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Matrix reductionby eliminating some terms in the expansion of a matrixhas been

applied to a variety of numerical problems in many differentareas. Since matrix reduction

has different purposes for particular problems, the reduced matrices also have different

meanings. In regression problems in statistics, the reduced parts of the matrix are con-

sideredto benoise or observation error, so the given raw data are purifiedby the matrix

reduction. In factor analysis and principal component analysis (PCA), the reduced parts

are regarded as idiosyncratic (unsystematic) factors, which are not shared by multiple

variables in common. Insolvingconstrained convex optimizationproblems, the reduced

terms correspond to unnecessary (inactive) constraintswhich do not help in the search for

an optimal solution.

In usingmatrix reduction, it isbothcritical anddifficult to determine how and how

muchwe will reduce the matrix. This decision is very important since it determines the

quality of the reduced matrix and the finalsolution.If we reduce too much,fundamental

properties will be lost. On the other hand, if we reduce too little, we cannot expect



enough benefit from the reduction. It is also a difficult decision because the criteriafor

the reduction must be based ontheparticulartypeof problem.

In this study, weinvestigatematrix reductionfor three numerical optimization prob-

lems. First,the total least squaresproblem uses matrix reduction to removenoisein

observed data which follow an underlying linear model. We propose a new method to

make thematrixreduction successfulunder relaxed noiseassumptions. Second, we apply

matrix reduction tothe problem ofestimating a covariance matrix of stock returns, used

in financial portfolio optimization problem. We summarize all the previously proposed

estimation methods in a common frameworkand present a new and effective Tikhonov

method.Third, we present a new algorithm to solve semidefinite programming problems,

adaptively reducing inactive constraints. In the constraint reduction,the Schur comple-

ment matrixfor theNewton equations is the object of the matrix reduction. For all three

problems, we propose appropriate criteria to determine theintensity of the matrix reduc-

tion. In addition, we verify the correctness of our criteriaby experimental results and

mathematical proof.
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Professor James A. Reggia
Professor Sung Lee



c© Copyright by
Sungwoo Park

2011



Acknowledgments

I would like to express immeasurable gratitude to my advisor, Professor Dianne

O’Leary, for her efforts to lead me to a good researcher. She inspires me by professional

insights and guides me to right directions whenever I struggled with difficult academic

problems. She never saves her efforts to correct my manuscirpt many times. She also

encourages my academic motivation with sincere and considerate advice. Without her

guidance and support, my dissertation could not be completed.

I would like to thank my advisory committee members, Professor Howard Elman,
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Chapter 1

Introduction

This dissertation develops the use of matrix reduction techniques to simplify and stabilize

the solutions to various optimization problems.

1.1 Matrix Reduction

Matrix reductionapproximatesa matrix by removing someterms in its decomposition.

Suppose that a matrixM can beexpressed as asummation of matricesMi as

M =
k∑

i=1

Mi = M1 + · · ·+ Mk.

This kind of expansionis common in matrix computation.For instance, any matrix

A ∈ R
m×n hasasingular value decomposition (SVD) [31, Chapter 2.5]

A = US VT ,

1



whereU ∈ R
m×m andV ∈ R

n×n are orthogonal matrices, andS ∈ R
m×n is a diagonal

matrix. We can writethisdecomposition as summation of rank one matrices

A =

min(m,n)∑

i=1

si uivTi ,

whereui andvi are thei-th columns ofU andV, andsi is thei-th diagonal element ofS .

If a matrixB ∈ R
m×m is symmetric and positive definite, Cholesky decomposition

[31, Chapter 4.2] also generates such an expansion as

B = LLT =

m∑

i=1

li lTi ,

whereL is a lower triangular matrix, andli is the i-th column ofL. This expansion

is particularly important whenB is updated by a low-rank correction since this can be

accomplished by adding a small number of terms to the expression [27].

Broadly speaking, there are two differentapproaches tomatrix reduction. First, if

we know that only the first̂k matricesMi are important to us, we can construct a reduced

matrixM̂ as

M̂ =
k̂∑

i=1

Mi = M1 + · · ·+ Mk̂.

This reduction method is calledtruncation. Alternatively, we can apply a filteringfactor

φi ∈ [0, 1] to each matrixMi for i = 1, . . . , k. Then, the reduced matrix̂M becomes

M̂ =

k∑

i=1

φiMi = φ1M1 + · · ·+ φkMk.

This filtering-based reduction can be regarded as a generalized version oftruncationsince

truncationis a special casewith φi ∈ {0, 1}. Both reduction methods are used in many

applicationssuch asregularizationof ill-posed problemsand factor analysis.

2



We can also classify the matrix reductionapproachesasbuild-downandbuild-up,

depending on whether we remove some terms in a given matrix expansionor we construct

the reduced matrix by addingtermsuntil a certain goal is achieved. For example, while

a complete matrixM is given to us in the problems of regression and factor analysis, we

constructM̂ by adding matricesMi in constrained convex optimization.

The purposes of the matrix reduction are very different depending on particular

problems. First, in regression problems in statistics,the truncated or filtered terms are

considered to be noise or observation error, so matrix reduction purifies the given raw

data. This can be useful in solving least squares problemsfor an over-determined linear

systemor regularizing the solution toan ill-posed problem. Second, in factor analysis

and principal component analysis (PCA), the reduced parts are regarded as idiosyncratic

(unsystematic) factors, which are not shared by multiple variables in common. Third,

in constrained convex optimizationproblems, the reduced termsmight correspond to

unnecessary (inactive) constraints, which do not make significant contributions tothe

searchfor an optimal solution. So, we expect a benefit ofdecreasedcomputational cost

by usingmatrix reduction.

Whenevermatrix reduction is applied, it is a very critical but difficult issueto decide

how much to reduce the matrix. Thisimportantdecision determinesboth the quality of

the reduced matrix andthat of the final result. If we reduce too much,we may fail to

solve the problem. On the other hand, if we reduce too little,we cannot expect enough

benefitfrom the reduction. It is a difficult decision because criteria for the reduction must

be tailored to the problem and the circumstances.For example,in regularization of ill-

3



σmax(X) The largest singular value ofX
σmin(X) The smallest singular value ofX
σi(X) Thei-th largest singular value ofX
‖x‖ =

√
xT x 2-norm for a vectorx

‖X‖2 = σmax(X) 2-norm for a matrixX

‖X‖F =
√∑m

i=1

∑n
j=1 x

2
ij Frobenius norm for a matrixX ∈ R

m×n

tr (X) =
∑n

i=1 xii Trace of matrixX ∈ R
n×n

Ip An identity matrix of dimensionp

Table 1.1: Notation.

posed problems,the criteria may change based on which distribution the embedded noise

follows, or how the noise indifferent variablesis correlated.Because ofthis difficulty,

the criteria for constraint reduction has been studied in a variety of applications.

In this dissertation, we discuss matrix reduction in three numerical optimization

problems. Our study focuses on how we can determine appropriate reduction intensity

for successfulmatrix reduction in these problems. Weintroducethe problems in the next

section.

Throughout thisdissertation, we use the notation defined in Table 1.1.In addition,

a few basic statistical definitions are frequently used. When a continuous random variable

x has a probability density functionpx(x), the expected valueE(x) is defined as

E(x) =

∫ ∞

−∞

x px(x).

Then, the variance var(x) and the standard deviation std(x) are defined as

var(x) = E
(
(x− E(x))2

)
= E(x2)− (E(x))2 ,

std(x) =
√

var(x).

For two random variablesx andy, the covariance cov(x, y) and the correlation corr(x, y)

4



are defined as

cov(x, y) = E ( (x− E(x))(y − E(y)) ) = E(xy)− E(x)E(y),

corr(x, y) =
cov(x, y)

std(x)std(y)
.

1.2 Overview of Numerical Optimization Problems

1.2.1 Total Least SquaresProblems

Suppose that we have an underlying linear model,

(A− EA)X = (B− EB),

whereEA andEB are unknown; they result from noise in the observed matricesA ∈ R
m×n

andB ∈ R
m×d. To estimate theparametersX, we construct a minimization problem

min
X,∆A,∆B

‖[∆A,∆B]‖F ,

subject to

(A−∆A)X = (B−∆B),

rank([(A−∆A), (B−∆B)]) = r,

wherer is theknownrank of the noise-free data(A− EA).

The minimization problem above can be solved by matrix reduction ontheSVD of

[A,B]. If there were no noise inA andB, the concatenated matrix[A,B] would also have

5



rank r since Range(B) ⊆ Range(A). If the rankr of the noise-free data(A − EA) is

given to us, we can truncateall but ther largest singular valuesof [A,B]. By theEckart-

Young-Mirsky Theorem,the resulting(X,∆A,∆B) is the solutionto the minimization

problem. In addition, if the noisematricesEA andEB are mutually uncorrelated and have

zero mean andidentical standard deviations, it is known that the minimization problem

above gives us a consistent estimateX for the underlying linear model.

Our study starts fromthe question ofhow we can estimateX if we do not know

the rankr or if the embedded noisematricesEA andEB do not have identical standard

deviationsand the standard deviations are unknown. If the rankr is not given to us,we

need to decidehow many singular valuesto truncate.If the standard deviations of the

noise are different and we do not know their values, we also need to find an appropriate

weightα so that weighted dataαA and(1 − α)B contain noise with identical standard

deviations.

In Chapter 2, we propose a method to estimatetherankr andtheweightα. We also

present experimental results toevaluatethe proposed method.

1.2.2 Covariance Matrix Estimation

In financial portfolio theory, Markowitz [59] proposedtheMean-Variance (MV) portfolio

problem to find an optimal portfolio ofN stocks satisfying given constraints.The MV

portfolio problem requiresan estimatedcovariance matrixΣ ∈ R
N×N for theN stock

returns. It iswell known that the performance of the portfolio is very sensitive to the

quality of the covariance matrixestimate, but a conventional sample covariance matrix is

6



far from a good estimate.

The maindifficulty is that the observed stock returndata containtoo muchnoise.

Matrix reduction can beused to reduce the error in the covariance matrix estimate.Sup-

pose that we have stock return dataR ∈ R
N×T of N stocks forT time periods. For

appropriate principal component analysis (PCA), we normalize each stock return, so that

large return valuesfor a few stocksdo notoverwhelm the other return values. LetZ de-

note the normalized data with zero-means and identical standard deviations. Fromthe

singular value decomposition ofZ, we have

Z = US VT = UF =

T∑

i=1

ui f T
i ,

whereF = S VT , ui is thei-th column ofU, andf T
i is thei-th row of F. In PCA, the

vectorf i is called thei-th principal componentaffectingthe stock returns, and the vector

ui is called a load which determines how much each stock returnis affected by thei-th

component. Previously, many people proposedtruncatinga few smallest singular values,

expecting that the principal components corresponding to the smallest singular values are

more significantlycontaminated by noise. However, no onehas givena clear answeras

to how many principal componentsshouldbe truncated. This isa very difficult decision

because we fundamentally do not know how many factorsgovernthe stock returns.

In Chapter 3, weapplya Tikhonov filtering function to the principal components,

a monotonically increasing function ofthesingular value. With this smooth filtering, we

expect thatthe influence ofimportant principal componentsis amplifiedwhile potential

information in lessimportantprincipal components is still preserved. Furthermore, we
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propose a method to determine filtering intensity.Experimentsusing stock return data

in NYSE, AMEX, and NASDAQ from 1958 to 2007, show that the MV portfolio using

Tikhonov filtered covariance matrix performsquite well.

1.2.3 Interior Point Method for Semidefinite Programming

Theconstrained convex optimization problemknown assemidefinite programming (SDP)

has the following primal and dual problems:

Primal SDP: min
X

C • X s.t. Ai • X = bi for i = 1, . . . , m, X � 0,

Dual SDP: max
y

bT y s.t.
m∑

i=1

yiAi + Z = C, Z � 0,

whereC, Ai, X, andZ aren × n symmetric matrices,C • X = tr (CX) is the trace of the

matrix, andZ � 0 means thatZ is positive semidefinite.

In an interior point method (IPM) for solving the SDP, we use Newton’s methodto find a

direction(∆X,∆y,∆Z) leadingtoward an optimal solutionandfollowing a central path

defined by the primal and dual constraints and complementarity equation. To make the

computation of the direction efficient, the Newton equations are reduced tothe linear

system,

M∆y = g,

wheretheSchur complement matrixM is determined by the constraint matricesAi and

the current point(X,Z), andg is defined by current residuals.TheIPM repeatedlysolves

this reduced equation until the iterate satisfies a givenconvergencetolerance.

It takesO(mn3 + m2n2) operations to computeM, which is most expensive part
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for each iteration, so we can expect benefit by reducing its computational cost. In many

applications of SDPsuch as the binary code problem, the quadratic assignment problem,

and the traveling salesman problem,the matricesAi andC have identical diagonal block

structure.Usingthe block structure,M can be expanded to

M =

p∑

j=1

Mj,

wherep is the number of diagonal blocks and matrixMj is associated with thej-th con-

straint block. If some constraint blocks makeinsignificant or detrimentalcontributions

to finding thesearchdirection, we may be able to ignorethe correspondingMj when we

computeM. We call such blocksinactive. Similar to the previous problems, it is criti-

cal to determinewhich constraint blocks can be ignored while still guaranteeingthat the

iteration converges totheoptimal solution.

In Chapter 4, we explain how constraint reduction can be applied to IPM for SDP

problems and propose a basic predictor-corrector algorithm with constraint reduction. We

demonstrate its performance by experiments with test problems. In Chapter 5, we develop

a new predictor-corrector algorithm with adaptive criteria to determineinactiveconstraint

blocks. We verify the correctness of the criteria by provingthe global convergence of the

proposed algorithm. Its polynomial complexity is also verified to beO(n ln(ǫ0/ǫ)), where

ǫ0 is an initial residual andǫ is a required tolerance.
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1.2.4 Summary

The work in this dissertation proposes matrix reduction methods for solving three impor-

tant problems: total least squares problems, covariance matrix estimation, and semidefi-

nite programming problems. We now consider each of these problems in turn, and present

conclusions in Chapter 6.

10



Chapter 2

Implicitly-Weighted Total Least

Squares

In a total least squares (TLS) problem, we estimate an optimal set of model parametersX,

so that(A−∆A)X = B−∆B, whereA is the model matrix,B is the observed data, and

∆A and∆B are corresponding corrections. Throughout the matrix reduction, we remove

the noise termsin theconcatenated matrix[A,B], andestimate the parameterX from the

remaining terms.For consistent estimation,it is necessaryto adjust the scales ofA and

B to satisfy a noise assumptionprior to applying matrix reduction.In addition, we also

need to estimatethecolumn rank ofthenoise-freemodel, which determines the number

of reduced terms.

WhenB is a single vector,Rao [72] and Paige and Strakoš [64]suggested formulat-

ing standard least squares problems, for which∆A = 0, and data least squares problems,

for which ∆B = 0, as weighted and scaled TLS problems. In this work we define an
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implicitly-weighted TLS formulation (ITLS) that reparameterizes these formulations to

make computation easier. We derive asymptotic properties of the estimates as the num-

ber of rows in the problem approaches infinity, handling the rank-deficient case as well.

We discuss the role of the ratio between the variances of errors in A andB in choosing

an appropriate parameter in ITLS. We also propose methods for computing the family

of solutions efficiently and for choosing the appropriate solution if the ratio of variances

is unknown. We provide experimental results on the usefulness of the ITLS family of

solutions. This presentation closely follows that in [65].

2.1 Introduction

In formulating a linear modelAX ≈ B, there can be errors in the dataB, errors in the

model matrixA, or errors in bothB and A. This has led to the formulation of three

distinct problems: givenA ∈ R
m×n andB ∈ R

m×d, where usuallym > n, find X and

small correction matrices∆A, and∆B satisfying

(A−∆A)X = B−∆B, (2.1.1)

where

• ∆A = 0 for the least squares(LS) problem.

• ∆B = 0 for thedata least squares(DLS) problem.

• both∆A and∆B are allowed to be nonzero for thetotal least squares(TLS) prob-

lem.
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In least squares formulations, the values ofX, ∆A, and∆B are found by minimizing

‖[∆A,∆B]‖F . (2.1.2)

Minimizing (2.1.2) makes sense, for example, if the errors in A andB are zero-mean,

mutually uncorrelated, and drawn from the same distribution. If, on the other hand, the

standard deviation of the errors inA is γ times the standard deviation of the errors inB,

then we should weight the terms in (2.1.2) as

‖[∆A, γ∆B]‖F .

For a single right-hand (d = 1), Rao [72] formulated a weighted TLS, and Paige

and Strakoš [64] formulated a scaled TLS problem, which uses a scale factorγ to relateA

andB. The solution to their scaled problem is the TLS solution when γ = 1, approaches

the solution to the LS problem asγ → 0, and approaches the solution to the DLS problem

asγ → ∞. The underlying statistical assumption behind these methods is that the true

error matrices forA and B are column-wise uncorrelated, and the columns ofA have

variance not necessarily identical to that of the columns ofB. In order to correctly obtain

an estimate forX, the covariance matrices must be known except for the singlescaling

constantγ that relates the two variances. However, neither [72] nor [64] discusses how to

determine the scaling factor.

The main results of our work are as follows. We define in Section 2.2 an implicitly-

weighted TLS formulation (ITLS) that reparameterizes these formulations to make com-

putation easier. In particular, we use a scaling constant that ranges between0 and1 rather

than the less convenient0 and∞. We propose in Section 2.3 an efficient method for
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computing the family of solutions. We prove asymptotic properties of the solution (as

m → ∞) in Section 2.4, holding even for rank-deficient problems. With this guidance,

we propose algorithms for parameter choice in Section 2.5. We provide experimental

results on the usefulness of ITLS in Section 2.6.

A simple notational convention will be helpful: A matrixEC always denotes the

true error in the matrixC, and a matrix∆C always denotes our correction matrix forC.

We denote bỹX the true parameters for our model, byX an estimated set of parameters,

and byX̂ a TLS estimate.

2.2 Implicitly Weighted Total Least Squares

In this section, we define the ITLS problem and show its relation to previous problem

formulations. Perhaps most importantly, we discuss the error assumption that makes the

ITLS formulation reasonable.

2.2.1 ITLS and Other Estimation Methods

Our underlying data model for ITLS is the following:

(A− (1− α)EAw
)X̃ = (B− αEBw

), (2.2.1)

where matricesA ∈ R
m×n andB ∈ R

m×d are given,α is a given weighting parameter

satisfyingα ∈ [0, 1], andEAw
andEBw

are the scaled errors inA andB. We want to

estimate the matrix̃X, the true values of the model’s parameters.
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Given that model, we define the ITLS problem as follows:

min
X,∆Aw,∆Bw

‖[∆Aw,∆Bw]‖F (2.2.2)

subject to

(A− (1− α)∆Aw)X = (B− α∆Bw). (2.2.3)

The matrices∆Aw and∆Bw are corrections corresponding toEAw
andEBw

. The follow-

ing lemma explains how the ITLS formulation unifies DLS, LS, and TLS.

Lemma 2.2.1.The ITLS defined by (2.2.2) and (2.2.3) is equivalent to DLS whenα = 0,

LS whenα = 1, and TLS whenα = 1/2.

Proof. If α = 0, then the matrix∆Bw does not contribute to (2.2.3), so its optimal value

is∆Bw = 0, and ITLS reduces to the data least squares problem DLS. Similarly, if α = 1,

then the optimal value of∆Aw is 0 and ITLS reduces to the least squares problem LS. If

α = 1/2, then we see by defining∆A = ∆Aw/2 and∆B = ∆Bw/2 that the problem is

equivalent to TLS, and the value of our objective function (2.2.2) is two times the norm

of the correction term[∆A,∆B] in (2.1.2).

In the case of a single right-hand side (d = 1), Paige and Strakoš [64] devised a

scaled TLS (STLS) formulation. We can easily extend their formulation to the case of

multiple right-hand-side data: For a givenγ ∈ (0,∞),

min
X,∆As,∆Bs

‖[∆As,∆Bs]‖F s.t. (A−∆As)Xγ = (Bγ −∆Bs) (2.2.4)

Paige and Strakoš proved that STLS becomes LS asγ → 0, DLS asγ → ∞, and TLS

whenγ = 1. The equivalence between ITLS and STLS for these three casesis sum-
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marized in Table 2.1. The following lemma establishes equivalence for other values of

γ ∈ (0,∞).

Lemma 2.2.2(Relation betweenα andγ). ITLS in (2.2.2) and STLS in (2.2.4) are equiv-

alent to each other when the parametersα andγ satisfy

γ =
1− α
α

∈ (0,∞). (2.2.5)

Proof. Dividing the constraint equation in (2.2.4) byγ, we obtain

(A−∆As)X = (B− ∆Bs

γ
).

By defining∆Aw and∆Bw by

∆As = (1− α)∆Aw and ∆Bs = (1− α)∆Bw, (2.2.6)

we can rewrite the equation above as

(A− (1− α)∆Aw)X = (B− (1− α)∆Bw

γ
).

By using (2.2.5) in the equation above, we obtain the constraint equation (2.2.3). More-

over, by substituting (2.2.6) in the minimization equationin (2.2.4), we obtain

min
X,∆Aw,∆Bw

||[(1− α)∆Aw, (1− α)∆Bw]||F ,

which is equivalent to (2.2.2) since(1− α) is a fixed constant.

Even though ITLS and STLS are mathematically equivalent, notice that the param-

eterα in (2.2.3) ranges over[0, 1] while γ in (2.2.4) ranges over(0,∞). A main theme in

this work is the optimal choice of parameter value. Many robust algorithms (e.g., golden
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Estimation method ITLS STLS

Data Least Squares α = 0 γ →∞

Total Least Squaresα = 0.5 γ = 1

Least Squares α = 1 γ → 0

Table 2.1: Relations between ITLS and STLS.

section search) can be applied only to optimization problems on bounded domains, so

changing the parameterization fromγ to α gives a key computational advantage. For this

reason, the ITLS formulation is preferable to STLS.

2.2.2 ITLS and the Error Assumption

Now we develop an error assumption consistent with the ITLS formulation and explain

the statistical meaning of the weightα. This will clarify when and how ITLS can be used.

Suppose we have a modelKZ ≈ Y, with errors in both the model matrixK and the

observationsY. As before, we want to estimate the variablesZ and the correction matrices

∆K and∆Y satisfying

(K−∆K)Z = (Y−∆Y). (2.2.7)

We want to formulate this as anerrors-in-variable(EIV) problem [90, Sec. 8.4]. Such

a formulation, from the statistical literature, is closelyrelated to TLS but makes some

extra assumptions on the errors. In particular, the rows of the error matrices should be

independent, uncorrelated, and identically distributed with finite variance. Under these
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assumptions, if the noise-free problem has a solution, thenthe solution to the ITLS prob-

lem converges to the true solution with probability 1 asm → ∞, as we will show in

Section 2.4.

The independence of the error rows can be imposed by pre-multiplying (2.2.7) by

an appropriate matrixD ∈ R
m×m. We assume that this pre-multiplication has already

been done, so that currentlyD = Im.

To make the columns of the error uncorrelated with constant variance, we need an

estimate of the covariance matrix for the errors[EK ,EY ]. We consider the case in which

the errors inK are uncorrelated with the errors inY, so the covariance matrix is block

diagonal:

cov[EK ,EY ] =



σ2
AĈK 0

0 σ2
BĈY


 . (2.2.8)

We assume that we have good estimates of the nonsingular matrices ĈK ∈ R
n×n and

ĈY ∈ R
d×d but that one or both of the scalarsσ2

A andσ2
B may be unknown.(Often,ĈK

andĈY are estimated as identity matrices.)

Let ĈK = LKLT
K andĈY = LY LT

Y , whereLK andLY are Cholesky factors. Define

A = KL−T
K , (2.2.9)

B = YL−T
Y , (2.2.10)

EA = EKL−T
K , (2.2.11)

EB = EY L−T
Y , (2.2.12)

X = LT
KZL−T

Y . (2.2.13)
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Under these definitions, it is easy to verify that the constraint (2.2.7) is equivalent to the

constraint (2.1.1) studied above. By the construction ofEA andEB, the covariance matrix

for the transformed errors becomes

cov[EA,EB] =



σ2
AIn 0

0 σ2
BId


 .

To satisfy the assumptions in [28] for EIV convergence, we need only scale so that the

variances are identical. To do this, we define

σE = σA + σB, (2.2.14)

α = σB/σE . (2.2.15)

Then0 < α < 1 (as long as bothσ2
A andσ2

B are positive), and1− α = σA/σE . Now let

Aα = αA, (2.2.16)

Bα = (1− α)B. (2.2.17)

Then the corresponding (true) errorsEAα
= αEA andEBα

= (1−α)EB are uncorrelated

and have identical variancesσ2
Aσ

2
B/σ

2
E . Finally, we obtain a linear model containing

uncorrelated errors with identical variances:

(Aα − EAα
)Xα = (Bα − EBα

), (2.2.18)

where

EAα
=
σB
σE

EA, EBα
=
σA
σE

EB, and Xα =

(
σA
σB

)
X. (2.2.19)

The matricesA andB can be determined from the observed data matrices (K , Y ) and the

Cholesky factors (LK ,LY ), butAα andBα contain the parametersσ2
A andσ2

B.
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Using the linear model (2.2.18), we can formulate a TLS problem, which includes

the ratioσ2
A/σ

2
B:

min
Xα,∆Aα,∆Bα

‖∆Aα,∆Bα‖F s.t. (Aα −∆Aα)Xα = (Bα −∆Bα). (2.2.20)

We have thus proven the following lemma.

Lemma 2.2.3(ITLS and equivalent TLS). If σ2
A > 0 andσ2

B > 0, then the TLS problem

(2.2.20) is equivalent to ITLS (2.2.2)-(2.2.3) whenα ∈ (0, 1) satisfies

σA
σB

=
1− α
α

. (2.2.21)

Paige and Strakoš [64] also made use ofσ2
A/σ

2
B in definingγ for their STLS for-

mulation.

We see that if we know the ratio ofσ2
A to σ2

B, then we can estimate the desired

solution by solving the ITLS problem withα = σB/σE . If σ2
A = σ2

B, thenα = 1/2 and

we have the standard TLS problem. For small values of the ratio, α ≈ 1 and we solve a

problem close to LS. For large values,α ≈ 0 and we solve a problem close to DLS.

If the ratioσ2
A/σ

2
B is not known, then it is not clear what value ofα should be used.

We propose an answer to this dilemma in Section 2.5, using a method that variesα. In

order to make this practical, we need an efficient algorithm for solving ITLS for multiple

values ofα. We develop such an algorithm in the next section.
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2.3 Computing ITLS Solutions

In this section, we show that after an initial computation ofthe SVD of them × (n + d)

matrix [Aα,Bα], we can compute the solution to the ITLS problem for any othervalue of

α by working with a smaller upper-triangular matrix of dimension (n+d)× (n+d) when

m > n+ d.

2.3.1 Reduction of the Problem

Following well-known results for the standard TLS problem,as described in [90, Chap.

2-3], we begin with some notation. Define the SVD of

[Aα,Bα] = [αA, (1− α)B] ∈ R
m×(n+d)

by

[Aα,Bα] = UΣVT = [U1,U2]




Σ1 0

0 Σ2







VT
1

VT
2


 , (2.3.1)

whereU, Σ, andV are partitioned byU1 ∈ R
m×t, U2 ∈ R

m×q, Σ1 ∈ R
t×t, Σ2 ∈

R
q×q, V1 ∈ R

(n+d)×t, andV2 ∈ R
(n+d)×q, andU = [u1, . . . , un+d] ∈ R

m×(n+d) and

V = [v1, . . . , vn+d] ∈ R
(n+d)×(n+d) have orthonormal columns,Σ = diag(() σ1, ..., σn+d),

σ1 ≥ σ2 ≥ · · · ≥ σn+d ≥ 0, andt is an integer in[0, n+ d] such thatt+ q = n + d.

Let Âα andB̂α denote the corrected matrices

Âα = Aα −∆Aα and B̂α = Bα −∆Bα, (2.3.2)

for some correction matrices∆Aα and∆Bα. Define X̂α to be the TLS solution (if it

21



exists) associated with the corrected matricesÂα andB̂α, satisfying

ÂαX̂α = B̂α or [Âα, B̂α]




X̂α

−Id


 = 0. (2.3.3)

By the Eckart-Young-Mirsky Theorem, the solution to the problem

min
rank([Âα,B̂α])=t

‖[∆Aα,∆Bα]‖2F (2.3.4)

is

[Âα, B̂α] = U1Σ1VT
1 , (2.3.5)

and the value of the minimization function is

n+d∑

i=t+1

σ2
i .

The corresponding correction matrix[∆Aα,∆Bα] is

[∆Aα,∆Bα] = U2Σ2VT
2 . (2.3.6)

Because of this, the solution̂Xα of (2.3.3) must satisfy

Range







X̂α

−Id





 ⊆ Null(VT

1 ) = Range(V2) , (2.3.7)

by orthogonality of the right singular matrixV. In order to determine an appropriate

partition sizet, we need to consider (i) the existence ofX̂α and (ii) the noise level. We

partitionV2 as

V2 =




V12

V22


 , (2.3.8)
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whereV12 ∈ R
n×q andV22 ∈ R

d×q. Further, let̂t denote our choice oft andq̂ denote the

correspondingq, so that̂t + q̂ = n+ d.

First, for a givent, such âXα may not exist unless the block matrixV22 of the last

d rows in the corresponding matrixV2, has column rankd. Therefore we want

t̂ ≤ t0 where t0 = max{t : rank(V22) = d}. (2.3.9)

Second, we would like the magnitude of the correction term tobe less than a given noise

toleranceǫ :

||∆Aα,∆Bα||2F =
n+d∑

i=t+1

σ2
i < ǫ. (2.3.10)

Let r be the minimal value oft satisfying the inequality above, which is called thenumer-

ical rank. Then we choose

t̂ = min(t0, r). (2.3.11)

Note that, if sucĥt is less thann, there exist infinitely many solutionŝXα satisfying

(2.3.3) or (2.3.7). In this case, we can single out a minimal norm solution among these

candidates.

Let Ṽ2 ∈ R
(n+d)×q denote a matrix containing an orthonormal basis for Range(V2),

and partitioñV2 as

Ṽ2 =




Ṽ12

Ṽ22


 ,

whereṼ12 ∈ R
n×q andṼ22 ∈ R

d×q. For a chosen partition sizêt andq̂, we can compute
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a minimal norm solution̂Xα and the correction term[∆Aα,∆Bα] as

X̂α = −Ṽ12Ṽ
†

22, (2.3.12)

[∆Aα,∆Bα] = [Aα,Bα]Ṽ2Ṽ
T

2 . (2.3.13)

Thus, we can compute the minimal norm TLS solutionX̂α and the corresponding correc-

tion matrix [∆Aα,∆Bα] solely fromṼ2, a matrix whose column space is the partial right

singular subspace, without necessarily computing the right singular matrixV2.

2.3.2 Economical Computation of̃V2

We now consider how the basis matrix̃V2 can be computed. Clearly we could use the

standard Golub-Kahan algorithm [30] to compute the SVD of[Aα,Bα], obtaining the basis

Ṽ2 = V2, but there are more economical alternatives when multiple values ofα are of

interest. For example, the rank-revealing ULV algorithm [81] can accurately compute this

basis without producing the SVD, and it was used in [25] to solve the TLS problem. Other

alternatives include the partial SVD method (PSVD) [90, Sec. 4.3] and the implicitly-

restarted Arnoldi algorithm [57].

If m > n + d, it is desirable to apply one of these algorithms to a smallermatrix.

For example, we could first compute the(n+d)×(n+d) upper-triangular factorRα from

the QR decomposition of[Aα,Bα]. According to [11], using QR before SVD reduces the

computational cost whenm > 5
3
(n+ d).

While searching for an appropriate value ofα for ITLS, we need to compute the

SVD of [Aα,Bα] for different values ofα. For a new parameter valueα′, the new upper-
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triangular factor is

R′
α = Rα




(
α′

α

)
In 0

0
(
1−α′

1−α

)
Id


 . (2.3.14)

The cost of this scaling is onlyO((n + d)2), rather than theO(m(n + d)2) cost needed

to compute the QR decomposition of[Aα′ ,Bα′ ]. Thus, we will compute the right singular

subspace ofR′
α instead of[Aα,Bα] for different weightsα.

In Section 2.5 we propose a method for choosing an optimal value ofα, and this

requires computing̃V2 for many candidate values ofα. In such an algorithm, it is espe-

cially important to economize by using (2.3.14) in conjunction with an algorithm such as

the PSVD.

2.4 Asymptotic Behavior

In this section we keepα fixed but letm, the number of observations, vary, so our notation

will change to reflect this. We study the behavior of the ITLS problem asm → ∞. Our

development follows that of Gleser1 [28] except thatwe also treat the rank-deficient case.

Let [Ãm, B̃m] denote the true but unknown matrix, and suppose it has rankr ≤ n.

(Since the columns of̃Bm are in the range of̃Am, the rank cannot be greater thann.) Let

X̃ denote the unique true solution ifr = n, or the unique minimum norm true solution

otherwise, so that

Ãm X̃ = B̃m. (2.4.1)

1Gleser’sXT , UT , andBT correspond to our[A,B], [Ã, B̃], andX̃ respectively, and we set hisα to

zero.
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Then the observed data satisfies

[Am,Bm] = [Ãm, B̃m] + [EA,m,EB,m]

= Ãm[In, X̃] + [EA,m,EB,m].

Now the matrixÃm[In, X̃] also has rankr, so [Am,Bm] should have(n + d − r) small

singular values, resulting from the perturbations[EA,m,EB,m]. We need some insight into

the behavior of these singular values.

We impose two assumptions.

Assumption 2.1. Each row of[EA,m,EB,m] is independent and identically distributed,

with zero means and covariance matrixσ2
ǫ In+d.

Assumption 2.2.The matrices(1/m) Ã
T

mÃm converge to a finite limit∆:

lim
m→∞

1

m
Ã

T

mÃm = ∆. (2.4.2)

We define

Wm = [Am,Bm]
T [Am,Bm], (2.4.3)

W̃m = [Ãm, B̃m]
T [Ãm, B̃m] =




In

X̃
T


 Ã

T

mÃm[In, X̃], (2.4.4)

and study the convergence of these matrices.

Lemma 2.4.1.Under Assumptions 2.1 and 2.2, both(1/m)W̃m and(1/m)Wm converge
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to limits:2

lim
m→∞

1

m
W̃m =




In

X̃
T


∆[In, X̃] ≡ Θ̃, (2.4.5)

plim
m→∞

1

m
Wm = σ2

ǫ In+d + Θ̃ ≡ Θ. (2.4.6)

Proof. The first result follows from using (2.4.2) in (2.4.5). For the second, see [28,

Lemma 3.1].

Next, we need an eigendecomposition ofΘ and its relation to that of∆(In+ X̃X̃
T
).

Lemma 2.4.2.Denote the eigenvalues of∆(In+ X̃X̃
T
) byλ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and

let the columns ofΨ be the corresponding eigenvectors. Then we have an eigendecom-

position ofΘ as

Θ[VΘ1
,VΘ2

] = [VΘ1
,VΘ2

]



σ2
ǫ In + Dλ 0

0 σ2
ǫ Id


 ,

whereDλ = diag(() λ1, . . . , λn) and the columns of

VΘ1
=




In

X̃
T


Ψ, VΘ2

=



−X̃

I d


 (I d + X̃

T
X̃)−

1

2 (2.4.7)

are mutually orthogonal and have norm 1.

Proof. See [28, page 35]. The symmetric positivesemidefinitematrix(In+X̃X̃
T
)
1

2∆(In+

X̃X̃
T
)
1

2 has eigenvalues that are real and non-negative and has an eigenvector matrix,

denoted by(In + X̃X̃
T
)
1

2Ψ, that is orthonormal:

Ψ
T (In + X̃X̃

T
)Ψ = In, (2.4.8)

2We denote “convergence with probability one” using the notation “plim”.
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The matrix∆(In + X̃X̃
T
) is similar to this matrix and has eigenvectorsΨ.

The eigendecomposition ofΘ and the orthonormality of its eigenbasis are verified

by direct computation.

Using this eigendecomposition, we can understand the convergence of the singular

valuesσi from (2.3.1).

Lemma 2.4.3. Let σ1,m ≥ σ2,m ≥ · · · ≥ σn+d,m ≥ 0 denote the singular values of

[Am,Bm]. Under Assumptions 2.1 and 2.2,

plim
m→∞

1

m
σ2
i,m =





σ2
ǫ + λi, i = 1,. . . ,n,

σ2
ǫ , i = n+1,. . . ,n+d.

Proof. This is a direct consequence of the definition ofWm in (2.4.3), the convergence of

(1/m)Wm toΘ (Lemma 2.4.1), and Lemma 2.4.2.

Gleser [28, Assumption C] assumes that∆ is positive definite, but we are able to

omit that assumption. We denote the rank of the symmetric positive semidefinitematrix

∆ by r ≤ n. Thenλi = 0 for i = r + 1, ..., n, so by Lemma 2.4.3,

plim
m→∞

1

m
σ2
i,m = σ2

ǫ for i = r + 1, . . . , n+ d. (2.4.9)

This gives us a way to estimateσ2
ǫ , as shown in the following lemma.

Lemma 2.4.4.Let

σ̂2
ǫ,m =

1

n+ d− r
n+d∑

i=r+1

σ2
i,m. (2.4.10)

Under Assumptions 2.1 and 2.2,

plim
m→∞

1

m
σ̂2
ǫ,m = σ2

ǫ .

28



Proof. This is a direct result of Lemma 2.4.3 and the fact thatλi = 0 for i = r +

1, ..., n.

In order to usêσ2
ǫ,m in an algorithm, we need to know that we can reliably estimate

the rankr asm→∞.

Lemma 2.4.5.Under Assumptions 2.1 and 2.2,

lim
m→∞

Pr{ 1
m
(σ2

r,m − σ2
r+1,m) <

λr
2
} = 0.

Proof. The result follows since(1/m)(σ2
r,m − σ2

r+1,m) converges with probability one to

λr > 0.

With this result and (2.4.10), we see that, with appropriatechoice ofǫ in (2.3.10),

our rank estimation algorithm in (2.3.11) gives the correctresult (with probability one)

asm→∞, and from this we can establish convergence of the solution estimates, just as

Gleser did in the full-rank case [28, Lemma 3.3].

Lemma 2.4.6.Under Assumptions 2.1 and 2.2,

plim
m→∞

X̂m = X̃

whereX̃ is the minimal norm true solution satisfying (2.4.1) andǫ in (2.3.10) satisfies

m(n + d− r)σ2
ǫ ≤ ǫ ≤ m

(
(n + d− r + 1)σ2

ǫ +
λr
2

)
. (2.4.11)

Proof. With this choice ofǫ, by Lemma 2.4.5, our estimated rank converges to the true

rank r with probability one. Since(1/m)Wm converges with probability one toΘ, and
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since there is, by Lemma 2.4.2, a gap in the spectrum ofΘ, the invariant subspace corre-

sponding to the smallestn + d − r eigenvalues of(1/m)Wm converges with probability

one to the span of the lastn+ d− r columns ofVθ. Since our estimatêXm is independent

of the choice of basis for this invariant subspace, it also must converge with probabil-

ity one toX̃, which, by (2.4.7), and the formula (2.3.12), is the desiredminimum norm

solution.

We have now laid the groundwork for algorithms for choosing ITLS parameters.

From Lemma 2.4.1, we know that the sequence ofW matrices converges with probability

one toΘ, and from (2.4.7) we know thatVΘ2
is full rank. Therefore, our parametert0 in

(2.3.9) converges with probability one ton, sot̂ in (2.3.11) converges tor. From now on,

we assume, based on Lemma 2.4.4 and Lemma 2.4.5, that we have enough observations

so that in (2.3.11) we havêt = r, whenǫ in (2.3.10) satisfies (2.4.11).

2.5 Choice of Parameters

In this section, we propose two heuristic methods to determine the ITLS parameters based

on the asymptotic convergence properties established in the previous section. We consider

two cases: (1) eitherσ2
A or σ2

B is known, or (2) neither is known, in which case we require

n+ d− r > 1.

30



2.5.1 Prior Information on σ2
A or σ2

B

If the weight parameterα perfectly adjusts the variance ofEA andEB, thenEAα
andEBα

have identical variances, so that

α2σ2
A = (1− α)2σ2

B = σ2
ǫ . (2.5.1)

By Lemma 2.4.4,̂σ2
ǫ is a consistent estimate forσ2

ǫ . Therefore, if we knowσ2
A, for ex-

ample, then it is reasonable to find theα that minimizes a relative gap betweenα2σ2
A and

σ̂2
ǫ :

min
α

∣∣∣∣log
σ̂2
ǫ

α2σ2
A

∣∣∣∣ . (2.5.2)

Similarly, if we knowσ2
B, we could choose the value ofα that solves the problem

min
α

∣∣∣∣log
σ̂2
ǫ

(1− α)2σ2
B

∣∣∣∣ . (2.5.3)

Figure 2.1 illustrates how the estimated error varianceσ̂2
ǫ changes withα. The red

and blue dashed lines represent the change ofα2σ2
A and(1−α)2σ2

B, and their intersection

gives the trueα and the trueσ2
ǫ , by (2.5.1). We can see that the estimateσ̂2

ǫ approaches

the true error varianceσ2
ǫ asα approaches the true value, illustrating the usefulness of a

choice ofα based on the minimization problem (2.5.2) or (2.5.3).

In order to computêσ2
ǫ , the rankr of ∆ is required. If the rank is given to us, we

can immediately apply the optimization methods above. If not, we also need to estimate

the rank. We examine hoŵσ2
ǫ and the resulting objective function values are influenced

by the estimatêr of the rank. First, when̂r is overestimated, we expect that the minimum

value of (2.5.2) is still close to0. This is becausêσ2
ǫ is still a consistent estimator ofα2σ2

A
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Figure 2.1: The estimated error variancêσ2
ǫ as a function ofα, for αtrue = 0.25, 0.5, and

0.75. The true value of(α, σ2
ǫ ) is the intersection of theα2σ2

A curve (red dashed) and the

(1 − α)2σ2
B curve (blue dashed), marked with a star. The behavior of the small singular

values as a function ofα is traced by the grayish curves. The test problem is specifiedin

Section 2.6, withm = 200, n = 8, r = 6, d = 10, σE = 0.01.

whenα is well estimated, as shown in (2.4.9). Second, ifr̂ is underestimated, the resulting

σ̂2
ǫ is overwhelmed by incorrectly adding largeσ2

i for i < r. From these observations, we

can determinêr by solving (2.5.2), decreasinĝr from n to 1. We recognize the correct

rank by looking for a jump and then a plateau in the optimal objective function value. A

similar argument holds for (2.5.3). In contrast to (2.5.2),though, the denominator will

force the minimizerα to be lower than its true value, so looking for a jump in the optimal
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α as r̂ is changed is an alternative way to recognize an underestimated rank. We will

exhibit these phenomena with sample problems in Section 2.6.

2.5.2 No Prior Information on σ2
A or σ2

B

If we do not have any prior information about error variancesσ2
A or σ2

B , we cannot use

(2.5.2) or (2.5.3). Instead, we use the convergence property (2.4.9) to evaluate a given

α. Since all(n + d − r) smallest singular values converge to a single constant value as

the number of observations increases, we chooseα to minimize their dispersion. Note

that this convergence property holds only when Assumption 2.1 applies to our problem,

which will be satisfied by the correct value ofα. As an example, the grayish curves in

Figure 2.1 show how the smallest singular values change asα varies. We can see that the

singular values get closer to each other nearαtrue.

We measure the dispersion using the coefficient of variationcv, defined as

cv(y) =
std(y)

mean(y)
,

where mean(y) and std(y) denote the mean and standard deviation of the data vectory.

Thus, we chooseα as the solution to

min
α

cv
(
[σ2

r+1(α), . . . , σ
2
n+d(α)]

)
. (2.5.4)

There are other dispersion measures, such as standard deviation or variance. However, as

the estimatedα decreases to0, the smallest singular values approach zero regardless of

the trueα, so these dispersion measures can be misleading. The coefficient of variation is

dimensionless and therefore not subject to this limitation.
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As in the optimization methods of Section 2.5.1, estimatingcv in (2.5.4) requires

knowledge of the rankr. If the rank is not available, we can apply a similar rank-

estimation strategy. For the trueα, when r̂ is an overestimate,cv remains acceptably

small by (2.4.9). On the other hand, whenr̂ is an underestimate,cv grows significantly.

Therefore, if we repeatedly solve (2.5.4) decreasingr̂ from n, we can find an appropriate

r̂ by recognizing a jump in the corresponding value ofcv. In contrast to the rank andα

estimation method of Section 2.5.1, this method requiresn+ d− r > 1, since we need at

least two singular values to compute the coefficient of variation. Thus, we cannot use this

method for a full-rank, single right-hand side TLS problem (d = 1 andr = n).

2.6 Experiments

We now present the results of some simple experiments exploring whether ITLS can be

useful in data fitting problems. Since the “correct” choice of α depends on the error

distributions forEA andEB, our questions are these:

• How sensitive is the solutionX to the ITLS problem asα varies?

• Can the “correct” value ofα be determined computationally?
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Figure 2.2: Relative errors inX as a function ofα for αtrue = 0.001, 0.5, and 0.999

with different noise levelsσE : 0.01 (blue solid),0.005 (red dashed), and0.001 (black

dash-dotted). The star on each curve marksαtrue.

For given weight parameterα, rank r, and noise levelσE , we generate a sample

problem in the following way:

1. GeneratẽA andX using Matlab’srandn() .

2. Modify Ã to have rankr.

3. GeneratẽB asB̃ = ÃX.

4. Compute a minimal norm solutioñX of ÃX̃ = B̃.
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5. Generate noiseEA ∼ N(0, σ2
E(1− α)2In) andEB ∼ N(0, σ2

Eα
2Id). 3

6. Add the noise tõA andB̃ to form A = Ã + EA andB = B̃ + EB.

Now, givenA andB, our goal is to estimate the hidden parameters (α, r, σE) as well

as the true TLS solutioñX. Note that the noise levelσE is related to the noise variance of

σ2
ǫ in Assumption 2.1 by

σǫ = α(1− α)σE .

In our first experiment, we setm = 200, n = 8, d = 4, r = 6, and varied the noise

level σE as0.01, 0.005, and0.001. We obtained similar results for other choices of the

problem, including non-random matrices.

First, we examine the sensitivity of the TLS solution to the choice ofα. Figure

2.2 plots the relative error inX as a function ofα, for three different true valuesαtrue =

0.001, 0.5, and0.999 (which are marked by a star on the curve) with varying noise level.

We can see that the sensitivity increases as the noise level increases, so the more noise,

the more important it is to determineα correctly.

Next, we evaluate the performance of our methods for determiningα. We apply the

methods described in Section 2.5 to find a minimizerα for (2.5.2), (2.5.3), and (2.5.4),

using Matlab’sfminbnd [8], performing function evaluations using the partial SVD.

The results are shown in Figures 2.3(a) - 2.5(b).

Figure 2.3(a) shows the results of estimatingα whenσA is known, using the min-

imizer of (2.5.2) for different values of̂r with σE = 0.01. The estimatedα approaches

3Even though we generate normally-distributed errorsEA andEB for the experiments, our methods are

not restricted to a particular distribution as long as the errors are uncorrelated with identical variances.
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(a) Estimatedα vs.αtrue using (2.5.2), with noise levelσE = 0.01.
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(b) Function value from (2.5.2)

Figure 2.3: Results whenσA is known:m = 200, n = 8, d = 4, r = 6.
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(a) Estimatedα vs.αtrue using (2.5.3), with noise levelσE = 0.01.
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Figure 2.4: Results whenσB is known:m = 200, n = 8, d = 4, r = 6.
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(a) The estimatedα vs. αtrue for different rank estimateŝr,

with noise levelσE = 0.01.
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(b) The estimated coefficient of variation,cv, for different choices

of r̂ and noise level.

Figure 2.5: The result from using (2.5.4) to determineα for m = 200, n = 8, d = 4,

r = 6.
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Figure 2.6: Estimatedα vs.αtrue using the coefficient of variation form = 200, n = 8,

andr = 7, σE = 0.01, varying the number of right-hand sidesd from1 to 5.

αtrue asr̂ decreases to the true rankr = 6. Once the rank is underestimated, the estimated

α diverges from the trueα. Figure 2.3(b) shows the optimal function values for (2.5.2).

The values remain close to0 while r̂ ≥ r, but vary greatly when̂r < r. This phenomenon

becomes more pronounced as the noise levelσE decreases. Thus, this could be one clue

to choosing an appropriate rankr when the noise level is low.

Figure 2.4(a) shows the corresponding results for (2.5.3) whenσB is known. The

α estimation is even more stable than in the previous case whenr̂ is overestimated. In-

terestingly, when̂r is underestimated, so isα (red dotted line). Figure 2.4(b) represents

the ratio of the estimatedα(r̂) to the estimatedα(r̂ + 1). The ratio stays close to1 while

r̂ ≥ r, but is much smaller when̂r < r. Even when the noise level is relatively high
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Figure 2.7: Known rank:α-ratio for n = 8, r = 6, andd = 4, σE = 0.01, varying the

number of observationsm.

(σE = 0.01), this decrease is distinguishable, but it is larger as the noise level decreases.

Therefore, this ratio of the minimizersα could be an alternative criterion to determine the

rankr.

Figure 2.5(a) shows the estimatedα based on (2.5.4), used when neitherσA nor

σB is known. Similar to the previous cases, the estimatedα approaches the trueα as r̂

approaches the true rankr from above, but the estimation ofα fails whenr̂ < r. Fig-

ure 2.5(b) shows the minimized coefficient of variation, fordifferent noise levels. While

the minimized dispersion remains close to zero whenr̂ ≥ r, the dispersion jumps to a

large value (greater than0.5) when r̂ < r. The jump becomes more prominent as the
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noise level decreases. Hence, this is another criterion to determine the rankr. Exten-

sive experiments revealed that rank-determination usingcv is more reliable than the other

methods. Since it requires no prior information aboutσA andσB, we recommend using

this rank-determining strategy to confirm the rank determined by other methods, when-

evern + d− r > 1.

Next we examine the effect of sample size(n + d − r) in the (2.5.4) method. We

may suspect that the dispersion measure may not be reliable if n + d − r is too small, so

we setm = 200, n = 8, r = 7, and varyd from 1 to 5. Figure 2.6 shows the estimatedα

for different values ofd. As d increases, the estimate tends to improve, but it is generally

good (for moderately large values ofα) even for smalln + d− r.

Finally, we test how the number of observationsm affects the estimation ofα. Since

all of our methods are based on an asymptotic property of the smallest singular values,

we expect that increasingm should improve the quality of the estimate ofα. Figure 2.7

shows the relative error in theα estimates asm varies between25 and400. The estimation

does improve with largerm for all proposed methods, and estimation by (2.5.3) (with a

knownσ2
B) shows the most reliable performance even with smallm.

2.7 Discussion and Conclusions

We have defined an implicitly-weighted TLS formulation (ITLS) that includes LS, TLS,

and DLS as special cases as a parameter varies between0 and1. We have discussed the

role of the ratio between the variances of errors inA andB in choosing an appropriate
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parameter in ITLS. We derived asymptotic properties of the estimate as the number of

observationsm→∞, even when the model is rank deficient. We also proposed methods

for computing the family of solutions efficiently. We developed algorithms for choosing

the appropriate solution when onlyσ2
A or σ2

B is known, or neither is known, in which case

we requiren+d−r > 1. We provided experimental results on the usefulness of the ITLS

(or, equivalently the STLS) family of solutions, and on our algorithms for estimatingα

andr.

It would be easy to add a regularization term to the ITLS problem, in order to handle

discrete ill-posed problems.

This work leaves two important open questions. First, the concept of acore prob-

lem [39, 64, 70], so useful for a single right-hand side, does not completelyexplain the

character of TLS problems whend > 1, and more work is needed. This is related to the

choice oft̂. Second, our parameter choice algorithm requires an estimate of eitherσA or

σB whenn + d − r = 1, a single right-hand-side problem with full rank, so more work

on that case is needed.
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Chapter 3

Portfolio Selection Using Tikhonov

Filtering to Estimate the Covariance

Matrix

Markowitz’s portfolio selection problem chooses weights for stocks in a portfolio based

on an estimated covariance matrixfor stock returns. Since the performance of the result-

ing portfolio is very sensitive to the quality of the covariance matrix, its estimation is very

critical for the portfolio selection to be successful. A conventional sample covariance ma-

trix is not a good estimate since it takes all transient information and observationnoiseas

important factors. Matrix reduction on the covariance matrix removes the unsystematic

factors generated by the noise.

Our study proposes to reduce noise in the estimation using a Tikhonov filter func-

tion. In addition, we prevent rank deficiency of the estimated covariance matrix and
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propose a method for effectively choosing the Tikhonov parameter, which determines

the filtering intensity. We put previous estimators into a common framework and com-

pare their filtering functions for eigenvalues of the correlation matrix. We demonstrate

the effectiveness of our estimator using stock return data from 1958 through 2007.This

presentation closely follows that in [66].

3.1 Introduction

A stock investor might want to construct a portfolio of stocks whose return has a small

variance, because large variance implies high risk. Given atarget portfolio returnq, a

mean-variance problem (MV) [59] finds a stock weight vectorw to determine a portfolio

that minimizes the variance of the return. Letµ be a vector of expected returns for each

of N stocks, and letΣ be anN × N covariance matrix for the returns. The problem can

be written as

min
w

wT
Σw subject to wT

1 = 1, wT µ = q, (3.1.1)

where1 is a vector ofN ones. On the other hand, a global minimum variance problem

(GMV) finds a portfolio that minimizes the variances of the portfolio returns without the

return constraint:

min
w

wT
Σw subject to wT

1 = 1. (3.1.2)

Even though these optimization problems play a central rolein a modern portfolio theory,

it has been observed that the solutions are very sensitive totheir input parameters [6,

10, 12, 13]. Thus, in order to construct a good portfolio using these formulations, the
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covariance matrixΣ must be well-estimated.We let Σ̃ denote an estimate ofΣ, and

Σ̃method denote a resulting estimate by a particular method.

Let R = [r(1), · · · , r(T )] be anN ×T matrix containing observations onN stocks’

returns for each ofT times. A conventional estimator – a sample covariance matrix

Σ̃sample – can be computed from the stock return matrixR as

Σ̃sample =
1

T
R(IT −

1

T
11

T )RT . (3.1.3)

From classical statistics,̃Σsample is a consistent estimate for fixedN ; in our case, since

T is fixed and of the same order asN , this result is not so useful. Moreover, since

the stock return matrixR contains noise, the sample covariance matrixΣ̃sample might not

estimate the true covariance matrix well.We useprincipal component analysis andreduce

the noise in the covariance matrix estimate by using a Tikhonov regularization method.

We demonstrate experimentally that this improves the portfolio weightw obtained from

(3.1.2).

Our study is closely related to factor analysis and principal component analysis,

which were previously applied to explain interdependency of stock returns and classify

the securities into appropriate subgroups. Sharpe [79] first proposed a single-factor model

in this context using market returns. King [49] analyzed stock behaviors with both mul-

tiple factors and multiple principal components. These factor models established a basis

for the asset pricing models CAPM [58, 62, 80, 87] and APT [73,74].

There have been previous efforts,which we discuss in detail later in this chapter,

to improve the estimate ofΣ. Sharpe [79] proposed a market-index covariance matrix
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Σ̃market derived from a single-factor model of market returns. Ledoit et al. [55] intro-

duced a shrinkage method that averagesΣ̃sample and Σ̃market. They [56] also applied

the shrinkage method with a different target, an identity matrix. Later, it was shown by

DeMiguel et al. [19] that their shrinkage methods have the same effect as adding the

constraint||w||A ≤ δ to the GMV problem (3.1.2), whereA is the shrinkage target matrix

(Σ̃market or IN ) andδ is a given threshold. Elton and Gruber [24] estimatedΣ using a

few principal components from a correlation matrix. More recently, Plerou et al. [69],

Laloux et al. [53], Conlon et al. [14], and Kwapień [52] applied random matrix theory

[60] to this problem. They found that most eigenvalues of correlation matrices from stock

return data lie within the bound for a random correlation matrix and hypothesized that

eigencomponents (principal components) outside this interval contain true information.

Bengtsson and Holst [5] generalized the approach of Ledoit et al. [55] by damping all

but thek largest eigenvalues by a single rate. In summary, the estimator of Sharpe [79]

usesΣ̃market, the estimator of Ledoit et al. [55, 56] takes the weighted average ofΣ̃sample

and different target matrices, the estimator of Elton and Gruber [24] truncates the small-

est eigenvalues, the estimators of Plerou et al. [69], Laloux et al. [53], Conlon et al.

[14], and Kwapień [52] adjust principal components in someinterval, and the estimator

of Bengtsson and Holst [5] attenuates the smallest eigenvalues by a single rate.

Jagannathan and Ma [44] showed that a short-sale constraint(w ≥ 0) is equivalent

to shrinking the input covariance matrixΣ by subtracting(λ1T +1
Tλ), whereλ is a vec-

tor of Lagrange multipliers for the constraints. DeMiguel et al. [19] showed that adding

the short-sale constraint to GMV is equivalent to adding a1-norm constraint||w||1 ≤ 1,
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and generalized this constraint to||w||1 ≤ δ for a certain thresholdδ which determines a

short-sale budget.

Our study focuses on estimating a good covariance matrix. Wepropose to decrease

the contribution of the smaller eigenvalues of a correlation matrix gradually by using a

Tikhonov filtering function. To derive the Tikhonov filtering, we construct a linear model

based on principal component analysis and formulate an optimization problem that finds

appropriately noise-filtered factors. Using the filtered factor data, we estimate a Tikhonov

covariance matrix.

In Section 3.2, we introduce Tikhonov regularization to reduce noise in the stock

return data. In Section 3.3, we show that applying Tikhonov regularization results in

filtering the eigenvalues of the correlation matrix for the stock returns. In Section 3.4,

we discuss how we can choose a Tikhonov parameter that determines the intensity of

Tikhonov filtering. In Section 3.5, we put all of the factor-based estimators into a common

framework, and compare the characteristics of their filtering functions for the eigenvalues

of the correlation matrix. In Section 3.6, we show the results of numerical experiments

comparing the covariance estimators for portfolio construction using monthly return data

of 100 randomly chosen stocks from the CRSP. In Section 3.7, we highlight the differ-

ences between Tikhonov filtering and the other methods.

3.2 Tikhonov Filtering

To estimate the covariance matrix, we apply a principal component analysis to find an

48



orthogonal basis that maximizes the variance of the projected data into the basis. Based

on the analysis, we use the Tikhonov regularization method to filter out the noise from the

data. Next, we explain the feature of gradual down-weighting, which is the key difference

between Tikhonov filtering and other methods.

3.2.1 Principal Component Analysis

First, we establish some notation. For a random processx(t), let E[x(t)] ∈ R
N×1,

var[x(t)] ∈ R
N×1, cov[x(t)] ∈ R

N×N , and corr[x(t)] ∈ R
N×N denote a mean, a vari-

ance, a covariance matrix, and a correlation matrix. For a given collection of observations

X = [x(1), . . . , x(T )] for N objects duringT times, letEs[x(t)] ∈ R
N×1, vars[x(t)] ∈

R
N×1, covs[x(t)] ∈ R

N×N , and corrs[x(t)] ∈ R
N×N denote the corresponding sample

statistics, defined, for example, in [37, Section 3.3].

Now we apply principal component analysis (PCA)1 to the stock return dataR. Let

Z = [z(1), . . . , z(T )] be anN × T matrix of normalized stock returnsderived fromR,

defined so that

Es[z(t)] = 0, vars[z(t)] = 1, (3.2.1)

where0 is a vector ofN zeros. We can computeZ as

Z = D
− 1

2

V (R− 1

T
R11

T ), (3.2.2)

whereDV = diag(vars[r(t)]) ∈ R
N×N is a diagonal matrix containing theN sample

variances for theN stock returns. By using the normalized stock return matrixZ rather
1 In thischapter, the term PCA always refers to applying PCA to the matrixR of sample stock returns.

For convergence properties of the sample PCA toward its population PCA, refer to [43, Chapter 4].
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thanR, we can make the PCA independent of the different variance ofeach stock return

[43, pp.64-66].

PCA finds an orthogonal basisU = [u1, . . . , uk] ∈ R
N×k for Z wherek = rank(Z).

Each basis vectorui maximizes the variance of the projected datauT
i Z, while maintaining

orthogonality to all the preceding basis vectorsuj (j < i). By PCA, we can represent the

given dataZ = [z(1), . . . , z(T )] as

Z = [u1, . . . , uk] F = UF, (3.2.3)

z(t) = U f (t) = [u1, . . . , uk] f (t) =
k∑

i=1

fi(t)ui, (3.2.4)

where f (t) = [f1(t), . . . , fk(t)]
T , a column ofF, is the projected data at timet, and

vars[f1(t)] ≥ vars[f2(t)] ≥ · · · ≥ vars[fk(t)]. The projected datafi(t) is called thei-th

principal component in PCA or thei-th factor in the factor analysis. Larger vars[fi(t)]

implies that the correspondingf i(t) plays a more important role in representingZ. The

orthogonal basisU and the projected dataF can be obtained by the singular value decom-

position (SVD) ofZ,

Z = Uk S k VT
k , (3.2.5)

wherek is the rank ofZ,

Uk = [u1, . . . , uk] ∈ R
N×k is a matrix of leftorthogonalsingular vectors,

S k = diag(s1, . . . , sk) ∈ R
k×k is a diagonal matrix of singular valuessi,

andVk = [v1, . . . , vk] ∈ R
T×k is a matrix of rightorthogonalsingular vectors.

In PCA, the orthogonal basis matrixU corresponds toUk, and the projected dataF

corresponds to(S kVT
k ) [43, p.193]. Moreover, thevarianceof the projected datafi(t) is
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proportional to the square of singular values2i as we now show.Es[z(t)] = 0 means that

Z1 = 0. Therefore, sincez(t) = Uf (t),

Es[f (t)] = UTZ1 = 0, (3.2.6)

sof (t) also has zero-mean. Therefore,

vars[fi(t)] =
1

T

T∑

t=1

(fi(t)− Es[fi(t)])
2 =

1

T

T∑

t=1

f 2
i (t).

SinceF is equal toS kVT
k ,

fi(t) = sivi(t), (3.2.7)

wherevi(t) is the(t, i) element ofVk. Thus,

vars[fi(t)] =
1

T

T∑

t=1

(sivi(t))
2 =

1

T
s2i (v

T
i vi) =

s2i
T
, (3.2.8)

by the orthonormality ofvi. Thus, the singular valuesi determines the magnitude of

vars[fi(t)], so it measures the contribution of the projected datafi(t) to z(t).

3.2.2 Tikhonov Regularization

U andf (t) in (3.2.4) form a linear model with ak–dimensional orthogonal basis for the

normalized stock returnZ, wherek = rank(Z). As mentioned in the previous section,

the singular valuesi determines how much the principal componentfi(t) contributes to

z(t). However, since noise is included inz(t), the k–dimensional model is overfitted,

containing unimportant principal components possibly corresponding to the noise. We

use a Tikhonov regularization method [67, 83, 89], sometimes called ridge regression [40,

41], to reduce the contribution of unimportant principal components to the normalized
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stock returnZ. Eventually, we construct a filtered principal componentf̃ (t) and a filtered

market returñZ.

Originally, regularization methods were developed to reduce the influence of noise

when solving a discrete ill-posed problemb ≈ Ax, where theM ×N matrixA has some

singular values close to 0 [34, pp.71-86]. If we write the SVDof A as

A = US VT = [u1, . . . , uN ]




s1

. . .

sN







vT1

...

vTN



,

then the minimum norm least square solutionxLS to b ≈ Af is

xLS = A†b = V S † UTb =

rank(A)∑

i=1

uT
i b
si

vi. (3.2.9)

If A has some small singular values, thenxLS is dominated by the corresponding singular

vectorsvi. Two popular methods are used for regularization to reduce the influence of

componentsvi corresponding to small singular values: a truncated SVD method (TSVD)

[30, 36] and a Tikhonov method [83]. Briefly speaking, the TSVD simply truncates terms

in (3.2.9) corresponding to singular values close to 0. In contrast, Tikhonov regularization

solves the least squares problem

min
f
||b− Ax||2 + α2||Px||2, (3.2.10)

whereα andP are predetermined. The penalty term||Px||2 restricts the magnitude of the

solutionx so that the effects of small singular values are reduced.

Returning to our original problem, we use regularization inorder to filter out the

noise from the principal componentf (t). We formulate the linear problem to find a fil-
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tered principal component̃f (t) as

z̃(t) = U f̃ (t), (3.2.11)

z(t) = z̃(t) + ǫz(t) = U f̃ (t) + ǫz(t), (3.2.12)

wherẽz(t) is the resulting filtered data andǫz(t) is the extracted noise.In (3.2.4), f (t) is

the exact solution of (3.2.12) whenǫz(t) = 0. By (3.2.7), we can expressf (t) as

f (t) =




f1(t)

...

fk(t)



=




s1 v1(t)

...

skvk(t)



=

k∑

i=1

(sivi(t))ei,

whereei is thei-th column of the identity matrix. Since we expect that the unimportant

principal componentsfi(t) are more contaminated by the noise, we reduce the contribu-

tion of these principal components. We apply a filtering matrix Φ = diag(φ1, . . . , φk) to

f (t) with eachφi ∈ [0, 1] so that

f̃ (t) = Φ f (t).

The elementφi should be small whensi is small. The resulting filtered data are

z̃(t) = U Φ f (t), (3.2.13)

Z̃ = U ΦF. (3.2.14)

We introduce two different filtering matrices,Φtrun(k̂) andΦtikh(α), which corre-

spond to truncated SVD and Tikhonov regularization. First,we can simply truncate all

but k̂ most important components as Elton and Gruber [24] did by using a filtering matrix
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of Φtrun(k̂) = diag


1, . . . , 1︸ ︷︷ ︸

k̂

, 0, . . . , 0︸ ︷︷ ︸
k−k̂


, so the truncated principal componentf̃ trun(t)

is

f̃ trun(t) = Φtrun(k̂)f (t).

By (3.2.13) and (3.2.14), the resulting filtered data arez̃trun(t) = UΦtrun(k̂)f (t) and

Z̃trun = U Φtrun(k̂)F. SinceF = S kVT
k , we can rewritẽZtrun as

Z̃trun = U Φtrun(k̂)(S kVT
k ) =

k̂∑

i=1

siuivTi . (3.2.15)

From (3.2.15), we can see that this truncation method corresponds to the truncated SVD

regularization (TSVD) [30, 36].

Second, we can apply the Tikhonov method, and this is our approach to estimat-

ing the covariance matrix. We formulate the regularized least squares problem to solve

(3.2.10) as

min
f̃ (t)

M(f̃ (t)) (3.2.16)

with

M(f̃ (t)) = ||z(t)− U f̃ (t)||2 + α2||Pf̃ (t)||2,

whereα2 is a penalty parameter andP is a penalty matrix. The first term||z(t)−U f̃ (t)||2

forcesf̃ (t) to be close to the exact solutionf (t). The second term||Pf̃ (t)||2 controls the

size off̃ (t). We can choose, for example,

P = diag
(
s−1
1 , . . . , s−1

k

)
.

Let f̃i(t) denote thei-th element of̃f (t). The matrixP scales each̃fi(t) by s−1
i , so the

unimportant principal components corresponding to smallsi are penalized more than the
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more important principal components, since we expect that the unimportant principal

componentsfi(t) are more contaminated by the noise. Thus, the penalty term prevents

f̃ (t) from containing large amounts of unimportant principal components. As we showed

before,s2i is proportional to the variance of thei-th principal componentfi(t). Therefore,

this penalty matrixP is statistically meaningful considering that the values off̃i(t)/si in

Pf̃ (t) are in proportion to the normalized principal componentsf̃i(t)/
√

vars[fi(t)].

The penalty parameterα balances the minimization between the error term||z(t)−

U f̃ (t)||2 and the penalty term||Pf̃ (t)||2. Therefore, asα increases, the regularized so-

lution f̃ (t) moves away from the exact solutionf (t) but should discard more off (t) as

noise. We can quantify this property by determining the solution to (3.2.16). At the

minimizer of (3.2.16), the gradient ofM(f̃ (t)) with respect to each̃fi(t) becomes zero,

so

∇M(f̃ (t)) = 2UTU f̃ (t)− 2UT z(t) + 2α2PTP f̃ (t) = 0,

and thus

(UTU + α2PTP) f̃ (t) = UT z(t).

SinceUTU = Ik, P = diag
(
s−1
1 , . . . , s−1

k

)
, andz(t) = Uf (t), this becomes

(
Ik + α2diag

(
s−2
1 , . . . , s−2

k

))
f̃ (t) = UT (Uf (t)).

Therefore,

diag

(
s21 + α2

s21
, . . . ,

s2k + α2

s2k

)
f̃ (t) = f (t),

and

f̃ (t) = diag

(
s21

s21 + α2
, . . . ,

s2k
s2k + α2

)
f (t).
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Figure 3.1: Tikhonov filtering as a function ofsi for various values ofα.

So, our Tikhonov estimate is

f̃ tikh(t) = Φtikh(α) f (t),

whereΦtikh(α), called the Tikhonov filtering matrix, denotes(S 2
k + α2Ik)−1 S 2

k. Thus,

we can see that the regularized principal componentf̃ tikh(t) is the result after filtering

the original principal componentf (t) with the diagonal matrixΦtikh(α), whose diagonal

elementsφtikh
i (α) =

s2i
s2i + α2

lie in [0, 1]. By (3.2.13) and (3.2.14), the resulting filtered

data becomẽztikh(t) = UΦtikh(α) f (t) andZ̃tikh = UΦtikh(α)F.

Let us see howφtikh
i (α) changes asα andsi vary. First, asα increases,φtikh

i (α)

decreases, as illustrated in Figure 3.1. This is reasonablesinceα balances the error term

and the penalty term.Later in Section 3.4, we will propose how we can determine an

appropriate parameterα. Second,φtikh
i (α) monotonically increases assi increases, so the

Tikhonov filter matrix reduces the less important principalcomponents more intensely.

The main difference between the Tikhonov method and TSVD is that Tikhonov preserves
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some information from the least important principal components while TSVD discards

all of it.

3.2.3 The Relation Between Filtered PCA and a Factor Model

Some asset pricing models (e.g., [74, 80]) model asset returns with a factor model:

r(t) = E[r(t)] + Bϕ(t) + ǫ(t). (3.2.17)

The assumptions are that

E[ϕ(t)] = E[ǫ(t)] = 0, (3.2.18)

E(ǫi(t)ǫj(t)) = E(ǫi(t)ϕℓ(t)) = E(ϕi(t)ϕj(t)) = 0 for all i 6= j, (3.2.19)

whereϕ(t) = [ϕ1(t), ..., ϕℓ(t)]
T andǫ(t) = [ǫ1(t), ..., ǫN(t)]

T . The common factorsϕi(t)

are referred to as systematic factors, andǫi(t) is called an unsystematic (idiosyncratic)

factor. The matrixB = (βik) is called a factor-loading matrix, andβik represents the

sensitivity of thei-th asset to thek-th factor.

We can interpret our linear model (3.2.12) as a factor model.By (3.2.2) and

(3.2.12), we have a linear equation forr(t) as

r(t) = Es[r(t)] + D
1

2

V

(
Uf̃ (t) + ǫz(t)

)
(3.2.20)

= Es[r(t)] + Bf̃ (t) + ǫr(t), (3.2.21)

where

B = D
1

2

V U and ǫr(t) = D
1

2

V ǫz(t). (3.2.22)

57



Comparing (3.2.17) and (3.2.21), if we assume thatf̃ (t) represents the systematic factors

ϕ(t) well, we can interpretB and ǫr(t) as estimates of the loading matrixB and the

unsystematic factorǫ(t) in (3.2.17). Sinceǫz(t) = z(t)− Uf̃ (t), ǫr(t) becomes

ǫr(t) = D
1

2

V ǫz(t) = D
1

2

V (z(t)− Uf̃ (t)). (3.2.23)

Becausez(t) = Uf (t) andf̃ (t) = Φf (t), the factor models result in the estimate

ǫr(t) = D
1

2

V (Uf (t)− UΦf (t)) = (D
1

2

V U)(Ik −Φ)f (t) = B(Ik −Φ)f (t). (3.2.24)

3.3 Estimate of the Covariance MatrixΣ

In this section we study how filtering changes the covarianceand correlation estimates

and the estimate of risk exposure, and how to ensure that the estimated covariance matrix

has full rank.

3.3.1 A Covariance Estimate

Now we derive a covariance matrix estimateΣ̃ from (3.2.21), respecting the structure of

the factor model (3.2.17). By (3.2.19), the covariance matrix Σ is

Σ = Bcov[ϕ(t)]BT + cov[ǫ(t)] = Σs + Dǫ, (3.3.1)

whereΣs denotes the systematic componentBcov[ϕ(t)]BT andDǫ denotes the unsystem-

atic component cov[ǫ(t)]. We estimate the systematic partΣs by Σ̃s = Bcovs[f̃ (t)]BT .

Becausef (t) has zero-mean,̃f (t) = Φf (t) also has zero-mean, so

covs[f̃ (t)] =
1

T
(ΦF)(ΦF)T =

1

T
(Φ2S 2

k). (3.3.2)
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Therefore, the estimate ofΣs becomes

Σ̃s = Bcovs[f̃ (t)]BT =
1

T
B(Φ2S 2

k)B
T . (3.3.3)

The unsystematic partDǫ in (3.3.1) is diagonal since the unsystematic factorsǫi(t) are

mutually uncorrelated. Thus, we estimate cov[ǫ(t)] by the diagonal part of the difference

D̃ǫ between

Σ̃sample = covs[r(t)] =
1

T
BS 2

kBT , (3.3.4)

andΣ̃s. Hence,

D̃ǫ = diag
(
Σ̃sample − Σ̃s

)
= diag

(
1

T
(B(Ik −Φ

2)S 2
kBT )

)
. (3.3.5)

Finally, the filtered covariance matrix̃Σ will be

Σ̃ = Σ̃s + D̃ǫ, (3.3.6)

whereΣ̃s andD̃ǫ are defined by (3.3.3) and (3.3.5). By the definition ofD̃ǫ, the diagonal

of Σ̃ equals vars[r(t)].

Now we analyze how the filtering functionΦ affects the sample correlation matrix

corrs[r(t)]. By (3.3.6), the filtered correlation matrix̃Ω can be calculated as

Ω̃ = D
− 1

2

V Σ̃D
− 1

2

V =
1

T
UΦ

2S 2
kUT + D

− 1

2

V D̃ǫD
− 1

2

V , (3.3.7)

where the second term makes the diagonal elements ofΩ̃ equal one. On the other hand,

the sample correlation matrix corrs[r(t)] can be calculated as

corrs[r(t)] = D
− 1

2

V Σ̃sampleD
− 1

2

V .
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Step 1. Estimate the systematic component of the covariance
1

T
B(Φ2S 2

k)B
T

whereΦ is the diagonal matrix of filter factors.

Step 2. Change the main diagonal to be the sample variances.

Table 3.1: The algorithm to compute the covariance estimateΣ̃. For Tikhonov, the filter

factors areΦtikh = diag
(

s2
1

s2
1
+α2

, . . . ,
s2
k

s2
k
+α2

)
.

By (3.2.22) and (3.3.4), this becomes

corrs[r(t)] = D
− 1

2

V

(
1

T
BS 2

kBT

)
D

− 1

2

V =
1

T
US 2

kUT . (3.3.8)

ComparingΩ̃ in (3.3.7) and corrs[r(t)] in (3.3.8), we can see that̃Ω is the result of

applying the filtering matrixΦ2 to S 2
k in corrs[r(t)] and replacing the diagonal elements

with one. Since each diagonal element ofS 2
k corresponds to an eigenvalue of corrs[r(t)],

the filtering matrixΦ2 attenuates the eigenvalues of corrs[r(t)]. In the previous section,

we introduced two filtering matrices :

Φtrun(k̂) = diag


1, . . . , 1︸ ︷︷ ︸

k̂

, 0, . . . , 0︸ ︷︷ ︸
k−k̂


 , (3.3.9)

and Φtikh(α) = diag

(
s21

s21 + α2
, . . . ,

s2k
s2k + α2

)
. (3.3.10)

Therefore,Φ2
trun(k̂) truncates theeigencomponents corresponding to the(k− k̂) smallest

eigenvalues, andΦ2
tikh(α) down-weights all the eigenvalues at a rate

(
s2i

s2i + α2

)2

=
(

λi
λi + α2

)2

whereλi is thei-th largest eigenvalue of covs[z(t)]. Hence, the truncated
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SVD filtering functionsφ2
trun(λi) for eigenvaluesλi become

φ2
trun(λi) =





1, if i ≤ k̂,

0, otherwise,

and the Tikhonov filtering functionsφ2
tikh(λi) are

φ2
tikh(λi) =

(
λi

λi + α2

)2

.

We letΣ̃trun andΣ̃tikh denote the estimates resulting from applyingΦ
2
trun(k̂) andΦ2

tikh(α)

to (3.3.6).Finally, we can summarize the process of estimating the covariance matrix as

Table 3.1.

3.3.2 Risk Exposure to Factors

By (3.3.1), the variance of a portfolio return can be expressed as

wT
Σw = wT (Σs + Dǫ)w = wT

Σsw + wTDǫw. (3.3.11)

The systematic risk is

wT
Σsw = wT

(
Bcov[ϕ(t)]BT

)
w = wT

(
Bdiag(var[ϕ(t)])BT

)
w, (3.3.12)

becauseϕi(t) are mutually uncorrelated by (3.2.19). This can be expandedas

wT
Σsw =

k∑

i=1

var[ϕi(t)](wTβi)
2, (3.3.13)

whereβi is thei-th column ofB. Thei-th term in (3.3.13) represents the risk exposure of

the portfolio to thei-th factor.
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On the other hand, the estimated matrixΣ̃s in (3.3.3) can be rewritten as

Σ̃s =
1

T
BΦ2S 2

kBT = BΦ2

(
S 2

k

T

)
BT = BΦ2diag(vars[f (t)]) BT , (3.3.14)

because vars[f (t)] = diag(S 2
k/T ) by (3.2.8). Hence, we can calculate the estimated

systematic risk as

wT
Σ̃sw =

k∑

i=1

φ2
i

(
vars[f i(t)](w

Tbi)
2
)
, (3.3.15)

wherebi is the i-th column ofB. Therefore, we can see that our estimate of the risk

exposure to thei-th factor is reduced byφ2
i . This equation explains how the estimated

covariance matrix̃Σ affects the estimated risk measure of a portfolio, downweighting

risk factors corresponding to small values ofφi(α).

3.3.3 Rank Deficiency of the Covariance Matrix

Since the covariance matrix is positive semidefinite, the MVproblem (3.1.1) and the

GMV problem (3.1.2) always have a minimizerw. However, when the covariance matrix

is rank deficient, the minimizerw is not unique, which might not be desirable for investors

who want to choose one portfolio. The sample covariance matrix Σ̃sample from (3.1.3) has

rank (T − 1) at most. Therefore, whenever the number of observationsT is less than or

equal to the number of stocksN , Σ̃sample is rank deficient. To insurea full rank and high

quality estimate, we must have at least(N + 1) recent observations of returns, derived

from at least(N + 1) recent trades, and this is not always possible.

Recall that the covariance matrix estimateΣ̃ is the sum of the systematic partΣ̃s

and the unsystematic partD̃ǫ. By (3.3.3), we can see thatΣ̃s has non-negative eigenvalues.
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On the other hand, by (3.3.5),

(Thei-th diagonal element of̃Dǫ) = eTi

(
1

T
B(Ik −Φ

2)S 2
kBT

)
ei. (3.3.16)

It is reasonable to assume thateTi B is not zero for anyi since it becomes zero only when

the i-th stock has zero variance of returns by (3.2.22). Thus, thediagonal matrixD̃ǫ is

positive definite whenever allφi < 1. In the case of Tikhonov filtering, wheneverα > 0,

φtikh
i (α) =

s2i
s2i + α2

< 1,

so D̃ǫ is positive definite. Therefore, sincẽΣs is positive semidefinite, adding a positive

definite matrix ensures that that Tikhonov covariance matrix Σ̃tikh is positive definite and

therefore full-rank.

Sharpe [79], Ledoit et al. [55], Bengtsson and Holst [5], andPlerou et al. [69] also

overcome the rank-deficiency problem by replacing the diagonals of their estimate with

the sample variances like Step 2 in Table 3.1. However, some of their filtering values

φi could have a value of1 as we will see in Section 3.5. This implies that the resulting

estimateΣ̃ could be rank-deficient or very ill-conditioned even after addingD̃ǫ, because

D̃ǫ is positive semidefinite. In the case that the estimate stillhas a large condition number

even after the Step 2, we can fix the problem by a small modification as follows:

Σ̃ii ← Σ̃ii + δi for i = 1, . . . , N , (3.3.17)

whereδi is a small positive number.
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Theorem 3.3.1(Condition number modification). Replacing the main diagonal ofthe

covariance estimatẽΣ as specified in (3.3.17) guarantees that

cond(Σ̃) ≤ λmax(Σ̃) + max (δi)

min (δi)
,

whereλmax(·) is the maximum eigenvalue of the matrix.

Proof. This is a direct consequence ofthe eigenvalue interlacing theorem [82, p.203]and

the positive semidefiniteness ofΣ̃.

This modification is useful especially for the sample covariance matrixΣ̃sample

whenT ≤ N , and for the truncation-based estimators whose filtering factorsφi equal1

for somei.

3.4 Choice of Tikhonov Parameterα

So far, we have seen how to filter noise from the covariance matrix using regularization

and how to fix the rank deficiency of the resulting covariance matrix. In order to use

Tikhonov regularization, we need to determine the Tikhonovparameterα. In regulariza-

tion methods for discrete ill-posed problems, there are intensive studies about choosingα

using methods such as Generalized Cross Validation [29], L-curves [33, 35], and residual

periodograms [75, 76].

In factor analysis and principal component analysis, thereare analogous studies to

determine the number of factors such as Bartlett’s test [3],SCREE test [9], average root

[32], partial correlation procedure [91], and cross-validation [94]. More recently, Plerou
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Figure 3.2: The difference||corrs[ǫr(t)] − IN ||F as a function of log-scaledα where

h = max (si).

et al. [68, 69] applied random matrix theory, which will be described in Section 3.5.6.

In the context of arbitrage pricing theory, some different approaches were proposed to

determine the number of factors: Trzcinka [88] studied the behavior of eigenvalues as

the number of assets increases, and Connor and Korajczyk [15] studied the probabilistic

behavior of noise factors.

The use of these methods requires various statistical properties forǫr(t) in the linear

model (3.2.21). We note that sinceEs[f (t)] = 0 by (3.2.6), the noiseǫr(t) in (3.2.21) has

zero-mean: By (3.2.24),

Es[ǫr(t)] = B(Ik −Φ) Es[f (t)] = 0. (3.4.1)

For our Tikhonov estimation, we propose a new method adopting a mutually un-

correlated noise assumption in a factor model (3.2.19), so corrs[ǫr(t)] ≃ IN . Hence,asa
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criterion to determine an appropriate parameterα, we formulate an optimization problem

minimizing the correlations among the noise,

min
α∈[sk,s1]

|| corrs[ǫr(t)]− IN ||F , (3.4.2)

wheres1 andsk are the largest and the smallest singular values ofZ as defined in (3.2.5).

This is similar to Velicer’s partial correlation procedure[91] to determine the number

of principal components. Figure 3.2 illustrates an exampleof ||corrs[ǫr(t)] − IN ||F as a

function ofα in the range[sk, s1]. The parameter might alternatively be determined by an

asymptotic analysis proposed by Ledoit and Wolf [55, 56] or across validation used by

DeMiguel et al. [19].

3.5 Comparison to Other Estimators

In this section, we compareothercovariance estimators to our Tikhonov estimator and

put them all in a common framework. We summarize how they filter the eigenvalues of

the sample correlation matrix with filtering functionsφ2(λi). Most of these methods use a

two step procedure as shown in Table 3.1: filter the eigenvalues, and then adjust the main

diagonal. We note any exceptions in our descriptions.

3.5.1 Σ̃sample : Sample Covariance Matrix

A sample covariance matrix is the filtering target of most covariance estimators including

our Tikhonov estimator. Thus, the sample covariance matrixΣ̃sample can be thought

of as an unfiltered covariance matrix, so the filtering function φ2
s(λi) for eigenvalues of
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covs[z(t)] is

φ2
s(λi) = 1 for i = 1, . . . , rank

(
Σ̃sample

)
.

3.5.2 Σ̃market from the Single Market Index Model [79]

Sharpe [79] proposed a single index market model

r (t) = E[r(t)] + b rm(t) + ǫ(t), (3.5.1)

wherer (t) ∈ R
N×1 is stock return at timet,

rm(t) is market return at timet,

ǫ(t) is zero-mean uncorrelated error at timet,

andb ∈ R
N×1.

Unlike the factor model (3.2.17), this model assumes that the stock returnsr(t) have

only one common factor, the market returnrm(t). Interestingly, Plerou et al. [69, p.8]

observed that the principal component corresponding to thelargest eigenvalue of the cor-

relation matrix corrs[r(t)](= covs[z(t)]) is proportional to the entire market returns. This

observation is natural in that most stocks are highly affected by the market situation.

Based on their observation, we expect that the most important principal componentf1(t)

in (3.2.4) represents the market returnrm(t). Thus, we can represent the relation between

f̃ (t) = [f̃1(t), . . . , f̃k(t)] in (3.2.21) andrm(t) as

f̃i(t) ≃





C rm(t), wheni = 1,

0, otherwise.

(3.5.2)
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for some constantC. Hence, the corresponding filtering functionφ2
m(λi) for Σ̃market

becomes

φ2
m(λi) ≃





1, if i = 1,

0, otherwise.

(3.5.3)

Therefore, the filter function implicitly truncatesall but the largesteigencomponent of

corrs[r(t)].

3.5.3 Σ̃s→m : Shrinkage toward Σ̃market [55]

Ledoit et al. propose a shrinkage method fromΣ̃sample to Σ̃market as

Σ̃s→m = γ Σ̃market + (1− γ)Σ̃sample, (3.5.4)

where0 ≤ γ ≤ 1. Thus, the shrinkage estimator is the weighed average ofΣ̃sample and

Σ̃market. In order to find an optimal weightγ, they minimize the distance betweenΣ̃s→m

and the true covariance matrixΣ:

min
γ
||Σ̃s→m −Σ||2F .

Since the true covariance matrixΣ is unknown, they use an asymptotic variance to deter-

mine an optimalγ. (Refer to [55, Section 2.5-6] for a detailed description.)Considering

that Σ̃market is the result of the implicit truncation method, we can thinkof this shrink-

age method as implicitly down-weighting all eigenvalues but the largest at a rate(1− γ).

Therefore, we can represent the filtering functionφ2
s→m(λi) as

φ2
s→m(λi) ≃





1, if i = 1,

1− γ, where0 ≤ γ ≤ 1 otherwise.

(3.5.5)

68



3.5.4 Truncated Covariance Matrix Σ̃trun [24]

As mentioned in Section 3.3.1, the truncated covariance matrix Σ̃trun has the filtering

functionφ2
trun(λi) for the eigenvaluesλi of covs[z(t)], where

φ2
trun(λi) =





1, if i = 1, . . . , k̂,

0, otherwise.

(3.5.6)

Thus, the model of Elton and Gruber [24] truncates all but thek̂ largesteigencomponents

of covs[z(t)].

3.5.5 Σ̃s→trun : Shrinkage toward Σ̃trun [5]

Bengtsson and Holst propose a shrinkage estimator fromΣ̃sample to Σ̃trun as

Σ̃s→trun = γ Σ̃trun + (1− γ)Σ̃sample, (3.5.7)

where0 ≤ γ ≤ 1. They determine the parameterγ in a way similar to [55]. (Refer to [5,

Section 4.1-4.2] for detailed description.) Therefore,Σ̃s→trun is a variant of the shrinkage

method toward̃Σtrun. BecausẽΣtrun is the truncated covariance matrix containing the

k̂ most significanteigencomponents of covs[z(t)], we can regard̃Σs→trun as damping

the smallest eigenvalues by(1 − γ). Thus, the filtering function corresponding to this

approach is

φ2
s→trun(λi) =





1, if i = 1, . . . , k̂ ,

1− γ, where0 ≤ γ ≤ 1, otherwise.

(3.5.8)

Rather than removing all the least important principal components as Elton and Gruber

did, Bengtsson and Holst try to preserve the potential information of unimportant princi-
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pal components by this single-rate attenuation. Bengtssonand Holst conclude that their

shrinkage matrix̃Σs→trun performed best in the Swedish stock market when the shrinkage

targetΣ̃trun takes only the most significant principal component (k̂ = 1). They also men-

tion that the result is consistent with RMT because only the largest eigenvalue deviates

far from the range of[λmin, λmax].

3.5.6 Σ̃RMT :trun Truncation by Random Matrix Theory [69]

Plerou et al. [69] apply random matrix theory (RMT) [60] which shows that the eigenval-

ues of a random correlation matrix have a distribution within an interval determined by

the ratio ofN andT . Let corrrandom be a random correlation matrix

corrrandom =
1

T
AAT , (3.5.9)

whereA ∈ R
N×T contains mutually independent random elementsai,t with zero-mean

and unit variance. WhenQ = T/N ≥ 1 is fixed, the eigenvaluesλ of corrrandom have a

limiting distribution (asN →∞)

f(λ) =





Q

2πσ2

√
(λmax − λ)(λmin − λ)

λ
, λmin ≤ λ ≤ λmax,

0, otherwise,

(3.5.10)

whereσ2 is the variance of the elements ofA, λmin ≤ λ ≤ λmax, and

λmax
min = σ2

(
1 +

1

Q
± 2

√
1

Q

)
.

By comparing the eigenvalue distribution of corrs[r(t)] with f(λ), Plerou et al. show that

most eigenvalues are within[λmin, λmax]. They conclude that only a few large eigenvalues
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deviating from[λmin, λmax] correspond to eigenvalues of the real correlation matrix, so the

othereigencomponents should be removed from corrs[r(t)]. Thus, the filtering function

φ2
RMT :trun(λi) for the eigenvalueλi of corrs[r(t)] is

φ2
RMT :trun(λi) =





1, if λi ≥ λmax ,

0, otherwise.

(3.5.11)

3.5.7 Σ̃RMT :repl Replacing the RMT Eigenvalues [53]

Laloux et al. apply RMT to this problem in a way somewhat different from Plerou et

al. First, they find the best fittingσ2 in (3.5.10) to the eigenvalue distribution of the

observed correlation matrix rather than assuming thatσ2 = 1. Second, they replace each

eigenvalue in the RMT interval with a constant valueC, chosen so that the trace of the

matrix is unchanged. Thus, the filtering functionφ2
RMT :repl(λi) for eigenvalues is

φ2
RMT :repl(λi) =





1, if λi ≥ λmax ,

C
λi
, otherwise.

(3.5.12)

This approach does not require the application of Step 2 in Table 3.1 , since it replaces

the smallest eigenvalues with a positive constant. The resulting covariance matrix does

not preserve the original variances.
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Estimator Filtering functionφ2(λi)

Σ̃sample φ2
s(λi) = 1

Σ̃market[79] φ2
m(λi) ≃

{
1, if i = 1,
0, otherwise.

Σ̃s→m[55] φ2
s→m(λi) ≃

{
1, if i = 1,
1− γ, otherwise.

Σ̃trun[24] φ2
trun(λi) =

{
1, if i = 1, . . . , k̂,
0, otherwise.

Σ̃s→trun[5] φ2
s→trun(λi) =

{
1, if i = 1, . . . , k̂,
1− γ, otherwise.

Σ̃RMT :trun[69] φ2
RMT :trun(λi) =

{
1, if λi ≥ λmax ,
0, otherwise.

Σ̃RMT :repl[53] φ2
RMT :repl(λi) =

{
1, if λi ≥ λmax ,
C
λi
, otherwise.

Σ̃tikh φ2
tikh(λi) =

(
λi

λi + α2

)2

Table 3.2: Definition of the filter functionφ2(λi) for each covariance estimator where

i = 1, . . . , rank
(
Σ̃sample

)
.

3.5.8 Σ̃s→I : Shrinkage toward I [56]

Ledoit et al. also introduced a shrinkage method fromΣ̃sample to the identity matrixIN

as

Σ̃s→I = γ (mIN) + (1− γ)Σ̃sample, (3.5.13)

wherem =
tr
(
Σ̃sample

)

N
and0 ≤ γ ≤ 1. They provide a method to estimate an optimal

γ. (Refer to [56, Section 3] for a detailed description.) There is no simple expression

for the filter factors.In addition, this method does not use Step 2 in Table 3.1 sinceits

shrinkage targetIN has full rank.
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3.5.9 Tikhonov Covariance Matrix Σ̃tikh

As mentioned at Section 3.3.1, the Tikhonov covariance matrix Σ̃tikh has the filtering

functionφ2
tikh(λi) for the eigenvaluesλi of covs[z(t)], where

φ2
tikh(λi) =

(
λi

λi + α2

)2

, (3.5.14)

where the parameterα is determined as described in Section 3.4.

3.5.10 Comparison

The derivations in Section 3.5 provide the proof of the following theorem.

Theorem 3.5.1(Filtering functions). The eight covariance estimators are characterized

by the choice of filtering functions specified in Table 3.2.

Tikhonov filtering preserves potential information fromless importantprincipal

components corresponding to small eigenvalues, rather than truncating them all likẽΣmarket,

Σ̃trun, andΣ̃RMT :trun. In contrast to the single-rate attenuation ofΣ̃s→m andΣ̃s→trun and

the constant value replacement ofΣ̃RMT :repl, Tikhonov filtering reduces the effect of the

smallest eigenvalues more intensely. This gradual down-weighting with respect to the

magnitude of eigenvalues is the key difference between the Tikhonov method and other

estimators.

In addition, all the estimators except̃Σs→I and Σ̃RMT :repl overcome the rank-

deficiency of the covariance matrix by replacing the diagonal elements with the corre-

sponding variances after filtering. This is what we did by preservingD̃ǫ in Step 2 in
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Table 3.1. However, most estimators haveφ2(λi) = 1 for the largest eigenvalues as

Table 3.2 shows, so the resulting covariance matrix can be still rank-deficientas we dis-

cussed in Section 3.3.3. During experiments in Section 3.6, we actually observed the

rank-deficiency for some estimators even after preserving diagonal parts. This implies

that an extra modification like (3.3.17) is necessary to overcome rank deficiency.

3.6 Experiments

In this section, we evaluate the covariance estimators using return data from the NYSE,

AMEX, and NASDAQ. We collected the monthly datafrom January 1958 to December

2007 from the CRSP database (the Center for Research in Security Prices). There are600

months over 50 years, and we randomly chose100 stocks among those traded throughout

this period.

Chopra and Ziemba [13] have noted that the MV problem is much more sensitive

to errors inµ than to errors inΣ, and our experience confirms this observation. In fact,

uncertainty in the estimates ofµ made the true return quite different from the target return.

In addition, recently DeMiguel et al. [20] showed that some common portfolio strategies

do not yield consistently better Sharpe ratios, certainty-equivalent returns, or turnovers,

compared to a naive1/N portfolio. The instability of the MV portfolio tends to increase

turnover costs, so recent studies strengthen the stabilityby formulating new optimization

problems [21]. However, since our study focuses on estimating the covariance matrixΣ,

we evaluated the estimators based on how well they minimize the risk variances in the
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MV and GMV portfolios.

First, in Section 3.6.1, we evaluate the risk of GMV portfolio using the covariance

estimators of Table 3.2 with variousin-sampleperiods. We then compare the stability and

performance of the Tikhonov estimator to that of the shrinkage estimatẽΣs→m. Next,

in Section 3.6.2, we perform similar experiments for the MV portfolio, varying thein-

sampleandout-of-sampleperiods as well as the required portfolio returns. We bypass

the difficulties of estimatingµ by assuming that it is known so that we can focus just on

the effects of the different covariance estimators. Finally, in Section 3.6.3 we compare

the GMV and MV portfolio returns, and in Section 3.6.4 we compare their predictions of

risk.

3.6.1 GMV Portfolio

We simulate portfolio construction under the following scenario. We solve the GMV

problem to construct a portfolio to hold for1 month, theout-of-sampleperiodTo. We

repeat this process for every month until we reachDecember 2007. Finally, we evaluate

the variance of theout-of-samplereturns from the GMV portfolio for each covariance

estimator.

When performing this experiment, the choice ofin-samplewindow sizeTw is im-

portant. IfTw is too long, the data may include out-of-date information. On the other

hand, ifTw is too short, the resulting covariance estimate could suffer from lack of in-

formation. We varyTw from 1 year to10 years.Later in Section 3.6.2, we will consider

the change of theout-of-sampleperiodTo as well. We start each experiment atJanuary
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1968, giving 480 rebalancing steps for all values ofTw. For each covariance estimator,

we perform the simulation for20 different choices of100stocks.

Covariance Estimators in Experiments

We perform the experiment above for all the covarianceestimatorsfrom Section 3.5.1 to

Section 3.5.9 plus two diagonal matrices,Σ̃V andΣ̃I, for a total of11 estimators.̃ΣV has

diagonal elements equal to vars[r(t)], and any correlations between stocks are neglected.

Σ̃I is anN ×N identity matrix, which would yield an evenly distributed portfolio as the

solution for the GMV problem (3.1.2); thus it is a good benchmark for a well-distributed

portfolio. SinceΣ̃sample is rank deficient, we modify it by adding small positive constants

δi to its diagonal elements, as in (3.3.17). To computeΣ̃market and Σ̃s→m, we need

the monthly market return datarm(t) in (3.5.1). In this experiment, we adopt equally-

weighted market portfolio returns including distributions from CRSP database asrm(t).

According to Ledoit et al. [55, p.607], an equally-weightedmarket portfolio is better than

a value-weighted market portfolio for explaining stock market variances.

The parameter̂k for Σ̃trun andΣ̃s→trun is static,constant over all time periods.In

our experiment, we perform the experiments withk̂ = 1, 5, 9 for Σ̃trun and k̂ = 1, 2, 3

for Σ̃s→trun. In contrast, the parameters ofγ for Σ̃s→m andΣ̃s→trun, k̂ for Σ̃RMT :trun

andΣ̃RMT :repl, andα for Σ̃tikh have their own parameter choice methods as described

in Section 3.5, so we dynamically determine these parameters each time the portfolio is

re-balanced.
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Figure 3.3: GMV portfolios: The singular values from each estimatorwhenTw = 4

years.

Figure 3.3 shows singular value plots from each estimator, which illustrates the

filtering characteristics for the firstin-sampleperiod ofTw = 4 years with a particular set

of 100 stocks.

Effect of in-sample Period Tw

For each randomly chosen data set (i = 1, . . . , 20), we calculate(σi)Σ̃, the annualized

standard deviation of the sample portfolio return, by multiplying the monthly standard
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Figure 3.4: GMV portfolios: The mean of(σi)Σ̃ over different choice ofTw.

deviation by
√
12. The subscript̃Σ denotes the specific choice of covariance estimator.

Figure 3.4(a) and Figure 3.4(b) show the means of(σi)Σ̃ for the static estimators and the

dynamic estimators. The standard deviations of the(σi)Σ̃ from each estimator were at

most0.56 for all time periods, except for the occurrence of values up to 3.38 for Σ̃sample
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and up to6.50 for Σ̃s→trun(k̂=3), so the results did not seem sensitive to the particular

choice of 100 stocks.

For most estimators, the(σi)Σ̃ decrease until a particularTw and increase after that

point, showing the advantage of using a sufficient amount of history but not too much

out-of-date information. This is particularly evident for̃Σsample, since it assumes that

all of its data are reliable. At the opposite extreme,(σi)Σ̃market
from Σ̃market increases

with Tw, which implies that the correlation among stocks cannot be fully explained by a

single market index. For small values ofk, Σ̃trun behaves likẽΣmarket, but performance

can be improved by takingk ≈ 5, making the estimator less sensitive to out-of-date

information. The diagonal̃ΣV shows a better tolerance to out-of-date information than

Σ̃sample, which may imply that the sample variance estimation is lesssensitive to the

choice ofTw than the samplecovariance estimation. The estimators that dynamically

determine the filtering parameters (Σ̃tikh, Σ̃s→m, Σ̃s→I , Σ̃s→trun(k̂=1), Σ̃RMT :repl, and

Σ̃RMT :trun) also show good tolerance.Therefore,modestly filtered factor structures are

better at filtering the out-of-date information than a single factor or full factor structure,

but all estimators benefit from an appropriate choice of window size.

Compared to the truncation-based estimators likeΣ̃RMT :trun andΣ̃trun, Tikhonov

generally performs better when thein-sampleperiod is shorter than its own optimal size,

which is Tw = 4. This result can be explained by the characteristics of their filtering

functions. Whileφ2
tikh(λi) preserves the relative magnitudes of eigenvalues by gradual

attenuation,φ2
RMT :trun(λi) or φ2

trun(λi) discard them all. Thus, when the smallest eigen-

values are still important, the Tikhonov filterempiricallyshows superiority. However, as
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Figure 3.5: GMV portfolios: The performance of static and dynamic choice ofα andγ

in 20 experiments.

noise level increases with longerTw, the performance reverses.

Compared to the other shrinkage-based estimators, Tikhonov filteringφ2
tikh(λi) pre-

serves the smallest but still informative factors better than a single rate reduction by

φ2
s→m(λi) andφ2

s→trun(λi) or a replacement with a constant value byφ2
RMT :repl(λi) when

Tw is relatively short (Tw < 4). On the other hand, forTw > 7, it becomesevident that

Σ̃s→m, Σ̃s→trun(k̂=1), andΣ̃RMT :repl show better performance thañΣtikh. This is because

Σ̃tikh has relatively weaker tolerance to the contamination by out-of-date information.

Stability of Tikhonov Parameter Choice

In this section, we evaluate the stability of our parameter choicemethodsfrom Section 3.4.

For a particular choice of100 stocks, we observe the change of the dynamic parametersα

for Σ̃tikh andγ for Σ̃s→m. In this experiment, we set the window size asTw = 48 because
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both estimators have the smallest mean value of(σi)Σ̃ for that window size.

Figure 3.5(a) illustrates the change of the ratio of the dynamically chosen Tikhonov

parameterαD to the largest singular values1 of corrs[r(t)], and the change ofγD for

Σ̃s→m. The results for 20 choices of the 100 stocks are shown, showing that both param-

eter choice methods forαD andγD are quite stable during the whole experiment. The

resulting annualized standard deviations of(σi)Σ̃ range from10.16% to 10.30% for Σ̃tikh

andΣ̃s→m, for both the static and dynamically-determined parameters.

We repeated this numerical experiment keeping the ratioα/s1 and the parameter

γ constant over all time periods. (We use the notationαS andγS for this statically de-

termined parameter.) This static parameter choice may not be practical in real market

trading, since we cannot access the future return information when we construct a portfo-

lio. However, we can find a statically optimal ratio from thisexperiment for a comparison

to αD/s1 andγD. Figure 3.5(b) shows how the standard deviation of portfolio returns

changes asαS/s1 andγS increase. The optimal ratioα∗
S/s1 was0.27 with resulting stan-

dard deviation of portfolio returns10.16%, and the optimalγ∗S was0.59 with resulting

standard deviation10.27%. These statically optimal values are represented by dashed

lines in Figure 3.5(a). Therefore, we can see that bothαD/s1 andγD remain near their

statically optimal valuesα∗
S/s1 andγ∗S. Moreover, the static and varyingα values produce

similar risk variance.

3.6.2 MV Portfolio

Now, we observe the behavior of the MV portfolio resulting from each covariance esti-
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(d) Whenq = 0%, 10%, and20%.

Figure 3.6: MV portfolios: The average annualized standard deviations(σi)Σ̃tikh
of port-

folio returns asin-sampleperiodTw andout-of-sampleperiodTo changes with different

settings of required portfolio returnq.

mator. In this experiment, we vary theout-of-sampleperiodTo and the required portfolio

returnq as well as thein-sampleperiodTw. We changeTo from 2 months to 6 months,2

2We omit the case ofTo = 1 month, since it gives us a trivial result that the portfolio returns are equal

to the required portfolio returnq making(σi)Σ̃ zero for any covariancẽΣ and any window sizeTw. This is

becauseµ equals the realized stock returnsr(t) in theout-of-sampleperiod.
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Tw from 1 year to 10 years, andq from 0% to 20%. As we mentioned before, the per-

formance of the MV portfolio is quite sensitive to the estimation of stock returnsµ. In

order to evaluate covariance estimation with no influence ofmean estimation, we assume

a perfect prediction of stock returnsµ, which means we estimateµ by the averager(t)

during theout-of-sampleperiod.

Effect of out-of-sample Period To

Theout-of-sampleperiodTo determines how fast we react to the changes in the market.

Figure 3.6 shows how the average(σi)Σ̃tikh
changes asTo andTw vary, forq = 0%, 10%,

and20%. We can see that(σi)Σ̃tikh
has a tendency to increase as we hold the portfolio

for longerTo. Similar results were obtained for all other covariance estimators.

Effect of in-sample Period Tw

Similar to Figure 3.4 for the GMV experiment, we compared themean of(σi)Σ̃ for differ-

ent covariance estimators, varyingTw andq in Figure 3.7. Based on the result of Section

3.6.2, we fixedTo as 2 months in order to compare the smallest standard deviations from

the estimators. The behaviors of MV portfolios with respectto the change ofTw are very

similar to the GMV portfolio for most covariance estimators. For example, as we ob-

served for the previous GMV experiments, the MV portfolios in Figure 3.7 also suffered

from lack of information whenTw was too short and suffered from out-of-date infor-

mation whenTw was too long. This implies that the choice of window sizeTw is very

important for the MV portfolio as well as the GMV portfolio. Moreover, each estimator
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Figure 3.7: MV portfolios: The mean of(σi)Σ̃ over different choice ofTw and q when

To = 2 months.

84



0 5 10 15 20

7.5

8

8.5

9

9.5

Required return q(%)

A
ve

ra
ge

A
nn

ua
liz

ed
St

d.
(%

)

 

 

Σ̃sample

Σ̃market

Σ̃trun(k=1)

Σ̃trun(k=5)

Σ̃trun(k=9)

Σ̃V

Σ̃I

(a) Static estimators.

0 10 20

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Required return q(%)

A
ve

ra
ge

A
nn

ua
liz

ed
St

d.
(%

)

 

 

Σ̃tikh

Σ̃s→I

Σ̃s→m

Σ̃s→trun(k=1)

Σ̃s→trun(k=2)

Σ̃s→trun(k=3)

Σ̃RMT :trun

Σ̃RMT :repl

(b) Dynamic estimators.

Figure 3.8: MV portfolios: The average annualized(σi)Σ̃ versus required returnq for

each estimator whenTo = 2 months andTw = 3 years.

shows very similar shapes of curves for the GMV and the MV problems, except that the

curves for the MV problems tend to shift upward asq increases.

However, in contrast to the GMV problem where most of competitive estimators

have optimalTw around4 years, the optimalTw for most estimators was around3 years

for the MV problem (Gray-colored vertical dot-dash lines indicateTw = 3 years in Figure

3.7). This may be because they have differentout-of-sampleperiods:To = 1 month for

the GMV problem in Figure 3.4 andTo = 2 months for the MV problem in Figure 3.7.

Effect of Required Portfolio Return q

Figure 3.6(d) summarizes the results from Figure 3.6(a) to Figure 3.6(c). As we can

expect, the surfaces of(σi)Σ̃tikh
move upward asq increases. For all the estimators̃Σ

with particular choices ofTo = 2 months andTw = 3 years, Figure 3.8 also shows

that (σi)Σ̃ gradually increase asq increases from0% to 20%, which explains a trade-off
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Figure 3.9: MV portfolios: The average annualized(µi)Σ̃ versus average annualized

(σi)Σ̃.

between risk and return from the MV portfolio.

Efficiency of Portfolio

The mean-variance plot shows the efficiency of the MV portfolios. Let (µi)Σ̃ denote

the annualizedmean of the realized portfolio returns in thei-th random choice of 100

stocks (i = 1, . . . , 20). In order to evaluate the portfolio efficiency by each estimator,

we compare the change of average(µi)Σ̃ versus the change of average(σi)Σ̃, varying the

required returnq from 0% to 20%. Figure 3.9 presents the average of realized means and
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standard deviations of all the estimators for the cases ofTo = 2 months andTw = 1 year

or 3 years. Curves to the left of and above the others correspond to the more efficient

portfolios.

WhenTw = 1 year, where we have insufficient historical data,Σ̃tikh generates the

most efficient portfolios (See Figure 3.9(b)). The shrinkage estimators with a target ofa

single factorlike Σ̃s→m andΣ̃s→trun(k=1) are also efficientcompared to other dynamic

estimators. WhenTw = 3 years, where we have near optimal historical data,Σ̃tikh,

Σ̃s→m, Σ̃RMT :repl, andΣ̃s→m generate relatively efficient portfolios (See Figure 3.9(d)).

3.6.3 Comparison of GMV and MV Portfolio

Now we observe how the covariance estimators affect the realized portfolio returns at

every re-balancing point for the GMV and the MV problems. Forinstance, Figure 3.10

shows the fluctuations of the portfolio returns byΣ̃sample andΣ̃tikh at the first100 re-

balancing points whenTw = 3 years andTo = 2 months. While the annualized returns of

the GMV portfolios fluctuate around11%, and the annualized returns of the MV portfolio

fluctuate around their required returnq. Note that the GMV mean return is greater than

that for the MV portfolio withq = 0%. Similarly, the standard deviations in Figure 3.4

are greater than the corresponding ones in Figure 3.7(a) andFigure 3.7(b).

On the other hand, for both GMV and MV, thẽΣtikh portfolios have greater mean

return and smaller variance than those fromΣ̃sample, which implies more efficient portfo-

lios. This result is consistent with the plots of means versus standard deviations in Figure

3.9.
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Figure 3.10: GMV and MV portfolios: The annualized portfolio returns at the re-

balancing points for the GMV and the MV problem with different required returnsq.

3.6.4 Risk Prediction

Laloux et al. [54] showed empirically that their estimatorΣ̃RMT :repl predicts the risk

more accurately thañΣsample. They simply divided the dataset into two equal time peri-

ods forin-sampleandout-of-sampleperiods, and compared the estimated standard devia-

tion (wT
Σ̃w)

1

2 from (3.1.1) to the realized standard deviation(σi)Σ̃ for theout-of-sample

period. They assumed perfect prediction for means of stock returns as we did in Section

3.6.2.

We evaluate the accuracy of the risk prediction of each covariance estimator in a
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Figure 3.11:MV portfolios: The relative differences between average estimated risks and

average realized risks by each covariance matrix,varyingdifferent required returnsq.

similar way. However, rather than following their equal division of in-sampleandout-

of-sampleperiods, we variedTw with To = 2 months, and we simulated the re-balancing

scenario as in Section 3.6.2. Finally, we compute the relative difference between the

average estimated standard deviations from (3.1.1) and theaverage realized standard de-

viations for the most competitive estimators.

Figure 3.11 shows the relative difference for the case ofTw = 1 and 3 years which

correspond to the case of insufficient historical data and the minimizer of average(σi)Σ̃.

The realized standard deviations were greater than the estimated standard deviations for

all estimators. However, it turns out thatΣ̃tikh has the smallest difference for both cases,

giving us the best risk prediction.
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3.7 Conclusion

In this study, we applied Tikhonov regularization to improve the covariance matrix esti-

mate used in the Markowitz portfolio selection problem. We put the previous covariance

estimators in a common framework based on the filtering function φ2(λi) for the eigen-

values of corrs[r(t)]. The Tikhonov estimator̃Σtikh attenuates smaller eigenvalues more

intensely, which is a key difference between it and the otherfilter functions.

In order to choose an appropriate Tikhonov parameterα that determines the in-

tensity of attenuation, we formulated an optimization problem minimizing the difference

between corrs[ǫz(t)] and IN based on the assumption that the unsystematic factors are

uncorrelated.

We performed empirical experiments to evaluate covarianceestimators. For the

GMV portfolio selection problem, the Tikhonov choice gave the smallest average stan-

dard deviation of the return when thein-sampleperiod was 3 or 4 years, and was not

much worse than competitors for other periods. The choice ofparameter was relatively

stable. For the MV portfolio selection problem, the Tikhonov choice was among the

most efficient portfolios and the best estimates of risk. Moreover, the Tikhonov estimator

performs relatively well in the circumstance of insufficient historical data. We believe

that this parameter selection method is quite promising relative to previously proposed

methods.
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Chapter 4

Constraint Reduction in Semidefinite

Programming

In this chapter, we study matrix reduction in semidefinite programming (SDP).In interior

point methodsfor constrained convex optimization, wecan use theSchur complement

matrix to solve a reduced linear system for each iteration.

Matrix reduction is applied to the Schur complement matrix. In contrast to the prob-

lems introduced in the previous chapters, the reduced partsof the matrix are neither error

nor noise, but unnecessary constraints.Theseunnecessary constraints are inactiveanddo

not makeanimportant contribution tofollowing the path towardtheoptimal solution, but

still increase thecomputational load.

We present an infeasible primal-dualpredictor-correctorinterior point method for

SDP with constraint reduction.Throughexperiments, weseethe effect ofmatrix reduc-

tion and make important observationsused in the next chapterto construct an algorithm

91



with global convergence.

4.1 Introduction

Constraint reduction in interior point methods (IPMs) has been deeply studied especially

for linear programming (LP) problems. That is because IPMsrequiremany computations

periteration comparedto the simplexmethod,but tend to require fewer iterations.

Prior work onconstraint reduction in LPbeginswith Dantzig and Ye [16]. They

developed abuild-upvariant of a dualaffine-scalingalgorithm. In their method, starting

with a small working set, they add more constraints to the working setuntil the current

step becomes feasible with respect to the full set of constraints. Tone [86] proposed an

active setversion ofthe dual potential-reduction algorithm by Ye [95]. This algorithm

also starts witha small working set and adds constraintsif the current working set does

not sufficiently decrease the potential function. Kaliski and Ye [48] modified Tone’s algo-

rithm to exploit the structure of alarge-scaletransportation problems. Later,den Hertog,

Roos, and Terlaky [22]proposed abuild-up-and-downpath following method with a log-

arithmic barrier function, which follows a central path definedby a smallworking set as

long as it is feasible with respect to the full set of constraints. Once it becomes infeasible,

the working set is updated appropriately, and it restarts from the previousiterate.

Tits, Absil, and Woessner [84] developeda new constraint reduced versionof a

primal-dual affine-scalingmethod (rPDAS) and Mehrotra’spredictor-correctormethod

(rMPC). While previousconstraintreduction schemes test the feasibility ofthe current
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working set with respect to the full set ofconstraints, their method adaptively updates the

working set without any acceptability test. They proved global convergence and quadratic

local convergence of rPDAS undera nondegeneracy assumption, but polynomial com-

plexity wasnot proved. Later, Winternitz et al. [93] proved the global convergence of a

new version of rMPC relaxing theassumptionsof [84].

Adaptiveconstraint reductionhas beenapplied to a series of optimization prob-

lems. Jung, O’Leary, and Tits [46] proposed a constrained reduction for training support

vectormachines(SVM), and Williams [92] applied preconditioning to SVM training to

improve its efficiency. Later, Jung, O’Leary, and Tits [47] developed a constraint-reduced

affine-scalingmethod forconvexquadratic programming (QP), and verified its global

convergence and quadratic local convergence.

In this study, we extend constraint reduction to apredictor-correctormethod for

diagonal block-structured SDP problems. The most computationally intensive stepin

an IPM for SDP is the construction ofthe Schur complement matrix. By ignoring un-

necessary constraints, we can reduce the computational load for computing theSchur

complement matrix, so that each iteration can finish with less cost.

We summarize the organization of this chapter: In Section 4.2, we present an IPM

for SDP and discuss the main computational step. In Section 4.3, we see how block

diagonal structure simplifies the computation, and presenta constraint-reducedpredictor-

corrector algorithm. In Section 4.4, we demonstrate how well the proposed algorithm

solves SDP problems. In Section 4.5, we summarize importantobservations from the

experiments to guide a new algorithm introduced in Chapter 5. Before proceeding, we
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Sn the set ofn× n symmetric matrices
S̃n the set ofn× n skew-symmetric matrices
Sn
+ the set ofn× n symmetric positive semidefinite matrices
Sn
++ the set ofn× n symmetric positive definite matrices

X ≻ 0 a positive definite matrix
X � 0 a positive semidefinite matrix
A • B = tr

(
ABT

)
the dot-product of matrices

µ = (X • Z)/n the duality gap
vec(X) the vectorization of a given matrixX
mat(x) the inverse of vec(X)
symm(X) = 1

2
(X + XT ) the symmetric part ofX

x2 = x(x+1)
2

symmetric square
2
√
y symmetric square root: an inverse ofy = x2

Table 4.1: Notation for the SDP.

highlight some special cases of SDP.

4.1.1 Special cases of SDP

We brieflyexplain the relation betweenSDPandother optimization problems1. We make

use of the definitions in Table 4.1. The primal and dual SDP problems are as follows:

Primal SDP: min
X

C • X s.t. Ai • X = bi for i = 1, . . . , m, X � 0, (4.1.1)

Dual SDP: max
y

bT y s.t.
m∑

i=1

yiAi + Z = C, Z � 0, (4.1.2)

whereC ∈ Sn, Ai ∈ Sn, X ∈ Sn, andZ ∈ Sn.

To explain some special cases, the following property of a Schur complement matrix is

useful.

1The book by Boyd and Vandenberghe [7] is a good reference for detailed explanation.
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Lemma 4.1.1(Schur Complement). When

H =




H11 H12

HT
12 H22


 ,

whereH11 ≻ 0 and H22 is symmetric, thenH is positive (semi)definite if and only if

(H22 − HT
12H

−1
11 H12) is positive (semi)definite.

Proof. See Theorem A.9 in [17, p.239].

First, LP and QP have a linear inequality constraint,

AT y ≤ c,

whereA hasm columns. It is easy to see the linear inequality constraint is a special case

of (4.1.2) in which all theAi andC are diagonal matrices.

Second, quadratically constrained quadratic programming(QCQP) has quadratic inequal-

ity constraints,

yTQjy + qT
j y + cj ≤ 0 for j = 1, . . . , p,

whereQj ∈ Sm
+ . By Lemma 4.1.1, this is equivalent to




I Mjy

yTMT
j −cj − qT

j y


 � 0,

whereQj = MT
j Mj . We can rewrite this as

m∑

i=1

yi




0 −mji

−mT
ji qji


+ Zj =




I 0

0 −cj


 , Zj � 0,
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wheremji is thei-th column ofMj, andqji is thei-th entry ofqj. We can see that the

quadratic constraint is the special case of (4.1.2) in whichAi contains the diagonal block

whose elements in the last row and the last column are non-zeros.

Third, second order cone programming (SOCP) has inequalityconstraints,

‖Mjy + dj‖ ≤ qT
j y + cj , for j = 1, . . . , p,

which is equivalent to



(qT
j y + cj)I Mjy + dj

(Mjy + dj)
T qT

j y + cj


 � 0,

by Lemma 4.1.1. We can rewrite the inequality above as

m∑

i=1

yi



−qjiI −mji

−mT
ji −qji


+ Zj =



cjI dj

dT
j cj


 , Zj � 0.

Hence, the second order inequality constraint is the special case of (4.1.2) in whichAi

contains the diagonal block whose elements in the diagonal,the last row, and the last

column are non-zeros (arrow-shaped).

Therefore, diagonal block-structured SDP includes LP, QP,QCQP, and SOCP as

special cases. From this point of view, this study is a generalized version of [47, 84, 93].

4.2 Interior Point Methods for SDP

We discuss how standard IPMs find an optimal solution of SDP. For more details, see,

for example, [17, 45].
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4.2.1 Interior Point Methods for SDP with symmetrization

We assume that all the constraint matricesAi for i = 1, . . . , m are independent. This

assumption guarantees a unique direction which will be introduced now. In addition,we

assume that the primal and dual SDP problems (4.1.1) and (4.1.2) have finite optimal so-

lutions with equal optimal values. Under this assumption,(X, y,Z) is an optimal solution

of (4.1.1) and (4.1.2) if and only if it satisfies

Ai • X = bi for i = 1, . . . , m, (4.2.1)

(

m∑

i=1

yiAi) + Z = C, (4.2.2)

X • Z = 0, (4.2.3)

X � 0, Z � 0. (4.2.4)

A duality gap is the difference between the primal and dual objective values for a given

point (X, y,Z). For simplicity of notation, we measure the duality gap byµ defined as

µ := (C • X− bT y)/n.

For a feasible solution satisfying (4.2.1) and (4.2.2), theduality gapµ can be computed

as

µ =
1

n
(C • X− bT y) =

1

n

(
(

m∑

i=1

yiAi + Z) • X− bT y

)

=
1

n

(
m∑

i=1

yi(Ai • X) + Z • X− bT y

)

=
1

n

(
m∑

i=1

yibi + Z • X− bT y

)
=

1

n
(bT y + Z • X− bT y) =

1

n
(X • Z).
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So, (4.2.3) implies that the optimal values for the primal and dual problems are equal, as

we assumed.

Primal-dual IPMs for SDPs make use of the following system ofequations to define

the Newton step and to measure closeness to optimality:

Ai •∆X = rpi for i = 1, . . . , m, (4.2.5)

(
m∑

i=1

∆yiAi) + ∆Z = Rd, (4.2.6)

X∆Z +∆XZ = Rc, (4.2.7)

where the primal residual, dual residual, and complementarity residualare defined by

rpi = bi − Ai • X for i = 1, . . . , m, (4.2.8)

Rd = C− Z−
m∑

i=1

∆yiAi, (4.2.9)

Rc = µI− XZ, (4.2.10)

andµ defines the current targetduality gapon the central path.The equation (4.2.7) is

motivated by the goal of computing∆X and∆Z such that

(X +∆X)(Z +∆Z) = µI.

When this equation is satisfied,the duality gap becomes

1

n
(X +∆X) • (Z +∆Z) =

1

n
tr ((X +∆X)(Z +∆Z)) =

1

n
tr (µI) = µ.

That is why we callµ the target duality gap. Note that the term∆X∆Z is ignored by

linearization.
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By solving (4.2.5)-(4.2.7) settingµ = 0, we can find a direction(∆X,∆y,∆Z)

for an updated point(X + ∆X, y + ∆y,Z + ∆Z) to satisfy (4.2.1)-(4.2.3) ignoring the

linearization error∆X∆Z. However, we may not be able take a full stepin this direction

due to the semidefinite inequality constraintsX � 0 andZ � 0 in (4.2.4). So, we findthe

longest step lengthθ ∈ [0, 1] for which the inequality constraints are still satisfied, so that

the point is updated as

X+ = X + θ∆X, y+ = y + θ∆y, Z+ = Z + θ∆Z.

We repeat this process until a given tolerance is satisfied. This algorithm is called as an

affine-scalingmethod. Alternatively, we can solve (4.2.5)-(4.2.7), decreasing the target

duality gapµ. This methodis a path-followingmethod since theiterates followa central

path, defined as the set ofpointssatisfyingXZ = µ I. Practically, most effectivemethods

arepredictor-corrector methods, in which a predictor step solves (4.2.5)-(4.2.7) setting

µ = 0 to estimate a target duality gapµ, and a corrector step solves the equations again

using the estimated duality gap. All of these methods are categorized as IPMs. In this

work, we apply constraint reduction to apredictor-correctormethod.

Specially in SDP, IPMs require a symmetrization process.Since the solution of

(4.2.7) is not necessarily symmetric, we replace∆X with its symmetric part

∆X← 1

2
(∆X +∆XT )

after solving (4.2.5)-(4.2.7). The solution with this symmetrization is called the HKM

direction, named afterHelmberg, Kojima, and Monteiro [38, 51, 61]. Note that∆Z is
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always symmetric by (4.2.6). Thus, we effectively solve theequations

Ai •∆Ẋ = rpi for i = 1, . . . , m, (4.2.11)

(

m∑

i=1

∆yiAi) + ∆Z = Rd, (4.2.12)

X∆Z +∆ẊZ = Rc, (4.2.13)

∆Ẋ = ∆X + W, (4.2.14)

where∆X ∈ Sn andW ∈ S̃n . By (4.2.14),∆X is the symmetric part of∆Ẋ, so

∆X = symm
(
∆Ẋ
)
.

SinceAi ∈ Sn andW ∈ S̃n, Ai •W = 0. By this property, the symmetrized direction

∆X from (4.2.11)-(4.2.14) also satisfies (4.2.5), so the primal residual is the same with or

without symmetrization.

4.2.2 Predictor-Corrector Algorithm

To solve (4.2.11)-(4.2.14), we vectorize the equations andreduce the equations to an

equation involving the Schur complement matrix. For further discussion, let us briefly

introduce a vectorization operation and Kronecker product. A vectorization, vec(X) ∈

R
n2

for a matrixX ∈ X
n×n is defined as

vec(X) =




x1

...

xn



,

wherexi is thei-th columnof X. The vectorized variables will be denoted by lower-case

letters: for example,x = vec(X).

100



For G ∈ R
p×q andH ∈ R

s×t, the Kronecker product (⊗) is defined as

G⊗H =




g11H . . . g1qH

...
. . .

...

gp1H . . . gpqH



,

wheregij is the(i, j) entry ofG. Along with the vectorization, we will frequently use the

following properties of the Kronecker product. For appropriate size of matrices,

(E⊗ F)(G⊗H) = (EG)⊗ (FH),

(E⊗ F)−1 = E−1 ⊗ F−1,

(E⊗ F)T = ET ⊗ FT ,

(E⊗ F) vec(X) = vec
(
EXFT

)
.

Using the vectorization,we defineA ∈ R
m×n2

, containing all vec(Ai), as

A =




vec(A1)
T

...

vec(Am)
T



.

With the matrixA, by using the vectorization and the Kronecker product, we vectorize

the equations (4.2.11)-(4.2.13) as

A∆ẋ = rp, (4.2.15)

AT∆y +∆z = rd, (4.2.16)

(X⊗ I)∆z + (I⊗ Z)∆ẋ = rc, (4.2.17)
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where

rp = b−Ax, (4.2.18)

rd = c− z−ATy, (4.2.19)

rc = vec(µI− XZ) , (4.2.20)

whererp ∈ R
m contains primal residualsrpi for i = 1, . . . , m.

Using Gauss elimination, we can reduce the equations. First, we rewrite (4.2.16) as

∆z = rd −AT∆y (4.2.21)

By substituting∆z from (4.2.21) into (4.2.17), we have

(X⊗ I)(rd −AT∆y) + (I⊗ Z)∆ẋ = rc,

(I⊗ Z)∆ẋ = (X⊗ I)(AT∆y− rd) + rc.

By multiplying (I⊗ Z−1) to the left of both sides, we have

∆ẋ = (X⊗ Z−1)(AT∆y− rd) + (I⊗ Z−1)rc. (4.2.22)

Finally, by substituting∆ẋ from the equation above to (4.2.15), we have

A∆ẋ = A(I⊗ Z−1)rc −A(X⊗ Z−1)(rd −AT∆y) = rp,

A(X⊗ Z−1)AT∆y = rp +A(X⊗ Z−1)rd −A(I⊗ Z−1)rc.

Thus, with Schur complement matrixM, we have a reduced linear equation,

M∆y = g, (4.2.23)
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1. Input : (X0, y0,Z0) (initial value)

2. Repeat until convergence criteria are satisfied:Fork = 0, 1, . . . ,

(a) (X, y,Z)← (Xk, yk,Zk)

(b) Settingµ = 0, compute(∆X,∆y,∆Z) by (4.2.21)-(4.2.23).

(c) Find the longest step lengthθ such thatX � 0 andZ � 0 where
X = X + θ∆X, Z = Z + θ∆Z.

(d) Compute a target duality gapµ← (X • Z)/n.

(e) Using the updated target duality gapµ, compute(∆X,∆y,∆Z) by (4.2.21)-
(4.2.23).

(f) Find the longest step lengthθ such thatX+ � 0 andZ+ � 0 where
X+ = X + θ∆X, y+ = y + θ∆y, Z+ = Z + θ∆Z.

(g) (X(k+1), y(k+1),Z(k+1))← (X+, y+,Z+) .

(h) Updaterp andrd by (4.2.18) - (4.2.19).

Table 4.2: Constraint-reduced Predictor-corrector method.

where

M = A(X⊗ Z−1)AT ,

g = rp +A(X⊗ Z−1)rd −A(I⊗ Z−1)rc.

We can then compute∆ẋ and∆z by (4.2.22) and (4.2.21).

Using equations (4.2.21)-(4.2.23), we establish thepredictor-correctoralgorithm

for SDP as Table 4.2 similar to [17, Section 7.6].In the predictor step, we solve the

equations settingµ = 0. With the predictor direction(∆X,∆y,∆Z), we determine the

longest step lengthθ which makesX + θ∆X � 0 andZ + θ∆Z � 0. Then, we compute

the duality gap for(X+ θ∆X) and(Z+ θ∆Z), and we use this estimate as a target duality

gapµ for the corrector step.In thecorrector step, with the estimated target duality gap,

we solve the system again andtake the longest stepθ in the resulting correction direction
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which makesX + θ∆X � 0 andZ + θ∆Z � 0.

Note that we computetheSchur complement matrix̂M only once for each iteration,

and use it twice for the predictor step and the corrector step. This is because weuse the

predictor step only toestimate the target duality gapµ without updating(X, y,Z).

4.3 Constraint-Reduced Predictor-Corrector Method for

Block-Diagonal-Structured SDP

4.3.1 Block Structure

In this work, we focus on problems in which the matricesAi andC are block diagonal:

Ai =




Ai1 0

. . .

0 Aip



, C =




C1 0

. . .

0 Cp



,

whereAij ,Cj ∈ Snj for i = 1, . . . , m and j = 1, . . . , p. Then, we define a matrix

Aj ∈ R
m×n2

j containing all vec(Aij) as

Aj =




vec(Aij)
T

...

vec(Amj)
T



.

For such problems, there is a block diagonal optimal solution X∗ andZ∗. This is because

any nonzero elements outside of the diagonal block ofZ immediately violate the dual

constraint of (4.1.2), and nonzero elements outside of the diagonal blocks inX do not
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make any contribution to minimize the primal objective value C • X. So we will require

our iterates to have the form

X =




X1 0

. ..

0 Xp



, Z =




Z1 0

. . .

0 Zp



.

Using this block structure,theSchur complement matrixM in (4.2.23) can be com-

puted as

M =

p∑

j=1

Mj,

where

Mj = Aj(Xj ⊗ Z−1
j )AT

j .

Hence, each element(Mj)lh of Mj can be computed as

(Mj)lh = (Xj Alj Z−1
j ) • Ahj (4.3.1)

where1 ≤ l ≤ m, l ≤ h ≤ m, 1 ≤ j ≤ p.

Suppose thatAij is dense.2 Then the cost of computingthe entire Schur complement

matrixM, including Cholesky factorization ofZj, is

p∑

j=1

(4m+ 1/3)n3
j + 2m2n2

j operations. (4.3.2)

The computation oftheSchur complement matrix is the most expensivepart of IPMs for

SDP and isO(mn3 + m2n2). It is our goal to drop thematricesMj which do not play

important roles intheSchur complement matrixM, so that we reduce the computational

2Refer to Fujisawa, Kojima, and Nakata [26] to see how to exploit the sparsity ofAij
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cost. In the nextsection, we classify the blocks into active and inactive blocks, anddiscuss

why the lattercan be dropped.

4.3.2 Active and Inactive Blocks

From the optimality condition (4.2.3), we can see that

rx + rz ≤ n,

whererx andrz are the ranks3 of an optimal solutionX∗ andZ∗. This implies that there

may exist blocksX∗
j andZ∗

j such thatX∗
j = 0 andZ∗

j has full rank, soZj ≻ 0 andZj is in

the interior of the semidefinite cone.We will say that such sub-blocks areinactiveand

the other blocks areactive.

For an inactive block,(X∗
j ⊗ Z∗

j
−1) = 0. We use this fact to guide our algorithm:

we try to find blocks(Xj ⊗ Z−1
j ) having norms small enough to ignorein formingM.

Let us assume that we have a criterion to identify inactive and active blocks in a

givenX andZ. Without loss of generality, we assume that the firstp̂ blocks are activeand

the remaining of̃p blocks are inactive.We let Âi andÃi denote the active and inactive

3According to Alizadeh, Haeberly, and Overton [1, Theorem 6 in p.9], for a nondegenerate optimal

solution,

n− 2

√
n2 −m ≤ rx ≤ 2

√
m,

n− 2
√
m ≤ rz ≤

2

√
n2 −m.
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blocks ofAi, so

Âi =




Ai1 0

. . .

0 Aip̂



, Ãi =




Ai(p̂+1) 0

. . .

0 Aip



,

whereÂi ∈ R
n̂×n̂, Ãi ∈ R

ñ×ñ, andn = n̂ + ñ. Furthermore, let denotênj andñj denote

the size of active and inactive blocks, so that

n̂ =

p̂∑

j=1

n̂j, ñ =

p̃∑

j=1

ñj.

In a similar way, block matrices(X̂, X̃), (Ẑ, Z̃), (R̂d, R̃d), and(R̂c, R̃c) are also defined.

We also defineÂ ∈ R
m×n̂2

andÃ ∈ R
m×ñ2

as

Â =




vec
(

Â1

)T

...

vec
(

Âm

)T



, Ã =




vec
(

Ã1

)T

...

vec
(

Ãm

)T



.

Thenwe can expandM into active and inactive parts as

M = M̂ + M̃,

where

M̂ = Â(X̂⊗ Ẑ
−1
)ÂT ,

M̃ = Ã(X̃⊗ Z̃
−1
)ÃT .

If ‖(X̃⊗ Z̃
−1
)‖ is small, we expect̃M is also negligible andwe canomit it when we solve

the linear system.
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4.3.3 Constraint-Reduced Predictor-Corrector Method

Now, we consider the constraint-reduced linear system

M̂∆y = g, (4.3.3)

where we replaceM in (4.2.23) withM̂. So, we solve

(
Â(X̂⊗ Ẑ

−1
)ÂT

)
∆y = rp +A(X⊗ Z−1)rd −A(I⊗ Z−1)rc.

In addition,∆ẋ and∆z are computed by

∆ẋ = (X⊗ Z−1)AT∆y− (X⊗ Z−1)rd + (I⊗ Z−1)rc, (4.3.4)

∆z = rd −AT∆y. (4.3.5)

After solving these equations, we can obtain the HKM direction by computing∆X as

∆X = symm
(
∆Ẋ
)
. (4.3.6)

Using the equations (4.3.3)-(4.3.6), we can develop apredictor-correctormethod.

Our new algorithm takes an additional input parameter, the thresholdκ, by which active

and inactive constraint blocks are classified: If‖Xj ⊗ Z−1
j ‖ > κ, then we assume the

block is active. Otherwise, it is assumed inactive.

Thus, we modify step 2.(b) and 2.(e) of the algorithm in Table4.2:

2.(b)’ Initially, M̂← 0. For thej-th block wherej = 1, . . . , p,
M̂← M̂ +Aj(Xj ⊗ Z−1

j )Aj
T if ‖Xi ⊗ Z−1

i ‖ ≥ κ.

Settingµ = 0, compute(∆X,∆y,∆Z) using (4.3.3) - (4.3.6) witĥM in place ofM.

2.(e)’ Using the updated target duality gapµ, compute(∆X,∆y,∆Z) using (4.3.3) -
(4.3.6) withM̂ in place ofM.
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Problem Data file m n # of blocks max block size

SchrijverA(19, 6) 156 632 432 20
SchrijverA(26, 10) 227 999 635 27
SchrijverA(28, 8) 466 1746 1326 29

Binary SchrijverA(37, 15) 468 2049 1327 38
Code SchrijverA(40, 15) 720 2900 2060 41

SchrijverA(48, 15) 1728 6198 4998 49
SchrijverA(50, 15) 2056 7278 5978 51

TSP TSPbay29 6090 13862 15 29
TSPeil51 33150 71502 26 51

Kissing kissing3 5 5 (K(3)) 297 220 15 56
Number kissing4 7 7 (K(4)) 695 488 17 120

kissing6 10 10 (K(6)) 1792 1210 20 286
QAP QAP Esc64ared 517 976 8 65

QAP Esc16ered 90 179 6 17

Table 4.3: Structure of SDP problems.

In this algorithm, we assume that the resulting Schur complement matrixM̂ has full rank,

so the equation (4.3.3) has a unique solution∆y. This assumption will be dealt with below

in Chapter 5.

Next we discuss some problems for which this algorithm is appropriate and results

of some numerical experiments.

4.4 Problems and Experiments

In this section, we demonstrate how wellthe constraint-reduced version ofthe algorithm

in Table4.2 solvesblock diagonalsemidefinite programming problems.
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(a) Binary code whenn = 3 andd = 2. (b) Example of TSP.

Figure 4.1: Example of Binary code and TSP.

4.4.1 Applications

We introduce problemsto which the constraint-reduced SDP algorithm can be applied.

All of these problems havediagonal block structures, and we summarize their structures

in Table 4.3.All of these examples result from relaxing a problem with integer variables

to one involving continuous variables.

Maximum Size of Binary Code

For a given word lengthn, we want to know the maximumnumberA(n, d) of words in

a binary code withHamming distance at leastd between each pair of words. Forn = 3

andd = 2, A(3, 2) = 4 achieved by the binary code{(0, 0, 0), (1, 1, 0), (0, 1, 1)(0, 1, 0)}

(See Figure 4.1(a)).In 1979, Schrijver [77] relaxed the maximum binary code problem

to SDP.
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(a) Case ofn = 2. (b) Case ofn = 3.

Figure 4.2: Example of kissing numbers.

Traveling Salesman’s Problem

The traveling salesman’s problem (TSP) isavery well-known NP-complete problem.We

are given a weighted graphG(V,E) which has a set of verticesV and a set of edgesE

with pairwise weights (distances)wij . For a given starting pointv1, the TSP finds a path

visiting all vertices inV with minimum sum of distances. (See Figure 4.1(b)).In 2008,

de Klerk, Pasechnik, and Sotirov [18] relaxed TSP to SDP.

Kissing Number

The kissing numberK(n) is the maximum number ofidenticalhyperspheres inn dimen-

sions which touch a hypersphereof the same radiuswith no intersection. It is obvious

thatK(1) = 2 since two identical balls can be placed on the left and right side of a given

ball. In the two dimensional case, a circle can be surroundedby 6 identical circles, so
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Figure 4.3: Example of QAP whenn = 4.

K(2) = 6. (See Figure 4.2(a)).NewtonbelievedthatK(3) = 12, but it was firstproved

in 1874 by Bender [4](See Figure 4.2(b)4). In 2007, Bachoc and Vallentin [2] relaxed the

kissing problem to SDP.

Quadratic Assignment Problem

Suppose that, for givenn facilities andn locations, we know pairwise flowsf(i, j) be-

tweenfacilities and pairwise distancesd(i, j) betweenlocations.We want to assign each

facility to one of the available locations in order to minimize the total flow load, defined

to be the sum of flows times distances. Letg be a one-to-one correspondence function

which specifies the location for each facility. Ifg(1) = 2, then the first facility is assigned

to the second location. Using this assignment functiong(i), we can express the total flow

4This image is obtained fromhttp://en.wikipedia.org/wiki/Kissing_number_

problem
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loadL as

L(g) =

n∑

i=1

n∑

j=i+1

f(i, j)d(g(i), g(j)).

Thus, the quadratic assignment problem (QAP) determines anassignment functiong min-

imizingL(g). Figure 4.3 is an example withn = 4. In 1998, Zhao et al. [96] relaxed the

QAP to SDP.

4.4.2 Implementation

We performed the experiments usinga modified version ofSDPT3 version 4.05 imple-

mented by Toh, Todd, and Tütüncü [85]. Before startingan iteration, SDPT3detects

dependent rows inA to be removed. The iteration starts withan infeasible point on an

exact central path by settingy0 = 0 andX0
j = ρxI andZ0

j = ρzI where

ρx = max
j=1,...,p

(
1,
√
nj , max

i=1,...,m

(
1 + |bi|

1 + ‖Aij‖F

))
,

ρz = max
j=1,...,p

(
1,
√
nj , max

i=1,...,m
(1 + ‖Aij‖F ) , max

i=1,...,m
(1 + ‖Cij‖F )

)
.

We modified SDPT3,as described in Section 4.3.3,to ignore the termsAj(Xj ⊗

Z−1
j )AT

j in theSchur complement matrix̂M for a HKM direction when‖Xj ⊗ Z−1
j ‖ < κ

for a givenκ. Then, the direction∆y is computed by solving (4.3.3), and the directions

∆X and∆Z are computed by (4.3.4) and (4.3.5).We varythe thresholdκ from 0 to 107 so

that we can see how constraint reduction affects theIPM. Note that constraint reduction

does not occur whenκ = 0.
5The MATLAB package is available inhttp://www.math.nus.edu.sg/ ˜ mattohkc/

sdpt3.html .
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The original SDPT3 usestheSYMQMR(Symmetric Quasi-Minimal Residual algo-

rithm) to solve the linear equation (4.2.23), usingtheCholesky factor ofM as a precon-

ditioner. SYMQMRminimizesa quasi-residual norm from Lanczos biorthogonalization.

We replacedSYMQMRwith SYMMLQ(Symmetric LQ) [63] ,which used feweriterations

to solve the linearsystems.

Weperformedthe experiment with the following SDP problems:6

1. Binary code problem: SchrijverA(19,6), SchrijverA(26,10), SchrijverA(28,8),

SchrijverA(37,15), SchrijverA(40,15),

2. Kissing number problem: kissing3 5 5, kissing4 7 7,

3. Quadratic assignment problem: QAPEsc16ered.

4.4.3 Results of Experiments

In Table 4.4, all the results ofexperimentsare summarized. In addition, in Figure 4.4,

Figure 4.5, and Figure 4.6, wetracethe changein infeasibility and dualitygaps, the

changein ‖Xj⊗Z−1
j ‖ for each block, and the change of step length, for SchrijverA(40,15)

whenκ = 104, 106, and107 .

We can observe that primal infeasibility,thedual infeasibility, andtheduality gap

gradually increase asthe thresholdκ increases. Asexpected, the computationsavedby

constraint reduction also tends to increaseas the threshold increases.
6The data files are obtained from the webpagehttp://lyrawww.uvt.nl/ ˜ sotirovr/

library/ of E. de Klerk and R. Sotirov .
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(1) (2) (3) (4) (5) (6) (7)
problem κ primal dual relative # of # of red. saved

residual residual duality gap iter. blks/iter. FLOP’s/iter.

Schrijver *0.0 5.31× 10−10 3.32× 10−13 5.40× 10−9 29 0 0 (0.0%)
A(19,6) *1.0× 102 9.98× 10−7 4.95× 10−10 4.73× 10−6 29 98.00 6711 (6.6%)

1.0× 103 2.10× 10−4 4.63× 10−8 2.70× 10−4 24 63.00 4732 (4.7%)
1.0× 104 1.05× 10−11 1.38× 10−10 1.69× 10−1 29 5.50 25916 (25.6%)

Schrijver *0.0 2.89× 10−7 1.45× 10−14 7.07× 10−8 52 0 0 (0.0%)
A(26,10) *1.0× 102 3.35× 10−8 1.19× 10−14 4.13× 10−7 51 9.71 2620 (8.3%)

*1.0× 103 2.60× 10−8 1.57× 10−14 2.55× 10−7 51 11.50 26778 (8.5%)
1.0× 104 4.85× 10−7 1.54× 10−8 1.74× 10−2 30 9.94 35342 (11.2%)

Schrijver *0.0 1.12× 10−7 3.99× 10−13 9.67× 10−9 34 0 0 (0.0%)
A(28,8) *1.0× 102 8.39× 10−8 3.67× 10−13 7.52× 10−9 34 11.88 96 (0.0%)

*1.0× 103 8.36× 10−8 3.46× 10−13 3.79× 10−8 34 22.16 195 (0.0%)
*1.0× 104 8.45× 10−8 6.65× 10−13 2.48× 10−6 34 49.15 3237 (0.8%)

Schrijver *0.0 1.78× 10−6 9.35× 10−15 2.41× 10−7 57 0 0 (0.0%)
A(37,15) *1.0× 100 2.28× 10−6 9.48× 10−15 2.41× 10−7 57 1.00 3.00 (0.0%)

1.0× 101 5.90× 10−6 2.04× 10−10 3.00× 10−2 57 7.70 57029 (4.8%)
1.0× 102 1.44× 10−4 1.77× 10−9 1.60× 10−1 57 10.80 91999 (7.8%)

Schrijver *0.0 2.18× 10−4 3.25× 10−14 1.53× 10−4 53 0 0 (0.0%)
A(40,15) * 1.0× 104 3.73× 10−4 3.53× 10−14 2.80× 10−4 53 5.66 77940.38(4.9%)

*1.0× 105 1.72× 10−4 3.41× 10−14 1.81× 10−4 53 15.29 209428 (13.2%)
1.0× 106 1.98× 100 9.94× 10−10 1.20× 100 43 13.23 296751 (18.7%)
1.0× 107 3.63× 10−3 1.22× 10−13 1.23× 100 53 12.27 350146 (22.1%)

kissing *0.0 4.20× 10−11 3.22× 10−12 3.24× 10−9 22 0 0 (0.0%)
3 5 5 *1.0× 100 3.25× 10−11 1.39× 10−10 2.75× 10−9 22 3.17 11 (0.0%)

*1.0× 101 5.23× 10−6 1.42× 10−7 1.23× 10−6 22 3.58 21 (0.0%)
1.0× 102 2.52× 10−5 1.19× 10−4 2.75× 10−1 16 6.67 84 (0.0%)

kissing *0.0 8.41× 10−9 1.63× 10−10 4.17× 10−8 27 0 0 (0.0%)
4 7 7 *1.0× 101 2.43× 10−8 5.41× 10−11 1.59× 10−8 27 6.94 46 (0.0%)

1.0× 102 8.86× 100 3.37× 10−8 4.14× 10−2 27 8.59 99 (0.0%)
1.0× 103 7.97× 100 3.05× 10−7 8.34× 10−2 27 10.82 264 (0.0%)

QAP *0.0 4.03× 10−9 2.92× 10−9 5.14× 10−8 18 0 0 (0.0%)
Esc16ered *1.0× 100 2.98× 10−8 1.05× 10−8 8.00× 10−7 18 31.80 95 (0.2%)

*1.0× 101 1.37× 10−7 2.85× 10−9 5.46× 10−7 18 42.86 129 (0.3%)
*1.0× 102 1.70× 10−6 3.61× 10−8 7.80× 10−6 18 45.12 135 (0.3%)

Table 4.4: Result of constraint reduction. Starred entries (*) correspond to convergent it-
erations. Columns (6) and (7) display the number of reduced blocks and saved operations
per iteration, averaged over iterations where constraint reduction is applied.

With an excessively largeκ, iterations fail toconverge. For example, in Figure

4.6(a), we can seethatthe infeasibility and the duality gap do not decreasewhentoo many

constraints blocksare reduced. In Figure 4.6(c), the step lengthθ becomes very short after

the40-th iteration. This is because the directions(∆X,∆y,∆Z) try to move away from
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the semidefinite cone since the corresponding constraint blocks are not included inthe

Schur complement matrix even though the current point is very close to its boundary.

On the other hand, with a moderatevalueof κ, the IPMconverges with the same

number of iterations as the case of no constraint reduction.In addition, infeasibility and

duality gaparenot so much sacrificed. (For instance, see the cases of Schrijver A(26,10)

whenκ = 102, SchrijverA(37,15) whenκ = 102, SchrijverA(40,15) whenκ = 105,

kissing3 5 5 whenκ = 100, and kissing4 7 7 whenκ = 100.) In Figure 4.4(b), which

is the case of successful constraint reduction, the inactive constraint blocks start to be

droppedonly after the active blocks and the inactive blocks are clearly distinguishable.

These results imply that we need to find an appropriate threshold κ by which the active

and inactive blocks are classified correctly.

In this experiment, we kept the thresholdκ staticduring the algorithm.Figure 4.5(b)

indicates that this static threshold may cause incorrect classification. In this example, the

thresholdκ = 106 was a correct criterion at the 30-th iteration, but it turns out to be

too high around the 40-th iteration. This implies that the thresholdκ should be adjusted

adaptively considering current values of‖Xj ⊗ Z−1
j ‖.

Constraint reduction shows its merit for problems in which inactive constraint blocks

of moderate sizesoccursuch as SchrijverA(26,10) and SchrijverA(40,15).In particular,

SchrijverA(26,10) contains 9 inactive constraint blocks whose sizesñj are 1, 3, 5, 7, 9,

11, 13, 15, and 17. SchrijverA(40,15) contains 15 inactive constraint blocks whose sizes

ñj are 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29. We could save8.3% of the

computational cost fortheSchur complement matrix whenκ = 102 in case of A(26,10)
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and13.2% (whenκ = 105) in case of A(40,15).

In contrast, the effect of constraintreductionare not visible in SchrijverA(28,8),

kissing3 5 5 and kissing3 5 5. This is because those problems containeither few or

no inactive constraintblocks. SchrijverA(28,8) contains 77 inactive constraints of size

ñj = 1 and only one inactive constraint block of sizeñj = 3. kissing3 5 5 contains only

4 inactive constraints of sizẽnj = 1. However, our constraint reductionis effective for

SDP problems that have alarge numberof large inactive dual constraints.

4.5 Conclusion

In this chapter, we showed how we can apply constraint reduction to block diagonal SDP

using apredictor-correctormethod.

In addition, we demonstrated howvarying the thresholdκ influences the iterations

of the interior point method. From the experiments, we make three important observa-

tions.

1. For successful constraint reduction, the thresholdκ must be able to distinguish the

inactive constraint blocks from the active blocks.

2. The thresholdκ needs to be adaptively adjusted because‖Xj ⊗ Z−1
j ‖ changes dy-

namically for each iteration.

3. Constraintreduction becomes effectivewhenthe SDP hasa largenumberof inac-

tive constraint blocks.
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In the next chapter, we will resolve the issuesarisingfrom the first two observations

by presenting adaptive criteria for constraint reduction and verifyingvalidity by proving

global convergence.
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Chapter 5

Constraint-Reduced

Predictor-Corrector Algorithm for

Semidefinite Programming with

Polynomial Complexity

The previous chapter introduced how constraint reduction can be applied to thepredictor-

correctormethod for SDP. The experiments with test problems raised a few issues about

the criteria to adaptively reduce constraint blocks.

In this chapter, we propose a new infeasiblepredictor-correctoralgorithm with

adaptive criteria for constraint reduction. We verify itsvalidity by proving global conver-

gence. We also prove its polynomial complexity,O(n ln(ǫ0/ǫ)), for a given convergence

toleranceǫ and an initial residualǫ0.
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The algorithm is a modification of one with no constraint reduction, due to Potra

and Sheng [71], and can be applied when the data matrices are block diagonal. The

constraint reduction generates an extra term∆Xǫ in the primal direction which is not

reflected in updatingX, but perturbs the complementarity equation. Due to this new∆Xǫ,

a series of lemmas for global convergence by Potra and Sheng [71] need to be modified.

The proposed adaptive criteria restrain the magnitude of∆Xǫ so that we can guarantee

the step lengthθ is long enough for iterations to converge.

5.1 Constraint-Reduced Predictor-Corrector Method for

SDP

We use the notation defined in Chapter 4with minor changes. We say that a point(X, y,Z)

is feasible if it satisfies the primal and dual constraints in(4.1.1) and (4.1.2).Throughout

this chapter, we assume thefollowing.

Assumption 5.1(Slater condition). There existsa primal and dual feasible point(X, y,Z)

such thatX ≻ 0 andZ ≻ 0.

Under Assumption 5.1 the primal and dual SDP problems have optimal solutions

with equal optimal values1.

5.1.1 HKM Direction for Symmetrization

1See,for example,de Klerk [17, Theorem 2.6 in p.33]
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In this section, we briefly review the equations introduced in Chapter 4 and introduce

new equations having a symmetric solution∆X and∆Z with no extra symmetrization

step. The equations introduced in this section are very useful when we prove the global

convergence of a newpredictor-correctoralgorithm in Section 5.2.

Under Assumption 5.1,(X, y,Z) is an optimal solution if and only if

Ai • X = b for i = 1, . . . , m, (5.1.1)

(
m∑

i=1

yiAi) + Z = C, (5.1.2)

X • Z = 0, (5.1.3)

X � 0, Z � 0. (5.1.4)

So, we solve the following Newton equations to finda direction towardthe optimal solu-

tion.

Ai •∆X = rpi for i = 1, . . . , m, (5.1.5)

(
m∑

i=1

∆yiAi) + ∆Z = Rd, (5.1.6)

X∆Z +∆XZ = Rc, (5.1.7)

where the primal residual, dual residual, and complementarity residuals are defined by

rpi = bi − Ai • X for i = 1, . . . , m, (5.1.8)

Rd = C− Z−
m∑

i=1

yiAi, (5.1.9)

Rc = µI− XZ, (5.1.10)

whereµ defines the current target point on the central path.In SDP, IPMs require sym-

metrization since∆X from (5.1.7) is not necessarily symmetric (See Section 4.2.1). Thus,
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we effectively solve the equations

Ai •∆Ẋ = rpi for i = 1, . . . , m, (5.1.11)

(

m∑

i=1

∆yiAi) + ∆Z = Rd, (5.1.12)

X∆Z +∆ẊZ = Rc, (5.1.13)

∆Ẋ = ∆X + W, (5.1.14)

where∆X ∈ Sn andW ∈ S̃n . By (5.1.14),∆X is the symmetric part of∆Ẋ,

∆X = symm
(
∆Ẋ
)
.

The direction(∆X,∆y,∆Z) is called the HKM direction; named after Helmberg, Ko-

jima, and Monteiro [38, 51, 61]. SinceAi ∈ Sn and W ∈ S̃n, Ai • W = 0. By this

property, the symmetrized direction∆X from (5.1.11)-(5.1.14) also satisfies (5.1.5), so

the primal residual is the same with or without symmetrization.

For a fixed weighting parameterd ∈ [0, 1], Kojima, Shindoh, and Hara [51, Theo-

rem 4.2 on p.100] showed that the equations (5.1.11) and (5.1.12) with

X(∆Z + dW) + (∆X + (1− d)W)Z = Rc, (5.1.15)

have a unique solution(∆X,∆y,∆Z,W) ∈ Sn × R
m × Sn × S̃n. From this point of

view, (5.1.13) with (5.1.14) is the case ofd = 0 in (5.1.15), and the equations (5.1.11)-

(5.1.14) have a unique solution. Later, Monteiro [61] showed that we can obtain the same
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direction without the extra symmetrization step by solving

Ai •∆X = rpi for i = 1, . . . , m, (5.1.16)

(

m∑

i=1

∆yiAi) + ∆Z = Rd, (5.1.17)

symm
(
Z1/2(X∆Z +∆XZ)Z−1/2

)
= µI− Z1/2XZ1/2. (5.1.18)

Specifically, Monteiro [61, Lemma 2.1 and following discussion] proved that the solution

of (5.1.11)-(5.1.14) is the unique solution of (5.1.16)-(5.1.18). So, we will frequently

refer to (5.1.18) for convergence analysis later.

5.1.2 Constraint-Reduced Linear System

As discussed in Section 4.2.2,the equations (5.1.11)-(5.1.14) can be reduced to

M∆y = g,

whereM = A(X⊗ Z−1)AT andg = rp +A(X⊗ Z−1)rd −A(I⊗ Z−1)rc.

In Section 4.2.2, we discussed how we can apply constraint reduction to the linear equa-

tion, so we have the constraint-reduced equation,

M̂∆y = g, (5.1.19)

by replacingM with M̂. So, we solve

(
Â(X̂⊗ Ẑ

−1
)ÂT

)
∆y = rp +A(X⊗ Z−1)rd −A(I⊗ Z−1)rc. (5.1.20)

For uniquenessof the solution∆y of (5.1.20), we assume independent rows ofÂ as

follows.
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Assumption 5.2. For any re-ordering of the blocks of thêAi’s and any p̂ such that

∑p̂
j=1 n̂

2
j ≥ m, the matriceŝAi, i = 1, . . . , m are linearly independent.

If X̂ ≻ 0, Ẑ ≻ 0, and
∑p̂

j=1 n̂
2
j ≥ m wherex2 = x(x + 1)/2, the reduced Schur

complement matrix̂M has full rank by Assumption 5.2, so the equations (5.1.19) and

(5.1.20) have a unique solution∆y.

So far, we follow the equations in Chapter 4. However, in contrast to Section 4.2.2,

we now compute∆ẋ and∆z by

∆ẋ = vec







∆
˙̂X 0

0 ∆
˙̃X





 , (5.1.21)

∆z = rd −AT∆y, (5.1.22)

where

∆
˙̂X = mat

(
(X̂⊗ Ẑ

−1
)ÂT∆y− (X̂⊗ Ẑ

−1
)̂rd + (I⊗ Ẑ

−1
)̂rc
)
, (5.1.23)

∆
˙̃X = mat

(
−(X̃⊗ Z̃

−1
)̃rd + (I⊗ Z̃

−1
)̃rc
)
. (5.1.24)

The residuals(̂rd, r̃d) and (̂rc, r̃c) are vectorizations of(R̂d, R̃d) and (R̂c, R̃c) defined in

Section 4.3.2.Note that while (4.2.22) contains(X ⊗ Z−1)AT∆y as its first term,∆ ˙̃X

in (5.1.24) does not have the corresponding term(X̃ ⊗ Z̃
−1
)ÃT∆y, which will cause a

perturbation∆Ẋǫ in theprimal direction as wederive next.

In the constraint-reduced linear system, we replaced the Schur complement matrix

M with M̂. How does this influence the solution? In the following lemma, weshowthat

∆ẋ, ∆z, and∆y from equations (5.1.19), (5.1.21) , and (5.1.22), are a solution of the
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following perturbed equations

A∆ẋ = rp, (5.1.25)

AT∆y +∆z = rd, (5.1.26)

(X⊗ I)∆z + (I⊗ Z)(∆ẋ +∆ẋǫ) = rc, (5.1.27)

where

∆Ẋǫ =




0 0

0 mat
(
(X̃⊗ Z̃

−1
)ÃT∆y

)


 . (5.1.28)

Note the new vector∆ẋǫ in the second term of (5.1.27).

Lemma 5.1.1 (Perturbed Newton equations). The solution(∆ẋ,∆y,∆z) of (5.1.19),

(5.1.21), and (5.1.22) satisfies equations (5.1.25)-(5.1.27).

Proof. First, we show the primal equation (5.1.25) is satisfied. By (5.1.21),

A∆ẋ = Â∆˙̂x + Ã∆ ˙̃x

= Â(X̂⊗ Ẑ
−1
)ÂT∆y− Â(X̂⊗ Ẑ

−1
)̂rd + Â(I⊗ Ẑ

−1
)̂rc

− Ã(X̃⊗ Z̃
−1
)̃rd + Ã(I⊗ Z̃

−1
)̃rc (by (5.1.23) and (5.1.24))

= Â(X̂⊗ Ẑ
−1
)ÂT∆y−A(X⊗ Z−1)rd +A(I⊗ Z−1)rc

=
(
rp +A(X⊗ Z−1)rd −A(I⊗ Z−1)rc.

)

−A(X⊗ Z−1)rd +A(I⊗ Z−1)rc (by (5.1.20))

= rp,

so (5.1.25) is satisfied.

In addition, (5.1.26) is immediately satisfied by (5.1.22).
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To see (5.1.27) is satisfied, we first calculate(∆ẋ + ∆xǫ). By (5.1.21), (5.1.23),

(5.1.24), and (5.1.28),

∆Ẋ +∆Ẋǫ =




∆
˙̂X 0

0 ∆
˙̃X + mat

(
(X̃⊗ Z̃

−1
)ÃT∆y

)




= mat
(
(X⊗ Z−1)AT∆y− (X⊗ Z−1)rd + (I⊗ Z−1)rc

)
,

so

∆ẋ +∆ẋǫ = (X⊗ Z−1)AT∆y− (X⊗ Z−1)rd + (I⊗ Z−1)rc.

Thus,

(I⊗ Z)(∆ẋ +∆ẋǫ) = (I⊗ Z)(X⊗ Z−1)AT∆y− (I⊗ Z)(X⊗ Z−1)rd

+(I⊗ Z)(I⊗ Z−1)rc

= (X⊗ I)AT∆y− (X⊗ I)rd + (I⊗ I)rc

= (X⊗ I)(AT∆y− rd) + rc

= −(X⊗ I)∆z + rc (by (5.1.22)).

Therefore,

(X⊗ I)∆z + (I⊗ Z)(∆ẋ +∆ẋǫ) = rc

From the equations (5.1.25)-(5.1.28) and Lemma 5.1.1, we can see that constraint

reductiondoes not affectthe primal and dual equations (5.1.5) and (5.1.6), but solely

the complementarity equation (5.1.7).Furthermore, considering the relations between
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(5.1.11)-(5.1.14) and (5.1.16)-(5.1.18), the solution(∆ẋ,∆y,∆z) of (5.1.25)-(5.1.27) also

satisfies the following equations by the symmetrization of∆X = symm
(
∆Ẋ
)
.

A∆x = rp, (5.1.29)

AT∆y +∆z = rd, (5.1.30)

Z1/2(X +∆Xǫ)Z1/2 + symm
(
Z1/2(X∆Z +∆XZ)Z−1/2

)
= µI, (5.1.31)

where

∆Xǫ = symm







0 0

0 mat
(
(X̃⊗ Z̃

−1
)ÃT∆y

)





 . (5.1.32)

5.1.3 Algorithm

In this section, we introduce an interior point method, similar to that of Potra and Sheng

[71], but including constraint reduction. It is apredictor-correctoralgorithm, but, like

Potra and Sheng’s algorithm, it is somewhat unusual in that it does not reuse the predictor

matrix in the corrector step.

We define a setF of feasible solutions and a setF∗ of optimal solutions as

F = {(X, y,Z) ∈ Sn
+ × R

m × Sn
+ : (X, y,Z) satisfies (5.1.1) and (5.1.2).},

F∗ = {(X, y,Z) ∈ F : X • Z = 0}.

We also define the neighborhoodN (γ, τ) of the central path as

N (γ, τ) = {(X,Z) ∈ Sn
++ × Sn

++ : ‖Z1/2XZ1/2 − τI‖F ≤ γτ}.

In the predictor step, given the current iterate(X, y,Z) and“inactive blocks”(X̃, Z̃) of
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(X,Z), we find a solution(∆X,∆y,∆Z) of (5.1.29)-(5.1.32), settingµ = 0, so

A∆x = rp, (5.1.33)

AT∆y +∆z = rd, (5.1.34)

Z1/2(X +∆Xǫ)Z
1/2 + symm

(
Z1/2(X∆Z +∆XZ)Z−1/2

)
= 0, (5.1.35)

∆Xǫ = symm







0 0

0 mat
(
(X̃⊗ Z̃

−1
)ÃT∆y

)





 . (5.1.36)

We then compute an updated point(X, y,Z) by taking a step of lengthθ < 1 in this

direction.

In the corrector step, we set the target duality gapµ = (1−θ)τ , where the parameter

τ decreases ateach iteration. Then, with inactive blocks(X̃, Z̃) of (X,Z), we find a

solution(∆X,∆y,∆Z) of (5.1.29)-(5.1.32)with rp = 0 andrd = 0, so

A∆x = 0, (5.1.37)

AT∆y +∆z = 0, (5.1.38)

Z
1/2

(X +∆Xǫ)Z
1/2

+ symm
(

Z
1/2

(X∆Z +∆XZ)Z
(−1/2)

)
= (1− θ)τI, (5.1.39)

∆Xǫ = symm







0 0

0 mat
(
(X̃⊗ Z̃

−1
)ÃT∆y

)





 . (5.1.40)
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We define a few variables to denote the magnitude of directions as

δ :=
1

τ
‖Z1/2∆X∆ZZ−1/2‖F , (5.1.41)

δx := ‖Z1/2∆XZ1/2‖F , (5.1.42)

δǫ :=
1

τ
‖Z1/2∆XǫZ1/2‖F , (5.1.43)

δǫ :=
1

τ
‖Z1/2

∆XǫZ
1/2‖F . (5.1.44)

We use two fixed positive parametersα andβ with the property

β2

2(1− β)2 < α < β ≤ β

1− β < 1. (5.1.45)

This inequality restrains the ranges ofα andβ as0 < α < β < 0.5. For example, we can

choose(α, β) = (0.17, 0.3). Based on these parameters, we defineθ̂ andθ̆ (which change

at each iteration) as

θ̂ =
(α− β − δǫ) +

√
(α− β − δǫ)2 + 4δ(β − α)

2δ

=
2(β − α)√

(β − α + δǫ)2 + 4δ(β − α)− (β − α + δǫ)
, (5.1.46)

θ̆ = max{θ̃ ∈ [0, 1] :(X + θ∆X, y + θ∆y,Z + θ∆Z) ∈ N (β, (1− θ)τ), ∀θ ∈ [0, θ̃]}.

(5.1.47)

The following two conditions are used in thepredictor-correctoralgorithm. The

first one applies to the predictor step, and the second one applies to the corrector step.

Condition 5.1.

δǫ ≤
q

τ
δx, (5.1.48)

or equivalently

‖Z1/2∆XǫZ1/2‖F ≤ q‖Z1/2∆XZ 1/2‖F , (5.1.49)
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wheretheinput parameterq of the algorithm has a range

0 ≤ q < 1− α. (5.1.50)

Condition 5.2.

δǫ < (1− θ)(
√
s2 + t− s), (5.1.51)

where

s = β2 − β + 1, t = 2α(1− β)2 − β2. (5.1.52)

Condition 5.1 ensures that the ratio of the perturbation term ∆Xǫ to the primal di-

rection∆X is bounded by the given ratioq. Condition 5.2 plays a role for the corrector

step to move the iterate intoN (α, (1− θ)τ), the neighborhood of the central path.Con-

dition 5.1 and Condition 5.2 can be checked at low cost compared to the cost of solving

the full (unreduced) system.

Based on these parametersand conditions, we now define ourpredictor-corrector

algorithm in Table 5.1.In step 3.(d), the choice of step length in the predictor stepis valid

only whenθ̂ ≤ θ̆, which will be proved in Lemma 5.2.3. Sincĕθ is a theoretical upper

bound forθ, it may be not practical to computĕθ. For practical implementation,θ can be

chosen to be defined by (5.1.46). In step 3.(e), the algorithmterminates since(X, y,Z) is

an optimal solution, which will be shown in Lemma 5.2.3.

Before starting analysis, the following overview is useful.

1. Sincerp = 0 andrd = 0 in the corrector step, the corrector step makes no contri-

bution to reducing primal and dual residuals. Its only purpose is to move the point

toward the central path.
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1. Input :A, b, C; α andβ satisfying (5.1.45); convergence toleranceτ ∗; ρ such that
ρ ≥ max(‖X∗‖, ‖Z∗‖) for (X∗, y∗,Z∗) ∈ F∗; andq, the perturbationbound forthe
primal direction in the predictor step, satisfying (5.1.50).

2. Set(X0, y0,Z0) = (ρI, 0, ρI). Setτ =τ0 = µ0 = (X0 • Z0)/n= ρ2.

3. Repeat untilτ < τ ∗: Fork = 0, 1, . . . ,

(a) Set(X, y,Z) = (Xk, yk,Zk) andτ = τk.

(b) Sort the constraint blocks in decreasing order of‖Xj ⊗ Z−1
j ‖.

(c) Initially, M̂p = 0. For j = 1, . . . , p, until
∑j

l=1 n̂
2
l ≥ m and Condition 5.1

(above) is satisfied, replacêMp by M̂p +Aj(Xj ⊗ Z−1
j )AT

j . Setp̂ = j.

(d) By solving (5.1.20)with M̂ = M̂p andrc = vec(−XZ) find (∆X,∆y,∆Z)
satisfying (5.1.33) - (5.1.36). Choose a step lengthθ ∈ [θ̂, θ̆] defined by
(5.1.46) and (5.1.47),
X = X + θ∆X, y = y + θ∆y, Z = Z + θ∆Z.

(e) If θ = 1, terminate the iteration with optimal solution(X, y,Z).

(f) Sort the constraint blocks in decreasing order of‖Xj ⊗ Z
−1

j ‖.
(g) Initially, M̂c = 0. For j = 1, . . . , p, until

∑j
l=1 n̂

2
l ≥ m and Condition 5.2

(above) is satisfied, replacêMc by M̂c +Aj(Xj ⊗ Z
−1

j )AT
j . Setp̂ = j.

(h) By solving (5.1.20)with M̂ = M̂c, rp = 0, rd = 0, and rc =
vec
(
(1− θ)τI − X Z

)
, find (∆X,∆y,∆Z) satisfying (5.1.37) - (5.1.40).

Take a full step as
X(k+1) = X+ = X +∆X, y(k+1) = y+ = y +∆y, Z(k+1) = Z+ = Z +∆Z.

(i) Setτk+1 = (1− θ)τ .

(j) Updaterp = b−Ax andrd = c− z−AT y.

Table 5.1: Predictor-corrector algorithm.

2. By the definition of̂θ in (5.1.46),θ̂ is a decreasing function ofδǫ. Thus, there is a

trade-off between the allowance for the constraint reduction and the step length in

the predictor step.

3. (X̃⊗ Z̃
−1
) = 0 when we use the full Schur complement matrix, soby (5.1.36) and

(5.1.40),Condition 5.1 and Condition 5.2 can always be satisfied by taking enough
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“active blocks”.

4. We will prove that the predictor step moves the point fromN (α, τ) intoN (β, (1−

θ)τ), and the corrector step moves the point intoN (α, (1− θ)τ).

5. Condition 5.1 and Condition 5.2 restrict the magnitude of∆Xǫ and∆Xǫ, which are

the perturbations caused by constraint reduction. Considering that the matrices con-

tain mat
(
(X̃⊗ Z̃

−1
)ÃT∆y

)
and mat

(
(X̃⊗ Z̃

−1
)ÃT∆y

)
before symmetrization,

these conditions judge the activeness of thej-th constraint block by the magnitude

of ‖Xj⊗Z−1
j ‖, justas the algorithm in Chapter 4 uses the thresholdκ. However, the

thresholds are updated dynamically for every iteration, sothey are adaptive criteria

in contrast to the staticκ.

In order to check that the conditions are satisfied, wecan solve for∆y and∆y

and calculate∆Xǫ and∆Xǫ, which may requirethe Cholesky factor ofM̂ to compute

∆y = M̂
−1

g. For practical implementation, we can use rank-1updatingof theCholesky

factor,2 depending on the size ofm andnj . We now discuss this updating.

Let RXj
and RZj

be Cholesky factors ofXj and Zj. Note that the factorRZj
is

required to computeMj by (4.3.1), regardless of constraint reduction, unlessZ−1
j is com-

puted explicitly. Then, the partial Schur complementMj can be written as

Mj = Aj(Xj ⊗ Z−1
j )AT

j = Aj

(
(RT

Xj
RXj

)⊗ (RT
Zj

RZj
)−1
)
AT

j

= Aj

(
(RT

Xj
⊗ R−1

Zj
)(RXj

⊗ R−T
Zj

)
)
AT

j = HjHT
j , (5.1.53)

2Rank-1 modification of Cholesky factor is implemented by“schud.f” and “dchud.f” in LINPACK.

See Gill et al. [27] and LINPACK documentation [23].
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where

Hj = Aj(R
T
Xj
⊗ R−1

Zj
) ∈ R

m×n2

j .

Thus,hT
l , thel-th row of Hj, can be computed as

hl = vec
(

RXj
Alj R−1

Zj

)
.

Furthermore, we can rewrite(Mj)lh in (4.3.1) as

(Mj)lh = (XAljZ−1
j ) • Ahj =

(
(RT

Xj
RXj

)Alj(R−1
Zj

R−T
Zj

)
)
• Ahj

=
(

RT
Xj
(RXj

AljR−1
Zj
)R−T

Zj

)
• Ahj

=
(

RT
Xj

mat(hl)R−T
Zj

)
• Ahj.

Therefore,Hj can be obtained as a byproduct of computingMj with additionalcomputa-

tion for the factorRXj
of Xj .

From (5.1.53), we can write thej-th update ofM̂ in step 3.(c) and 3.(f) in the

algorithm as

M̂
(j)

= M̂
(j−1)

+ Mj = M̂
(j−1)

+ HjHT
j .

If we already havetheCholesky factorR(j−1)

M̂
of M̂

(j−1)
, theCholesky factorR(j)

M̂
of M̂

(j)

can be computed byn2
j the rank-1 Choleskyupdates. According to Gill et al. [27], the

rank-1 update of Cholesky factor requires2m2 + O(m) flops. Using the updated factor

of M̂, we can compute∆y = M̂
−1

g = R−1

M̂
(R−T

M̂
g) in 2m2 flops. Since we do not need

a very accurate∆y for determiningconstraint reduction, iterative refinement may not be

necessary. Once we finish updatingM̂, the factorRM̂ can be reused as a preconditioner

for aniterative method likeSYMMLQto compute∆y to a high accuracy. In summary, for

each update of̂M, it takes extra cost for
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1. Cholesky factorization ofXj : n3
j/3 flops,

2. Update of Cholesky factor of̂M : n2
j (2m

2 +O(m)) flops,

3. Compute∆y = M̂
−1

g : 2m2 flops,

so, in total,

1

3
nj

3 + 2m2(n2
j + 1) +O(mn2

j).

This is a reasonable cost forthe constraint reduction decision, considering that it takes

(4m+ 1/3)n3
j + 2m2n2

j to computeMi by (4.3.1) and (4.3.2).

If m3/3 < (n3
j/3 + 2m2n2

j ), then we can computethe Cholesky factorRM̂ of M̂

explicitly with no Cholesky factorization ofXj and no updatingof the factorRM̂. In that

case, it costs

1

3
m3 + 2m2.

5.2 Global Convergence of the Constraint-Reduced SDP

Algorithm

5.2.1 Primal and Dual Residuals

The primal and dual residual norms decrease at each iteration, bringing us closer to fea-

sibility.

Lemma 5.2.1. In the Constraint-Reduced SDP Algorithm,r+d = (1 − θ)rd and r+p =

(1− θ)r p.
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Proof. First, let us see how the dual residual changes. By (5.1.34) and (5.1.38),

∆z = rd −AT∆y, ∆z = −AT∆y.

So,

r+d = c− z+ −AT y+

= c− (z + θ∆z +∆z)−AT (y + θ∆y +∆y)

= (c− z−AT y)− θ(∆z +AT∆y)− (∆z +AT∆y)

= rd − θ rd = (1− θ)rd.

Next, we consider the primal residual. By (5.1.33) and (5.1.37),

A∆x = rp, A∆x = 0.

So,

r+p = b−A(x+)

= b−A(x + θ∆x +∆x)

= rp − θA∆x−A∆x = rp − θrp

= (1− θ)rp.

5.2.2 Closeness toCentral Path

We analyze how the iterate moves, relative to the central path, during the predictor and

corrector steps.

138



Assume that the current point(X,Z) ∈ N (α, τ). The initial point(X0, y0,Z0) in the

algorithm is perfectly placed on the central path, so this assumption is satisfied. With this

assumption, we show in Lemma 5.2.3 that

(X,Z) ∈ N (β, (1− θ)τ), (5.2.1)

after the predictor step, and in Lemma 5.2.6 that

(X+,Z+) ∈ N (α, (1− θ)τ), (5.2.2)

after the corrector step.In the proofs, we frequently use the relation between Frobenius

norm and the eigenvalues of symmetric matrix. For a matrixE ∈ R
n×n,

‖E‖2F =

n∑

i=1

σ2
i (E),

whereσi(E) is thei-th singular value ofE. For a matrixE ∈ Sn,

|λi(E)| ≤ σmax(E) =
√
σ2
max(E)≤

√√√√
n∑

i=1

(σ2
i (E)) = ‖E‖F ,

so

−‖E‖F ≤ λi(E) ≤ ‖E‖F . (5.2.3)

In addition, the following lemma gives us a bound for a symmetrized matrix.

Lemma 5.2.2. Suppose thatM ∈ R
p×p is nonsingular andE ∈ R

p×p has only real

eigenvalues. Then,

λmax(E) ≤ λmax

(
symm

(
MEM −1

))
, (5.2.4)

λmin(E) ≥ λmin

(
symm

(
MEM −1

))
. (5.2.5)
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If E ∈ Sp, then

‖E‖F ≤ ‖ symm
(
MEM −1

)
‖F . (5.2.6)

Proof. See [61, Lemma 3.3 in pp.668-669]and [71, Lemma 2.2 in pp.1011-1012].

By the definition ofθ̆ in (5.1.47),we can prove (5.2.1), by proving thatθ̂ ≤ θ̆. The

following lemma is a modification of Potra and Sheng [71, Lemma 2.5 in pp.1012-1013].

Lemma 5.2.3. If (X,Z) ∈ N (α, τ) then

θ̂ ≤ θ̆.

In particular,

1. if θ < 1, then(X,Z) ∈ N (β, (1− θ)τ), soX ≻ 0 andZ ≻ 0.

2. if θ = 1, thenX Z = 0.

Proof. Let X(θ) = X + θ∆X andZ(θ) = Z + θ∆Z, then

X(θ)Z(θ)− (1− θ)τI = (X + θ∆X)(Z + θ∆Z)− (1− θ)τI

= (1− θ)(XZ− τI) + θ(XZ + X∆Z +∆XZ) + θ2∆X∆Z.

Define

P(θ) = Z1/2(X(θ)Z(θ)− (1− θ)τI)Z−1/2

= Z1/2((X + θ∆X)(Z + θ∆Z)− (1− θ)τI)Z−1/2

= Z1/2(XZ + θ(∆XZ + X∆Z) + θ2∆X∆Z− (1− θ)τI)Z−1/2

= (1− θ)(Z1/2XZ1/2 − τI) + θ2Z1/2∆X∆ZZ−1/2

+θ
[
Z1/2XZ1/2 + Z1/2(X∆Z +∆XZ)Z−1/2

]
.

140



Then, by (5.1.35),

symm(P(θ)) = (1− θ)(Z1/2XZ1/2 − τI) + θ2 symm
(
Z1/2∆X∆ZZ−1/2

)

+ θ
[
Z1/2XZ1/2 + symm

(
Z1/2(X∆Z +∆XZ)Z−1/2

)]

=(1− θ)(Z1/2XZ1/2 − τI) + θ2 symm
(
Z1/2∆X∆ZZ−1/2

)
− θ(Z1/2∆Xǫ Z1/2).

Thus, since(X,Z) ∈ N (α, τ), and using (5.1.41), (5.1.43), and (5.2.6), we have

‖ symm(P(θ)) ‖F

≤ (1− θ)‖Z1/2XZ1/2 − τI‖F + θ2‖Z1/2∆X∆ZZ−1/2‖F + θ‖Z1/2∆XǫZ1/2‖F

= ατ(1− θ) + θ2δτ + θδǫτ. (5.2.7)

Furthermore,adding and subtractingβ(1− θ)τ , then

ατ(1− θ) + θ2δτ + θδǫτ = τ
(
δθ2 + (δǫ − α + β)θ + (α− β)

)
+ β(1− θ)τ

= δτ(θ − θ1)(θ − θ2) + β(1− θ)τ,

where

θ1 =
(α− β − δǫ) +

√
(α− β − δǫ)2 + 4δ(β − α)

2δ
,

θ2 =
(α− β − δǫ)−

√
(α− β − δǫ)2 + 4δ(β − α)

2δ
.

Sinceθ̂ = θ1 by definition (5.1.46) of̂θ andθ2 ≤ θ1, the first term in the equation above

becomes negative when0 ≤ θ ≤ θ̂, sowriting (5.2.7),

‖ symm(P(θ)) ‖F ≤ β(1− θ)τ, ∀θ ∈ [0, θ̂].

By (5.2.6), withM = Z1/2 andE = X(θ)Z(θ)− (1− θ)τI,

‖X(θ)Z(θ)− (1− θ)τI‖F ≤ β(1− θ)τ, ∀θ ∈ [0, θ̂]. (5.2.8)
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Note that this implies thatX(1)Z(1) = 0whenθ̂ = 1. From this result, if(Z(θ))−1/2 exists

for ∀θ ∈ [0, θ̂], then, since the Frobenius norm is invariant under similarity transformation,

(5.2.8) implies

‖Z(θ)1/2X(θ)Z(θ)1/2 − (1− θ)τI‖F ≤ β(1− θ)τ, ∀θ ∈ [0, θ̂]. (5.2.9)

To conclude,we showX(θ) ≻ 0 andZ(θ) ≻ 0 for ∀θ ∈ [0, θ̂] whenθ̂ < 1; (Claim (5.2.9)

holds by continuity for̂θ = 1 as well.) Otherwise, there must existθ′ ∈ [0, θ̂] such that

X(θ′)Z(θ′) is singular, which implies that

λmin(X(θ′)Z(θ′)− (1− θ′)τI) ≤ −(1 − θ′)τ. (5.2.10)

However, by (5.2.5) withM = Z1/2 andE = X(θ′)Z(θ′)− (1− θ′)τI, and by the relation

of Frobenius norm and eigenvalues of symmetric matrix in (5.2.3),

λmin(X(θ
′)Z(θ′)− (1− θ′)τI) ≥ λmin ( symm(P(θ′) ) )

≥ −‖ symm(P(θ′)) ‖F

≥ −β(1− θ′)τ,

which contradicts (5.2.10) sinceβ ∈ (0, 1). Hence,X(θ) ≻ 0 andZ(θ) ≻ 0 for ∀θ ∈

[0, θ̂].

Next, we prove that condition (5.2.2) is satisfied after the corrector step. To prepare

for this, we need a preliminary lemma, a modification of Monteiro [61, Lemma 4.4 in

p.671 ].
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Lemma 5.2.4.For (X′,Z′) ∈ N (γ, τ ′) and(∆X′,∆y′,∆Z′) such that

Ai •∆X′ = 0 for i = 1, . . . , m, (5.2.11)

m∑

i=1

∆y′iAi +∆Z ′ = 0, (5.2.12)

define

H = symm
(
Z′1/2(X′∆Z ′ +∆X′Z′)Z′−1/2

)
, (5.2.13)

δ′x = ‖Z′1/2∆X′Z′1/2‖F , (5.2.14)

δ′z = τ ′‖Z′−1/2∆Z ′Z′−1/2‖F . (5.2.15)

Then

δ′xδ
′
z ≤

1

2
(δ′x

2 + δ′z
2) ≤ ‖H‖2F

2(1− γ)2 , (5.2.16)

δ′x ≤
‖H‖F
1− γ , (5.2.17)

δ′z ≤
‖H‖F
1− γ . (5.2.18)

Proof. Adding and subtracting(τ ′Z′−1/2∆Z′Z′−1/2), we compute

H =
1

2
Z′1/2(X′∆Z′ +∆X′Z′)Z′−1/2 +

1

2
Z′−1/2(∆Z′X′ + Z′∆X′)Z′1/2

= Z′1/2∆X′Z′1/2 + τ ′Z′−1/2∆Z′Z′−1/2 + symm
(
(Z′1/2X′Z′1/2 − τ ′I)Z′−1/2∆Z′Z′−1/2

)
,

so,by using the fact(X′,Z′) ∈ N (γ, τ ′),

‖H‖F ≥ ‖Z′1/2∆X′Z′1/2 + τ ′Z′−1/2∆Z′Z′−1/2‖F − ‖(Z′1/2X′Z′1/2 − τ ′I)‖F‖Z′−1/2∆Z′Z′−1/2‖F

≥ ‖Z′1/2∆X′Z′1/2 + τ ′Z′−1/2∆Z′Z′−1/2‖F − (γτ ′)(δ′z/τ
′)

= ‖Z′1/2∆X′Z′1/2 + τ ′Z′−1/2∆Z′Z′−1/2‖F − γδ′z.
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Now, the square of the first term in the equation above is

‖Z′1/2∆X′Z′1/2 + τ ′Z′−1/2∆Z′Z′−1/2‖2F

= ‖Z′1/2∆X′Z′1/2‖2F + τ ′2‖Z′−1/2∆Z′Z′−1/2‖2F + 2τ ′(Z′1/2∆X′Z′1/2) • (Z′−1/2∆Z′Z′−1/2)

= δ′x
2 + δ′z

2 + 2τ ′(∆Z′ •∆X′) = δ′x
2 + δ′z

2,

since

∆Z′ •∆X′ = (−
m∑

i=1

(∆y′iAi)) •∆X′ = (−
m∑

i=1

(∆y′iAi •∆X′)) = 0,

by (5.2.11)-(5.2.12). Hence,

‖H‖F ≥
√
δ′x

2 + δ′z
2 − γδ′z ≥ (1− γ)

√
δ′x

2 + δ′z
2,

and the rest of the proof is straightforward.

One other technical lemma prepares us to prove that condition (5.2.2) is satisfied

after the corrector step.

Lemma 5.2.5.Under Condition 5.2,

δǫ < (1− θ)(1− 2β).

Proof. Recall that

s = β2 − β + 1, t = 2α(1− β)2 − β2,

by their definitions in Condition 5.2. By Condition 5.2 , it suffices to show

√
s2 + t− s < 1− 2β,

or equivalently, since0 < β < 1/2 ands > 0,

(s+ (1− 2β))2 − (
√
s2 + t)2 > 0.
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By (5.1.45) and (5.1.52), we have

(s+(1− 2β))2 − (
√
s2 + t )2= (1− 2β)2 + 2s(1− 2β)− t

= (1− 2β)2 + 2(β2 − β + 1)(1− 2β)− 2α(1− β)2 + β2

> (1− 2β)2 + 2(β2 − β + 1)(1− 2β)− 2β(1− β)2 + β2

= −6β3 + 15β2 − 12β + 3

= 3(1− 2β)(β − 1)2 > 0, ∀β ∈ (0, 1/2).

So,

δǫ < (1− θ)(1− 2β).

Now, we are ready to show (5.2.2), which says that(X+,Z+) ∈ N (α, (1 − θ)τ).

The following lemma is a modification of Potra and Sheng [71, Theorem 2.6 in pp.1013-

1015].

Lemma 5.2.6.Suppose that(X,Z) ∈ N (β, (1−θ)τ) in thepredictor-correctoralgorithm.

Then, after the corrector step,

(X+,Z+) ∈ N (α, (1− θ)τ).

Proof.

X+Z+ − (1− θ)τI = (X +∆X)(Z +∆Z)− (1− θ)τI

= X Z− (1− θ)τI + X∆Z +∆X Z +∆X∆Z.
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Sinceθ < 1 due to step 3.(e) in Table 5.1,we know thatX ≻ 0 andZ ≻ 0 by Lemma

5.2.3. Thus, we can define

P = Z
1/2

(X+Z+ − (1− θ)τI) Z
(−1/2)

= Z
1/2

((X +∆X)(Z +∆Z)− (1− θ)τI) Z
(−1/2)

= [Z
1/2

X Z
1/2 − (1− θ)τI] + Z

1/2
(X∆Z +∆X Z)Z

(−1/2)
+ Z

1/2
∆X∆Z Z

(−1/2)

By (5.1.39), we have

symm(P) = [Z
1/2

X Z
1/2 − (1− θ)τI] + symm

(
Z
1/2

(X∆Z +∆X Z)Z
(−1/2)

)

+ symm
(

Z
1/2

∆X∆Z Z
(−1/2)

)

= symm
(

Z
1/2

∆X∆Z Z
(−1/2)

)
− Z

1/2
∆XǫZ

1/2
. (5.2.19)

Since the corrector step satisfies (5.1.37) - (5.1.38) and(X,Z) ∈ N (β, (1 − θ)τ), we

can apply Lemma 5.2.4 toX, Z, ∆X, and∆Z. So, withγ = β and replacingτ ′ with

(1 − θ)τ and(X′,Z′,∆X′,∆Z′) with (X,Z,∆X,∆Z), the inequality (5.2.16) divided by

τ ′ becomes

‖Z1/2
∆X Z

1/2‖F‖Z(−1/2)
∆Z Z

(−1/2)‖F ≤
‖H‖2F

2(1− β)2(1− θ)τ
, (5.2.20)

where

H = symm
(

Z
1/2

(X∆Z +∆X Z)Z
(−1/2)

)
.
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In addition, by (5.1.39),

‖H‖F = ‖ symm
(

Z
1/2

(X∆Z +∆X Z)Z
(−1/2)

)
‖F

= ‖Z1/2
(X +∆Xǫ)Z

1/2 − (1− θ)τI‖F

≤ ‖Z1/2
X Z

1/2 − (1− θ)τI‖F + ‖Z1/2
∆XǫZ

1/2‖F

≤ β(1− θ)τ + δǫτ. ( since(X,Z) ∈ N (β, (1− θ)τ)) (5.2.21)

By (5.2.20) and (5.2.21),

‖Z1/2
∆X Z

1/2‖F‖Z(−1/2)
∆Z Z

(−1/2)‖F

≤ 1

2(1− β)2(1− θ)τ
(
β(1− θ)τ + δǫτ

)2

=
β2

2(1− β)2 (1− θ)τ +
β

(1− β)2 δǫτ +
δ
2

ǫτ

2(1− β)2(1− θ)
. (5.2.22)

By Lemma 5.2.4 again, using (5.2.18) divided byτ ′,

δ′z
τ ′

= ‖Z(−1/2)
∆Z Z

(−1/2)‖F=
‖H‖F

(1− β)(1− θ)τ

≤ β(1− θ)τ + δǫτ

(1− β)(1− θ)τ
(by (5.2.21)),

<
β

1− β +
(1− θ)(1− 2β)

(1− β)(1− θ)
= 1, (by Lemma 5.2.5)

so, by (5.2.3)

λmin(Z
(−1/2)

∆Z Z
(−1/2)

) > −1.

This implies that(I + Z
(−1/2)

∆Z Z
(−1/2)

) ≻ 0, so

Z+ = Z +∆Z = Z
1/2

(I + Z
(−1/2)

∆Z Z
(−1/2)

)Z
1/2 ≻ 0.

Therefore,(Z+)−1/2 exists.By defining

E = (Z+)1/2X+(Z+)1/2 − (1− θ)τI, M = Z
1/2

(Z+)−1/2,
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we can see thatP = MEM−1.

Recall that

s = β2 − β + 1, t = 2α(1− β)2 − β2, (5.2.23)

By applying (5.2.6) with theseE andM, sinceE ∈ Sn, we have

‖(Z+)1/2X+(Z+)1/2 − (1− θ)τ I‖F ≤ ‖ symm(P) ‖F

= ‖ symm
(

Z
1/2

∆X∆Z Z
(−1/2)

)
− Z

1/2
∆XǫZ

1/2‖F (by (5.2.19))

≤ ‖Z1/2
∆X∆Z Z

(−1/2)‖F + ‖Z1/2
∆XǫZ

1/2‖F

≤ ‖Z1/2
∆X Z

1/2‖F‖Z(−1/2)
∆Z Z

(−1/2)‖F + ‖Z1/2
∆XǫZ

1/2‖F

≤ β2

2(1− β)2 (1− θ)τ +
(

β

(1− β)2 + 1

)
δǫτ +

δ
2

ǫτ

2(1− β)2(1− θ)

(by (5.2.22) and (5.1.51) in Condition 5.2)

=
τ

2(1− β)2(1− θ)
[
β2(1− θ)2 + (1− θ)(2β + 2(1− β)2)δǫ + δ

2

ǫ

]

(by definition ofs in (5.2.23))

<
τ

2(1− β)2(1− θ)
[
β2(1− θ)2 + 2(1− θ)2(β2 − β + 1)(

√
s2 + t− s)

+(1− θ)2(
√
s2 + t− s)2

]
(by Condition 5.2)

=
τ

2(1− β)2(1− θ)
[
β2(1− θ)2 + 2(1− θ)2s(

√
s2 + t− s)

+(1− θ)2(s2 + t+ s2 − 2s
√
s2 + t)

]

=
(1− θ)τ
2(1− β)2

[
β2 + 2s(

√
s2 + t− s)− 2s(

√
s2 + t− s) + t

]

=
(1− θ)τ
2(1− β)2 (β

2 + t) =
(1− θ)τ
2(1− β)2 (2(1− β)

2α) (by definition oft in (5.2.23))

=α(1− θ)τ.
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In addition, this implies that

λmin((Z+)1/2X+(Z+)1/2 − (1− θ)τI) ≥ −α(1− θ)τ,

by (5.2.3), so

λmin((Z+)1/2X+(Z+)1/2)≥ −α(1− θ)τ + (1− θ)τ = (1− α)(1− θ)τ > 0,

so(Z+)1/2X+(Z+)1/2 ≻ 0, andX+ ≻ 0 as well.

Now, we quantify the bound on the duality gapµ = (X•Z)/n. For the analysis, the

following properties of Frobenius norm and the trace of a matrix are useful. For a matrix

E ∈ Sn,

|tr (E)| =
∣∣∣∣∣

m∑

i=1

λi(E)

∣∣∣∣∣ ≤
∣∣∣∣∣

m∑

i=1

σi(E)

∣∣∣∣∣ ,

whereλi(E) is thei-th eigenvalue andσi(E) is thei-th singular value ofE.

By the Cauchy-Schwarz inequality, forE ∈ Sn,

n‖E‖2F = n
m∑

i=1

σ2
i (E) ≥

(
n∑

i=1

σi(E)

)2

≥ (tr (E))2,

so

n‖E‖2F ≥ (tr (E))2 (5.2.24)

Lemma 5.2.7. If (X,Z) ∈ N (α, τ), then

(1− α√
n
)τ ≤ µ =

1

n
(X • Z) ≤ (1 +

α√
n
)τ.

Proof. Since(Z1/2XZ1/2 − τI) is symmetric, by (5.2.24),

n‖Z1/2XZ1/2 − τI‖2F ≥
(
tr
(
Z1/2XZ1/2 − τI

))2

=
(
tr
(
Z1/2XZ1/2

)
− nτ

)2

= (tr (XZ)− nτ)2 = (X • Z− nτ)2 .

149



Thus, since(X,Z) ∈ N (α, τ),

(X • Z− nτ)2 ≤ n‖Z1/2XZ1/2 − τI‖2F ≤ nα2τ 2,

i.e.,
(
1

n
(X • Z)− τ

)2

≤ 1

n
α2τ 2,

and the rest of the proof is straightforward.

5.2.3 Summary ofthe Progress of the Iteration

We have shown that

r+p = (1− θ)rp,

r+d = (1− θ)rd (R+
d = (1− θ)Rd),

(X+,Z+) ∈ N (α, (1− θ)τ),

(1− α√
n
)τ+ ≤ µ+ =

1

n
(X+ • Z+) ≤ (1 +

α√
n
)τ+,

τ+ = (1− θ)τ.

For thek-iteration, let us defineψk as

ψk:=

k∏

i=1

(1− θi).

Then,τk by the algorithm in Table 5.1 becomes

τk = ψkτ0. (5.2.25)
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With these variables, we have the following results.

rkp = ψkr0p, (5.2.26)

rkd = ψkr0d (Rk
d = ψkR0

d), (5.2.27)

(Xk,Zk) ∈ N (α, τk), (5.2.28)

(1− α√
n
)τk ≤ µk =

1

n
(Xk • Zk) ≤ (1 +

α√
n
)τk. (5.2.29)

In order to prove the convergence ofrkp, rkd, andµk to zero, all that remains is to show

that theθi are bounded away from zero.

5.2.4 Lower Bound on Step Length

In this section, we omit thek in ψk, rkp, andrkd whenever it is evident in the context, and

let (X, y,Z) denote thek-th iterates of our algorithm.

Lemma 5.2.8.For any(X∗, y∗,Z∗) ∈ F∗, we have

ψ(X • Z0 + X0 • Z) = X • Z + ψ2X0 • Z0

+ ψ(1− ψ)X0 • Z∗ + ψ(1− ψ)X∗ • Z0

− (1− ψ)X • Z∗ − (1− ψ)X∗ • Z, (5.2.30)

Proof. Let us define

X′ = X− ψX0 − (1− ψ)X∗,

y′ = y− ψy0 − (1− ψ)y∗,

Z′ = Z− ψZ0 − (1− ψ)Z∗.
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By (5.1.8), (5.2.26) and the primal feasibility ofX∗,

Ai • X = bi − rpi,

ψAi • X0 = ψ(bi − r0pi) = ψbi − rpi,

(1− ψ)Ai • X∗ = (1− ψ)bi,

for i = 1, . . . , m, and by (5.1.9), (5.2.27), and the dual feasibility of(y∗,Z∗)

m∑

i=1

yiAi + Z = C− Rd

ψ(

m∑

i=1

y0i Ai + Z0) = ψ(C− R0
d) = ψC− Rd

(1− ψ)
(

m∑

i=1

y∗i Ai + Z∗

)
= (1− ψ)C.

Thus,(X′, y′,Z′) satisfies

Ai • X′ = 0 for i = 1, . . . , m,

m∑

i=1

y′iAi + Z′ = 0.

Therefore,X′ • Z′ = Z′ • X′ = −∑m
i=1 y

′
i(Ai • X) = 0, so

[X− ψX0 − (1− ψ)X∗] • [Z− ψZ0 − (1− ψ)Z∗] = 0.

By expanding this equation usingX∗ • Z∗ = 0, we can obtain (5.2.30).

For an initial point(X0, y0,Z0) and an optimal solution(X∗, y∗,Z∗) ∈ F∗, we define

ζ as

ζ =
X0 • Z∗ + X∗ • Z0

X0 • Z0 . (5.2.31)
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Lemma 5.2.9. (Similar to [71, Lemma 3.2 in p.1016].) For any(X∗, y∗,Z∗) ∈ F∗,

X • Z0 + X0 • Z ≤ nτ0

(
2 + ζ +

α√
n

)
,

whereζ is defined in (5.2.31).

Proof. By Lemma 5.2.8,sinceX ∈ Sn
+,Z ∈ Sn

+,X
∗ ∈ Sn

+,Z
∗ ∈ Sn

+ andψ ∈ [0, 1],

ψ(X • Z0 + X0 • Z) ≤ X • Z + ψ2X0 • Z0 + ψ(1− ψ)X0 • Z∗ + ψ(1− ψ)X∗ • Z0.

SinceX0 •Z0 = nτ0, X •Z ≤ (1+α/
√
n)ψnτ0 by (5.2.29),ψ2 ≤ ψ andψ(1−ψ) ≤ ψ,

ψ(X • Z0 + X0 • Z) ≤ (1 + α/
√
n)ψnτ0 + ψnτ0 + ψζnτ0

≤ ψnτ0
[
(1 + α/

√
n) + 1 + ζ

]
= ψnτ0

(
2 + ζ + α/

√
n
)
.

For the proof of the following corollary and lemmas, we frequently use the follow-

ing inequality (See Horn and Johnson [42, Exercise 20 in Section 5.6]),

‖M1M2‖F ≤ min(‖M1‖2‖M2‖F , ‖M1‖F‖M2‖2), ∀M1,M2 ∈ R
n×n. (5.2.32)

In addition, note that the Frobenius norm‖E‖F for E ∈ R
n×n can be alternatively defined

as

‖E‖F =
√

tr
(
ETE

)
. (5.2.33)
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Corollary 5.2.10. (Similar to [71, Corollary 3.3 in p.1016].)

‖X1/2(Z0)1/2‖F ≤ (nτ0)
1/2

(
2 + ζ +

α√
n

)1/2

, (5.2.34)

‖Z1/2(X0)1/2‖F ≤ (nτ0)
1/2

(
2 + ζ +

α√
n

)1/2

, (5.2.35)

‖X1/2‖F ≤ ‖(Z0)−1/2‖2 (nτ0)1/2
(
2 + ζ +

α√
n

)1/2

, (5.2.36)

‖Z1/2‖F ≤ ‖(X0)−1/2‖2 (nτ0)1/2
(
2 + ζ +

α√
n

)1/2

, (5.2.37)

‖X1/2Z1/2‖22 = ‖Z1/2XZ 1/2‖2 ≤ (1 + α)τ, (5.2.38)

‖X−1/2Z−1/2‖22 = ‖Z−1/2X−1Z−1/2‖2 ≤
1

(1− α)τ . (5.2.39)

Proof. First, we prove (5.2.34). By (5.2.33),

‖X1/2(Z0)1/2‖F =
√

tr
(
(Z0)1/2X(Z0)1/2

)
=
√

tr
(
XZ0

)

≤
√

tr
(
XZ0

)
+ tr

(
X0Z

)
(sinceX0 ∈ Sn

+,Z ∈ Sn
+ )

=
√

X • Z0 + X0 • Z

≤ (nτ0)
1/2

(
2 + ζ +

α√
n

)1/2

. (by Lemma 5.2.9)

In a similar way, (5.2.35) can be proved.

Next, we prove (5.2.36).

‖X1/2‖F = ‖X1/2(Z0)1/2(Z0)(−1/2)‖F ≤ ‖X1/2(Z0)1/2‖F‖(Z0)(−1/2)‖2 (by (5.2.32))

≤ ‖(Z0)−1/2‖2 (nτ0)1/2
(
2 + ζ +

α√
n

)1/2

. (by (5.2.34) proven above)

In a similar way, we can also prove (5.2.37).

Next, we prove (5.2.38). The equality is satisfied sinceσ2
max(E) = σmax(ETE) for any
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matrixE. Because(X,Z) ∈ N (α, τ),

‖Z1/2XZ1/2 − τI‖2 ≤ ‖Z1/2XZ1/2 − τI‖F ≤ ατ,

‖Z1/2XZ1/2‖2 − τ ≤ ατ,

‖Z1/2XZ1/2‖2 ≤ τ + ατ = (1 + α)τ.

In a similar way, (5.2.39) can be proved.

For a predictor direction∆X and∆Z, we defineδx andδz as

δx = ‖Z1/2∆XZ1/2‖F , (5.2.40)

δz = τ‖Z−1/2∆ZZ−1/2‖F . (5.2.41)

Then,δ defined in (5.1.41) is bounded by

δ =
1

τ
‖Z1/2∆X∆ZZ−1/2‖F

≤ 1

τ
‖Z1/2∆XZ1/2‖F‖Z−1/2∆XZ−1/2‖F =

1

τ 2
δxδz. (5.2.42)

Lemma 5.2.11.(Similar to [71, Lemma 3.4 in pp.1016-1018].) For(X̆, y̆, Z̆) ∈ F , denote

T = ψ
[
Z1/2(X0 − X̆)Z1/2 + symm

(
Z1/2X(Z0 − Z̆)Z−1/2

)]
− Z1/2(X +∆Xǫ)Z1/2,

Tx = ψZ1/2(X0 − X̆)Z1/2,

Tz = ψZ−1/2(Z0 − Z̆)Z−1/2.

Then,

δx = ‖Z1/2∆XZ 1/2‖F ≤ ‖Tx‖F +
‖T‖F
1− α, (5.2.43)

δz = τ‖Z−1/2∆ZZ−1/2‖F ≤ τ‖Tz‖F +
‖T‖F
1− α. (5.2.44)
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Proof. We will use Lemma 5.2.4 with(X′, y′,Z′) = (X, y,Z), (∆X′,∆y′,∆Z′) = (∆X +

ψ(X0−X̆),∆y+ψ(y0− y̆),∆Z+ψ(Z0−Z̆)), γ = α, andτ ′ = τ . For a predictor direction

(∆X,∆y,∆Z), by (5.1.5) and (5.1.8),

Ai •∆X = rpi,

ψ(Ai • X0) = ψ(bi − r0pi) = ψbi − rpi,

and sincĕX is feasible,

ψ(Ai • X̆) = ψbi,

for i = 1, . . . , m. Hence,Ai • (∆X + ψ(X0 − X̆)) = 0.

Also, by (5.1.6) and (5.1.9)

(
m∑

i=1

∆yiAi

)
+∆Z = Rd,

ψ

[(
m∑

i=1

y0i Ai

)
+ Z0

]
= ψ(C− R0

d) = ψC− Rd,

ψ

[(
m∑

i=1

y̆iAi

)
+ Z̆

]
= ψC.

Thus,(∆y + ψ(y0 − y̆),∆Z + ψ(Z0 − Z̆)) satisfies (5.2.12).

In addition, since(X,Z) ∈ N (α, τ), we can use Lemma 5.2.4 by replacingγ with α,

τ ′ with τ , (X′, y′,Z′) with (X, y,Z), and(∆X′,∆y′,∆Z′) with (∆X + ψ(X0 − X̆),∆y +

ψ(y0 − y̆),∆Z + ψ(Z0 − Z̆)). Then,using (5.1.35),H in Lemma 5.2.4 becomesT.

Therefore, from Lemma 5.2.4,using (5.2.17) and (5.2.18),we have the following inequal-
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ities,

‖Z1/2(∆X + ψ(X0 − X̆))Z1/2‖F ≤
‖T‖F
1− α,

τ‖Z−1/2(∆Z + ψ(Z0 − Z̆))Z−1/2‖F ≤
‖T‖F
1− α.

Hence,

‖Z1/2∆XZ1/2‖F ≤
‖T‖F
1− α + ψ‖Z1/2(X0 − X̆)Z1/2‖F ,

=
‖T‖F
1− α + ‖Tx‖F

τ‖Z−1/2∆ZZ−1/2‖F ≤
‖T‖F
1− α + τψ‖Z−1/2(Z0 − Z̆)Z−1/2‖F

=
‖T‖F
1− α + τ‖Tz‖F .

Lemma 5.2.12.For given any(X̆, y̆, Z̆) ∈ F , we have

δ ≤
(

1− α
1− α− q

)2 [
(3− α) (2 + ζ + α/

√
n)

(1− α)2 nd0 +
√
n

(
1 + α

1− α

)]2
, (5.2.45)

where

d0 = max
(
‖(X0)−1/2(X0 − X̆)(X0)−1/2‖F , ‖(Z0)−1/2(Z0 − Z̆)(Z0)−1/2‖F

)
.

Proof. First, we calculate bounds on‖Tx‖, ‖Tz‖, and‖T‖ in Lemma 5.2.11.

By Corollary 5.2.10, we have

‖Tx‖F = ψ‖Z1/2(X0 − X̆)Z1/2‖F

= ψ‖Z1/2(X0)1/2(X0)−1/2(X0 − X̆)(X0)−1/2(X0)1/2Z1/2‖F

≤ ψ‖Z1/2(X0)1/2‖2F ‖(X0)−1/2(X0 − X̆)(X0)−1/2‖F

≤ ψnτ0(2 + ζ + α/
√
n)d0 = nτ(2 + ζ + α/

√
n)d0,
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and

‖Tz‖F = ψ‖Z−1/2(Z0 − Z̆)Z−1/2‖F

≤ ψ‖Z−1/2X−1/2‖22 ‖X1/2(Z0)1/2‖2F ‖(Z0)−1/2(Z0 − Z̆)(Z0)−1/2‖F

≤ ψnτ0 (2 + ζ + α/
√
n)

(1− α)τ d0 = nd0
(2 + ζ + α/

√
n)

(1− α) .

Similarly,

‖T‖F ≤ ψ‖Z1/2(X0 − X̆)Z1/2‖F + ψ‖Z1/2X(Z0 − Z̆)Z−1/2‖F + ‖Z1/2(X +∆Xǫ)Z1/2‖F

= ψ‖Z1/2(X0)1/2(X0)−1/2(X0 − X̆)(X0)−1/2(X0)1/2Z1/2‖F

+ ψ‖Z1/2X1/2X1/2(Z0)1/2(Z0)−1/2(Z0 − Z̆)(Z0)−1/2(Z0)1/2X1/2X−1/2Z−1/2‖F

+ ‖Z1/2(X +∆Xǫ)Z1/2‖F

≤ ψ‖Z1/2(X0)1/2‖2F‖(X0)−1/2(X0 − X̆)(X0)−1/2‖F

+ ψ‖Z1/2X1/2‖2‖X1/2(Z0)1/2‖2F‖(Z0)−1/2(Z0 − Z̆)(Z0)−1/2‖F‖X−1/2Z−1/2‖2

+
√
n‖Z1/2XZ1/2‖2 + ‖Z1/2∆XǫZ1/2‖F

≤ ψnτ0(2 + ζ + α/
√
n)d0 + ψnτ0(2 + ζ + α/

√
n)d0

√
1 + α

1− α

+
√
n(1 + α)τ + δǫτ (by definition ofδǫ in (5.1.43))

≤ nτd0(2 + ζ + α/
√
n) + nτd0(2 + ζ + α/

√
n)

(
1 + α

1− α

)
+
√
n(1 + α)τ + δǫτ

≤ τ

[
2nd0(2 + ζ + α/

√
n)

1− α +
√
n(1 + α)

]
+ δǫτ

≤ τ

[
2nd0(2 + ζ + α/

√
n)

1− α +
√
n(1 + α)

]
+ δxq. (by Condition 5.1)
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For simple notation, letCx, Cz, andC0 denote

Cx = n(2 + ζ + α/
√
n)d0,

Cz = n
(2 + ζ + α/

√
n)

1− α d0,

C0 =
2nd0(2 + ζ + α/

√
n)

1− α +
√
n(1 + α),

then we can rewrite thebounds on‖Tx‖F , ‖Tz‖, and‖T‖ as

‖Tx‖F ≤ Cxτ, ‖Tz‖F ≤ Cz, ‖T‖F ≤ C0τ + δxq,

By Lemma 5.2.11 and the boundson‖Tx‖F and‖T‖F above, we have

δx ≤ ‖Tx‖F +
‖T‖F
1− α ≤ Cxτ +

C0τ + δxq

1− α ,

(
1− α− q
1− α

)
δx ≤ Cxτ +

C0τ

1− α,

δx ≤
(

1− α
1− α− q

)(
Cx +

C0

1− α

)
τ. (since1− α− q > 0 by (5.1.50))

In addition, by Lemma 5.2.11 and thebounds on‖Tz‖F and‖T‖F above, we have

δz ≤ Czτ +
C0τ + δxq

1− α ≤
(
Cz +

C0

1− α

)
τ +

q

1− αδx

≤
(
Cz +

C0

1− α

)
τ +

q

1− α− q

(
Cx +

C0

1− α

)
τ. (by the bound ofδx above)

Finally, by (5.2.42),

δ ≤ 1

τ 2
δxδz

≤
(

1− α
1− α− q

)(
Cx +

C0

1− α

)(
Cz +

C0

1− α +
q

1− α− q

(
Cx +

C0

1− α

))

≤
(

1− α
1− α− q

)(
Cx +

C0

1− α

)(
Cz +

C0

1− α

)
+

q(1− α)
(1− α− q)2

(
Cx +

C0

1− α

)2

.
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By definitions ofCx, Cz, andC0, since0 < α < 1/2,

(
Cx +

C0

1− α

)
<

(
Cz +

C0

1− α

)
,

so we have

δ ≤
(

1− α
1− α + q

+
q(1− α)

(1− α− q)2
)(

Cz +
C0

1− α

)2

=

(
(1− α)(1− α− q) + q(1− α)

(1− α + q)2

)(
Cz +

C0

1− α

)2

=

(
1− α

1− α + q

)2(
Cz +

C0

1− α

)2

=

(
1− α

1− α + q

)2 [
(3− α) (2 + ζ + α/

√
n)

(1− α)2 nd0 +
√
n

(
1 + α

1− α

)]2
,

and we obtain (5.2.45).

Sinceδ is bounded,̂θ defined by (5.1.46) is bounded away from 0. Thus, the step

lengthθ ∈ [θ̂, θ̆] is also bounded away from 0.

5.2.5 Polynomial Complexity

We prove that our algorithm converges inO(n ln (ǫ0/ǫ)) iterations, the same as the (unre-

duced) algorithm of [71],where

ǫ0 = max (X0 • Z0, ‖r0p‖, ‖r0d‖)

andǫ is therequired toleranceon

max (Xk • Zk, ‖rkp‖, ‖rkd‖).

Again, we omit the indexk for simplicity of notation.
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Lemma 5.2.13.Suppose thatX0 = Z0 = ρI whereρ > 0 is a constant such that‖X∗‖2 ≤

ρ and ‖Z∗‖2 ≤ ρ for (X∗, y∗,Z∗) ∈ F∗. Then the predictor step lengthθk ∈ [θ̂k, θ̆k]

satisfies

θk ≥
1

wn
,

where

w = 1 +
hq

(β − α) +
√
h(h+ 3.5)

β − α ,

andh = 13/(0.5− q).

Proof. By Lemma 5.2.9, we have

ρ(tr (X) + tr (Z)) ≤ (2 + ζ + α/
√
n)nτ0 = (2 + ζ + α/

√
n)nρ2,

so
n∑

i=1

(λi(X) + λi(Z)) ≤ (2 + ζ + α/
√
n)nρ.

From (5.1.45), we have

α/
√
n ≤ α ≤ 1/2.

SinceX∗ • Z∗ = 0,

ζ = (Z∗ • X0 + X∗ • Z0)/(X0•Z0)

= (tr (X∗) + tr (Z∗))/(nρ) ≤ 1,

which implies

‖X1/2‖2F + ‖Z1/2‖2F =

n∑

i=1

(λi(X) + λi(Z)) ≤ (3 + α/
√
n)ρn ≤ 3.5ρn. (5.2.46)
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In addition, we can see

‖X0 − X∗‖2 ≤ ρ, ‖Z0 − Z∗‖2 ≤ ρ. (5.2.47)

By (5.2.46), (5.2.47) and Corollary 5.2.10,

‖Z1/2(X0 − X∗)Z1/2‖2 ≤ ‖Z1/2‖2F‖X0 − X∗‖2 ≤ 3.5ρ2n, (5.2.48)

‖Z1/2X(Z0 − Z∗)Z−1/2‖2 ≤ ‖(Z1/2X1/2)X1/2(Z0 − Z∗)X1/2(X−1/2Z−1/2)‖2

≤ ‖(Z1/2X1/2)‖2‖(X−1/2Z−1/2)‖2‖X1/2‖2F‖(Z0 − Z∗)‖2

≤
(√

1 + α

1− α

)
3.5ρ2n ≤ 6.1ρ2n. (5.2.49)

By (5.2.48), (5.2.49), and Corollary 5.2.10, in Lemma 5.2.11 with (X̆, y̆, Z̆) = (X∗, y∗,Z∗),

‖Tx‖F ≤ ψ‖Z1/2(X0 − X∗)Z1/2‖F ≤ 3.5ψρ2n = 3.5nτ, (5.2.50)

τ‖Tz‖F ≤ τψ‖(Z−1/2X−1/2)X1/2(Z0 − Z∗)X1/2(X−1/2Z−1/2)‖F

≤ τψ‖(Z−1/2X−1/2)‖22‖X1/2‖2F‖(Z0 − Z∗)‖F

≤ 3.5τψρ2n/(0.5τ) = 7nτ. (5.2.51)

Similarly, by (5.2.48), (5.2.49), (5.2.38), and (5.1.43)

‖T‖F ≤ ψ‖Z1/2(X0 − X∗)Z1/2‖F + ψ‖Z1/2X(Z0 − Z∗)Z−1/2‖F

+‖Z1/2XZ1/2‖F + ‖Z1/2∆XǫZ1/2‖F

≤ (3.5ψρ2n+ 6.1ψρ2n+ 1.5nτ) + δǫτ

≤ 11.1nτ + δxq. (by Condition 5.1)
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By the bound ofδx in Lemma 5.2.11,

‖T‖F ≤ 11.1nτ +

(
‖Tx‖F +

‖T‖F
1− α

)
q,

(
1− α− q
1− α

)
‖T‖F ≤ 11.1nτ + q‖Tx‖F ,

‖T‖F ≤
(

1− α
1− α− q

)
(11.1nτ + q‖Tx‖F ) .

Furthermore, by the bound of‖Tx‖F above, we have

‖T‖F ≤
(

1− α
1− α− q

)
(11.1nτ + 3.5qnτ) =

(
1− α

1− α− q

)
(11.1 + 3.5q)nτ. (5.2.52)

By Lemma 5.2.11 with (5.2.50) and (5.2.52),

δx ≤ ‖Tx‖F +
‖T‖F
1− α ≤ 3.5nτ +

(11.1 + 3.5q)nτ

1− α− q

≤ 3.5nτ +
(11.1 + 3.5q)nτ

0.5− q (sinceα < 0.5)

≤
(
3.5 +

11.1 + 3.5q

0.5− q

)
nτ =

(
12.85

0.5− q

)
nτ,

so, by the definition ofh,

δx ≤ hnτ. (5.2.53)

Similarly, by Lemma 5.2.11 with (5.2.51) and (5.2.52),

δz ≤ τ‖Tz‖F +
‖T‖F
1− α ≤ 7nτ +

(11.1 + 3.5q)nτ

1− α− q

≤ 7nτ +
(11.1 + 3.5q)nτ

0.5− q (sinceα < 0.5)

≤
(
7 +

11.1 + 3.5q

0.5− q

)
nτ =

(
3.5 +

12.85

0.5− q

)
nτ,

so, by the definition ofh,

δz ≤ (h+ 3.5)nτ. (5.2.54)
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Therefore, by (5.2.42), (5.2.53), and (5.2.54),

δ ≤ 1

τ 2
δxδz ≤

1

τ 2
(hnτ) ((h+ 3.5)nτ) ≤ h(h + 3.5)n2. (5.2.55)

By Condition 5.1 and (5.2.53),

δǫ ≤
q

τ
δx ≤

q

τ
(hnτ) = qnh. (5.2.56)

By the definition of̂θ in (5.1.46),

θ̂ =
2(β − α)√

(β − α + δǫ)2 + 4δ(β − α)− (β − α + δǫ)

=
2√(

1 +
δǫ

β − α

)2

+
4δ

β − α −
(
1 +

δǫ
β − α

)

≥ 2√(
1 +

δǫ
β − α

)2

+
4δ

β − α

≥ 2
(
1 +

δǫ
β − α

)
+

√
4δ

β − α

(since
√
x+
√
y ≥ √x+ y)

=
1

1

2

(
1 +

δǫ
β − α

)
+

√
δ

β − α

≥ 1
(
n+

δǫ
β − α

)
+

√
δ

β − α

.

Finally, by the bound ofδ andδǫ in (5.2.55) and (5.2.56), we have

θ̂ ≥ 1
(
n +

qnh

β − α

)
+

√
h(h+ 3.5)n2

β − α

≥ 1

n

(
1 +

hq

β − α +

√
h(h + 3.5)

β − α

) =
1

wn
.
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Note that ifq = 0, then constraint reduction is notperformed. In thatcase,

w = 1 +
√

(26× 29.5)/(β − α) ≤ 1 + (29/
√
β − α),

andθ has the lower bound same as the unreduced algorithm by [71, Theorem 3.8].

Lemma 5.2.14.Defineǫk = max(Xk •Zk, ‖rkp‖, ‖rkd‖). The algorithm in Section 5.2 con-

verges inO(n ln(ǫ0/ǫ)) iterationsfor a given toleranceǫwhereǫ0 = max(nτ0, ‖r 0p‖, ‖r0d‖).

Proof. By (5.2.26)-(5.2.29), we know

ǫk ≤ max((1 + α/
√
n)nτk, ‖rkp‖, ‖rkd‖)

≤ ψk max((1 + α/
√
n)nτ0, ‖r0p‖, ‖r0d‖)

≤ ψk(1 + α/
√
n)nǫ0.

On the other hand, by the definition ofψk and Lemma 5.2.13,

ψk =
k∏

i=1

(1− θi) ≤ (1− 1

wn
)k.

So,

ǫk ≤
(
1− 1

wn

)k

(1 + α/
√
n)nǫ0.

Thus, if
(
1− 1

wn

)K

(1 + α/
√
n)nǫ0≤ǫ (5.2.57)

afterK iterations, thenǫK ≤ ǫ. So, wecomputethe minimumK to satisfy (5.2.57). By

takingln on both sides,

K ln

(
1− 1

wn

)
+ ln

[
(1 + α/

√
n)nǫ0

]
≤ ln ǫ
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if and only if

K ln

(
1− 1

wn

)
≤ ln ǫ− ln

[
(1 + α/

√
n)nǫ0

]

= ln(ǫ/ǫ0)− ln
[
(1 + α/

√
n)n
]
≤ ln(ǫ/ǫ0)

Hence,ǫK ≤ ǫ if

K ≥ ln(ǫ0/ǫ)

− ln

(
1− 1

wn

) .

By the fact

−1

ln

(
1− 1

wn

) → wn, asn increases,

K = O(n ln(ǫ0/ǫ)).

5.3 Conclusion

We proposed an infeasiblepredictor-correctorinterior point method with adaptive con-

straint reduction for diagonal block structured SDP problems. By proving its global con-

vergence and polynomial complexityO(n ln(ǫ0/ǫ)), we verify that our adaptive criteria

guarantee correct selection of inactive constraint blocks.

We finish this chapter with a comment about the super-linear local convergence.

Kojima, Shida and Shindoh [50] showed thatthe predictor-correctoralgorithm hasthe

super-linear local convergence if the generated sequenceconvergestangentially to the

central path.As noted in [50], the tangential convergence can be achieved by repeating

the corrector step of the algorithm by Potra and Sheng [71]until (X+,Z+) moves into

N (g(τk), τ) for a giveng(τk) such thatg(τk) → 0 ask → ∞. Since our algorithm is
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based on the one by Potra and Sheng, we expect thatasimilar modification can be easily

adopted for super-linear local convergence.
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Chapter 6

Conclusion

In this dissertation, we applied the matrix reduction method to three different optimiza-

tion problems: total least squares, covariance matrix estimation, andsolvingsemidefinite

programmingproblems.The matrix reduction has different purposes for these problems.

In total least squares, we want to eliminate the noise contained in raw datain order to

betterestimatethe parameters ina linear model. In covariance matrix estimation, matrix

reduction removes undesirable transient or noisy factors to improve the quality of the es-

timate. In semidefinite programming, inactive constraintsare removed from a working

constraint set by matrix reduction when we compute asearchdirection.

For each problem, we proposed a method to determine the reduction intensity, con-

sideringthe distinct purposeand assumptions of the particular problem. In total least

squares, westudiedthe asymptotic behavior of the smallest singular values corresponding

to the noise.This led us to determinethe point of truncation by observing the dispersion

of the smallest singular values, measured by the coefficientof variation.From this study,
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we achieved the following results:

1. We proved convergence properties for the singular valuescorresponding to error

terms asm→∞.

2. We developed an algorithm for determining the weight for the two terms in the

minimization function.

3. We developed an algorithm for determining the rank of the true model matrix.

4. We developed an algorithm to find consistent estimate for theErrors-in-Variables

problem with weaker assumptions than in previous work.

In covariance matrix estimation, we found an optimal intensity which minimizes

the difference between the correlation matrix of the noise and an identity matrix.In this

study, we made the following contributions:

1. We developed an algorithm for Tikhonov filtered covariance matrix estimation.

2. We put all previous factor-based covariance estimationsinto a common framework.

3. We performed empirical experiments using the stock return data from 1958 to 2006.

(a) In terms of minimizing risks, Tikhonov estimate performs as well as the most

competitive estimates so far.

(b) For not enough historical data, Tikhonov estimate outperforms all the other

estimates.
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(c) In terms of risk prediction, the risk predicted by Tikhonov estimate is the

closest to the realized risk.

In semidefinite programming, we chose the reduced constraint blocks to ensure that

iterates remainin the designated neighborhood of a central path.In this study, we obtained

the following results:

1. We developed an adaptive constraint-reducedpredictor-correctoralgorithm for SDP.

2. We proved the global convergence of the algorithm.

3. We proved polynomial complexity of the algorithm, which is the first result for such

primal-dualconstraint reduced interior-point-methods.

4. These results also hold when applying the algorithm to LP,QP, QCQP, and SOCP.

Before finishing thisdissertation, we suggest the following future studies for the

discussed problems. First, the proposed matrix reduction method in total least squares

problems is effective only when the number ofnoise termsis greater than 1, since we

cannot measure the dispersion with a single singular value.Thus, an alternative approach

is required forproblems with a single right hand side and a full rank data matrix. Sec-

ond, we evaluated thevalue of using ourcovariance matrix estimatein theMV portfolio

problem. Even though the experiments were performed in manydifferent settings, the

evaluationwasstill restricted to the portfolio problem. In order to extend the applica-

tions ofour covariance matrix estimate, wecould investigateits effectiveness using data

sets froma variety of applications. Third, in semidefinite programming, the predictor-
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correctoralgorithm proposed in Chapter 5computestheSchur complement matrix twice

for each iteration. Since most of the practical implementations reusetheSchur comple-

ment matrix in the corrector step, the current algorithm is not so practical in this aspect.

To make the algorithm more practical, we need to prove the global convergence ofan

algorithmthat reuses theSchur complement matrix,or demonstrate experimental effec-

tiveness of an algorithm that solves the corrector problem using the predictor matrix as a

preconditioner. We might also generalize our results to cone programming, perhaps using

the work of Schurr et al. [78].
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