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Superfluidity is a remarkable phenomenon. Superfluidity was initially charac-

terized by flow without friction, first seen in liquid helium in 1938, and has been

studied extensively since. Superfluidity is believed to be related to, but not iden-

tical to Bose-Einstein condensation, a statistical mechanical phenomena predicted

by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where

bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC),

a gas which has macroscopic occupation of a single quantum state.

Developments in laser cooling of neutral atoms and the subsequent realization

of Bose-Einstein condensates in ultracold gases have opened a new window into

the study of superfluidity and its relation to Bose-Einstein condensation. In our

atomic sodium BEC experiment, we studied superfluidity and dissipationless flow

in an all-optical toroidal trap, constructed using the combination of a horizontal



“sheet”-like beam and vertical “ring”-like beam, which, like a circuit loop, allows

flow around the ring. On inducing a single quantum of circulation in the condensate,

the smoothness and uniformity of the toroidal BEC enabled the sustaining of a

persistent current lasting 40 seconds, limited by the lifetime of the BEC due to

background gas pressure. This success set the stage for further experiments studying

superfluidity.

In a first set of experiments, we studied the stability of the persistent current

by inserting a barrier in the flow path of the ring. The superflow stopped abruptly

at a barrier strength such that the local flow velocity at the barrier exceeded a

critical velocity, which supported decay via the creation of a vortex-antivortex pair.

Our precise control in inducing and arresting superflow in the BEC is a first step

toward studying other aspects of superfluidity, such as the effect of temperature and

dimensionality.

This thesis discusses these experiments and also details partial-transfer ab-

sorption imaging, an imaging technique developed in the course of this work.
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Chapter 1

Introduction

The theory of quantum mechanics, which developed in the early 20th cen-

tury, brought in several new concepts that changed physics. Several new fields in

physics, such as atomic physics, nuclear physics, low-temperature physics and quan-

tum electrodynamics were all born during that time. Quantum mechanics has been

successfully applied to nearly every field of physics, and is an integral part of a physi-

cist’s education today. On the practical side, quantum mechanics has contributed

to many technological advances such as the transistor, the laser, nuclear power and

MRI machines.

The liquefaction of helium at 4 K by Kamerlingh Onnes at the University of

Leiden led to the field of low-temperature physics, which led to the observation of

superconductivity and superfluidity. Both phenomena were demonstrated by con-

ceptually simple experiments that could not be explained by any classical theory.

They have played a significant role in the development of some of the formalism

for quantum mechanics related to condensed matter physics. Nevertheless, even a

century later, many experts feel that phenomena like the origins of high tempera-

ture superconductivity [1] or the basic nature of superfluidity [2] are still not fully

understood. The observation of Bose-Einstein condensates (BECs) in alkali gases

in 1995 opened a new window into the study of low-temperature physics. Studying

superfluidity in BECs is now an active area of research with interesting possibilities,

such as using BECs for navigation as detectors of rotation.

This thesis is primarily about Bose-Einstein condensates and superfluidity.

However, since superfluidity and superconductivity are related, I will mention, wher-

ever applicable, superconducting analogies to phenomena seen in Bose condensates.
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1.1 Liquid helium and the “old” superfluidity

Prior to the creation of atomic BECs in 1995, superfluidity was associated

exclusively with helium. Almost all theory and modeling of superfluids until then

was based solely on liquid helium, despite the fact that the strong interaction in

liquid helium makes the theory much more complicated. Given that, it is quite

remarkable that the theory could not only model liquid helium well, but also be

directly applied to BECs. In this section I will discuss the developments in the field

of superfluidity in liquid helium.

1.1.a Origins

The concept of superflow, or dissipationless flow, first arose in the context

of superconductivity in 1911, when Onnes [3] found that the resistance of solid

mercury went to zero below 4 K. While it was known that resistance decreased with

temperature, the sudden drop to zero at non-zero temperature was unexpected.

It was reasoned that if the resistance of a substance were truly zero, any current

set in it would last forever, leading to a concept of a persistent current. Careful

experiments in the many decades since, have shown, with increasing precision, that

persistent currents can, in principle, last longer than the age of the universe [4, 5].

While superfluidity in liquid helium was not observed until 1938, some im-

portant developments in bosonic statistics occurred earlier. In 1924, Satyendranath

Bose [6] explained Max Planck’s formula for black body radiation based on simple

combinatorics. Einstein [7, 8] applied Bose statistics to material particles, and pre-

dicted a special condensation to occur at low temperatures. The condensation did

not require interactions, and was characterized by a macroscopic occupation of the

single-particle ground state. After the development of wave mechanics, the basis of

Bose-Einstein statistics could be understood in terms of a wavefunction symmetry

under exchange. Although Bose-Einstein condensation itself was not realized until

much later, the extensive theoretical work in the first half of the 20th century set up

the framework for understanding bosonic particles.
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Figure 1.1: Observation of superflow in helium (from Kapitza [9]): By observing the rate

of flow of liquid helium from the inner column to the outer reservoir via the narrow gap

(about 0.5 micron) between large (3 cm diameter) glass disks, Kapitza found that the

viscosity of helium dropped by a factor of at least 1500 as the temperature dropped below

the λ-point. The rate of flow was determined by the change in height in the inner column

as a function of time.

In the years following the liquefaction of helium in 1908, strange properties of

helium below 2.2 K (known as the λ-point) were noted, such as an abrupt change in

specific heat and the sudden ability of the liquid to pass through small leaks. In the

second issue of the journal Nature in January 1938, two groups showed evidence of

superflow in helium II (helium below the λ-point). Kapitza [9] measured the rate of

flow of helium through a narrow gap between two large disks (schematic shown in

figure 1.1) and found that the viscosity was lower by a factor of at least 1500 below

the λ-point. As an analogy to superconductivity, Kapitza termed helium below the

λ-point as ‘superfluid’. Simultaneously, Allen and Misener [10] measured the rate

of flow of liquid helium through narrow capillaries, and found that the viscosity of

helium II was below 10−9 Pa s, consistent with the measurements of Kapitza.

In April 1938, London [11] came up with a qualitative explanation for the

phenomena of superfluidity, relating it to Bose-Einstein condensation. Since 4He has

an even number of protons(2), neutrons(2) and electrons(2), it would come under

the class of particles which obey Bose-Einstein statistics. Using a simple ideal gas
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model for helium (he states “...model which is so far away from reality...”), London

obtained a transition temperature of 3.09 K, which was reasonably close to the λ-

point. Shortly after, Tisza [12] extended London’s idea and described the superfluid

as having two components, a ‘condensed’ fraction which is responsible for the zero

viscosity and the remaining excited state fraction which can undergo dissipation.

Tisza’s formalism helped understand superfluidity in a framework based on Bose-

Einstein condensation.

1.1.b Landau theory: quantitative description of superfluidity

While London and Tisza had an intuitive and qualitative explanation for su-

perfluidity, there was no quantitative model with experimentally testable predictions

until Landau. In a landmark paper, Landau [13] came up a with a quantitative de-

scription of superfluidity that introduced several key concepts, which still remain

the basis for understanding superfluidity. The theory could explain the transition

temperature and flow without viscosity. While Landau rejected Tisza’s idea of

Bose-Einstein condensation, he nevertheless used a two-fluid model, consisting of a

ground state “superfluid” and an excited state “normal” fluid. He clarified that the

two-fluid model was only a convenient way of expressing the formalism, and that

there were no separate ground state and excited state atoms. The excited state

spectrum consisted of phonons (analogous to the lattice excitations in a solid) and

rotons1 (Landau referred to these as the vortex spectrum), and the occupation level

of these states depended on the temperature. Landau theory also predicted second

sound, which consists of waves where the superfluid and normal fluid oscillate out

of phase. Second sound was observed by Peshkov [14].

At this point, it is relevant to point out that a similar formalism was used to de-

scribe superconductivity. The Ginzburg-Landau (GL) theory [15] used the concept

of a superconducting ground state with an excitation spectrum to treat the prob-

lem of superconductivity. Despite the fact that superconductivity and superfluidity

1See section 2.4 for a brief discussion on rotons. Landau had assumed that rotons came from

the vortex spectrum. However, this is not believed to be true anymore.
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involved fundamentally different particles (the former involved electrons, which are

fermions, and the latter involved bosons), Landau’s generalized formalism based on

the second-order phase transition was successful in quantitatively describing both

phenomena.

While Landau’s theory was largely successful in many ways, it still lacked a

microscopic explanation. Bogoliubov [16] bridged some of the gap between Lan-

dau’s model and Bose-Einstein condensation. By considering the case of a weakly

interacting BEC, he showed that the excitations needed to be transformed into col-

lective modes. The excitation spectra of these modes had a linear dispersion relation

similar to that of the phonon modes. It is unfortunate that helium was the only su-

perfluid available back then. While the Bogoliubov approach was not very popular

with helium II, it has been hugely successful with ultracold gas BECs and accurately

models the excitation spectrum and dynamics. Still, even in the context of liquid

helium, Bogoliubov made the connection between Landau’s two-fluid approach to a

microscopic theory of Bose-Einstein condensation.

Further research on the connection between helium II and Bose-Einstein con-

densation [17] made the distinction between the BEC fraction and superfluid frac-

tion. The former refers to the fraction of atoms in a single quantum state. Penrose

and Onsager [17] estimated that, at absolute zero, ≈ 8% of the atoms were Bose

condensed, while according to the Landau theory, at absolute zero, the superfluid

fraction should approach unity. Neutron scattering experiments [18] have more or

less confirmed the predicted (the ≈10%) Bose condensed fraction in nearly zero

temperature liquid helium (see Griffin [19] for an extensive discussion).

Before we move on, there is one final point of Landau’s theory relevant to

our experiment. The theory predicts the existence of a critical velocity that de-

pends on the energy-momentum dispersion of the low energy excitations, above

which superfluid flow can dissipate into other excitations. However, experiments of

that time showed that superfluid critical velocity was about 2 orders of magnitude

less than what one would expect from the superfluid phonon and roton excitation

spectrum [20]. The discrepancy was explained later in terms of quantized vortices,
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which could also contribute to dissipation. Nevertheless, the Landau theory set the

framework for understanding superfluidity, upon which further developments could

take place.

1.1.c Rotation and vortices in helium II

Landau stated that the superfluid fraction was irrotational (∇×v = 0, where

v is the velocity field), and that only the normal component would move if helium

II were placed in a rotating vessel. However, experiments at the time indicated that

the superfluid was not irrotational [21, 22]. Onsager [23] and Feynman [24] made

an important addition to the superfluid theory, introducing the notion of quantized

vortex lines2 in a superfluid, which could allow the superfluid to rotate. Since the su-

perfluid density is zero at the vortex line, the geometry becomes multiply connected

and the irrotationality condition of Landau’s theory is not violated. Feynman also

suggested that a vortex line closed into itself (vortex-ring) of appropriate size could

be the roton excitation of the Landau theory.

Evidence of quantized vortex lines in liquid helium was seen in various ways.

Vinen [25, 26] studied the oscillation modes of a fine wire in rotating helium super-

fluid, and observed a stable single quantum of circulation around the wire. Steyert

et al. [27] used hydrogen-deuterium mixture “snow flakes” (H-D mixture adjusted

to give particles of the same density as He) to track the rotation of helium, and

saw evidence of quantized flow. Other experiments [28–30] have studied quantized

vortices using charged ions trapped in the vortex core. Of them, Yarmchuk and

Packard [30] obtained a lattice pattern for the arrangement of quantized vortices

that matched theoretical predictions.

Another consequence of quantized vortex lines [24] is a modification of the

superfluid excited state spectrum, particularly in finite geometries. For flow in

a cylindrical channel, dissipation occurs at lower flow velocities via a vortex-ring

2While the standard definition of a vortex line is something that is straight with circulation

around it, vortex lines may be curved. Vortex lines can either end at the superfluid boundary or

can close upon themselves.
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mechanism rather than by phonon or roton mechanisms. The reduced critical ve-

locity is referred to as the Feynman critical velocity (see Wagner [31] or Varoquaux

[32]). Evidence of quantized vortex-ring dissipation events has been observed in

flow of helium II through a channel [33–35]. The critical flow velocities for such

experiments were found to be consistent with estimates of the Feynman critical

velocity [32].

At this point, I need to emphasize that this introduction covers only a tiny

fraction of the literature on superfluid helium. There have been a lot of studies on

various other aspects, such as the specific heat of helium II (discussed by Landau

[13]), superfluidity in 3He [36, 37], the third sound [38], helium gyroscopes [39, 40],

etc., which are beyond the scope of this thesis. We will now turn to the more recent

history of superfluidity in atomic Bose gases.

1.2 Ultracold gases and superfluidity

Advances in laser cooling of atoms in the 1980s opened up the field of ultracold

gases and led to the observation of Bose-Einstein condensation in alkali gases [41–43]

in 1995. Atomic Bose-Einstein condensates (BECs) are very different from liquid

helium, typically involving 106 atoms or less, which amounts to ∼ 10−17 grams

of atoms (densities < 1020 atoms/m−3), compared to the & 100 grams (density

≈ 1028 atoms/m−3) for liquid helium. Ultracold gases also have weak interactions

compared to the case of liquid helium, which has made observing Bose-Einstein

condensation relatively easier. Some of the aspects of superfluidity such as quantized

vortices have been clearly observed [44–47], but others such as dissipationless flow

are more involved. Ironically, some of the first experiments showing superfluidity in

liquid helium [9, 10] are nearly impossible to replicate in ultracold gases owing to

constraints of the system. However, it is still possible to observe dissipationless flow

in a BEC, which is an important part of this thesis.

There are several advantages to using ultracold gases for studying superfluidity,

compared to the superfluid helium experiments.
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• Pure ground state : The ability to attain a nearly pure BEC enables one to

reach the ground state of the system with almost no thermal excitations or

quantum depletion. This allows a better study of the condensed phase, with

thermal excitations being introduced as and when needed.

• Arbitrary, dynamic potentials : With cold atoms, one can create almost arbi-

trary potentials with light fields and magnetic gradients. This is particularly

advantageous when trying to produce strong confinement for atoms. One can

also create time varying potentials, both adiabatic and sudden, and so can

conveniently switch between one potential and another.

• Direct imaging : Exploiting the strong interaction of ultracold gases with

light, one can directly image the atom density. In addition, one can make

interferometric measurements to obtain the coherence length and phase.

• Simpler system : Atomic BECs have low densities and atom-atom interactions

can be completely determined by the s-wave scattering length, in contrast with

helium, where both the attractive van der Waal’s interactions and the short

range repulsion play a role. Hence, one can more exactly model atomic BECs

from first principles.

Atomic BECs are typically held in traps having dimensions of around 100 µm.

Creating flow in such a system is not easy, and observing superflow even more tricky.

A first step in that direction is to look for vortices. While experiments at JILA [44]

were the first to create a vortex in a BEC, experiments at ENS, Paris [45, 46] were

the first to observe the hydrodynamic nature of superfluidity, which was done by

stirring a BEC with a focused laser beam. For low stirring speeds, there were no

excitations seen. As the speed was increased, vortices began to appear.

The experiments tell us two things. First, the appearance of vortices in these

experiments indicates hydrodynamic behavior as one would expect for a fluid (as

opposed to a gas) and evidence of quantized vortices, which is an indication of

superfluidity. Second, the lack of excitations at low speeds for the Paris experiment
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Figure 1.2: Observation of vortex lattices (from Abo-Shaeer et al. [47]): The figure show

density distributions of an image of a circular cloud. The density holes in the cloud are

vortices. The images show a BEC with approximately (A) 16, (B) 32, (C) 80, and (D) 130

vortices. The triangular lattice pattern minimizes the energy of the rotating superfluid.

is an indication of superflow, where there is dissipationless flow in the BEC around

the laser beam.

In further experiments in stirring a BEC, Abo-Shaeer et al. [47] observed the

formation of a stable vortex lattice (see figure 1.2). These experiments made the

connection between angular momentum in a BEC to magnetic field in a type-II

superconductor. When the magnetic field exceeds a certain critical value, the mag-

netic flux penetrates through singly quantized lines of flux with non-superconducting

cores. Analogously, in a BEC, the rotation penetrates through quantized vortices

of rotation flux, which have cores where the BEC density goes to zero.

There have been other experiments indirectly looking for superflow by studying

the effect of dragging an object (a focused laser beam, which serves as a repulsive

potential) through a BEC [48–51]. In all these experiments, there was an onset of

excitations only when the speed of the moving object crossed a certain threshold,

indicating dissipationless flow for low speeds. This was taken further in experiments

observing persistent currents. Ryu et al. [52] observed stable persistent flow in a

multiply connected BEC. The flow was found to persist without decay for up to 10

s, limited only by experimental factors such as disortion of the trap geometry due

to relative drift between trapping fields, and the BEC lifetime in the trap. Since

there was only one quantum of flow, any dissipation would lead to a complete loss
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of circulation. While 10 seconds of dissipationless flow may seem a short time for

something that is supposed to be persistent, it needs to be seen in context of the

timescales on which BEC dynamics (based on the kinetic and interaction energies)

occur, which are of the order of tens of milliseconds. This experiment makes the

connection back to the original superfluidity experiments of Kapitza [9] and Allen

and Misener [10].

Having realized persistent flow, the question may arise: What is left to study in

superfluidity of atomic BECs besides pushing the flow lifetime to longer timescales?

While superfluidity may have been observed in BECs, there are still several

unanswered questions. The observed critical velocities for the breakdown of super-

flow have been found to be lower than simple predictions. The mechanisms for decay

have not been fully understood. The role of temperature in the decay of superflow

has not been fully explored.

The relation of the dimensionality of the cloud to superfluidity opens several

questions. While a three-dimensional (3D) Bose gas is expected to Bose condense

with the BEC being superfluid, a two-dimensional (2D) Bose gas is expected to

undergo a superfluid transition (but not BEC). Is it possible to observe superfluidity

in a 2D Bose gas? In the case of a highly anisotropic trap, will reduced dimensional

effects play a role? What kind of transition will a quasi-2D Bose gas undergo?

Several of these questions boil down to a single fundamental question. What

is the relation between Bose-Einstein condensation and superfluidity? Both phe-

nomena involve Bose gases at low temperatures. However, superfluidity requires

interaction, while BEC does not [7, 8]. While theoretical frameworks, such as the

Bogoliubov formulation [16] do bridge some of the gap, it is nevertheless impor-

tant for experiments to validate the theoretical predictions, and to probe interesting

dimensional cross-overs which are not easily understood by theory.

As an extension, there is also a need to better understand the connection

between bosonic superfluidity (and BECs) and superconductivity. Superconductors

have been used in several practical applications. Principles of superconductivity are

used in making SQUIDs for sensitive detection of magnetic fields. Since magnetic
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field in a superconductor is analogous to rotation in a BEC, building an analogous

device using a BEC could make sensitive measurements of angular velocity. Hence,

while superconductors may be fundamentally different from BECs, it is important

to make connections wherever possible.

1.3 In this thesis

In this thesis, I will present my research work at NIST. The work was done

working with other researchers at NIST, Gaithersburg, during the period 2006 to

2010. In a first set of experiments [53], we studied the 2D superfluid transition in a

sheet-like trap, which I will only briefly talk about. In a second set of experiments,

we studied the breakdown of superflow [54] in a toroidal trap. During this time, we

developed a new imaging technique [55] and an extensive set of tools for creating

and manipulating a BEC in a toroidal trap.

In chapter 2, I will give an introduction to the theory of BECs and superflu-

idity. Chapter 3 gives an overview of the experimental setup and introduces the

concepts of atomic physics that are crucial for the creation and manipulation of

BECs. Chapter 4 deals with partial transfer absorption imaging, the new technique

developed to image optically thick clouds, largely based on Ramanathan et al. [55].

In chapters 5 and 6, I will go over details about the ring trap, and persistent currents

respectively. In chapter 7, I will discuss our experiments studying the breakdown of

superflow, before concluding in chapter 8.
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Chapter 2

Theory of superfluidity and Bose-Einstein condensates

Historically, the study Bose-Einstein condensation was ruled by liquid helium,

and was understood in terms of the Landau two-fluid model (see Landau and Lifshitz

[56], Daunt and Smith [57], Khalatnikov [58] or Tilley and Tilley [59] for example).

However, with the advent of atomic Bose-Einstein condensates (BECs), the phe-

nomenon is now understood in terms of the weakly interacting Bose gas model,

using the formalism first developed by Bogoliubov [16]. Since the formalism has a

microscopic basis, derived by adding a perturbation to the non-interacting Bose gas,

it is more useful as a starting point for understanding superfluidity in BECs than

the original Landau theory. Nevertheless, it is important to remember that a lot

of the theory for superfluidity and BECs, such as coherence, excitations, vortices

and the critical velocity had been developed prior to atomic BECs, despite the fact

that liquid helium was the only available superfluid. For a more complete review on

superfluidity in liquid helium, see Khalatnikov [58] or Tilley and Tilley [59].

In this chapter, I will introduce the concepts of Bose-Einstein condensation

and superfluidity relevant to this thesis, starting from the ideal Bose gas, and then

moving to the weakly interacting gas. I will discuss the excitations of a BEC,

rotation and the critical velocity of flow. The approach used is similar to that of

Pitaevskii and Stringari [60].

2.1 Bose-Einstein condensation in an ideal Bose gas

Before jumping to Bose statistics, we first review the familiar expression for the

occupancy of an energy level, ε of a classical gas, given by the Maxwell-Boltzmann

statistics:

n(ε) = exp

(

µ− ε

kBT

)

, (2.1)
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where µ is the chemical potential, kB is the Boltzmann constant and T is the tem-

perature. At a given chemical potential and temperature, states at lower energies

tend to have higher occupancies than states at higher energies. Looking at equation

(2.1), we see that on raising the chemical potential, the occupancy of all states in-

crease. On lowering the temperature, the occupancy of high energy states sharply

decreases. This characterizes the general description of Maxwell-Boltzmann statis-

tics. The reader should note that in practice (for example, in 3D space), the density

of states at higher energies is larger, which leads to a peak in the density distribution

at a non-zero energy (∝ kBT for a 3D gas with only translation energy).

For bosons, the indistinguishability of particles has to be factored in when ob-

taining the occupancy of a given energy level. The effect of indistinguishability has

been explained in Cornell et al. [61] and illustrated beautifully by Stamper-Kurn [62].

At low occupancies (equivalently low phase-space density), where the probability of

two particles being in the same state is nearly zero, the indistinguishability plays lit-

tle role and one can assume Maxwell-Boltzmann statistics for the system. However,

at higher occupancies (which tend to occur at low temperatures and high density),

one needs to account for Bose-Einstein statistics, which leads to (see Pitaevskii and

Stringari [60] for a derivation):

n(ε) =
1

exp
(

ε−µ
kBT

)

− 1
. (2.2)

As one can see, at a low chemical potential (for a given temperature) such that

ε−µ
kBT

& 4 (e
ε−µ
kBT & 50), equation (2.2) can be approximated by equation (2.1), which

corresponds to the case of low occupancy. The expression is valid for an ideal Bose

gas only when µ < εmin, or equivalently when the chemical potential is less than

the ground state energy. As the chemical potential approaches the ground state

energy (µ → εmin), the occupancy of the ground state, n(εmin) becomes large, which

corresponds to a macroscopic occupation of the ground-state.

For a derivation of Bose-Einstein condensation, one needs to include the den-

sity of states, ρε(ε). The density of states determines the scaling of the number

of particles (or density of particles in space) with µ. Although the effects of indis-

13



tinguishability do play a role at low temperatures (and µ approaching εmin), those

effects may or may not translate to Bose-Einstein condition, depending on ρε(ε). A

full discussion of this can be found in several standard textbooks (Pitaevskii and

Stringari [60] for example). For this chapter, it suffices to say that for a gas in

free space (homogeneous infinite system), only in 3D (or higher dimensions), Bose-

Einstein condensation occurs at non-zero temperatures.

To obtain the conditions for Bose-Einstein condensation, one can take a semi-

classical approach (see Dalfovo et al. [63]) and look at the 3D phase-space density

ρλ3T , where ρ = N/V is the spatial density (number of particles divided by the

volume of the sample) and λT =
√

2π~2/mkBT is the thermal de Broglie wavelength,

which defines a characteristic length scale. When ρλ3T ≪ 1, the phase-space density

is low and the gas behaves like a classical gas. When ρλ3T & 1 1, Bose-Einstein

condensation occurs. This can be seen as the overlap of de Broglie waves of different

particles to form a macroscopic wave. For Bose-Einstein condensation, the critical

density as a function of temperature, from the expression of phase-space density, is

ρ ∼
(

mkBT

2π~2

)3/2

. (2.3)

In practice, rather than ρ, it is easier to measure N , the total number of

atoms, which can be directly measured by absorption or other imaging techniques.

One can express the equation (2.3) in terms of the number of atoms to obtain the

transition temperature at which atoms are expected to Bose condense [64]. For a

3D (harmonically) trapped Bose gas, the critical number is given by,

Nc ∼
(

kBT

~ω0

)3

, (2.4)

where ω0 is the harmonic oscillator frequency of the trap (assuming it to be isotropic

in 3D). As can be seen in equations (2.3) and (2.4), for a non-interacting Bose gas,

the critical number of atoms (or density) for Bose-Einstein condensation has a direct

relationship with the temperature. As the temperature increases, the critical number

also increases.
1The exact value is a number that can obtained by a rigorous calculation involving the zeta

function integral [56].
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The non-interacting ideal Bose gas model is very useful to illustrate the Bose-

Einstein condensation process, obtain the temperature-number relation and estimate

the transition temperature. However, it does not account for superfluidity and so

has limited value. For the interested reader, there are several sources which contain

a more detailed and rigorous derivation of the above relations (Dalfovo et al. [63],

Pitaevskii and Stringari [60], Pethick and Smith [65]).

While in theory a Bose condensate can be obtained at any temperature, there

are some obvious practical considerations. For example, consider a room temper-

ature gas of sodium, which is bosonic: The critical density for Bose condensation

is ρc ≈ 1032 atoms/ m3 = 106 kg/m3, which is 3 orders of magnitude denser than

sodium metal. Apart from the fact that such densities are impossible to attain at

room temperature, a gas under such conditions would be solid. To get away from

the problem of liquefaction or solidification, one needs to work with gases at low

densities2. In our sodium BEC experiment, we work at temperatures around 40

nK, and densities of ρ ∼ 1019 atoms/m3 > ρc ∼ 1017 atoms/m3. In terms of atom

numbers, we obtain N ∼ 105 > Nc ∼ 100 (using ω0 ≈ 70 Hz).

2.2 The weakly interacting Bose gas

The previous section described an ideal non-interacting Bose gas. Just to

reiterate, Bose-Einstein condensation occurs as a consequence of indistinguishability

and Bose-Einstein statistics, and occurs even in the case of a non-interacting gas.

We will now deal with the practical case of an interacting Bose gas.

Taking the general situation, interaction in gases can cause a variety of effects,

such as condensation to liquids or solids or forming molecules. However, with ultra-

cold gases, we work at low densities and ultra-high vacuum. From an experimental

point of view, such conditions prevent any of those processes from taking place and

2In fact, even at BEC temperatures, the equilibrium state of sodium, or any other Bose gases

is solid. The BEC is a metastable state. The low densities which we work with make the time

constant for forming molecules much longer than experimental timescales and hence the Bose

condensate behaves as an equilibrium state [61].
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allow atoms to be cooled to the nanokelvin BEC temperatures. From a theoretical

point of view, such conditions greatly simplify the picture and allow us to character-

ize the interaction of the cloud based on the atom-atom low-energy scattering. The

experimental setup and techniques to reach condensation are discussed in chapter 3.

We will now talk about the treatment of interactions.

2.2.a Atom-atom interactions

Ultracold gas experiments are typically performed under ultra-high vacuum

(10−14 atm for background gas), to ensure minimal collisions and consequently heat-

ing from background gas. For the atomic species under considerations, we work at

low densities, 5-10 orders of magnitude below a gas at STP (Standard Temperature

and Pressure: 20 Celsius, 1 atmosphere). Under such conditions, simultaneous in-

teraction between three or more atoms can be safely neglected, and the formation

of molecules is unlikely. This leaves us with just the two-body interaction. The

two-body interaction is normally characterized by the van der Waals potential (see

Pethick and Smith [65] for a detailed description of how the potential plays a role),

the long-range attraction that arises from the (induced) electric dipole-dipole inter-

action, and the strong repulsive core due to the repulsion from the overlap of the

electron clouds. However, given the low temperature of the sample, we can make a

further simplifying assumption. Atoms scatter at low momenta ~k (k is the mag-

nitude of the wave-vector of the atom-atom scattering wavefunction), such that the

kinetic energy is much below the angular momentum barrier of p-wave (scattering

process that has one unit of angular momentum, l = 1) and higher modes (l > 1):

~
2k2

2m
≪ ~

2

2mr20
⇔ k ≪ 1

r0
, (2.5)

where m is the mass of the atom, and r0 is the range of the potential. For any

scattering process that has l ≥ 1, the interacting atoms do not get within the range

of the inter-atomic potential. To give an estimate of a typical scenario, for sodium

atoms at a temperature T=10 µK, ~2k2/2m ∼ kBT ≈ 10−5 × ~
2/2mr20 (r0 < 1 nm,

or twenty Bohr radii [65]), and hence the interaction can be characterized by the

16



s-wave scattering length, which arises from the l = 0 scattering process.

For atom-atom collision processes, it is impossible from theory alone to evalu-

ate scattering properties of cold atoms because the atom-atom interaction potentials

cannot be calculated with sufficient accuracy [65]. However, using photoassociation

spectroscopy and the study of Feshbach resonances (see Weiner et al. [66]), infor-

mation about the interaction potentials can be obtained, which could then be used

to characterize the scattering process and make further experimental predictions.

Hence, the scattering process is determined, based on experiments.

In an elastic scattering process, there is an incoming wave and an outgoing

wave (both with wave vector magnitude k). The phase-shift of the outgoing wave

with respect to the incoming wave determines the strength of the scattering process.

The phase-shift, δ0, in the long wavelenght limit of k, k → 0, can be expressed as

δ0 = −ka, where a is the scattering length. Consequently, the scattering length can

be expressed as

a =
δ0
k

∣

∣

∣

∣

k→0

. (2.6)

Nearly all the properties of low-energy scattering can be obtained from the

s-wave scattering length a. As for the nature of the interaction, a > 0 implies

repulsive interaction, while a < 0 implies attractive interaction. The strength of the

scattering process is given by the total scattering cross-section, 4πa2. The scattering

cross-section is used in calculating the elastic collision rate, which is important to

model evaporative cooling. The scattering length also plays a role in BECs, where

the interaction energy term of the hamiltonian is proportional to a.

2.2.b The ground state

The problem of the weakly-interacting Bose gas was first treated by Bogoliubov

[16], using a mean-field based approach, where the many-body wavefunction (or

field operator) was expressed in terms of a single particle wavefunction basis. In

this section and the next, we will discuss the ground state properties of a Bose gas

and then solve for the low-excitation spectrum, based on the Bogoliubov theory of
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a weakly-interacting Bose gas.

In a uniform system, the density is constant in space and it is useful to go into

a momentum basis, ψ(p). Such a basis also separates the zero-momentum Bose-

condensed ground state from excited states. The normalization condition gives
∫

ψ∗(p)ψ(p)dp = N , where N is the number of particles. The energy of the system

can be written as:

E = 〈H̄〉 =

∫

ψ∗(p)
p2

2m
ψ(p)dp

+
1

2V

∫

dp1dp2ψ
∗(p1)ψ

∗(p2)ψ(p1 + q)ψ(p2 − q)Vqdq, (2.7)

where p1+q, p2−q are the incoming wave vectors, p1 and p2 are the outgoing wave

vectors, Vq is the scattering angle-dependent time-averaged scattering potential,

and V is the volume of the system. As discussed in the previous section, at low

temperatures, only the spherically symmetric s-wave scattering plays a role, and

Vq can be integrated over q to give 4π~2a/m. The energy functional can then be

simplified to

E =

∫

ψ∗(p)
p2

2m
ψ(p)dp+

g

2V

∫

dp1dp2ψ
∗(p1)ψ

∗(p2)ψ(p1)ψ(p2), (2.8)

where g = 4π~2a/m. At T = 0, all the atoms are in the ground state, p = 0, giving

|ψ(p)|2 = |ψ0|2 = Nδ(p). (2.9)

The δ(p) expresses the fact that for a non-interacting Bose gas, the ground state is

the zero momentum state. The ground state energy E0 is given by,

E0 =
N2g

2V
=
Ngρ

2
, (2.10)

where ρ = N/V . The ground state energy per particle E0/N is proportional to

the particle density and the interaction strength. Using equation (2.10), we can

now go ahead and calculate the sound speed, c, which is the speed of propagation

of compression waves, for the system. The thermodynamic pressure of the weakly

interacting Bose gas can be obtained using

P = −∂E0

∂V
=
gρ2

2
. (2.11)
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The compressibility of the system can be expressed as

∂ρ

∂P
=

1

gρ
. (2.12)

The sound speed is given by the ratio of the square root of the elasticity, ρ∂P
∂ρ
,

divided by the (mass) density mρ, giving

c =

√

gρ

m
. (2.13)

In taking the square-root, we assume that g, and hence the s-wave scattering

length (a) are positive, implying repulsive interaction3.

2.2.c Low-energy excitation spectrum

The physics of a weakly interacting Bose gas depends strongly on the low-

energy excitations. For example, the decay of superflow occurs via the transfer of

energy to such excitations. The low-energy excitation spectrum is derived using the

Bogoliubov-de Gennes method [67]. While this is generally worked out using the

second-quantization operator notation [60], I will write it in terms of the wavefunc-

tions. We begin with writing out the time-dependent Schrödinger equation4 for the

energy functional in equation (2.8), using i~∂ψ/∂t = δE/δψ∗ (see Pitaevskii and

Stringari [60] for more details) to get

p2

2m
ψ(p) + gρψ(p) = i~

∂ψ(p)

∂t
. (2.14)

The above equation is valid only when ψ is the order parameter. The or-

der parameter characterizes the macroscopically occupied states. For a degenerate,

weakly-interacting Bose gas in thermal equilibrium, the order parameter refers to

the ground state wavefunction (for a non-interacting gas, this is identical to the sin-

gle particle ground state). However, often the superfluid has been perturbed (and

hence it is not in thermal equilibrium), in which case the order parameter need not

be the ground state.

3In general, interactions cause an attractive BEC having a < 0 to collapse upon itself [63].
4If written in a position basis, equation (2.14) would be a variant of the Gross-Pitaevskii

equation, which is discussed in section 2.3.
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We continue to use the momentum basis (will not explicitly show p depen-

dence), and set a trial wavefunction, that consists of the ground state ψ0, with a

small additional perturbation ψ′ added to it:

ψ = ψ0 + uψ′ + vψ′∗, (2.15)

where u and v are complex numbers. This is known as the Bogoliubov transforma-

tion, where ψ′∗ is the Hermitian conjugate of ψ′. Expressing ψ0 explicitly in terms

of the condensate number and phase,

ψ0(p) =
√

N0δ(p)e
iφ, (2.16)

we assume that the amplitude, the square-root of the condensate number, is time

independent, while the phase, φ, can evolve in time. In the formalism we are using,

the wavefunctions ψ′ and ψ′∗ are constant, and all the variation lies in the complex

amplitudes u and v. We now substitute ψ into equation (2.14) to obtain

p2

2m
(
√

N0δ(p)e
iφ + uψ′ + vψ′∗) + g(

√

N0δ(p)e
iφ + uψ′ + vψ′∗)2

×(
√

N0δ(p)e
−iφ + u∗ψ′∗ + v∗ψ′)

= i~
∂

∂t
(
√

N0δ(p)e
iφ + uψ′ + vψ′∗). (2.17)

We now make the assumption that the excitation, ψ′ has a definite momentum,

p′, and correspondingly, ψ′∗ has a momentum, −p′. The ground state corresponds

to a zero momentum eigenstate. Multiplying through, we keep terms to first order

in u and v:

p′2

2m
(uψ′ + vψ′∗) + gρ0(

√

N0δ(p)e
iφ + 2uψ′ + 2vψ′∗ + eiφu∗ψ′∗ + eiφv∗ψ′)

= i~
∂

∂t
(
√

N0δ(p)e
iφ + uψ′ + vψ′∗). (2.18)

We can now separate terms containing individual wavefunctions in order to

solve for u, v and φ:

p′2

2m
uψ′ + gρ0(2uψ

′ + e2iφv∗ψ′) = i~
∂u

∂t
ψ′, (2.19)

p′2

2m
vψ′∗ + gρ0(2vψ

′∗ + e2iφu∗ψ′∗) = i~
∂v

∂t
ψ′∗, (2.20)

gρ0
√

N0e
iφ = i~

√

N0
∂eiφ

∂t
. (2.21)
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Solving for φ from equation (2.21), we obtain

φ = −gρ0t
~
. (2.22)

We now multiply e−iφ through equations (2.19) and (2.20) and substitute,

u = u′eiφ and v = v′eiφ to obtain the matrix differential equation





p′2

2m
+ gρ0 −gρ0
gρ0 − p′2

2m
− gρ0









u′

−v′∗



 = i~
∂

∂t





u′

−v′∗



 . (2.23)

By taking the complex conjugate of equation (2.20), we have obtained two

linear first order differential equations, shown in equation (2.23). The stationary

solutions of the excitation (amplitudes of u′ and v′ are constant in time) are the

eigenmodes of the matrix, of the form β1ψ
′+β2ψ

′∗ which have energies corresponding

to the eigenvalues of the matrix. The energy of the excitation, ε(p′) from the positive

eigenvalue is:

ε(p′) =

√

(

p′2

2m

)2

+
p′2gρ0
m

. (2.24)

This is the fundamental expression for Bogoliubov excitation modes, containing the

energy-momentum dispersion relation. At low momenta, p′2 ≪ gρ0m, the modes

resemble a phononic excitation spectrum, which can be expressed in terms of the

sound speed

ε(p′) = cp′. (2.25)

In this derivation, we have assumed a uniform, infinite system, and the excita-

tion spectrum is phononic at low momenta and single particle-like at high momenta

(p′2 ≫ gρ0m). In a finite and therefore nonuniform system, however, excitations

such as vortex rings have a lower energy [24].

As mentioned previously, Landau predicted the decay of superflow to occur

when the flow velocity exceeds a critical velocity set by the energy-momentum dis-

persion of the lowest energy excitations. Given the Bogoliubov energy-momentum

relation, shown in equation (2.25), the Landau critical velocity is the speed of sound

c (derived in the section 2.4).
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2.3 Bose gas in an inhomogeneous system: The GP equation

Until now, we have talked about a Bose condensate in a uniform system.

The assumption of uniformity holds better for liquid helium (although the weakly-

interacting Bose gas model does not apply), since it is produced in large quantities

and is reasonably incompressible. As mentioned previously, in contrast to helium,

atomic BECs consist of relatively very few atoms. In addition, they are held at

very low temperatures (<1 µK as opposed to ≈0.1 K of superfluid helium) and so

any heat absorbed from the surroundings would be catastrophic to the sample. For

this reason, atomic BECs are held in traps created by electromagnetic fields and are

suspended in ultra-high vacuum so that there is no contact with the surroundings.

A consequence of such traps is that atomic BECs are always in an inhomogeneous

trapping potential.

To model atomic BECs accurately, which due to their diluteness are also much

more compressible, we modify equation (2.14) to include a spatially varying trapping

potential. Also, we use the wavefunction defined in the position basis. This non-

linear Schrödinger equation, known as the Gross-Pitaevskii (GP) [68–70] equation,

is given by

i~
∂

∂t
ψ(r, t) =

(

−~
2∇2

2m
+ V (r) + g|ψ(r, t)|2

)

ψ(r, t), (2.26)

where ψ(r, t) is the order parameter and V (r) is the externally applied potential.

The condensate density is given by ρ(r, t) = |ψ(r, t)|2. The stationary solution

of the GP equation gives the ground state wavefunction, and its eigenvalue, µ,

corresponds to the ground state energy (per particle). µ can also be taken as the

chemical potential of the system, which is the energy cost of adding a particle to

the BEC. The stationary GP equation is

µψ(r) =

(

−~
2∇2

2m
+ V (r) + g|ψ(r)|2

)

ψ(r). (2.27)

Once the ground state wavefunction and ground state energy are obtained, the

low-energy excitations can be perturbatively obtained by the Bogoliubov-de Gennes

method, using a trial wavefunction similar to equation (2.15).
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While the full GP equation is not easy to solve, there are simple analytic

solutions in certain limits. We start by looking at the terms contained in the GP

Hamiltonian, namely the kinetic energy, the potential energy and the interaction

energy, and consider the cases where one of the terms can be ignored.

The potential energy term is always present, except for when the cloud is

released in time-of-flight, and hence cannot be ignored for the trapped cloud.

In the absence of interaction (g = 0) and hence zero interaction energy, the

GP equation becomes a linear Schrödinger equation, and one can use the sin-

gle particle solution. For a harmonic confinement potential along one dimension

(V (x) = 1
2
mω2x2, with ω being the oscillator angular frequency), using the single

particle ground state, ψ0 in that dimension is given by (see, for example, Sakurai

[71])

|ψ0(x)|2 ∝ exp

(

−x
2

x20

)

, (2.28)

where x0 =
√

~/mω is the harmonic oscillator length (plotted in figure 2.1 (left)).

Even for traps that are not perfectly harmonic (have small quartic or higher order

terms), the harmonic oscillator approximation can be used. Corrections to the

ground state are typically small, and usually do not affect the physics. For a 3D

trap in the absence of interaction, one gets solutions of the form of equation (2.28)

for all 3 directions. This harmonic oscillator limit solution is valid at low densities,

where the mean-field is small compared to the kinetic energy.

In the opposite limit, where the interaction energy is much larger than the

kinetic energy, the GP equation is no longer a differential equation and the ground

state of the GP equation can be easily solved, given by

g|ψ0(r)|2 = µ− V (r) for µ > V (r)

= 0 for µ < V (r). (2.29)

This limit is known as the Thomas-Fermi (TF) limit5. The TF approximation

5The Thomas-Fermi limit model, developed shortly after the introduction of the Schrödinger

equation, was originally used to model an electron gas (Thomas [72], Fermi [73]) and has been

supplanted by density functional theory for electrons.
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Figure 2.1: Solution to GP equation for a 1D harmonic trap in certain limits : The

condensate density |ψ0|2 is plotted as a function of the position. (left) The harmonic

oscillator ground state solution in the absence of interactions shows a Gaussian profile.

(right) The Thomas-Fermi solution for strong interactions, where the kinetic energy has

been neglected, follows the shape of the trap leading to the profile of an inverted parabola.

note: While the figures show the two solutions having the same length scale, this need not

be the case.

can be applied when the interaction energy is significantly higher than the ground

state kinetic energy, i.e. g|ψ0|2 ≫ ~ω
4
.

Applying the TF solution to a 1D harmonic oscillator, we obtain a density

profile shaped as an inverted parabola (plotted in figure 2.1 (right)):

|ψ0(x)|2 ∝
(

1− x2

x20

)

for |x| < x0

= 0 for |x| > x0 (2.30)

where x0 =
√

2µ/mω2. The TF solution is not valid for a small region (discontinuity

of the slope seen in the plot at x = ±1), where x is close to x0. However, so long as

we are looking at the overall shape and dynamics, and not focusing on that region,

the TF approximation works very well.

In this section, we have seen the solutions of the GP equation in both the non-

interacting and the TF regimes, for a sample problem, the 1D harmonic oscillator.

While such solutions are not complete, they are nevertheless instructive about what

physics to expect. We will be discussing the BEC in a ring in chapter 5.
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Before we move on, the reader should note that the GP equation is very

important in characterizing a BEC. While most of the theory in this chapter has

been presented assuming a uniform system so that the physics is more apparent,

nearly all the theory from the low-energy excitations to the critical velocities have

to be modified suitably for a non-uniform BEC, using the GP equation. We will

now move on to other properties of a Bose superfluid, while still using the weakly-

interacting Bose gas model to illustrate the physics.

2.4 The Landau critical velocity

In Landau’s 1941 paper [13], Landau made the argument that “... If such a

liquid is considered when flowing as a whole along a capillary, it can be easily shown

that the interactions between it and the walls of the capillary cannot lead (when the

velocity of flow is not too great) to an excitation of internal motion, i.e. to an energy

dissipation;” The Landau critical velocity is based on an energetic argument, which

I will derive here.

We consider an excitation which is characterized by a velocity field v(r), and a

number density field ρ(r). The energy of the (v(r), ρ(r)) excitation in an otherwise

stationary fluid is (from ε = 1
2
mv2)

ε = m

∫

dr

(

1

2
ρ(r)v(r) · v(r)

)

, (2.31)

where the integral is over the superfluid volume. We now consider the same excita-

tion in a superfluid moving with velocity vs. By Galilean invariance, the energy of

the same excitation with respect to the moving fluid is

ε′ = m

∫

dr

(

1

2
ρ(r)(v(r) + vs) · (v(r) + vs)−

1

2
ρ(r)vs · vs

)

. (2.32)

Substituting p = m
∫

drρ(r)v(r), we can express ε′ as

ε′ = ε+ p · vs. (2.33)

In the rest (lab) frame, there is always an energy cost to create the (v(r), ρ(r))

excitation, which is ε. However, in the moving frame, for a velocity vs, such that,

p · vs + ε < 0,
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or equivalently, for an appropriately chosen direction for vs, and

vs >
ε

p
, (2.34)

it will be energetically favorable to create the excitation. In creating the excitation,

energy from the flow is transferred to the excitation, and the flow dissipates. From

this, we can deduce that the critical velocity at which superflow breaks down is

given by

vc = min

{

ε

p

}

, (2.35)

where the minimum refers to the excitation with the lowest ε/p ratio. Below this

critical velocity, it is always energetically unfavorable to create any excitation.

For a phononic excitation spectrum, with a dispersion relation approximated

by equation (2.25), the critical velocity is given by the speed of sound,

vc = c. (2.36)

In Landau’s original paper, he postulated the existence of roton excitations

in liquid helium, which modify the critical flow velocity. Landau referred to rotons

as the vortex spectrum, and computed the exact energy of rotons on the basis

of experimental measurements of specific heat. While the exact nature of rotons

are still not fully understood, they are a consequence of the strong inter-particle

interaction in liquid helium, and do not play a role in weakly interacting Bose

gases. The excitation spectra of atomic Bose gases have been found to agree with

Bogoliubov theory (see Dalfovo et al. [63]).

2.5 Irrotational flow and quantized vortices

To treat vortices in Bose gas, as with the Bose gas in an inhomogeneous system

(section 2.3), we use the wavefunction in spatial coordinates, ψ(r) = |ψ(r)|eiφ(r),
where the density is given by ρ(r) = |ψ(r)|2. The flow velocity, vs(r) for such a

wavefunction is given by

vs(r)ψ(r) = −i ~
m
∇ψ(r). (2.37)
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If the fluid is uniform, |ψ(r)| = constant, we get

vs(r) =
~

m
∇φ(r). (2.38)

From equation (2.38), we can see that,

∇× vs(r) ∝ ∇×∇φ(r) = 0, (2.39)

and hence superfluid flow for a uniform system is irrotational6. We now look at

the more general case of a simply-connected geometry (see Fig 2.2 (left))7 and the

integral of the flow velocity along a path from r1 to r2, using equation (2.37), we

obtain
m

~

∫ r2

r1

dl · vs(r) = φ(r2)− φ(r1). (2.40)

If the path were closed, r1 = r2, the integral goes to zero8, and hence for a simply

connected geometry (see figure 2.2 left),

m

~

∮

dl · vs = 0, (2.41)

which implies that there cannot be any flow along a closed path. This is a larger

statement of no rotation than the local irrotational flow condition of equation (2.39).

In essence, the single-valuedness of φ(r) implies that there is no closed loop flow in

any simply-connected geometry.

In multiply-connected geometry9 (where the condition of simply-connected

geometry does not hold, see Fig 2.2 (right)), however, if one were to integrate the

6This is in general true for any superfluid [2], but easier to show for the case of the uniform

system.
7A simply-connected geometry is defined as a geometry, where given two points r1 and r2

connected by a path l (that stays within the geometry), one can continuously deform the path to

obtain all possible paths between r1 and r2.
8This can also be arrived at by applying Stoke’s theorem to equation (2.39 [2].)
9Multiply-connected geometry can arise in two ways. The trap or the container itself could be

multiply-connected, or, there maybe a vortex in the system which causes a density zero at its core,

leading to a multiply-connected geometry. Here, I am using multiply-connected in the general

sense.
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dl   φ=0
dl   φ=2π n

Figure 2.2: In the case of simply-connected geometry (left), the phase winding around any

closed path is zero implying no closed loop flow, while in the case of multiply-connected

geometry (right), by taking the path shown in the diagram, the phase winding can be any

integral multiple of 2π, and there can be closed loop flow.

phase over a path which encloses an area that contains the region of no superfluid

(shown in figure 2.2 right), one obtains

m

~

∮

dl · vs = 2πn, (2.42)

where n is an integer. Equation (2.42)10 shows two things. Superfluid flow in

multiply-connected geometry can have closed loop flow; and circulation is quantized

in units of 2π.

In addition to the concept of circulation in multiply-connected geometry, On-

sager [23] and Feynman [24] also introduced the concept of quantized vortex lines,

which can carry circulation in a superfluid. At the center of each vortex line is

a vortex core, where the superfluid density goes to zero and the superfluid phase

has a singularity. A vortex line in a simply-connected geometry breaks the simply-

connected condition (see figure 2.3 (left)), since the superfluid density goes to zero at

its core. Hence, even a simply-connected (or what appears to be simply-connected)

10While equation (2.42) looks identical to equation (2.41), the non-superfluid region enclosed

by the path prevents the application of Stoke’s theorem. Given that ψ(r) is a complex field, the

integral need not be zero and can be any integer multiple of 2π [2].
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superfluid can sustain rotation (closed loop flow) via quantized vortex lines. A ro-

tating superfluid is expected to relax to a state with quantized vortex lines, each

having a 2π phase winding. A path enclosing N lines will have a phase winding

of 2πN . For the interested reader, the structure of the vortex core as well as the

lattice-like arrangement of quantized vortices have been studied extensively, and are

reviewed by Glaberson and Donnelly [74].

circulation

quantized 
vortices

L

R

Figure 2.3: Quantized vortices: (left) A single quantized vortex in a large cylinder. The

vortex line extends all the way from the bottom of the cylinder to the top. Quantized

vortices, by virtue of the density zero at the center of the vortex core, allow even simply-

connected superfluids to sustain rotation. (right) An array of quantized vortices carrying

a circulation of 7π is shown. While the phase winding around each vortex is 2π, the phase

winding along the dashed arrow adds up to 14π.

2.5.a Energy of single vortex

We now consider the case of a single quantized vortex in a large uniform

system. For the sake of simplicity, we assume the system to be a large cylinder of

height L and radius R, shown in figure 2.3 (left). The vortex line is at the center of
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the cylinder and extends from the bottom to top11. As mentioned previously, the

superfluid density goes to zero at the center of the vortex line. Owing to cylindrical

symmetry, the phase of the superfluid can be written in terms of r(r, θ, z) coordinates

as

φ = θ. (2.43)

The flow velocity is given by

vs =
~

mr
θ̂. (2.44)

The 1/r dependence of the velocity means that atoms close to the core move

the fastest, while those furthest away move the slowest. This is the exact opposite

of rigid body rotation, where the velocity has an r dependence. The energy of a

single vortex is given by

εv ≈
∫

dr
1

2
ρ0mv

2
s

≈ π~2ρ0L

m
ln
R

rv
, (2.45)

where rv is the size of the vortex core. While the exact calculation has additional

correction terms [60] for small regions of small r, equation (2.45) captures the scaling

necessary for understanding and predicting the physics. The vortex core size rv is

an artificial cut off, put in to avoid the singularity at the center. The value of

rv is obtained by finding the distance at which the kinetic energy of high velocity

field (close to the center of rotation) equals the repulsive mean-field potential of

the superfluid. The vortex-core size (< 1 nm for liquid helium, ∼1 µm for ultracold

gases) is usually much smaller than the size of the system and is often approximated

to be the healing length [63], which is given by

ξ = (8πρa)−1/2. (2.46)

The healing length is the characteristic length at which the superfluid density

changes. For example, for a superfluid in a container with hard walls, the su-

perfluid density has to go to zero at the walls. The superfluid density cannot change

11The reader should note that a vortex line can only terminate at the superfluid boundary or

with itself, as in a vortex ring
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Flow

vortex ring2R

Figure 2.4: Flow decay via formation of vortex ring: The lowest energy excitation is a

vortex ring the size of the channel.

discontinuously. The distance from the hard wall, at which the superfluid density

approaches the mean density in the container scales as the healing length.

Having discussed the case of a simple vortex excitation, we will now talk about

other vortex-like excitations and their role in superfluid dynamics.

2.5.b Decay of flow by vortex excitations

Equation (2.45) also shows that the energy of a vortex diverges with system

size, with both L and R. Consequently, a vortex ring in 3D or a vortex-antivortex

pair in 2D have a lower energy, since their energies do not diverge with system size.

The energy of a vortex ring of radius Rv is proportional to Rv log(Rv/rv) [75]. The

energy of a vortex-antivortex pair in 2D separated by rs is proportional to log(rs/rv).

Hence, these excitations are more likely to play a role in any decay of flow compared

to just a simple vortex line. We shall now discuss the breakdown of superflow in a

cylindrical channel via the formation of a vortex ring.

We consider superfluid flow through a cylinder of radius R (see figure 2.4).

The energy and momentum of a vortex ring excitation are given by [32, 75]

εvr ≈ 2π2
~
2ρRv

m

(

log
Rv

rv
− 7

4

)

, (2.47)

pvr = 2π2
~ρR2

v. (2.48)
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Using equation (2.35), we can find the critical velocity for creating such an excitation:

vc ≈ min

{

~ log(Rv/rv)

mRv

}

(2.49)

The vortex ring with the largest radius, Rv has the lowest critical velocity

(shown in figure 2.4), and hence Rv ∼ R, giving the Feynman critical velocity [24],

vc ≃
~ log(R/rv)

mR
. (2.50)

The above expression is only an approximation and can only give an estimate

of what the critical velocity should be. The expression shows a decreasing trend

with increasing channel size, R. This is counter-intuitive to the notion that flow is

most likely to break at the “weakest” connection or narrowest part of the tubing.

In fact, superflow is expected to decay more easily in wider channels. This could

explain why the original experiments of Kapitza and Allen and Misener had to use

extremely narrow channels in order to observe dissipationless flow. Experiments

studying the critical flow velocity in superfluid helium have been more consistent

with the Feynman critical velocity than the critical velocity for phonon or roton

excitations [76].
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Chapter 3

Sodium Bose-Einstein condensate apparatus

A typical Bose-Einstein condensate (BEC) in our lab consists of 105 sodium

atoms at a temperature of around 40 nK. Such temperatures are orders of magni-

tude colder than liquid nitrogen (≈80 K), liquid helium (∼1 K) and even the most

sophisticated refrigeration techniques (dilution refrigerators go down to .10 mK).

Getting atoms to such low temperatures requires a specialized setup and several

steps of cooling and trapping. These cooling and trapping techniques are based

on certain properties of the atom. Although the physics of BECs does not require

many of these atomic properties, they are nevertheless important for cooling, trap-

ping, manipulating and detecting the atomic cloud.

The choice of atom for making a BEC is limited to atoms that can be laser

cooled (or in some cases helium buffer gas cooled). The electronic structure of alkali

atoms makes them easy to laser cool and hence the first atoms laser cooled and the

first BECs were all alkali atoms. The apparatus I worked on in the Laser Cooling

and Trapping group was the first BEC apparatus (BEC achieved in 1998 [77]) of

the group, and is one of the older surviving BEC apparatuses. For this reason, the

choice of using sodium atoms is purely due to historic reasons. Since most of the

apparatus was built before my time, I will focus on explaining only their principles

of operation. I will go over the more recent developments, such as the optical trap,

in more detail.

3.1 Atomic physics and the two-level atom

While there are no two-level atoms, the two-level atom model can nonetheless

explain several aspects of the physics relevant to the cooling, trapping and manipu-

lation of atom clouds (the atomic physics tool set). The two-level atom consists of

an atom interacting with an oscillating electromagnetic field, which causes coupling
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between the two levels. To begin, we consider a simple atom-field interaction, which

can be treated in the following ways:

1. Fully classically : Here both the atom and field are treated classically. The

atom is modeled as a charge dipole with a spring constant and the field is

modeled as a classical Maxwellian electromagnetic field.

2. Semiclassically : Here the atom is treated as a two-level quantum mechan-

ical system with a dipole coupling between the levels. The field is treated

classically.

3. Fully quantum mechanically : Here, along with the atom, the field is also

treated quantum-mechanically with discrete energy levels, and can exchange

energy with the atom.

While the fully quantum treatment is required for explaining cavity quantum

electrodynamic and other experiments, the semiclassical treatment is illustrative

and sufficient for the purposes of this thesis. The treatment shown in this section

is quite standard and is presented in several textbooks (Scully and Zubairy [78],

Metcalf and van der Straten [79]), which also discuss the subtleties and details of

the various approximations involved.

I will take the case of a two-level atom with an electric dipole transition, which

is a good approximation for the D-line transitions of an alkali atom. Although

magnetic dipole transitions arise from coupling to the magnetic dipole moment of

the atom, some of the most general spin selection rules and phenomena such as Rabi

flopping can nevertheless be treated analogously. The electromagnetic field (or light

field) is assumed to be homogeneous and monochromatic. The electric field can be

written as

E(t) = E0 cos(ωt), (3.1)

where E0 is the amplitude of the field, ω is the frequency and t is time. For simplicity,

I will only be considering the electric dipole moment of the atom in the direction of

the field and hence the electric field can be written as a scalar. The cosine term in
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the expression can be split up to give

E(t) =
E0

2
(eiωt + e−iωt). (3.2)

The atom is modeled as having two levels, the ground state |0〉 and the excited

state |1〉, with an energy difference of ω0 (in frequency units). The detuning of the

light field from the atom is given by ∆ = ω − ω0 (see figure 3.1).

|0>

|1>
ω0 ω

∆

Figure 3.1: Two-level atom : The light field of frequency ω is detuned by ∆ from the

atomic resonance.

The atom and light field interact via the electric dipole transition moment

of the atom, d, giving a cross-coupling energy term d · E(t). The transition dipole

moment d results from the dipole operator connecting the ground and excited states.

The hamiltonian of the atom in the presence of the field can be written as

H = H0 +HE , (3.3)

where H0 is the unperturbed hamiltonian, and HE = d · E(t). In matrix form in

terms of states |0〉 and |1〉, the hamiltonian can be written as

H =





0 0

0 ~ω0



+





0 d · E(t)
d · E(t) 0



 , (3.4)

using a |0〉 =





1

0



, |1〉 =





0

1



 basis.

Equation (3.4) is the basic two-level atom-light hamiltonian. I will now discuss

two specific solutions of the equation, the resonant case and the far off-resonant case.
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In the resonant case, ∆ = 0, and the primary effect of the light field is Rabi flopping,

transferring atoms from |0〉 to |1〉 and back. In the far off-resonant case, the primary

effect is to cause a shift in the energy levels.

3.1.a Resonant interaction and Rabi flopping

We begin with equation (3.4) and use the time-dependent Schrödinger equation

Hψ(t) = i~
∂ψ(t)

∂t
, (3.5)

where the time-dependent two-level atom wavefunction is given by ψ(t) = c0(t)|0〉+

c1(t)|1〉, or ψ(t) =





c0(t)

c1(t)



, with the normalization condition |c0|2 + |c1|2 = 1.

Substituting H and ψ, we obtain





0 d · E0 cos(ωt)

d · E0 cos(ωt) ~ω0









c0(t)

c1(t)



 = i~





ċ0(t)

ċ1(t)



 , (3.6)

where the dot above c indicates derivative with respect to time. This matrix equation

gives us two linear differential equations,

~ω0c1(t) + d · E0

2
(eiωt + e−iωt)c0(t) = i~ċ1(t) (3.7)

d · E0

2
(eiωt + e−iωt)c1(t) = i~ċ0(t), (3.8)

where the cosine terms have been expanded out. In order to solve these equations,

one can make a simplifying substitutions b0(t) = c0(t) and b1(t) = c1(t)e
iωt. For the

resonant case, ∆ = 0 and hence ω = ω0, giving

d · E0

2
(eiωt + e−iωt)b0(t) = i~ḃ1(t)e

−iωt (3.9)

d · E0

2
(eiωt + e−iωt)b1(t)e

−iωt = i~ḃ0(t). (3.10)

We now use the rotating-wave approximation, where we average over fast

oscillations of the order of the carrier frequency ω. These oscillations are typically

too fast (particularly for optical transitions) for the atoms to follow or for any

detector to measure and most of the relevant dynamics happen on much slower
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timescales. After multiplying through with eiωt for the first equation and removing

terms containing e±2iωt, we are left with

d · E0

2
b0(t) = i~ḃ1(t) (3.11)

d · E0

2
b1(t) = i~ḃ0(t), (3.12)

which has solutions of the form

b0(t) = b0(0) cos(Ωt/2)− ib1(0) sin(Ωt/2) (3.13)

b1(t) = b1(0) cos(Ωt/2)− ib0(0) sin(Ωt/2), (3.14)

where

~Ω = d · E0 (3.15)

defines the Rabi frequency Ω. If one started with an atom in state |0〉 at time t = 0,

the state probability coefficients are given by

|c0(t)|2 = |b0(t)|2 = cos2
(

Ωt

2

)

, (3.16)

|c1(t)|2 = |b1(t)|2 = sin2

(

Ωt

2

)

. (3.17)

Figure 3.2: Resonant Rabi flopping : The figure shows the |0〉 probability coefficient

|c0(t)|2 (solid) and the |1〉 probability coefficient |c1(t)|2 (dashed) for a resonant light field

incident on the two-level atom. The time units are in 2π/Ω, where Ω is the Rabi frequency.

As one can see in figure 3.2, the atom flops between states |0〉 and |1〉. The

time 2π/Ω is known as the 2π-pulse time. If the field is turned on for the duration
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of a π-pulse, the atom is shifted from state |0〉 to state |1〉. A π/2-pulse puts the

atom in an equal superposition of |0〉 and |1〉.

3.1.b Far off-resonant interaction and energy level shifts

When the light field is significantly far detuned from the energy separation

of the two levels of the atom, the light causes little transfer from the ground to

the excited state. Rather, it causes a light-shift in the energies of the two levels.

In order to eliminate the time dependence of the electromagnetic field, we go into

the rotating frame e−iωt of the field, and just like in the resonant case, apply the

rotating-wave approximation1 eliminating terms of the order e±iωt. We start with

equation (3.6), and set b0 = c0(t) and b1 = c1(t)e
iωt to obtain





0 d · E0

2
(eiωt+e−iωt)

d · E0

2
(eiωt+e−iωt) ~ω0









b0

b1e
−iωt



 = i~





ḃ0

e−iωt(ḃ1 − iωb1)



 .

Applying the rotating wave approximation and expressing the equation in

terms of





b0

b1



, we get a time-dependent Schrödinger equation of the form





0 d · E0

2

d · E0

2
−~∆









b0

b1



 = i~





ḃ0

ḃ1



 , (3.18)

which can be written as a hamiltonian in the (|0〉, e−iωt|1〉) basis:

H ′ = ~





0 Ω/2

Ω/2 −∆



 = ~





−∆/2 0

0 −∆/2



+ ~





∆/2 Ω/2

Ω/2 −∆/2



 . (3.19)

By solving for the eigenvalues of the new hamiltonian, the modified energy

levels come out to be

ǫ± =

(

−∆

2
± Ω̄

2

)

~, (3.20)

where Ω̄ =
√
Ω2 +∆2. In the limit of large detunings, ∆ ≫ Ω, Ω̄ simplifies to

∆(1 + Ω2

2∆2 ), which gives a ground state energy shift of

δǫ0 = ~
Ω2

4∆
, (3.21)

1The rotating-wave approximation is valid so long as one is not too far detuned. If ω ≪ ω0,

then there is not much difference between |ω + ω0| and |ω − ω0—.
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and the excited state energy shift of

δǫ1 = −~
Ω2

4∆
. (3.22)

The energy shifts are proportional to the intensity of the radiation (E2
0). When

the applied field is blue-detuned, ∆ > 0, the ground state energy is raised and

the excited state energy is lowered, whereas when the applied field is red-detuned,

∆ < 0, the ground state energy is lowered and the excited state energy is raised (see

figure 3.3). If one were to apply a red-detuned light field, an atom in the ground

state will be attracted towards regions of higher intensity, due to the lower potential

there. Hence, red-detuned fields with localized maxima can be used to trap atoms

via the dipole force. Blue-detuned light fields have the opposite effect and can be

used to create a repulsive potential.

|0>

|1>
ω

∆

|0>

|1>
ω

∆

Figure 3.3: Light shift on a two-level atom: The effect of blue-detuned (left) and red-

detuned (right) light on the two level atom. The effect shown is exaggerated for clarity.

The light shift is typically orders of magnitude smaller than the detuning.

3.1.c Spontaneous emission

In practice, an atom in the excited state will emit a photon and decay to the

ground state even in the absence of an applied coupling field2, via a process known

as spontaneous emission. The rate of spontaneous emission depends on the strength

2Spontaneous emission can also be viewed as the coupling of an atom to the vacuum field, which

according to quantum electrodynamics is nonzero.
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of the transition and the resonance frequency, and is given by [80]

Γ =
ω3
0

3πǫ0~c3
|d|2, (3.23)

where ǫ0 is the permittivity of vacuum, c is the speed of light and d is the total

dipole moment of the atom (in calculating the Rabi frequency, we used only the

component in the direction of the electric field of the light). The expression for

spontaneous emission can be derived quantum mechanically from the coupling of an

atom to the free space vacuum modes (originally in Weisskopf and Wigner [81], also

shown, for example, in Scully and Zubairy [78] and Steck [80]). Equivalently, it can

also be derived by comparing the thermodynamic steady state of an atom in a light

field with the Planck blackbody distribution [82].

The ω3
0 dependence of the spontaneous emission decay rate causes optically ex-

cited states with electric dipole moment transitions to decay at rates of 107 s−1. Mi-

crowave and rf transitions, which are typically magnetic dipole and have a lower tran-

sition frequency, tend to have decay times much longer than experimental timescales

and hence can be neglected.

Spontaneous emission causes an atom in a light field to reach a steady state,

as opposed to undergoing Rabi oscillations. In contrast to Rabi oscillations where

the photon is emitted coherently into the driving field, spontaneous emission causes

photons to be emitted incoherently in all directions. This process is key to imaging

techniques, which either measure the loss of photons as they pass through an atomic

sample (absorption imaging, discussed in 3.8), or the number photons scattered in

other directions (fluorescence imaging). The steady state excited population fraction

of atoms in a radiation field depends on the intensity and detuning of the radiation,

and is given by [80]

|c1(t→ ∞)|2 = (Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2
. (3.24)

The spontaneous scattering rate per atom is Rs = Γ|c1(t→ ∞)|2, leading to

Rs =

(

Γ

2

)

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
, (3.25)
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where we have defined a saturation intensity Isat, such that I/Isat = 2(Ω/Γ)2, and I is

the intensity of the light field (in energy per area per time), given by I = (1/2)cǫ0E
2
0 .

The saturation intensity can be expressed in terms of the dipole interaction:

Isat =
cǫ0Γ

2
~
2

4|ǫ̂ · d|2 , (3.26)

where, to remind the reader, ǫ̂ · d is the component of the dipole moment in the

direction of the electric field.

The effect of detuning is to lower the steady state population in the excited

state and hence the spontaneous scattering rate. However, this can be overcome by

using a higher intensity of light. For a fixed detuning, in the limit of low intensity,

the population fraction of the excited state is linearly proportional to the intensity

(or Ω2) of the radiation. In the limit of high intensity, the population saturates to

0.5 (50 %), and the scattering rate saturates to Γ/2.

3.1.d Light forces

In the previous section, we discussed the steady state of an atom in a light field.

If such a light field were unidirectional as is typical of an optical beam (see figure 3.4),

there is a net force on the atom due to the difference in momenta between the

photons absorbed from the incident beam and the photons spontaneously emitted

in all directions3.

For an atom in free space (assuming no collisions with other atoms), the atom

undergoes a momentum change due to the net force. The velocity shift due to the

momentum change in turn causes a Doppler shift in the light frequency that the

atom sees, which eventually takes the light field off-resonance, and the atom is no

longer affected by the field. The Doppler shift of a moving atom can also be used

to slow it down. This was first proposed independently by Hänsch and Schawlow

[85] and by Wineland and Dehmelt [86] and later demonstrated in ions by Wineland

3The effect of light on an atom also depends on the state of matter in which it is in. For

example, for atoms in a conducting solid, light can cause pairing of electrons [83]. In this thesis,

we only consider the effect of light on a pure sample of neutral atoms in the gaseous state.
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spontaneous

emission

Incident

Field

net force

on atom

Figure 3.4: Light force on a two-level atom: An atom in a light field in steady state

absorbs radiation from the incident light field, and emits radiation in nearly all directions

(dipole radiation pattern [84]) via spontaneous emission. Through this process, the atom

undergoes a net force in the direction of incidence of the light field.

et al. [87] and Neuhauser et al. [88]. For a gas of atoms, where the energy is primarily

translational, slowing down atoms corresponds to cooling, and hence the technique

is known as laser cooling, which enables nearly all BEC experiments. We will now

see a simple example of laser cooling.

In figure 3.5, the effect of a 1D pair of counter-propagating beams is shown.

The beams are near red-detuned. For an atom moving towards one of the beams, the

atom sees the beam with a blue Doppler shift (closer to resonance) and experiences

a stronger light force from that beam. Since it is moving away from the other beam,

it sees the beam with a red Doppler shift (further red-shifted) and experiences a

weaker force from that beam. The net result of the two beams is to damp the

velocity of the atom along the beams’ axis. An atom that is not moving (in the axis

of the beams) feels no net force. This velocity-sensitive damping force can be used

to slow and hence cool the atoms down.
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Figure 3.5: Velocity sensitive light forces: An atom in a field created by a pair of near

red-detuned counterpropagating beams undergoes a light force opposing the direction of

its velocity, shown by black arrows. An atom at rest (center) feels no net force. This acts

as a damping force and can be used slow atoms down.

Using the scheme shown in figure 3.5 along all 3 axes, atoms can be cooled

down to millikelvin temperatures. This scheme is known as optical molasses and

has been studied extensively [89–94]. The simple two-level atom picture described

here cannot fully explain laser cooling from optical molasses. In fact, the magnetic

sublevel structure of alkali atoms causes further cooling of the atoms, known as sub-

doppler cooling [90]. The exact effect of light forces due to sub-doppler cooling is

complicated and beyond the scope of this thesis. For a good review on the subject,

see Cohen-Tannoudji [89], Cohen-Tannoudji [95] or Phillips [96].

Having described the various interactions of the two-level atom with laser light,

we can now focus our attention towards the more practical aspects of atomic physics

and our system.
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3.2 Atomic structure in real world atoms

Unlike their imaginary counterparts, real world atoms have a more complicated

energy level structure. As mentioned before, the energy level properties of the atom

are important mainly for cooling, trapping, manipulating and imaging the atoms,

and function as the basis of “engineering tools” for the atom. So long as we are able

to cool and trap atoms, we need not delve into details of the internal structure of

the atom. In that respect, as engineers, all we need to know are the energy level

“specifications” of the atom. Nevertheless, I feel it is instructive to go through some

background as to how the energy level structure of the atom arises.

The basic energy level structure, namely the principal quantum number n (n ∈
{1, 2, ...}), and the orbital angular momentum quantum numbers l and ml (l, ml:

0 ≤ l < n, ml ∈ {−l, ...0, ...l−1, l}), come from solutions of the Schrödinger equation

for the hydrogen atom (see Schiff [97] or Johnson [98] for example). Electrons being

spin 1
2
fermions have the additional spin degree of freedom s, where there are two

spin states (s = 1
2
,ms ∈ {−1

2
, 1
2
}) for every (n,l,ml) state. Finally, there is additional

fine and hyperfine structure to this basic (n,l,ml,s,ms) structure.

Atomic fine structure4. arises from spin-orbit coupling, by which ml and ms

are no longer good quantum numbers. Rather, l and s combine to give a spin-orbit

angular momentum j (for information on angular momentum addition, see Sakurai

[71] or for a more atomic physics based reference, see Johnson [98]), denoted by

j = l + s, (3.27)

where j ∈ {|l − s|, |l + s|}. The electronic state in the new basis is given by

(n,l,s,j,mj), where the relationship between mj and j is analogous to that of ml

and l (mj : mj ∈ {−j, ...0, ...j − 1, j}).
For atoms that have multi-electron outer states, one needs to add the spins

(S = s1+s2+ ...) and orbital angular momentum (L = l1+ l2+ ...) of individual elec-

trons before computing the spin-orbit coupling J state (J = L+S), or alternatively,

4Fine structure is a more general term, and can be used to describe the splitting of spectral

lines due to a variety of sources, for example from the Brillouin effect [99].
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add the total spin of each electron (j1 = l1 + s1, j2 = l2 + s2, ...) and combine the

spins of all electrons (J = j1+ j2+ ...), depending on which is applicable. Finally, in

denoting an electron state, one uses the notation n2S+1LJ , where the orbital angular

momentum is denoted by L = S, P, D, F for L = 0, 1, 2, 3. For hydrogen-like atoms,

having only one electron in its outermost shell, one can simply use S = s, L = l,

J = j. Since sodium is a hydrogen-like atom, I will not talk about multi-electron

atoms (there are several books that cover this, such as Johnson [98]).

Analogous to electron spin, atomic nuclei also have spin associated with them.

The total spin depends on the number of nucleons and the nuclear structure, and

can take integer or half-integer values. Hyperfine structure arises from coupling of

the spin-orbit angular momentum J with the nuclear spin I (if non-zero) to give the

total angular momentum F , denoted by

F = J+ I, (3.28)

where F ∈ {|I−J |, |I−J |+1, ..., |I+J |}. Including nuclear spin, the final electron

state is given in the (n,L,S,I,J ,F ,mF ), where mF ∈ {−F, ..., 0, ..., F − 1, F}. The

electron state is denoted by nLJ followed by the hyperfine state F and sublevel mF .

Here, since only one electron is involved, the spin state is always S = 1/2, and so is

omitted from the notation. Hyperfine interactions are much weaker than spin-orbit

coupling and other electronic interactions, and add only a small perturbation to

energy levels. However, they do change the nature and degeneracy of the ground

state.

In applying an external magnetic field to an atom, the degeneracy of the mF

sublevels of the F manifold is broken, and the different sublevels undergo different

energy shifts. This is known as the Zeeman effect. The Zeeman effect is an important

tool in atomic physics and forms the basis of magnetic trapping, where atoms in a

weak-field-seeking hyperfine state are trapped at the minimum of a spatially varying

applied external magnetic field. The exact Zeeman splitting depends on the coupling

strengths of the various individual basis states (L,S,I) to the external magnetic field,

and their vector combination that results in F .
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3.3 The Sodium atom

We now move to sodium, the atom used in the experiments. Sodium has been

isolated and studied from as early as the 1800s [100]. However, most of the aspects

for which sodium is known, such as its metallic structure, reactivity, chemistry, role

in physiological processes and other uses are irrelevant to us. The key properties

that matter to our experiment are:

• Sodium’s bosonic nature (it has 11 protons, 11 electrons and 12 neutrons,

making an even number of spin 1
2
particles).

• The hydrogen like structure (1s2 2s2 2p6 3s1), which allows cooling, trapping

and probing.

• The sodium-sodium scattering properties, which are favorable for evaporative

cooling and BEC, including the repulsive low energy s-wave interactions, which

are key to observing superfluidity.

Analyzing the atomic structure of sodium along the lines of the discussion of

the previous section, the 1s, 2s and 2p orbitals are completely filled, leaving a lone

electron in the 3s state. The ground state has S = 1/2, L = 0, giving a 3S1/2,

spin-orbit ground state. Sodium has a nuclear spin of I = 3/2, which leads to two

ground hyperfine states, F = 1 and F = 2 (see figure 3.6).

The lowest electronically excited state is the 3p state (L = 1). Spin-orbit

coupling causes a split into 3P1/2 and 3P3/2 states. The 3P1/2 state combines with

the nuclear spin to give 2 hyperfine states (F ′ = 1 and F ′ = 2, prime denotes excited

state, otherwise ground state). The 3P3/2 state combines with the nuclear spin to

give 4 hyperfine states (F ′ = 0, 1, 2, 3 shown in figure 3.6).

The sodium 3S1/2 to 3P3/2 transition (called the D2 transition) is shown in

figure 3.6. Nearly all the cooling and probing is done on the 3S1/2 F = 2 to 3P3/2

F ′ = 3 cycling transition5 . The transition is termed a cycling transition, since any

5I am using cycling transition in the more general sense. The cycling transition is often referred

to the F = 2,mF = ±2 to the F ′ = 3,m′

F = ±3 transition with circularly polarized light, which
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Figure 3.6: Sodium D2 transition hyperfine structure : The 3S1/2 to 3P3/2 levels are

shown. Most of the cooling and probing is performed on the cycling transition, F = 2

to F ′ = 3, shown by the orange arrow. The repumping transition, F = 1 to F ′ = 2, is

shown with a green arrow. An externally applied magnetic field breaks the degeneracies

of the hyperfine ground states, with sublevels shown on the right. Magnetic trapping and

evaporative cooling is performed in the F = 1, mF = −1 state (indicated above).

atom excited to the F ′ = 3 state has to decay (via spontaneous emission) to the

F = 2 state due to spin selection rules (see Schiff [97]). Atoms in the F = 2 state

can get off-resonantly excited to the F ′ = 2 state, which has an equal probability of

decaying to the F = 2 or F = 1 ground states. Although rare (around 1/100 if the

light is linearly polarized and even less if it is circularly polarized), this off-resonant

excitation ultimately leads to all the atoms being transferred to the F = 1 state.

This process is known as optical pumping. To prevent optical pumping, additional

F = 1 to F ′ = 2 resonant light is used to optically repump the atoms back into the

is closed within itself and does not involve other magnetic sublevels.
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F = 2 state (also shown in figure 3.6).

While the F = 2 state is convenient for cooling and probing, it has a larger

s-wave scattering length than the F = 1 state [101]. This leads to shorter trap

lifetime due to the higher three-body collision rate and molecule formation. To

minimize losses and allow for longer, slower evaporative cooling, we create and work

with condensates in the F = 1 ground hyperfine state. The effect of a magnetic

field on the F = 1 manifold is shown in figure 3.7. Of the three magnetic sub-levels,

the energy of the mF = −1 sublevel initially increases with magnetic field. Atoms

in the mF = −1 state are attracted to low-field regions, making them magnetically

trappable (magnetic trapping will be discussed in 3.4.d). All our magnetic trapping

and cooling is done in the F = 1, mF = −1 state.
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Figure 3.7: Sodium ground state Zeeman shift : Under small fields (B < 10 G), the

hyperfine splitting is essentially linear (∝ mFB), while at larger fields, the (F ,mF ) basis

is no longer valid, as seen in the plot on the left. The plot on the right shows a zoomed-in

version of the low field Zeeman shifts of the F = 1 manifold (circled on left). ThemF = −1

state, the weak-field seeking state, is attracted to lower B-fields and can be trapped at the

magnetic field minimum. Magnetic trapping will be discussed in section 3.4.d

3.4 Creating a BEC

Though fairly standard now, achieving Bose-Einstein condensation was the

result of several innovative techniques and amazing feats of engineering. While
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technology has greatly improved and most techniques have become standard (and

recipe-like), BEC apparatuses still require large investments in equipment and peo-

ple. In our BEC lab, most of the equipment one sees is solely for the purpose of

reaching (and maintaining) BEC temperatures, as opposed to performing the scien-

tific experiment. Most of the steps in the creation of the BEC have been previously

thought through and optimized. In my time at NIST, except for minor modifica-

tions, the core vacuum system and magnetic coils and the process to obtain a BEC

have remained the same, and hence I will only give a qualitative explanation of

these. There are several sources which discuss the design considerations of a BEC

system [102–108], and the standard cooling and trapping techniques [79, 109].

Our BEC chamber (see figure 3.8) consists of two parts, the main chamber,

which is kept under ultra-high vacuum and the oven chamber, which is kept at lower

vacuum. In the main chamber, atoms are trapped and cooled down to ultracold

temperatures at the center of a glass cell. The glass cell has magnetic coils mounted

close to the surface in order to capture atoms from the atomic beam and trap them.

In a typical experimental sequence, we start with hot atoms from the oven, which are

then slowed (and cooled) by the Zeeman slower (shown in figure) and the slower laser

beam, before being trapped in the Magneto-Optical Trap (MOT). By subsequent

magnetic trapping and evaporative cooling, we are able to get a million-atom BEC

in the magnetic trap.

The experiments discussed in this thesis were performed in an optical dipole

trap. Rather than condensing the atoms in the magnetic trap, we transfer them to

an optical dipole trap while they are yet to condense. Subsequently, we perform

the experiments on the BEC and image the atoms, by measuring the absorption of

a resonant probe passing through the cloud. The imaging process causes heating

and destroys the sample. The entire process, which lasts around 40 seconds, is

controlled by a computer which provides the timing for all the devices participating

in the experiment.

In the following sub-sections, the different stages of trapping and cooling will

be briefly discussed.
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Figure 3.8: Schematic and photos of the BEC setup: The figure (top) shows a schematic

of the physical apparatus. Atoms start from the oven (left), travel along the Zeeman

slower (atomic beam path shown in light red) and are captured at the center of the

quadrupole coils (right). All further evaporation and condensation takes place there. The

corresponding parts are shown in photos of the lab. For scale, the Zeeman slower is about

1.5 meters long.

3.4.a Vacuum chamber

The main vacuum chamber is kept under ultra-high vacuum (≈ 10−11 torr),

pumped by an ion pump and a titanium sublimation pump. There is a differential

pumping stage between the main chamber and the oven chamber. The oven chamber

is kept at high vacuum, ≈ 10−9 torr, and is pumped by a turbo pump which is backed

by a roughing pump. The oven consists of a sealed metal container, loaded with

metallic sodium, and has a nozzle protruding outwards towards the main chamber.
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3.4.b Oven and Zeeman slower

Atoms coming out of the oven are at 500 K. The collimation from the oven

nozzle and the cold plate (shown in figure 3.8) ensures that the transverse velocity

distribution of the atomic beam is small. The slower beam (shown in figure 3.8)

slows down atoms by using laser light. The longitudinal magnetic field profile of the

Zeeman slowing coils creates a spatially varying Zeeman shift, and compensates the

changing Doppler shift due to the slowing of atoms, allowing the atoms to stay in

resonance with the slower beam through the distance of the Zeeman slower. In our

BEC setup, the Zeeman slower magnetic field is highest at the oven chamber end,

passes through a zero between the slower and reverse slower coils (see figure 3.8) as

it inverts, before going to zero at the location of the MOT. The inverted field allows

the slowing laser to pass through the Magneto-optical trap (MOT) without affecting

it6. The inverted field also extends the velocity slowing range of the Zeeman slower

without having to use higher magnetic fields. The effect of the Zeeman slower is to

lower the velocity of atoms from 100-400 m/s down to < 10 m/s. The slowing of

atoms is critical to the loading of the MOT from the atomic beam.

3.4.c Magneto-optical trap (MOT)

The MOT is used to capture atoms from the Zeeman slowed atomic beam,

which are then transferred to the magnetic trap, where they can be further cooled.

A MOT consists of 3 pairs of circularly polarized counter-propagating beams along 3

perpendicular axes, along with a quadrupole magnetic field gradient (see figure 3.9).

The magnetic field creates a force gradient, where atoms away from the center are

Zeeman shifted to be closer to resonance with the light and hence experience a force

towards the center. In addition, the red-detuning of the MOT beams contributes to

an overall cooling of the cloud, as was discussed in 3.1.d. We typically load about

6In the inverted field Zeeman slower, the field starts high, decreases, goes past zero to a negative

field before returning to zero. The final change in slope (from negative to positive) allows the

Zeeman slower beam to be off-resonant to the slowed atoms and also the atoms in the MOT.
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Figure 3.9: The magneto-optical trap consists of a pair of anti-Helmholtz coils (see left),

along with 3 pairs of mutually perpendicular counter-propagating beams. The trap cap-

tures slowed atoms from the atomic beam, and cools them down to sub-millikelvin tem-

peratures. On the right is a photo of the MOT, as seen by the naked eye.

1.5× 109 atoms in our MOT, which are cooled to 500 µK7, before being transferred

to the magnetic trap.

3.4.d Magnetic trapping and evaporation

We have two stages of magnetic trapping, the quadrupole trap and the time-

averaged orbiting potential (TOP) trap. The magnetic trap works on the principle

that atoms that are in the weak B-field seeking state (F = 1, mF = −1 for sodium)

are attracted towards the magnetic field minimum of the potential.

The quadrupole magnetic trap is constructed using an “anti-Helmholtz” (not

at the Helmholtz spacing) pair of coils (see figure 3.10) and has a minimum (field

magnitude goes to zero) at the center with linearly increasing field as one moves

away from the origin. This causes a spatially dependent potential for the atoms,

which traps F = 1, mF = −1 atoms.

7We do not do optical molasses.
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Figure 3.10: Magnetic quadrupole trap : The gray surface traces magnetic field lines, while

the magnetic field directions are shown in blue. Atoms are attracted to the magnetic field

minimum at the center of the trap.

The energy of an atom is distributed between kinetic and potential energy

(the sample is dilute enough to neglect interaction energy). Atoms with higher

energy spend more time in higher field areas. Removing such atoms would cause

the average energy per particle to decrease. This is done by applying an rf field with

a frequency corresponding to the magnetic sub-level splitting at the high-field areas,

causing the higher energy atoms to go from the trapped to the anti-trapped states

(F = 1, mF = +1 for sodium). The remaining atoms thermalize through collisions,

thereby lowering the temperature of the atom cloud.

The field zero at the center of the quadrupole traps causes Majorana spin

flips [110], where atoms at the center of the trap change their hyperfine magnetic

sub-level due to the absence of a well defined quantization axis for their spin. This

causes a loss of atoms as the cloud gets colder, not allowing one to reach BEC

temperatures.

To overcome the problem of the field zero, the TOP trap is used (first demon-

strated by Petrich et al. [110]). The TOP trap consists of the superposition of the

quadrupole field with a rotating bias field of constant magnitude. For a sufficiently

fast rotation (faster than timescales associated with atomic motion but slower than
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the timescale associated with the energy splitting of the hyperfine levels), atoms see

the time-averaged potential. The addition of the rotating bias field moves the field

zero away from the center, and while the TOP trap has a time-averaged minimum at

the center, the spin quantization axis near the center is always well defined. Using

rf evaporation in the TOP trap, we can cool atoms in the TOP trap down to BEC

temperatures (transition around 250 nK).

We typically transfer uncondensed atoms from the TOP trap to the optical

dipole trap. If we were to allow the cloud to condense in the TOP trap, the typical

BEC temperatures would be of the order of 100 nK.

3.5 Laguerre-Gaussian beam

Before we go on to the optical dipole trap, I would like to talk about Laguerre-

Gaussian (LG) beams. The LG beam, a crucial component to our experiment, is

used for two purposes, creating the toroidal optical dipole trap and transferring

orbital angular momentum (OAM) to atoms in the toroidal trap. However, while

in the former case, the LG beam is used for its intensity profile, in the latter, it is

used for its phase-winding. In this section, I will go over the general properties of

the LG beam.

The Gaussian beam can be described as

EG(r, φ, z) ∝ e−r2/w2

e−ikz ǫ̂p, (3.29)

where EG is the electric field given in (r, φ, z) cylindrical coordinates, ǫ̂p is the di-

rection of polarization and w is the beam waist. The wave vector k points along z,

which is the direction of propagation. Here, for simplicity, I am assuming monochro-

matic light of wavelength λ = 2π/k and am ignoring the curvature of the wavefront

and the Gouy phase [111]. Gaussian beams are discussed in detail in several books

such as Mandel and Wolf [112], Siegman [113] or Ghatak and Thyagarajan [114].

In equation (3.29), for any plane z = z0, the phase of the wave is nearly

uniform, e−ikz0. In an LG beam, the phase of the wavefront of any plane is modified,

and has a winding of 2πm, where m is an integer. An LG beam is denoted by LGm
l ,
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where the superscript denotes the winding and the subscript denotes the radial order

of LG mode, which will not be discussed here (see Pampaloni and Enderlein [115]

for details). An LGm
0 beam can be described as

ELG(r, φ, z) ∝ EG(r, φ, z)
( r

w

)|m|
eimφ, (3.30)

having an intensity node at the center, with the 2πm phase-winding around it. It

should be noted that the LG beam is also a solution of the Helmholtz equation

∇2E + k2E = 0 [115]. An LG beam can be thought of as an optical vortex with

angular momentum of m~ per photon [116]. In this thesis, I will only discuss the

LG1
0 beam, which we used in the experiment. The intensity cross-section (time

averaged) of the LG1
0 beam is shown in figure 3.11(b), showing the central node

and peaks at r = ±w/
√
2. In an LG beam, regions that satisfy a spiral shaped

mφ − kz = φ0 mod [2π] will have a uniform phase (shown in figure 3.11(c)), while

regions that satisfy mφ− kz = π + φ0 mod [2π] will be phase shifted by π.

An LG beam should not be confused with a circularly polarized Gaussian

beam, both of which carry angular momentum. In the former, the polarization ǫ̂p is

uniform, while in the latter, the polarization goes as ǫ̂p = x̂ cos kz + ŷ sin kz. The

LG beam has spiral wavefronts with a central node, while the circularly polarized

Gaussian beam has planar wavefronts (assuming no curvature) and an intensity

distribution that is identical to a linearly polarized Gaussian beam. The relation

between the OAM of an LG beam and the circular polarization of a photon can be

seen as the photon analogy to OAM and spin angular momentum of an electron [116].

OAM is associated with the spatial mode, while spin is intrinsic to the particle.

However, in the case of light, there is no coupling between the two angular momenta.

LG beams have a breadth of applications, ranging from astronomy to mi-

croscopy [117–125]. They are used for their phase-winding, their OAM, or their

intensity profile. The phase winding of an LG beam has interferometric applica-

tions in phase-contrast optical microscopy [118] and in astronomy, where it is used

to remove the glare of a bright star while looking for extrasolar planets [119]. The

OAM properties of LG beams have been used to rotate microscopic objects [120, 121]
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Figure 3.11: Laguerre-Gaussian beam : (a) transverse intensity profile of an LG1
0 (m = 1)

beam; (b) An intensity cross-section of the profile; (c) A 3D rendering (approximate) of

regions of constant phase for an LG1
0 beam. As opposed to nearly flat planar wavefronts

of a Gaussian beam, the wavefront of an LG beam spirals around the central intensity

node. The purple wavefronts have a π phase-shift with respect to the green wavefronts.

and BECs [117, 126]. Rotating of a BEC with an LG beam will be discussed in detail

in section 6.2.

When compared to a masked Gaussian beam that has a hole in the center,

LG beams have a true node owing to the phase singularity, which is stable under

propagation and aberrations. Hence, they are used in applications where a ring

shaped beam is required such as sub-diffraction optical microscopy [122, 123], trap-

ping microscopic objects [127] and trapping or guiding8 cold atoms [129–133], where

depending on the light detuning, atoms reside either in the ring-shaped intensity

maximum or the central node. In our experiment, we use the LG beam to trap in

8Ring shaped cold atom guides have also been demonstrated using Bessel beams [128].
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the high intensity regions.

Finally, LG beams have been used in several other miscellaneous application

such as encoding information [124] and entangling photons [125]. Recently, analo-

gous to LG optical beams, LG electron beams with OAM [134, 135] have also been

demonstrated.

3.6 The optical dipole trap

As discussed earlier in this chapter, off-resonant coupling of the ground state

of an atom to higher internal excited states can cause a shift in the ground state

energy level. Optical dipole traps work on the principle of using such off-resonant

light to trap atoms. They have the following advantages over magnetic traps:

• They trap all spin states: This allows one to use the spin degree of freedom of

atoms.

• They allow for more varied trap shapes: Using lenses, holograms and other

optics, one can create nearly arbitrary shaped traps.

• They can be easily turned off nearly instantly: In contrast to magnetic traps

which use high currents and require careful engineering so that they can

be turned off rapidly (sub-millisecond time scale), optical traps are usually

switched using acousto-optical modulators (AOMs), that can be turned on

and off in the microsecond timescale, faster than all the relevant timescales

for atoms.

Sodium’s 3s to 3p transition is at 589 nm. Light red-shifted of the D-line

(wavelengths longer than 589 nm) lower the ground state energy, causing atoms

to be attracted to regions of higher intensity. Conversely, light blue-shifted of the

D-line causes atoms to be repelled from regions of higher intensity (so long as there

is no significant coupling to other higher excited levels such as 4s 4p, etc.).

We perform our experiments in an optical dipole trap, created by attractive,

red-detuned 1030 nm light.
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Figure 3.12: Schematic of the optical system for the sheet trapping beam: The sheet

trapping beam is created by relay imaging a beam focused by a cylindrical lens. The

labelled profiles refer to only the beam along the vertical axis. The horizontal axis of the

beam is not focused strongly or collimated at any particular point.

3.6.a The sheet trap

The sheet trapping beam provides tight confinement in the vertical direction,

necessary to prevent atoms from falling due to gravity. It also confines in the

other two axes, transversely due to its horizontal size and along its direction of

propagation due to the Rayleigh range. The beam is created using a cylindrical

lens (see figure 3.12). At the focus, the beam has dimensions of about 9 µm in the

vertical and around 800 µm in the horizontal (1/e2 radius).

Since the in-plane confinement of the sheet is weak, the addition of any po-

tential in the plane will cause the BEC to take the shape of the other potential. In

figure 3.13, we demonstrate some arbitrary potentials created using a spatial light

modulator. This will be discussed in detail in chapter 5.

3.6.b The ring trap

For toroidal confinement, we intersect an LG1
0 beam mode with the sheet. We

create the beam using a hologram (see figure 3.14), which consists of a diffraction

grating with a single defect. The effect of the defect can be intuitively understood
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Figure 3.14: Schematic of the optical system for the ring trapping beam: The ring beam

is created using a hologram (pattern shown).
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as follows. If one were to consider the upper and lower halves of the grating shown

in figure 3.14, they can be thought of as being offset by a single half-line (bright on

top corresponds to dark on bottom). While both halves will individually diffract

light into the same angles, for the first order, the light from the top half will have a

phase-offset of π, which causes a phase-winding of 2π in that order (m = 1). Higher

orders will have increasingly higher integer 2π phase-windings.

The hologram we use is blazed so that the majority of power goes into the

first diffracted order, which has a phase-winding of 2π. Although the near-field

diffracted beam mode does not have the LG radial profile, with propagation, higher

spatial frequencies get filtered out and we obtain the fundamental LG1
0 mode. Since

we focus the beam down to around 40 µm diameter, which is much larger than our

diffraction limited spot size of ≈4 µm, we obtain a relatively aberration-free ring.

3.7 The microwave system

Before we go on to how we image the BEC, I would like to describe the

microwave system that was used to drive transitions between the F=1 and F=2

hyperfine ground states of sodium. The system was implemented during my time

at NIST.

As seen in Figure. 3.6, the splitting between the hyperfine ground states of

sodium is around 1.77 GHz, which corresponds to the microwave region. At such

high frequencies, one needs specialized function generators and amplifiers, and we

could not use the exisiting rf circuitry which is used for evaporation in the magnetic

trap. Our microwave system consists of four basic components, a synthesizer, a

switch, an amplifier and an antenna close to the atoms. I will now describe the

components of the microwave system implemented in the lab (schematic shown in

figure 3.15).

The synthesizer needs to be able to provide a precise, stable frequency, that

is programmable. We used a Holzworth HS2001A synthesizer, which is specified

to generate frequencies from 8 MHz to 2 GHz with low phase noise. The device
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Figure 3.15: Schematic of the microwave system: We use an amplified signal from a

precision signal generator (synthesizer) to drive microwave transitions in the sodium atom.

The key parts of the system are highlighted. The zig-zag lines denote attenuators.

is programmed via a USB connection to a computer and hence has no display or

buttons, which makea it compact. The output passes through a 10 dB preamplifier

to boost the signal before it is fed to a splitter. The splitter provides an additional

port, which could be used for monitoring the frequency. The microwave signal

then passes through a high isolation rf switch (Minicircuits ZASWA-2-50DR), which

is controlled by a TTL (transistor-transistor-logic) signal before being fed to the

amplifier.

The amplifier (Minicircuits ZHL-10W-2G) provides an amplified output for the

antenna. In order to prevent any reflected signal from the antenna from reaching

the amplifier, we insert a circulator (directional coupler), which diverts the reflected

power into an alternate port, which is terminated. For radiating the ≈17 cm wave-

length microwave, we use a simple dipole antenna (see Jackson [84]). To maximize

the efficiency, the length of each arm of the antenna is about 4 cm, a quarter of the

wavelength. The antenna is aligned along the horizontal plane at an angle of around

45 degrees from the axis of the Zeeman slower.

The magnetic bias field (quantization axis) of our system is along the axis

of the Zeeman slower (see figure 3.8). The microwave antenna is oriented at 45
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Figure 3.16: Microwave Rabi flopping: A microwave field is turned on for a certain pulse

duration, shown on the horizontal axis. The atoms are initially in the F = 1, mF = −1

state. The microwave pulse transfers atoms to the F = 2, mF = −2 state. At the end of

the pulse, we measure the populations in each of the states, and determine the transfer

% to the F = 2, mF = −2 state. On tuning the microwave frequency to the resonance

condition for the F = 1, mF = −1 and the F = 2, mF = −2 states, we observe Rabi

flopping where the population oscillates between the two states. The line is a least squares

fit to the initial 2 oscillations. Over long times (>200 µs), fluctuations in the magnetic

bias field dephase the oscillations.

degrees to the Zeeman slower axis, in the horizontal plane. The magnetic field of

the microwaves are oriented along the vertical, perpendicular to the magnetic bias

field direction, allowing hyperfine transitions that change mF by ±1 (see Jackson

[84]). We use our microwave system primarily to couple from the initial F = 1,

mF = −1 state to the F = 2, mF = −2 state. Given our typical magnetic bias

fields (B < 5G), the F = 1, mF = −1 to F = 2, mF = −2 transition frequency

ranges from 1.761 to 1.771 GHz. By varying the pulse duration, we can choose the

fraction we want to transfer to the F = 2, mF = −2 state. The transfer fraction
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follows Rabi flopping and sinusoidally oscillates (Figure. 3.16). The variability of

the transfer fraction was the key to partial transfer absorption imaging, which is

discussed in chapter 4.

3.8 Imaging
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Sample Image

Probe Beam

Relay image
of BEC

Figure 3.17: Schematic of the imaging system: Our image system images the plane of

the sheet and has a resolution of about 4 µm. We use a rectangular slit in the relay

image plane to reduce ambient light falling on the camera. While a hole would be more

appropriate, using a slit allowed us to independently vary the x and y dimensions of the

image.

For our experiment, we use simple absorption imaging. Chapter 4 discusses

partial-transfer absorption imaging, which, while a different technique, is still based

on absorption imaging. We have the capability to image along both the horizontal

and the vertical axes. For most of the data, we image along the vertical axis (see

figure 3.17), which images the plane of the sheet yielding more spatial information.

Our imaging system uses two steps of relay imaging, each providing magnification.

In the first step, which uses the same optics that are used to focus down the LG
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trapping beam, using a lens pair that consists of a 16 cm triplet (5.08 cm diame-

ter, ≈f/3) and a 75 cm doublet (5.08 cm diameter), a 3x magnified relay image is

produced. The optical resolution of our system is limited by the diffraction limit

of the triplet (diffraction limited spot size = 0.61 λ/NA ≈2 µm, NA = numerical

aperture). Aberrations due to the triplet further reduce it. The relay image is then

magnified using a 5x zoom lens on to the Andor Iχon camera. While the total

magnification is 15x, with each camera pixel corresponding to 1.2 µm in the plane

of the atoms, the actual 1/e optical resolution is around 4 µm.

We will now calculate the effect of a certain column density of atoms on res-

onant (∆ = 0) probe light. The scattering cross-section, σ, is defined as the ratio

of the scattered power, Rs × ~ω to the incident intensity (or energy flux), I. Using

equation (3.25), we obtain the scattering cross-section

σ =
Γ~ω

2Isat(1 + I/Isat)
, (3.31)

where the saturation intensity Isat is defined in equation (3.26). The next chapter

will discuss absorption imaging in detail and exactly solve the absorption imaging

problem. For the sake of completeness, I will briefly mention how the basic imaging

process works. In the limit of low intensity (Ii ≪ Isat), for a given incident intensity

Ii, the transmitted intensity is given by

It(x, y) = Iie
−σ0ρ̂(x,y), (3.32)

where ρ̂(x, y) is the atom number density, and σ0 is the scattering cross-section in

the low intensity limit (σ in the limit of Ii/Isat ≪ 1. σ0 is the largest scattering

cross-section). Using equation (3.32), we can obtain the column density of the atoms

from the knowledge of the incident and transmitted light intensity. In practice, this

is done by taking 3 images per run; an absorption image in the presence of atoms

I1(x, y), a reference image of the probe in the absence of atoms I2(x, y), and an

image of the background in the absence of probe light I3(x, y). The column density

of atoms (at low probe intensities) is given by

ρ̂(x, y) = σ0 log

(

I2(x, y)− I3(x, y)

I1(x, y)− I3(x, y)

)

. (3.33)
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3.9 Conclusion

In this chapter, I hope to have given the reader an introduction to atomic

physics and some idea of how experiments are performed. Since atomic physics is a

large field in itself on which several textbooks have been written, I have been brief,

only introducing concepts that are relevant to this thesis.

Likewise, a complete description of the details of the experimental apparatus

is beyond the scope of this thesis, and I have only given a general overview of our

setup. There are several theses, such as Stamper-Kurn [62], that provide details of

the apparatuses and experimental techniques.

Having described our experimental apparatus, and given some background on

atomic physics and the sodium atom, which we use, we are ready to delve into

the experiments and science that constitute this thesis. In chapter 5, I will discuss

our experiments on the toroidal BEC. However, before that, I wish to take the

reader on a slight detour and discuss partial-transfer absorption imaging, a technique

developed during the course of this work. The reader can feel free to skip chapter 4

and get to the ring trap experiments in chapter 5.
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Chapter 4

Partial-transfer absorption imaging

Most BEC experiments take images in time-of-flight as opposed to in situ,

largely because features in the BEC are too small to image in situ and so the

cloud of atoms is allowed to expand before imaging1. In addition, the time-of-flight

expansion provides information about the momentum distribution, which often is

more useful than the spatial distribution2. In contrast, when we began experiments

using the toroidal optical dipole trap, it was important to obtain in situ density

profiles to be able to create a smooth, uniform ring BEC.

When performing simple absorption imaging on the ring BEC, we found that

the probe beam was completely extinguished in regions of high density, preventing

us from making accurate quantitative measurements of uniformity. That informa-

tion was also lost in time-of-flight because of the ring closing on itself. While we

could have used an off-resonant probe and tried to deconvolve the distortion from its

refraction through the cloud, we developed a new technique, partial-transfer absorp-

tion imaging. As it turned out, the technique could also be used to take multiple

images of the same cloud. In this chapter, I will describe the technique in the context

of other imaging techniques and compare its performance to the more established

phase-contrast imaging.

4.1 Introduction

In choosing an imaging technique for an ultracold gas cloud, one tradition-

ally has three choices: absorption imaging, fluorescence imaging or phase-contrast

1Also, in many experiments, the optical depth of the cloud in situ is too high to perform

absorption imaging, and hence the cloud is imaged after time-of-flight.
2Since most of the early BEC experiments were performed in magnetic traps, magnetic field

gradients would distort the in situ images, requiring, at the very least, a short time-of-flight before

imaging to allow the magnetic fields to shut off.
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imaging. Absorption imaging exploits the strong interaction of ultracold gases with

resonant laser light. However, the scattering of photons by the ultracold gas cloud

leads to heating and destruction of the sample, allowing only one image to be taken

per sample. In addition, on-resonant absorption imaging cannot be used for opti-

cally thick condensates, due to attenuation of the probe beam. Modifications such

as imaging off-resonance, or imaging after expanding the cloud in time-of-flight, can

overcome this limitation, but make reconstructing the original cloud profile more

difficult. Fluorescence imaging works similarly to absorption imaging, detecting the

scattered photons from the cloud instead of the transmitted probe beam. However,

the small solid angles for capturing fluorescent light typically make it inferior to

absorption imaging for ultracold gas clouds.

Phase-contrast imaging (PCI) [136, 137] and other dispersive techniques [138,

139] are typically used to image clouds of high optical depth (OD). Such techniques

use off-resonant probe light, where a relative phase-shift, imparted by the cloud,

is detected on the transmitted probe beam. Since the scattering cross-section is

severely reduced by going off-resonance, the perturbation to the sample is small,

allowing the cloud to be imaged multiple times. PCI is unsuitable for imaging

clouds of low OD as it gives a weak signal3.

Using partial-transfer absorption imaging (PTAI), one retains the advantages

of absorption imaging for optically thin clouds while also being able to image op-

tically thick clouds. In this technique, a portion of the cloud from the initial state

is first coherently transferred to an auxiliary internal state that has a cycling tran-

sition. The transferred cloud is then resonantly imaged on the cycling transition.

The recoil energy imparted by scattered photons from the imaging light cause the

transferred cloud to be ejected from the trap, while the cloud remaining in the initial

state is almost unperturbed, and can subsequently be re-imaged.

In any measurement process, there is a certain amount of perturbation to the

3One could use an intense probe beam (or a long probe pulse) to overcome the problem of a

weak signal. However, even in such situations, the small relative change in the intensity of the

probe beam on the detector uses only a small part of the dynamic range of the detector.

67



sample. In a minimally-destructive imaging technique, that perturbation depends

on the desired information, quantified as a signal-to-noise ratio (S/N), leading to a

trade-off between the obtained S/N and the sample perturbation. For example, in

PCI, reducing the probe light detuning improves the S/N but also causes a greater

perturbation to the system [140]. PTAI extends absorption imaging to a minimally-

destructive regime, where, by transferring a larger fraction to the auxiliary state for

imaging, one obtains a better S/N at the cost of a larger perturbation to the initial

cloud.

A key advantage of PTAI over PCI is the ability to easily vary the degree of

perturbation to the sample, even for different images within the same experimental

run, which is useful in situations where the final cloud is optically much thinner

than the initial cloud, such as in characterizing Feshbach resonances [141–143] or

Efimov states [144, 145]. PTAI is also useful for studying in situ dynamics of

quasi two-dimensional condensates where the cloud optical depth in the tightly

confined direction may not be high enough to obtain a good phase-contrast image

[53, 146, 147].

There have been several techniques used to overcome the problem of high

OD [148–150]. However, such schemes have been destructive and cannot be used to

take multiple images. Ref. [151] used a partial microwave out-coupling technique,

similar to PTAI, in a magnetically trapped BEC. However, since the focus of the

work was to study vortex dynamics, the atoms were imaged in time-of-flight. In

this chapter, I will focus on using PTAI to obtain an accurate minimally-destructive

image of the in situ density profile.

The structure of this chapter is as follows: In section 4.2, I will go over the

basics of absorption imaging. In section 4.3, I will discuss the PTAI technique and

its applicability. In section 4.4, I will present some practical uses of the technique in

our experiment. In section 4.5, I will discuss the noise in the measurement process

and compare the technique to PCI as a minimally-destructive imaging technique.

In section 4.6, I will derive expressions to correct for optical pumping. In section

4.7, I will discuss some of the practical aspects before concluding.
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4.2 Absorption imaging

Before we go on to PTAI, let us quickly go over the basics of absorption

imaging. Absorption imaging is a standard technique used in many fields to image

a sample. The fundamental scatterer is an atom (or molecule), which has a (on-

resonant) scattering cross-section σ = Γ~ω/[2Isat(1+I/Isat)] (from equation (3.31)),

where, to remind the reader, ~ is Planck’s constant, ω is the frequency of the resonant

light, Γ is the natural linewidth of the transition and Isat is the saturation intensity of

the transition (defined in equation (3.26)). We factor out the intensity dependence

of the (on-resonant) scattering cross-section, expressing it as

σ =
σ0

1 + I/Isat
, (4.1)

where σ0 is the scattering cross-section in the low intensity limit (Ii ≪ Isat), given

by

σ0 =
~ωΓ

2Isat
. (4.2)

For a cloud density of ρ(x, y, z), where (x, y, z) is the position in space, the

change in light intensity, I, for a resonant light beam propagating along the z-

direction is given by [80]

dI

dz
= −Iσρ(x, y, z) = −Iσ0ρ(x, y, z)

1 + I/Isat
. (4.3)

4.2.a Limit of Low Intensity

In the limit of low intensity, I ≪ Isat, equation (4.3) simplifies to

dI

dz
= −Iσ0ρ(x, y, z), (4.4)

where one can see that the absorption is linearly proportional to the intensity of

the light. Equation (4.4) can be integrated along z, giving an expression for the

transmitted light intensity, It as a function of the incident light intensity Ii and the

column density of the atoms. We will assume that the cloud extends from zi to zf .

This implies that I(zi) = Ii and I(zf) = It. The column density of the atoms is
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given by, n̂(x, y) =
∫ zf
zi
dzρ(x, y, z). Integrating equation (4.4), we obtain:

∫ It

I0

dI

I
= −

∫ zf

zi

σ0ρ(x, y, z)dz

log
It
Ii

= −σ0n̂(x, y) = −β (4.5)

It = Ii exp (−β(x, y)) , (4.6)

where β(x, y), the (on-resonance) optical depth, is defined as β(x, y) = σ0n̂(x, y)

(see appendix C for a sample calibration of σ0). The optical depth (OD) is a

dimensionless quantity which is useful for parameterizing the absorption through

the sample. An OD of less than 0.5 corresponds to little absorption. An OD of

1 corresponds to a 1/e (37%) transmission. An OD of 4 corresponds to almost

complete absorption (nearly 99%).

As one can see in equation (4.6), the transmitted intensity is related to the

OD by a simple exponential function. Similarly, the optical depth can be expressed

analytically in terms of the transmitted intensity (equation (4.5)).

In practice, analyzing an image using equation (4.5) underestimates the col-

umn density. For good image quality, one typically uses an intensity of I ≈ Isat/2,

which underestimates the column density by about 30%. If one were to weaken the

probe down to I = Isat/5, there is still a 20% correction. Hence, while simple anal-

ysis of an absorption image can give good qualitative information about an atom

cloud, it needs to be corrected for saturation to obtain a quantitatively accurate

picture.

Equation (4.5) will be used as a basis for getting a naive estimate of the optical

depth and subsequently adding corrections to get the true optical depth.

4.2.b Effect of saturation

The first correction to the analysis of an absorption imaging is saturation. We

can rewrite equation (4.3) to separate the variables:

(

1

I
+

1

Isat

)

dI = −σ0ρ(x, y, z)dz. (4.7)
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Integrating over the the propagation direction, z, similar to the simple case, we get:
∫ It

Ii

(

1

I
+

1

Isat

)

dI = −
∫ zf

zi

σ0ρ(x, y, z)dz (4.8)

log

(

It
Ii

)

+
It − Ii
Isat

= −σ0n̂(x, y) = −β (4.9)

Equation (4.9) is identical to equation (4.5) except for a correction term due

to the saturation given by (It − Ii)/Isat (see appendix C for a sample calibration of

Isat). In the limit of low incident intensity Ii, It ≪ Isat, the correction term goes to

zero.

For a given incident and transmitted intensity, equation 4.9 gives an expression

for the optical depth. From a practical standpoint, this suffices for a calculating the

optical depth. However, if one were to try and invert the expression (i.e. It = f(β)),

there is no simple analytic way (using commonly used functions) of obtaining the

transmitted intensity for a given optical depth. This makes incorporating further

corrections messier, even though the fundamental differential equation is simple.

Having gone through the basics of absorption imaging, we are now set to

introduce PTAI.

4.3 Imaging with PTAI

In this section, I will first discuss the requirements for implementing PTAI in

the general case before applying it to alkali atoms, and, as is relevant to this thesis,

sodium.

4.3.a Requirements for implementing PTAI

PTAI can be used for any atomic species with the following properties (see

figure 4.1a). In addition to the initial atomic ground state, |g〉, the species needs

to have an auxiliary state, |i〉 to which the atoms can be coherently transferred.

The state |i〉 should have access to a cycling transition to a state |c〉 for optical

imaging, where ideally the species only decays from |c〉 to |i〉. The lifetime of |i〉
must exceed imaging timescales. The energy splitting between the two states, ~ωig
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should be large enough so that the imaging light does not affect the initial state,

i.e., ωig ≫ Γc, where Γc is the natural linewidth of the imaging transition.

In most cases, there is some off-resonant excitation from |i〉 that causes the

transferred fraction, which is being imaged, to eventually be optically pumped out

of the cycling transition to another state. In certain circumstances, one could use a

second optical repumping beam to bring that fraction back to the cycling transition.

However, in situations where the transferred fraction is optically pumped back to

|g〉, one cannot use repumping light, but can nevertheless still use PTAI if the optical

pumping due to off-resonant excitation is sufficiently low (discussed in section 4.5.c).

PTAI is well suited (but not limited) to optical dipole traps, which have no

spatially varying Zeeman shift that could affect the uniformity of the transfer. For

most optical traps, the scattering of several photons transfers a sufficient amount

of energy and momentum such that the atoms leave the trap in the direction of

propagation of the probe beam. Heating due to collisions between atoms leaving

the cloud and the remaining atoms can typically be neglected due to the combination

of weak atom-atom interactions and the low densities of ultracold gases as was also

observed by Ref.[151].

4.3.b Using PTAI with alkali atoms

The hyperfine structure of alkali metal atoms make them suitable for employ-

ing PTAI. The S1/2 ground state of alkali atoms has two hyperfine levels between

which atoms can be coherently transferred. The condition ωig ≫ Γc is satisfied for

the ground state hyperfine splitting of all alkali atoms. Alkali atoms have the D2

optical transition to the P3/2 state, and due to the hyperfine splitting of the excited

state into four levels, spin selection rules allow certain transitions to be used as

cycling transitions4.

4The small excited state splittings in lithium (both 6Li [152] and 7Li [153]) and potassium [154]

(39K, 40K and 41K) are likely to make the cycling transition for the respective atoms less effective

due to off-resonant excitation and consequently optical pumping (discussed in section 4.5.c). One

could use polarization selection (using circularly polarized light, analogous to sodium, discussed in
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Figure 4.1: (a) General PTAI scheme: PTAI is implemented by coherently transferring a

small fraction of the cloud from |g〉 to |i〉 and then imaging on the cycling transition |i〉 to
|c〉. For the scheme to work, the frequency difference ωig should be much larger than the

natural linewidth, Γc, of the cycling transition. (b) Sodium D2 hyperfine structure : Our

implementation of PTAI with 23Na uses the F=1 (|g〉), F=2(|i〉) and F’=3(|c〉) states. For
sodium, ωig ≫ Γc. Optical pumping due to off-resonant excitation to other 3 P3/2 states

followed by decay to F=1 state is low enough to allow the technique to be used.

For sodium (figure 4.1b), we implement PTAI by keeping the atoms in the

initial S1/2 F=1 state |g〉, then transferring a small fraction to the S1/2 F=2 state |i〉
using a single-photon microwave process, and then imaging the transferred fraction

on the S1/2 F=2 to P3/2 F’=3 (|c〉) cycling transition5. For this transition, ωig =

(2π)× 1.77 GHz ≫ Γ = (2π)× 9.8 MHz.

4.4 Practical examples using PTAI

In order to illustrate the usefulness of the technique, I will describe three

specific case examples of experiments in our setup, which used the PTAI technique,

each for a separate reason.

the next footnote), to enhance the cycling transition for implementing PTAI.
5If one were to use a suitable polarization of light to excite to the mF = ±3 magnetic sublevels

of the F’=3 state, spin selection rules guarantee that the atom can return only to the F=2, mF =

±2 states, which enhances the effect of the cycling transition.
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4.4.a In situ imaging of an optically thick BEC

PTAI allows for the use of absorption imaging without any change in the

optical setup. This is advantageous in situations where one may need to image a high

OD cloud in situ and a low OD cloud in time-of-flight [52, 54, 155], possibly even

within the same experimental run. In our critical velocity experiment (discussed

in chapter 7), condensates were created in a ring-shaped trap with a repulsive,

permeable barrier cutting across one part of it. The cloud had an on-resonance OD

of up to 20 making it unsuitable for absorption imaging in situ (shown in figure 4.2d),

which obscured the azimuthal density variations. By imaging the cloud using PTAI

(figure 4.2b), where we transferred between 15-40% of the atoms depending on the

cloud OD, we are able to observe the density variations due to inhomogeneities in

the azimuthal potential (figure 4.2c). Plotting the azimuthal profile (figure 4.2e),

one can see that PTAI (black) clearly shows the nearly 50% density variation, while

absorption imaging (gray) does not.

4.4.b Eliminating trap drift

For calibration purposes of the critical velocity experiment, it was necessary

to measure the full profile of the barrier beam. Since the diameter of the repulsive

barrier was larger than the annular width of the condensate, we looked at the effect

of the beam on a BEC in the sheet optical dipole trap (described in section 3.6).

For technical reasons, the sheet trap was found to drift up to 30 µm between shots.

Due to this shot-to-shot variation in the position of the dipole trap, we could not

use sequential runs to compare images of the BEC with and without the barrier.

Instead, by utilizing PTAI, an image with the barrier beam and an image without

the barrier beam could be taken in quick succession without destroying the BEC (see

figure 4.3) to minimize the relative drift of the BEC and get an accurate reference.
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Figure 4.2: Imaging an optically thick cloud: (a) Standard absorption image of an optically

thick cloud (grayscale: probe transmission) (b) The corresponding PTAI image of an

almost identical cloud using a 16% transfer fraction for the image. From this image we

determine the maximum OD to be ≈19. (c),(d) Corresponding column density profiles

(colorbar: measured OD). (e) Normalized azimuthal density profiles of the PTAI (black)

and absorption (gray) images (angles shown in (d)). Due to the severe attenuation of the

probe (seen in (a)), the absorption image fails to show the full optical depth of the cloud

and consequently, spatial features such as the azimuthal density variation (plotted in (e))

are unclear and affected by shot noise (discussed in section 4.5). In contrast, the PTAI

image shows clear spatial features, particularly the density variations due to azimuthal

inhomogeneities of the toroidal potential.

4.4.c Accounting for number fluctuations

In ultracold gas experiments the initial conditions may vary from run to run.

This is due to the fact that the process of producing these samples involves several

steps of cooling and evaporation, each of which causes fluctuations in the number of

atoms and consequently other properties such as the condensate fraction. Although

it is possible to average over several experimental runs to overcome the initial fluc-

tuations, one can also, more easily, make a minimally-destructive measurement of

the cloud before the experimental procedure to know the initial atom number.
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Figure 4.3: Eliminating noise due to shot-to-shot fluctuations in trap position : In one

example of an application of PTAI, the effect of drift on measurements of a barrier beam

is minimized. In order to obtain the profile of a barrier beam, we take two images, in quick

succession, of the BEC in a drifting optical dipole trap, without (left) and with (right)

the barrier beam. By keeping the time between the 2 images short (300 ms in this case),

we can minimize trap drift to get an accurate comparison of the profile of the atoms, with

and without the barrier. Both images are taken with PTAI, transferring 18% and 32%

of the atoms respectively. PTAI images have been corrected for saturation and optical

pumping using an expression derived in section 4.6

A simple example of this is measuring trap loss of atoms in a sample, which is

commonly used to study Feshbach resonances [141–143] and Efimov states [144, 145].

Here, we demonstrate the measurement of the lifetime of a BEC in a trap. The

primary loss mechanism is background gas collisions. For every measurement, we

take two images, first a reference PTAI image at time t = 0, transferring ≈ 15% of

the cloud and then a second PTAI image at 300 ms < t < 20 s to determine the final

atom number. For the second image, we vary our transfer between ≈ 15% and≈ 85%

to optimally image the cloud. In figure 4.4, we plot the measured condensate lifetime

without PTAI (black triangles) and normalized using PTAI (hollow red diamonds).

By fitting an exponential decay to the uncorrected data (dashed black line), we

obtain a lifetime of 15.4 ± 1.2 seconds, while the corrected data yields 13.5 ± 0.4
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seconds. Using PTAI, the uncertainty in the condensate lifetime6 is reduced by a

factor of 3. Hence, PTAI enables one to determine properties such as the vacuum

limited lifetime more accurately.
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Figure 4.4: Measurement of the BEC lifetime: The circles (filled, black) denote uncorrected

values while the diamonds (open, red) denote corrected values, corrected by accounting for

the initial number of atoms obtained from a PTAI image (uncertainties lie within points).

The respective dashed (black) and solid (red) curves are exponential fits of the points in

order to get the decay time. The corrected points produce a better fit and have a smaller

variance about the fit. The initial number of atoms is approximately 1.1× 105.

6The discrepancy between the two values, being larger than the error bars, is due to a gradual

increase in the overall atom number while making the measurements. We made the measurements

starting from small hold times and going to large hold times. Had we randomized the order of the

measurements, I believe the lifetimes obtained from the uncorrected and the corrected data would

agree within the error bars.
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4.5 Uncertainty of measurement

To assess the scope and usefulness of PTAI, it is important to obtain an expres-

sion for the precision of measurement. In this section, we will do this with a model

calculation. We will make some simplifying assumptions and set up the formalism

to obtain a figure of merit. We will then derive an expression for the uncertainty of

the measurement for PTAI and make a quantitative comparison to PCI for various

cloud ODs.

4.5.a Setting up the formalism

To examine the uncertainty, we set up a generalized formalism to analyze the

PTAI process. The transmitted probe beam is imaged on a CCD, which consists of

a two-dimensional array of photosensors (pixels). Each pixel on the CCD receives

probe light transmitted through a specific area of the ultracold gas cloud. For

simplicity, we assume that the optical resolution is better than our pixel size and

hence can be ignored for this analysis. The precision of the measurement depends

on the pixel size, and is ultimately limited by either atom or photon shot noise. One

can use a larger pixel size (by binning over adjacent pixels or reducing the optical

magnification) to lower shot noise at the expense of spatial resolution. Hence, the

choice of pixel size is important.

In the following analysis, we consider a part of the cloud of area A, containing

N atoms (see figure 4.5) in the volume enclosed by A along the propagation direc-

tion (line of sight). A probe pulse of duration τ passes through the cloud and is

incident on the CCD. M̄ photons are incident on the imaging area of interest A,

and the transmitted photons M̄t, fall on a single effective pixel. We will assume

that the probe intensity, M̄/(Aτ) is much lower than the saturation intensity of the

transition. The probe time is short enough that atoms are assumed stationary (i.e.

τ × vr .
√
A where vr is the total recoil velocity imparted to an atom). The probe

light transmitted through the area of interest A, is ultimately incident on a single

effective pixel, which is our detector. We will assume a single efficiency coefficient
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Figure 4.5: Analysis Setup: The imaging area of interest A of an ultracold gas cloud is

shown. Within A, the incident probe of M̄ photons passes through N atoms giving a

transmitted probe of M̄t photons that are ultimately incident on a single pixel of a CCD,

which constitutes the detector.

η for the imaging system, which includes both transmission efficiency of the optical

beam path to the CCD and the quantum efficiency of the detector.

In the general case, for a probe pulse of frequency ω, imaging on a cycling

transition with resonance frequency ω0, and linewidth Γ, the normalized detuning

∆̃ = (ω−ω0)/(Γ/2) is used. The (on-resonant) optical depth of the area of interest

is β = Nσ0/A (σ0 is the resonant scattering cross-section). Assuming that the atom

cloud density varies slowly over distances on the order of the wavelength of the light,

one can use the eikonal approximation7 for the light propagation. This gives:

M̄t = M̄ exp

(

− β

1 + ∆̃2

)

, (4.10)

M̄abs = M̄

[

1− exp

(

− β

1 + ∆̃2

)]

, (4.11)

δφ = β
∆̃

2(1 + ∆̃2)
, (4.12)

where M̄abs is the number of absorbed photons and δφ is the phase shift imparted to

the transmitted probe. For PTAI, imaging is done on resonance (∆̃ = 0) and hence

7This is a standard approximation, though not explicitly stated, in classical optics. It is related

to the WKB approximation used to model wave-like particles in quantum mechanics.
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there is no phase shift (δφ=0). In using the PTAI technique, we transfer a desired

fraction of atoms, γ, which correspond to a transferred OD of βf = γβ, and number

Nf = γN . In this calculation, we assume that the atom does not get optically

pumped out of the cycling transition through the imaging process. In practice, this

puts a limit on the number of incident photons M̄ , which will be discussed later in

this section. With this description, we can now proceed to calculate the uncertainty

of the measurement.

4.5.b Shot noise

Shot noise limits the precision of PTAI in two ways, the photon shot noise of

the light and the quantum projection noise in the transferred atoms. The detector

photon count depends on the light transmitted through the sample, M̄t and the

detection efficiency, η. The photon shot noise, Nphot, of the beam is given by the

square-root of the number of photons and is given by,

Nphot =
√

M̄tη =

√

M̄ηe−Nfσ0/A. (4.13)

The partial transfer creates a coherent superposition of the cloud in the initial

and auxiliary states. The imaging pulse collapses the superposition into an incoher-

ent splitting. The fluctuations from quantum projection give a standard deviation

of
√

Nf for a transfer of Nf atoms, for small Nf/N . Since we ultimately measure

the photon count, we need to express the variation in terms of a variation of photon

counts. We take the difference in photon counts for the case of the mean value, Nf ,

and the case of one standard deviation away from the mean,
√

Nf . The atom shot

noise, Nat, expressed in terms of photon counts measured by the detector is given

by

Nat = M̄η × 1

2

[

exp
(

−(Nf +
√

Nf )σ0/A
)

− exp
(

−(Nf −
√

Nf )σ0/A
)]

,

Nat = M̄ηe−βf sinh (
√

Nfσ0/A). (4.14)
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We can eliminate the awkward sinh(
√

Nfσ0/A), using (sinh x ≈ x for x . 1):

sinh(
√

Nfσ0/A) = sinh(
√

σ0βf/A),

≈
√

σ0βf/A = βf/
√

Nf ,

sinh(
√

Nfσ0/A) ≈ βf/
√

Nf .

Since βf ∼ 1, σ0 ≤ 6π(λ/2π)2 and A & λ2 (optical resolution limits),
√

σ0βf/A . 1,

and so our approximation is justified8.

4.5.c Uncertainty in measured optical depth

In using the PTAI scheme, a small βf gives a poor S/N due to low probe

beam absorption. It may appear that the S/N should improve with larger βf with

the best S/N at complete transfer (βf = β). However, for βf &4, there is a loss

of contrast due to the severe attenuation of the probe through the sample, which

is not accounted for by this simple S/N treatment. For this reason, we choose the

uncertainty in the measured optical depth as the metric for the quality of the image,

which we will now derive by combining the noise sources and propagating it through

the image analysis.

Since the noise sources are independent, they add in quadrature,

N =
√

N 2
phot +N 2

at,

=

√

M̄ηe−βf

[

1 + M̄ηe−βf

(

β2
f

Nf

)]

. (4.15)

Before we move ahead, it is important to consider the effect of off-resonant excita-

tion, which transfers atoms out of the cycling transition. The rate of off-resonant

excitation is proportional to the probe light intensity, which puts a limit on M̄ .

8The alert reader may wonder if the approximation is justified, given that sinh 1 ≈ 1.2. As the

purpose of this calculation is to obtain a measure for the uncertainty, the scaling is more important

than numerical corrections. The . 20% factor comes from the choice of uncertainty limits when

we converted the quantum projection noise arising from the partial transfer to detector count

variations.
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The exact calculation (shown in section 4.6) to account for optical pumping is quite

involved and is not completely necessary for the current analysis. For now, I will

ignore the effect of optical pumping, but will put a limit on the number of photons

each atom can absorb :

M̄abs

Nf
≤ α, (4.16)

M̄ ≤ αNf

1− e−Nfσ0/A
. (4.17)

where α is the number of photons an atom can absorb and scatter with the effect

of optical pumping being small compared to the uncertainty in measurement. The

effect of optical pumping should be less than 10% for the comparisons given in

section 4.5.d. The exact value of α depends on atomic structure (≈ 75 for our

scheme using sodium).

On setting M̄ to its maximum allowed value, the total noise, N , is then

N =

√

√

√

√

αNfηe−βf

1− e−βf

(

1 +
αηβ2

fe
−βf

1− e−βf

)

(4.18)

As in the case of traditional absorption imaging, the measured optical density

is inferred by comparing the image against a reference image taken in the absence

of atoms. Here, we assume that the reference is averaged over several images and

so has no shot noise associated with it.

The measured optical depth is, on average βf . From the measured optical

depth (≈ βf), and the chosen transfer fraction γ, we infer the original optical depth

βm. The measurement uncertainty, δβm, can be calculated from the total noise (see

appendix A.1):

δβm =
1

γ

√

1− e−βf + αηβ2
fe

−βf

αηβf(A/σ0)e−βf
, (4.19)

The above equation expresses the uncertainty in measurement only in terms of the

optical depth of the transferred fraction and the resolution and can be used to find

the optimal transfer fraction for a given β. A larger pixel size (i.e. higher A) pro-

duces a proportionally lower uncertainty in the measured optical depth. In the limit
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of wanting to only know the total atom number without any spatial information,

one could bin pixels over the entire cloud, thereby grossly reducing the shot noise.

The perturbation to the sample, necessary for characterizing a minimally-

destructive technique, can be quantified in terms of Nf (or γ), which corresponds

to the number of atoms lost due to the imaging process. From equation (4.19), one

can determine δβm for a given atom loss Nf . Alternatively, one can determine Nf

required to obtain a specific δβm.

If optical pumping is sufficiently low (αη & 50), and the transferred optical

depth is mid-range (0.5 < βf < 4), the photon shot noise can be ignored. The terms

containing α dominate in equation (4.19), giving

δβm =
1

γ

√

β2
f

βf (A/σ0)
=
βf
γ

√

1

Nf
=

β
√

Nf

. (4.20)

From the above equation, one can see that the fractional uncertainty δβm

βm
∝
√

1
Nf

.

4.5.d Comparison with phase-contrast imaging

We compare PTAI with PCI as a minimally-destructive technique by compar-

ing δβm for a given perturbation. The uncertainty of the phase-contrast imaging

process is (see appendix A.2)

δβm =
1

cos
(

β

2∆̃

)

√

β

ηNd
(4.21)

where, Nd is the number of atoms undergoing a recoil event, and ∆̃ is the normalized

detuning of the off-resonant probe beam. As with PTAI, the perturbation to the

sample can be quantified in terms of Nd, which corresponds to the number of atoms

lost in the imaging process. Nf and Nd are equivalent for clouds at BEC or Fermi

degeneracy temperatures, where they correspond to atoms that leave the cloud due

to the high kinetic energy (compared to other energy scales) acquired during the

imaging process.

Comparing equations (4.20) and (4.21), both techniques have δβm ∝ 1/
√

Nf .

In addition, for PTAI, δβm ∝ β, while for PCI, δβm ∝ √
β. This difference is
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Figure 4.6: Comparison of techniques : (a) For optically thick clouds, β = 100, PCI

(dash) gives a lower uncertainty than the PTAI technique (solid). Pixel size used is 1.5

µm. For PCI, Nf refers to Nd, the number of atoms lost during the imaging process.

(b) For optically thin clouds, β = 0.5, PTAI (solid) works better than PCI (dash). To

achieve uncertainty levels comparable to the optically thick clouds, a larger pixel size is

needed. Here, we have used a 15 µm pixel size. For both techniques, δβm/β decreases

with increasing Nf/N , showing the trade-off between measurement uncertainty and per-

turbation of the sample. However, for PTAI, the uncertainty reaches a minimum (as seen

in (a)), before increasing with higher transfer fractions (Nf/N) due to attenuation of the

probe beam. For PCI, the uncertainty is ultimately limited by the dynamic range of the

detector. Here, we assume a detector with a 14-bit dynamic range. The PCI detuning is

chosen so that ∆2 ≫ 1 and the phase-shift is modest (δφ < π/4). In both plots, we have

used α = 75, the approximate value for our experiments, and have set η = 1.

because PTAI is usually atom shot noise limited, while PCI is photon shot noise

limited.

For situations involving high column densities, β > 20, typical of some of the

largest BECs, PCI gives a lower uncertainty for a given perturbation, while at low

column densities (β < 1), PTAI gives a lower uncertainty as shown in figure 4.6.
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For intermediate ODs (1 < β < 20), typical for many Bose-Einstein condensate

experiments, the value of η becomes more important. In this range, PTAI is atom

shot noise limited and therefore less sensitive to imaging losses, which often arise

due to the complexity of ultracold gas experiments where multiple beams are folded

along the imaging path with beamsplitters. In such a scenario, as is the case for

our experimental apparatus [54] where η ≈ 0.3, PTAI performs better for a test

case β = 2, even though under ideal imaging conditions, PCI is expected to perform

better (figure 4.7).

Figure 4.7: Lower sensitivity of PTAI to imaging losses: For β = 2, PCI (dash-dot)

gives a lower uncertainty than the PTAI technique (dot) in the absence of imaging losses

(η = 1). However, when one considers a situation where multiple beams are folded along

the imaging beam line leading to high imaging losses (η = 0.3), the performance of PTAI

(solid) is only marginally affected and is better than PCI (dash). A pixel size of 4 µ m

has been used. α = 75.
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4.5.e Scattering of many photons per atom

In the previous section, we set Nf and Nd as equivalent for comparing PTAI

to PCI. While for practical purposes they are equivalent, there is one crucial dif-

ference. In PCI, the entire atom column contributes to the phase-shift acquired by

the probe beam9. In the process, every atom has a small probability absorbing and

spontaneously scattering a photon. At the end of the imaging pulse, Nd atoms would

have undergone a recoil event. In PTAI, only the transferred fraction contributes

to the absorption of the probe beam. By imaging on the cycling transition, each

transferred atom on average, scatters many photons and therefore acquires several

recoil energies, in contrast to PCI where the scattered atoms have only a single recoil

energy.

A consequence of the scattering of many photons per atom is that the trans-

ferred atoms leave the cloud in the direction of the probe. For most optical dipole

traps (trap depth ≈ 1−10µK), such atoms are expected to have a sufficient amount

of energy (recoil energy 0.5 − 2.5µK per photon for optical transitions, 1.2µK for

sodium10 D2) to leave the trap. However, in PCI, where atoms leave with a single

recoil energy, the atoms may oscillate in the trap, and collide with other atoms

causing further loss.

In our experiment, we noticed almost no heating when we used PTAI. However,

when we used processes that caused atoms to undergo single-photon recoil events11,

similar to recoil events of PCI, we noticed heating and severe loss in the remaining

atoms (discussed in chapter 6).

4.6 Correcting for optical pumping

If repumping light was used and the cycling transition for imaging was com-

pletely closed, equation (4.9) would suffice. However, with PTAI, in the case of

9This explains why PCI performs well for optically thick clouds.
101.2 µK is half the recoil temperature given by (1/2)kBT = Er, where Er is the recoil energy.
11two-photon Raman transitions and removing an F=1 remnant cloud, which are discussed in

chapter 6
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sodium, one cannot use repumping light and there is some off-resonant excitation

(to the F’=2 state of the 3P3/2) which decays to the F=1 hyperfine ground state

taking the atom out of the cycling transition. This causes a time dependent effect,

where the number of atoms participating in the cycling transition decreases with

time. Longer pulse lengths give a net lower absorption.

For PTAI to work well, off-resonant excitation should be a factor of 100 or more

lower than resonant absorption, because in that case the off-resonant absorption

will be significantly less than the on-resonant absorption and will not affect the

transmitted intensity It. In such situations, the main effect of off-resonant excitation

is to create a time dependent optical depth (β(τ)), where τ is the time such that

τ = 0 is the start of the imaging pulse. This in turn affects the transmitted intensity,

It(τ).

Again, we start with the differential equation given in equation (4.3), with an

additional time dependence. The z dependence is explicitly shown. For simplicity,

I will keep x and y fixed, and omit them from the expressions below.

dI(z, τ)

dz
= −I(z, τ)σ0ρ(z, τ)

1 + I(z, τ)/Isat
. (4.22)

In addition, we have an off-resonant excitation at a frequency ωb, which takes atoms

out of the cycling transition. This can be expressed as,

dρ(z, τ)

dτ
= −I(z, τ)

~ω

σbρ(z, τ)

∆̃2
, (4.23)

where ∆̃ = (ω − ωb)/(Γ/2) is the normalized detuning of the excitation from the

probe resonance, and σb is the optical pumping transition scattering cross-section.

It includes the scattering cross-section of the off-resonant excited state and the

probability of decay to the other ground hyperfine state. Since the detuning is

many linewidths, other terms in the right hand side denominator, including the

effect of saturation, are negligible and have been ignored.

To solve for the optical depth, we need to integrate out the z dependence of

equations (4.22) and (4.23). Since equation (4.22) is not affected by optical pumping,

it can be solved as done in section (4.2.b) to get

log
It(τ)

Ii
+
It(τ)− Ii

Isat
= −σ0n̂(τ) = −β(τ). (4.24)
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In order to integrate equation (4.23), we need to solve for the integral of the

product of the cloud density and the light intensity
∫ zf
zi
dzI(z, τ)ρ(z, τ). While

∫ zf
zi
dzρ(z, τ) = β(τ)/σ0, the product

∫

dzI(z, τ)ρ(z, τ) has not been solved for be-

fore. For that, I use some mathematical manipulations. These do not offer any

insight and the reader may skip over to section 4.6.b

4.6.a Solving for
∫ zf
zi
dzI(z, τ)ρ(z, τ)

We start with the differential equation (4.22), and then rearrange the terms

to isolate I(z, τ)ρ(z, τ):

dI(z, τ)

dz
= −I(z, τ)σ0ρ(z, t)

1 + I(z, τ)/Isat
∫ It

Ii

dI(z, τ)(1 + I(z, τ)/Isat) = −σ0
∫ zf

zi

dzI(z, τ)ρ(z, τ)

By integrating the left hand side over I(z, τ), and moving σ0 to the other side,

we obtain:
∫ zf

zi

dzI(z, τ)ρ(z, τ) =
1

σ0

(

Ii − It(τ) +
I2i − I2t (τ)

2Isat

)

(4.25)

4.6.b Obtaining the final expression

Substituting the solved integral from equation (4.25) back into equation (4.23),

we obtain an expression,

dβ(τ)

dτ
= − σb

~ω ∆̃2

(

Ii − It(τ) +
I2i − I2t (τ)

2Isat

)

, (4.26)

where the z dependence has been removed. Equation (4.26) has two interdependent

variables which are a function of time, the transmitted intensity It and the optical

depth β. One can then express β in terms of It from expression (4.24) giving a

master differential equation relating the transmitted intensity It and time:

dIt(τ)

dτ

(

1

It(τ)
+

1

Isat

)

= − σb

~ω∆̃2

(

Ii − It(τ) +
I2i − I2t (τ)

2Isat

)

. (4.27)

The solution of this equation (see appendix A.3) would give the transmitted

intensity as a function of the incident intensity, the initial transmitted intensity and
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time, i.e. It(τ) = f(Ii, It(τ = 0), τ). The initial optical depth β(τ = 0) is the

transferred optical depth βf . We can obtain It(τ = 0) from the case when optical

pumping is absent (equation (4.9)).

One can then numerically obtain a solution for the measured optical depth

given the incident intensity, the transmitted intensity and pulse time.

4.6.c Analytical solutions in special cases

The solution of equation (4.27) shown in appendix A.3 is quite complicated.

By making some simplifying assumptions, one can obtain solutions that give a better

insight about the physics. I will discuss the case of low optical depth where one can

assume that all atoms see roughly the same intensity of light. In this case, one

assumes a constant optical pumping and so the rate of loss of atoms is proportional

to the incident intensity and the number of atoms:

dβ(τ)

dτ
= − σb

~ω∆̃2
Iiβ(τ). (4.28)

This can also be derived mathematically from equation (4.27). If one assumed

It ≈ Ii and Ii ≪ Isat, one simplify

Ii − It +
I2i − I2t
2Isat

≈ Iiβ,

and substitute the result back into the right hand side of equation (4.27) to get the

same result.

Equation (4.28) is a first order decay differential equation in β and has a

negative exponential solution:

β(τ) = β0 exp

(

− σbτIi

~ω∆̃2

)

, (4.29)

where β0 = β(τ = 0).

While we have ignored saturation for this expression, it is only a small, indirect

contribution as opposed to when we infer the optical depth from the absorption. In

fact, it’s effect is opposite to that of higher optical depth. In the limit of high
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saturation, all atoms see roughly the same intensity, but then the optical pumping

will be high and the signal to noise ratio will not be good.

Obtaining the optical depth, β0 in practice, one needs to use the pulse time,

τp, the incident intensity and the integrated transmitted intensity,
∫

It(τ). To first

order, one can assume an average optical depth over the pulse length, giving us a

simple analytical equation:

βav = β0
~ω∆̃2

σbτpIi

[

1− exp

(

−σbτpIi
~ω∆̃2

)]

(4.30)

Using equation (4.9) to correct for saturation, and using equation (4.30) to

correct for optical pumping, one can get a reasonable estimate of the actual optical

depth.

The effect of the saturation, optical pumping and the analytical correction

are show in figure 4.8, calculated for the sodium atom (see Steck [156]). Even at

intensities of Isat/5, there is a 10% correction required for saturation. If one corrected

for saturation only, one would obtain βav (more or less), which is also plotted. On

making the final correction for optical pumping using equation (4.30), one gets a

value close to the actual optical depth. For β0 = 2, one overestimates the optical

depth by 5% at most (see figure 4.8 right).

4.7 Practical considerations in using PTAI

So far in this chapter, we have discussed PTAI, its performance as a minimally-

destructive technique and the limitations due to optical pumping. While we quan-

tified perturbation as atom loss, we did not discuss the consequences of sudden

atom loss. Although experimental evidence suggests that PTAI does not cause any

heating, atom loss affects the equilibrium of a non-linear system like a TF BEC, in

which the mean-field energy is balanced by the trap potential. The primary effect is

breathing oscillations (discussed in chapter 5), where the sudden12 lowering of the

12We have to image faster than the timescale of trap dynamics so as to ensure that we obtain

an accurate, undistorted image of the in situ cloud. The suddenness of atom loss is unavoidable.
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Figure 4.8: Corrected and uncorrected optical depth (OD) as a function of probe intensity

for OD=1 (left) and OD=2 (right). The uncorrected OD does not correct for saturation

or optical pumping. The partially corrected OD corrects for optical pumping (according

to our simple analytical model) only. The fully corrected OD corrects for both saturation

and optical pumping. The time-averaged OD gives the mean OD (βav) for the duration

of the pulse. For OD=1, our simple analytical correction works well. For OD=2, the

correction overestimates the optical depth by about 5% at worst.

mean-field causes a change in equilibrium about which the BEC oscillates. The an-

harmonicity of the trap then causes the oscillations to populate other modes, which

ultimately leads to heating.

The loss of atoms, breathing oscillations and heating, all put limits on what

fraction can be transferred (and imaged). Measuring atom loss from the trap (sec-

tion 4.4.c) is probably the ideal application of PTAI, since the first measurement can

use a small transfer fraction13 and the second measurement is only a measurement

of the number of atoms. For other applications, we have to wait until the system

equilibrates. In our experiment, even a 5% loss causes observable oscillations in

situ, which limits any measurement to a time after the oscillations have damped out

(≈ 1s). Larger perturbations, such as a 20% transfer cause large oscillations fol-

lowed by observable heating, which limits any measurement to after a few seconds,

13As no spatial information is required, the pixel size can be as large as the sample, greatly

lowering shot noise.

91



by which time, rethermalization and background gas scattering cause a nearly 50%

loss.

For center-of-mass oscillations, which are often used to measure the harmonic

oscillator trap frequency (also known as dipole or sloshing oscillations, discussed in

chapter 5), heating or atom loss do not affect the measurement, and PTAI can be

used to take repeated measurements when studying center-of-mass oscillations. Re-

peated measurements in a single experimental run should give a better measurement

(compared to a series of experimental runs, with varying oscillation times, and only

one measurement per run), and would also yield more data per experimental run.

From practical considerations, for taking actual experimental data, PTAI is

most likely to be used as a destructive technique (not minimally-destructive), as with

PCI [157], although both techniques have the ability to make minimally-destructive

measurements. However, from an experimentalist’s point of view, PTAI can be

used as a minimally-destructive technique to obtain more data per experimental

run, saving time for the experimentalist for measurements that need not be very

precise. For example, we have used PTAI to obtain condensate density profiles in

our ring trap for a range of atom numbers. Instead of taking several experimental

runs, each with different initial conditions, we took several (up to 8) PTAI images

of a single BEC. Each successive image had a lower atom number than the previous,

and we were able to sample a wide range of atom numbers from a single experimental

run.

PTAI (as a minimally-destructive technique) is extremely useful for trou-

bleshooting, allowing the experimentalist to get a snapshot of the BEC at any stage.

For example, if one were performing a sequence of procedures on a sample (our ex-

perimental sequence to study critical velocity in chapter 7 is one such case), using

PTAI, by taking snapshots at different times, one can determine which procedures

are working well, and which are not. In particular, if one procedure failed occasion-

ally, say 1 in 10 times, PTAI can help locate the problem, without requiring the

experimentalist to specifically test each procedure individually.

PTAI also has some uses as a minimally-destructive technique. PTAI is best
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suited to take a snapshot of the number of atoms, which typically requires < 3%

perturbation, before any experiment is performed. This is useful either to know

what the initial conditions of the sample were, or to use as a check point in a long

sequence. Similarly, PTAI can be used to track any sort of trap drift (demonstrated

in section 4.4.b), which the experimentalist is unable to eliminate. Also, PTAI can

also be used to study center-of-mass oscillations.

4.8 Conclusion

In this chapter, I have discussed the technique of partial-transfer absorption

imaging. PTAI can optimally image clouds of the full range of OD and also offers

the convenience of being able to easily switch to regular absorption imaging. PTAI

is an alternative to PCI as a minimally-destructive technique and performs better

for optically thin samples, and for situations which involve imaging losses, such as

when multiple beams are folded in along the imaging beam line.

In our lab, PTAI proved to be an invaluable tool in getting a uniform ring

trap and was crucial in making accurate measurements of the critical flow velocity.

We shall now get back to the BEC physics and study the BEC in the ring trap.
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Chapter 5

The ring trap

Superflow, the first evidence of superfluidity observed [9, 10], was the original

definition of superfluidity. With Landau’s two-fluid model [13] and subsequent the-

ories of quantized vortices in helium [23, 24], the list of characteristic properties of

superfluidity expanded. While experiments in atomic BECs have shown convincing

evidence of superfluidity [44–51], superflow has been harder to observe. Unlike liq-

uid helium, which could be produced in large quantities and made to flow through

long channels, atomic BECs are made in small quantities and hence cannot be made

to continuously flow over any long path. A solution to this is to create a multiply-

connected geometry and induce flow around a loop.

A vortex in a BEC does create, in a sense, a multiply-connected geometry, since

there is a singularity, and hence a “hole”, in the vortex core. However, a vortex in a

simply-connected BEC is an unstable excitation and can lower its energy by moving

towards the edge of the cloud, as has been observed in experiments [45–47, 52, 158].

Hence, one cannot observe truly stable superflow in a simply-connected BEC with

a vortex. Given that, the simplest way to realize a multiply-connected geometry for

a BEC is by using a toroidal trap. This was a motivation towards building the ring

trap.

5.1 Applications of a toroidal potential

Apart from observing superflow, the toroidal potential has other important

applications, such as for performing atom interferometry and studying quasi-1D

physics, which will be discussed below.
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Figure 5.1: Basic scheme of an atom interferometer: As in optical interferometry, atom

interferometry requires the coherent splitting and recombining of atoms, giving two com-

plementary interferometer output ports, shown on the right.

5.1.a Atom interferometry

Atom interferometry is performed (figure 5.1) by coherently splitting an atom

cloud into two parts, having the two parts travel spatially different paths before

recombining and interfering [159]. Atom interferometry is used for gravimetry [160],

precision measurements such as measuring the fine structure constant [161–165] and

potentially measuring the Newtonian gravitation constant [166–168], and several

tests of fundamental physics (see Cronin et al. [159]). By making use of the Sagnac

effect [169], where the rotation of a closed loop setup causes a differential phase-shift

in beams (light or atom) propagating in opposite directions, atom interferometry

has also been used to sense rotation [170–172] and cold atom gyroscopes have been

demonstrated [173, 174].

While most experiments, including those mentioned above, use free-space atom

interferometry, where the coherently split atoms travel in free space, one can imple-

ment a configuration where atoms travel along a confined, guided path (or waveg-

uide), akin to optical fibers for light. Guided path atom interferometers have the

advantage of operating with higher interaction time and hence yielding a higher

signal [159]. Refs. [175–177] used linear waveguides to implement the guided cold

atom interferometer. Atoms traveling forward and back on the same waveguide
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Figure 5.2: Sagnac interferometer using toroidal confinement : Using a π/2 optical Bragg

scattering pulse [77, 178], the atom cloud can be coherently separated into two parts

(labeled “1” and “2”) which travel in opposite directions around the ring and can be made

to interfere by using another π/2 Bragg pulse when they overlap, giving two interferometric

output ports (which have momenta of ±2np0, p0 is the photon-recoil momentum and n is

the order of the Bragg pulse). The read out could be the number of atoms in each port,

which would change if the apparatus is made to rotate. (from Moore [179])

cancel any accumulated phase-shift to first order. In order to break that symmetry,

Wang et al. [175] used a magnetic field gradient while Wu et al. [176] translated the

waveguide perpendicular to its axis.

One can use a toroidal potential as a waveguide for guided path atom inter-

ferometry (described in Moore [179]), by placing atoms on one part of the ring,

coherently splitting them into two parts that travel along opposite sides on the ring

and recombine after they travel the ring in opposite directions (figure 5.2), making

an atom Sagnac interferometer.

A BEC in a toroidal geometry can also be used to sense rotation analogous

to a SQUID (Superconducting QUantum Interference Device) for sensing magnetic

field. A SQUID consists of a superconducting loop [1, 180] with one or two tunnel

junctions (or weak links). The quantum coherence of the superconductor across

the tunnel junction and around the loop allows for a highly sensitive detection of

magnetic field. The neutral superfluid analog of magnetic field in a superconductor

is rotation [47]. When one makes the transformation to the rotating frame, the
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Coriolis force becomes the effective magnetic field. Hence, a BEC in a toroidal

geometry with one or two weak links could be used to make a rotation sensor.

Superfluid helium has been used to sense the earth’s rotation [181, 182].

5.1.b Quasi-1D physics

A toroidal BEC can also be used to study quasi-1D physics. Since the first

BECs, there has been a lot of interest in Bose gases in traps that are highly

anisotropic [183], particularly those that are elongated and cigar-shaped [184, 185],

making them quasi-1D. Although condensates in such traps are 3D in nature, their

transverse lengths being much larger than the thermal de Broglie length and the con-

densate healing length, they can exhibit 1D-like behavior such as longitudinal phase

fluctuations [184, 186], that have been observed by spatial fluctuations in the time-

of-flight density profile [187], measuring the spatial correlation function [188, 189],

Bragg momentum spectroscopy [190]. The 1D-3D dimensional cross-over has also

been theoretically studied [191, 192].

When used to study quasi-1D physics, a narrow, bicycle-tire like toroidal BEC

has the advantage of being azimuthally uniform (ideally) over the entire circum-

ference, compared to cigar-shaped clouds, which have a gradual taper as one goes

away from the center along the axis. From a theoretical point of view, one can treat

the system more exactly using periodic boundary conditions. BEC parameters such

as the mean field, the population of thermally excited modes and the longitudinal

sound speed are ideally all invariant as one goes around the torus. Another feature

of a toroidal BEC is the interference of the entire cloud at the axial center when

released in time-of-flight. This feature has been used to detect circulation in the

torus [52, 54] and can be used to detect phase fluctuations [193].

5.2 Previous ring trap experiments

There have been several different schemes for making ring traps and ring wave-

guides. While the first experiments used larger ring traps (millimeters or above)
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primarily as waveguides, later experiments used smaller traps down to sizes that

could hold a BEC in its ground state.

In one of the first such experiments with ultracold gases, Crompvoets et al.

[194] created a 25 cm diameter hexapole electrostatic circular waveguide for po-

lar deuterated ammonia. The molecules were loaded from a 200 K source using

a pulsed solenoid valve followed by a Stark decelerator that produced molecule

bunches around 100 m/s with a spread of 4-5 m/s corresponding to a translational

temperature of 10 mK. The molecules were found to make up to 6 round trips before

the velocity spread caused a broadening of the bunch making it difficult to detect.

Later, Sauer et al. [195] created a 2 cm diameter ring waveguide for cold

neutral rubidium atoms. The ring waveguide was created using two parallel current

carrying wires, which produced 2D confinement and an extended magnetic field zero

at the mid-point between them. The ≈60 µK atoms were loaded from a magneto-

optical trap followed by optical molasses. The atoms were accelerated downwards

by gravity and guided with guide wires so that they could be loaded into the ring.

The atoms made up to 7 trips around the ring before they were undetectable due

to losses, primarily from Majorana spin flips.

In similar work, Wu et al. [196] created a 3 cm “stadium”-like ring waveguide

for ultracold atoms. The rubidium atoms were loaded directly from a 2D MOT.

The atoms were launched bi-directionally around the waveguide using an optical

standing wave, and filled the entire ring.

In 2005, the first BECs in circular waveguides were reported. Gupta et al.

[197] produced a BEC in a horizontal, few-millimeter diameter ring-shaped magnetic

waveguide. The waveguide was created by a ring quadrupole with a time-averaged

potential to overcome the problem of Majorana losses. The BEC was formed on one

side of the tilted ring and then launched into the waveguide. The BEC circulated in

the waveguide until its azimuthal expansion filled the entire waveguide uniformly.

Around the same time, Arnold et al. [198] created a BEC at the top of a

vertical 10 cm diameter quadrupole magnetic ring (see figure 5.3a). The vertical

geometry was used to split an atomic cloud into two counter-rotating clouds which
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were recombined after one revolution. An azimuthal magnetic field from a current

carrying wire along the axis was used to overcome the problem of Majorana losses.

In both experiments, rubidium-87 was used.

While the experiments discussed so far have involved magnetic traps and

waveguides, there have been other proposals for creating ring traps. Several groups

have proposed creating ring traps using LG beams. Arlt et al. [130] proposed using

a tightly focused LG beam to create a ring trap at the focus. A similar scheme

was implemented by Olson et al. [199], using a blue-detuned high order LG beam,

trapping ultracold thermal rubidium-85 atoms. Amico et al. [200], proposed using

the standing wave created by a retroreflected LG beam to produce a stack of rings.

Courtade et al. [201] trapped cold atoms in a stack of rings, created by the inter-

ference of an LG beam with a counterpropagating Gaussian beam. Carter et al.

[202] proposed using an LG beam optical molasses to cool and trap atoms in a ring

geometry.

Other groups have suggested the use of other electromagnetic fields. Hopkins

et al. [203] proposed a scheme using magnetoelectrostatic potentials. There have

also been proposals using rf dressed atoms [204, 205] in magnetic traps, which have

been implemented for thermal atoms [206] and very recently, a BEC [207].

For most applications of toroidal traps, the trap has to have a smooth ex-

tended minimum. The roughness in the azimuthal potential has to be less than

the mean field (for a BEC) or the temperature (for a thermal cloud), whichever is

appropriate. This is particularly difficult to do in some of the larger rings [197, 198],

because of the length of the extended minimum and the susceptibility to bumps

from inhomogeneities in the wires. Also, in using a small ring (diameter <100 µm),

particularly for BECs, the larger mean field1 is able to overcome small bumps in the

potential, something which we will also discuss later in the chapter.

Recently, there have been successful demonstrations of toroidal confinement

1The number of atoms in a BEC is usually fixed by the experimental setup, and hence in making

a smaller BEC, the same number of atoms are confined to a smaller region, which produces a larger

mean field.
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(a)

(b) (c)

Figure 5.3: Previous ring confinement schemes : (a) Vertical 10 cm diameter ring from

Arnold et al. [198] using the four circular wires. The BEC (small cigar) is created at the

top of the ring with the help of the four square coils. The vertical geometry was used to

split an atomic cloud into two counter-rotating clouds which were recombined after one

revolution. (b) Toroidal BEC from Henderson et al. [147], using the combination of a

horizontal sheet beam and a vertical scanning beam. The circular time-averaged scanning

beam creates a ring potential, which creates a ring-shaped BEC, shown in (c).
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using a combination of magnetic and optical potentials [52, 208], similar to some of

the early BEC experiments which explored different shapes [42, 209]. Other groups

have shown toroidal confinement using a scanning acousto-optic deflector to pattern

the ring confinement [147, 210]. Of them, Henderson et al. [147] are the closest to

our experiment [54] since they use a combination of two perpendicularly intersecting

optical beams (figure 5.3(b), BEC image shown in (c)).

The all-optical traps (and presumably rf dressed traps also) that use a sheet-

like potential [54, 147] have the advantage of separating the axes of confinement and

hence are insensitive to any small relative drift between the optical beams. Relative

drift has been a problem in toroidal traps that use a combination of a magnetic trap

and an optical plug [52]. Having discussed the various schemes of creating a toroidal

potential, we shall now move on and look at our all-optical ring trap.

5.3 The ring trap potential

To remind the reader, our ring trap is created by the intersection of a horizontal

sheet beam that provides vertical confinement and a vertical LG1
0 beam that provides

annular confinement2 (figure 5.4). In this section, we will calculate the optical

potential created by the two beams to obtain an expression for the trapping potential

in terms of the trap depth and trap frequencies.

We begin with the LG beam profile (discussed earlier in section 3.5), which

has a cross-sectional electric field profile,

ELG(r, φ) = E0

(

r

r0

)

e
− r2

r2
0 eiφ, (5.1)

where E0 is the field strength, r0 is the LG beam width, and radial coordinates (r, φ)

are used. The corresponding intensity profile is given by

ILG(r) = I0

(

r

r0

)2

e
− 2r2

r2
0 , (5.2)

where I0 represents the intensity of the beam. The azimuthal coordinate has been

dropped as ILG has no φ dependence.

2All references to the LG beam henceforth refer to the LG1

0
beam mode.
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Figure 5.4: Schematic of ring trap (Details of individual beams discussed in section 3.6):

Our new toroidal trap is formed by the intersection of a sheet-like horizontal beam and

ring-like LG beam. In-situ images of atoms in the trap, from both the top and side are

shown. The arrows indicate direction of propagation of the respective trapping beams.

Since the strength of the LG beam is normally given in terms of the power of

the beam, we shall now express I0 in terms of the power PLG. We perform the area

integration of the intensity profile from 0 to ∞:

PLG =

∫ ∞

0

2πrdr

(

I0
r2

r20
e
−2 r2

r2
0

)

,

PLG =
πI0r

2
0

4
(5.3)

⇒ I0 =
4PLG

πr20
. (5.4)

We can now express the cross-sectional intensity profile ILG(r) in terms of PLG

and r0,

ILG(r) =
4PLG

πr20

(

r

r0

)2

e
− 2r2

r2
0 . (5.5)
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Figure 5.5: (a) Cross-section of an LG1
0 beam. (b) Radial profile of the cross-section. The

LG1
0 beam has an intensity node at r = 0 and a maximum at a radius rM .

The important characteristics of any cold atom trap are the trap depth and the

trap frequencies3. The trap depth is proportional to the maximum intensity of the

beam and can be calculated using equation (5.5). The trap frequency is obtained

by making a harmonic oscillator approximation around the minimum of the trap

and obtaining the spring constant from the coefficient of the quadratic term in the

expansion of the trap profile about the minimum.

5.3.a The trap depth

To find the LG intensity maximum (or trap minimum), we differentiate equa-

tion (5.5) and locate the point at which dILG/dr = 0:

dILG
dr

= I0

(

2r

r20
e
−2 r2

r2
0 − 4r3

r40
e
−2 r2

r2
0

)

dILG
dr

= I0

(

1− 2r2

r20

)

2r

r20
e
−2 r2

r2
0 (5.6)

3For optical traps, there is some atom loss due to spontaneous scattering of the trapping light.

In our experiment, this is < 10−4 s−1 per atom, which is negligible compared to scattering from

background gas.
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The point of maximum intensity occurs at

rM =
r0√
2
. (5.7)

We can now substitute rM into equation (5.5) to get the maximum intensity,

ILG,M =
2

πe

(

PLG

r20

)

=
PLG

πer2M
. (5.8)

The trap depth can be subsequently obtained using the light shift from the far off-

resonant interaction (using equation (3.21), and substituting equation (3.15) for the

Rabi frequency). However, we have to be careful here since the detuning, ωL−ω0, is

comparable to the transition frequency, ω0 (in our case ωL ≈ ω0/2), and the rotating

wave approximation is no longer valid. In such situations, we include counter rotat-

ing terms, and simplify the expression by ignoring the fine and hyperfine structure4.

The light shift simplifies to [211]:

Vtrap = −3πc2

2ω3
0

(

Γ

ω0 − ωL

+
Γ

ω0 + ωL

)

Itrap, (5.9)

where Γ is the natural linewidth of the transition (also known as the rate of spon-

taneous emission, see equation (3.23)), and c is the speed of light. We set

K =
3πc2

2ω3
0

(

Γ

ω0 − ωL
+

Γ

ω0 + ωL

)

, (5.10)

thereby relating the trap depth to the light intensity using Vtrap = −KItrap. We

obtain the trap depth in terms of the power in the LG beam:

Vdepth = KILG,M =
KPLG

πer2M
. (5.11)

5.3.b The trap frequencies

A harmonic oscillator potential about the trap minimum can be written as

V = −Vdepth +
1

2
mω2

r(r − rM)2 (5.12)

4Other excited states do play a role when the rotating wave approximation is no longer valid.

However, the electric dipole coupling strengths to other states are low, and can be neglected for

this calculation.
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Keeping the harmonic oscillator in mind, we will now make a Taylor expansion of

ILG about rM :

ILG(r − rM) = ILG,M +
1

1!

dILG
dr

∣

∣

∣

∣

rM

(r − rM) +
1

2!

d2ILG
dr2

∣

∣

∣

∣

rM

(r − rM)2 + ... (5.13)

Since rM is a maximum, the first derivative in the expansion goes to zero. The

second derivative can be obtained by differentiating equation (5.6):

d2ILG
dr2

= I0

[(

1− 2r2

r20

)(

2

r20
− 8r2

r40

)

− 8r2

r40

]

e
−2 r2

r2
0

d2ILG
dr2

∣

∣

∣

∣

rM

=
−4I0
er20

(5.14)

We truncate the expansion beyond (r−rM)2 and match the expression to equa-

tion (5.12). The zeroeth order terms give the expression for trap depth (equation

(5.11)). The first order terms are zero. The second order terms give

1

2
mω2

r =
1

2

16PLGK

πer40
,

from which we obtain

ωr =

√

16PLGK

πemr40
. (5.15)

The trap frequency is proportional to the square-root of the power of the beam.

5.3.c Vertical confinement

The vertical confinement from the sheet beam holds the atoms against grav-

ity. We will go through the calculation to obtain the vertical trap depth and trap

frequency, which are important in characterizing the ring trap.

For an elliptical Gaussian beam, the intensity at the center is given by

Ish,M =
2Psh

πz0r⊥
, (5.16)

where Psh is the power in the beam, z0 and r⊥ are the 1/e2 radius in the vertical (z,

see figure 5.4) and horizontal directions (r, φ). The trap depth can then be calculated

using the light shift from the far off-resonant interaction (equation (3.21)):

Vsh,depth = Ish,MK, (5.17)
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We can then express the vertical confinement potential due to the sheet in terms of

Vsh,depth

Vsheet = Vsh,depthe
−2z2/z2

0 , (5.18)

where we have ignored confinement in the horizontal axes because it is weak com-

pared to the annular confinement of the LG beam. By comparing the terms of the

above expression to that of a harmonic oscillator, as was done for the LG beam, we

obtain the vertical trapping frequency,

ωz =

√

4Vsh,depth
mz20

=

√

8PshK

πmz30r⊥
. (5.19)

5.3.d Sample calculation of trapping parameters

In practice, we measure the powers in the two beams, Psh and PLG, and their

sizes, z0 × r⊥, and rM . We calculate K for sodium using equation (5.10). From

these parameters, we can obtain the trap frequencies, ωr and ωz, and the trap depth.

Table 5.1 gives a sample set of parameters that we have used for the experiment.

5.4 Condensate wavefunction in the ring trap

In the previous section, we modeled our potential as a ring shaped harmonic

oscillator. We will now use the model trap potential to solve for the condensate

wavefunction in the ring trap. The condensate wave-function can be obtained by

solving the Gross-Pitaevskii (GP) equation,

Eψ(r) =
~
2

2m
∇2ψ(r) + Vext(r)ψ(r) + g|ψ(r)|2ψ(r). (5.20)

where ψ is the condensate wavefunction, E is the energy of the eigenstate and Vext

is the trapping potential, g is the interaction strength and r is the position in space.

The GP equation cannot be easily solved since it contains a non-linear inter-

action term. One can model it analytically in one the following limits:

1. Non-interacting regime: In this regime, interactions are low and one neglects

the interaction energy compared to the kinetic energy. The many particle

ground state in this case is identical to the single particle ground state.
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Property Expression Value

K −3πc2

2ω3

0

(

Γ
ω0−ωL

+ Γ
ω0+ωL

)

-7.42 ×10−37 J m2/W

PLG 27 mW

rM 19 µm

r0
√
2rM 27 µm

I0 4PLG/πr
2
0 48 ×106 W/m2

Vdepth KPLG/πer
2
M h× 9.8 kHz

kB× 470 nK

ωr

√

16PLGK/πemr
4
0 (2π)× 218 Hz

Psh 150 mW

z0 9.1 µm

r⊥ 800 µm

Ish,M 2Psh/πz0r⊥ 13 ×106 W/m2

Vsh,depth 2PshK/πz0r⊥ h× 15 kHz

kB× 700 nK

ωz

√

8PshK/πmz30r⊥ (2π)× 560 Hz

Table 5.1: Ring trap parameters: The table lists the measured and calculated parameters

for the ring trap in our experiment.

2. Thomas-Fermi regime: In this regime, interactions dominate and kinetic en-

ergy does not play a role. The condensate density follows the (inverted) shape

of the trapping potential up to the level where Vext(r) = µ0.

We model our ring trap potential V (r, z, φ) in cylindrical coordinates (r, z, φ)

as,

V (r, z, φ) =
1

2
mω2

zz
2 +

1

2
mω2

r(r − rM)2, (5.21)

where ωz and ωr are the vertical and radial trapping frequencies about the annulus,

r = rM , z = 0 is the bottom of the potential and m is the mass of the sodium atom.

The vertical confinement is tighter than the radial (annular) confinement (ωz > ωr).
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There are 3 simplified ways to treat the ground state BEC in the ring trap.

1. Harmonic oscillator ground state regime : In this case, we neglect the inter-

action energy. The condensate assumes the ground state of the 2D harmonic

oscillator. The density distribution n3D is:

n3D(r, z, φ) = n3D,0e
−z2/z2we−(r−rM )2/r2w , (5.22)

where zw and rw are the harmonic oscillator lengths given by
√

~/mωz and
√

~/mωr respectively and n3D,0 is the maximum (peak) 3D density.

2. Radial Thomas-Fermi and vertical harmonic oscillator : In this case, the con-

densate expands due to the mean field in the radial (about the annulus) di-

rection, but is still confined to the ground state in the vertical5:

n3D(r, z, φ) = e−z2/z2wg

(

µ0 −
1

2
mω2

r(r − rM)2
)

for |r − rM | < rTF,

= 0 everywhere else (5.23)

where rTF =
√

2µ0

mω2
r
is the Thomas-Fermi radius of the cloud, which defines

the extent of the cloud in the radial direction.

3. Fully Thomas-Fermi : In this case, the condensate takes the (inverted) shape

of the potential and occupies the region enclosed by V (r, φ, z) < µ0.

gn3D(r, z, φ) = µ0−
(

1

2
mω2

zz
2 +

1

2
mω2

r(r − rM)2
)

for V (r, φ, z) < µ0

= 0 everywhere else (5.24)

The above expressions gives the condensate density distribution in terms of

the chemical potential. However, experimentally, we measure the integrated column

5Here, I will be using µ0 = gn3D,0 as the chemical potential similar to the fully Thomas-Fermi

case. As a consequence, µ0 does not include the zero point energy along z, which, for the harmonic

oscillator ground state, is ~ωz/2.
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density (along our imaging direction z) and the total number of atoms. Hence,

we need to obtain a relation for the experimentally measured quantities (column

density and number of atoms) to the chemical potential.

5.4.a Harmonic oscillator ground state regime

We start with the 3D density distribution:

n3D(r, z, φ) = n3D,0e
−z2/z2we−(r−rM )2/r2w . (5.25)

We can integrate it along z to get the 2D column density distribution, n2D, and the

peak 2D column density, n2D,0:

n2D(r, φ) = n3D,0zw
√
πe−(r−rM )2/r2w , (5.26)

n2D,0 = n2D(r = rM , φ) = n3D,0zw
√
π. (5.27)

where we have used
∫

e−z2/z2wdz = zw
√
π. In this case, the column density is Gaus-

sian of width rw about a circle or radius rM .

We can further integrate this about φ and r to get

N = n3D,0zwrwπ × 2πrM , (5.28)

where N is the total number of atoms. We can then express the peak 3D density,

n3D,0 as

n3D,0 =
N

2π2zwrwrM
. (5.29)

We have assumed that the radius of the annulus is large compared to the radial

harmonic oscillator width.

5.4.b Radial Thomas-Fermi regime

The 3D density distribution in this case has the same z dependence to the

harmonic oscillator case:

n3D(r, z, φ) = e−z2/z2w
1

g

(

µ0 −
1

2
mω2

r(r − rM)2
)

, for (r − rM) < rTF (5.30)

= 0 everywhere else.
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We can integrate along z similar to the harmonic oscillator case to get:

n2D(r, φ) =

√
πzw
g

(

µ0 −
1

2
mω2

r(r − rM)2
)

, for |r − rM | < rTF

=
µ0

√
πzw
g

(

1− (r − rM)2

r2TF

)

, for |r − rM | < rTF, (5.31)

= 0 everywhere else.

The column density takes the shape of an inverted parabola about a circle of

radius rM . The peak column density is given by

n2D,0 = n2D(r = rM , φ) =
µ0

√
πzw
g

, (5.32)

in terms of the chemical potential µ0. Integrating along r and φ, we get:

N =
µ0

√
πzw
g

× 2πrM
4

3
rTF =

8π3/2µ0

3g
zwrMrTF.

Substituting for rTF and zw, we get N in terms of the chemical potential and trap

frequencies:

N =
8
√
2π3/2

3

rM
√
~µ

3/2
0

mgωr
√
ωz

. (5.33)

5.4.c Fully Thomas-Fermi regime

We start with the 3D density distribution:

gn3D(r, z, φ) = µ0 −
(

1
2
mω2

zz
2+

1

2
mω2

r(r − rM)2
)

for V (r, φ, z) < µ0

= 0 everywhere else (5.34)

Integrating along z (see Appendix B), we get a column density given by:

gn2D(r, φ) =

√

32

9mω2
z

(

µ0 −
mω2

r(r − rM)2

2

)3/2

for |r − rM | < rTF (5.35)

= 0 everywhere else

where rTF =
√

2µ0/mω2
r , as defined earlier.
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The 2D column density profile obtained is similar to the annular TF case

expression, equation (5.31) except for a 3/2 power and therefore has a steeper drop-

off. I will call the functional form of equation (5.35), the 3D-TF profile.

The peak 2D density is given by:

n2D,0 = n2D(r = rM , φ) =
4
√
2µ

3/2
0

3
√

mω2
zg
. (5.36)

We then setup the expression to integrate the 2D column density and obtain the

number of atoms:

N =

∫ rM+rTF

rM−rTF

rdr
4
√
2

3g
√

mω2
z

(µ0 −
mω2

r(r − rM)2

2
)3/2

∫

dφ,

Integrating over r and φ (see Appendix B), we obtain

N = rM
4πmω3

rr
4
TF

3gωz
× 3π

8
. (5.37)

Finally, substituting for rTF to express N in terms of µ0, we arrive at

N = 2π2 rMµ
2
0

gmωzωr

. (5.38)

Property Harmonic Oscillator Radial TF Fully TF

n3D n3D,0e
−z2/z2we−s2/r2w µ0e−z2/z2w

g

(

1− s2

r2
TF

)

µ0

g

[

1−
(

z2

z2
TF

+ s2

r2
TF

)]

n2D n3D,0zw
√
πe−s2/r2w µ0

√
πzw
g

(

1− s2

r2
TF

)

4µ0zTF

3g

(

1− s2

r2
TF

)3/2

n2D,0

√
πn3D,0zw

√
πµ0zw
g

4µ0zTF

3g

N 2π2n3D,0zwrwrM
8π3/2µ0rTFzwrM

3g
µ0π2rTFzTFrM

g

N 2π2rM~

m
√
ωrωz

n3D,0

√

128π3r2M~

9g2m2ωzω2
r
µ
3/2
0

2π2rM
gmωzωr

µ2
0

Table 5.2: The table summarizes the results for various parameters for the 3 simplified

treatments of a ring BEC in our trap. I have used s = r − rM , rw =
√

~/mωr, zw =
√

~/mωz, rTF =
√

2µ0/mω2
r , zTF =

√

2µ0/mω2
z .
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5.4.d Sample BEC parameters for our trap

In this section, we will assume some typical values for our trap parameters,

and obtain the BEC parameters for a given number of atoms. For our system, we

typically had:

• rM = 20 µm,

• ωr = (2π)110 Hz, and

• ωz = (2π)550 Hz.

• For sodium, m = 3.8× 10−26 kg

• and g = 1.0× 10−50 Jm3.

For 150 000 atoms, the various properties are given in table 5.3. As seen in

the table, the chemical potential goes roughly as µ ≈ 2ωz and µ ≈ 9ωr. This implies

that the BEC lies somewhere between the radial TF and the fully TF regimes. The

harmonic oscillator BEC model is clearly not valid. One can see that the radial

extent of the harmonic oscillator BEC is significantly less than that of the TF

BECs, rTF. The harmonic oscillator model also overestimates the peak 2D and 3D

densities.

The radial TF and fully TF models are in rough agreement for the conditions

given. This implies that they are both reasonable approximations for the condi-

tions given. They both given a similar value for µ0, and their radial and vertical

dimensions are comparable. If the N were to increase, say to about 300 000, then

the radial TF model would become less applicable and the fully TF model would

become more applicable. However, if N were to decrease, the fully TF model would

be less applicable. At low enough N , it is expected that the harmonic oscillator

model would become applicable.
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Property Harmonic Oscillator Radial TF Fully TF

µ - h× 1000 Hz h× 890 Hz

rTF 4.0 µm † 8.5 µm 8.0 µm

zTF 1.8 µm ∗ 1.8 µm ∗ 1.6 µm

n3D,0 2.1×1020 atoms/m3 6.6×1019 atoms/m3 5.8×1019 atoms/m3

n2D,0 3.4×1014 atoms/m2 1.0×1014 atoms/m2 1.3×1014 atoms/m2

Table 5.3: The table gives the values of the various BEC parameters for the 3 simplified

treatments of a ring BEC in our trap, assuming N=150 000 atoms. † - As the harmonic

oscillator limit BEC has no TF lengthscale, I have used 2rω = 2
√

hbar/mωr to obtain the

equivalent lengthscale. ∗ - As the harmonic oscillator and radial TF BECs have no TF

lengthscale along z, I have used 2zω = 2
√

hbar/mωz to obtain the equivalent system size.

The TF half-width corresponds to approximately twice the harmonic oscillator 1/e width.

5.5 Characterizing the ring BEC from time-of-flight expansion

While it took nearly a year of work to get a good, smooth ring trap (see

section 5.6), we had some evidence of persistent currents almost right away, and

within five months, had unambiguous persistent currents and preliminary data for

the decay of superflow. Our characterization and understanding of the dynamics of

the ring trap went a long way in getting a smooth trap and having the next few

steps (see chapters 6 and 7) ready to be implemented. In this section, I will discuss

how we characterized the various parameters of our trap from the time-of-flight

expansion.

The time-of-flight (TOF) expansion of a cold atom cloud yields useful infor-

mation of the cloud in the trap such as the temperature and mean field [109]. In

fact, the slow and anisotropic expansion of the BEC (as well as its sudden onset)

compared to the non-condensed thermal cloud6 were the key signatures in identify-

6In some situations, the thermal cloud may be too faint to be seen, making the measurement

of temperature difficult. In our system, we have seen both, regimes in which the thermal cloud
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Figure 5.6: Time-of-flight expansion of the ring : In this sequence of 2 sets of PTAI images

(top: from above, bottom: from the side), the ring is imaged after release from the trap

in TOF. The BEC (thermal cloud is too weak to be detected) expands in all directions,

filling up the central hole in about 6 ms. The coherence of the BEC can be seen in the

enhancement of the peak central density at 8 ms and the diffraction-like fringes along the

edges at the similar time.

ing the first BEC [41]. The expansion of the cloud depends on the trap parameters,

the temperature and the chemical potential (or equivalently, the number of atoms).

The expansion of the condensate is shown in figure 5.6. The condensate ex-

pands in all directions, causing the ring to close upon itself. The focussing of the

BEC at the center of the ring causes a prominent peak around 6 ms. The tight

confinement (or compression) in the vertical direction causes far more expansion in

the vertical than in the radial direction. We will now go into the more quantitative

aspects of the TOF expansion.

While most standard BEC references assume a 3D harmonic trap [109, 212],

we have to be careful since we have a multiply-connected geometry which cannot

be directly mapped onto a simple 3D harmonic oscillator. As discussed earlier in

this chapter, we assume our BEC to be in a toroidal harmonic trap. The validity

of the assumption for the condensate depends on the next order term in the Taylor

expansion of the trapping potential (equation (5.13) for the annular confinement).

This term is smaller by an additional factor of (rTF−rM)/3rM (for a TF condensate)

was clearly visible hence the temperature was measurable, and regimes in which the thermal cloud

was not visible. For the latter cases, we ignored temperature and any possible thermal effects.
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compared to the second order (quadratic or harmonic) term. For our system (see

Appendix C.5 for sample parameters), the value of the (third order) quartic term

is about 17% of the quadratic term at the TF radius. In the vertical direction

(z), the quartic term scales as z2TF/z
2
0 , which amounts to a correction of around

1% with respect to the harmonic term. This correction is small since the vertical

trapping frequency is higher and hence the condensate sits close to the bottom of

the trap, seeing minimal anharmonicity. In our system, the temperature was close

to the condensate chemical potential and so similar corrections would apply to the

thermal cloud also.

Since the system is more harmonic in the vertical direction and the trapping

geometry is simple along that axis, we extracted the temperature and the mean field

from the vertical expansion.

We will derive the expression for obtaining the temperature and mean field for

the case of a general 3D harmonic oscillator, and then apply the expression for an

individual axis to the vertical expansion of the cloud.

5.5.a The thermal cloud

The width of the thermal cloud in a particular direction, ri, can be derived

from the equipartition of energy. A 3D harmonic trap has 3 degrees of freedom, each

having an average energy of 1
2
kBT per atom, where kB is the Boltzmann’s constant,

and T is the temperature of the cloud. By equating the translational kinetic energy

(equal to the potential energy for a harmonic oscillator) of the cloud to 1
2
kBT , we

get
1

2
kBT =

1

2
mω2

i 〈r2i 〉 (5.39)

where ωi is the trap frequency in the relevant direction. Assuming a Gaussian profile

for the thermal cloud, ∝ e−r2i /r
2

i,0 , we get an expression for 〈r2i 〉:

〈r2i 〉 =
∫∞
−∞ r2i e

−r2i /r
2

i,0dri
∫∞
−∞ e−r2i /r

2

i,0dri
= (1/2)r2i,0. (5.40)
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Substituting 〈r2i 〉 back into equation (5.39), we obtain the Gaussian width of the in

situ thermal cloud in terms of the temperature:

ri,0 =

√

2kBT

mω2
i

. (5.41)

The Gaussian width in TOF, at long time t can similarly be derived [109]:

ri(t) =

√

2kBT

m
t. (5.42)

By taking a fit of the Gaussian width of the expanding thermal cloud, we

use equation (5.42) to obtain the temperature7. The precision is limited mainly by

shot-to-shot fluctuations. Figure 5.7 shows the expansion of a cold atom cloud in

the ring and the calculation of the temperature from the rate of expansion of the

thermal cloud.

5.5.b The condensate

The in situ condensate wavefunction has been described in detail in section 5.4.

Here, we will discuss the expansion of a TF cloud, since it is most relevant to

our system. The harmonic oscillator case, and situations in between the TF and

harmonic oscillator regimes also follow similar scaling, as has been derived by Castin

and Dum [212]. In this section, I will use an energetics argument to obtain an

expression for the vertical expansion of the BEC due to mean field.

The mean field energy of a TF condensate scales as the chemical potential µ0.

When atoms are released in TOF, all this energy is converted into kinetic energy,

which gives a scaling

ri(t) ∝
√

2µ0

m
t . (5.43)

In the case of highly anisotropic trap, most of the mean field energy goes in the

direction of the tightest confinement. This is because the cloud is maximally com-

7We can interpolate between the two limits to get a generalized expression that can be used for

fitting: ri(t) =
√

2kBT
m

(

1

ω2

i

+ t2
)1/2

. In practice, the small size of the in situ cloud in the vertical

makes it difficult to extract ωz due to optical resolution limits. Hence, we use equation (5.42) to

obtain the temperature.
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Figure 5.7: Obtaining temperature and mean field : (a) The vertical TOF of our BEC

in the ring trap is shown. The left and right column show absorption images and PTAI

images respectively. The absorption images are able to detect the thermal cloud. The

PTAI images are able to profile the BEC accurately. (note : transfer fraction varies 1-

20%) (b) Temperature of 38 nK obtained from the slope of a linear fit of the Gaussian 1/e

radius of the thermal cloud using equation (5.42). (c) Mean field (or chemical potential) of

1.0 kHz obtained from the slope of a linear fit to equation (5.44) of the TF half-maximum

radius of the BEC.
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pressed in that direction, and hence the sudden release causes maximum expansion

along that direction. The ratio of energy released in different directions is directly

proportional to the trap frequency squared (see Ketterle et al. [109] for example). A

trap frequency ratio of 4 is sufficient to have more than 90% of the energy released in

the direction of tight confinement. In our experiment, we typically have ωz/ωr & 5,

and hence we assume

z(t) =

√

2µ0

m
t . (5.44)

The correction to the above expression in the calculation of the chemical po-

tential is smaller than other calibration uncertainties. We use the above expression,

along with in situ profile measurements (detailed in appendix C.5) to calibrate the

chemical potential of our ring traps. Figure 5.7 also shows the calculation of the

mean field from the rate of expansion of the TF condensate.

5.6 Azimuthal smoothness of the ring

In our trapping scheme, the BEC is very sensitive to bumpiness. The trapping

potential has to be smooth on the scale of the mean field, which is an order of

magnitude smaller than the average depth of the potential. Rough estimates suggest

that the bumps need to be smaller than 10% of the beam intensity just to get an

unbroken ring BEC. Unlike magnetic traps, which are intrinsically smooth due to

the macroscopic long range potentials created by the current carrying coils that are

located far away from the atoms, optical traps are prone to bumpiness on the order

of the optical wavelength or longer. Such bumpiness can come from any number

of sources: unclean optical surfaces, dust settled on optical elements, scratches on

optical coatings, unwanted reflections from surfaces of optical elements, etc. While

such bumpiness cannot be completely eliminated especially at the level of azimuthal

smoothness required by the mean field, it can be greatly reduced by careful design

of the optical beam path and the use of strategically placed irises to clean up the

beam.

The tight confinement (with far-field optics) in the vertical direction (confining
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the cloud to <2 µm) down to lengthscales comparable to the trapping light wave-

length prevents any structure in the trapped BEC in the vertical direction. The

optics do not have the sufficient numerical aperture to cause any structures. How-

ever, bumpiness is present in the more weakly confined horizontal direction, which

is reflected in the azimuthal profile of the ring BEC. There are several problems

with this azimuthal bumpiness. Firstly, if the bumpiness is larger than the chemical

potential of the BEC, the BEC becomes segmented and localized and no continuous

ring BEC is formed. Secondly, even if we have a continuous BEC, the bumpiness

causes an azimuthal variation of both the mean field and the trapping frequency.

Any small perturbation of the BEC arising, for example, from the transfer of circu-

lation as discussed in chapter 6, can cause different parts of the ring to oscillate out

of phase, leading to further excitations that could facilitate the decay of flow for a

circulating ring.

Thirdly, even if the azimuthal bumpiness were small enough to be robust

against out-of-phase oscillations from small perturbations, the bumpiness may still

limit the range of the chemical potentials for which one still has a continuous ring

BEC. As varying the chemical potential is key in varying the superfluid flow veloc-

ity (see chapter 7), the bumpiness would ultimately limit the range of superfluid

flow velocities that could be probed for the determination of the critical velocity

(discussed in chapter 7). In addition, variations in the azimuthal density profile due

to the bumps would lower the accuracy of the determined critical velocity. Hence,

obtaining an azimuthally smooth ring is critical to studying superfluidity.

The bumpiness of the potential caused several visible and obvious problems.

In performing a simple TOF of atoms in the ring trap, we would see complicated

patterns emerge (figure 5.8 top and middle), presumably due to the non-uniform

phase-evolution of the azimuthally varying BEC. In addition, when we transferred

circulation (discussed in Chapter 6), oscillations due to the perturbation go out of

phase with hold time, presumably due to the azimuthal variation of the annular

trap frequency leading to possible decay of the flow (figure 5.8 bottom).

While the effects of bumpiness were easy enough to see, we still required an
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 2 ms  10 ms 4 ms  6 ms  8 ms

Saturated absorption. 
Bumps not visible.

Fringes in tof
Uneven 
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Non-rotating 
tof of cloud

in situ  2 ms  6 ms

E!ect of 
bumps in tof

Fringes in tof from 
higher density regions

Higher density regions

E!ect of bumps on 
BEC evolution after 
circulation transfer
(Hold in trap 1-5, 
6-10 ms)

1

6

5

10 cloud
in tof

Figure 5.8: Effects of Azimuthal bumpiness: (top) Tof sequence of a bumpy ring - While

spatial features of the cloud before 6 ms TOF are not visible due to severe attenuation of

the probe, there are fringes and other uneven structure seen in 10 ms TOF that indicate

the presence of bumps. (middle) Showing the effect more clearly - Variations in the in

situ density cause different rates of phase evolution in TOF for different points. This

causes interference which can be visible as fringes in TOF (here 6 ms), similar to those

seen in the expansion of cigar-shaped clouds [187]. The interference fringes are more easily

seen in higher density regions. (bottom) Effects of circulation transfer in the presence of

bumps - While the ring is smoother in this case than the previous, the perturbation due

to the transfer of circulation causes small oscillations (seen in situ) which then locally

oscillate out of phase due to the azimuthal variation of the annular trap frequency leading

to possible decay of the flow. The atoms seen in the bottom right corner of the image are

those trapped in a stray local minimum of the sheet potential. The cloud in TOF after a

short hold also shows a lot of structure.
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Figure 5.9: In situ azimuthal density profile of the ring BEC : The above figure shows

the improvement in the smoothness of the ring from June 2009 (a) to May 2010 (b). The

magnification and pixel size is the same for both images. We obtained a quantitative

measure of the bumpiness by plotting the azimuthal density (c). (black - from (a), red -

from (b)).

accurate diagnostic for the bumpiness. Taking the azimuthal profile of an in situ

image (typically using PTAI) of the BEC in the ring trap gave us a good measure of

the bumpiness (figure 5.9). The profile can be taken in two ways, either by summing

over the transverse direction to get the number of atoms as a function of the angle,

or by finding the peak density (either by a transverse fit or by the maximum density

in a region, both giving similar results). Either way, we get a good measure of the

bumpiness.

In the course of improving the smoothness from figure 5.9(a) to (b), we made

several changes. We ensured that the sheet potential was smooth in the vicinity of

the ring, and that the BEC in the sheet alone was as circular as possible. We made

the ring smaller, which thereby saw a smaller area of the sheet and hence was less

affected by potential variations in the sheet. The smaller ring also made the mean

field higher, which made the bumps smaller relative to the mean field.

The biggest change was cleaning up the ring beam. In our initial setup, scat-

tered light from the hologram ended up being refocussed onto the plane of the BEC.

By suitably placing an iris in the path of the LG ring beam, and finely adjusting

its position, we were able to obtain a very smooth ring with gentle undulations (as
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opposed to sharp bumps). The undulations were quadrupolar in nature, presumably

due to the astigmatism in the optical path. Subsequently, by collimating the beam

passing through the hologram to a smaller size, the scattered light was reduced. In

addition, the smaller beam used a smaller aperture on subsequent optics lowering

the effect of the astigmatism. By carefully placing an iris in the beam path, the

astigmatism could be further reduced so that we could obtain smooth rings as shown

in figure 5.9(b).

5.7 Sloshing and breathing oscillations

In the course of working with the BEC, we noticed that when perturbed, the

BEC underwent radial oscillations. We took some time to briefly study them. Col-

lective oscillations in BECs have been extensively studied [63, 136, 213]. Oscillations

can be classified as sloshing (dipole), which is center-of-mass motion in a harmonic

potential, and breathing (quadrupole), which is symmetric non-center-of-mass os-

cillation. While the former has a period equal to the trap frequency, the latter has

a faster period which depends on the interactions and the dimensionality. For a

non-interacting BEC, the breathing frequency is twice the trap frequency.

Breathing and sloshing excitations can provide useful information about the

BEC. The sloshing oscillation gives a measure of the trap frequency. The ratio

of the breathing and sloshing frequencies can indicate whether lower-dimensional

and/or interaction effects are playing a role. The amplitude dependence of the

sloshing oscillations can indicate the anharmonicity of the trap. The damping of

the oscillations can indicate the coupling to the excited modes, give a measure of

the temperature, and provide information on the superfluid nature of the BEC.

We excited sloshing modes (see figure 5.10) using the light-shift gradient from

a large radius, pulsed red-detuned LG beam, and breathing modes (see figure 5.11)

by suddenly removing a small fraction (< 10%)of the cloud using a microwave pulse

to transfer to the F=2 state and then applying imaging light. The radial sloshing
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Figure 5.10: Radial sloshing oscillations in the ring BEC : On exciting center-of-mass

oscillations using a spatially large, pulsed red-detuned LG beam, we observe the diameter

of the ring BEC oscillate at a frequency of 81 Hz. Images are taken in situ. Each image is

a separate BEC, for which we fit a ring TF density profile to extract the BEC diameter,

which is plotted on the right. The oscillations have a damping time constant of about 50

ms.

frequency was 81 Hz, while the breathing frequency was 134 Hz, giving a ratio8 of

1.65. Both oscillations have a damping time constant of 50 ms. This damping is

presumed to be due to the anharmonicity and asymmetry of the ring trap, which

causes energy to be lost to other excitation modes of trap. Ultimately, the energy

of the oscillations is presumed to be converted into thermal energy. While we have

made preliminary measurements studying breathing and sloshing, more care and

precision is required to study useful physics.

8This can be compared to ratios calculated [214, 215] for a pure 2D gas (2.00), 2D TF gas

(
√

10/3 = 1.82) or a symmetric 3D TF gas (
√
2 = 1.41), none of which exactly match our

parameters.
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Figure 5.11: Radial breathing oscillations in the ring BEC : On suddenly removing a

small fraction of the BEC, we observe the annular thickness of the ring BEC oscillate at a

frequency of 134 Hz. Images are taken in situ. Each image is a separate BEC, for which

we fit a ring TF density profile to extract the radial thickness, which is plotted on the

right. The oscillations have a damping time constant of about 50 ms.

5.8 Conclusion

In this chapter, we have discussed the construction of the toroidal trap and

the basic ring BEC expansion and dynamics. There have been several proposals

on creating a toroidal potential. Of those, we have successfully realized a ring trap

where the two axes of confinement, vertical and radial (about an annulus) are created

separately. This has the advantage of being stable with respect to relative drift. We

have also built the framework to measure and quantify smoothness, and have been

successful in making the trap smooth to within 10% of the chemical potential.

Apart from the technical aspects in creating a smooth trap, there are several

avenues for studying interesting physics. We pursued the study of superflow and

persistent currents, which constitute the remainder of this thesis. However, there

are interesting possibilities in the observation of phase fluctuations, the study of

interactions in TOF (as we saw for a non-uniform condensate, figure 5.8 middle)

and possibly in situ and the study of collective oscillations.
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Besides being more stable to relative drift between different components of

the trapping potential (similar to Ryu et al. [52]), the all-optical ring trap has

other advantages over the “plugged” magnetic traps [52, 208]. For example, the

dimensionality of the system can be easily changed by simply adjusting the relative

intensities of the two trapping beams, and varying the chemical potential (number

of atoms in practice) to choose the right regime. While this is also possible in the

“plugged” magnetic traps, it is more difficult.

In exploring dimensionality using our ring trap, there are some problems that

one is likely to encounter. For example, if one wanted to explore the quasi-1D limit,

one needs to either lower the mean field or provide tighter radial confinement using

higher ring beam power. Either way, the mean field would be reduced compared to

the azimuthal bumps in the potential, making the BEC more bumpy. Azimuthal

smoothness currently is limited by the astigmatism of the LG beam path. A careful

realignment can further improve the smoothness, which would be necessary if one

were trying to create a larger radius ring trap.

If exploring the quasi-2D limit or pushing for larger ring traps (∼100 µm), the

uniformity of the sheet potential and also its 800 µm Rayleigh range would limit

the smoothness. This would require a redesign of the sheet beamline to create a

larger uniform focal spot. It is important to note that any further increase in ring

size would run into other technical limitations of the experimental apparatus, such

as the number of atoms necessary for condensation in the ring, etc.

In contrast, observing superflow is easier with relatively weaker confinement,

where the mean field is allowed to smooth over the bumps, and a smaller radius ring,

since the flow velocities are higher for the same circulation (same phase winding over

a smaller circumference leads to a higher phase gradient and therefore flow velocity).

Hence, our rM ≈20 µm ring, was well suited9 for studying persistent currents, which

we shall now look at.

9If the ring were any smaller, imaging in situ would become more difficult.
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Chapter 6

Persistent currents in a BEC

In the previous chapter, we discussed our motivation for using toroidal geom-

etry to observe superflow. We also discussed the various aspects of the ring-shaped

condensate and our efforts in understanding the system and obtaining a smooth

ring. In this chapter, we will detail our efforts towards the achievement of persistent

currents in our ring BEC.

We begin with the previous persistent current experiment by Ryu et al. [52],

where superflow was observed in a toroidal geometry. The persistent current was

found to last 10 seconds, limited by the relative drift between the magnetic TOP trap

and the optical “plug” beam. The previous work also looked at multiply-charged

circulation in a BEC and the stability of a doubly-charged vortex around the central

hole in the BEC.

Our current work was largely motivated by the previous work, where we sought

to improve upon the earlier experiment. We used an all-optical trap (discussed in the

previous chapter), which eliminated magnetic coils and thermal drift. The trapping

beams were fiber coupled, so that any thermal drift from the laser translated only to

a loss of laser power in the trap, but not misalignment. The new trap also had the

independent confinement of the two axes, and so relative drift would not affect the

shape of the trap. With the new trap, we were able to observe persistent currents

lasting 40 seconds [54].

The chapter is organized as follows. In sections 6.1 and 6.2, we will go over

some general background, discussing flow in a toroidal geometry and the various

ways of transferring orbital angular momentum (OAM) to a BEC respectively. The

next two sections will go into some of the specifics, namely the transfer of OAM using

an LG beam (section 6.3) and the other experimental changes from the previous

persistent current experiment [52] (section 6.4). Section 6.5 details some of the
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experimental considerations for clean and efficient transfer, while section 6.6 talks

about our detection method. Finally, section 6.7 discusses the persistent currents we

achieved and the lifetime of the flow, and is followed by section 6.8, which mentions

some of our preliminary results on multiply-charged circulation.

6.1 Flow in a toroidal BEC

In chapter 2, we discussed the concept of flow in multiply-connected geom-

etry, and found that such flow was quantized, based on equation (2.42), which is

reproduced here:
m

~

∮

dl · vs = 2πn, (6.1)

where m is the mass of the atom, vs is the superfluid flow velocity, and n is an

integer. The integral represents any path enclosing the region of no superfluid.

Applying the above equation to a circular path of radius r in a toroidal condensate,

we obtain
m

~

∮

rdθ · vs = 2πn, (6.2)

from which, using the cylindrical symmetry of the problem, we can express vs in

terms of the integer n:

vs =
~n

mr
. (6.3)

Equation (6.3) is identical to the velocity profile of a cloud with a single vortex,

shown in equation (2.44), except for the quantum number n. Hence, a single unit

of circulation in a toroid has the same velocity profile1 as that of a superfluid with

a single vortex line. However, one should be careful in taking this equivalence too

far since the toroidal BEC has no vortex core.

The lack of a vortex core has several implications. There is no region where

there is a trade-off between the interaction energy (mean field) and the kinetic

energy, which is responsible for the shape of the vortex core. The circulating kinetic

energy is typically small compared to the interaction energy or kinetic energy from

1For the region where the BEC has a non-zero density.
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confinement. Such circulation is also possible in a non-interacting BEC, but would

be unstable.

6.2 Transferring orbital angular momentum to atoms

The methods of transferring OAM to a BEC can be broadly classified as:

1. Mechanical stirring methods : analogous to methods to create circulation in

classical fluids.

2. Phase engineering methods : exploit the quantum nature of atoms to deter-

ministically imprint a certain number of quanta (usually one or two) of phase

winding, which translates into circulation.

The classification is not perfect as above categories do not cover all the meth-

ods of transferring OAM, and some methods fall in-between the two categories.

Nevertheless, the classification is still instructive in that it points out what aspect

of the fluid (classical or quantum) is being exploited.

In the first vortex experiment in an atomic BEC, Matthews et al. [44] created

a vortex state through a coherent process involving the spatial and temporal control

of the interconversion of a two-component BEC between two spin states (based on

a scheme by Williams and Holland [216]). This experiment could be seen as both

classical, in that there was a rotating beam, and quantum, in that there was an

interconversion between the two components and that the vortex had exactly one

unit of circulation. In the years following, several groups demonstrated vortices

in BECs by mechanical stirring [45–47, 217–223]. While mechanical stirring may

seem like a classical technique, it can also be understood in terms transfer of phase

winding [224].

Vortices have also been nucleated by other perturbations to a BEC, such as

inducing a defect [225], sweeping a defect through a BEC [51, 226], or superimposing

an oscillating excitation to the trapping potential [227]
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On the phase engineering front, Isoshima et al. [228] first proposed a scheme

of using the spin degree of freedom of the order parameter of a BEC to create a

vortex. Based on that, Akamatsu and Kozuma [229] transferred OAM to atoms in

a vapor cell using a LG beam, and Leanhardt et al. [230] transferred two (or four)

units OAM to a BEC by inverting the bias of an Ioffe-Pritchard trap. OAM transfer

to BECs using LG beams have been demonstrated [52, 117, 126]. There have been

recent proposals to continuously pump OAM into a BEC [231, 232]. Kuwamoto

et al. [233] transferred 4 units of OAM, by inverting the bias field similar to earlier

work [230]. Vortices have also been created by engineering the Hamiltonian using a

spatial-dependent optical coupling between internal states [234].

The methods of transferring OAM discussed above involve the deliberate cre-

ation of circulation in a BEC. It is worth mentioning that vortices can also be created

by the merging of independent condensates [235, 236] or by the condensation pro-

cess itself [151, 208]. In these situations, the process is random, where thermal or

quantum fluctuations of the phase determine the number of vortices and the sign of

their rotation.

While both mechanical stirring and phase engineering have been successful

in creating circulation and vortices, there are some important differences, which

could make one technique or the other preferable. In general, mechanical stirring is

inaccurate and one cannot precisely control the amount of circulation transferred.

However, it can transfer large amounts (> 5 units) of angular momentum, necessary

to observe effects such as vortex lattices [47], or large vortex aggregates [218], or

to attain critical rotation where the rotation velocity is close to the radial trapping

frequency [221].

Phase engineering is important in situations where one needs to transfer a

fixed amount of rotation, usually one or two units. Transferring large amounts

of circulation by the repeated use of phase engineering is difficult because of the

perturbation to the cloud by each transfer process (discussed in section 6.5). Transfer

of rotation by phase engineering has been used for observing persistent currents [52]

and for sculpting a vortex state in a spinor BEC [237].
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For our experiments, where we observed persistent currents and studied the

decay of superflow (chapter 7), we used phase engineering to transfer circulation.

We implemented phase engineering using a two-photon Raman2 transfer with an

LG beam [52, 117, 126], which transferred exactly one unit of circulation.

6.3 Transferring orbital angular momentum using a LG beam

Having already discussed the connection between circulation and phase wind-

ing, we will now talk about transferring OAM using LG beams. Light can carry

two kinds of angular momentum: internal or spin angular momentum associated

with its polarization and external or OAM associated with its spatial mode [240]. A

light beam with a phase singularity, such as an LG beam, has a well-defined OAM

along its propagation axis [241]. As with circulating atoms, LG beams have a phase

winding around the central phase singularity, sometimes termed an optical vortex.

Coherent transfer of atoms using such a beam will cause the atomic cloud to acquire

the optical phase winding.

In order to perform a coherent transfer, one needs a stable final state. Such

a state cannot be in the 3P3/2 (D2 transition) of sodium, as the excited state has a

very short lifetime and the spontaneous emission is likely to destroy the condensate.

Hence, two-photon transfers leading back into the 3S1/2 state are needed. In a two-

photon coherent transfer, the difference in the phase winding of the two beams is

imprinted onto the atoms.

The two-photon transfer process works identically to the single photon Rabi

flopping, which we discussed in section 3.1.a. The two laser beams used for the

transfer have different frequencies, ω1 and ω2. The resonance condition is given by

ω1 − ω2 = ωif , (6.4)

where ωif is the energy separation between the initial and final states (shown in

2A Raman transition refers to a transition which involves the absorption of a photon by an

atom (or molecule) and the emission of a photon of a slightly different color [238]. For a history

of the Raman effect, see Krishnan and Shankar [239].
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figure 6.2) of the atom3.

The two-photon Rabi frequency ΩR depends on the Rabi frequencies of the

individual beams, Ω1 and Ω2 as well as their mutual detuning from the single-photon

resonance (normalized by the transition half-linewidth Γ/2), ∆̃ (see figure 6.2), and

is given by [80]

ΩR =
Ω1Ω2

∆̃Γ
. (6.5)

For efficient coherent transfer and to ensure that four-photon or other multi-photon

processes do not occur, the final state has to be energetically separated from the

initial state4. The circulation by itself does not create a sufficient difference in energy.

Previous experiments in our group [52, 117] used counter-propagating beams for the

two-photon transfer, thereby giving a net momentum kick to the transferred cloud

(see figure 6.1). Owing to the spatial separation of the transferred and remnant

clouds, one could choose to either image one of the two clouds (shown in figure 6.1)

or selectively remove the non-circulating component [52].

In our scheme, we make an internal-state transfer between two hyperfine states

of the 3S1/2 manifold (see figure 6.2) using co-propagating Gaussian and Laguerre-

Gaussian beams (similar to Wright et al. [126]), exploiting the fact that optical

dipole traps can trap all spin states. The transferred and remnant clouds are in

the same momentum state (at rest), but in different internal states (F = 1 mF=0

and F = 1 mF=-1 respectively, as shown in figure 6.2). To selectively remove the

remnant, we need to have the two clouds in different hyperfine manifolds (remnant

in F = 2 and transferred component in F = 1), so that we can shine light resonant

with only the remnant cloud. Choosing a final state that is already in a different

hyperfine manifold would allow this selective removal. For situations where that is

not the case (figure 6.2), we separate the clouds by choosing a suitable microwave

transition (|1,−1〉 to |2,−2〉).
3ω2 −ω1 = ωif works equally well. In such a situation, the imprinted phase winding and hence

the rotation would be in the opposite direction.
4In principle, a suitable change in spin state would be sufficient to ensure that no multi-photon

processes occur (say transfer from mF=-1 to mF=+1 of the F = 1 hyperfine manifold).
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Figure 6.1: OAM transfer via counterpropagating beams [117]: (a) Counterpropagating

LG1
0 and Gaussian laser beams, with the same linear polarization and a frequency dif-

ference (ω1 − ω2 = ωif ), were applied to a BEC. (b) The atoms that had undergone the

Raman transition (right cloud) would separate from those that had not (left cloud). A

spatially localized pump beam was used for independent imaging of each cloud by the

absorption of a probe beam propagating along the direction of linear momentum trans-

fer. (c) Diagram illustrating energy and linear momentum conservation of the 2-photon

Raman process for one and two consecutive pulses (∆̃ here has not been normalized by

Γ/2). For a single pulse ~ωif = 4Er, where Er is the recoil energy of the atom. The recoil

energy is calculated from Er = ~
2k2/2m, where k ≈ ω1/c ≈ ω2/c is the momentum of the

photon. (taken from Andersen et al. [117])

6.4 Changes from the previous experiment

Since the goal of our current experiment was to realize persistent currents,

similar to Ryu et al. [52], it is useful to compare the similarities and differences

between the two experiments. The two experiments were broadly the same. Both

experiments observed persistent flow by looking at the decay of a single quantum of

flow around a toroidal geometry. Both experiments used a two-photon Raman trans-

fer with an LG beam for transferring OAM. Both experiments detected the survival

of flow by looking for a density minimum in the time-of-flight (TOF) expansion of

the cloud (discussed in section 6.6). However, despite the general similarity, there
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Figure 6.2: OAM transfer scheme : (left) We use co-propagating Gaussian and LG beams

for the transfer of OAM, and hence do not transfer any linear momentum to the BEC.

The beams travel along the same beam path as the trapping infrared LG beam. (right)

The transfer occurs between the mF=-1 and mF=0 magnetic sublevels of the 3S1/2 F = 1

hyperfine manifold.

70 Hz

50 Hz

Plug 
6µm)‏

35 Hz

(∅ µm)‏

(e)

Figure 6.3: Plugged TOP trap : (a) Toroidal trap from the combined potentials of the

TOP magnetic trap and Gaussian laser “plug” beam. (b) In-situ image of a BEC in the

toroidal trap. (c) TOF image of a non-circulating BEC released from the toroidal trap.

(d) TOF image of a circulating BEC, released after transfer of one unit of orbital angular

momentum. (e) 3D rendering of the spheroidal trap and the optical plug. (from Ryu et al.

[52])
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were a few key differences:

• In the plugged TOP trap, the inner diameter of the BEC was around 10 µm

(see figure 6.3). In our all-optical trap, it was around 20 µm. Since the atoms

on the inner edge have the highest velocity, depending on the inner radius,

this difference is important.

• In transferring circulation to the atoms via a two-photon transfer, the previous

experiments used a change of momentum state to energetically separate the

initial and final states. In the new experiments, we used a change of internal

state (figure 6.2).

• In detecting circulation, the previous experiments did a simple 13 ms TOF.

As a consequence of our relatively larger inner radius, we employed a slightly

different scheme where we lowered the toroidal confinement before doing a 6

ms TOF.

• In the previous experiment, the persistent current lifetime was limited to 10

seconds by the relative drift between the magnetic trap and the optical plug. In

the current experiment, we observed flow lasting up to 40 seconds (figure 6.8),

limited by the lifetime of the BEC (see section 6.7).

Now that we understand the differences between the current and the previous

persistent current experiments, we can move on to discuss some of the more practical

considerations.

6.5 Practical considerations for the transfer of circulation

Before we arrived at our current scheme of transferring circulation to the

atoms, we tried out several different initial and final state combinations. The current

scheme was arrived at after optimizing the OAM transfer process to have the most

efficient transfer to the final state, with minimum heating of the BEC and minimum

perturbation to the cloud. I shall now go over some of the technical issues associated
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with the transfer process, and describe the changes implemented to overcome or

minimize them.

6.5.a Single photon scattering

Although detuned far from resonance, the Raman beams still cause some

single-photon off-resonant excitation. The number of atoms lost can be expressed

as the number of photons absorbed, i.e. Nl = M̄abs. Applying the far-detuned limit,

i.e. ∆̃ ≫ 1, to the photon absorption M̄abs by a cloud as described in equation

(4.11), we obtain

Nl =
M̄β

∆̃2
=
M̄Nσ0

A∆̃2
, (6.6)

where M̄ is the incident number of photons and β is the on-resonant optical depth

of the cloud, N is the number of atoms in the region of interest or area A. For a

Rabi π-pulse, necessary to transfer the cloud to the circulating state, the pulse area

(intensity × time) is given by

ΩRτ = π, (6.7)

where τ is the pulse duration. Using equation (6.5) and expressing the Rabi fre-

quency in terms of Isat (see section 3.1.c), we get

Γτ
√
I1I2

2Isat∆̃
= π, (6.8)

where I1 and I2 are the intensities of the two Raman beams. To express M̄ in terms

of intensity, we use

M̄ = IτA/~ω, (6.9)

and assume that the two beams have roughly equal intensities, I1 ≈ I2 and so,

substituting I = I1, I2 from equation (6.8) into (6.9), we obtain

M̄ = 2πIsatτA∆̃/~ω. (6.10)

The frequency difference has been neglected for this calculation (ω = ω1 ≈ ω2).

Finally, substituting M̄ into equation (6.6), and using σ0 = Γ~ω/2Isat from equation

(4.2), we obtain

Nl =
π

∆̃
N. (6.11)
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For simplicity, we have assumed a 3-level system. The initial and final states couple

via an intermediate excited state, which in the process also causes single photon

scattering. In reality, there are multiple intermediate states, each with a different

coupling strength. Not all intermediate states contribute to the two-photon process.

Since the intermediate states have different energies, the detuning ∆̃ also varies

between the states. We are justified in the assumption of a 3-level system in that

the detuning is typically much larger than the spacing of the intermediate states, and

so they behave like an effective state, although the losses are typically higher than

predicted, because of the many states only contributing to loss, but not two-photon

coupling.

The single photon loss scales simply as a π/∆̃ fraction of the number of atoms.

Hence, it is advantageous to detune as far from resonance as possible5, so long as

the laser power is still sufficient to drive the two-photon transition. We initially

used a detuning of around (2π)× 500 MHz (∆̃ ≈ 100), which gives a (lower bound)

calculated loss of 3%. However, the actual losses were much more, ∼20%, for reasons

mentioned above. We later used a detuning of (2π)×2.3 GHz (∆̃ ≈ 50), which gives

a calculated loss of 0.6%. The actual loss was around 5%.

6.5.b Dipole force

Apart from the single-photon scattering, the Raman beams individually also

cause an energy shift. The spatial inhomogeneity of the beams translates to a

gradient dipole force on the atoms. The dipole force can cause the BEC to be

excited by breathing and sloshing oscillations (section 5.7), which leads to heating

and loss of atoms.

As discussed in section 3.1.b, a far off-resonant beam causes an energy shift

given by δǫ = ~Ω2/2Γ∆̃, which gives a total energy shift due to the two Raman

5In detuning very far from resonance, one must keep in mind possible coupling via other excited

states, say the D1 line, that may affect the overall coupling strength.
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beams

δǫ =
Ω2

1 + Ω2
2

2Γ∆̃
(6.12)

which, like the expression for the two-photon Rabi frequency has a 1/∆̃ dependence.

For Ω1 ≈ Ω2, we get

δǫ =
Ω2

2Γ∆̃
=

ΩR

2
.

Since the energy shift scales with the Rabi frequency, changing the intensity or

detuning does not make any difference to the magnitude of the light shift.

If we were to consider the case of two uniform beams, there would be a uniform

light shift which would result in no dipole force since there would not be any field

gradient. For that reason, we made the Gaussian beam large compared to the size

of the BEC to make the light shift as uniform as possible. However, the LG beam

necessarily has an intensity gradient with a length scale the size of the BEC. To

minimize the dipole force due to the LG beam, we lowered the power of the LG

beam, while increasing the power of the Gaussian beam to keep the two-photon

Rabi frequency constant until the dipole force was smaller than other perturbations

from the two-photon Raman process.

6.5.c Cleaning up the remnant

In our two-photon Raman transfer scheme, the transferred cloud and the rem-

nant cloud, which are in different magnetic sub-levels, are both at rest and occupy

the same area in physical space. In such a situation, interactions between atoms

in different magnetic sub-levels play a role. In sodium, the inter-species scatter-

ing length (scattering between atoms in different magnetic sub-levels) is usually

higher than the intra-species scattering length (scattering between atoms in the

same magnetic sub-level) and hence any hyperfine mixture tends to spatially phase-

separate [242]. This phase separation affects the condensate dynamics of both clouds

and could cause the circulation to decay6.

6We observed that phase separation of the cloud due to a significant remnant tended to break

the continuity of the circulating cloud around the ring, causing the flow to decay.
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While microwave or rf transfer processes can be made to transfer 100%, the

transfer of circulation cannot be 100% because of the non-uniform radial intensity

profile of the LG beam, and hence there will always be a remnant that must be

removed from the trap.

The removal of atoms using resonant light occurs as follows. The atom absorbs

a photon, acquiring a momentum ~k from the photon, and correspondingly a recoil

energy of Er = ~
2k2/2m. The atom then spontaneously decays back to the ground

state (not necessarily the state it started in) by emitting a photon in a random

direction, acquiring another momentum kick ~k. From the two momentum kicks,

the atom, on average, acquires translational kinetic energy of 2Er [87].

At first sight, it might seem like as long as the transferred fraction and the

remnant are in different hyperfine manifolds, we can simply shine light resonant

with the remnant and eject those atoms. However, it is always better to have the

remnant in the F = 2 state (and the transferred fraction in the F = 1), since the

F = 2 can be removed with light resonant with the cycling transition, scattering

many photons per atom, acquiring many recoil energies (≈ nEr, where n > 50 for

sodium) ensuring that the atom leaves the trap. If the remnant was in the F = 1

state and F = 1 to F ′ = 2 imaging light was shone, a good fraction of atoms would

undergo only a single recoil event before decaying to the F = 2 state acquiring only

a single recoil energy (0 to 4 Er). Such atoms may not have sufficient energy to

leave the trap and may collide with other atoms causing heating.

To give an estimate, Er = h× 25 kHz (calculated) for sodium. The total trap

depth for our trap (from table 5.1) is 25 kHz. An atom absorbing a single recoil

may not leave the trap, whereas an atom absorbing n ≈ 20 recoils is almost certain

to leave the trap. Hence, it is important to always remove the remnant using the

F = 2 to F ′ = 3 cycling transition.

6.5.d Our optimized scheme

After several changes and improvements, we arrived at our optimized scheme,

through which we could transfer 90% of the atoms to the circulating state. In
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our scheme (shown in figure 6.4), we make an internal-state transfer between two

magnetic sublevels (mF=-1 to mF=0) of the 3S1/2 F = 1 hyperfine manifold. We

then selectively perform a microwave transfer, transferring the remnant to the 3S1/2

F = 2 (mF = −2), which can then be ejected using resonant light. Our Raman

beams were detuned 2.3 GHz from single-photon resonance, limited by the various

laser beam frequencies we had available7. We used a shallow trap (trap depth ≈ 25

kHz) so that single-photon scattered atoms could more easily leave the trap without

causing heating.

At low magnetic fields, the energy difference between the mF=-1 and mF=0

states is equal to the difference between the mF=0 to mF=+1 states. It is not

possible to ensure transfer only to the singly circulatingmF=0 state if the degeneracy

is not broken. We break the degeneracy using the quadratic Zeeman effect (shown in

figure 3.7) by applying a higher magnetic bias field (≈ 5 G). The bias field strength

was limited by the ≈ 1 A current that we were able to pass through the bias field

producing current coils. At 4.9 G, the linear Zeeman shift caused a splitting of

around 3.4 MHz, while the quadratic Zeeman shift caused the energy differences to

be split by around 20 kHz, for which we used a 100 µs Raman pulse to minimize

coupling to the mF=+1 state.

We obtained a transfer efficiency of around 90% (see figure 6.5) to the final

rotating state. There were some small oscillations created during the transfer of

circulation due to the dipole force of the Raman beams and the sudden ≈ 10% loss

of atoms due to the 90% transfer efficiency. These oscillations decayed in several

100 ms (similar to figure 5.11, when we deliberately excited them), and caused no

problems to the circulation or its detection. However, as the energy of oscillations

ultimately leads to heating, we typically waited a few seconds for the cloud to

equilibriate in the trap before performing any further experiments.

7In the lab, the various laser beams used for the MOT, the Zeeman slower, absorption imaging,

the Raman beams, etc. are all derived from two lasers, appropriately frequency shifted using

acousto-optic modulators [114]. Acousto-optic modulators are limited in how much they can shift

the frequency, thereby limiting how far from single-photon resonance the Raman beams can be

detuned.
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Figure 6.4: The OAM transfer with co-propagating Gaussian and LG beams is shown :

We start with an initial |F = 1,mF = −1 > BEC, which undergoes a 2-photon Raman

transfer (b) to the |1, 0 > state. We then transfer the remnant |1,−1 > cloud to the

|2,−2 > state via a microwave process (c) and then remove the remnant |2,−2 > atoms

using F = 2 resonant light (d). The F = 2 resonant light, which is also used for absorption

imaging of the final cloud, is used to obtain an image of the remnant (shown under (d)) to

get information about the efficiency of the transfer process. Finally we obtain a circulating

cloud in the |1, 0 > state (e). The circulating cloud does not look very different from the

stationary cloud in situ.

6.6 Detecting the circulation

Vortices in a BEC are usually detected by doing a simple TOF (for example

see Madison et al. [45]). The vortex core, with a characteristic size given by the

condensate healing length, is too small to be resolved by an in situ image. In TOF,

the vortex core expands and one can see a clear central hole.

Since circulation was detected by a simple 13 ms TOF in the previous per-

sistent currents experiment [52], we initially tried to detect circulation by a simple

similar TOF. However, we overlooked a crucial difference between our current exper-

iment and the previous persistent current experiment, which delayed our detection
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Figure 6.5: OAM transfer efficiency : The figure shows the distribution of atoms in the

various spin states after the transfer of OAM. The atoms are transferred from the initial

non-circulating |F = 1,mF = −1〉 state to the circulating |1, 0〉 state via a two-photon

Raman transfer process. In the process, some atoms (< 4% of initial number) undergo a

four-photon transfer to the |1, 1〉 state with two units of circulation. The |1,−1〉 remnant

(< 5%) is then transferred to the |2,−2〉 state via a microwave pulse. The different spin

states are then split by applying a magnetic field gradient and releasing the cloud in TOF.

of circulation and persistent flow by more than four months! In performing a simple

TOF for the circulating cloud (see figure 6.6 top), we found that the central hole

did not persist. It appeared to close in TOF (due to mean-field driven ballistic ex-

pansion), qualitatively indistiguishable from the behavior of a non-circulating cloud

(figure 5.6).

The reason for vortices to be visible in a simply-connected BEC in TOF is

as follows: The velocity of flow around a vortex has a 1/r dependence (r is the

distance from the center of circulation)8. Due to the mean-field of the cloud in the

trap, atoms can climb the 1/r2 (comes from the v2s scaling of the kinetic energy)

centrifugal pseudo-potential of the vortex, acquiring a kinetic energy comparable

8Here, I am assuming a lengthscale small compared to the size of the condensate or any other

perturbation.
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Figure 6.6: TOF sequence after relaxing radial confinement : The figure shows TOF

sequences of a circulating cloud with no relaxation (top), after relaxing the strength of the

radial confinement to 28% of the unrelaxed value (middle) and relaxing to 7% (bottom)

respectively. With no relaxation (top), the TOF is indistinguishable from that of a non-

rotating cloud. The hole due to circulation becomes larger and more resolvable with

increasing relaxation. The fringe-like structure on the top left and bottom right of some

of the images is due to inhomogeneities in the sheet beam potential, and does not affect the

detection of circulation. The sheet beam propagation axis is at 45 degrees, from bottom

left to top right, and hence there are no structures along that direction.

to the mean-field9. In TOF, for the bulk of the cloud, the mean-field energy is

distributed amongst the three axis in the form of kinetic energy, causing expansion.

For the atoms close to the vortex core, there is a strong outward expansion due to

9In fact, the radius rµ at which the kinetic energy of the vortex pseudo-potential equals the

BEC mean-field, ~2/2mr2µ = µ ⇒ rµ =
√

~2/2µm = (8πρa)−1/2, is the healing length ξ. Hence,

for estimates of the energy of a vortex, the vortex core size can be taken to be the condensate

healing length.
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the tangential velocity of circulation. This expansion is primarily responsible for

the visibility of a vortex.

In our ring trap, since the inner radius of the cloud is 10 µm, the tangential

velocity of such atoms is ≈ 0.3 mm/s for one unit of circulation. Given a mean-field

of about 1 kHz, our in-plane expansion velocities (directed radially for a ring shaped

cloud) are nearly an order of magnitude higher. Expansion is radially symmetric in

TOF and atoms acquire little additional tangential velocity as the cloud expands

towards the center. Since the radial velocity is much higher than the tangential

velocity, atoms get very close to the center of circulation. While the singularity

persists in TOF, atoms nevertheless get very close to it preventing us from optically

resolving the hole due to the singularity. The tangential velocities due to circulation

are too small to have any impact on the TOF expansion for the durations probed.

To overcome this issue, we adiabatically relax the radial confinement over

100 ms to less than 10% of its initial value before doing a release into TOF. This

does three things. It allows atoms to move closer to the center gaining a higher

tangential velocity. It lowers the mean-field and hence the radial velocity in TOF.

Finally, by lowering the annular confinement (ωr), it causes more mean-field energy

to be released along the vertical direction than the radial direction (discussed in

section 5.5.b), further lowering the radial velocity. This allowed us to clearly resolve

the hole due to circulation (see figure 6.6).

To give an estimate of numbers for the above argument, consider a typical

trap, ωz = 2π× 550 Hz, ωr = 2π× 110 Hz, N = 2× 105, rM =20 µm. The chemical

potential µ0 = 1 kHz (see table 5.2). The initial TF radius rTF=9 µm. This gives

a circulating velocity of 0.25mm/s for atoms on the inner of the condensate. The

velocity of radial expansion of the condensate (see section 5.5.b) is ≈ 1.2mm/s, a

factor of 5 more than the velocity of circulation.

On relaxing the radial confinement to 10% of its initial value, ωr = 2π×35 Hz,

for the same number of atoms, µ0 ≈ 580 Hz. We get rTF=20 µm, which is equal to

the radius of the ring, rM , implying that the inner edge reaches the center and hence

the local healing length (ξ ≈0.6 µm). The circulating velocity becomes 2.7 mm/s.
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Figure 6.7: Distinguishing between circulation and no circulation : After our standardized

sequence of adiabatically relaxing the radial confinement to 5% of its initial value followed

by a 6 ms TOF, we could clearly distinguish a circulating cloud (left) from a non-circulating

cloud (right) by its central hole.

The velocity of radial expansion for this configuration is 0.3 mm/s which is a factor

of 10 smaller than the circulation velocity. Hence, relaxing the radial confinement

lets the circulating velocity to play a greater role in the BEC expansion, allowing

us to more easily detect the presence of flow.

6.7 Lifetime of persistent currents

We settled upon a a sequence where we relax the radial confinement to around

5% of its initial value, followed by a 6 ms TOF. We could clearly distinguish the

case of a circulating cloud vs a non-circulating cloud (see figure 6.7).

Once we realized how to detect the flow, we had no difficulty in observing

the persistent currents. We found the current to last 40 seconds (figure 6.8). The

lifetime of the current was limited by the lifetime of the BEC, which was ≈ 30 s for

the data shown in figure 6.8. In our apparatus, the lifetime of the BEC was limited

by background gas scattering due to imperfect vacuum. On days when the vacuum

limited lifetime of the BEC was shorter, the lifetime of the persistent current was

shorter.
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Figure 6.8: 40 second persistent current : We find that the persistent current lasted 40

seconds, limited only by atom loss from the BEC due to background gas scattering. The

vacuum limited trap lifetime of the atoms was ≈ 30 s for the above measurements. The

number of points for each time, from shortest to longest hold times are 4 (for 3 s), 5, 2, 2,

5 and 1 (for 60 s) respectively.

The above paragraph may imply that the persistent current survives as long

as there is some BEC. This is not the case. The flow decays when the chemical

potential reaches the level of bumps in the potential, breaking the continuity of the

annulus. The reader may be curious to know the exact decay mechanism, whether

the flow decays just before continuity is broken or just after, etc. The next chapter

investigates precisely this point, and so a discussion here, with the limited data that

we have, would not give a complete picture.

6.8 Multiply-charged circulation

Having successfully demonstrated transferring and detecting circulation, one

of the next things to try was transferring multiple units of circulation. We did so

by repeating the transfer process multiple times. After each transfer, we moved

atoms back to the mF=-1 state using an rf pulse (figure 6.9). In this manner, we

successfully transferred up to 3 units of circulation.

While transferring multiple units of circulation was straightforward, detection
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Figure 6.9: Multiply-charged circulation : By repeating the process of transfer of circula-

tion (using an rf pulse to get the atoms back to the |1,−1〉 state), we were able to observe

transfer of up to 3 units of circulation. The larger rotational kinetic energy due to the

higher circulation causes a larger central hole in TOF, when the cloud is controlled to

have about the same number of atoms. The BEC peripheral ”lobes” on the top left and

bottom right of the main “lobe” that contains the hole, are due to inhomogeneities in the

sheet potential. They do not affect the measurement of circulation.

was more tricky. In performing our standard relaxation and TOF, the difference

between no circulation and one unit of circulation is simply the appearance of a

hole in TOF (figure 6.7). The difference between one unit and say two units of

circulation is the size of the hole, as the cloud with two units of circulation has four

times the kinetic energy. The size of the hole gets larger with additional units of

circulation, as shown in figure 6.7. However, the size of the hole also depends on

the radial relaxation. Accurately distinguishing the different levels of circulation

requires more care and calibration, which is one of the future directions of the

experiment.

Another possibility for detecting multiply-charged circulation is to remove the

radial confinement and allow the BEC to become simply connected10. In a simply-

connected geometry, it is energetically favorable for a multiply-charged vortex to

break up into individual vortices [52]. In some of our preliminary attempts, we

10Even in the absence of toroidal confinement, the sheet beam confines the BEC in the horizontal.

See section 3.6.a.
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were not able to find a suitable relaxation time after removing the annular con-

finement, when the multiply-charged vortex split into individual vortices without

any individual vortices leaving the system11. In our attempts, we found that either

the multiply-charged vortex had not split up, or one of the individual vortices had

already left the system. However, with a better understanding of the vortex dynam-

ics, it may be possible to find a suitable relaxation sequence that would allow us to

determine the presence of multiply-charged circulation.

6.9 Conclusion

We were able to create and observe persistent currents lasting 40 seconds,

limited only by the vacuum lifetime of the BEC. In a toroidal BEC, circulation is

quantized and hence, on transferring only one unit of circulation, the survival of

flow indicates that there is no dissipation (not counting the loss of atoms). This is

unambiguous evidence of superflow and hence superfluidity.

From a practical stand point, we found the persistent currents to be remarkably

robust. We found them to survive even in bumpy traps (discussed quantitatively in

chapter 7) and sub-optimal conditions such as misaligned beams (the LG Raman

beam misaligned by half a radius from the center), imperfect detuning of the Raman

beams (even for transfer fractions of around 40%) and lower mean-field (so long as

there was continuity in the BEC around the ring). It usually took something severely

wrong for persistent currents not to work. This is also a testament to superfluidity

and dissipationless flow. We look forward to the day when, just like how making a

BEC is so reliable, making a persistent current also becomes a routine part of the

process.

While making a clean ring trap merely set the stage for creating persistent

currents, obtaining a reliable persistent current was an important milestone and

opened the door to several experiments. The most obvious experiment is studying

the decay of flow in the presence of a barrier, which constitutes the next chapter.

11Vortices in a simply-connected trapped BEC are by nature unstable excitations.
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However, there are other possibilities, two of which I shall briefly mention.

Although the kinetic energy of a single vortex is much lower than the mean-

field and has no impact on the radial spatial distribution of the BEC, going to

high units of circulation can significantly increase the kinetic energy. It would be

interesting to know how much circulation the ring could sustain, and if there was

any effect of the high kinetic energy on the radial spatial profile of the BEC [47, 218].

Primordial circulation is also interesting [151, 208]. Primordial circulation

refers to circulation that was entrapped during the BEC condensation process. As

with persistent currents, any such circulation is expected to be stable and last the

lifetime of the BEC. During the initial experiments of persistent currents, we noticed

some false positives (around 1 in 10) in vortex formation, which we later realized were

due to primordial circulation from the condensation process. We could eliminate

such circulation (to prevent it from interfering with our measurement) by putting

a barrier in the flow path of the initial BEC to break the continuity of the ring.

Nevertheless, primordial circulation is interesting and has implications on critical

fluctuations.

There are also interesting physics in the ring trap that can be studied using

the spinor degree of freedom, which are yet to be explored. However, rather than

describe other possible experiments, it suffices to say that having realized persistent

currents, there are lots of interesting possibilities. We shall now move on to studies

of the critical velocity of flow.
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Chapter 7

Superfluid flow in the presence of a barrier

Having successfully observed superflow and persistent currents, we went on to

make a more quantitative test of superfluidity by introducing a barrier in the flow

path of the ring. Given the superfluid nature of the BEC, for a weak barrier in the

flow path, the superfluid property should ensure that there is no dissipation. In the

opposite limit, that of a high barrier, the ring is no longer continuous and hence

cannot sustain flow. Somewhere in between, there is a critical point at which the

flow decays.

The breakdown of superfluidity can be understood in terms of the Landau

criterion (discussed in section 2.4), which states that dissipation occurs at a critical

flow velocity when it is energetically favorable to create excitations. Naturally, such

excitations are expected to be from the low-energy excitation spectrum, which could

be phonons or vortex-like excitations. For low-level phononic excitations, the critical

velocity is the speed of sound in the condensate1. For vortex-like excitations, one

can use Feynman’s approximate expression for the critical velocity.

Before we go on to the details of the experiment and how the various criti-

cal velocities could play a role, let us take a look at previous related work. The

breakdown of superfluidity in BECs has been experimentally probed in different

ways. Experiments at MIT [48, 49] scanned a blue detuned laser beam back and

forth through a BEC and found that excitations were created when the scan speed

crossed a certain critical velocity. Engels and Atherton [50] swept a penetrable

1Often, this velocity is termed as the Landau critical velocity, which I feel is incorrect for two

reasons. Firstly, it takes away credit from Landau, who stated the general expression for any

excitation and then took the specific case of liquid helium considering phonons and rotons [13].

Secondly, until Bogoliubov’s theory of weakly-interacting gases [16], the expression for the sound

velocity in a BEC as well as the possibility of pure phononic (without rotons) breakdown did not

exist.
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barrier along a cigar-shaped BEC and observed that excitations in the wake of the

beam were created when sweep speed crossed a certain critical velocity. Experiments

at the University of Arizona [51] forced a Gaussian obstacle through a superfluid

and found that at a critical velocity, a vortex-antivortex pair was nucleated. In all

experiments, the inhomogeneity and finite size of the sample were such that the

breakdown of superfluidity could not be simply explained in terms of a phononic or

vortex-like critical velocity for a uniform system.

Our current work has three key differences from previous work:

• The superfluid is made to flow, while the barrier is stationary. While in the

frame of reference of the atoms, this should not matter, our experiment is

closer to the original superfluidity experiments [9, 10].

• In our experiment, the superfluid is in a metastable circulating state, which

is different from the stationary ground state. Previous work had the BEC in

the ground state.

• In contrast to the previous work, which looked for signs of excitations in the

BEC, the current work detects the survival of flow. In that sense, the detection

does not depend on whether we can see the excitations or heating, and with

the additional feature of a binary detection (flow survives or does not), our

detection of dissipation is more direct and sensitive.

Given the binary detection of the breakdown of flow, our data does not reveal

the decay mechanisms, and hence, we need a good understanding of our system.

In the following sections, I will first discuss the various aspects of superflow in a

toroidal geometry, the stability of the persistent current and the concept of phase

slips. I will then describe the dimensionality aspects of the problem, particularly

with respect to quasi-2D physics, and in that context, describe some of our previous

experiments on 2D Berezinskii-Kosterlitz-Thouless physics. Following that, I will

go into the experimental details, our observations, the analysis of the data and

subsequently make comparisons to the phononic and vortex-like critical velocities,

before concluding.
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7.1 Superfluid flow in a toroidal condensate

In the previous chapter, we discussed the velocity profile of a uniform toroidal

condensate with one unit of OAM (equation (6.3)). The flow profile, J, defined as

the number of atoms moving through a unit cross-section in unit time, is given by

J(r, θ, z) =
~

mr
|ψ(r, θ, z)|2θ̂. (7.1)

As mentioned previously, the 1/r dependence comes from the fact that as

one goes further from the center of circulation, the phase winding is distributed

over a larger circumference leading to a lower gradient and hence lower flow. The

expression holds for any system with cylindrical symmetry.

The case of a ring with a barrier (non-uniform ring) is more complicated, since

one cannot simply use the symmetry of the problem. Before we solve the problem

of flow in a ring with a barrier, let us first look at the effect of a barrier in the ring.

7.1.a Effect of a barrier

The barrier, in effect locally changes the potential of the trap. The effect

can be easily seen in an in situ image (figure 7.1a). For a BEC, particularly if

it is radially TF, this causes a decrease in the local mean field of the condensate

(figure 7.1b). The decrease in mean field thereby causes fewer atoms to be present

at the location of the barrier, which is accentuated by the transverse TF profile

(radially integrated number of atoms, n1D ∼ µ2 from table (5.2), where µ is the

mean field)), as can be seen in the azimuthal atom distribution of figure 7.1c.

A second consequence of lowering the mean field of the (TF) condensate, is a

slight constriction in the transverse directions (radial and vertical) of the BEC at

the location of the barrier. This may seem counter-intuitive at first since we are not

actively squeezing the condensate at the location of the barrier. However, because

of the harmonic condition, (nearly) uniformly raising the potential at the location

of the barrier causes some regions to be raised beyond the chemical potential. As

the condensate is TF, particularly in the transverse direction, this leads to the

151



−3 −2 −1 0 1 2 3
0

500

1000

1500

2000

 

Theta (radians) 

 A
to

m
s
 (

p
e

r 
0

.0
5

 r
a

d
ia

n
)

−3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

1400

Theta (radians) 

L
o

c
a

l 
M

e
a

n
 F

ie
ld

 (
H

z
)

(b) (c)

Angle

−π
π

π/2

−π/2

0

0    

95

190
(a)

θθ

Figure 7.1: Effect of a barrier on a toroidal BEC: (a) PTAI image of the BEC (colorbar

shows column density in atoms/µm2). The barrier has been inserted at an azimuthal

position of π/2. (b) Azimuthal plot of the condensate mean field (see appendix C.7 for

details). The condensate was broken down into 128 angular sections of 0.1 radians each,

and a fully ring TF profile (column density distribution given by equation (5.35)) was fitted

to each section to obtain a peak height, which was related to the mean field using equation

(5.36). The barrier causes a strong reduction in the local mean field. (c) Azimuthal plot

of the distribution of the number of atoms. The effect of the barrier is more pronounced

because of the transverse TF profile and causes a sharper dip in the region of the barrier

(for a TF BEC, radially integrated number of atoms, n1D ∼ µ2, see table (5.2)).

condensate having a smaller transverse extent at the location of the barrier2.

The change in shape and density of the condensate at the location of the

barrier breaks the azimuthal symmetry of the problem and prevents us from using

equation (7.1) to obtain the flow pattern. However, all is not lost. Some general

assumptions are still valid:

• Steady state condition: If one assumes an steady state configuration where

the density distribution does not change with time, flow has to be conserved

for any path along a direction of flow3. For a given flow path l(s), where s is

2In principle, the displacement of atoms from the barrier region should cause the overall chemical

potential to increase. However, in practice, for our system, this effect was small (< 5%) and we

chose to ignore it in light of our nearly 10% calibration uncertainty.
3This assumes a well defined flow velocity vector at all points in the BEC. Starting at any point,

one can follow the flow velocity vector around the ring, which for a steady state should form a

path around the ring that closes upon itself.
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a parameter defining the location on the flow path:

J(s) � d̂l = J0 = const (7.2)

v(s) � d̂l =
J0

|ψ(l(s))|2 (7.3)

∫

v � d̂l =
~

m
2π 2π phase winding, (7.4)

where d̂l refers to a unit vector along dl.

• No flow across boundary: This is a corollary to the steady state condition.

The flow being parallel to the boundary implies that there is no phase gradient

normal to the boundary. Lines of constant phase are normal to the boundaries.

One can use

v(l(s)) ∝ 1

|ψ(l(s))|2 , (7.5)

to obtain the flow velocity at any given point.

While the exact flow pattern for a ring with a barrier cannot be simply solved,

we can still learn some things. The most obvious, from equation (7.5), is that the

flow velocity at the location of the barrier is higher than that of the rest of the ring

due to the local depletion of the density. This effect can also be understood in terms

of conservation of flow from classical fluid dynamics. The purpose of this section is

to give the reader the gist of what happens when a barrier is introduced, and now

we will move on to other aspects of flow in a toroidal potential. We will return to

this topic when we actually try to obtain a flow velocity.

7.1.b Stability of flow in a ring

So far, we have talked about superfluidity breaking down by the dissipation of

flow into low-energy excitations. An implicit assumption in this picture is that the

flow is somehow fixed. This assumption is valid if there is an external driver of flow,

as is the case for the original superfluidity experiments [9, 10], where gravity (or

a pressure difference) was used to make helium flow from one container to another

via a narrow path. In such situations, a dissipation event leads to a loss of energy
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from the flow, but will not stop the flow itself. In considering the local flow in the

constrained narrow path, the flow is not expected to dissipate into other excitations

if it is below the critical velocity.

We could use the above picture for our toroidal BEC, and state that superflow

is expected to dissipate if the local velocity at some points exceeds a critical velocity.

However, unlike the case of flowing helium, the flow is not fixed and any dissipation

in one part of the ring not only causes local excitations, but also causes the stopping

of flow everywhere in the ring. Hence, any dissipation is a global effect, not just

a local effect. The question that arises is: Is there any validity to a local critical

velocity for the onset of dissipation?

Taking a global picture, the stationary non-circulating BEC is the ground

state. On transferring one unit of circulation to the ring, the BEC is no longer in

the ground state. If one were to apply an energetics argument, the BEC is expected

to decay to the ground state, which has lower energy. Then, how is it that we see

stable flow? The answer to the question is that the flow is not stable, but metastable.

The reason for metastability becomes more obvious if one looks at a phase plot of

a circulating condensate (see figure 7.2b). The 2π phase winding of a circulating

condensate gives it topological stability and does not allow any simple continuous

relaxation to cause decay to the ground state (figure 7.2a). Hence, even though the

circulating BEC is not in the ground state, the topology yields a metastability that

allows for persistent currents.

7.1.c Phase slips

Having arrived at the metastability of flow from a global picture, we shall now

look at phase slips, which are necessary to cause decay of the circulating state to the

non-circulating ground state. A phase slip event results in the phase of a particular

location shifting by 2π, and for a ring geometry, it results in a change of the phase

winding around the ring. As can be seen in figure 7.2, a phase slip event causes a

change in the phase winding, changing the phase pattern in (b) to that of (d). The

phase pattern in (d) has no phase winding, and can subsequently continuously relax
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Figure 7.2: (Note: Plot is in color) Flow stability and phase slips: (a) Phase plot of

a stationary BEC in a ring with a barrier. (b) Phase plot of a BEC with one unit of

circulation. There is no simple, continuous deformation of the phase from the circulating

state that would lead to the non-circulating state. This topological stability leads to

persistent currents in the metastable circulating state. (c) and (d) show an example of a

phase slip event via a single vortex moving from the inside to the outside of the annulus.

In (c), the vortex, shown by a hole in the ring, is at the location of the barrier. For

a path around the annulus that passes on the inside of the vortex (does not enclose the

vortex), the phase winding is zero. The phase is always below pi (see colorbar). For a path

that passes on the outside of the vortex, the phase winding is still 2pi (passes through all

colors). After the vortex moves to the outside of the annulus, the phase winding is zero

as seen in (d). The phase can subsequently relax to a uniform phase (stationary BEC) as

in (a). (generated using Scilab)
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to (a). Phase slip events are known to occur in superconductors [1] and have also

been seen in superfluids [33, 34].

Tinkham [1] describes a phase slip as an event where the coherence is mo-

mentarily broken at a location in a superconductor (often at a Josephson junction),

during which time the local phase changes by a multiple of 2π. Phase slips are quan-

tum in nature [243], and in superconductors, phase slips have been found to interfere

across junctions [244]. In superfluids, phase slips can have spatial structure. Experi-

ments studying helium superflow through small apertures by Avenel and Varoquaux

[33] and Amar et al. [34] have shown evidence of a phase slip mechanisms similar to

dissipation via vortex rings.

Coming back to our system, a phase slip is most likely to occur at the loca-

tion of the barrier since the density is low, and hence the phase coherence can be

more easily broken. In principle, it is possible for the phase slip to occur via the

momentary formation of a plane of zero density (line when projected to a 2D plane

as shown in the plots of figure 7.2) across a part of the torus, during which time the

phase changes by 2π. However, an energy cost for such a mechanism is high given

the width of the condensate even at the barrier. The energetics of a phase slip via

the vortex movement through the barrier region are more favorable.

Figure 7.2(c) illustrates a phase slip occurring via a single vortex moving

through the barrier from the inside to the outside of the ring. As the vortex moves

through the barrier, paths around the annulus that do not enclose the vortex (or

equivalently, paths that the vortex has cut across) have zero phase winding, while

the paths that do enclose the vortex (paths which the vortex has not cut across) still

have a 2π phase winding. Once the vortex reaches the outside of the BEC, all paths

around the annulus have a zero phase winding as seem in figure 7.2(d). This way,

a vortex moving through the BEC causes the circulation to decay4. We will discuss

the role of vortices for flow decay in the context of quasi-2D physics (section 7.2.e).

4A vortex passing through the BEC can be seen as a mechanism for the continuous decay of

flow.
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7.2 Dimensionality and quasi-2D physics

Until now, through all the discussions of the ring trap and persistent currents,

we have implicitly assumed our BEC to be a three-dimensional (3D) system. In

section 5.1.b, we briefly discussed the possibility of studying quasi-1D physics as

motivation for the ring trap. As mentioned before, highly anistropic 3D condensates

can exhibit certain 1D-like behavior [184, 186]. In that context, it is worth exploring

the dimensionality aspect of the system and how it plays a role.

For the persistent current experiments we used, the dimensions of the ring

were approximately

• Circumference : 120 µm

• Radial TF full width : 18 µm

• Vertical TF full width : 3 µm

While the above conditions were typical, we could increase the radial confine-

ment (ωr) by up to a factor of 2 and the vertical (ωz) by up to a factor of 3. The

radial confinement could also be decreased by a factor of 3, as is done when we relax

the radial confinement for detecting flow. In addition, by changing the focusing of

the LG trapping beam, the ring diameter could be increased by a factor of two. The

current aspect ratio, along with the extent we can vary different parameters implies

the following:

• Excitations in different directions have different energy scales (energy scales

approximately as 1/r2i , where ri is the length scale in a particular axis). For

example, azimuthal excitations (∼ 1 Hz) have lower energy than the radial

excitations (∼ ωr = 100 Hz), which have lower energy than vertical excitations

(∼ ωz = 500 Hz).

• Depending on the temperature, it is possible to be in a regime where the

condensate has thermal phase fluctuations in 1 or 2 dimensions [193].
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Finally, in inserting a barrier in the ring, the density depletion causes the local

mean field to drop to well below the vertical trapping frequency, while still above

the radial trapping frequency (see figure 7.1b). This localized region has dimensions

of around 9 × 9×2 µm, with the condensate being mainly in the vertical harmonic

oscillator ground state, making it susceptible to quasi-2D physics. As this region is

important in the decay of flow, we shall now spend some time on quasi-2D physics.

While on the topic, I will also mention some of our previous experiments studying

the phase transition of a quasi-2D gas [53], which were performed on the same setup,

with just the sheet beam (no annular confinement).

7.2.a Superfluidity and the BKT transition

The origins of quasi-2D (Bose gas) physics can be understood better if one

started from a true 2D system. In this section, we will study the superfluid transition

of a 2D gas, before moving on to the case of a quasi-2D gas in the next.

While it was understood in the 1950s that a 2D Bose gas would not Bose-

condense at finite temperature [245], Berezinskii [246] and Kosterlitz and Thou-

less [247] showed that a 2D neutral superfluid would undergo a phase transition to

a non-superfluid state at a temperature T = TBKT at a universal value

nsλ
2
T = 4, (7.6)

where ns is the 2D superfluid density and λT is the thermal de Broglie wavelength

given by

λT =

√

2π~2

mkBT
. (7.7)

The BKT transition is more general than just the 2D neutral superfluid and

also occurs for defects in a 2D crystal and magnetism for spins in the 2D XY

model [247].

For a neutral superfluid, the microscopic mechanism of the BKT transition is

based on vortex excitations in a 2D system. The energy of a single vortex in a 2D

158



a) b) c) d)

Figure 7.3: The phase profile of a 2D superfluid for a) single vortex, b) single vortex

anti-vortex pair, c) a 2D Bose gas below the BKT transition (T < TBKT) with only vortex

pair excitations, and d) a 2D Bose gas above the BKT transition (T > TBKT). c) and

d) were created for illustrative purposes only, with vortex pais and free vortices put in at

random. Colorbar same as figure 7.2. Since the flow velocity is given by the gradient of

phase, changes in color correspond to kinetic energy. For a single vortex (a), there is flow

even at distances far from the center, while for a vortex pair (b), superfluid far away from

it is not affected. Similarly, there is a clear qualitative difference between only vortex pair

excitations (c) and free vortex excitations (d). (Generated using Scilab)

superfluid is given by:

Evortex =

∫ R

rv

ns~
2

2mr2
2πrdr,

Evortex =
ns~

2π

m
log

R

rv
, (7.8)

where rv is the size of the vortex core and R is the system size. The energy of a

vortex diverges with system size. If one were to consider the energy of a vortex

anti-vortex pair, one obtains:

Epair =
ns~

22π

m
log

rs
rv
, (7.9)

where rs is the separation between the vortex and the anti-vortex. This energy is

independent of the system size for a large enough system size (R ≫ rs, rv), which

is what one expects since for large distances, the flow field of the vortex cancels the

one from the antivortex. One can look at a pictorial representation of the two cases

(see figure 7.3 (a) and (b)).

For a 2D Bose gas at constant temperature, the free energy of a single vortex

determines whether such an excitation is favored. The free energy of an excitation
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is given by:

F = E − TS, (7.10)

where F is the free energy and S is the entropy. The entropy of an excitation can be

expressed as the number of degenerate ways, Ω, in which the excitation can occur

S = kB log Ω. (7.11)

For a vortex, whose size scales as r2v relative to the system size R2, the entropy

is given by

Svortex = 2kB log

(

R

rv

)

. (7.12)

As one can see from equations (7.8) and (7.12), both the energy and the

entropy of a vortex scale similarly with system size. For the creation of a vortex to

be favorable, the free energy has to be negative:

Fvortex =
ns~

2π

m
log

R

rv
− T2kB log

(

R

rv

)

< 0,

⇒ T >
ns~

2π

2mkB
. (7.13)

Hence, free vortices can be spontaneously created at temperatures T > TBKT, given

by

TBKT =
ns~

2π

2mkB
, (7.14)

which is identical to equation (7.6).

In contrast to a uniform, homogeneous BEC, where phase coherence does

not decay at long distances, the BKT superfluid phase has an algebraic decay of

coherence5. In the limit of T → 0, the coherence length goes to infinity like a

true BEC. With increasing temperature, the coherence length gets shorter, and

as the gas goes through the BKT transition, the coherence function changes from

algebraic to exponential. With further increasing temperature, the coherence length

further decreases until the gas has a coherence length determined by the single

5For a system with algebraic decay of coherence, the correlation function 〈ψ(r)ψ(r+ δr)〉 scales
as (δr)−α, where α > 0. In contrast, for a system with exponential decay of coherence, 〈ψ(r)ψ(r+
δr)〉 ∼ exp(−δr/rc), where rc is correlation length.
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particle de Broglie wavelength. The coherence function and its derivation from

vortex excitations is discussed extensively in Kosterlitz and Thouless [247].

Equations (7.14) and (7.6) express the transition in terms of the superfluid

density. In terms of the total density, n, the corresponding expression is [245, 248]

nλ2T = log(C/u), (7.15)

where C is a constant and u is the 2D interaction strength. Although the transition

point in terms of the superfluid density is universal, the transition point in terms of

the total density depends on interactions.

7.2.b Case of a quasi-2D Bose gas

Since we live in a 3D world, no gas can be truly confined to 2 dimensions,

and we have to consider the more realistic quasi-2D case. A gas can be said to be

quasi-2D if excitations along one of the dimensions are frozen out. A simple way

to picture this is by having a 3D Bose gas harmonically confined in one dimension,

having energy sufficiently low that all the atoms are in the ground state in the

trapped dimension. In such a system, one needs to treat the gas in the 2D picture,

with a dimensionless interaction (coupling) constant, g2D, given by Petrov et al.

[249]

g2D =
√
8π

a

aho
, (7.16)

where a is the 3D atom-atom s-wave scattering length, aho =
√

~/mω0, and ω0 is

the trapping frequency of the confining potential. Using the above expression, one

can treat the quasi-2D case identical to the 2D case and hence a BKT transition is

expected to occur. The BKT superfluid density still satisfies equation (7.6) and the

total density satisfies an equation similar to equation (7.15):

nλ2T = log(C/g2D). (7.17)

Using Monte-Carlo calculations, the constant C was calculated to be 380 [250].

While BKT theory deals with the phase transition from a state without free

vortices to a state with, it does not talk about the high temperature limit. A quasi-
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Figure 7.4: The phases of a quasi-2D gas: Calculated total density (green), quasi-

condensate density (red) and superfluid density (blue). The chemical potential is nor-

malized by g2D/λ
2
T with the BKT transition occurring at µ = µc, where the superfluid

density jumps and is given by nsλ
2
T = 4. (based on Prokof’ev and Svistunov [251])

2D Bose gas at temperatures well above the BKT transition temperature is expected

to behave like a classical gas. However, as one approaches the transition from above,

there is an appearance of a non-superfluid quasi-condensate [251] phase, which has

some coherence before a sudden transition to a superfluid quasi-condensate state. A

quasi-condensate can be understood as a phase which behaves like a true condensate

at short length scales, but does not have long range order.

In figure 7.4, the phases of a quasi-2D gas are plotted. Until now, we have

talked about the transition in terms of temperature. The BKT transition can also

be discussed in terms of phase-space density (nλ2T ) as a function of the chemical

potential. When the chemical potential is near the critical point, the conditions given

by equations (7.6) and (7.17) are satisfied. As one can see, prior to the transition,

there is the appearance of a significant (non-superfluid) quasi-condensate.

The quasi-condensate component is indistinguishable from a condensate except

that it has quasi-long range order (short coherence length) as opposed to the true

long range order of a BEC. At a local level, it behaves like a condensate. The
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Phase Appearance Coherence ξ

Thermal Classical gas Gaussian λT

Quasi-condensate QC component exponential > λT

with fluctuations

Superfluid SF and QC components algebraic longer

Table 7.1: Brief summary of the different phases of a quasi-2D Bose gas. This table is

only to give a general picture. Coherence refers to the functional form of the coherence

decay. ξ is the coherence length. QC = quasi-condensate. SF = superfluid.

quasi-condensate region in figure 7.4 is characterized by large scale fluctuations.

7.2.c Previous experiments studying the BKT transition

In one of the earliest experiments on BKT physics in neutral superfluids,

Bishop and Reppy [252] studied the superfluid transition of a thin superfluid he-

lium film adsorbed on an oscillating substrate. Analysis of the superfluid mass and

dissipation supported a dynamic theory of an oscillating superfluid based on the

BKT picture [253, 254]. Estimates of the change in superfluid density were in good

agreement with predictions of the BKT theory.

There have been several studies of the BKT transition for the 2D XY model

using Josephson junction arrays. Resnick et al. [255] reported evidence for the

BKT transition in triangular planar arrays of proximity coupled Pb-Sn junctions.

Shaw et al. [256] saw a change in the characteristic of the magnetic flux noise in a

Josephson junction array as one crossed the BKT transition. Leemann et al. [257]

studied the ac response of large two-dimensional arrays of proximity-effect Joseph-

son junctions to an oscillating driving field as a function of temperature, applied

transverse magnetic field, and frequency. They observed that for an integer number

of flux quanta per unit cell, a peak in dissipation and a drop in superfluid den-

sity are observed near the superconducting transition of the array. They concluded
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that these features and their frequency dependence provided clear evidence for the

vortex-unbinding BKT transition.

With ultracold gases, there were two path-breaking experiments in Paris study-

ing the BKT transition in quasi-2D trapped Rubidium. In Hadzibabic et al. [258],

using a matter wave heterodyning technique, the long-wavelength fluctuations of

the quasi-condensate phase and free vortices were observed. Starting at low tem-

peratures, where the gas is quasi-coherent on the length scale set by the system

size, there was a loss of long-range coherence that coincided with the onset of the

proliferation of free vortices as the temperature was increased, providing experimen-

tal evidence for the microscopic mechanism underlying the BKT theory. In Krüger

et al. [259], the critical atom number for condensation6 in an array of harmoni-

cally trapped two-dimensional (2D) Bose gases of rubidium atoms was measured at

different temperatures. The critical atom number being 5 times higher than that

predicted by the semiclassical theory of Bose-Einstein condensation (BEC) in the

ideal gas, the authors found that a simple heuristic model based on the Berezinskii-

Kosterlitz-Thouless theory of 2D superfluidity and the local density approximation

accounted well for the experimental results.

While studying similar physics to the Paris experiments, our experiment dif-

fered in key ways. We studied the quasi-2D Bose gas in a single plane, imaging

perpendicular to the plane of interest. In addition, we used a homodyne technique

to measure the coherence length in contrast to the heterodyne technique used in

Paris. The reader should note that there have been recent experimental work on

the quasi-2D Bose gas by the Paris group [260], studying the quasi-2D Bose gas with

even tighter confinement. Also, Eric Cornell’s group at JILA [261] recently studied

the in situ position and momentum distribution of a 2D Bose gas more carefully, to

clearly observe non-mean-field physics in the non-superfluid quasi-condensate phase.
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200 ms

500 ms 5 s

Figure 7.5: Excitations in a 2D BEC: On transferring a BEC from our magnetic TOP trap

to the optical sheet, there are excitations which damp out over time. Images are taken

after a certain wait in the optical trap followed by a 5 ms TOF. The 2D BEC seems more

susceptible to density fluctuations.

7.2.d NIST experiments in the quasi-2D trap

Our trap was created by just the sheet beam (see section 3.6.a). The z trapping

frequency was ≈ 1 kHz, and the horizontal trapping frequencies were ≈ 20 Hz, giving

an aspect ratio of 1:50.

In preliminary experiments in the quasi-2D trap, we were able to get a con-

densate in our trap, identified by the clear signature of a bimodal distribution (con-

densed and thermal atoms) in TOF. Our first indications of quasi-2D physics were

excitations in the BEC. In contrast to a 3D BEC where the thermal fraction can

be taken as an indicator of heating or the presence of excitations, we noticed that

excitations in the form of large density ripples (see figure 7.5) seen in 5 ms TOF. If

we waited a few seconds, the density ripples were reduced.

Furthermore, by deliberately exciting the quasi-2D BEC when there were few

other excitations, we could see “holes” (figure 7.6, image of 5 ms TOF) in the

cloud in TOF. The BEC was excited by pulsing a strong magnetic field gradient to

transfer impulse. On allowing the BEC to expand in 8 and 10 ms times-of-flight,

6It was determined by the appearance of a narrow feature, akin to a BEC, above the broad

Gaussian thermal distribution of a gas in TOF.
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5 ms 8 ms 10 ms

Figure 7.6: Deliberate excitations in a 2D BEC: We deliberately cause excitations to the

BEC by pulsing a strong magnetic field gradient, giving it a momentum impulse. There

are “hole”-like density ripples suggestive of vortices. The merging of these in longer times-

of-flight (TOF indicated below figure) is similar to what one would expect if there were

vortex-antivortex pairs.

there were fewer, but larger holes, implying that some of the smaller holes “merged”

together, as one would expect of vortex-antivortex pairs. The nature of excitations

was indicative of something different from 3D BECs, and suggestive of quasi-2D

vortex excitations.

We performed a set of measurements of the quasi-2D condensate varying the

number of atoms (or equivalently, the chemical potential µ) close to the apparent

transition point. From the absorption images obtained, we performed a bimodal fit

to the cloud. The cloud fit well to a bimodal double Gaussian (wide and narrow

Gaussian modes superposed). The wide Gaussian fit the non-condensed (or thermal)

cloud, and stayed constant, both in width and amplitude7, across the range of the

number of atoms probed for a given trap depth, indicating that the temperature

was constant.

The narrow Gaussian fit the quasi-condensed atoms. For a 5 ms TOF (fig-

ure 7.7 (left)), we found that the width of the narrow Gaussian initially decreased

7Any change was immeasurably small. This is similar to a 3D BEC at equilibrium with a

thermal cloud, where, on adding more atoms, the thermal cloud changes little while the BEC

changes in height, and consequently in width and shape due to mean field repulsion.
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as a function of µ or equivalently the peak 2D column density in TOF (presumably

due to fewer phase fluctuations) and subsequently increased (due to mean field).

The sharp change in the sign of the slope was indicative of a phase transition (el-

bow point in fitted lines in figure 7.7 (left)). The obtained critical points agreed

with predictions of the BKT theory (figure 7.7 right), although only after correcting

for excitations in the tight confinement direction based on Holzmann et al. [262].

We also observed the expansion of the cloud for longer TOF. At 10 ms TOF, we

observed a sudden appearance of a narrow peak (above the bimodal distribution),

which was consistent with the sudden appearance of superfluid fraction at the BKT

transition [53]. Such measurements were subsequently performed more carefully by

the JILA group [261]. Phase coherence measurements also indicated an increase of

coherence from the thermal de Broglie wavelength to the size of the condensate [53].
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Figure 7.7: Critical density: (left) We obtain the critical density by finding the minimum

width (elbow point) in a plot of the condensate width vs the peak density. The data

is taken after 5 ms TOF for two different temperatures shown. (right) On comparing

the critical density (translating the 5 ms TOF to in situ) to BKT theory, we find that

our data is systematically higher than that predicted by BKT theory (dashed line: nλ2T =

log(380/g2D) for our conditions). However, if one were to correct the theory for excitations

(occupation of higher modes) in the vertical direction based on Holzmann et al. [262], one

gets better agreement (solid line).

In effect, we identified three regions for a quasi-2D Bose gas near the critical
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point. The gas underwent a phase transition at a point which agreed with the

predictions of BKT theory. Our measurements were indirect in the sense that we

could not directly observe free vortices or vortex-antivortex pairs or observe the

change in functional form of the coherence, which some experts would consider as

the hallmarks of the BKT transition. Also, our experiments (or any other atomic gas

experiments) did not look at any superflow. Nevertheless, our measurements were

in good quantitative and qualitative agreement with the quasi-2D BKT theory, and

have been further confirmed by subsequent simulations by Bisset and Blakie [263].

Our experiments observed the quasi-2D gas near the critical point differently

from the Paris experiments [258, 259]. Imaging perpendicular to the plane, we

obtained a 2D image of the cloud, and could directly measure the 2D (column)

density. We could therefore perform a 2D Gaussian fit to the cloud, and obtain the

peak 2D density of the cloud, indicative of the chemical potential µ. Hence, our

determination of the critical point was based on the minimum width of the narrow

mode of the bimodal distribution as a function of the peak 2D density. In the

Paris eperiments, it was based on the change in functional form of the correlation

function [258] or the appearance of a bimodal distribution [259].

More importantly, our experiments were able to clearly identify the three

phases; the thermal, the non-superfluid quasi-condensate and the superfluid quasi-

condensate. The critical point separated the quasi-condensate and the superfluid

phases. The quasi-condensate was distinguished from the thermal cloud by nature

of its coherence length being longer than the thermal de Broglie wavelength λT .

7.2.e Effects of BKT physics and quasi-2D dimensionality

The BKT experiments [53] have shown that our vertical confinement by the

sheet beam is sufficient to observe quasi-2D physics and even the BKT transition.

As mentioned previously, the barrier region is particularly susceptible to quasi-2D

excitations due to the reduced mean field interactions there. We will now look at

what are the possible effects due to the quasi-2D nature of the gas in the barrier

region.
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As discussed earlier in the chapter, the circulating state can decay to the non-

circulating state via a phase slip, which in our system is believed to be vortex motion

through the region of the barrier. A vortex moving through the condensate has an

energy barrier, which is the cost of putting a vortex at the center of the annulus.

The energy of such a vortex is

E = π
~
2n2D

m
log

rt
ξ
, (7.18)

where rt is of the order of the width of the annulus at the location of the barrier,

ξ is the healing length of the condensate8 at the location of the vortex and n2D is

the mean column density of the condensate in the region of the barrier. The exact

energy depends on various parameters such as the exact shape and density profile of

the condensate near the barrier and so equation (7.18) should be taken as the first

approximation.

As one can see, increasing the height of the barrier would cause the local

density, n2D to decrease and the healing length, ξ to increase, both of which lower

the energy barrier for a vortex to leave.

While one could have a vortex (of the same sign as the circulation) pass from

the inside of the annulus to outside or an anti-vortex pass the other way, the mech-

anism with the lowest energy barrier would be a vortex from the inside and an

anti-vortex from the outside coming in and annihilating each other at the center.

This is also consistent with the low energy excitation spectrum for a quasi-2D gas

that is superfluid, which consists of vortex-antivortex pairs. Such a pair would have

minimal effect on regions away from the barrier, which have high density. While the

cost of putting a vortex and an anti-vortex in the middle of the condensate is higher

than the cost of keeping them at the edge of the condensate, such a pair would have

an attraction which would lower the overall energy barrier. The condensate flow

causes an additional attractive force between the vortex and the antivortex9. The

8For simplicity, the vortex core size rv can be taken as the healing length of the condensate [264].

The error in this approximation is small compared to that arising from other approximations we

will make.
9From a classical perspective, this is the Magnus force [265]. The sign of the Magnus force
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energy of a vortex-antivortex pair in the annulus can be expressed as [266, 267]

E = 2π
~
2n2D

m
log

rs
ξ
− 2π~n2Dvfrs, (7.19)

where rs is the distance between the pair and vf is the velocity of flow10. We assume

that the pair starts at a distance 2rt, which is the width of the annulus and attempts

to move inward. The flow velocity causes an attractive force between pair, while

the energy barrier is the cost of putting a vortex and an anti-vortex in the center

of the annulus, where the density is maximum. Flow at the critical velocity causes

the attractive force to overcome the energy barrier, which leads to the decay of

circulation.

If the superfluid already had thermally excited vortex-antivortex pairs, the flow

could decay by causing a pair to split and leave in opposite directions11. In such a

situation, the velocity term of equation (7.19) would oppose the vortex-antivortex

interaction energy term. The critical velocity would depend on the temperature,

which determines the initial separation of the pair.

We have discussed some of the possible mechanisms for the decay of flow and

how dimensionality may play a role. We shall now move on to the critical velocity

experiments and will return to this discussion in the context of our experimental

results.

7.3 Experimental setup and procedure

Our experiment determined flow survival in the presence of a barrier. The

barrier consisted of an elliptical blue-detuned 532 nm beam that intersected the

annulus. The barrier beam was measured to be about 15 µm by 4.3 µm (1/e2 radii),

with the long dimension extending from nearly the center of the ring across the atoms

depends on the sign of the vortex, and hence, the force on the vortex is of the opposite sign to

the force of the antivortex. This is an additional force to the vortex pair attraction; a mutual

attraction or repulsion or shear force depending on the direction of flow.
10The sign of the velocity dependent energy term depends on the direction of flow.
11If the direction of flow were such that it initially caused attraction between a vortex pair, the

vortex pair would reorient and the force would then become repulsive.
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(a) (b)

Figure 7.8: Schematic of the barrier beam: (a) 3D rendering of the barrier beam and

its effect on the BEC. (b) Relative orientation of the elliptical barrier beam with respect

to the trapping LG beam. The barrier is sufficiently elongated in the transverse (radial)

direction so that the BEC cannot flow around it.

to well outside the annulus (figure 7.8) so that the atoms could not flow around it.

The barrier was much larger than the condensate healing length (ξ < 0.5µm) in bulk

and so we can model the depletion using TF formalism. Our experiment consisted

of creating a persistent current, then turning on the barrier for 1-2 seconds, followed

by turning it off and checking to see if the flow survived. By taking several data

points at each of a range of different barrier heights and chemical potentials, we

were able to obtain the critical point for the breakdown of flow.

The procedure for taking data was the following (see figure 7.9). We created

a BEC in the ring trap. After holding for about 3 seconds in the ring trap, we per-

formed the Raman transition, obtaining a circulating cloud in the |1, 0〉 state. After
allowing the ring to relax, and excitations from the transfer process (discussed in

section 6.5) to settle down, we then turned on the barrier and adiabatically ramped

it to its full height, Vb in 100 ms. After holding the barrier at its maximum value

for 2 seconds, we ramped down the barrier in 100 ms and turned it off completely.

We then detected circulation (see section 6.6) by ramping down the ring and doing

a 6 ms TOF.

Rather than finding the critical barrier for a fixed BEC, we found it eas-
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Figure 7.9: Experimental sequence studying critical flow. The sloped lines indicate inten-

sity ramps of the barrier beam with adiabatic turn on/off in ≈100 ms. The full sequence

time is 30-40 seconds including around 25 seconds required to create the BEC.

ier to vary the chemical potential µ0 for a fixed Vb and find the critical chemi-

cal potential, µc that was sufficient to overcome the barrier and allow the persis-

tent current to survive. The chemical potential depends on the number of atoms,

µ0 =
√

(1/2π2)Ngωzωr/mrM , (from equation (5.38) assuming a fully TF BEC),

which we varied in a controlled way (in addition to uncontrolled shot-to-shot fluc-

tuations) over a large range by doing one or more of the following:

1. Adding delays before or after the Raman process : Since the vacuum lifetime

was about 15 seconds for many of the runs, a 3 second extra delay would lower

the atom numbers by about 20%. By varying the delay, we could accurately

control the range of the number of atoms. However, delays made the sequence

time longer slowing down the rate of data and so for large changes, we needed

other methods.

2. Doing a microwave cut : By removing a fixed fraction of atoms, we can deter-

ministically lower the number of atoms. While in principle, we could have cut

any fraction we wanted, large cuts (more than 25%) caused excitations which

could lead to heating, and hence we limited cuts to 25%. After any cut, we

waited at least 3 seconds for the excitations to damp out.
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3. Lowering the Zeeman slower current : This works by lowering the number of

atoms we load into our MOT and is thereby useful in significantly lowering the

number of atoms. The only practical limit to this method was that we needed

a sufficient number of atoms in the BEC to sustain a persistent current before

the barrier was turned on.

We interspersed our critical flow data with calibration data, necessary for

calibrating µ0 and Vb. Calibration data was taken using an identical procedure,

except that we imaged the cloud in situ while the barrier is still on. Since the cloud

was optically thick, we used partial-transfer absorption imaging (see chapter 4),

typically transferring 8-42% of the cloud. The calibrations are detailed in appendix

C.

7.4 Observation of the breakdown of flow

From each experimental run we obtain two pieces of information: a binary

(survival or not) of flow and the number of atoms in the cloud (by integrating the

atom column density over the area of the cloud), which correspondingly gives µ0.

We find that for a given barrier height, the survival probability clearly depends on

µ0 (figure 7.10). The flow survival dependence on the chemical potential can be

divided into three regions. At high µ0, the flow always survives (above 1100 Hz for

Vb/h = 780 Hz, shown in figure 7.10, number of atoms N > 225× 103). Below that

is a critical region, where the probability of survival increases with atom number

(1000 to 1100 Hz for Vb/h = 780 Hz, N ≈ 185− 225× 103 atoms). At the low end,

the flow always decays (below 1000 Hz for Vb/h = 780 Hz, N < 185 × 103). For a

lower barrier height (figure 7.10 (top), for Vb/h = 650 Hz), the behavior is identical

except that the critical region occurs at a lower point µ0 (800-950 Hz).

In figure 7.11, we plot the critical chemical potential as a function of the barrier

height. For each experimental run we calculate the chemical potential, µ0, assuming

an annular Thomas-Fermi condensate profile, where N is the number of atoms, g

is the interaction strength, rM is the radius of the annulus and ωz and ωr are the
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Figure 7.10: Flow survival as a function of chemical potential, µ0, for two barrier heights:

(Upper, blue) Vb/h = 650 Hz (barrier beam power = 75 µW), and (lower, red) Vb/h = 780

Hz (barrier beam power = 91 µW). Presence or absence of flow for a single condensate

is shown by closed circles. Open circles are the average of data within the bins (vertical

lines), representing the flow survival probability (Pflow) of each bin. A critical chemical

potential µc for stable flow is found from a sigmoidal fit (solid lines) to the data for each

Vb/h. The width of the sigmoidal is believed to be primarily due to temporal drift of the

trapping potential that causes the effective height of the barrier to vary (see appendix C.7).

The vertical green lines indicate the height of the barrier (to compare against the chemical

potential).

vertical and radial trapping frequencies respectively. Here, we have neglected the

azimuthal variations in µ and the volume of the barrier, which has a < 4% effect on

the calculated chemical potential. We fit a sigmoidal [1+exp(µc−µ/µw)]
−1 function

to the data obtaining a critical chemical potential µc and the 1/(1 + e2) half-width

of the critical region, 2µw.

We obtain the barrier height relative to the chemical potential by analyzing its

effect on the BEC. We take a series of in situ images (figure 7.1a) of the BEC with

varying barrier beam power. For each image, we divide the annulus into angular
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Figure 7.11: Critical chemical potential vs barrier height (Vb): The chemical potential at

the critical point (µc) is plotted against the barrier height. We find a linear scaling with a

slope of 1.6 (continuous line). The chemical potential is calculated based on the number

of atoms in the trap. For each barrier height, we fit a sigmoidal [1 + exp(µc − µ/µw)]
−1

to obtain the critical chemical potential µc and critical region width, µw. The vertical

uncertainty is of size ±2µw (from sigmoidal fit), and the horizontal uncertainty is ±20 Hz,

based on our calibration uncertainty. The images indicate regions of flow survival (top

left) and regions of flow decay (bottom right)

sections and measure the local peak mean field (gn3D,max for the section), µl, as a

function of the azimuthal coordinate, θ (see figure 7.1b). We use the fully Thomas-

Fermi approximation to obtain µl =
(

(9/32)n2
2D,lmω

2
zg

2
)1/3

(equation (5.35)) from

the peak column density, n2D,l, of each section.

For regions of the cloud close to the barrier, where the Thomas-Fermi approxi-

mation is clearly not valid (µl < ~ωz), we assume a harmonic oscillator ground state

profile along z giving µl =
√

π~ωz/m× n2D,l (equation (5.32)).

To get the barrier height, we use

Vb = µ0 −min(µl), (7.20)
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where min(µl) is the minimum µl as a function of θ. We correct for our imaging

resolution which is expected to cause our barrier to appear around 15% wider (see

appendix C.7).

We find that the critical chemical potential scales approximately linearly with

the barrier height (figure 7.11) over the full range of barrier heights and chemical

potentials. This supports that the breakdown of flow occurs due to a depletion of

density in the barrier region, which can be compensated by raising the chemical

potential. The linear dependence of µc on the barrier height has slope of 1.6, which

indicates that it is not simply a matter of the barrier cutting off the flow. The > 1

slope indicates some sort of flow velocity dependence, based on flow conservation,

which leads to excitations and dissipation.

Taking our analysis to the next step, we need to obtain the flow velocity so

that we can compare the critical velocity to different criteria.

7.5 Flow velocity of a circulating ring

We return to the problem of obtaining the flow pattern in a circulating ring.

By imposing the conditions of phase winding, no flow across boundaries and steady-

state flow, we could calculate the complete flow profile. However, since the purpose

of the experiment is more to understand the physics rather than make a precision

measurement, it is more useful to employ a simple model where the physics is easier

to see. Also, since our calibrations of the barrier height and the chemical potential

have significant uncertainties, there is little benefit from a precisely calculated flow

velocity.

We make the following simplification. We treat the ring as a 1D object by

integrating out the transverse directions. That is, we neglect the r (and z) variation

of the ring and assume it to be fixed at r = rM (and z = 0). The phase at any angle

θ is fixed, and hence the flow and the flow velocity have only a θ dependence. We

then use equations (7.3) and (7.4) to obtain the flow velocity. Due to the depleted

1D density at the location of the barrier, the velocity is maximum there.
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Figure 7.12: Sample flow velocity profile: We plot the azimuthal flow profile of a cloud

computed after integrating the transverse profiles of the ring to create a 1D object. Con-

servation of flow leads to the flow velocity being maximum at the location of the barrier,

as seen by the prominent peak reaching nearly 3 times the velocity for the rest of the ring.

The above plot does not correct for optical resolution.

In the absence of the quantization condition, if flow was fixed (if it was ex-

ternally driven for example), the (transverse integrated) 1D density at the barrier

would be sufficient to determine the peak flow velocity (such a system is considered

in Watanabe et al. [268]). However, because of the quantization condition, given in

equation (7.4), the peak flow velocity depends on the complete density distribution.

To illustrate the point, we start with our ring in the absence of a barrier, which

is azimuthally more or less uniform. The flow velocity everywhere is ≈ ~/mrM =

0.15 mm/s (ignoring the minor azimuthal non-uniformities). On adding a single

barrier, we obtain the distribution shown in figure 7.12, which has a peak of ≈0.4

mm/s and the flow at other regions to average < 0.15 mm/s. If another barrier

was added somewhere else in the annulus, the overall average flow would further

decrease. The peak flow velocity would also decrease, even though nothing changed

in the vicinity of the barrier. If the entire ring had a potential as high as the peak

of the barrier, the flow velocity would go back to case of a uniform ring and hence

the velocity everywhere would be ~/mrM .

The counter-intuitive nature of the flow velocity and its dependence on the

density distribution of the entire ring ties in with the global picture for dissipation
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of flow. Both the condition for the dissipation of flow and the complete stoppage of

flow are global in nature, and depend on and affect the flow in the entire ring.

The flow velocity at the barrier follows directly from the density distribution

(shown in figure 7.12). Using our in situ data and barrier calibration, we were able

to obtain a density distribution for a given number of atoms (or µ0) and barrier

height. This was then used to obtain the flow velocity at the barrier. As mentioned

earlier in the context of the azimuthal smoothness of the ring, azimuthal variations in

the density profile lower the accuracy to which we can determine the flow velocity.

Hence, the smooth ring was key to a good measurement of the superfluid flow

velocity.

7.6 The critical velocity

While one may argue that the phononic critical velocity is irrelevant, as there

needs to be a phase slip and hence vortex-like mechanisms are the likely cause of

dissipation, I feel that it is still necessary to put the phononic critical velocity in

the right context. As discussed earlier, the phononic critical velocity of a BEC is

the speed of sound. The speed of sound in bulk has a physical meaning and is easy

to calculate. Since the phononic critical velocity is nearly the same for all phononic

modes (see section 2.2.c), flow at the speed of sound is likely to excite several modes

and is almost certain to cause severe dissipation. Hence, the speed of sound serves

as an upper bound on the critical velocity. For a BEC, the speed of sound c is given

by [16, 269]

c =

√

µl

m
, (7.21)

where µl is the local mean field, and the size of the sample is large enough for c to

be meaningful.

In comparing our critical velocity to the sound speed, there is one detail: Our

condensate has an inhomogeneous density distribution (given in equation (5.24))

and so the speed of sound is also spatially varying. Taking a cross-section of the

ring, one finds that the local speed of sound is zero at the edges. Since the flow
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velocity is non-zero across the cross-section, there is some point at which the flow

velocity exceeds the critical velocity purely by virtue of an inhomogeneous profile.

How do we resolve this inconsistency?

The Landau criterion for the dissipation of flow is based upon the lowest energy

excitations. If we were to take a step back and try to see what kinds of excitations

are possible, we immediately notice that the transverse excitations (along r and z)

have much higher energy than the longitudinal excitations (along θ). Hence, the

longitudinal phononic excitations are the lowest energy phononic excitations and

need to be considered separate from the other excitations. In our inhomogeneous

system with a TF cross-section, the longitudinal effective speed of sound at the

barrier is given by [215, 270, 271]

ceff =
c√
2
=

√

µl

2m
, (7.22)

where µl is the (peak) local mean field at the location of the barrier.

Plotting our obtained critical velocity vs ceff (see figure 7.13), we see that our

data spans a range of sound speeds (1.1 to 1.6 mm/s) and critical flow velocities

(0.7 to 1.0 mm/s). This was possible because of the azimuthal smoothness of the

ring that allowed us to vary the chemical potential and therefore flow velocity by

a large range. We find that the critical flow velocity is around 60% of ceff. This is

consistent with it being lower than the sound speed. This is also to be compared

to the measurement of ≈15% for the Washington State University experiment [50],

and ≈25% (correcting for the cylindrical shape of the laser beam [48]) for the MIT

experiments [49] and the University of Arizona experiments [51]. Experiments in

superfluid helium have also found superflow to breakdown at velocities well below the

critical velocity due to phonon and roton excitations (see Wilks [272] or Varoquaux

[32]).

Coming to the critical velocity of vortex-like excitations, we look at the energy

cost of putting a vortex-antivortex pair with separation rs at the middle of the

annulus in the barrier region. From equation (7.19), we can see that the energy is
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Figure 7.13: Critical velocity comparison: The critical velocity vc normalized by the

effective local sound speed, ceff is plotted. The flow breaks when the flow velocity is around

60% of the effective sound speed. The gray band shows the predicted (2D) Feynman critical

velocity.

negative if12

vf ≥ ~

mrs
log

rs
ξ
, (7.23)

where ξ is the healing length. Again, we have the problem of the inhomogeneous

density profile, and hence ξ varies across the cross-section. For any vortex-pair

recombination, the vortices have to pass through the center of the annulus, and hence

the peak density and the corresponding ξ are relevant. The log(rs)/rs dependence

of vf makes it relatively insensitive to rs for the range of rs in our system (TF width

at the barrier), and so the choice of rs is less critical.

We set13 rs = 2rTF = 2
√

2µ/mω2
r and ξ =

√

~2/2µm, where µl/2 ≤ µ ≤ µl

is the transverse variation of the mean field at the location of the barrier. Plotted

against our data (see figure 7.13), we can see that our data lies within the gray band

12This expression is very similar to Feynman’s [24] expression for the critical velocity for creating

vortices in a channel (discussed in section 2.5.b). The difference is a factor of 2 (rs is the full width

of the channel), which arises from the quasi-2D nature of our condensate near the barrier.
13While the condensate may not be TF along z, it is still TF along r.
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indicative of the (2D Feynman) critical velocity for a vortex-pair excitation. The

specified range of µ is a best guess to accommodate the inhomogeneous transverse

profile, where the mean field varies from µl at the center and 0 at the edge.

While the match looks good, it must be kept in mind that both the expression

for the Feynman critical velocity, and the calculation of the critical flow velocity

are approximate, and a more careful calculation of the various parameters and the

energetics are needed. Still, that all the points fall within the band (within error

bars) is suggestive of the mechanism of flow decay by vortex production. Simulations

of systems similar to ours [273], although with circulation of 8~, indicate decay of

flow by a vortex entering the ring. This could be compoared to the annhilation of

a vortex-antivortex pair at the center of the annulus. In their case, presumably due

to the high circulation, the vortices were dragged along with the flow, which should

not happen in our experiment since we have only one unit of circulation.

Experiments studying helium superflow through small apertures by Avenel

and Varoquaux [33] and Amar et al. [34] have also shown evidence of a phase slip

mechanism, although the 3D nature of these systems makes vortex rings more likely.

The critical velocities for such events have been in agreement with the Feynman

critical velocities (discussed extensively in Varoquaux [32]).

7.7 Conclusion and future work

In conclusion, we have been able to clearly identify the decay of flow due to

the presence of a barrier. Our estimates of the critical velocity match well with that

necessary for the decay via a vortex-antivortex pair.

Our critical velocity experiment is a first step to studying several phenomenon.

In the experiment, we worked with a cloud that was effectively at zero temperature.

A possible experiment is studying the effect of temperature, which could lead to

decay of flow via a different mechanism, the splitting of thermally excited vortex-

antivortex pairs. Another possibility is studying the effect of dimensionality by

varying the radial and vertical confinement.
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Recently, we have had success in testing an acousto-optic deflector (AOD) to

generate arbitrarily shaped potentials. By engineering the barrier using the AOD, we

could change the dimensionality of the BEC in the barrier region; that would allow us

to explore the channel width dependence of the critical velocity. We could also create

a definite constriction with nearly hard walls, which would more closely approach

the superfluid helium experiments allowing more direct comparisons. Using the

AOD, we could also create a moving barrier. Such a barrier could be used to

deterministically stir the condensate, as described in Brand and Reinhardt [224].

Josephson effects have been observed in BECs separated by a weak link [274,

275]. The barrier in our setup serves as a weak link, and hence the weak link in a

superfluid circuit constitutes a first step towards the atom analog of a superconduct-

ing SQUID. A possible scheme for sensing rotation is to rotate the barrier around

the ring close to the critical velocity for one unit of circulation. Small changes in

the rotation speed would then translate to circulation being imparted to the BEC

or not. Such changes could arise from the rotation of the apparatus as a whole or

even the rotation of the earth, thereby creating a rotation sensor.

As I conclude this thesis, I would say that our journey these last 4+ years has

been quite long. From our first days of creating an all-optical toroidal potential,

we now have very good control of the ring BEC, from how to create it to how

to characterize it. We also now have a good understanding of what sustains a

persistent current, and what it takes for the flow to breakdown. Along with being

able to measure the critical velocity, we are well poised to perform experiments with

moving barriers and atom SQUIDs. The future looks bright with possibilities of

creating rotation sensors or other “atomtronic” devices (atom analogs of electronic

devices). With that, I would like to thank you for reading this thesis.
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Appendices



Appendix A

Analyzing PTAI images

A.1 Calculating the uncertainty of measurement using PTAI

In this section, we calculate the uncertainty of measurement using PTAI. We

start with the expression for the total noise (equation (4.18)), and use it to determine

the uncertainty, δβm. The area of interest in the cloud has an OD of β. We transfer a

fraction γ, giving a transferred OD of βf = γβ. By imaging the transferred fraction,

we obtain an inferred optical depth, β̄m, which can be expressed in terms of the

photon counts on the detector ηM̄t
1, the latter being the measured quantity:

β̄m =
βf
γ

= −1

γ
log

ηM̄t

ηM̄
(A.1)

Correspondingly, the uncertainty in the measurement, δβm, can be expressed in

terms of the statistical variation of the transmitted probe light. We assume that

the reference signal, ηM̄ , which comes from the image of the probe beam on CCD

in the absence of atoms has been averaged over several realizations and so has no

uncertainty associated with it:

δβm =
1

γ

δ(ηMt)

ηM̄t

. (A.2)

From the limit to the number of photons, eq. (4.17), we get:

ηM̄t =
αηNfe

−βf

1− e−βf
(A.3)

The variation in the detected photon counts comes from the noise, eq. (4.18).

δ(ηMt) =

√

√

√

√

αNfηe−βf

1− e−βf

(

1 +
αηβ2

fe
−βf

1− e−βf

)

(A.4)

1The bar indicates an average, assuming an average over several realizations. The uncertainty

is based on a single realization and hence in the notation, I do not use a bar.
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Substituting equations (A.4) and (A.3) into equation (A.2), the uncertainty

in the measurement can be calculated:

δβm =
1

γ

√

√

√

√

√

√

(

1 +
αηβ2

f e
−βf

1−e
−βf

)

αηNf e
−βf

1−e
−βf

δβm =
1

γ

√

1− e−βf + αηβ2
fe

−βf

αηNfe−βf
(A.5)

where, the last step is only an algebraic simplification. Equation (A.5) expresses

the uncertainty in measurement, δβm as a function of the OD of the cloud (β),

the transferred fraction (βf) and the pixel resolution (one can express Nf in the

denominator as βfA/σ0). The first two terms in the numerator under the square-

root come from the photon shot noise, while the last term comes from the atom shot

noise. Depending on which term is larger, the respective shot noise will dominate.

A.2 Calculating the uncertainty in measurement using PCI

In this section, we calculate the uncertainty in measurement of phase-contrast

imaging as a function of the OD of the cloud and the perturbation to the sample.

We choose a region of interest identical to the PTAI case, having an area, A, N

atoms and an (on-resonant) OD β. In phase-contrast imaging, the probe light is

usually far detuned from resonance, (ω − ω0)/(Γ/2) = ∆ & 10. Applying ∆2 ≫ 1

to equations (4.10, 4.11 and 4.12), we obtain (see Lye et al. [140] for example):

M̄t = M̄e−β/∆2

(A.6)

M̄abs = M̄(1− e−β/∆2

) (A.7)

δφ =
N

A
σ0

1

2∆
=

β

2∆
(A.8)

To retain sensitivity at higher optical depths and not have the phase wrap

around, we have to also ensure that δφ < π/4. This puts a further condition on the
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detuning, ∆, at very high optical depths, i.e. β & 60:

β

2∆
<
π

4
,

∆ >
2β

π
. (A.9)

This condition ensures that e−β/∆2 ≈ 1, and so, the absorption of photons

through the sample can be expressed as,

M̄abs = M̄
β

∆2
(A.10)

Since the absorption of photons through the sample is low, we can assume that

there is very little change in the number of photons in the probe beam as it passes

through the sample, i.e. Mt ≈M .

A.2.a Photon shot noise

For simplicity of calculation, we will assume the following setup. The trans-

mitted probe beam, M̄η, interferes with a reference local oscillator of M̄L photons

on the detector. The calculation holds for the more typical phase-contrast imaging

setups [136], if one uses a large enough probe beam and an appropriate interfer-

ence scheme. Deviations from these ideal conditions causes some distortion, which

is beyond the scope of this thesis. For our model interference setup, the detected

number of photons is:

M̄d = M̄L + ηM̄ + 2
√

M̄LηM̄ cos(φ0 + δφ) (A.11)

where M̄d is the detected number of photons and φ0 is the native phase shift between

the beams. For maximum detectability, we set the relative phase φ0 = π
2
. This

simplifies equation (A.11):

M̄d = M̄L + ηM̄ − 2
√

M̄LηM̄ sin(δφ) (A.12)

In the absence of atoms, the number of photons incident on the detector is:

M̄d,0 = M̄L + ηM̄, (A.13)

186



which is the reference signal.

Substituting the phase shift δφ from equation (A.8), we obtain the detected

number of photons, M̄d, as a function of the OD, β:

M̄d = M̄L + ηM̄ − 2
√

M̄LηM̄ sin

(

β

2∆

)

. (A.14)

The photon shot noise goes as the square root of the number of photons inci-

dent on the detector, M̄d. The photon shot noise for phase-contrast imaging is:

ℵphot =

√

(M̄L + ηM̄)− 2
√

M̄LηM̄ sin

(

β

2∆

)

(A.15)

A.2.b Uncertainty in the measured optical depth

Analogous to the PTAI case, we start with an expression for the measured

OD, β̄m, and obtain an expression for the uncertainty δβm arising from the photon

shot noise, ℵphot. From equations (A.8),(A.12) and (A.13) we obtain an expression

for the measured OD, β̄m:

β̄m = 2∆ sin−1

(

M̄d,0 − M̄d

2
√

M̄LηM̄

)

, (A.16)

where M̄L and ηM̄ are measured prior to taking the image. We assume that these

quantities have been measured repeatedly and so have no shot noise associated with

them.

Again, we assume that the reference is averaged over several images and so

has no shot noise associated with it (δMd,0 = 0). Differentiating equation (A.16)

with respect to the signal, M̄d, we get:

δβm = 2∆



1−
(

M̄d,0 − M̄d

2
√

M̄LηM̄

)2




− 1

2

δMd

2
√

M̄LηM̄
(A.17)

Substituting the variation in photon number, δM̄d from equation (A.15), the

uncertainty in measurement is:

δβm = ∆

√

(M̄L + ηM̄)− 2
√

M̄LηM̄ sin
(

β
2∆

)

cos
(

β
2∆

)
√

M̄LηM̄
(A.18)

187



In order to obtain the minimum uncertainty without increasing the amount of light

passing through the atom cloud, we set M̄L >> M̄ . This assumes a sufficient

dynamic range of the detector, & 2M̄L. Equation (A.18) simplifies to

δβm = ∆
1

cos
(

β
2∆

)

√

1

ηM̄
. (A.19)

Although we detect only the phase-shift of the beam, there is some absorption

of light (see equation (A.7)). Expressing the number of incident photons in terms

of the absorption through the cloud, we find:

δβm =
1

cos
(

β
2∆

)

√

β

ηM̄abs

. (A.20)

Each absorbed photon corresponds to an atom undergoing a recoil event. For

ultracold gases, even a single recoil event transfers kinetic energy much higher than

the temperature and other energy scales. We can set M̄abs = Nd, where Nd is the

number of atoms undergoing recoil events, which is a measure of the perturbation

of the sample. We express the absorbed light in terms of the number of atoms

undergoing recoil. We obtain:

δβm =
1

cos
(

β
2∆

)

√

β

ηNd
, (A.21)

which expresses the uncertainty of measurement in terms of the OD and the number

of atoms undergoing recoil.

A.3 Change in transmitted intensity due to optical pumping

In performing PTAI, there is some optical pumping due to off-resonant excita-

tion. The optical pumping can be accounted for by solving for the change in optical

depth as a function of time given an certain incident intensity. However, as seen in

section 4.6.b, the differential equation is more easily cast in terms of the transmitted

intensity It(τ) than the optical depth β(τ). In this section, we will solve for It(τ),

given an incident probe intensity Ii. We start with the basic differential equation,
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reproduced from equation (4.27):

dIt(τ)

dτ

(

1

It(τ)
+

1

Isat

)

= − σb

~ω∆̃2

(

Ii − It(τ) +
I2i − I2t (τ)

2Isat

)

.

We will now make a suitable change of variables to make the algebra simple:

x =
It(τ)

Isat
+ 1,

B =
Ii
Isat

+ 1, and

A =
σbIsat

~ω∆̃2
.

Equation (4.27) then becomes:

dx

dτ

(

1

x− 1
+ 1

)

= −A
(

B − 1− (x− 1) +
(B − 1)2 − (x− 1)2

2

)

, (A.22)

which then simplifies to

dx

dτ

(

x

x− 1

)

= −A
2
(B2 − x2). (A.23)

Equation (A.23) can be solved by first moving all x containing terms to the left-hand

side,
xdx

(x− 1)(B2 − x2)
= −Adτ

2
, (A.24)

then splitting the terms into partial fractions,

dx

2(B2 − 1)

(

2

x− 1
+
B − 1

B + x
+
B + 1

B − x

)

= −Adτ
2
, (A.25)

and finally integrating the equation to give

dx

2(B2 − 1)
log

(

(x− 1)2(B + x)B−1

(B − x)B+1

)

= −Aτ
2

+ C, (A.26)

where C is the constant of integration. Substituting for It(τ), and using the τ = 0

condition for C, we finally obtain

1

Ĩi(Ĩi + 2)
log

(

It(τ)
2(Ii + It(τ) + 2Isat)

Ĩi

(Ii − It(τ))(Ĩi+2)

)

= Aτ +

1

Ĩi(Ĩi + 2)
log

(

It(0)
2(Ii + It(0) + 2Isat)

Ĩi

(Ii − It(0))(Ĩi+2)

)

, (A.27)

where Ĩi = Ii/Isat.

The solution is not particularly insightful, and is presented here just for com-

pleteness.
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Appendix B

Fully Thomas-Fermi condensate in the ring trap

In this appendix, we will calculate the relationship between the number of

atoms and the chemical potential for a fully Thomas-Fermi condensate. The poten-

tial is given by

V (r, z, θ) =
1

2
mω2

zz
2 +

1

2
mω2

r(r − rM)2.

We start with the 3D density distribution:

gn3D(r, z, θ) = µ0 −
(

1

2
mω2

zz
2 +

1

2
mω2

r(r − rM)2
)

for µ0 > V (r, z, θ) (B.1)

= 0 everywhere else

For integrating along z, one needs to be aware that the limit of integration depends

on the radial coordinate r. In the region of the condensate, we set up the integral

with limits:

gn2D(r, θ) =

∫ zr

−zr

dz

(

µ0 −
(

1

2
mω2

zz
2 +

1

2
mω2

r(r − rM)2
))

, (B.2)

where zr =
√

µ0− 1

2
mω2

r(r−rM )2

mω2
z/2

is the distance up to which the condensate extends at

a radial location r.

gn2D(r, θ) =

(

µ0 −
mω2

r(r − rM)2

2

)

z|zr−zr −
1

6
mω2

zz
3|zr−zr

=

(

µ0 −
mω2

r(r − rM)2

2

)

2zr −
1

6
mω2

z2z
3
r

Substituting zr, we get

gn2D(r, θ) = 2
(µ0 − 1

2
mω2

r(r − rM)2)3/2
√

mω2
z/2

−1

3
mω2

z

(

µ0 − 1
2
mω2

r(r − rM)2

mω2
z/2

)3/2

gn2D(r, θ) =
4
√
2

3
√

mω2
z

(µ0 −
mω2

r(r − rM)2

2
)3/2 (B.3)
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The 2D column density profile obtained scales as a 3/2 power of the expression for

the radial TF case (see equation (5.31)), which makes it similar in shape except for

a steeper drop-off near the TF width. I will call this functional form the 3D-TF

profile.

The peak 2D density is given by:

n2D(r = rM , θ) =
4
√
2µ

3/2
0

3
√

mω2
zg
. (B.4)

We then set up the integral to integrate the 2D column density to get the number

of atoms:

N =

∫ rM+rTF

rM−rTF

rdr
4
√
2

3g
√

mω2
z

(µ0 −
mω2

r(r − rM)2

2
)3/2

∫

dθ, (B.5)

where rTF =
√

2µ0

mω2
r
, as defined in chapter 5.

Since the trap is radially symmetric, we can easily integrate over θ to obtain:

N =

∫ rM+rTF

rM−rTF

rdr
8
√
2π

3g
√

mω2
z

(µ0 −
mω2

r(r − rM)2

2
)3/2. (B.6)

In order to integrate over r, we first express µ0 in terms of rTF :

N =

∫ rM+rTF

rM−rTF

rdr
4πmω3

r

3gωz
(r2TF − (r − rM)2)3/2. (B.7)

We will now make a change of variable. We then set q = r − rM . The change in

integrand and limits of integration are given by:

dq = dr, (B.8)

for r = rM − rTF ⇒ q = −rTF , and (B.9)

for r = rM + rTF ⇒ q = rTF . (B.10)

Substituting the above expressions in equation (B.7), we get:

N =

∫ rTF

−rTF

rMdq
4πmω3

r

3gωz
(r2TF − q2)3/2. (B.11)

Since the integral is symmetric about q = 0, only rM , which is the even part of

rM + q (comes from r in equation (B.7)) survives, and so the term containing q has

not been shown in equation (B.11).
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We then make a further change of variables and set q̃ = q
rTF

. This gives us:

N =

∫ 1

−1

rMdq̃
4πmω3

rr
4
TF

3gωz
(1− q̃2)3/2. (B.12)

We can then use a trignometric integral to solve, setting sinα = q̃, which gives:

cosα dα = dq̃, (B.13)

q̃ = ±1 ⇒ α = ±π/2, and (B.14)

cosα =
√

1− q̃2. (B.15)

Substituting these expressions for q̃, we get:

N =

∫ π/2

−π/2

rMdα
4πmω3

rr
4
TF

3gωz
(cosα)4. (B.16)

This is a known trignometric integral giving us:

N = rM
4πmω3

rr
4
TF

3gωz

× 3π

8
. (B.17)

Substituting for rTF , we obtain:

N = 2π2 rMµ
2
0

gmωzωr
. (B.18)
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Appendix C

Calibrations for critical velocity

This appendix explains the various calibration procedures used.

C.1 Time calibration

Our PulseBlaster board was tested against various (calibrated) oscilloscopes,

and the timing was found to be accurate to the limit of the measuring device. This

makes our knowledge of time (for Raman or microwave pulses and time of flight) the

most accurate measurement, better than 10−4 (specified to be accurate to 10 ns).

In the remainder of this section, I will neglect any inaccuracies in our knowledge of

time, and treat time as perfectly known.

C.2 Length calibration and pixel size

Since we know the imaging system we have in place, we can determine the

magnification and pixel size purely from the location of various optical elements.

However, it is usually more accurate to measure a property of the atoms to determine

the lengthscale.

The simplest such method is to image a cloud falling under gravity. We first

calibrate our horizontal imaging system to watch the change in position of a cloud

falling in time of flight, and then use that to calibrate the vertical imaging system.

C.2.a Calibrating the horizontal imaging system using gravity

In data taken on October 29 2008, we took a series of measurements watching

the cloud fall under gravity (see figure C.1). Our camera pixel size is given as 6.45

µm. Since our imaging system consists of a 20 cm focal length lens followed by a

50 cm lens (both convex achromatic doublets), we estimate an initial pixel size (size
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a)

Figure C.1: Calibrating length scale using gravity. Absorption images (a), (b) and (c)

show the cloud at different times of flight. We match the pixel size to acceleration due to

gravity. As one can see, all points fall on the straight line.

at the plane of the BEC corresponding to one pixel on the camera) of 2.58 µm.

Matching the location of the cloud on the camera with what is expected of a freely

falling object (1
2
gt2, where t is the time-of-flight and g = 9.8m/s2 is the acceleration

due to gravity), we obtain a calibrated pixel size of 2.30 µm (figure C.1(d)).

Our pixel size calibration agrees with our initial estimate, the difference aris-

ing from the first lens not being at the proper focal distance from the BEC. The

distance between the two lenses were not the sum of focal lengths (analogous to 4F

imaging), and so the magnification is sensitive to minor displacements of the lens.

The difference between the predicted and actual pixel size correspond to the first

lens being placed 1 cm closer to the plane of the BEC than the focal length. The

discrepancy is quite plausible as the BEC sits inside vacuum in a 2 cm glass cell

(see figure 3.8), and so its precise position cannot be determined.
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C.2.b Calibrating the vertical imaging system by matching cloud size

The horizontal and vertical images share a common axis (which is along the

Zeeman slower). If one were to take an image of the same cloud using both cameras

and integrate out the non-common axis in the respective images, one should get

an identical line profile from each camera. Taking a set of 3 images from each

camera, we compare and match up line profiles to get the calibration of the vertical

camera (figure C.2). We get a pixel size (at a 5x zoom lens setting) of 1.2 µm.

The uncertainty in the calibration is estimated to be less than 10%. The calibration

matches what one would expect from an estimate of the magnification of the imaging

set up.

Green –  vertical cam
@1.2 μm/pixel

Blue –  horizontal cam

@ 2.3 μm/pixel
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Figure C.2: Matching the line profiles from the two cameras. By adjusting the x-axis

scales of the vertical camera, we match up the line profiles of 6 ms time-of-flight images to

get a calibration of the pixel size of the vertical camera from the known calibration of the

horizontal camera. We use 3 images of each to get a fair sample size. While the regions

of line density may not match up as the regions of high optical depth are not accurately

measured, the slope at the edge of the cloud matches well.

C.3 Measuring the trap frequencies

We measured trap frequency by parametric heating. By summing a small AC

signal to the amplitude control of the AOM driver for the ring or the sheet beam,
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we could modulate the dipole trap. We sum a 20-50 mV signal (1-4%) for a time

varying between 100 ms and 2 s. Modulating a beam at the corresponding trap

frequency causes parametric heating. In our system, the trap depth is relatively low

and only a weak diffuse thermal cloud can be contained. Therefore, it was easier to

detect heating by looking at the loss of atoms from the trap (particularly the BEC)

due to thermal excitation. We measured the number of atoms in situ immediately

after the parametric heating. As we required only a relative measurement of the

heating, this measurement sufficed for us to determine the trapping frequency.

C.3.a Vertical trapping frequency

The vertical confinement is due to the sheet beam1. Due to non-uniformities

in the beam believed to be due to interference fringes from a secondary reflection

as the beam passes through the glass cell, parametric heating occurs for a broad

range of frequencies (more than 50 Hz 1/e2 full width in 540 Hz). However, when

we performed the same experiment with the ring beam turned on, we were able to

narrow the range. We measured the sheet trapping frequency, ωz on June 9 2010.

ωz was found to be 545±5 Hz (uncertainty in mean) for a sheet beam power of

135 mW, which was the configuration we did our critical velocity experiments in.

Measuring the trap frequency at different sheet beam intensities, we obtained values

consistent with the relation ω ∝
√
P (ω/2π is the trap frequency, and P is the beam

power). We also measured heating at close to twice the fundamental frequency.

C.3.b Radial trapping frequency

The annular confinement is due to the LG ring beam. Performing a similar

process for the LG beam (performed on June 11 2010), we found the radial trap-

ping frequency, ωr to be 107±2 Hz for a ring beam power of 27 mW (our typical

1While it may seem that parametric heating should not occur in this direction at the trap

frequency ωz because of the symmetry in the beam, a combination of the gravitational potential

and the anharmonicity of the trap is believed to allow parametric heating to take place.
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experimental condition). We verified the ω ∝
√
P scaling for the ring beam power

also.

C.4 Measuring imaging parameters

In getting any quantitative measurement of atom column density out of ab-

sorption imaging, one needs to know the scattering cross-section (σ0), the incident

and transmitted light intensities (Ii and It) and, to correct for the effects of satura-

tion, the saturation intensity (Isat, see section 4.2). While it may seem more logical

to get the scattering cross-section first, it is more complicated. Saturation intensity,

on the other hand can be determined by comparing the uncorrected measured atom

number for different the incident intensities of the light, without knowing anything

else.
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Figure C.3: Calibrating the saturation intensity: For a set of 6 images of nearly identical

clouds, at varying probe intensity, we plot the number of atoms against the average probe

count (green). We then make a correction (red), setting the saturation intensity to 10000

counts. The dotted lines are a guide to the eye.
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C.4.a Measuring saturation intensity

To determine the saturation intensity, we take a set of absorption images

of nearly identical atom clouds (data taken on May 6 2010) and different probe

intensities. The clouds are imaged in time-of-flight with full optical repump. To

correct for saturation, we take an overall average correction factor as opposed to

an individual pixel-by-pixel correction factor. This is because certain variations in

the probe intensity are due to optics downstream of the atom cloud. We calculate

the probe intensity by averaging the pixel counts of the reference probe image (in

the absence of atoms) over the region of atoms, and using that average value Īi

(equation (4.9)) as the incident intensity for all pixels. We correct using

βc(x, y) = βu(x, y) +
Īi
Isat

(1− e−βu(x,y)), (C.1)

where βu(x, y) = − log(It(x, y)/Ii(x, y)) is the uncorrected optical depth and βc(x, y)

is the corrected optical depth. We iteratively correct for Isat as shown in figure C.3.

We obtain a saturation intensity of 10 000±1000 digital detector counts per

pixel (figure C.3). This value is consistent with the estimated intensity (≈ 10

mW/cm2) of the probe beam at the location of the atoms based on the calibration

of the camera measuring the intensity at the atoms.

C.4.b Calibrating optical pumping for PTAI images

For in situ images, imaging with partial-transfer absorption imaging (PTAI),

we need to correct for optical pumping because we cannot use repumping light

(see section 4.6). The reader should note that although off-resonant excitation is

sufficiently large so as to cause optical pumping, it is nevertheless small compared

to resonant excitation and so does not contribute to the scattering cross-section.

We use the calibration for saturation from the time-of-flight, optically repumped

images and then apply another correction for optical pumping. While an exact

analytic expression for optical pumping is not possible, we use the approximation in

equation (4.30), which acts as a simple overall scaling factor and which works well

for low transfer optical depth.

198



0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

Probe Intensity (counts) 

N
um

be
r 

of
 A

to
m

s 
(x

10
00

)

Figure C.4: Calibrating the optical pumping: For a series of 17 partial transfer images

taken of nearly identical clouds, we plot the saturation-corrected number of atoms as a

function of probe intensity (blue and red). We are able to correct for optical pumping

to obtain the atom number independent of the probe intensity (black and green). While

the correction is not linear, for this limited range of probe intensities, it appears so. The

dotted lines are a guide to the eye. The blue (and corresponding black) points were taken

with a 23% microwave transfer, while the red (and green) were taken with a 34% transfer.

As one can see, the lower transfer fraction gives a higher scatter in atom number.

We took a series of measurements of an in situ cloud (data taken on May 28

2010) with varying probe power. We found optical pumping to be a factor of 3

more than the calculated value for the given intensity of light assuming isotropic

light polarization. We do not have an explanation for this. The corrected and

uncorrected plots are shown in figure C.4.

We also test our calibration, which was only based on imaging in situ data at

various probe intensities, against optically repumped images (figure C.5). On June

14 2010, we took several sets of images of identical clouds imaging certain clouds

in situ by PTAI and others in time-of-flight using optical repump. By taking the

sets in quick succession, we avoid long term drifts in atom number due to varying
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conditions of oven temperature or transfer fractions. The atom numbers determined

by the two methods were found to agree. The PTAI images had more shot to shot

fluctuations. This is presumed to be due to atoms in situ giving a smaller signal.

Checks taken closely in time agreed well. Those that were not taken closely in time

did not agree as well, presumably due to other systematic drifts of experimental

conditions during the time interval between the checks.

Figure C.5: Verifying the optical pumping calibration : We take a series of in situ partial

transfer images (red) and time-of-flight optically repumped images (green). We compare

shots taken under similar conditions (indicated on graph). The measured number of atoms

of images taken back to back by the two techniques agree very well, while those taken some

duration apart agree, but not as well.

C.4.c Measuring the scattering cross-section

The natural next step in imaging calibration is determining the scattering

cross-section. When imaging with a cycling transition, each atom absorbs several

photons, undergoing spontaneous decay during the process. Given the polarization

of light and the initial state of the atom, one can calculate the scattering cross-section

from the transition dipole moment and the appropriate Clebsch-Gordon coefficients.

However, when an atom undergoes spontaneous decay, one cannot predict which
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state it will decay to and so cannot determine in which state an atom is starting

from.

Certain special cases can be calculated (see Steck [156]).

• |F = 2, mF = ±2〉 → |F ′ = 3, mF = ±3〉 with σ± circularly polarized light,

magnetic sub-level cycling transition : In this case, spin selection rules specify

that the atom stays in the cycling transition, which keeps the initial state fixed

allowing one to calculate the scattering cross-section. For sodium, this value

is 1.657 × 10−13 m2 [156]. This transition uses the highest transition dipole

matrix element and so is the upper bound for the scattering cross-section.

• F = 2 → F ′ = 3 isotropic light polarization: In this case, the distribution

is averaged over all magnetic sublevels, and the scattering cross-section is

averaged over all the transition dipole matrix elements. For sodium, this

value is 0.7734× 10−13 m2 [156].

In our system, we use circularly polarized light. However, our bias field (∼1

G) is perpendicular to the direction of propagation of light and so our system does

not map on to either of the above mentioned cases. We expect our scattering cross-

section to be in-between the above mentioned values. To determine the exact value,

we use our observed atom-atom repulsion to independently determine the density

of atoms. Knowing the density, one can calculate the scattering cross-section from

the absorption of light going through the cloud.

C.5 Calibrating the mean field

At ultracold temperatures, the interaction between sodium atoms can be char-

acterized by a single parameter, the s-wave scattering length (see Tiesinga et al.

[101]):

a = 2.75nm (C.2)

Using mean field theory, in the TF regime, one can define a position dependent

mean field energy for a BEC. For a condensate of density n3D(r), where r is the
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position in space, the mean field energy, µ(r) is given by

µ(r) = gn3D(r), (C.3)

where g = 4π~2a/m. To know the shape of our atom cloud, given the trapping

potential and mean field interaction, we use the time-independent Gross-Pitaevskii

(GP) equation (see Dalfovo et al. [63]):

Eψ(r) = − ~
2

2m
∇2ψ(r) + Vext(r)ψ(r) + g|ψ(r)|2ψ(r) (C.4)

where ψ is the condensate wavefunction, E is the energy of the eigenstate and Vext

is the trapping potential. The GP equation is a non-linear Schrodinger equation.

The first term on the right is the kinetic energy, the second term is the potential

energy and the third term is the mean field energy. The lowest energy eigenstate of

the GP equation is the ground state.

The GP equation cannot in general be solved analytically. In the limit of low

interaction (g|ψ|4 ≪ ~
2

2m
|∇ψ|2 ), one gets the linear Schrodinger equation, which can

be solved exactly for a harmonic oscillator. In the limit of high interaction energy

(Thomas-Fermi approximation) compared to the kinetic energy, (g|ψ|4 ≫ ~2

2m
|∇ψ|2),

one gets a simple analytic solution:

n3D(r) = |ψ(r)|2 = 1

g
(µ0 − Vext(r)) , (C.5)

where µ0 is the energy per particle (or chemical potential of the system). The

Thomas-Fermi (TF) approximation breaks down at the edge of the condensate (µ0 =

Vext(r)), due to the sharp discontinuity in the derivative of the condensate density.

While this can be corrected for, its overall effect on the shape of the cloud away

from the edge and on the peak cloud density is usually negligible.

In this analysis, we use the Thomas-Fermi approximation. We perform various

cross-checks and discuss possible corrections to account for deviations from the TF

regime.

Our trap can be approximated as (see chapter 5)

V (r, z, θ) =
1

2
mω2

zz
2 +

1

2
mω2

r(r − r0)
2 (C.6)
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where ωz is the vertical trapping frequency and ωr is the annular trapping frequency.

We use cylindrical coordinates (r, z, θ). Using equation (C.5), we obtain the con-

densate density:

gn3D(r, z, θ) = µ0 −
(

1

2
mω2

zz
2 +

1

2
mω2

r(r − r0)
2

)

for µ0 > V (r, z, θ) (C.7)

= 0 everywhere else

The column density for such a profile would be (see equation (5.35) in chapter 5)

gn2D(r, θ) =
4
√
2

3
√

mω2
z

(µ0 −
mω2

r(r − r0)
2

2
)3/2 for (r − r0) < rTF (C.8)

= 0 everywhere else,

where rTF =
√

2µ0

mω2
r
. If one were to fit the above profile to a cloud and obtain rTF ,

one could determine the chemical potential µ0 as

µ0 =
1

2
mω2

rrTF . (C.9)

The peak column density can be related to the chemical potential (equation (5.36)

in chapter 5):

n2D(r = r0, θ) =
4
√
2µ

3/2
0

3
√

mω2
zg
. (C.10)

Rearranging this expression, one can obtain the chemical potential from the peak

column density:

µ0 =

(

9n2
2D,0mω

2
zg

2

32

)1/3

. (C.11)

Similarly, the number of atoms can also be related to the chemical potential

(equation (5.38) in chapter 5)

N = 2π2 r0µ
2
0

gmωzωr

. (C.12)

One can also obtain the chemical potential from the number of atoms:

µ0 =

√

gωzωrN

2π2r0
(C.13)

Equations (C.9), (C.11) and (C.13) provide 3 distinct (but not entirely inde-

pendent) ways of determining the chemical-potential. We can calibrate the scatter-

ing cross-section by comparing the chemical potential obtained from the 3 ways.

203



C.6 Using the chemical potential to calibrate Absorption Scattering

Cross-section

We fit the 3D-TF function to our in situ data. We assume a scattering cross-

section of 1.1×10−13 m2 to begin with and plot the chemical potential as a function

of the atom number obtained by the 3 methods (see figure C.6).
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Figure C.6: Comparing the uncorrected chemical potential obtained by different methods

: The blue/cyan points, red/magenta points and green/yellow points are based on the

number of atoms, the peak 2D column density and the TF width respectively. As the

blue/cyan points are a function of the number of atoms only, they are independent of

shape, and hence for a neat curve in the above plot. The cyan, yellow and magenta points

were taken with a 10 µs long probe pulse, while the blue, red and green points were taken

with a 15 µs long probe pulse. While the curves have a similar scaling with the number

of atoms, the µ0 based on the TF width is significantly higher.

There are two major correction factors for the TF width:

• Resolution: The TF width is convolved with our resolution point spread func-

tion. To first order, one can correct it by subtracting the square of the point

spread function width from the square of the TF width.
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rcorr =
√

r2TF − p2, (C.14)

where p is the resolution point spread function width. We apply a best guess

correction using a point spread function width of 4 µm full width at half

maximum.

• Smearing due to motion while imaging: During the imaging process, atoms

scatter photons and undergo recoil. The motion of the atoms due to this addi-

tional energy (or momentum) causes the BEC to expand during the imaging

pulse making it appear larger than the true in situ size. Assuming that the

atoms scatter photons at a constant rate, the root-mean-square velocity goes

as vrms ∝ √
τ , and the BEC size increases as δr proptoτ 3/2. On close anal-

ysis of images taken with a 10 µs imaging pulse and a 15 µs imaging pulse

respectively, we find that the 15 µs images are 5% wider. We apply a small

correction of a 10% smear for the 15 µs pulses and a 5% smear for the 10 µs

pulses. To conserve number, we correct the 2D peak density correspondingly.

We plot the comparisons of the chemical potential with the above corrections

applied (see figure C.7). The corrections led to a better agreement between the

methods. We assume that the remaining disagreement is largely due to our incorrect

guess for the scattering cross-section. We set σ0 = 0.91×10−13 m2, chosen by hand to

minimize the disagreement in the calculation of the between the different methods,

and replot the chemical potential calibration (see figure C.8). As one can see, all

the methods agree closely. We attribute the remaining disagreement to the TF

assumption and the uncertainty in some of our prior calibrations.

C.7 Calibrating the effect of the barrier

Having calibrated the scattering cross-section and the chemical potential, we

can now go ahead to determine the effect of the barrier beam power on the density

depletion at the location of the barrier. Taking an in situ image of the BEC with the
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Figure C.7: Comparing the chemical potential obtained by different methods after cor-

recting for resolution and smearing: The blue/cyan points, red/magenta points and

green/yellow points are based on the number of atoms, the peak 2D column density and

the TF width respectively. The cyan, yellow and magenta points were taken with a 10 µs

long probe pulse, while the blue, red and green points were taken with a 15 µs long probe

pulse.

barrier beam turned on is a direct measurement of the effect of the barrier. While

one could, in principle, obtain the same from calculating the optical potential, given

the dimensions of the beam, such a calculation is indirect and is highly dependent

on our precise understanding of the beam propagation through the focusing optics.

We start with a partial transfer image of the cloud (inset of figure C.9).

In the first round of calculations, I will ignore the effects due to the limited

resolution of the imaging system. I will assume that the height of the barrier in-

creases linearly with optical power in the beam. The calculation also assumes a

local density mean field dominated (TF) approach, where the barrier height Vb is

given by

Vb = µ0 − µb, (C.15)

where µ0 is the chemical potential of the system and µb is the mean field at the
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Figure C.8: Comparing the chemical potential obtained by different methods after the

necessary corrections and calibrations: A different scattering cross-section was used. The

blue/cyan points, red/magenta points and green/yellow points are based on the number

of atoms, the peak 2D column density and the TF width respectively. The cyan, yellow

and magenta points were taken with a 10 µs long probe pulse, while the blue, red and

green points were taken with a 15 µs long probe pulse.

location of the barrier. While there are multiple ways of obtaining the chemical

potential, I use the number of atoms (from equation (C.13)), since it is independent

of imaging artifacts. While the expression assumes a uniform ring without a barrier,

the effect of the barrier in decreasing the ring volume was found to be less than 4%,

which is smaller than other uncertainties.

To obtain the local mean field at the location of the barrier, I perform 2D

sectional fits to the column density of the BEC, assuming a ring 3D TF profile

(equation (5.35)), to obtain the peak column density as a function of the azimuthal

coordinate. By oversampling the azimuthal coordinate (256 overlapping sections of

size 0.025 radians each), I can accurately obtain the density dip due to the effect of

the barrier (figure C.9). While the fit to the radial width was found to be fluctuating

(∼ 20 %) due to the small number of sample points, the height of the fit was more
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Figure C.9: Azimuthal mean field profile of cloud: By taking the difference between the

chemical potential and the local mean field of the cloud at the barrier, the height of the

barrier can be calculated. In this image, N = 230 × 103, µ0 = 1100 Hz, µb = 570 Hz,

giving a barrier height, Vb = 530 Hz. The barrier beam power was 74 µW. The inset

shows the partial transfer image of the cloud, with the location of the barrier indicated

by the gray arrow.

consistent. The height of the fit was also found to be independent of the fitting

potential (2D or 3D TF fits).

For simplicity, I assumed a simple 3D TF profile in calculating the local mean

field from the peak column density (expression in equation (C.11)). For regions

close to the barrier where the 3D TF profile is clearly not valid (µb < ~ωz), I used

the expression for the annular TF profile (from equation (5.31)), giving

µb =
gn2D,0

√

π~/mωz

. (C.16)

For the range of barrier heights and chemical potentials probed, the difference be-

tween the 3D TF and the radial TF fitting functions did not change the local mean

field appreciably.

In figure C.9, an azimuthal mean field profile used to obtain a sample cali-

bration data point of the barrier height is shown. Taking several such images, one
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can obtain a calibration for the effect of the barrier. We took several calibration

images of varying atom number and barrier height (see figure C.10). For a typical

barrier beam power, taking around 10 data points, the barrier height was found to

have a standard deviation of around 30-50 Hz giving a standard deviation of the

mean of around 10-15 Hz. The spread in points is believed to be due to shot-to-shot

fluctuations in the trap potential and noise in the imaging process.

The in situ data also yielded some other interesting facts, which I am going

to mention but not get too deep into.

1. Astigmatism in the ring trapping beam causes a sinusoidal (quadrupole) az-

imuthal variation of the trap (see figure 5.9c upper curve) of amplitude 100

Hz.

2. There is an overall tilt in the potential of the order of 50-100 Hz in the direction

of propagation of the sheet beam, that varies from shot to shot. This is seen in

figure C.10, in the variation of the barrier height at a fixed barrier beam power.

This variation is comparable to the width of the critical region in measuring

the critical chemical potential in section 7.4. Had the potential fluctuated less,

it is possible that the width of the sigmoidal fit in figure 7.10 would have been

smaller.

In figure C.10, I have fit a straight line to the measured barrier height vs beam

power. The line had a slope of 6.4 ± 0.7 Hz/µW. Using this calibration, given an

atom number and applied barrier beam power, one can obtain the local mean field

at the barrier region. The alert reader may have noticed that the line has a non-

zero intercept. This intercept arises from the azimuthal variation of the trapping

potential that was ignored in the calculation of µ0. The intercept is the height of

the potential at the barrier region (in the absence of the barrier beam) with respect

to the average potential zero around the annulus.
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Figure C.10: Calibration of barrier beam: By plotting the depletion in the condensate

mean field (Vb = µ0 − µb) at the location of the barrier as a function of the barrier beam

power, we obtain a linear calibration (red line) for the effect of the barrier, having a slope

of 6.4 Hz/µW.
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[53] P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, and W. D. Phillips. Ob-
servation of a 2d bose gas: From thermal to quasicondensate to superfluid.
Physical Review Letters, 102(17):170401, 2009.

[54] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,
K. Helmerson, W. D. Phillips, and G. K. Campbell. Superflow in a toroidal
Bose-Einstein condensate: an atom circuit with a tunable weak link. Phys.
Rev. Lett., 106(13):130401, 2011.

[55] A. Ramanathan, S. Muniz, K. Wright, W. D. Phillips, K. Helmerson, and
G. Campbell. Partial transfer absorption imaging of ultracold atomic gases.
“Partial Transfer Absorption Imaging of ultracold atomic gases”, In prepara-
tion.

[56] L. D. Landau and E. M. Lifshitz. Statistical Physics: Course of Theoretical
Physics, Vol. 5. Pergamon, 1980.

[57] J. G. Daunt and R. S. Smith. The problem of liquid helium—some recent
aspects. Reviews of Modern Physics, 26(2):172–236, 1954.

[58] I. M. Khalatnikov. An introduction to the theory of superfluidity. Westview
Press, 2000.

[59] D. R. Tilley and J. Tilley. Superfluidity and superconductivity. CRC Pr I Llc,
1990.

[60] L. P. Pitaevskii and S. Stringari. Bose-Einstein Condensation. Oxford Uni-
versity Press, USA, 2003. ISBN 0198507194.

214



[61] E. A. Cornell, J. R. Ensher, and C. E. Wieman. Experiments in dilute atomic
Bose-Einstein condensation. Arxiv preprint cond-mat/9903109, 1999.

[62] D. M. Stamper-Kurn. Peeking and Poking at a new quantum fluid : Studies of
gaseous Bose-Einstein condensates in magnetic and optical traps. PhD thesis,
Massachusetts Institute of Technology, 2000.

[63] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-
Einstein condensation in trapped gases. Reviews of Modern Physics, 71(3):
463–512, 1999.

[64] Vanderlei Bagnato, David E. Pritchard, and Daniel Kleppner. Bose-einstein
condensation in an external potential. Physical Review A, 35(10):4354–4358,
1987.

[65] C. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cam-
bridge Univ Pr, 2002.

[66] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne. Experiments and theory
in cold and ultracold collisions. Reviews of Modern Physics, 71(1):1–85, 1999.

[67] P. G. Gennes. Superconductivity of Metals and Alloys. Advanced Book Pro-
gram, Perseus Books, 1966.

[68] E. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento
(1955-1965), 20:454–477, 1961.

[69] E. P. Gross. Hydrodynamics of a superfluid condensate. Journal of Mathe-
matical Physics, 4:195, 1963.

[70] L. P. Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Physics JETP,
13(2):451–454, 1961.

[71] J. J. Sakurai. Modern Quantum Mechanics, revised edition. Addison Wesley,
1993.

[72] L. H. Thomas. The calculation of atomic fields. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 23, pages 542–548. Cambridge
University Press, 1927.

[73] E. Fermi. Un metodo statistico per la determinazione di alcune priorieta
dell’atome. Rend. Accad. Naz. Lincei, 6(602-607):32, 1927.

[74] W. I. Glaberson and R. J. Donnelly. Structure, Distributions and Dynamics of
Vortices in Helium II*. Progress in Low Temperature Physics, 9:1–142, 1986.

[75] H. Lamb. Hydrodynamics. Cambridge Univ Pr, 1932.

[76] V. P. Peshkov. Critical Velocities and Vortices in Superfluid Helium. Progress
in Low Temperature Physics, 4:1–32, 1964.

215



[77] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L.
Rolston, and W. D. Phillips. Coherent splitting of bose-einstein condensed
atoms with optically induced bragg diffraction. Physical Review Letters, 82
(5):871–875, 1999.

[78] M. O. Scully and M. S. Zubairy. Quantum optics. Cambridge University Press.

[79] H. J. Metcalf and P. van der Straten. Laser cooling and trapping of neutral
atoms. Wiley Online Library.

[80] D. A. Steck. Quantum and atom optics, available online at.
http://atomoptics.uoregon.edu/d̃steck/teaching/quantum-optics, 2007.

[81] V. Weisskopf and E. Wigner. Berechnung der natürlichen Linienbreite auf
Grund der Diracschen Lichttheorie. Zeitschrift für Physik A Hadrons and
Nuclei, 63(1):54–73, 1930.

[82] P. W. Milonni and M. L. Shih. Zero-point energy in early quantum theory.
American Journal of Physics, 59:684, 1991.

[83] R. K. Shankar and K. P. Sinha. Photon-Induced Electron Pairing. Physical
Review B, 7:4291–4293, 1973.

[84] J. D. Jackson. Classical Electrodynamics John Wiley & Sons. Inc., New York,
1962.
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Kevrekidis, and D. S. Hall. Nonequilibrium dynamics and superfluid ring
excitations in binary bose-einstein condensates. Physical Review Letters, 99
(19):190402, 2007.

[151] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall.
Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-
Einstein Condensate. Science, 329(5996):1182–1185, 2010.

[152] M. Gehm. Properties of Lithium. 2003.

[153] C. J. Sansonetti, B. Richou, R. Engleman Jr, and L. J. Radziemski. Mea-
surements of the resonance lines of 6Li and 7Li by Doppler-free frequency-
modulation spectroscopy. Physical Review A, 52(4):2682–2688, 1995.

[154] T. G. Tiecke. Properties of Potassium. 2010.

[155] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and
B. P. Anderson. Spontaneous vortices in the formation of Bose–Einstein con-
densates. Nature, 455(7215):948–951, 2008.

[156] D. A. Steck. Sodium D line data. Report, Los Alamos National Laboratory,
Los Alamos, 2000.

[157] L. D. Turner. Holographic Imaging of Cold Atoms. PhD thesis, University of
Melbourne, School of Physics, 2004.

[158] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell. Vortex
precession in Bose-Einstein condensates: Observations with filled and empty
cores. Physical Review Letters, 85(14):2857–2860, 2000.

[159] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard. Optics and interferom-
etry with atoms and molecules. Reviews of Modern Physics, 81(3):1051–1129,
2009.

221



[160] A. Peters, K. Y. Chung, and S. Chu. High-precision gravity measurements
using atom interferometry. Metrologia, 38:25, 2001.

[161] D. S. Weiss, B. C. Young, and S. Chu. Precision measurement of the photon
recoil of an atom using atomic interferometry. Physical Review Letters, 70
(18):2706–2709, 1993.

[162] D. S. Weiss, B. C. Young, and S. Chu. Precision measurement of ~/m Cs
based on photon recoil using laser-cooled atoms and atomic interferometry.
Applied Physics B: Lasers and Optics, 59(3):217–256, 1994.

[163] A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu. A preliminary measurement
of the fine structure constant based on atom interferometry. Physica Scripta,
2002:82, 2002.
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L. Julien, and F. Biraben. Determination of the fine structure constant based
on bloch oscillations of ultracold atoms in a vertical optical lattice. Physical
Review Letters, 96(3):33001, 2006.

[166] J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich. Atom in-
terferometer measurement of the Newtonian constant of gravity. Science, 315
(5808):74, 2007.

[167] A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. De Angelis, M. Fattori, T. Pe-
telski, A. Peters, M. Prevedelli, J. Stuhler, and G. M. Tino. Atom interferom-
etry gravity-gradiometer for the determination of the Newtonian gravitational
constant G. The European Physical Journal D-Atomic, Molecular, Optical and
Plasma Physics, 40(2):271–279, 2006.

[168] G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino.
Determination of the Newtonian gravitational constant using atom interfer-
ometry. Physical Review Letters, 100(5):50801, 2008.

[169] M. G. Sagnac and M. E. Bouty. “l’éther lumineux démontré par l’effet du
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