glutinosus, P. teyahalee, P. jordani x metcalfi, and P. ventralis 

(Table 7).  I did not have sufficient sample size to run GLMMs with environmental 

variables for the singlet populations of P. glutinosus x teyahalee, P. jordani x 

teyahalee, and P. metcalfi.  P. jordani and P. serratus showed an increase in model fit 

compared to the Year model when adding one of the four environmental variables 

(Table 7). 

The fit of the P. jordani model significantly increased when I added the 

average annual temperature (AMT; χ2 = 7.1735; df = 1; p = 0.0074) and average 



 

 33 
 

annual precipitation (AMP; χ2 = 7.6863; df = 1; p = 0.0056; Table 7).  Populations of 

P. jordani that decreased in relative abundance during the survey period, occupied 

cooler areas (z = 3.0830; p = 0.0021) and received a greater amount of annual 

precipitation (z = –3.1630; p = 0.0016; Table 7).  Based on AICc, the AMP and AMT 

models performed better than Year model (Table 7). 

Plethodon serratus also increased in model fit when I added AMP (χ2 = 

6.1449; df = 1; p = 0.0132) and AMT (χ2 = 4.4015; df = 1; p = 0.0359; Table 7).  

Populations of P. serratus that have declined in relative population abundance since 

1960 are cooler (z = 2.1920; p = 0.0284) and receive higher annual average 

precipitation (z = –2.6900; p = 0.0071; Table 7). Based on AICc, the AMP and AMT 

models performed better than Year model (Table 7). 

Adding AMT to the Plethodon ventralis model increased the model 

performance based on AICc; however, this increase was not significant (χ2 = 2.9104; 

df = 1; p = 0.0880; Table 7).  Although all populations for this species increased, 

populations of P. ventralis increased most in areas that are cooler (z = -2.0050; p = 

0.0450; Table 7). 
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Discussion 

Some Plethodon populations in the GRSM are declining since the 1960’s and 

I found no consistent pattern in declines among species sites or populations. 

Plethodon glutinosus and P. teyahalee have declined at a rate greater than expected, 

while P. jordani, P. metcalfi, and P. serratus have remained stable overall, and P. 

jordani x metcalfi and P. ventralis have increased.  I found no association among 

declining populations, elevation, forestry practices, Bd suitability, or spatial 

relationship, but I found evidence that declines began in the late 1960’s to early 

1970’s.  Furthermore, I concluded that salamanders in cooler and moister habitats 

may be more susceptible to the causative agent (e.g., Bd), while salamanders in 

warmer habitats are thriving. 

 

Detection Probabilities and Null Models 

Count indices can only be used as valid representations of population 

abundance when detection probability is constant (Schmidt 2009).  During my study 

as well as throughout historic collections, terrestrial salamander detection probability 

varied over time and among the six species (Table 5).  These findings are consistent 

with other studies, in which temporary subterranean emigration reduces and varies the 

proportion of salamanders available for capture on the surface among survey seasons 

(Bailey et al. 2004).  Because of the difference in survey effort between my study and 

Highton’s work as well as the decrease in salamander detection, detection 

probabilities were consistently lowest during “2000’s” surveys (Table 5).  I adjusted 

the relative abundance indices during my surveys as well as the historic collections to 
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reduce the likelihood of finding artificial variation in population abundance as well as 

account for differences (e.g., amount of effort) among surveys (Link and Nichols 

1994; Shenk et al. 1998; Schmidt 2009).  Future studies should use consistent 

sampling methods to reduce the variation in detection; however, because species and 

populations vary in detection (Schmidt 2009), future studies should also account for 

detection probabilities when using count data in addition to resurveying multiple plots 

within sites (Smith and Petranka 2000).  Furthermore, count indices unadjusted for 

detection can lead to misinterpretation of data (Schmidt 2009).  For example, if I used 

the unadjusted counts for Plethodon glutinosus, I would have determined that only 

two of the five populations declined, while the other three remained stable and I 

would have underestimated the extent to which this species had declined (Table 6).   

 Null models of population abundance are essential for understanding how the 

observed populations have changed with respect to natural fluctuations (Pounds et al. 

1997) and can provide evidence if changes in abundance are a natural occurrence 

(Alford and Richards 1999).  Although salamanders display natural variation in their 

populations due to the differences in surface and subterranean activity (Feder 1983; 

Bernardo and Spotila 2006) as well as detection (Bailey et al. 2004), terrestrial 

plethodontids exhibit one of the lowest amounts of variation in population abundance 

among amphibian families (Green 2003).  My results indicated that the observed 

changes in abundance for Plethodon glutinosus, P. teyahalee, P. jordani x metcalfi 

and P. ventralis are beyond the normal variations for those populations.   

These models examined, for each species, individual populations as well as 

the species as whole.  Previous reports (Hairston and Wiley 1993) indicate no 
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declines in P teyahalee (glutinosus; Hairston 1992) and P. jordani at similar sites to 

my study from the 1970’s to 1990’s.  However, the changes I observed during the 

course of this study highlight the importance of surveying multiple populations.  For 

example, if I had chosen to survey the three sites in the GRSM at which Plethodon 

teyahalee had not declined in addition to any three other sites, I most likely would 

have reached the conclusion that this species had not declined beyond what is 

expected from natural variation.  The power to determine if abundance has changed 

increases with the number of survey years and the number of surveyed populations 

(Smith and Petranka 2000); based on my results, I recommend that future studies 

should examine no less than six populations for each species of terrestrial 

plethodontids. 

 

Maxent Predictions for Bd in the GRSM 

 Species distribution models (SDM) based on climatic envelope estimates can 

provide insight into the potential distribution of an organism (Phillips et al. 2006; Ron 

2005; Lawler 2009; Lawler et al 2010; Milanovich et al. 2010) and have also been 

used to predict the impact of an infectious pathogen (Bd) on its amphibian hosts 

(Murray et al. 2011) and have shown very high probability for Bd to occur throughout 

the GRSM (Ron 2005).  Similar to previous studies of Bd’s potential distribution 

using SDMs (Puschendorf et al. 2009; Murray et al. 2011), my results show that 

Mean Diurnal Range (BIO 2) and Precipitation during the Driest Quarter (BIO 7) are 

important predictors of Bd’s potential distribution in the GRSM, which is consistent 

with Bd’s biology (Johnson et al. 2003; Piotrowski et al. 2004).  My results indicate 
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that suitability for Bd varies throughout the GRSM, and that the one locality where I 

found Bd had a slightly below average suitability of 0.429.  Although I did not find 

Bd in other habitats, areas with higher predicted suitability (e.g., the western portion 

of the GRSM; Figure 21) than this locality may have a high probability for Bd 

occurrence because these habitats are generally cooler and receive more precipitation 

(Hijmans et al. 2005).   

 Results from Maxent modeling neither supported nor rejected the hypothesis 

that Bd is associated with declines in GRSM Plethodon salamanders.  Although the 

median suitability was highest in declined populations, areas with the highest Bd 

suitability showed all three population responses, while areas with the lowest Bd 

suitability were associated with declined and increased populations (Figure 22).  

Murray et al. (2011), cautioned against using predicted suitability as an  exact 

measure of disease risk, as other factors related to species’ biology (e.g., amphibian 

immune response or skin peptides; Harris et al. 2006; Ramsey et al. 2010) may 

explain transmission and infection dynamics.  Future studies should examine species-

specific differences in microbial communities (Harris et al. 2006; Brucker et al. 

2008a, b) and whether the effectiveness of these microbial communities are affected 

by temperature and moisture.    

 

Species Patterns in Abundance 

 I used a conservative approach when determining population responses for all 

species (see Determining Population Response).  Using this approach, only 

populations that showed a distinct decline pattern (i.e., upper and lower standard error 

of the slope estimate were below zero) were considered declined populations, which 
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may have led to an underestimation of declines.  However, this approach provided 

confidence in  

Changes in population abundance varied among species (Table 6).  P. 

glutinosus and P. teyahalee, declined while P. jordani, P. metcalfi and P. serratus 

remained stable and P. jordani x metcalfi and P. ventralis increased (Tables 7 and 8).  

These results may indicate that these species vary in their susceptibility to the agent 

for declines. 

 The observed variation in population response among species does not support 

the idea that historic park forestry practices caused the observed changes.  If these 

changes were the cause of immature forest stands (Petranka et al. 1993) then I 

expected Plethodon teyahalee, which tolerates drier habitats (Ash 1997), would have 

remained stable despite the negative impacts of immature forest stands on salamander 

habitat (Ash 1997; Petranka et al. 1993, 1994). 

 Susceptibility to chytridiomycosis and ranavirus varies among amphibians 

(Berger et al. 2004; Gray et al. 2009a; Vazquez et al. 2009; Crawford et al. 2010).  

Within GRSM terrestrial plethodontids, P.metcalfi and P. glutinosus are susceptible 

to chytridiomycosis in the laboratory, while infected Plethodon glutinosus have been 

recovered from the wild (Chinnadurai et al. 2009; Vazquez et al. 2009).  With respect 

to ranavirus, species-specific susceptibilities from laboratory tests are not known 

although P. jordani, P. metcalfi, P. jordani x metcalfi have been found to be infected 

in the wild (Gray et al. 2009b; M.J.G and N.M.C unpublished data).  Based on the 

observed variation in population responses alone, it is unlikely that ranavirus or Bd 

has caused the observed declines as Plethodon jordani x metcalfi has not shown 
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reductions in population abundance.  If either of these disease-causing agents has 

contributed to population declines in the GRSM, then I would expect that interactions 

between Bd and other factors, such as natural (e.g., host density; Gray et al. 2009a; 

Briggs et al. 2011) and anthropogenic stressors (e.g., pesticides; Gray et al. 2009a; 

Carey et al. 1999) or differences in host immunity (Ramsey et al. 2010) or skin 

microbes (Harris et al. 2006) would explain the variation in response in these 

populations because of the variation among populations within each species (Table 

6). 

 Future research is needed to understand the actual variation in species ability 

to cope with the stress associated with a changing climate (Bernardo and Spotila 

2006; Bernardo et al. 2007) beyond SDMs and environmental suitability (Lawler 

2009; Lawler et al. 2010; Milanovich et al. 2010).  To determine which species are 

most at risk, studies should measure the stress (e.g., metabolic depression; Bernardo 

and Spotila 2006) associated with warming temperatures.  Specifically, to determine 

climate’s role in the declines of GRSM salamanders, future studies should determine 

if Plethodon glutinosus and P. teyahalee are more sensitive to changes in temperature 

and precipitation than P. ventralis and P. jordani x metcalfi given that these species 

co-occur but have opposite changes in population abundance. 

  

Elevation and Forestry Practices Patterns in Abundance 

Population declines occurred at all elevations and no elevation was more or 

less affected than others (Figure 23).  This pattern is most likely a consequence of the 

elevational range of these species rather than from the environmental effects 



 

 40 
 

associated with elevation changes.  The only species that increased at the high 

elevations (> 1,500 m) was Plethodon jordani x metcalfi and 36% of the resurveyed 

high elevation populations consisted of this hybrid (Table 1).  Because declines were 

not limited to specific elevations, these data may suggest a biological/evolutionary 

link (e.g., sensitivity to changes in climate or presence of microbial symbionts) for 

declines rather than an environmental cause because not all species declined in the 

same habitat.  Therefore, species which are closely related to Plethodon glutinosus or 

P. teyahalee (e.g., P. aureolus; Kozak et al. 2006) may be similarly sensitive or 

susceptible.   

If acidic precipitation has caused the observed declines, I expected that higher 

elevation populations would have been the most negatively impacted given that the 

precipitation pH decreases with increasing elevation (Robinson et al. 2008).  

However, elevation patterns may not explain the actual variation in acidic habitats in 

the GRSM.  Future studies should examine the exact range of acidic conditions 

experienced by GRSM salamanders to determine if they experience pH levels low 

enough to cause mortality or impact growth (Rowe and Freda 2000).  If habitat 

acidification is not a cause for the declines of GRSM salamanders then I expect the 

soil pH to be above 3.8.   

Population responses were random with respect to their spatial relationship 

(Table 9) and declined populations co-occurred with stable and increased populations.  

These data are consistent with the earlier finding of Highton (2005) for Eastern US 

Plethodon species.  These results indicate that the cause for these declines is species-

specific and is not limited to specific areas, which may further suggest a biological or 
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evolutionary cause for declines rather than environmental or habitat acidification.  

Biological factors such as density (Briggs et al. 2010), skin peptides (Harris et al. 

2006), ecology (Lips et al. 2003), phylogenic clumping (Corey and Waite 2008), or 

variation in susceptibility to disease (Smith et al. 2009; Crawford et al. 2010) may 

explain these patterns.  

Forestry practices cannot explain patterns in GRSM Plethodon declines as 

declined, increased, and stable populations occurred in all levels of historic logging in 

similar proportions (Figure 24).  Furthermore, the lowest proportion of declined 

populations occurred in the “heavy cut” sites which were expected to have the highest 

percentage of declined populations if forestry practices were the cause of declines.  

Given that the last timber harvest in the GRSM took place in 1939 (NPS 2010), it is 

unlikely that past timber harvesting has affected present-day salamanders in the 

GRSM. 

 

Diversity Patterns 

 Although all six species were present during current surveys, my results 

suggest that the GRSM has lost some of its historic diversity as 23 sites have had at 

least one species decline (Table 2). Moreover, the majority of the declined 

populations (20 out of 28) were the large-bodied salamanders, P. glutinosus and P. 

teyahalee and their hybrids.  These results may indicate that the declines of GRSM 

Plethodon salamanders are non-random and may further suggest that the cause of 

declines is linked to these species’ biology.  Furthermore, these results may suggest a 



 

 42 
 

loss of a functional role as these large salamanders generally eat larger prey items that 

may be too large for other Plethodon species (Adams and Rolf 2003).  

 

Temporal Patterns in Abundance 

 Plethodon jordani declines most likely began in the late 1960’s or early 

1970’s.  The timing of declines may indicate a climate-link to the observed changes.  

During the early and mid-1970’s, the GRSM experienced a strong ENSO event 

(1972; NOAA 2010).  This ENSO corresponded to periods of cool, moist conditions 

(Ropelewski and Halpert, 1986), in which monthly precipitation remained well-above 

average throughout the year (NCDC 2010).  Terrestrial salamanders are expected to 

thrive in cool, moist conditions (Grover 1998); however, these conditions may also 

promote pathogen (e.g., Bd) persistence in the soil (Johnson and Speare 2005), and 

increase transmission in dense salamander populations (Briggs et al. 2010).  If moist 

conditions increase pathogen intensity and prevalence and dry conditions decrease it 

(see Weinstein 2009) then further strong ENSO years may be associated with 

increases in Bd or ranavirus transmission and further decreases in salamander 

abundance.  If these declines are caused by a climate-disease link then I expect high 

pathogen presence will be found in museum specimens collected at the beginning of 

decline declines (late 1960’s to early 1970’s) as well as during periods of prolonged 

and above average rainfall in the GRSM (1972 – 1975; NCDC 2010).   

 

Environmental Patterns 
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Precipitation and temperature patterns were important in explaining the 

variation in relative abundance changes among salamander populations (Table 7), 

which are consistent with both Bd and ranavirus biology (Chinchar 2002; Piotrowski 

et al. 2004).  Forest soils that receive a greater amount of precipitation and are cooler 

may create more favorable conditions for Bd and ranavirus to persist and infect 

amphibians (Chinchar 2002; Piotrowski et al. 2004).  During periods of high or 

continuous precipitation pathogen prevalence may increase.  High soil moisture can 

allow for pathogen survival in the soil (Johnson and Speare 2005; Brunner et al. 

2007), which can increase the likelihood of infections.  Wet conditions can also 

promote increases in salamander activities and densities (Grover 1998), which lead to 

increases in contact with infected individuals (Briggs et al. 2010).  Dry conditions, on 

the other hand, have increased survivorship of infected terrestrial salamanders in 

empirical studies (Weinstein 2009).  Because surveys for Bd and ranavirus in the 

GRSM during 2009 (this study; M.J.G. and N.M.C unpublished data) and 2006 – 

2007 (Chatfield et al. 2009) were made during months that received lower than 

average rainfall (NCDC 2010), prevalence estimates for terrestrial plethodontids in 

this region may be underestimated.   

This study provides further evidence of declines in Plethodon salamanders 

(Highton 2005).  Consistent with Highton (2005), this study shows widespread 

declines with no clear spatial pattern in population response.  However, Highton 

(2005) reported declines in 88% of Eastern US Plethodon populations, while this 

study shows that 39% GRSM Plethodon populations have declined.  This difference 
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may be as a result of the difference in spatial scale or because of the differences in 

species surveyed. 

Building upon the reported declines by Highton (2005), I analyzed patterns in 

population responses to determine potential causes for declines.  This study provides 

evidence that historic logging in the GRSM was not the cause for population declines 

in Plethodon salamanders while acid precipitation, disease, and climate change may 

still be potential causes.  Because of the complexity in these changes in population 

abundance (e.g., variation in species’ response and variation in species within a site) 

it is likely declines have been caused by multiple factors (e.g., disease epizootic 

caused by fluctuations in the climate).  
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Conservation Implications 

 This study highlights the need for future studies to examine multiple 

populations when considering if a species has declined.  Using a power analysis, 

Smith and Petranka (2000) show that the number of plots or sites needed to detect 

real changes in abundance varies with the number of survey years.  Future studies 

should conduct similar analyses to determine if the number of sites is sufficient to 

detect changes in abundance.  For similar studies, I recommend at least six sites per 

species.  Furthermore, future studies should search multiple plots within each of these 

sites, which have also shown to increase power to detect changes in abundance 

(Smith and Petranka 2000). 

Currently, both Bd and ranavirus are present in few locations within the 

GRSM and at a low prevalence in terrestrial salamander populations (Chatfield et al. 

2009; Gray et al. 2009b; this study; N.M.C. and M.J.G. unpublished data); however, 

abiotic or biotic factors (e.g., increased rainfall or increased amphibian density) may 

favor pathogen transmission (Weinstein 2009; Briggs et al. 2011).  Therefore, it is 

important to reduce the spread of these pathogens into naïve areas.  I recommend 

installing boot-wash stations at GRSM trailheads and educating the public (e.g., trail 

signs or posting information on websites) about these pathogens to prevent 

anthropogenic spread. 

More data are needed in order to determine the role of Bd in the declines of 

GRSM Plethodon salamanders.  First, future studies are needed to determine the 

arrival of Bd in the GRSM by examining histology of museum specimens.  

Additionally, studies should examine museum specimens for an increase in Bd 
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prevalence following its initial arrival.  These data may suggest an epizootic event, 

which has been indicative of Bd as a potential cause (Lips et al. 2006).  Future studies 

should also examine susceptibility of current populations of Plethodon salamanders 

as well as for the presence of cutaneous bacteria or Bd-inhibiting metabolites (Harris 

et al. 2006; Brucker 2008a, b), which may suggest a co-evolutionary history between 

these salamanders and Bd.  Presence of pathogen-defenses (e.g., bacteria; Harris et al. 

2006) in population or species that have not declined (e.g., Plethodon jordani x 

metcalfi) and absence of these defenses in populations that have declined (e.g., P. 

glutinosus) may suggest Bd as a potential cause for declines. 

Further research is also needed to determine the role of climate change in the 

declines of GRSM Plethodon salamanders.  First, studies are needed to determine the 

relationship between the soil conditions (i.e., temperature and moisture) experienced 

by terrestrial salamanders and air temperature and precipitation.  Additionally, studies 

should examine the effects of changes in air temperature and precipitation on the 

overall fitness of salamanders (e.g., metabolic stress; Bernardo and Spotila 2006) and 

to determine which populations are at risk based on the magnitude of temperature and 

precipitation changes.  If variation in species response, as determined by these 

studies, suggest climate change as a potential cause (e.g., Plethodon glutinosus and P. 

teyahalee are more sensitive than other species), then future monitoring is needed for 

these populations and potentially relocating the high risk populations to habitats that 

are more suitable for terrestrial salamanders.  

This study documents two species of concern, Plethodon glutinosus and P. 

teyahalee.  Although these species are still present in the GRSM, they have declined 
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throughout their resurveyed range and show decline patterns in other studies (Highton 

2005).  Future studies should examine these species, as well as other closely related 

glutinosus group species (Kozak et al. 2006) throughout their range to determine 

where they have declined.  Currently, both Plethodon glutinosus and P. teyahalee are 

listed as “least concern” and have populations that are considered “stable” (IUCN 

2010).  Because of the population abundance trends for both of these species 

throughout their range (Highton 2005; this study); I recommend reevaluation of the 

IUCN red list category and criteria for both Plethodon glutinosus and P. teyahalee.   
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Tables 
 

Species Total 
Populations 

Low Elevation 
Populations 

Mid Elevation 
Populations 

High Elevation 
Populations 

P. glutinosus 5 4 1 0 

P. glutinosus x teyahalee 1 1 0 0 

P. teyahalee 16 2 12 2 

P. jordani x teyahalee 1 0 1 0 

P. jordani 18 1 13 4 

P. metcalfi 1 0 0 1 

P. jordani x metcalfi 8 0 4 4 

P. serratus 18 5 13 0 

P. ventralis 4 4 0 0 

Total 72 17 44 11 

Table 1: Number of populations surveyed for each species.  Low elevations are between 500 – 1,000 m, Mid 
elevations are between 1,000 – 1,500 m and High elevations are above 1,500 m.      
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 Historic Number of Species 
 

Number of Sites 
 

Sites with ≥ 1 Declined Species 
 

1 
 

2 
 

2 
 

2 
 

1 
 

1 
 Low Elevation 

3 
 

4 
 

4 
 

    

1 2 0 
 

2 11 7 
 Mid Elevation 

3 6 6 
 

    

1 7 2 
 

2 2 
 

1 
 High Elevation 

3 – 
 

– 
 

Table 2: Number of sites based on the number of historic species present.  Low elevations are between 500 
– 1,000 m, Mid elevations are between 1,000 – 1,500 m and High elevations are above 1,500 m.  The 
number of declined species is based off of GLMM results. “–” indicates that no sites with three species 
historically were sampled at high elevations     
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Species Groups 

(Kozak et al. 2006) 
Elevational 

Range Home Range Distribution Bd/Rana
virus 

P. glutinosus glutinosus group Up to 1,500 m 
(Petranka 1998) 

4 – 14 m2 
(Merchant 1972; 

Marvin 1998) 

Throughout the Eastern US 
(Petranka, 1998). 

 
+/0 

P. teyahalee glutinosus group Up to 1,550 m 
(Petranka 1998) 

6.5 – 14.3 m2 
(Nishikawa 1990) 

Blue Ridge Province of 
southeastern 

TN, southwestern NC, northwestern 
SC 

and northeastern GA (Highton 
1987) 

 

–/– 

P. jordani glutinosus group 213 – 1951 m 
(Grobman 1944) 

1.7 – 11.4 m2 
(Merchant 1972) 

TN–NC border; disjunct population 
in 

extreme northeastern GA (Petranka 
1998) 

 

–/+ 

Table 3: Biological information for GRSM Plethodon salamanders.  For Bd/Ranavirus, the “+” denotes 
that a species has been found infected in the field with the respected pathogen, the “-“denotes a species that 
has not been found to be infected with the respected pathogen, and “0” denotes species that have not been 
surveyed for that pathogen (Rothermel et al. 2008; Gray et al. 2009b; Chinnadurai et al. 2009; this study; 
M.J. Gray and N.M. Caruso unpublished data.      
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P. metcalfi glutinosus group 
Above 750 m 
(Highton and 

Peabody 2000). 

1.87 – 5.04 m2 
(Nishikawa, 

1990). 

Southern Blue Ridge Mountains 
in NC, SC, and GA (Highton and 

Peabody 2000) 
 

–/+ 

P. serratus cinereus group 
 Up to 1,686 m 
(Huheey and 
Stupka 1967) 

Unknown 

Four disjunct isolates: 
southeastern MO and western IL; 

northwestern GA, eastern AL, 
eastern TN, and western NC; 

central LA; southeastern OK and 
western AR 

(Petranka, 1998) 
 

–/– 

      

P. ventralis welleri group 
Up to 579 m 
(King 1939; 

Highton 1972) 
Unknown 

Scattered from northern MS to 
southeastern VA, including 

populations 
in northern AL and GA, eastern 
TN, and western NC (Petranka 

1998) 

–/0 

Table 3: continued      
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Species Number Swabbed Number Infected Prevalence (%) 95% CI 

P. glutinosus 7 0 0 0.00–35.43 

P. teyahalee 8 0 0 0.00–32.44 

P. jordani x teyahalee 29 0 0 0.00–11.70 

P. jordani 228 0 0 0.00–1.66 

P. metcalfi 28 0 0 0.00–12.06 

P. jordani x metcalfi 110 0 0 0.00–3.37 

P. serratus 19 0 0 0.00–16.82 

P. ventralis 56 0 0 0.00–6.42 

Total 485 0 0 0.00–0.79 

Table 4: Prevalence and intensity of Bd infection for all species of Plethodon salamanders sampled during my 
2009 surveys.  The number of total animals swabbed, number of infected individuals, prevalence estimates, 95% 
Clopper-Pearson binomial confidence intervals, and the average intensity are summarized. 
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Species p [1960's] p [1970's] p [1980's] p [1990's] p [2000's] 

P. glutinosus 0.8303 1.0000 1.0000 1.0000 0.3077 

P. glutinosus x teyahalee – 1.0000 1.0000 – 0.0000 

P. teyahalee 0.8786 0.5521 0.6176 – 0.0722 

P. jordani x teyahalee 1.0000 1.0000 1.0000 – 1.0000 

P. jordani 0.9643 1.0000 1.0000 1.0000 0.9425 

P. metcalfi – 1.0000 1.0000 – 1.0000 

P. jordani x metcalfi 0.8750 1.0000 – – 1.0000 

P. serratus 0.6030 0.7599 0.3000 0.5000 0.2195 

P. ventralis 0.8000 0.7698 – 1.0000 0.3969 

Table 5: Detection probabilities for each species.  Detection probabilities (p[ ]) were estimated for each decade. “–
” denotes decades in detection probabilities could not be estimated. 
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Species Pairwise  
Comparisons 

Total  
Populations Decline Stable Increasing 

P. glutinosus AB 5 5 (100%) 0 0 

P. glutinosus x teyahalee A 1 1 (100%) 0 0 

P. teyahalee BCG 16 13 (81%) 2 (12%) 1 (6%) 

P. jordani x teyahalee ABD 1 1 (100%) 0 0 

P. jordani AE 18 5 (28%) 9 (50%) 4 (22%) 

P. metcalfi EF 1 0 1 (100%) 0 

P. jordani x metcalfi BC 8 0 1 (13%) 7 (87%) 

P. serratus ABCDEFG 18 3 (17%) 10 (55%) 5 (28%) 

P. ventralis BCF 4 0 0 4 (100%) 

Total  72 28 (39%) 23 (32%) 21 (29%) 

Table 6: Number of declined, stable and increased populations for each species.  Pairwise comparisons with unlike 
letters show differences among species (p < 0.05).  Numbers in parentheses show percentages of total populations.  
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Species Model K 
 

AICc 
 

ωAICc 
 

Estimate 
 

Standard 
Error 

 

Z value 
 

p value 
 

Year 5 211.5 0.47 -0.2977 0.1135 -2.6240 0.0087 

Year + Δ TEMP 6 213.1 0.15 -0.0896 0.1100 -0.8150 0.4153 

Year + AMT 6 214.1 0.13 -0.0220 0.0741 -0.2970 0.7662 

Year + AMP 6 214.1 0.13 0.0228 0.0885 0.2580 0.7963 

P. glutinosus 

Year + Δ PRECIP 6 214.2 0.12 -0.0022 0.1494 -0.0150 0.9883 

         

P. glutinosus x teyahalee Year 5 84.2 1.00 -3.2135 1.4634 -2.1960 0.0281 

         
Year 5 200.6 0.31 -3.1655 0.7546 -4.1950 < 0.0001 

Year + AMP 6 200.8 0.27 -0.3822 0.2649 -1.4430 0.1490 

Year + AMT 6 201.3 0.21 0.3143 0.2572 1.2220 0.2217 

Year + Δ TEMP 6 202.5 0.12 -0.2534 0.3177 -0.7980 0.4252 

P. teyahalee 

Year + Δ PRECIP 6 202.8 0.10 0.0330 0.2789 0.1180 0.9026 

Table 7: AICc scores and GLMM estimates for each model.  Bolded numbers indicate significant variable 
for each model (p < 0.05).  Models are ranked in descending order based on AICc score.  K indicates the 
number of parameters in each model, while ωAICc is the model weight. 
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P. jordani x teyahalee Year 5 59.0 1.00 -0.3753 0.1061 -3.5370 0.0004 

         
Year + AMP 6 820.4 0.53 -0.2740 0.0866 -3.1630 0.0016 

Year + AMT 6 820.9 0.41 0.2670 0.0866 3.0830 0.0021 

Year 5 825.8 0.03 0.0287 0.1194 0.2410 0.8100 

Year + Δ TEMP 6 828.1 0.01 0.0163 0.1038 0.1570 0.8760 

P. jordani 

Year + Δ PRECIP 6 828.1 0.01 -0.0021 0.1086 -0.0190 0.9850 

Table 7: continued 
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P. metcalfi Year 5 66.7 1.00 -0.1491 0.1836 -0.8120 0.4170 

         
Year 5 204.0 0.46 0.5484 0.1079 5.0820 < 0.0001 

Year + Δ PRECIP 6 205.8 0.19 -0.0745 0.0725 0.1028 0.3040 

Year + Δ TEMP 6 206.6 0.12 -0.0356 0.0691 -0.5160 0.6060 

Year + AMP 6 206.7 0.12 -0.0237 0.0869 -0.2720 0.7850 

P. jordani x metcalfi 

Year + AMT 6 206.8 0.11 0.0166 0.0875 0.1900 0.8500 

         
Year + AMP 6 462.3 0.60 -0.6023 0.2239 -2.6900 0.0071 

Year + AMT 6 464.1 0.25 0.5055 0.2306 2.1920 0.0284 

Year 5 466.3 0.08 0.0409 0.2394 0.1710 0.8640 

Year + Δ TEMP 6 467.8 0.04 0.2849 0.3031 0.9400 0.3470 

P. serratus 

Year + Δ PRECIP 6 468.4 0.03 -0.0906 0.2614 -0.3470 0.7290 

Table 7: continued 
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Year + AMT 6 612.6 0.35 -0.4247 0.2118 -2.0050 0.0450 

Year 5 612.8 0.34 0.3560 0.0551 6.4650 < 0.0001 

Year + Δ TEMP 6 614.8 0.12 0.1571 0.1270 1.2370 0.2160 

Year + AMP 6 615.2 0.10 0.1020 0.1305 0.7820 0.4344 

P. ventralis 

Year + Δ PRECIP 6 615.3 0.09 0.0860 0.1734 0.4960 0.6200 

         
P. metcalfi Year 5 66.7 1.00 -0.1491 0.1836 -0.8120 0.4170 

Table 7: continued 
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Temperature 
Range (oC) 

 

Annual Precipitation  
Range (mm) 

 

Annual Temperature 
Change (oC) 

 

Annual 
Precipitation  

Change (%/year) 
 

Low Elevations 
 -5 to 29 1,323 to 1,511 -0.067 to 0.023 -0.067 to 0.104 

Mid Elevations 
 -7 to 26 1,485 to 1,845 -0.077 to 0.034 -0.148 to 0.151 

High Elevations 
 -8 to 24 1,770 to 1,946 -0.079 to -0.007 -0.138 to 0.274 

Table 8:  Temperature and precipitation ranges among the three elevational groups.  Temperature range and annual 
precipitation were derived from Hijmans et al. (2005).  Annual temperature change and annual precipitation 
change reflect the magnitude of change from 1951 – 2006 (Girvetz et al. 2009).   
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Species Observed General G Expected General G Z score p value 
 

P. glutinosus – – – – 
 

P. teyahalee 0.058 0.0667 -1.6504 0.7207 
 

P. jordani 0.0001 0.0002 -0.6525 0.5141 
 

P. jordani x metcalfi 0.1414 0.1429 -0.3575 0.117 
 

P. serratus 0.0543 0.0588 -1.5674 0.0989 
 

P. ventralis – – – – 

 

Table 9: Results of High/Low clustering analysis (Getis-Ord General G). Only species with at least 2 surveyed 
populations were analyzed.  Species without variation in population responses could not be analyzed. 
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Figure 1: Map showing the widespread declines in Plethodon salamander 
populations.  At each resurveyed sites; these declines occurred during the 
1980s (Highton 2005).  “Decline” indicates populations where the 1990s 
average abundance was lower than the average abundance from 1960s – 
1980s.  “Non-Decline” indicates populations where the 1990s average 
abundance was greater than or equal to the 1960s – 1980s average 
abundance.  This map was created using the data in Highton (2005).  
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Figure 2: Map showing the location of the resurveyed sites in the 
GRSM with respect to elevation. 
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 Figure 3: Frequency graph showing the distribution in historic sampling.  
Numbers along the x-axis show the number of visits at a particular site. 
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Figure 4: Relative population abundance over time at selected sites 
for Plethodon glutinosus.  Filled-in circles represent one sampling 
occasion.  Numbers in the gray-shaded area represent the site’s 
elevation.  The solid line represents the linear relationship between 
the adjusted abundance index and the survey year. 
 



 

 65 
 

 

 

 

 

 

 

 

 

Figure 5: Relative population abundance over time at selected sites for 
Plethodon jordani x metcalfi.  Filled-in circles represent one sampling 
occasion.  Numbers in the gray-shaded area represent the site’s elevation.  
The solid line represents the linear relationship between the adjusted 
abundance index and the survey year. 
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Figure 6: Relative population abundance over time at selected sites for 
Plethodon jordani x teyahalee.  Filled-in circles represent one sampling 
occasion.  Numbers in the gray-shaded area represent the site’s elevation.  
The solid line represents the linear relationship between the adjusted 
abundance index and the survey year. 
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Figure 7: Relative population abundance over time at selected sites for 
Plethodon jordani.  Filled-in circles represent one sampling occasion.  
Numbers in the gray-shaded area represent the site’s elevation.  The solid 
line represents the linear relationship between the adjusted abundance 
index and the survey year. 
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Figure 8: Relative population abundance over time at selected sites for 
Plethodon metcalfi.  Filled-in circles represent one sampling occasion.  
Numbers in the gray-shaded area represent the site’s elevation.  The solid 
line represents the linear relationship between the adjusted abundance index 
and the survey year. 
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Figure 9: Relative population abundance over time at selected sites for 
Plethodon serratus.  Filled-in circles represent one sampling occasion.  
Numbers in the gray-shaded area represent the site’s elevation.  The solid line 
represents the linear relationship between the adjusted abundance index and the 
survey year. 
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Figure 10: Relative population abundance over time at selected sites for 
Plethodon teyahalee.  Filled-in circles represent one sampling occasion.  
Numbers in the gray-shaded area represent the site’s elevation.  The solid line 
represents the linear relationship between the adjusted abundance index and 
the survey year. 
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Figure 11: Relative population abundance over time at selected sites for 
Plethodon ventralis.  Filled-in circles represent one sampling occasion.  
Numbers in the gray-shaded area represent the site’s elevation.  The solid line 
represents the linear relationship between the adjusted abundance index and 
the survey year. 
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Figure 12: Observed and expected population responses for 
Plethodon glutinosus.  The χ2 statistic and p value are displayed at the 
top of the graph. 
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Figure 13: Observed and expected population responses for Plethodon 
teyahalee.  The χ2 statistic and p value are displayed at the top of the graph. 
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Figure 14: Observed and expected population responses for Plethodon 
jordani.  The χ2 statistic and p value are displayed at the top of the graph. 
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Figure 15: Observed and expected population responses for Plethodon 
serratus.  The χ2 statistic and p value are displayed at the top of the 
graph. 
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 Figure 16: Observed and expected population responses for Plethodon 

jordani x metcalfi.  The χ2 statistic and p value are displayed at the top of the 
graph. 
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Figure 17: Figure 15: Observed and expected population responses for 
Plethodon ventralis.  The χ2 statistic and p value are displayed at the top of the 
graph. 
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Figure 18: Variable contributions to training gain for the trimmed model of Bd 
in the GRSM.  “Only variable” indicates the training gain when a single 
variable is run in isolation; “without variable” denotes the effect of removing a 
single variable from the full model (jack-knife). Values are means from 100 
replicates 
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Figure 19: Variable contributions to area under the curve (AUC) for the 
trimmed model for Bd in the GRSM.  “Only variable” indicates the AUC when 
a single variable is run in isolation; “without variable” denotes the effect of 
removing a single variable from the full model AUC (jack-knife). Values are 
means from 100 replicates 
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Figure 20: Predicted maximum suitability of Bd in the GRSM.  Higher 
values denote areas that are more suitability for Bd occurrence.  Maximum 
suitability was determined by the model with the highest suitability for the 
GRSM.  This Figure shows that very few areas in the GRSM reach the 
maximum suitability level (0.9 – 1), while the maximum model predicts 
some areas to have low suitability (0.33 – 0.4).  
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Figure 21: Predicted average suitability of Bd in the GRSM.  Higher values 
denote areas that are more suitability for Bd occurrence.  Average is based on 
all 100 models.  This Figure shows that the western portion of the GRSM has 
higher suitability for Bd than the eastern half of the GRSM. 
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Figure 22: Average suitability of each population response.  The filled in 
circles represent the median suitability for each population response.  
This Figure shows that the average suitability does not vary with 
population response for GRSM Plethodon salamanders. 
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Figure 23: Proportion of population response based elevational bands.  For 
population responses, “1” denotes declined populations, “2” is stable 
populations and “3” is increased populations, while the numbers on the right 
denote the proportion of the specific population response in each of the 
elevational bands (Low: 500 – 1,000 m; Mid: 1,000 – 1,500 m; High: > 
1,500 m)   
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Figure 24: Proportion of population response based on type of historic logging 
(NPS 2007).  For population responses, “1” denotes declined populations, “2” is 
stable populations and “3” are increased populations, while the numbers on the 
right denote the proportion of the specific population response in each of the 
logging categories.   
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Figure 25: Number of populations found during historic (1960 – 1979) and 
current (2009) surveys based on community size.   
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Figure 26: Graph showing the adjusted relative abundance for Plethodon 
jordani from 1962 – 2009.  Solid lines indicate the piecewise linear 
regressions.  The solid point with error bars represents the estimated point of 
change and 95% confidence intervals.  This Figure shows that declines for this 
species most likely began during the late 1960’s to early 1970’s. 
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