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 An ensemble of regional chemical modeling (WRF/Chem with RADM2) 

simulations, satellite, ozonesonde, and surface observations during July 7-11, 2007 

was used to examine the horizontal and vertical signature of one of the worst smog 

events in the eastern U.S. in the past decade.  The general features of this event – a 

broad area of high pressure, weak winds and heavy pollution, terminated by the 

passage of a cold front – were well simulated by the model.  Average 8-hr maximum 

O3 has a mean (±σ) bias of 0.59 (± 11.0) ppbv and a root mean square error of 11.0 

ppbv.  WRF/Chem performed the best on poor air quality days, simulating correctly 



  

the spatial pattern of surface O3.  Yet the model underpredicted O3 maxima by 5-7 

ppbv in the Northeast and overpredicted by 8-11 ppbv in the Southeast.  High O3 

biases in the Southeast are explained by overpredicted temperatures in the model 

(>1.5°C).  Sensitivity simulations with 1) accelerated O3 dry deposition velocity and 

2) suppressed multiphase nitric acid formation pushed the model closer to 

observations.  Simulated O3 vertical profiles over Beltsville, MD showed good 

agreement with ozonesonde measurements, but the modeled boundary layer depth 

was overpredicted on July 9, contributing to the low bias over this region.   

 During this severe smog episode, space-borne TES detected high total 

tropospheric column ozone (TCO) over the Western Atlantic Ocean off the coast near 

North and South Carolina.  The standard product (OMI/MLS) missed the magnitude 

of these local maxima, but the level-2 ozone profile (OMI) confirmed the TES 

observations.  HYSPLIT back trajectories from these O3 maxima intersected regions 

of strong convection over the Southeast and Great Lakes regions.  When lightning 

NO emissions were implemented in WRF/Chem, the high concentrations of NOx and 

O3 off the coast were well reproduced, showing that the exported O3 was produced by 

a combination of natural NO and pollutants lofted from the lower atmosphere.  

Lastly, WINTER MONEX O3 data from 1978 are presented for the first time here in 

discussion of open cell convection over Indonesia. 
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Chapter 1  Introduction 
 

Pollution from anthropogenic activities is an important issue due to its effects on 

regional and global air quality and climate.  The high-density urban corridor 

stretching from Washington, D.C. to Boston in the northeast U.S. frequently 

experiences summertime smog events, which have detrimental health effects on 

young children, elderly, and people with respiratory problems.  In the U.S. 

approximately 4,000 premature deaths per year occur due to elevated O3 

concentrations during smog events [Bell et al., 2004].  An estimated 1.8-3.1 years of 

life per person are lost due to exposure to particulate matter in the most polluted U.S. 

cities [Pope et al., 2000].  

The Mid-Atlantic region faces unhealthy levels of ozone several times each 

summer. The July 7-11, 2007 episode was the worst air quality event recorded in the 

Mid-Atlantic region in the past decade in which 8 hour maximum ozone mixing ratios 

in northeastern Maryland reached 125 ppbv (Figure 1.1).  Such high O3 8-hr maxima 

are the first to occur in Maryland since the NOx State Implementation Plan (SIP) Call, 

which became effective in 2003 and mandated substantial power plant NOx emission 

reduction in 22 eastern states [Frost et al., 2006].  Occurrence of thunderstorms at the 

end of this smog event creates the potential for this regional pollution event to be 

exported from North America and contribute to hemispheric pollution.     

In the Mid-Atlantic region poor air quality events generally occur during the 

months of May-October under favorable meteorological conditions of high-pressure 

synoptic systems: high temperatures, clear skies, weak winds, and stagnation [Ryan et 

al., 2000].  Local vehicle emissions of O3 precursors, NO and NO2 (NOx) and volatile 
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organic compounds (VOCs) and transport of power plant generated NOx from the 

Ohio River Valley contribute to O3 production.   

Maryland's Top 10 Poor Air Quality Days (Apr-Oct, 1997-2007)
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Figure 1.1 Ranking of Maryland’s top poor air quality days since 1997. 

 
Regional air pollution in the eastern U.S. has been extensively studied using 

ground based [e.g. Diem et al., 2009; Mao et al., 2010] and aircraft observations [e.g. 

Taubman et al., 2006; Mena-Carrasco et al., 2007] as well as regional chemical 

models [e.g. Zhang et al., 2006; Yu et al., 2007; Castellanos et al., 2010].  Satellite 

remote sensing of tropospheric O3, NO2, CO, HCHO and aerosols is becoming an 

essential resource for studying urban pollution [e.g. Al-Saadi et al., 2005; Martin et 

al., 2008; Molina et al., 2007; Fishman et al., 2008; Kar et al., 2010; Eremenko et al., 

2008]. 

The objectives of the work presented in this dissertation are to:  
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1. Use a regional chemical transport model (WRF/Chem) to simulate a 

severe smog event of July 7-11, 2007. 

2. Measure model performance against surface and ozonesonde 

measurements across the eastern U.S. 

3. Perform a lightning sensitivity simulation to determine the impact of 

lightning-induced O3 on surface and tropospheric column O3.  

4. Compare the updated simulation with the Aura satellite O3, NO2, and 

CO products to draw conclusions about the ability of satellites to 

retrieve pollutant enhanced profiles associated with the July 2007 

smog event. 

This works consists of 6 chapters. The next background chapter describes 

meteorological conditions and chemical reactions conducive to smog formation, as 

well as previous results on modeling and satellite sounding of regional air quality. 

Chapter 3 discusses the July 2007 smog event, the base WRF/Chem simulation and 

compares the model with surface measurements.  Chapter 4 presents the WRF/Chem 

lightning sensitivity study and comparison with satellite products.  Chapter 5 presents 

a historic ozone data set from the Winter Monsoon Experiment (WMONEX) 

1978/1979 over the South China Sea and discusses these observations in the context 

of open cell convection.  Conclusions and discussion are found in Chapter 6.  
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Chapter 2 Background 
 
A severe smog episode arises during certain photochemical and synoptic conditions. 

Analysis of air pollution is facilitated through the use of regional models and satellite 

observations.  This chapter outlines the basic concepts of the above topics.   

2.1 Tropospheric Photochemistry 

2.1.1 Ozone 
 

Tropospheric ozone formation is driven by oxides of nitrogen (NOx = NO + NO2), 

carbon monoxide (CO) and volatile organic compounds (VOC).  Major NOx sources 

are high-temperature combustion of fossil fuels, microbial processes in soils, 

lightning, and biomass burning [IPCC, 2007].  Concentrations of O3 and NOx depend 

on the photostationary state [e.g. Kelly et al., 1980]:    

 ( )2NO      430 nm   NO  O   hv λ+ < → +  (1) 

  
 2 3O O M O M+ + → +  (2) 

   
 3 2 2NO O NO O+ → +  (3) 

   
where hν is a photon and M is a third body molecule ( i.e. N2 or O2)  needed to 

stabilize ozone.  This sequence of reactions results in a steady state, neither producing 

nor destroying O3, NO, and NO2. 

Photochemical O3 production is possible if NO is converted to NO2 without 

simultaneous destruction of O3.  Reaction of hydroxyl radical (OH) and organic 

hydrocarbons, such as carbon monoxide (CO) removes NO:  

 2CO OH CO H+ → +  (4) 
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 2 2H O M HO M+ + → +  (5) 

 2 2HO NO NO OH+ → +  (6) 

 
Next, NO2 can photolyze and produce O3 via reactions (1) and (2).   

During the night ozone can react with NO2 to form dinitrogen pentoxide (N2O5) 

reservoir species. 

 3 2 3 2O NO NO O+ → +  (7) 

 3 2 2 5NO NO N O+ →  (8) 

In the presence of aqueous aerosols, nitric acid is formed. 

 2 5 2 3( ) 2 ( )N O H O aq HNO aq+ →  (9) 
 

2.1.2 OH and Reactive Nitrogen Species Chemistry  
 
OH is a major oxidant in the atmosphere; it acts as the first step in the removal of 

many pollutants, such as CO, NO2, and methane (CH4).  The major source of OH is 

the photolysis of O3 in the presence of water vapor [Seinfield and Pandis, 1998]. 

 
1

3 2 ( )O hv O O D+ → +  (10) 

 1
2( ) 2O D H O OH+ →  (11) 

 

The first step in the reaction with VOCs (Figure 2.1) is the removal of hydrogen atom 

from an alkane (RH) forming water and alkyl radical (R).  R represents an organic 

compound CiHj, where i and j are integers. 

 2OH RH H O R+ → + ⋅  (12) 

Alkyl radical readily reacts with oxygen forming an alkylperoxy radical (RO2). 
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 2 2R O M RO M⋅ + + → +  (13) 

 2 2RO NO RO NO+ → +  (14) 

Alkylperoxy radical reacts with NO to produce NO2, which can contribute to ozone 

productions via reactions (1) and (2).  

 

Figure 2.1 Photochemical O3 production from VOCs and NOx species. 

 

Alternatively, alkyl nitrates (RONO2) form.  

 2 2RO NO M RONO M+ + → +  (15) 

Formation of alkyl nitrates is an additional mechanism for transporting reactive 

nitrogen to higher altitudes.  Aloft, photolysis of RONO2 to NO2 and alkoxy radical 

(RO) follows.  

 2 2RONO hv NO RO+ → +  (16) 

RH OH 

RO NO RO2 

O2 

R 

H2O 

NO2 O3 

RONO2 
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Next, photochemical production of ozone via reactions (1) and (2) contributes to 

background ozone concentrations in the remote troposphere.   

 NOx is removed from the atmosphere by oxidation to nitric acid (HNO3).    

 2 3NO OH M HNO M+ + → +  (17) 

which is removed by heterogeneous deposition.  NOx has a lifetime of hours to few 

days [Seinfeld and Pandis, 1998].  

Total reactive nitrogen oxides (NOy) is the sum of NOx and its oxidation 

products, HNO3, the nitrate radical (NO3), peroxyacetyl nitrate (PAN), N2O5, 

peroxynitric acid (HNO4), nitrous acid (HONO), RONO2, and peroxyalkyl nitrates 

(ROONO2).  According to EPA major sources of NOx in the U.S. include 

transportation (on-road vehicles 36%, off-road 23 %) and fossil fuel use (electricity 

generation 21%, fuel combustion 13 %, industrial processes 6 %) [EPA, 2005].  

2.1.3 NOx-VOC dependency 
 
 Efficiency of tropospheric ozone production has a non-linear dependence on 

the ratio of VOC to NOx in the lower troposphere.  Relationship between peak NOx 

and VOC availability and O3 production is illustrated by an isopleth plot (Figure 2.2) 

generated by Empirical Kinetic Modeling Approach [Finlayson-Pitts and Pitts, 

1993].  Peak ozone is plotted as a function of VOC and NOx mixing ratios.  The 

eight-to-one line separates the plot into two theoretical regions: urban (or VOC 

limited) on the left and rural (or NOx limited) on the right.  In the theoretical urban 

region NOx emissions from fuel combustion in motor vehicles and industrial 

processes are large. In theoretical rural regions, concentrations of biogenic VOCs are 
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greater than NOx emissions.  VOC to NOx ratio of approximately 8:1 is a reference 

point for determining the shift in sensitivity of an air mass to precursor levels and 

possible benefits of NOx vs. VOC controls. Establishing relative position of a specific 

region’s VOC to NOx ratio on the isopleths plot is the first step in implementation of 

an air quality control program.  The goal is to move perpendicular towards lower 

isopleths lines to reduce O3 peak concentration.   

 
Figure 2.2 Non-linear dependence of tropospheric O3 production on NOx and VOC availability.  
Adapted from [Finlayson-Pitts and Pitts, 1993]. 

2.1.4 CO 
 
 CO is an excellent tracer for long-range transport because it is sparingly 

soluble in water, easily detected, measured with high precision and good temporal 

resolution, and has a distinct profile in the troposphere.  CO is produced primarily by 
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ground sources and destroyed throughout the troposphere, so its abundance decreases 

with altitude.  It is a product of incomplete combustion, with sources such as vehicles, 

biofuels, and biomass burning. Thus CO is a good proxy for pollution from urban, 

industrialized areas and biomass burning.  CO has a lifetime of a few months, long 

enough for tracking pollution plumes on synoptic and intercontinental scales, but 

short enough to provide pollution enhancements in plumes relative to background.  

Vertical flux of CO can be used as a tracer of pollutant outflow from source regions.  

 

2.2 Meteorology and Transport of Pollution 

2.2.1 High Pressure System 
 
 Air quality in the Mid-Atlantic region strongly depends on regional weather 

patterns.  An episode of high ozone can occur when a high pressure weather system 

sets just west of the Appalachian Mountains.  High pressure systems are characterized 

by clear sky, hot, humid conditions.  Cloudless skies transmit more ultraviolet 

radiation and high temperatures accelerate smog photochemistry at the surface. Large 

scale subsidence associated with high pressure contributes to atmospheric stability 

and low surface winds. Clockwise circulation around the high pressure pushes air 

from the industrialized Mid-West and the Ohio River Valley into the Mid-Atlantic 

region.  Strongest Mid-Atlantic pollution episodes occur when the Bermuda High 

pressure system combines with the existing high pressure over the eastern U.S 

(Figure 2.3).  Hot, humid air from the Gulf of Mexico moves clockwise around the 

Bermuda High into the Mid-Atlantic.  
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Figure 2.3 A semi-permanent area of high pressure forms over the Atlantic Ocean during the 
summer.  The clockwise circulation around the high pressure brings southwesterly winds to the 
East.  Adapted from Guide to Mid-Atlantic air quality [Stehr, 2005].  

2.2.2 Diurnal Cycle 
 
 The Planetary Boundary layer (PBL) or mixing layer has a diurnal cycle 

following the cycle of solar heating at daytime and cooling at nighttime at the surface.  

Following sunrise, the mixing layer grows rapidly to a maximum depth of 1.5-2.5 km 

by mid-afternoon.  By sunset, the mixing height is reduced to less than 500 m and a 

stably-stratified layer develops near the surface, extending upward to about 200 m 

[Rao et al., 2003].  Mixing layer diurnal cycle contributes to diurnal cycle of surface 

pollutants, such as O3.  At nighttime pollutants are trapped in the shallow mixed layer 

below a nocturnal inversion.  O3 and NO2 are removed via equations 7-9 and 

subsequent deposition of nitric acid.  A residual layer forms between a nocturnal 

inversion and subsidence inversion associated with the high pressure system. The 

residual layer serves as a reservoir of photochemically aged species and also entrains 
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pollution from upwind sources transported by the low level jet, discussed below.  In 

the morning the ground warms, breaking the nocturnal inversion. Clean air in the 

PBL and polluted air in the residual layer rapidly mix (Figure 2.4), contributing to an 

O3 maximum in the early morning.  Subsequently, the daytime mixing layer 

accumulates local and regionally transported emissions [e.g., Ryan et al., 1998]. 

 

Figure 2.4 Daily cycle of inversions and mixing. Low O3 concentrations (denoted in yellow) below 
nocturnal inversion are isolated from polluted air below the subsidence inversion (in dark red).  
As nocturnal inversion is destroyed in the morning hours, there is mixing of the two layers and 
surface O3 concentrations surge (orange). Adapted from Regional Air Quality Guide [Stehr, 
2005]. 

2.2.3 Low Level Jet and Appalachian Leeside Trough 
 

Smaller scale systems, the nocturnal low level jet (LLJ) and Appalachian Leeside 

Trough (ALT), also affect regional air quality.  The LLJ forms above the nocturnal 

inversion in the warm sector of a midlatitude cyclone caused by large temperature 

gradients spanning from behind the cold front to the warm sector.  At nighttime the 

LLJ is strengthened by cooling of high elevation air in the Appalachian Mountains 
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relative to air at the same geopotential height along the east coast [Holton, 1967].  

The LLJ is a south-westerly flow of 10-20 m/s observed between 300-1000 m lasting 

from approximately midnight to 6 am LST.  This system is capable of moving 

pollutants from the southeast U.S. approximately 300 km into the Washington-

Baltimore urban region.   

The ALT forms on the leeward side of the Appalachian Mountains, as an air mass 

blows over the mountains, compresses, and warms adiabatically.  Additional 

buoyancy makes the air rise creating a mesoscale region of low pressure at the 

surface.  To conserve absolute vorticity, the winds blowing from the west, turn 

counter-clockwise across the trough and blow from the southwest along the east 

coast.  Transport of pollutants from the Midwest and Southeast U.S via the LLJ and 

ALT is important during stagnant smoggy conditions [Gaza, 1997].    

2.2.4 Continental Pollution Outflow  
 
 The local chemical budget of O3 in the lower troposphere depends directly on 

vertical transport of O3 from the pollution source or indirectly on transport of 

chemical precursors.  In the PBL pollutants are short-lived, if they are transported to 

the upper troposphere their atmospheric residence times increase.  For instance, in the 

marine boundary layer ozone photochemical lifetime is about a week, increasing with 

height to 1 month at 6 km and 1 year at 10 km [Kley et al., 1996].  Therefore, the 

lifetime of lower tropospheric ozone is enhanced by upward convective transport.  On 

the other hand, the lifetime of upper tropospheric ozone decreases as it is transported 

to the lower troposphere where it is more efficiently destroyed [Lelieveld and 
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Crutzen, 1994].  Similarly residence times for nitrogen and sulfur compounds are 

shortest in the PBL, where they are destroyed by surface deposition.  

   Pollution transport from source regions occurs either in the planetary 

boundary layer (PBL) or in the free troposphere (FT). Pollutants travel farther at 

higher altitudes due to stronger upper level winds.  In the PBL wind speeds are 

reduced by friction with the earth’s surface.  In addition, a temperature inversion 

often isolates air in the PBL and limits its mixing with the rest of the troposphere.   

 Vertical transport of pollutants can be represented by eddy diffusion: mixing 

due to turbulent motions; species gradually move from regions of high concentration 

to low to reduce the gradient.  If this were the sole vertical mixing method, molecules 

from the earth’s surface would slowly mix to 10 km in a few months.  More efficient 

transport paths exist, for instance in thunderstorms this transport time is reduced to 

hours.  The main mechanisms responsible for lifting surface emissions into the 

middle and upper troposphere are deep convection, fronts and orographic forcing, 

followed by irreversible mixing.  These mechanisms act at different spatial and 

temporal scales: cloud scale and several hours for deep convection, synoptic scale and 

several days for fronts.  

2.2.4.1 Deep Convection and Lightning NOx  

 Deep convection is an important mechanism for tropospheric air transport.  

Rapid convective updrafts redistribute trace gases within the troposphere [Chatfield 

and Crutzen, 1984; Dickerson, et al., 1987].  NO from lifted pollution or lightning 

(LNOx) can produce O3.   The formation of NO following a lightning flash can be 

described by the following Zeldovich mechanism: 
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O2 2 O                                                            (18) 

  O+N2  NO + N                                           (19)  

N + O2   NO + O                                           (20) 

N + OH  NO +H                                            (21) 

 
This sequence of reactions can only occur at very high temperatures.  The magnitude 

of NOx production from lightning is believed to be 5±3 Tg yr-1  [Schumann and 

Huntrieser, 2007].  Uncertainties exist in the amount of NOx produced per flash, 

average flash length and global distribution of flash rates making approximation of 

LNOx very difficult [Price et al., 1997].  Recent studies [e.g. DeCaria et al., 2005; 

Cooper et al., 2006; Hudman et al., 2007; Ott et al., 2010; Allen et al., 2010] used 

NOx production per flash of 460-500 moles NO per flash for modeling analyses of 

midlatitude convective storms. 

2.2.4.2 Fronts and the Warm Conveyor Belt 
 

 Frontal systems play an important role in the vertical redistribution of 

pollutants. In general, high winds associated with the passage of cold fronts clean the 

boundary layer and contribute to vertical mixing, thus decreasing surface 

concentrations. Frontal lifting of pollution over the Mid-Atlantic ahead of eastward 

moving cold fronts, followed by eastward transport in the lower FT, is the principal 



 

 15 
 

process responsible for export of anthropogenic pollution from U.S.  

 

Figure 2.5. Diagram of relative isentropic flow in a midlatitude cyclone. Adapted from 
[Browning, 1990]. 
 
Ahead of cold fronts, vertical transport of PBL pollution to the FT occurs within the 

main ascending branch of an extratropical cyclone, i.e. the warm conveyor belt 

[Cooper et al., 2004].  A Warm Conveyor Belt (WCB) is defined as rising streams of 

warm and humid air along lines of constant entropy ahead of the cold front.  WCB 

begins in the PBL equatorward of the cyclone, travels along and ahead of the cold 

front, ascending and turning anticyclonically ahead of a warm front, if present (Figure 

2.5).   

 For tracing air motion within WCB flow (for both dry and moist adiabatic 

processes)  the wet bulb potential temperature ( wθ ) is a conserved property [Harrold, 

1973] wθ  is attained when a parcel is brought down to 1000 mb from its lifting 

condensation level along a pseudoadiabat.  Bethan et al. [1998] showed that ozone 

was lifted from the PBL to the FT by a warm conveyor belt during the development 

of a baroclinic wave in the North Atlantic.  The authors concluded that while 
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conveyor belts exhibit well-defined chemical signatures, several chemical tracers 

(such as O3, CO, NOy) and meteorological tracers (i.e. wθ , RH) must be measured to 

identify air mass differences.  Similarly, Western Europe frequently receives outflow 

from North America brought over by WCB [Stohl, 2001].  Associated with outflow 

ahead of the front in the FT is the PBL continental outflow behind the front, usually 

capped at about 2 km altitude by strong subsidence [Liu et al., 2003].  This plume 

does not travel far, fanning out over the region as the front dissipates.    

 
Figure 2.6. Vertical cross section of WCB. SCF – surface cold front, SWF – surface warm front. 
Clean WCB over the ocean splits pollution plume in the FT.  Adapted from [Mari et al., 2004]. 

 

2.3 Regional Chemical Transport Modeling  
 
 Regional air pollution in the eastern U.S. has been extensively studied using 

numerical prediction models [e.g. Ryan et al., 2000,. Zhang et al., 2006; Yu et al., 

2007; Castellanos et al., 2010].  In this dissertation the Weather Research and 

Forecasting (WRF) model with online Chemistry (WRF/Chem) and the Community 

Multiscale Air Quality (CMAQ) regional models will be used to analyze air quality.   
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 WRF/Chem provides the capability to simulate chemistry and aerosols from 

cloud scales to regional scales. WRF/Chem has been developed by NOAA with 

contributions from NCAR, PNNL, EPA, and university scientists.  This numerical 

model system is ‘‘online’’ in the sense that it simulates trace gases and aerosols 

simultaneously with meteorological fields in the WRF framework, allowing for 

feedback between meteorology and chemistry at each time step.  Transport of species 

is done using the same vertical and horizontal coordinates as the meteorological 

parameters (such as winds) with no spatial interpolation, and with the same physics 

parameterization with no temporal interpolation.  Moreover, online calculation of 

photolysis frequencies is preferred, because absorption cross-sections of O3 are 

temperature dependent and aerosol extinction is humidity dependent.  WRF/Chem is 

an extension of MM5/Chem regional-scale chemical transport model [Grell et al., 

2000] to version 3 of the nonhydrostatic WRF community model.  

 CMAQ modeling system was designed to support a wide variety of modeling 

tasks ranging from scientific to regulatory inquiries. CMAQ can model multiple air 

quality subjects: tropospheric ozone, fine particulate matter, toxics, acid deposition, 

and visibility degradation.  CMAQ modeling system incorporates output fields from 

emissions and meteorological modeling systems through special processors into the 

CMAQ Chemical Transport Model (CCTM). Then CCTM computes chemical 

transport modeling for multiple pollutants on multiple scales. The structure of CMAQ 

allows for flexibility in substituting different emissions processing systems and 

meteorological models.  Yet the model is “offline”, since meteorology fields are 

computed separately from the chemistry.    
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 Regional models tend to underestimate high ozone values, which poses a 

problem for operational air quality forecasts.  PBL height biases, lateral boundary 

condition assumptions, and deficiencies in chemical mechanism and emissions can 

contribute to model uncertainty.  Zhang et al. [2006] linked underprediction of 1-hr 

O3 daily maxima on high O3 days to overestimated planetary boundary layer depth.  

Cai et al. [2008] found that deficiencies in the Carbon Bond Mechanism 4 (CB-IV) 

[Carter, 1996] can cause underestimation of NOz (NOz = NOy – NOx) removal and 

OH concentrations, key contributors to ozone production. Castellanos et al. [2010] 

showed that O3 underprediction in CMAQ is due to removal of NOx that proceeds too 

quickly in the CB-IV mechanism. Gilliland et al. [2008] showed that CMAQ 

underpredicts NOx above the PBL.  Yu et al. [2007] in a regional air quality modeling 

simulation with the Eta-CMAQ model performed for the International Consortium for 

Atmospheric Research on Transport and Transformation (ICARTT) study found that 

the model reproduced O3 vertical distributions at low altitudes, but overestimated O3 

above 6 km due to biases in the lateral boundary conditions and a relatively coarse 

vertical resolution.  Grell et al. [2005] in WRF/Chem simulations for the summer of 

2002 NEAQS field study in northeast U.S. showed reduction in model mean bias and 

root mean square error in an experiment changing leaf temperature, which determines 

biogenic emissions of isoprene, important for O3 formation. Grell et al [2005] used 

the Regional Acid Deposition Model Version 2 (RADM2) chemical mechanism 

[Stockwell et al, 1990].  RADM2 represents organic chemistry through a reactivity 

aggregated molecular approach [Middleton et al, 1990], grouping similar organic 

compounds into model groups using reactivity weighting. RADM2 includes 21 
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inorganic species (14 stable species, 4 reactive intermediates, and 3 abundant stable 

species (O2, N2, and H2O)) and 42 organic species (26 stable species and 16 peroxy 

radicals).  RADM2 chemical mechanism will be used in this dissertation for 

WRF/Chem modeling simulations. 

2.4 Satellite Measurements 
 
  Currently polar-orbiting low earth orbit (LEO) satellites are widely used for 

remote sensing of air quality.  Polar-orbiting satellites move in a fixed circular orbit 

approximately 1000 km above the earth in sun synchronous orbit with orbital pass at 

about same local time each day.  A sun-synchronous orbit is defined as a polar orbit 

that crosses the equator at the same time each overpass. Due to closer proximity to the 

Earth’s surface, polar-orbiting satellites provide higher vertical and horizontal 

resolution than geostationary satellites; but the temporal resolution is poor – about 12-

24 hour measurement cycle for a given location.  Polar orbiting satellites may provide 

full global coverage over 1-16 days, depending on swath width; clouds can inhibit 

collection of useful information. 

 Remote sensing refers to using electromagnetic radiation to study atmospheric 

constituents such as O3, CO, nitrogen dioxide (NO2), and formaldehyde (HCHO) 

without being in physical contact with these gases.  Satellite instruments measure 

spectral characteristics of scattering, absorption and emission of electromagnetic 

radiation from atmospheric species.  Geophysical quantities are extracted from the 

measured radiances.  

 Instruments discussed herein employ passive techniques, measuring either 

solar backscatter (λ < 4 μm) or thermal infrared radiation (λ ~ 4-50 μm).  
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Atmospheric radiative transfer can be expressed as attenuation of solar radiation 

traversing the atmosphere, known as Beer’s Law: 

0I I e τ−=      (22) 

where I  is the backscattered intensity measured by the satellite instrument, 0I  is the 

intensity of backscattered radiation that would be measured in the absence of 

absorption, τ  is the optical thickness of the slant column.  The log of the optical 

thickness is shown for O3, NO2, SO2, and HCHO in Figure 2.7.  Ozone is the main 

absorber for wavelengths shorter than 350 nm.  NO2 exhibits distinct spectral 

structure between 425 and 450 nm, wavelengths at which retrievals are generally 

conducted.  

 

Figure 2.7 Optical thickness of selected trace gases at ultraviolet and visible wavelengths for 
nominal atmospheric concentrations (1x1016 molec/cm2 for HCHO and SO2; 5x1015/cm2 for NO2; 
and 300 DU for O3. Adapted from [Chance, 2006] and [Martin et al., 2008]. 
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 At ultraviolet and short visible wavelengths the land surface reflectivity is less 

than 5 % [Koelemeijer et al., 2003], molecular scattering is the major component of 

backscattered radiation. Sensor sensitivity to trace gases in the lower troposphere is 

highest in the ultraviolet and short visible window.  Clouds enhance instrument 

sensitivity to species above clouds and decrease sensitivity below clouds [Martin et 

al., 2002; Millet et al., 2006].  

 Figure 2.8 summarizes the process of conversion of raw sensor data into 

products fit for comparison with model and in situ data.  Sensor data is transmitted to 

the ground as detector “counts” (Level 0 data) and assigned spatial and temporal 

header information.  

 

 

  

 

 
Figure 2.8 Flowchart of satellite measurement processing for comparison with in situ and model 
data. 
 

Calibration and geolocation of radiances 

Raw Satellite data (Level 0) 

Level 1 data 

Geophysical data (Level 2) 

Averaged/Gridded Geophysical  
Quantities (Level 3) 

Radiance Inversion model 

Spatial and/or temporal gridding 

Further Averaged  Geophysical  
Quantities (Level 4) 

Further Spatial and/or temporal averaging 
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The sensor data are transformed into engineering units, calibrated, corrected for 

biases, and directly linked to geospatial information (i.e. latitude, longitude, date, and 

time).  The resulting Level 1 data are passed through a radiance inversion model 

producing geophysical quantities (Level 2), such as column O3.  Level 2 data also 

contain quality-control flags useful for quality control and regridding purposes.  

These data are most widely used for research due to flexibility of data filtering and 

manipulation.  Level 3 data result from further post-processing such as regridding to a 

different grid resolution and temporally averaging to produce daily and monthly 

means.  Level 3 data can be utilized for larger-scale climatological studies.  Level 4 

data are further processed (i.e. averaged in time and space) Level 3 data.   

 Retrieval of geophysical quantities from measured radiances is constrained 

with a priori information, such as the climatological mean profile shape of the 

retrieved gas. The retrieved vertical profile represents a vertically averaged quantity 

of the true profile since the satellite sensor has a finite field of view.  When 

comparing satellite measurements and model simulations with greater vertical 

resolution than satellite retrievals, retrieval averaging kernels need to be applied to 

the high-resolution model output so the model is sampled with the same vertical 

sensitivity as the instrument is sampling the real atmosphere.  The averaging kernel 

(AK) is a mathematical representation of how the vertical structure of the atmospheric 

profile is mapped into the measured radiances [Deeter, 2002].  The averaging kernel 

used here is a matrix where each row defines the averaging kernel for one particular 

retrieval level, and each element in this row defines the contribution of other retrieval 

levels to the retrieved quantity.  To compare the satellite profiles with model output, 
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model ozone profiles (xmodel) are convolved with the measurement averaging kernel 

matrix (A) to obtain the same vertical resolution profiles (x’model) as satellite 

retrievals:             

'
model modelA( )apriori apriorix x x x≈ + −                                 (23) 

Where xapriori is the retrieval a priori profile. 

 In the past, satellite instruments could not directly retrieve tropospheric ozone 

from space due to the large signature of stratospheric ozone in the total column.  Prior 

studies, using measurements from these instruments determined tropospheric ozone 

column distributions by subtracting the stratospheric ozone column from the total 

ozone column [e.g.,[Fishman and Larsen, 1987; Hudson and Thompson, 1998; 

Ziemke et al., 2006; Schoeberl et al., 2007].  The total amount of O3 in a column air is 

expressed in Dobson units (DU), where 1 DU equals 2.69 x 1016 molecules/cm2.  

Total column ozone is approximately 300 DU, of which about 30 DU or 10 % is 

within the troposphere. 

 Hyperspectral infrared or ultraviolet instruments such as Tropospheric 

Emission Spectrometer (TES) [Beer et al., 2001; Worden et al., 2004] and the Ozone 

Monitoring Instrument (OMI) [Levelt et al., 2006; Schoeberl et al., 2007; Liu et al., 

2009] aboard the Aura satellite can measure tropospheric ozone in the free and upper 

troposphere with coarse vertical resolution.  It is still difficult to measure boundary-

layer and surface-layer ozone from space.  The ability of satellites to detect 

tropospheric O3 is critical towards understanding ozone formation in polluted regions, 

venting into the free troposphere, subsequent transport, and possible descent back into 

the boundary layer. 
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2.5 Summary 

 In summary, the summertime problem of poor air quality the Mid-Atlantic 

region is a combination of meteorological conditions and smog photochemistry.  

Since no aircraft in situ measurements are available for the analysis of the worst smog 

event in the past decade (July 2007), a combination of regional chemical modeling 

and satellite measurements analysis will be performed.  In the next chapter I will be 

using a regional chemical model to simulate a severe air pollution episode. This 

episode will be further studied with the use of satellite observations in Chapter 4.  
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Chapter 3 Characterization of an eastern U.S. 
severe air pollution episode using WRF/Chem 

3.1 Introduction  
 
   The ability to predict lower-tropospheric ozone in a region of high population 

density such as the Mid-Atlantic is important due to the adverse impacts of ozone on 

human health.  Areas downwind of Washington, D.C., Baltimore, Philadelphia, and 

New York City report the highest summertime O3 concentrations in the region.  Local 

vehicle emissions of O3 precursors, NOx and volatile organic compounds (VOCs) and 

transport of power plant generated NOx from the Ohio River Valley contribute to O3 

production.  During the July 7-11, 2007 smog episode the heat island effect in 

downtown Washington, D.C. contributed to higher recorded O3 mixing ratios in 

Baltimore, MD [Zhang et al., 2009].   

In this chapter, the Weather Research and Forecasting model with chemistry 

module (WRF/Chem) and the Advanced Research WRF (ARW) core version 3.1.1 

[Grell et al., 2005] will be used to study the July 7-11, 2007 smog episode.  The 

performance of this regional air quality model (using RADM2 chemical mechanism) 

will be evaluated with a focus on simulating O3 and reactive nitrogen species.  

WRF/Chem-calculated trace gases and meteorological parameters will be compared 

to ground observations and ozonesonde profiles.  In the next chapter, I will use 

WRF/Chem to investigate the ability of satellite instruments to detect signatures of 

the July 2007 smog event from space.   
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3.2 WRF/Chem Simulation  
 

The Weather Research and Forecasting model with online chemistry is a 

mesoscale numerical weather prediction system designed both for atmospheric 

research and operational forecasting.  This numerical modeling system is ‘‘online’’ in 

the sense that all processes affecting the gas phase and aerosol species calculation are 

done in step with the meteorological dynamics, allowing for feedbacks between 

chemistry and meteorology at each time step [Grell et al., 2005].  

WRF/Chem simulations were nested with a 36x36 km outer domain and a 12x12 

km inner domain.  The outer domain has 170x103 mass points covering the 

conterminous U.S., and the inner domain has 169x169 mass points extending from 

the Midwest to Atlantic Ocean, including the Mid-Atlantic region of the U.S.  There 

are 32 vertical layers with 10 layers below 900 hPa.  The depths of the lowest 10  

Atmospheric Processes WRF/Chem 

Radiation LW: RRTM ; SW: Goddard 

Surface Layer Monin-Obukhov 

Land Surface Model Noah 

Boundary Layer YSU 

Cumulus Grell 3D ensemble 

Microphysics Lin 

Photolysis Fast-J 

Meteorological initial and boundary conditions NARR 

Chemical initial and boundary conditions MOZART-4 

Dry Deposition Scheme Wesely 

Chemical Mechanism KPP RADM2 

Table 3.1 WRF/Chem configuration options. 

layers are 2 hPa,  3 hPa, 5 hPa, 6 hPa, 10 hPa, 11 hPa, 15 hPa, 18 hPa, 22 hPa, and 26 

hPa.  The spacing of the vertical layers increases to about 30-50 hPa from the middle 
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troposphere to the top of the domain (at 100 hPa).  The model was initialized on July 

6 at 0 UTC and run for 7 days.  Initialization using global chemical model fields 

reduces the need for a long spin up time period.    

  Model configuration options for the base case simulations (E_BASE) are listed 

in Table 3.1.  Emissions were processed using the Sparse Matrix Operator Kernel 

Emissions (SMOKE) Modeling System with 2007 Continuous Emissions Monitoring 

Systems (CEMS) measurements and projected 2009 emissions (closest available to 

2007) for all sources from the U.S. Regional Planning Offices (RPO). More 

information on the emissions used in this study is available at 

http://www.marama.org/reports/MANEVU_Emission_Projections_TSD_022807.pdf.  

Initial and boundary conditions for the meteorological parameters were taken from 

the North American Regional Reanalysis (NARR).  Initial and boundary conditions 

for trace gas and particulate species were taken from the global MOZART-4 model 

with output at 6-hr time intervals provided by Louisa Emmons (NCAR) [Emmons et 

al., 2010].   

Objective Analysis (OBSGRID) nudging techniques were used to minimize the 

accumulation of model errors and preserve mesoscale circulations within the model.  

OBSGRID nudging improves initial and boundary conditions by combining high-

resolution upper level (i.e. rawinsonde, aircraft) and surface observations (i.e. 

temperature, dew point, winds) with global analysis fields of temperature, water 

vapor, and winds [Wang et al., 2009].  OBSGRID analysis is an important option for 

lowering analyses error and generating more accurate meteorological data for air 

http://www.marama.org/reports/MANEVU_Emission_Projections_TSD_022807.pdf�
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quality simulations.  Four-Dimensional Data Assimilation (FDDA) analysis and 

surface nudging techniques were not used in the base simulation.   

To investigate the causes of biases between model and measured O3 and NOy 

species I also performed three sensitivity experiments:  

E_DRYDEP: In addition to E_BASE configurations I doubled O3 dry deposition 

velocities over all surfaces within the domain.  This simulation tests the sensitivity of 

model O3 amounts to uncertainties in dry deposition velocities.    

E_ CHEM: The default WRF/Chem chemical mechanism (RADM2), used in this 

work, does not include the influence of two potentially important reactive nitrogen 

reservoirs: organo-nitrates (RONO2 – including isoprene nitrates) and nitryl chloride 

(ClNO2).  Heterogeneous reactions of N2O5 can lead to two different products: HNO3 

and ClNO2.  When HNO3 is created, NOx is lost and the O3 production cycle is 

stopped. When ClNO2 is the product, NO2 is regenerated in the morning hours 

allowing production of O3 to continue [Thornton et al., 2010].  Currently, 

atmospheric chemical models attribute 30-50% of NOx removal in polluted regions to 

nitric acid formation (N2O5+H20  2HNO3 ) [Alexander, et al., 2009]; nitric acid is 

subsequently deposited.  For E_CHEM, in addition to E_BASE configurations I set 

the rate of this reaction to zero, thus crudely approximating the maximum possible 

impact of recycling of NOx through ClNO2 chemistry on modeled surface O3 mixing 

ratios.  Moreover, in the atmosphere isoprene nitrates comprise 12-20 % of the NOy 

budget over the eastern U.S. [Perring et al., 2009].  Isoprene nitrates are a major 

removal pathway for nitrogen oxides from the atmosphere. The importance of 

isoprene increases with decreasing latitude in the Eastern U.S. due to spatial 
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distribution of high isoprene emitting vegetation and temperature dependence of 

isoprene emissions [Guenther et al., 2006].  Implementation of these NOx pathways 

in chemical mechanisms should enhance O3 in the northeast U.S., by extending the 

lifetime of NOx and its availability for O3 formation, and reduce O3 bias in the 

southeast U.S. by short circuiting the PAN to O3 pathway. 

E_FDDA: In addition to E_BASE configurations I included FDDA analysis 

nudging technique.  Temperature, water vapor, and winds were nudged toward 

NARR analysis fields for the outer 36-km domain.  This simulation investigates the 

effects of using analysis nudging on prediction of chemical fields.  

 The strength of FDDA nudging is set by the magnitude of nudging 

coefficients for horizontal winds (u and v), temperature (T) and water vapor (q).  The 

nudging coefficients for the WRF/Chem simulations were selected based on the 

Ozone Transport Commission (OTC) WRF Protocol developed for the Maryland 

Department of the Environment (MDE) in support of regional State Implementation 

Plan (SIP) air quality modeling forecasts [MDE, 2010].   

Domain Variable Nudged Nudging Coefficient 
Outer Domain U and V winds 5.0 x 10-4 
Outer Domain Temperature 5.0 x 10-4 
Outer Domain Water vapor mixing ratio 1.0 x 10-5 
Inner Nest U and V winds 2.5 x 10-4 
Inner Nest Temperature 2.5 x 10-4 
Inner Nest Water vapor mixing ratio 1.0 x 10-5 

Table 3.2 WRF nudging coefficients for u,v, T, and q fields.  

The nudging coefficients for u,v, T and q are summarized in Table 3.2. 
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3.3 In-situ observations 
 
 Ozone and reactive nitrogen observations from rural and urban sites are used 

to evaluate the model’s performance in simulating urban and rural air characteristics 

during a major smog event in the eastern U.S.  Domain-wide model output was 

evaluated using ozone observations from the Air Quality System (AQS).  AQS is an 

Environmental Protection Agency (EPA) program that collects hourly near-realtime 

surface pollutant observations from several hundred stations across the U.S. AQS 

data are available for download at http://www.epa.gov/ttn/airs/airsaqs/.  Detailed air 

quality evaluation was performed using data from an AQS site at Aldino, MD 

(suburban, 39.6°N, 76.2°W); Pinnacle State Park, NY (rural,  42.1°N, 77.2°W, elev. 

504 m) [Schwab et al., 2009]; Great Smoky Mountains, TN (rural, 35.6°N, 83.9°W, 

elev. 793 m) (data available from 

http://www.nature.nps.gov/air/Monitoring/MonHist/index.cfm ); and Southern 

Aerosol Research and Characterization (SEARCH) sites in Atlanta, GA (urban, 

33.8°N, 84.4°W) and Yorkville, GA (rural, 33.9°N, 85.0°W) (data available at 

http://www.atmospheric-research.com/studies/search/).  These are the few stations in 

eastern U.S. that continuously monitor true NOy mixing ratios without loss of HNO3 

as is typical of most commercial NOx analyzers [e.g. Poulida et al., 1994; Schwab et 

al., 2009].  Vertical characteristics of the extent of the polluted air mass are analyzed 

using Beltsville, MD ozonesondes [Yorks et al., 2009]. 

http://www.airnowtech.org/�
http://www.nature.nps.gov/air/Monitoring/MonHist/index.cfm�
http://www.atmospheric-research.com/studies/search/�
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3.4 Ozone Episode during July 7-11, 2007  
 
 Figure 3.1 and Figure 3.2 depict surface analysis maps and model synoptic 

events, respectively, for July 6 – 12, 2007.  According to the National Centers for 

Environmental Prediction (NCEP) surface analysis maps, a cold frontal system 

moved off the East Coast on July 6, 2007 12 UTC (Figure 3.1a), shifting winds to 

northwest and decreasing humidity. WRF/Chem surface analysis shows the wind shift 

in the Washington, DC area associated with the passage of the cold front (Figure 

3.2a).   On July 7, 2007 a high pressure system was centered over the Ohio River 

Valley and the Great Lakes area.  Maximum temperatures reached 30°C and no 

precipitation was observed.  Ensuing high temperatures, clear skies, and plentiful 

sunlight contributed to onset of ozone production.   
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a)  July 6, 2007 12 UTC b)  July 8, 2007 18 UTC 

 
 

c)  July 9, 2007 18 UTC d)  July 10, 2007 18 UTC 

  

e)  July 11, 2007 18 UTC f)  July 12, 2007 3 UTC 
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Figure 3.1 NOAA North American analysis of surface pressure on a) July 6, 2007 12 UTC. b) 
July 8, 2007 18  UTC, c) July 9, 2007 18 UTC, d) July 10, 2007 18 UTC, e) July 11, 2007 18 UTC 
and f) July 12, 2007 3 UTC, contoured by 4 hPa.   

On July 8, a midlatitude cyclone began forming over the Great Lakes (Figure 3.1b, 

Figure 3.2b).  Maximum temperatures remained near 30°C in the Mid-Atlantic 

region.  High temperatures, sunny skies, and moderate southwest winds set the stage 

for strong photochemical ozone formation.  As the cyclone moved to the northeast 

over Canada, the anticyclone off the southeast U.S. coast moved over the Mid-

Atlantic region.  On July 9 and 10, temperatures in the Mid-Atlantic region reached 

35-37°C.  GOES-12 infrared image on July 9, 18 UTC shows clear sky conditions in 

the Washington/Baltimore metropolitan area (Figure 3.3).  On July 9 and 10, 

temperatures in the Mid-Atlantic region reached 35-37°C.  Sunny, stagnant 

conditions contributed to accumulation of ozone with weak surface winds from the 

southwest (Figure 3.1c, Figure 3.2c).  On July 10 and 11, a surface trough was 

aligned just east of the Appalachian Mountains (Figure 3.1d, Figure 3.2d); large-scale 

southwest flow dominated along the eastern sea-board, transporting pollutants from 

the southeast to New England.  The model is in agreement with the surface analysis 

as to the location of the isobars (Figure 3.1e, Figure 3.2e).  The cold front associated 

with the midlatitude cyclone near James Bay pushed through the Baltimore 

Washington Metropolitan area around 3 UTC on July 12, 2007 (Figure 3.1f, Figure 

3.2f).  The smog event ended as the cold front brought cleaner, cooler air into the 

region.  Overall, WRF/Chem satisfactorily simulated the synoptic circulation patterns 

that contributed to the July 2007 smog episode in the Mid-Atlantic region.   
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Figure 3.2 WRF/Chem sea level pressure (contoured by 4 hPa, black lines), and surface wind 
vectors  on a) July 6, 2007 12 UTC. b) July 8, 2007 18 UTC, c) July 9, 2007 18 UTC, d) July 10, 
2007 18 UTC, e) July 11, 2007 18 UTC and f) July 12, 2007 3 UTC.  
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Figure 3.3 GOES-12 infrared image for July 9, 2007 18:45 UTC.  

3.5 Model comparison to AQS surface observations 

3.5.1 Characteristics of simulated ozone 
 
 The WRF/Chem simulation is evaluated against surface ozone monitoring 

stations.  For each day of the simulation, 8 hour maximum surface ozone fields were 

calculated and interpolated to the location of AQS measurements within the nested 

domain.  On July 6, surface stations were reporting ozone values in the moderate 55-

65 ppbv range in the Baltimore-Washington, D.C. region and New England states 

(Figure 3.4a).  WRF/Chem shows ozone enhancement off the coast of New England 

states, visible in the AQS coastal measurements extending from Virginia to 

Massachusetts (Figure 3.5a).  North Carolina, South Carolina, Georgia and Tennessee 

also reported increased ozone – remnants of an earlier July 4-5 pollution episode.  
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Figure 3.4 Observed surface 8-hr O3 daily maxima for July 6-11, 2007.  

WRF/Chem mean bias on the first day of the simulation is 2.93 ppbv; the model 

overestimates O3 in the northeast and southeast by 20-25 ppbv and underestimates O3 

in the Ohio River Valley 5-10 ppbv (Figure 3.6a).  The onset of increased 

photochemistry and stagnation associated with the high pressure system is visible in 

the gradual increase of surface ozone in observations (Figure 3.4b-Figure 3.4e) and 

model (Figure 3.5b-Figure 3.5e) from July 7 through July 10.  July 9 was one of the 

worst air quality days recorded in the Mid-Atlantic region in the past decade.  AQS 8-

hr maximum ozone peaked at 100-125 ppbv along the I-95 interstate corridor, from  
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Figure 3.5 Modeled surface 8-hr O3 daily maxima for July 6-11, 2007.  

the Washington-Baltimore metropolitan area to Boston.  On this day, the model 

correctly simulates the spatial distribution of the ozone peak along I-95 north of 

Maryland, but the peak 8-hr maximum values are underpredicted by 15-20 ppbv 

(Figure 3.6d).  On July 10, the model underpredicts O3 distributions by 10-23 ppbv 

along the Ohio River Valley, where a midlatitude cyclone warm front passed.  On 

July 11, observations and model show good air quality conditions following frontal 

passage across the region.     
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Figure 3.6 Difference between modeled and observed surface 8-hr O3 daily maxima for July 6-11, 
2007.  

Measure of modeled and observed 8-hr maximum difference is defined as average 

mean bias (MB):   

1

1 ( )
N

MB Mod Obs
N

= −∑ ,       (1)  

where Mod and Obs are modeled and observed ozone mixing ratios. 

Table 3.3 examines daily average mean biases over two regions: northeast U.S. states 

(MD, DE, PA, NJ, NY) and southeast (NC, SC, GA, AL, MS) for the E_BASE and 

E_FDDA simulations.  Opposing regional biases exist in the northeast and southeast 

in E_BASE and E_FDDA simulations. WRF/Chem (E_BASE) underpredicts O3 in 
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the northeast by 4.62-6.93 ppbv, and overpredicts O3 in the southeast by 6.3-10.5 

ppbv.   

 WRF/Chem (E_FDDA) simulated 8-hr maximum O3 is slightly better on July 

8 and 9 in the northeast with a low bias of 3.43-3.75 ppbv.  But July 10 and July 11 

O3 mean biases exceed 11 ppbv in the northeast.  Ozone overprediction in the 

southeast is worsened using FDDA analysis nudging, mean biases are 17.2-24.3 

ppbv.  Previous photochemical modeling studies conducted for central California 

have shown that the photochemical model performance did not improve when they 

used the meteorological fields generated with FDDA [Tanrikulu et al., 2000; Umeda 

and Martien, 2002]. These results highlight the sensitivity of photochemical O3 

production to model generated meteorological fields. Sensitivity of WRF to nudging 

settings will be examined in more detail in section 3.5.5. 

 
 MB (ppbv) (E_BASE) MB (ppbv) (E_FDDA) 

 Northeast Southeast Northeast Southeast 

20070706 1.14 6.86 0.19 9.26 

20070707 -4.62 10.5 -6.09 17.2 

20070708 -5.56 9.16 -3.43 19.6 

20070709 -6.93 6.30 -3.75 24.3 

20070710 0.13 7.28 11.0 21.4 

20070711 1.27 7.52 11.8 19.9 

All -2.43 7.94 1.62 20.5 

Table 3.3 Daily mean bias for observed and simulated 8-hr maximum ozone at AQS sites for the 
base WRF/Chem simulation (E_BASE) and WRF/Chem with FDDA nudging (E_FDDA). Bias 
calculated for two regions: northeast (MD, DE, PA, NJ,NY)  and southeast (NC,SC,GA,AL,MS). 
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3.5.2 Statistical Analysis 

3.5.2.1 Discrete Statistics 
 
A scatter plot of the modeled and observed 8 hr O3 daily maxima at monitoring sites 

within the 12-km nested domain during July 6-11, 2007 is shown in Figure 3.7.   

The calculated regression line has a slope of 0.53 and intercept of 25.0.  WRF/Chem 

overestimates low O3 values and underpredicts high values with a correlation 

coefficient of 0.70. Previous studies evaluating other regional models, such as CMAQ 

and MM5-Chem produced similar order of agreement with observations [e.g. Kang et 

al., 2005, Mao et al., 2010, Gilliland et al., 2008, Godowitch et al., 2008, Castellanos 

et al., 2010].   

 
 

Figure 3.7 Scatter plot of the modeled versus observed 8-hr maximum O3 for July 6-11, 2007.  
Exceedance thresholds, least-squares regression line and coefficients are shown.  

Figure 3.8 shows the distribution frequency of observed and simulated 8-hr O3 

daily maxima.  Observed 8-hr O3 daily maxima ranged from 9 to 125 ppbv, with the 
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peak frequency of occurrence of 12 % within 50 – 55 ppbv bin.  Modeled 8-hr O3 

daily maxima were within the 22-92 ppbv range, with a peak frequency of 17 % 

centered at 55-60 ppbv bin.  Six percent of AQS measurements and 3 % of model 

forecasts were in exceedance of the NAAQS 8-hr maximum ozone standard of 75 

ppbv.  The model underpredicts the frequency of 8-hr maximum ozone mixing ratios 

less than 40 ppbv and greater than 65 ppbv, but overestimates the frequency in the 40-

65 ppbv range.  Model O3 forecasts less than 40 ppbv generally occurred west of the 

Appalachian Mountains and in northern New England states (Figure 3.9). Model 

forecasts greater than 65 ppbv occurred in urban areas along I-95 corridor and in the 

Ohio River Valley. Model forecasts between 40 ppbv and 65 ppbv occurred across 

the domain.  This category included high O3 biased model forecasts in the southeast 

U.S. on days of good air quality and low O3 biased forecasts in the northeast U.S. on 

days of poor air quality.   

 
Figure 3.8 Frequency distribution of observed and modeled 8-hr O3 daily maxima for July 6-11, 
2007.  
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Figure 3.9 Locations of WRF/Chem  8-hr O3 daily maxima for July 6-11, 2007 where a) model < 
40 ppbv, b) 40 < model  < 65 ppbv, and c) model > 65 ppbv.  

 
 Evaluation of discrete forecasts (observed versus modeled mixing ratios) was 

done using mean bias, normalized mean bias (NMB), root mean square error 

(RMSE), normalized mean error (NME), correlation coefficient (r), and standard 

deviation (σ).   

The measures of bias and errors are defined as follows: 

1

1
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∑
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where Mod and Obs are modeled and observed ozone concentrations.  
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 Table 3.4 summarizes discrete observation-model O3 comparisons.  Average 

mean bias for the episode is 0.59 ppbv, with a standard deviation of ±11.0 ppbv, 

average NMB is 1.14 %.    

Date 

MB 

(ppbv) 

NMB 

(%) 

RMSE 

(ppbv) NME (%) r 

σ 

(ppbv) 

20070706 2.93 5.86 10.2 15.2 0.48 9.78 

20070707 -2.29 -4.22 10.2 14.9 0.69 9.94 

20070708 -0.86 -1.5 10.5 14.5 0.73 10.4 

20070709 0.23 0.38 13.1 16.9 0.74 13.1 

20070710 2.45 4.8 11.9 17.9 0.71 11.7 

20070711 1.06 2.57 9.75 18.6 0.37 9.7 

All 0.59 1.14 11.0 16.2 0.7 11.0 

NAQFC 5.5 11.9 12.7 20.9 0.7   

Table 3.4  Discrete evaluation results for observed and simulated 8-hr maximum ozone at AQS 
sites for individual days and all days.  NAQFC (WRF-CMAQ) performance from [Eder et al, 
2009] is also shown for comparison. 

Biases on individual days are also small ranging from 2.93 ppbv on July 6 to -2.29 

ppbv on July 7 (Table 3.4).  This good agreement is partially the result of 

overpredicted and underpredicted values in different regions of the domain canceling 

each other as was shown in Table 3.3.  Regional biases will be discussed in more 

detail in section 3.5.3.  Current regional air quality model simulations produce similar 

results [i.e. Mao et al., 2010; Zhang et al., 2006].  In terms of error, average 

WRF/Chem RMSE and NME values (11.0 ppbv and 16.2 %) for this case study are 

on the lower end of previous studies (12 -18 ppbv and 18-25 %), respectively [e.g. 

Kang et al., 2005; Eder et al., 2009; Mao et al., 2010].  The correlation coefficient (r) 

between observations and model was approximately 0.7 for July 7-10 but was less 

than 0.5 on July 6 and July 11.  The model performs the best on days when air quality 

is poor; on these days it simulates correctly the spatial pattern of surface O3.  In 
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general, the model performance is better than NOAA’s National Air Quality Forecast 

Capability (NAQFC) WRF-CMAQ model performance for July 2007 [Eder et al., 

2009], with lower NME, RMSE and NMB (Table 3.4).        

3.5.2.2 Categorical Statistics 
 

Categorical forecast evaluation was performed for the model nested domain using 

definitions of accuracy (A), bias (B), hit rate (H), false alarm rates (F), false alarm 

ratio (FAR), and critical success index (CSI) based on observed and modeled 

exceedances and nonexceedances. EPA’s current National Ambient Air Quality 

Standard for 8 hr maximum ozone of 75 ppbv was used as the threshold for 

exceedances.  Variables (a,b,c, and d) used to calculate categorical metrics are 

defined as follows: a represents a forecast 8-hr exceedance ( > 75 ppbv) that did not 

occur; b, a forecast 8-hr exceedance that did occur; c, a forecast 8-hr nonexceedance 

that did occur; and d, a nonforecast 8-hr exceedance that did occur (Figure 3.7). 

Accuracy (A) is the percentage of true forecasts and given by: 

 ( ) 100%b cA
a b c d

+
= ⋅

+ + +
        (5)       

Bias (B) is the measure of model’s false negative and false positive forecasts.  

B < 1 indicates underprediction, B > 1 indicates overprediction, and B = 1 indicates 

no bias.  

   ( )a bB
b d
+

=
+

          (6)  

 The false alarm rate (F) is the percentage of incorrectly forecast 

nonexceedances.  
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             ( ) 100%aF
a c

= ⋅
+

          (7) 

Since F is strongly influenced by correctly forecasted nonexceedances (c), 

false alarm ratio (FAR) is the percentage of times an exceedance was forecast when 

none occurred.   

( ) 100%aFAR
a b

= ⋅
+

          (8)      

Critical success index (CSI) measures how well forecasted and measured 

exceedances were predicted.  

( ) 100%bCSI
a b d

= ⋅
+ +

        (9) 

Lastly, the hit rate (H) is the percentage of observed exceedances that were 

forecasted.  

( ) 100%bH
b d

= ⋅
+

       (10) 

Table 3.5 summarizes categorical evaluations for each day of the episode and 

for all data.  On July 6, 7 and 11, very few air quality violations were observed, so 

significance of statistics metrics on these days is limited.   

For example, the very good accuracy (> 97 %) on these days is somewhat 

misleading, since c, the number of correctly forecast nonexceedances, is very large 

with respect to a, b, and d.  Critical success index and hit rate are better metrics of 

model performance without consideration of correctly forecast observed 

nonexceedances.  Overall, for this episode CSI is 30.6 %; July 9 stands out with the 

highest CSI of 43.0 %.   
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Date A (%) B F (%) 

FAR 

(%) 

CSI 

(%) H (%) a b c d 

20070706 99.2 0.67 0.34 100 0 0 2 0 594 3 

20070707 97.3 0 0 N/A 0 0 0 0 580 16 

20070708 92.6 0.11 0.18 20 8.3 8.5 1 4 548 43 

20070709 88.5 0.62 2.83 21.2 43.0 48.6 14 52 480 55 

20070710 91.9 0.77 3.3 41.9 33.8 44.6 18 25 527 31 

20070711 99.8 0 0 N/A 0 0 0 0 599 1 

All 94.9 0.5 1.04 30.2 30.6 35.2 35 81 3328 149 

NAQFC 97.4 1.9   80.9 14.2 35.5         

Table 3.5 Categorical evaluation results for observed and simulated 8-hr maximum ozone at 
AQS sites.  Results for July 6, 7 and 11 are not statistically significant, since a and b ≈ 0.  
NAQFC (WRF-CMAQ) performance from [Eder et al, 2009] is also shown for comparison. 

Hit rate measures the percentage of correctly forecast observed exceedances.  On July 

9 and 10 the model has 48.6 % and 44.6 % hit rate.  Bias indicates if forecast 

exceedances are underpredicted (B < 1) or overpredicted (B>1).  On all days the 

model’s forecast exceedances are underpredicted, with the greatest bias on July 10.  

The false alarm rate is the fraction of nonexceedances that were incorrectly forecast, 

in other words, forecast smog events that failed to develop.  The false alarm rate 

increased through the duration of the smog episode.  On July 9 and 10, FAR values 

increase from 21.2 % to 41.9 %, due to overestimated 8-hr exceedance forecasts in 

the I-95 corridor.  WRF/Chem categorical statistics for the July smog event are 

comparable with NOAA’s NAQFC model performance, with greater critical success 

index, lower false alarm ratio and bias, and slightly lower hit rate (Table 3.5).     
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3.5.3 Model-observation time series comparison  

 In this section, 1-hr daily measurements from stations in Maryland, New 

York, Tennessee and Georgia for July 6-13, 2007 are used to evaluate WRF/Chem.  

Model-observation comparison on an hourly basis can better capture synoptic and 

chemical processes than smoothed 8-hr maximum data.   

3.5.3.1 Aldino, MD 
 
 Time series of O3 and NOy (NOy  = NO + NO2 + PAN + HNO3 + 2*N2O5 + 

HONO + organic nitrates) during July 6-July 13, 2007 at a suburban AQS station in 

Aldino, MD are shown in Figure 3.10.   

 
Figure 3.10 Time series of observed (blue) and simulated (red) 1-hr O3 and NOy daily maxima at 
Aldino, MD AQS site for July 6-13, 2007 (LST).   Ozone reached a maximum of 139 ppbv for a 
full hour. 

On the Aldino NOy monitor the converter is located near the instrument inlet, so this 

represents a true NOy measurement, without loss of HNO3 as is typical of commercial 

compliance NOx analyzers [e.g. Poulida et al., 1994; Schwab et al., 2009]. 
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Observed and modeled O3 mixing ratios showed an increasing trend in the daily 

maximum value from July 6 through July 9.  On July 9, the observed O3 

concentration reaches a maximum of 139 ppbv around 2 pm LST, the model 

underpredicts this peak by 30 ppbv.  The short-lived spike of 139 ppbv may be the 

result of the Chesapeake Bay breeze - a small scale area of convergence formed along 

the northeast part of Washington, DC suburbs that is difficult to capture with the 12 

km model resolution [Loughner et al., 2010].  Overall, WRF/Chem captures the 

general shape of the diurnal cycle of ozone with minima in the early morning and 

maxima in the afternoon, with a correlation coefficient (r) of 0.84 (Table 3.6a).  

Afternoon ozone maxima result from photochemical reactions of surface emitted CO, 

NO, and hydrocarbons [e.g., Crutzen, 1979].  Upper level transport of O3 precursors 

from upwind emission sources and mixing into the planetary boundary layer also 

contributes to surface ozone maxima.  At nighttime, photochemical production is 

suspended, and O3 is lost by reaction with NO, VOC’s and by dry deposition.  Over 

the course of the smog event, WRF/Chem O3 overestimates nighttime minima by 7.26 

ppbv (NMB=21.9%) (Table 3.7a); daytime maxima are underpredicted during the 

peak ozone days of July 9-11.  O3 mean daytime bias is -5.97 ppbv (NMB = -10.0 %) 

and mean daytime RMSE is 14.3 ppbv (NME = 17.4 %)  (Table 3.6a).  The passage 

of a cold front seen in Figure 1f is evident in the decrease of observed and simulated 

O3 at nighttime and early morning on July 12. O3 amounts at Aldino were sensitive to 

O3 dry deposition velocities.  Sensitivity simulation where O3 dry deposition velocity 

in the model was doubled (E_DRYDEP) reduced nighttime O3 by 11.4 ppbv   
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a) Aldino MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 -5.97 -10.0 14.3 17.4 0.84 13.1 

NOy 1.32 24.0 4.08 54.7 0.53 3.88 

b) Pinnacle MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 -7.33 -14.3 9.2 16.1 0.86 6.58 

CO 12.0 8.42 24.2 14.6 0.3 23.4 

NOy -0.15 -5.01 0.88 24.7 0.74 0.92 

NOx 0.03 3.44 0.71 52.5 0.12 0.78 

NOz -0.16 -8.57 0.47 21.4 0.83 0.49 

Temp 0.35 1.45 2.19 6.2 0.87 2.17 

c) Smokies MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 -6.82 -13.4 15.4 23.9 0.47 13.9 

CO -17.5 -10.7 54.4 25.4 -0.08 51.8 

NOx -0.79 -36.3 1.32 49.2 0.44 1.07 

Temp 2.25 10.0 3.61 13.6 0.36 2.83 

d)SEARCH-JST MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 0.89 2.7 16.0 37.4 0.52 16.1 

CO 200.4 93.6 310.3 101.4 0.15 253.7 

NOy 9.67 68.8 19.0 91.0 0.31 16.6 

NOx 8.82 70.6 18.9 101.2 0.27 16.9 

NOz 0.63 36.0 1.65 78.4 0.48 1.55 

Temp 1.48 5.56 4.14 12.0 0.18 3.89 

e)SEARCH-YRK MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 4.48 12.4 8.73 26.6 0.55 11.3 

CO 7.17 5.04 39.9 20.8 0.36 41.0 

NOy 1.97 70.2 3.07 81.2 0.27 2.36 

NOx 1.21 62.6 2.34 89.8 0.3 2.01 

NOz 0.76 86.9 1.05 95.2 0.47 0.73 

Temp 1.8 7.35 4.78 14.6 -0.01 4.46 

Table 3.6 Discrete evaluation results for individual sites calculated for daytime hours (6 am – 8 
pm LST).  
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a) Aldino MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 7.26 21.9 15.4 39.0 0.52 13.8 

NOy 0.32 4.26 4.21 45.8 0.14 4.24 

b) Pinnacle MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 -8.44 -18.0 10.8 21.2 0.81 8.82 

CO 3.39 2.25 29.2 16.2 -0.14 32.9 

NOy -0.4 -13.2 0.7 23.4 0.15 0.74 

NOx -0.57 -32.0 0.93 48.6 -0.45 0.89 

NOz 0.11 8.45 0.48 35.7 0.62 0.56 

Temp 1.42 7.46 2.07 8.74 0.93 1.52 

c) Smokies MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 -9.35 -20.2 14.6 28.3 0.26 11.4 

CO -6.69 -4.57 38.5 18.71 0.31 38.2 

NOx -0.22 -13.2 0.89 43.5 0.58 0.88 

Temp 2.04 9.78 2.91 11.9 0.22 2.1 

d)SEARCH-JST MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 4.32 39.4 9.9 77.4 0.37 8.99 

CO 161.0 58.0 214.6 63.5 0.23 149.5 

NOy 0.44 1.78 18.2 52.9 0.06 18.4 

NOx -0.41 -1.68 17.9 54.2 0.04 18.1 

NOz 0.85 169.0 1.47 234.8 0.19 1.21 

Temp 3.63 16.2 4.18 16.2 0.22 2.08 

e)SEARCH-YRK MB (ppbv) NMB (%) RMSE (ppbv) NME (%) r std (ppbv) 

O3 4.46 16.4 6.51 29.8 0.31 8.21 

CO 1.38 0.95 36.8 23.5 0.21 39.8 

NOy 0.44 11.3 1.99 42.6 0.26 1.98 

NOx -0.16 -4.82 1.97 47.5 0.14 2.0 

NOz 0.59 111.1 0.8 127.5 0.22 0.55 

Temp 2.46 11.8 3.37 11.9 0.12 2.33 

Table 3.7 Discrete evaluation results for individual observation sites calculated for nighttime 
hours (8 pm – 6 am LST).  
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changing the NMB from 21.9 % to -12.1% (Table 3.8).  Low dry deposition velocity 

in the standard model simulation contributes to insufficient nighttime depletion of O3 

at Aldino, MD. 

 

a)  Day NMB O3(%) NMB NOy(%) NMB NOx(%) 
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Aldino  -10.0 -7.05 -23.1 24.0 18.9 17.9 N/A N/A N/A 

Pinnacles  -14.3 -9.89 -30.2 -5.01 3.12 -1.18 3.44 13.0 9.42 

Smokies -13.4 -7.61 -23.9 N/A N/A N/A -36.3 -47.7 -48.7 

JST  2.7 15.1 -0.98 68.8 75.8 75.3 70.6 74.8 74.9 

YRK 12.4 31.0 10.6 70.2 67.7 65.3 62.6 54.8 54.0 

          

b)  Night NMB O3(%) NMB NOy(%) NMB NOx(%) 
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Aldino  21.9 25.2 -12.1 4.26 6.16 6.22 N/A N/A N/A 

Pinnacles  -18.0 -16.3 -37.3 -13.2 -8.67 -10.8 -32.0 -17.9 -21.1 

Smokies -20.1 -15.0 -35.6 N/A N/A N/A -13.2 -16.5 -15.4 

JST  39.4 43.6 -10.0 1.78 4.26 4.51 -1.68 1.07 1.32 

YRK 16.4 24.0 -7.74 11.3 13.8 14.8 -4.82 -2.06 -0.71 

Table 3.8 WRF/Chem E_BASE , E_CHEM, and E_DRYDEP mean a) daytime and b) nighttime 
O3, NOy and NOx biases for observation sites.  

 
 Total reactive nitrogen distributions are influenced by a combination of 

emission, photochemistry, and transport processes.  Aldino station is located in a 

suburban area, but in close proximity to I-95 interstate (~ 2 km).  CO and NOx 

emissions for the 12 km grid containing Aldino, are significantly influenced by 
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interstate traffic.  Observed NOy reaches a maximum concentration in the early 

morning and secondary maximum in the afternoon (Figure 3.10b). Vehicle emissions 

of NOx contribute to the peaks during morning rush hour, especially on weekdays 

(July 9-11, 2007).  During the early afternoon, NOy mixing ratios fall due to 

deepening of the planetary boundary layer (PBL), mixing, and loss by deposition.  As 

the PBL height begins to decrease, NOx mixing ratios increase in the late afternoon.  

WRF/Chem daytime NOy normalized mean bias is 24.0 % and NME is 54.7 %.   In 

the sensitivity simulation where NOx conversion to nitric acid was suppressed 

(E_CHEM), model daytime O3 and NOy mean biases were reduced to -7.05 % and 

18.9 %, respectively (Table 3.8).  This suburban site is sensitive to perturbations in 

ozone deposition velocity and N2O5 aerosol accommodation coefficient. 

      

3.5.3.2 Pinnacle State Park, NY 
 

Observations of trace species and meteorological variables at Pinnacle State 

Park research site (elev. 504 m above sea level) are shown in Figure 3.11.  At this 

remote site, trace gas measurements are available only for the beginning and end of 

the simulated period due to failure of air conditioning in the instrument shelter.  

Model O3 tracks the diurnal variation seen in observations (r=0.86).  The model 

underpredicts O3 at this site, NMB and RMSE for O3 are -14.3 % and 9.20 ppbv, the 

greatest negative bias in comparison with all sites (Table 3.6a).    Similarly to the 

Aldino, MD site, the cold front marched through at nighttime on July 11-12 as seen in 

hourly O3 and temperature measurements (Figure 3.11a,c).   
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CO is a good tracer for transport due to its long life time of approximately a 

month.  Predicted daytime CO is generally in good agreement with the observations 

(NMB:8.42%, NME:14.6%) indicating that transport from upwind sources is 

sufficiently well represented by the model.  The model has the drop in CO due to cold 

front passage a little early, but overpredicts slightly at other times.   Basic diurnal 

cycles of air temperature (Figure 3.11c) are represented by the model with correlation 

coefficient r = 0.87.  WRF/Chem air temperature is overpredicted by 1.42°C at night 

and underpredicted by 0.35°C during the day.  NOy, NOx, and NOz (NOy – NOx) 

measurements are below 8 ppbv (Figure 3.11d-f) characteristic of a rural location, 

with occasional perturbations by local sources.  The model underestimates daytime 

NOy by 5.01 % and overestimates NOx by 3.44 % (Table 3.6b).  Part of the modeled 

enhancement in NOz and NOy in the afternoon on July 10, is due to simulation of high 

HNO3 in the air mass sampled in the model.   

Daytime and nighttime normalized mean biases of O3 and NOy were reduced 

in the E_CHEM simulation (Table 3.8), which provides an upper limit on NOx 

recycling at this site.  Similar to the Aldino site, prediction of O3 was improved by 

extending the lifetime of NOx and its availability for O3 formation.  
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Figure 3.11 Time series of observed (blue) and simulated (red) 1-hr daily maxima at Pinnacle 
State Park, NY site for July 6-13, 2007 (LST).  Missing data on July 9-10 due to failure of air 
conditioning in the instrument shelter.  
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3.5.3.3 Great Smoky Mountains, TN 
 

Measurements of O3, CO, NOx and air temperature at Great Smoky Mountains 

site (elev. 793 m above sea level) are shown in Figure 3.12; the model is too clean 

and too cool.  At this site the model does not exhibit observed diurnal variation of 

ozone, with poor daytime correlation (r = 0.47). Daytime ozone normalized mean 

bias and normalized error are -13.4 % and 23.9 %, respectively (Table 3.6a).  

Observed CO amounts and diurnal variations are underestimated substantially by 

the model.  Similar to the Pinnacle site, at this mountain site, the 12 km nested 

WRF/Chem simulation is not expected to capture the small scale processes 

associated with orography.  On average, the model overpredicts daytime and 

nighttime air temperature by 2.25°C and 2.04°C, respectively.   

WRF/Chem RADM2 chemical mechanism used in this simulation 

underestimates NOx at this site, with NMB of -36.3 % and NME of 49.2 %.  

WRF/Chem shows simultaneous low bias in NOx mixing ratios and low bias in 

surface O3.  The results are sensitive to the rate at which N2O5 is converted to 

HNO3.  In E_CHEM sensitivity simulation where the N2O5 conversion to HNO3 

was set to zero, daytime O3 mean bias was reduced from -13.4 % to -7.61 % while 

mean NOx low bias increased from 36.3% to 47.7 %  (Table 3.8).  As at Aldino and 

Pinnacles sites, increased NOx recycling reduced the magnitude of daytime and 

nighttime O3 biases.    
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Figure 3.12 Time series of observed (blue) and simulated (red) 1-hr daily maxima at Great 
Smoky Mountains, TN site for July 6-13, 2007 (LST). 

 

3.5.3.4 SEARCH sites, GA 
 
 Figure 3.13 compares observed and modeled trace gas species and 

meteorological variables at an urban SEARCH Jefferson St site (JST) in Atlanta, GA. 

Overlaid error bars are 1σ uncertainty in observations of O3, CO, temperature and 

NOy.  Observations and the model exhibit the daytime peaks and nighttime troughs 

associated with ozone production during the day and destruction at night.   



 

 57 
 

 

Figure 3.13 Time series of observed (blue) and simulated (red) 1-hr daily maxima at SEARCH – 
JST, GA site for July 6-13, 2007 (LST). Error bars for O3, CO, temperature, and NOy represent 
1σ uncertainty in measurements, shown for every 8th hour.  
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Daytime CO normalized mean bias at this site is 93.6 % and correlation 

coefficient (r) is 0.15 (Table 3.6).  Observed CO mixing ratios (< 400 ppbv)  are 

lower than what is typically observed in an urban region such as downtown Atlanta, 

GA (600- 800 ppbv)  [Blanchard and Tanenbaum, 2006]. Observed CO to NOx ratios 

are also much lower than EPA published guidelines (10:1 ratio) for an area where a 

combination of gasoline and diesel fueled vehicles is present (available at 

http://www.epa.gov/ttn/chief/trends/).  These inconsistencies could indicate a problem 

with the CO measurements.  Alternatively, the poor agreement with observations 

could indicate that CO motor vehicle emissions (MOBILE6) used in this study are 

overestimated.  Parrish [2006] showed that CO emissions from motor vehicles in 

MOBILE6 are overestimated by a factor of 2 in comparison with a fuel-based 

inventory.  Moreover, Kuhns et al. [2004] compared MOBILE6 CO emission factors 

to those measured by vehicle exhaust remote sensing; MOBILE6 CO emission factors 

were 2 times greater than measured CO emission factors for vehicles less than 13 

years old.  According to the EPA 2002 national inventory within Fulton County 

(metropolitan Atlanta), on-highway and off highway motor vehicles accounted for 

98% of CO emissions and 87% of NOx emissions [available at 

http://www.epa.gov/air/data].  By contrast, in northeastern U.S. on-highway and off 

highway motor vehicles account for 91 % of CO emissions and 58 % of NOx 

emissions; stationary sources (i.e. electric power plants and industrial factories) 

account for the remaining 42 % of emitted NOx,  Therefore, higher accuracy in model 

representation of CO and NOx emissions from mobile sources is needed in the 

Southeast U.S region.   

https://exch.mail.umd.edu/owa/redir.aspx?C=36dbf2c52b4d417aaf000ce04ee4e22a&URL=http%3a%2f%2fwww.epa.gov%2fttn%2fchief%2ftrends%2f�
http://www.epa.gov/air/data�
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  The model does a reasonable job with daytime ozone maxima, but 

underestimates peak O3 on July 9.  WRF/Chem daytime ozone mean bias is 0.89 ppbv 

(NMB of 2.70 %) and RMSE of 16.0 ppbv (NME of 37.4 %), while correlation 

coefficient is moderate (r = 0.52).  Nighttime O3 mixing ratios below 10 ppbv were 

observed during most of the comparison period.  Single digit O3 mixing ratios at 

nighttime are attributed to nighttime depletion of surface O3 by dry deposition and in 

situ chemistry with limited re-supply of O3 – rich air from aloft [Talbot et al. 2005].   

Nighttime ozone destruction in the model is not as efficient; biases in O3 dry 

deposition velocity are a possible explanation.  In E_DRYDEP simulation daytime 

(nighttime) O3 normalized mean bias was reduced from 2.7 (39.4) % to -0.98 (-10.0) 

%.  

Figure 3.13d and Figure 3.13f compare observed and simulated NOy, NOx and 

NOz species at JST.  WRF/Chem overpredicts daytime NOy, NOx and NOz peaks with 

normalized mean biases of 68.8 %, 70.6 % and 36.0%, respectively.  The modeled  

peak of NOy and NOx on July 9 appears to be predicted but with a 6 hour time lag.  

Modeled O3 also lags and does not reach the observed 80 ppbv peak.  Observed 

convective storm over Atlanta, GA at approximately 1 pm local time mixes polluted 

boundary layer air with cleaner upper level air (Figure 3.3).  The timing of the 

modeled convective storm is about 2 hours late.  The storm’s strong updrafts lifted 

polluted surface air into the upper troposphere and downdrafts mixed clean upper-

level air through the PBL.    

Figure 3.14 compares measurements and simulation results at a rural 

SEARCH Yorkville, GA site.  Overlaid error bars are 1σ uncertainty in observations 
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of O3, CO, temperature and NOy.  Available ozone measurements during July 9-12, 

2007 period show model daytime and nighttime overestimation with NMB of 12.4% 

and 16.4%, respectively. This may result from excess import of O3 or the nighttime 

mean bias in temperature of 2.5°C.  At YRK, CO has no significant diurnal pattern, 

indicative of the rural nature of this site distant from mobile source emissions.  NOy, 

NOx and NOz daytime normalized mean bias is 70.2 %, 62.6 % and 86.9 %, 

respectively.  Biases between model and observations exceed observation uncertainty.  

Similarly to JST site, increased O3 dry deposition at this site improves both daytime 

and modeled performance (Table 3.8). E_CHEM sensitivity simulation decreased 

biases in daytime and nighttime NOx at YRK site, but this contributed to significant 

overproduction of O3.  

 In summary, WRF/Chem captures the diurnal variability of O3 and NOy 

species at Aldino, Pinnacles, Great Smokies and SEARCH sites over the course of the 

smog episode, terminated by the timely passage of the cold front in the model.  

Sensitivity simulations tweaking O3 dry deposition and N2O5 accommodation 

coefficient slightly improved model performance at most of the sites.  Accelerated O3 

dry deposition improved nighttime O3 at Aldino and SEARCH sites.  Maximum 

recycling of NOx through ClNO2 chemistry improved model performance in the 

Northeast, especially the remote Pinnacles site, but increased model bias in the 

Southeast.  Model NOx biases decreased at Pinnacles, JST and YRK sites during the 

night time and during daytime at the YRK site.  Poor model performance in the 

Southeast can be explained by high temperature bias (>1.5°C) with respect to 

observations.  In WRF/Chem the isoprene emissions by the forests directly depend on 
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temperature [Grell et al., 2005].  Overpredicted temperatures result in more isoprene 

emissions, faster reaction rates and overpredicted O3 fields.  In general, the model is 

much more sensitive to changes in temperature and increased insolation than 

chemistry. FDDA sensitivity run increased already high temperature bias at Southeast 

U.S. sites, increasing O3 MB in Southeast U.S. by 12 ppbv.  Where the model 

succeeds at predicting temperature and NOx concentrations the calculated O3 fields 

agree best with observations.  There remains much more to learn about the causes of 

biases between modeled and measured ozone in the Southeast U.S.   
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Figure 3.14 Time series of observed (blue) and simulated (red) 1-hr O3 daily maxima at 
SEARCH – YRK, GA site for July 6-13, 2007 (LST).  Error bars represent 1σ uncertainty in 
measurements. 
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3.5.4 WRF/Chem Vertical Analysis 
 
 Figure 3.15 shows WRF/Chem simulated O3 on 6 layers: surface, 950 hPa, 

910 hPa, 815 hPa, 730 hPa, and 685 hPa for 18 UTC July 9, 2007.  The signature of 

the smog event in northeast U.S. is most visible from the surface to 730 hPa.  

Pollutant outflow into the Atlantic from densely populated metropolitan areas along I-

95 corridor is greatest in the 950 hPa and 910 hPa layers.  Enhanced ozone at 730 hPa 

and up is associated with upper level regional transport of ozone and its precursors 

driven by midlatitude cyclonic wind patterns. 

  
Figure 3.15 WRF/Chem O3 on surface, 950 hPa, 910 hPa, 815 hPa, 730 hPa and 685 hPa for 18 
UTC July 9, 2007.  

 Several ozonesondes were launched during the July 6-11, 2007 ozone episode 

at Beltsville, MD (76.5°W, 39.0°N) [Yorks et al., 2009].  Ozonesonde launches took 

place in a wooded area 19 km northeast of Washington, DC, under the auspices of 
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Howard University and NASA’s Goddard Space Flight Center.  Profiles from 

WRF/Chem experiments are compared to afternoon and nighttime ozonesonde 

profiles (Figure 3.16).   

 On July 9 at 18 UTC, a 100-113 ppbv layer of ozone is observed from surface 

to 800 hPa (Figure 3.16a).  WRF/Chem matches the shape of the ozonesonde profile 

up to 650 hPa, but the magnitude is low by 13-25 ppbv below 800 hPa, as was seen in 

comparison to surface observations (Figure 3.4d, Figure 3.5d).  MOZART-4 

overestimates ozone between 550 – 300 hPa, and WRF/Chem overestimates ozone 

between 600 – 250 hPa by as much as 28 ppbv.
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Figure 3.16 Simulated and observed ozone and relative humidity on July 9, 2007 18 UTC (a,b),  
July 10, 2007, 6 UTC (c,d),   July 10, 2007, 20 UTC (e,f), and July 11, 2007, 6 UTC (g,h) at 
Beltsville, MD.   MOZART-4 O3 is also overlaid in dashed red lines.  
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The O3 bias increased by more than 90% above 450 hPa when default chemical 

boundary and initial conditions were replaced by MOZART-4 fields.  More than 90 

% of the model bias above 450 hPa is due to MOZART-4 O3 contribution.    These 

findings agree with previous work by Yu et al. [2007], who reported overestimation 

of O3 above 6 km due to lateral boundary conditions specification and coarse vertical 

resolution in the model.   

 Observed and predicted relative humidity increase with altitude from 30 % at 

the surface to 70 % at 800 hPa (Figure 3.16b).  The model relative humidity continues 

to increase from 800 hPa to 750 hPa reaching 100% at 750 hPa before sharply 

decreasing to 20 % at 610 hPa.  This suggests that the model mixing height is 

overpredicted by approximately 50 hPa (or 500 m).  In the mid to upper troposphere, 

observed and modeled relative humidity is on average below 30 %, suggesting 

subsidence and an upper tropospheric origin (Figure 3.16b).   

 Another sounding was launched 12 hours later at 6 UTC on July 10th (Figure 

3.16c).  In this ozone sounding there is a local minimum at about 960 hPa.  The 

vertical scale of this inversion is too small to be resolved by the model simulation.   

MOZART-4 ozone remains very high - peaking at about 100 ppbv at 950 hPa.  

Observed and modeled ozone mixing ratios in the boundary layer drop below 45 ppbv 

as ozone is removed by dry deposition and chemical titration.    At nighttime, 

observed ozone in the 960 hPa to 800 hPa layer decreased to 65 ppbv, although above 

800 hPa the profile is similar to the 18 UTC sounding up to 350 hPa.  The model 

overpredicts nighttime PBL and mid-tropospheric ozone by 10-20 ppbv, with highest 

biases at 400 hPa.  Observed and modeled relative humidity is enhanced around 800 
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hPa and 280 hPa.  The model does not capture the peak in relative humidity seen at 

600 hPa or the minimum between 700 and 800 hPa.  In comparison with daytime 

observations, both the model and observations (Figure 3.16d) show enhanced relative 

humidity (65-75%) in the 340 hPa to 270 hPa levels; modeled and observed O3 are 

enhanced 15 and 25 ppbv, respectively.  Ozone production halts at night within the 

PBL, regional advective redistribution of ozone enhances mixing ratios at upper 

levels (above 350 hPa), while accumulated ozone in the mid troposphere (600-350 

hPa) is greater than on previous day.  Overall, model measurement agreement for 

ozone is good given the resolution of the model.    

In the afternoon sounding on July 10, 20 UTC (Figure 3.16e), surface ozone is 

just 50 ppbv increasing with altitude to 95 ppbv at 830 hPa.  Above the planetary 

boundary layer, ozone increases with height reaching 110-120 ppbv in the 400 hPa – 

280 hPa layer.  This profile is a good example of redistribution of trace species 

following a convective thunderstorm and transport from upwind sources accompanied 

by photochemical ozone production [Dickerson et al., 1987; Pickering et al., 1992]. 

On July 9, 2007 at 18 UTC there was significant thunderstorm activity across 

Alabama and Mississippi according to the NCDC radar reflectivity archive. GOES-12 

IR infrared shows the spatial extent of this storm (Figure 3.3).  HYSPLIT [Draxler 

and Rolph, 2003] back trajectory started on July 10, 20 UTC at 400 hPa at Beltsville, 

MD confirm passage of the sampled air mass through convective storms. Figure 3.17 

shows MODIS cloud top pressure during the July 9, 18 UTC storm and the flow of 

HYSPLIT back trajectory though the storm at approximately 400 hPa.  Ozone and its 
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precursors are lifted from the PBL into the upper troposphere by the storm’s strong 

updrafts, while clean air is brought down by downdrafts.   

 
Figure 3.17  HYSPLIT back trajectories started at July 10, 20 UTC at 400 hPa from Beltsville, 
MD. MODIS cloud top pressure on July 9, 18 UTC is overlaid to show flow of back trajectories 
through convection in Alabama and Mississippi.  

 MOZART-4 chemical initial and boundary conditions improve upper level 

forecast on this day.  In the PBL, the model O3 profile is well-mixed and relative 

humidity is sharply increasing with height from 40 %. Here sub-grid convective 

processes are not being resolved in the model with the coarse 12 km resolution.   

 Yorks et al. [2009] analyzed budgets of free tropospheric ozone for the 

Beltsville, MD ozone profiles using a laminar identification method (LID) [Thompson 

et al., 2007a, 2007b, 2008] accounting for three processes: stratosphere to 

troposphere transfer (ST); regional convective redistribution of ozone and/or 

precursors, with photochemical reactions from lightning-produced NO (RCL); and 
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advection, including recent transport and aged ozone (AD).  On July 9th RCL, ST, and 

AD accounted for 12.6 %, 14.2 %, and 73 % of the free tropospheric ozone column, 

respectively (Table 3.9).  July 10th and 11th profiles were not influenced by 

stratospheric intrusion.  For early morning July 10th sounding, advection term 

increases to 89.4% and RCL contribution is 10.6 %.  

Date Time Trop Hgt 

(km) 

PBL Hgt 

(km) 

RCL 

(%) 

ST 

(%) 

AD (%) FT O3 

(DU) 

July 9 18 UTC 12.9 1.87 12.6 14.2 73.2 33.7 

July 10 6 UTC 13.6 1.44 10.6 0.00 89.4 49.8 

July 10 20 UTC 12.6 1.80 23.3 0.00 76.7 33.5 

July 11 6 UTC 13.6 1.55 41.8 0.00 58.2 43.4 

2007 AVG  12.8 1.60 15.3 32.1 52.6 40.6 

Table 3.9 Budgets of free tropospheric O3 for Beltsville, MD soundings, adapted from Yorks et al. 
[2009]. 

 
On July 10, 2007 at 17 UTC there was significant thunderstorm activity stretching 

from Ohio River Valley to Washington, DC area including Beltsville, MD according 

to the NCDC radar reflectivity archive.  During the afternoon July 10th sounding, the 

advective source of O3 decreases to 76.7%, and convection contribution increases to 

23.3%.  Early morning July 11th ozonesonde measurements following regional 

convective activity show that advection accounts for just 58.2 % of the total column, 

and regional convective distribution increases to 41.8 %, in agreement with 

WRF/Chem results.  The mean percentage of RCL, ST, and AD contributions for 

2007 profiles were 15.3 %, 32.1 %, and 52.6 % [Yorks et al. 2009].  July 11 early 

morning ozonesonde shows significant contribution of regional convective term – 

resulting from convective thunderstorm activity on July 10.  
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During the early morning sounding on July 11 (Figure 3.16g), nighttime PBL O3 

is overpredicted by 35 ppbv at the surface.  MOZART-4 boundary layer ozone peaks 

at about 100 ppbv at 950 hPa.  The WRF/Chem model is not fully capturing high 

humidity at the surface (~100 %) and ozone depletion through titration and 

deposition.  This may be related to model turbulent mixing being too fast as shown by 

Castellanos et al. [2010].   

 A low level jet was present east of the Appalachian Mountains in the 

afternoon and night time hours of July 10 as well as the afternoon of July 11 (Figure 

3.1d, Figure 3.1e).  This LLJ formed in the warm sector of a midlatitude cyclone 

caused by large temperature gradients spanning from behind the cold front to the 

warm sector.  At nighttime the LLJ is strengthened by cooling of high elevation air in 

the Appalachian Mountains relative to air at the same geopotential height along the 

east coast.  The model shows increased O3 layer of 70-75 ppbv at 850 hPa at 

midnight.   

 The model underpredicts upper tropospheric ozone above 400 hPa by 20-40 

ppbv and does not capture observed relative humidity variability.  Better relative 

humidity predictions were obtained for all soundings, when FDDA analysis and 

surface nudging techniques were used in a separate simulation to nudge water vapor, 

temperature and winds to NARR analysis and rawinsonde observations.  However, 

FDDA nudging increased surface ozone biases by 25-30 ppbv across the southeast 

U.S. and mid-tropospheric biases at the location of Beltsville ozonesonde 

observations.  Further sensitivity studies need to be performed to determine the 
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impact of FDDA nudging coefficients for temperature, wind, and water vapor on 

chemical processes in the model.  

3.5.5 WRF/Chem Nudging Sensitivity Runs 
 
 I evaluated the impact of nudging the WRF runs with FDDA to see if it 

improves the simulation of weather and has an impact on computed O3 fields. 

Differences in simulated O3 mixing ratios in E_BASE and E_FDDA runs depend on 

representation of meteorological fields in the model.  Figure 3.18 shows 6-hr 

accumulated precipitation, surface pressure and winds for E_BASE (or E030) and 

E_FDDA (or E028) experiments and hourly, multi-sensor National Precipitation 

Analysis (NCEP) Stage II 6-hr accumulated precipitation for July 9, 18 UTC.  

Nudging surface winds (u and v) and upper level u,v, T and q in the E_FDDA 

simulation produces substantial differences in surface pressure fields around the 

surface High over Virginia and West Virginia (~ 41°N, 80°W). E_BASE surface 

pressure fields are in better agreement with analyzed NOAA surface pressure fields 

(as was shown in Figure 3.1c) Also the location and intensity of convective storms 

south of 38°N is very different in the E_BASE and E_FDDA runs. E_BASE 

compares better with NCEP accumulated precipitation fields (Figure 3.18c). E_BASE 

captures the squall line passing over Lake Michigan, convective storm off the coast of 

North Carolina and storms stretching from Alabama to Georgia.   

 Differences in storm locations in E_FDDA lead to hotter surface temperatures 

in parts of South Carolina and Georgia (Figure 3.19) and lower soil moisture fields 

(Figure 3.21) in comparison with North American Regional Reanalysis used for 

model initialization and nudging.  Table 3.10 compares temperature mean biases at 
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JST (Atlanta,GA) and YRK (Yorkville, GA) SEARCH sites for E_BASE and 

E_FDDA simulations. E_FDDA simulation has a higher daytime temperature mean 

bias by 0.46 °C-0.69°C with respect to E_BASE.  In general in the southeast U.S., 

FDDA does not capture the spatial variability in convective storms, underpredicts soil 

moisture, overpredicts soil and 2 m temperature, leading to faster photochemistry 

than in the OBSGRID run. 
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a) WRF/Chem (E_BASE)                       b)  WRF/Chem (E_FDDA) 

 

c)  NCEP 

 
 
Figure 3.18 Accumulated 6 hr precipitation, surface pressure and surface wind barbs ending 
July 9, 18 UTC for a) E_BASE (or E030), b) E_FDDA (or E028), and c) NCEP Stage II Multi-
sensor precipitation data.  
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a) WRF/Chem (E_BASE)                       b)  WRF/Chem (E_FDDA) 

 
c)  NARR 

 

Figure 3.19 Soil Temperature on July 9, 2007 18 UTC for a) E_BASE (e030), b) E_FDDA (e028), 
and c) NARR.   
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a) WRF/Chem (E_BASE)                       b)  WRF/Chem (E_FDDA) 

 
c)  NARR 

 

Figure 3.20 Soil moisture on July 9, 2007 18 UTC for a) E_BASE (e030), b) E_FDDA (e028), and 

c) NARR.   
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  Yorkville, GA (YRK) Atlanta, GA (JST) 

  Day  Night Day Night 

E_BASE 1.8 2.45 1.48 3.63 

E_FDDA 2.26 2.45 2.17 3.87 

Difference 0.46 0 0.69 0.24 

Table 3.10 Daytime and nighttime temperature mean bias (°C) for E_BASE, E_FDDA at 
SEARCH YRK and JST sites.  Also the difference between E_FDDA and E_BASE mean biases 
is shown. 

 
 I performed three additional sensitivity simulations to investigate the effect of 

nudging factors on WRF forecast of convective events in the model.  I set nudging 

options for PBL and upper level dynamical nudging one at a time to single out the 

nudging coefficients that produce the largest errors in the meteorological simulation 

(Table 3.11).  To preserve mesoscale model circulations, u and v nudging factors and 

T and q factors need to be set consistently (personal communication with Da-Lin 

Zhang).   

 U,V Nudging T, q nudging 

Experiment PBL Upper Level PBL Upper Level 

E028 N Y  N Y 

E030 N N N N 

E038 N Y N Y 

E039 N N N Y 

E040 N Y N N 

Table 3.11 Selected nudging coefficients for PBL and upper level FDDA nudging in WRF 
experiments E028,E030, E038 – E040.  For E028 nudging was performed for outer 36 km 
domain only. For E038-E040 nudging was performed for 36 km and 12 km domains.  

 For the three additional sensitivity runs (E038, E039, E040) nudging in the 

PBL was turned off.  Nudging of temperature in the PBL can cause static instability if 

it is inconsistent with temperature above the surface layer [Stauffer et al. 1991]. The 
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water vapor mixing ratio is not nudged in the PBL because supersaturation may occur 

when surface temperature is not nudged [MDE, 2010].  E038 included nudging 

effects of u and v winds, temperature and water vapor in the upper model levels. 

E039 simulation only included upper level T and q nudging, and E040 only included 

upper level u and v nudging.  Figure 3.21 shows 6-hr accumulated precipitation, 

surface pressure and winds for E038, E039, and E040 experiments.  Nudging upper 

level winds (E038 and E040) substantially changes surface isobar locations around 

the Washington-Baltimore metro area.  The experiment with no u and v wind nudging 

(E039) produces surface pressure winds in closer agreement with E_BASE and 

NOAA surface pressure analysis.
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Figure 3.21 Accumulated 6 hr precipitation, surface pressure and surface wind barbs ending 
July 9, 18 UTC for a) E038,  b) E039, c) E040, and d) [Zhang et al, 2010] simulation. 
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E038 and E40 produce larger 6-hr accumulated precipitation fields within the 

Great Lakes squall line and off the coast of southeast U.S, in closer agreement with 

the NCEP precipitation observations. Nudging only T and q (E039) produces most of 

the accumulated precipitation in the southeast U.S over parts of Georgia, North 

Carolina and Tennessee; while the peaks were observed from Arkansas to Alabama.   

 Zhang et al. [2010] improved WRF forecast for July 9, 2007 using both 

OBSGRID and FDDA nudging (Figure 3.21d).  Zhang et al [2010] used NCEP North 

American Mesoscale (NAM) analysis meteorological input fields and soil moisture 

fields, available every 3 hours and a two times faster integration time step of 90s.  

Based on representation of convective storms E038 FDDA nudging experiment is 

better of the four that were performed for this dissertation. Yet E_BASE (OBSGRID 

and no FDDA) experiment compares better with observed surface pressure and 

precipitation fields and Zhang et al. [2010] simulation. OBSGRID nudging improved 

model performance and FDDA nudging led to more errors for the modeling setup 

used in this dissertation. The differences in meteorological initial and boundary 

conditions, longer integration time step and a difference in radiation scheme could 

account for the differences in the FDDA nudging results with respect to Zhang et al. 

[2010] WRF simulation.   

3.6 Summary 
 
 I have examined model performance in simulating a severe smog episode of 

July 2007 in eastern U.S. using surface trace gas observations from EPA AQS, 

Pinnacle State Park, Great Smoky Mountains, SEARCH stations, and ozonesondes 

from Beltsville, MD.  Modeled 8-hr O3 daily maxima suggest that WRF/Chem 
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simulates well the onset and dissipation of the smog event.  The model simulates 

correctly the spatial pattern of surface ozone over most of the domain.  Mean bias, 

root mean square error and correlation coefficient (r) from WRF/Chem 8-hr O3 

maximum and observations during July 6-11, 2007 were 0.59 ± 11.0 ppbv, 11.0 ppbv, 

and 0.7, respectively. However the low mean biases are partially the result of 

underpredicted O3 in the northeast and overpredicted O3 in the southeast. The model 

had the greatest hit rate of 48.6 % on July 9 and averaged 30.2 % false alarm ratio 

over the simulated period.   

 WRF/Chem captures mean ozone mixing ratios, but shows less variability 

than is observed.  The model underestimated the magnitude of the 8-hr maxima 

observed on July 9, 2007 in the densely populated northeast.  WRF/Chem has 

difficulty correctly representing O3 mixing ratios in the southeast, showing a high 

bias of 8-11 ppbv at the peak of the smog event.  Comparison at individual sites 

showed that the model captures the diurnal variations in O3 and passage time of the 

cold front.  WRF/Chem underpredicts daytime O3 at rural Pinnacles, NY and Great 

Smokies, TN sites and suburban Aldino, MD AQS site.  In JST and YRK, GA sites 

daytime and nighttime O3 is overpredicted.  Ozone overprediction in the southeast 

U.S. is attributed to overpredicted temperature (>1.5°C) in the model.  In a separate 

run, 3-D analysis nudging increased surface ozone biases by 12 ppbv in the southeast 

U.S.  This is attributed to increased insolation and temperature in the FDDA run.

 The RADM2 chemical mechanism used in this simulation does not account 

for NOx lifetime-extending reservoir species: organo-nitrates and nitryl chloride.  For 

future work, the lifetime of NOx in model could be tuned (by adjusting reaction rates 
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within known uncertainties, for example) to match observations, but additional 

observations of alkyl nitrates and other NOy species would help develop a more 

accurate and explicit chemical mechanism.  In sensitivity simulation where 

heterogeneous production of HNO3 was eliminated to simulate the maximum effect 

of recycling of NOx through ClNO2 chemistry, model NOx biases decreased at 

Pinnacles, JST and YRK sites during the night time and during daytime at the YRK 

site.  Daytime O3 mean biases at Aldino, Pinnacles and Great Smokies sites were 

reduced by 3-5 ppbv.  Another sensitivity simulation showed that O3 dry deposition 

velocities contribute to insufficient nighttime depletion of O3 at SEARCH sites and 

Aldino, MD.  

 Analysis of Beltsville ozonesondes showed that the model captures the 

vertical distribution of ozone up to 600 hPa, but overestimates mid to upper 

tropospheric ozone mixing ratios. Daytime underestimation of surface O3 is attributed 

to overestimated boundary layer height in the model.  The overprediction of nighttime 

O3 is attributed to high vertical mixing coefficient in the model.   Modeled relative 

humidity profiles are in good agreement with observations below 800 hPa.  While the 

model has difficulty capturing sub grid scale convection events, contributing to local 

redistribution of trace gases, the general signature of the pollution event is captured 

well.  The model-simulated ozone plume extends into the 815 hPa pressure layer, a 

portion of the troposphere where ozone information can be retrieved from satellite 

measurements [Liu et al., 2009].  Since the lowest portion of the free troposphere and 

the boundary layer are not easily measured from space, WRF/Chem can be used for 

interpreting the satellite measured tropospheric column ozone in the context of a 
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major surface pollution event.  The focus of the next chapter is interpretation of 

satellite observations of O3 and its precursors in the northeast U.S. during this severe 

smog episode using WRF/Chem.   
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Chapter 4 The impact of WRF/Chem lightning NOx 
sensitivity study and comparison with satellite 
observations 

4.1 Introduction 
 
 In the previous chapter I showed that WRF/Chem satisfactorily captured the 

spatial and temporal distribution of O3 during the July 7-11, 2007 pollution episode.  

In general, the WRF/Chem model performance is better than NOAA’s National Air 

Quality Forecast Capability (NAQFC) for July 2007 [Eder et al., 2009].  In this 

chapter, I will use a combination of model and remote measurements to characterize 

continental pollutant outflow over the western North Atlantic Ocean during this 

event.  I will analyze a sensitivity simulation with model emissions enhanced in the 

mid to upper troposphere with lightning-induced nitrogen oxides to quantify effects 

of lightning on O3 and NO2 tropospheric columns.  This is the first regional scale 

WRF/Chem simulation containing lightning-induced nitrogen oxides (LNOx) for an 

ozone episode in the eastern U.S.  WRF/Chem will be used to interpret satellite 

measured highly variable species such as tropospheric O3 and NO2 on scales on 

which in situ measurements are insufficient for validation  Here I compare the 

WRF/Chem simulation with satellite observations and discuss the findings of the 

sensitivity LNOx WRF/Chem simulation from an air quality perspective.  WRF/Chem 

will be used as a platform to compare the representation of this pollution event by 

Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) 
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aboard Aura.  I will focus on how well the two instruments capture elevated lower 

tropospheric ozone associated with this poor air quality event.   

 It is difficult to measure planetary boundary-layer (PBL) and surface-layer 

ozone from space. The ability of satellites to detect tropospheric O3 is critical towards 

understanding ozone formation in polluted regions, venting into the free troposphere, 

subsequent transport, and possible descent back into the boundary layer.  

Hyperspectral infrared or ultraviolet instruments such as TES [Beer et al., 2001; 

Worden et al., 2004]  and OMI [Levelt et al., 2006; Schoeberl et al., 2007; Liu et al., 

2009] aboard the Aura satellite can measure ozone in the free troposphere directly 

albeit with coarse vertical resolution.  In the past, satellite instruments could not 

directly retrieve tropospheric ozone from space due to the large signature of 

stratospheric ozone in the total column. Previous studies determined tropospheric 

ozone column distributions by subtracting the stratospheric ozone column from the 

total ozone column [e.g.,[Fishman and Larsen, 1987; Hudson and Thompson, 1998, 

Ziemke et al., 2006; Schoeberl et al., 2007].   

 CO, with a relatively long lifetime, has also been measured from space and 

used in identification of boundary layer pollution [Clerbaux et al., 2008].  NO2 is well 

suited for studying urban air pollution from space because of its high boundary layer 

source and short lifetime.  U.S. urban and surface sources of NOx are well quantified 

in satellite NO2 measurements [e.g. Kim et al., 2009; Kar et al., 2010].  However 

when evaluating tropospheric NO2 columns with remote sensing products, it is 

imperative to separate lightning-induced nitrogen oxides from local boundary layer 

pollution.  Hudman et al. [2007] showed that regional lightning is the dominant 
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source of upper tropospheric NOx and increases upper tropospheric ozone by 10 ppbv 

during the ICARTT campaign over the eastern U.S. and North Atlantic Ocean.  Allen 

et al. [2010] scaled Global Modeling Initiative (GMI) CTM flash rates such that on a 

monthly basis the grid cell flash rates match those of the Optical Transient 

Detector/Lightning Imaging Sensor (OTD/LIS) [Boccippio et al., 2000; Boccippio et 

al., 2002; Christian et al., 2003] climatology.   They found that lightning-induced 

NOx contributes significantly to summertime NOx (0.09-0.16 ppbv) and O3 (15-24 

ppbv) at 300 hPa over the eastern U.S.  Martini et al. [2010] found lightning-induced 

O3 increases of 6-9 ppbv and 16-20 ppbv in the lower and upper troposphere, 

respectively, over the western North Atlantic using the UMD CTM.  Martin et al. 

[2007] used GEOS-Chem to investigate contribution of LNOx to O3 and NO2 columns 

in the tropical Atlantic region.  Jourdain et al. [2009] verified that imposing a 

production of ~500 moles NO per flash for lightning occurring in the midlatitudes 

decreased the bias between model (GEOS-Chem) and TES O3 over the U.S. by 40% 

compared with a simulation using ~250 moles/flash.   

 The subtropical Bermuda High is a dominant summertime feature driving 

eastern U.S. pollution export [Hegarty et al., 2009].  Li et al. [2005] analyzed major 

outflow pathways for North American pollution to the Atlantic Ocean.  They found 

that a semi-permanent upper level anticyclone centered over the southern U.S. in 

combination with a Bermuda High traps continental convective outflow and allows 

pollutants to recirculate, age and mix with lightning-induced NOx emissions in the 

free troposphere.  They also predicted rapid ozone production of 10 ppbv day-1 and an 

ozone maximum (> 80 ppbv) in the upper troposphere across the southern U.S before 
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export to the Atlantic.  The O3 maximum was confirmed by measurements from the 

Intercontinental Transport Experiment (INTEX-A) [Singh et al., 2006; Singh et al., 

2007] and INTEX Ozonesonde Network Study (IONS) campaign [Thompson et al., 

2007; Cooper et al., 2006]       

4.2 Satellite Instrument Retrievals  

Over the course of the July 7-11, 2007 smog event, TES and OMI instruments on 

board Aura satellite provided measurements of ozone at the same time (~1:30 pm 

local time) but from different spectral regions and with differing vertical resolution 

and sensitivity.  Terra’s MODIS instrument also provided aerosol optical depth 

(AOD) measurement at 10:30 am local time. 

4.2.1 TES Ozone and CO Profile Retrievals  
 

TES  is a high resolution imaging infrared Fourier transform spectrometer [Beer 

et al., 2001], aboard NASA’s Aura, a sun-synchronous polar orbiting satellite with a 

repeat cycle of 16 days.  The TES spectral range is 650-3250 cm-1 with an apodized 

spectral resolution of 0.1 cm-1 and a nadir footprint of 5 km x 8 km.   Standard TES 

products include vertical profiles of ozone and carbon monoxide (CO) from nadir 

observations during the Global Survey and Step and Stare operational modes.  Global 

Survey measurements are about 220 km apart along the orbit track; Step and Stare are 

spaced every 30 km.  The vertical resolution is about 6 km for clear-sky conditions, 

with sensitivity to the lower and upper troposphere [Worden et al., 2004].  In this 

study I will use Version 3 (V003) of the TES Level 2 products.  The ozone and CO 

profiles are selected based on quality control flags described in the TES L2 Data 
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User’s Guide [Osterman, 2009]. Ozone c-curve retrievals and retrievals with emission 

layers are removed [Nassar et al., 2008].  TES ozone retrievals exhibit positive biases 

of approximately 3–10 ppbv throughout the lower and upper troposphere [Nassar et 

al., 2008].  While aerosols and clouds affect the vertical sensitivity of the TES 

retrievals, as characterized by the retrieval averaging kernel, they do not increase the 

bias in TES ozone measurements [Kulawik et al., 2006].  The greatest sensitivity for 

TES is between 800-600 hPa, though it does have sensitivity throughout the 

troposphere allowing for a calculation of a tropospheric column ozone value.  The 

TES tropopause height that is used in determining the column is not directly derived 

from the retrieval.  It is based on the Global Modeling and Assimilation Office 

(GMAO) Goddard Earth Observing System Model (GEOS) version 5.2 tropopause.  

 

4.2.2 OMI Measurements 
 

The Ozone Monitoring Instrument (OMI) also aboard Aura is a nadir-viewing 

UV/Visible spectrometer that measures direct sunlight and backscattered light from 

the Earth’s atmosphere  [Levelt et al., 2006].  OMI measures in three spectral regions 

(UV-1, UV-2, and VIS) over the wavelength range 270-500 nm with a spectral 

resolution of 0.42-0.63 nm.  OMI provides daily global coverage using a 2-D CCD 

detector array with a cross-track swath of 2600 km and nadir spatial resolution of 13 

km x 24 km.  OMI ozone products that are used in this study are the OMI/MLS  

tropospheric ozone column product (updated from [Schoeberl et al., 2007]) and the 

OMI level-2 ozone profile product [Liu et al., 2009]. 
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4.2.2.1 OMI/MLS tropospheric O3  
 

The OMI/MLS tropospheric ozone column is computed by subtracting the 

Microwave Limb Sounder (MLS) stratospheric column from the OMI total column 

derived using the OMTO3 algorithm.  A forward trajectory model is used to increase 

the horizontal resolution and coverage of the MLS derived stratospheric column and 

to match OMI measurement times.  Tropospheric column ozone is computed using 

two definitions of the tropopause: the 3.5 |PVU| surface and the < 2 K km-1 surface 

(approximately the World Meteorological Organization lapse rate criterion for the 

tropopause).  The PV tropopause is lower than the lapse rate tropopause in mid-

latitudes [Schoeberl et al., 2007].  To minimize errors due to low PV tropopause, I 

will use the tropospheric column computed using the lapse rate tropopause.  

Validation against ozonesonde data shows a systematic negative bias of 5-6 DU due 

to a combination of biases from OMTO3 total column and MLS stratospheric column 

[Schoeberl et al., 2007]. 

4.2.2.2 OMI level-2 tropospheric O3 
 

OMI level-2 profiles of partial ozone column densities are retrieved from the 

surface to ~60 km in 24 layers from OMI radiances using the optimal estimation 

technique [Liu et al., 2005; Liu et al., 2009]. The retrievals are constrained with 

month and latitude dependent climatological a priori ozone profiles and their 

standard deviations derived from 15 years of ozonesonde and Stratospheric Aerosol 

and Gas Experiment (SAGE) data [McPeters et al., 2007].  The retrieved profiles 

contain ~6-7 degrees of freedom for signal, with 5-7 in the stratosphere and 0-1.5 in 
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the troposphere.  In the tropics and mid-latitude summer, tropospheric information 

generally peaks between 500-700 hPa with vertical resolution of 9-14 km, and the 

retrievals are effectively sensitive to ozone down to ~800-900 hPa. OMI retrievals 

have been validated against ozonesonde observations [Liu et al., 2009].  In Northern 

mid-latitude summer, tropospheric OMI profiles agree within 5% with ozonesonde 

observations and OMI tropospheric ozone columns show a negative bias of 1.6 DU.  

The OMI tropopause pressure is based on NCEP/NCAR 40-year reanalysis daily 12 

pm LST tropopause pressure.  

4.2.2.3 OMI NO2 
  

 In this chapter I use two tropospheric NO2 column products: the OMI NASA 

standard product (Level 3) [Bucsela et al., 2008; Celarier et al., 2008] and the Dutch 

OMI NO2 (DOMINO) data product [Boersma et al., 2007].  Each of these algorithms 

begins with the same slant column but differ in their separation of the stratospheric 

column from the tropospheric column and in their calculation of the tropospheric air 

mass factor.  These differences lead to substantially different tropospheric column 

amounts [e.g., Bucsela et al., 2008].   Lamsal et al. [2010] found that over the 

continental U.S. the mean summertime standard product NO2 column was 22% 

higher than the DOMINO product and 67-74% higher than indirect estimates of 

columns based on bottom-up emission inventories and in situ surface layer 

measurements; the DOMINO column has a 25-33% high-bias with respect to the 

inferred columns.  For this work, both the standard and the DOMINO products 

provide a good representation of the spatial NO2 distributions.  I will focus on their 

precision rather than absolute accuracy during the time period of interest. 
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4.2.2.4 OMI HCHO 
 
 I use column HCHO Level-2 gridded product (v003) with a horizontal 

resolution of 0.25°x0.25° [Chance, 2002].  The OMI instrument uses spectral 

windows from 327.5 to 356.5 nm for measuring HCHO.  The overall error in the 

tropospheric HCHO column data is 25-31 % [Millet et al., 2006].  OMI retrieved 

HCHO is averaged over July 2007 for comparison with model calculated HCHO,.  

4.2.3 MODIS AOD 
 
 I use AOD from the MODIS instrument aboard the Terra satellite that is in 

Sun-synchronous polar orbit.  MODIS uses observations of solar backscatter in seven 

spectral channels (470–2100 nm) for its aerosol optical depth (AOD) retrieval 

[Kaufman et al., 1997; Tanre´ et al., 1997].  Validation with the AERONET surface 

network indicates MODIS retrieval errors are ∆AOD =  ±0.05 ± 0.2AOD over land 

[Chu et al., 2002] and ∆AOD = ±0.03 ± 0.05AOD over ocean [Remer et al., 2002] 

with respect to the AERONET surface network.  MODIS AOD is useful in 

identification of U.S. pollutant outflow events [e.g. Li et al., 2005].  Low MODIS 

AOD (< 0.2) is usually indicative of low aerosol loading over the ocean; MODIS 

AOD > 0.5 is frequently seen over urban regions in summertime eastern U.S [Li et 

al., 2005].    

4.3 WRF/Chem Simulation 
 
 The Weather Research and Forecasting model with online chemistry is used to 

simulate the outflow of pollutants during a severe smog episode in the Mid-Atlantic.  
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The base model O3 simulation of July 6-12, 2007 was described in Chapter 3. The 

RADM2 chemical simulation is driven with meteorological data from the North 

American Regional Reanalysis (NARR) and chemical initial and boundary conditions 

from the MOZART-4 model.  In this chapter, lightning NOx sensitivity simulation is 

performed to quantify the contribution of lightning NOx emissions to modeled O3 and 

NO2 tropospheric columns.  Currently, there is no thoroughly tested WRF/Chem 

lightning NOx algorithm that ensures that lightning emissions are placed in the same 

grid cells and the same times as parameterized deep convection occurs in the model, 

although such an algorithm is under development [Hopkins et al., 2010].  Therefore, 

observed flash rates are used to determine when and where lightning NOx emissions 

are placed in the model. The National Lightning Detection Network (NLDN) detects 

cloud-to-ground (CG) flash rates over the conterminous U.S. with detection 

efficiency above 90 % [Grogan, 2004].  Detection-efficiency adjusted CG flash rates 

from the NLDN were aggregated onto the model grid each hour. The resulting CG 

flash rates were then multiplied by z+1 to obtain the total flash rate, where z is the 

climatological intra-cloud/cloud-to-ground (IC/CG) ratio from [Boccippio et al., 

2001] after smoothing as in Allen et al. [2010].  I used a production rate per flash 

(both cloud-to-ground flashes (PCG) and intracloud flashes (Pic)) of 500 moles NO 

(based on results from cloud-resolved modeling of DeCaria et al., 2005 and Ott et al., 

2010) to calculate LNOx contribution.  Recent studies [e.g. Cooper et al., 2006; 

Hudman et al., 2007; Jourdain et al., 2009; Allen et al., 2010] have used NOx 

production per flash of ~500 moles NO per flash for analyses of tropospheric 

composition using the FLEXPART, GEOS-Chem, and GMI models.  In the vertical, 
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lightning-induced NO emissions are proportional to pressure convoluted by the 

segment altitude distribution of flashes from Northern Alabama Lightning Mapping 

Array (LMA) [Koshak et al.,2004; Koshak et al.,2010].   

4.4 Circulation and convection setting   
 
 The meteorological setup for the July 6-12, 2007 smog episode was described 

in detail in Chapter 3.  Over the course of the O3 event a subtropical Bermuda High 

pressure extended into the eastern half of U.S.  It produced warm and humid weather 

conditions, large-scale subsidence, and light south-westerly surface winds.  A mid-

latitude cyclone formed over southern Canada on July 8, and persisted over southern 

and central Canada, intermittently retreating northeastward under the influence of the 

Bermuda High.  Convection ahead of the warm and cold fronts associated with the 

mid-latitude cyclone produced lightning over the eastern U.S.  Throughout this work, 

I will analyze the contribution of lightning activity on July 8-11 to tropospheric O3 

and NO2 columns.  

 GOES East infrared images (Figure 4.1a) and NLDN lightning maps (Figure 

4.2a) on July 8, 12 UTC indicated lightning-generating severe storms over the Great 

Lakes and off the coast of South Carolina and Georgia. On July 9, 18 UTC the cold 

front portion of the mid-latitude cyclone stalled over Illinois and Iowa, and the warm 

front passed over northern New England.  NLDN reported lightning activity 

throughout the central U.S and over New Hampshire; locations of convective bands 

are confirmed by GOES imagery (Figure 4.1b).  On July 10, a squall line ahead of the 

approaching cold front passed through Illinois, Missouri, and Oklahoma, generating 

severe lightning conditions (Figure 4.1c).  Another band of thunderstorms passed 
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through the Washington, D.C.-Baltimore metropolitan area.  The strongest storm 

appears off the North Carolina coast in the continental pollutant outflow region on 

July 10, 18 UTC.  July 11, 18 UTC shows widespread convection ahead of a cold 

front passing from the northwest through the Mid-Atlantic region and marking the 

end of the smog episode (Figure 4.1d). 
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a) 7/8/07 12U 

b) 7/9/07 18U 

c) 7/10/07 18U 
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Figure 4.1GOES East infrared images (available at http://www.class.ngdc.noaa.gov) for selected 
convective storms during July 8-11, 2007.   

 

Figure 4.2 NLDN 24-hr flash rates for selected convective storms during July 8-11, 2007.  

 

d) 7/11/07 18U 
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 Figure 4.3 shows WRF/Chem 6-hr accumulated precipitation fields for the 

four time periods corresponding to the flash rate observations.  WRF/Chem simulates 

the spatial distribution of convective storms in agreement with GOES IR imagery.  

Storms with simulated 6-hr accumulated precipitation fields > 0.4 mm correlate well 

with locations of NLDN lightning flash rates indicating that WRF/Chem captures the 

extent of convection in agreement with observations, and lightning NOx emissions are 

placed correctly in the model.  In the next section, the contribution of lightning NOx 

emissions to tropospheric NO2 and O3 columns will be discussed.  

 

a) 7/8/07 12UTC 
 

b) 7/9/07 18UTC 
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Figure 4.3  WRF/Chem 6-hr accumulated precipitation for convective storms on a) July 8, 12 
UTC, b) July 9, 18 UTC, c) July 10, 18 UTC, and d) July 11, 118 UTC.   

  

4.5 Results and Discussion 

4.5.1 Lightning NOx sensitivity study 
4.5.1.1 WRF/Chem and OMI NO2 comparison  

 
 The WRF/Chem simulation with lightning NOx emission is used for 

interpretation of OMI and TES O3 maxima off the east coast over the Atlantic where 

there are no in situ observations.  First, I compare LNOx WRF/Chem simulation with 

the OMI NO2 tropospheric column.  Figure 4.4 compares tropospheric NO2 columns 

from the LNOx and base modeling simulations with the OMI Standard NASA Level 3 

gridded (0.25°x0.25°) product and the OMI DOMINO product on July 9, 18 UTC.  

OMI NO2 cloud-free data availability is best on this day of the simulation.  OMI 

c) 7/10/07 18UTC 
 

c) 7/11/07 18UTC 
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DOMINO Level 2 was aggregated onto a 0.5°x0.5° grid; OMI DOMINO averaging 

kernel was not applied to the model for this comparison.  OMI NASA standard 

product shows more cloud-free pixels than the DOMINO product.  Both OMI 

products and the base and LNOx model simulations show enhanced NO2 in the 

densely populated northeast, along the major urban corridor stretching from 

Washington, D.C/Baltimore to New York City. Over this corridor, OMI standard 

NASA product shows NO2 columns of 8-10 x1015 molecules/cm2 while OMI 

DOMINO product shows columns of 4-6x1015 molecules/cm2.  WRF/Chem LNOx 

sensitivity run and base case indicate 4-6 x1015 molecules/cm2 along the northeast 

urban corridor.  NO2 columns within the pollution outflow plume off the eastern U.S. 

over the Atlantic Ocean are measured at 1-4 x1015 molecules/cm2 (OMI NASA), 

mostly 1-2x1015 molecules/cm2 (OMI DOMINO) and 1-2 x1015 molecules/cm2  
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Figure 4.4 Distributions of tropospheric NO2 columns for July 9, 18 UTC for a) WRF/Chem 
simulation with lightning NO emissions (E_lightNO) , b) WRF/Chem with standard emissions 
(E_base), c) OMI (NASA standard), and d) OMI DOMINO. 

 
(WRF/Chem).  Major urban areas such as New York, Washington/Baltimore, and 

Chicago are clearly visible in OMI and the model.  Signatures of power plant NO2 

emissions are also seen in the Ohio River Valley and Pennsylvania.  In rural regions 

across the domain the model underpredicts column NO2 by 30-40 % with respect to 

OMI standard product.  OMI standard product provides the best data coverage on July 

9, 18 UTC – at the time of thunderstorm activity stretching from Arkansas to Georgia 

in the southeast and in northern New England. Unfortunately, extensive cloud cover 

north of Massachusetts limits model comparison with satellite for that storm.  Part of 
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the NO2 increment due to lightning seen in the model (Figure 4.4) over Arkansas is 

visible in the OMI NASA standard product. Within the cloud-free portion of the OMI 

NO2 signal, the model calculates NO2 column values of 4-10 x1015 molecules/cm2, 

with maxima reaching 14.8 x1015 molecules/cm2.  OMI NASA standard NO2 product 

shows peak values of 10.6x1015 molecules/cm2 to the south of the model peak. OMI 

DOMINO product shows 2-4 x1015 molecules/cm2 in the vicinity of the storm, but 

most of the signal is lost due to extensive cloud cover.  Overall, lightning sensitivity 

simulation produced expected NO2 tropospheric enhancement in the vicinity of 

convective storms, as identified by OMI on July 9. 

 

Figure 4.5 Distributions of tropospheric NO2 columns for July 9, 18 UTC for a) DOMINO 
product b) WRF/Chem simulation with lightning NO emissions (E_lightNO) on 0.5°x0.5° 
DOMINO grid, c) WRF/Chem after application of the DOMINO averaging kernel, and d) 
difference between DOMINO and WRF/Chem (DOMINO AK).  
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Figure 4.5 shows the comparison of DOMINO product and WRF/Chem 

model before and after application of the DOMINO averaging kernel on a 0.5°x0.5° 

degree grid.  Application of the DOMINO averaging kernel slightly decreased 

WRF/Chem tropospheric column along the northeast urban corridor and the Ohio 

River Valley.  The difference between DOMINO and WRF/Chem convolved with 

DOMINO AK is 0.5-1.5 ppbv over parts of Maryland, Pennsylvania, and New Jersey. 

Large negative differences on the edge of extensive clouds in Northern New England 

are probably due to large errors in DOMINO retrievals in the presence of clouds.  In 

general, WRF/Chem processed with DOMINO AK is in agreement with DOMINO 

NO2 product.     

4.5.1.2 WRF/Chem and OMI HCHO comparison 
 
 Average OMI and WRF/Chem tropospheric HCHO columns averaged over 

July 6 – July 11, 2007 are shown in Figure 4.6 and Figure 4.7, respectively.  Highest 

HCHO values are expected in regions with high deciduous, coniferous and mixed 

forest density such as along the Appalachian Mountains and also along agricultural 

areas.  Emitted isoprene quickly reacts with hydroxyl radical (OH) in the presence of 

sunlight to form HCHO.  WRF/Chem is underestimating the peak HCHO column 

values in the Southeast U.S.  This suggests that some of the model biases in the 

Southeast U.S. (discussed in Chapter 3) are not caused by high biogenic VOC 

emissions in the model.  In fact, specification of isoprene emissions is an inherent 

model uncertainty.  Here, biogenic emissions are calculated each time step using the 

BEIS3.11 algorithm.  Biogenic isoprene emissions are a function of temperature and 

photosynthetic active radiation [Guenther et al., 1993]. Isoprene emissions are highly 
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dependent on the leaf temperature assigned to a model grid box [Pierce et al., 1998]. 

Grell et al. [2005] improved model performance for the summer of 2002, by 

assigning ambient air temperature to leaf temperature, instead of the default ground 

surface temperature.   

 
Figure 4.6 OMI total column HCHO averaged over July 6 – July 11, 2007.  July 2007 monthly 
mean OMI HCHO is similar to this 7-day mean.  Stratospheric contribution to total HCHO 
column is small.  
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Figure 4.7 WRF/Chem tropospheric column HCHO averaged over July 6-11, 2007.   

 
Figure 4.8 Frequency distribution of satellite-retrieved (blue line) and modeled HCHO (red line) 
for July 6-11, 2007 for a) Northeast U.S. [80°W-90°W; 32°N-36°N], and b) Southeast U.S. [75°W-
82°W; 36°N-42°N]. 

 Figure 4.8 shows the frequency distribution of WRF/Chem and OMI HCHO 

for July 6-11, 2007 over the northeast U.S. [80°W-90°W; 32°N-36°N], and Southeast 

U.S. [75°W-82°W; 36°N-42°N].  The maximum model HCHO columns are 

approximately 20 x1015 molec/cm2; observed HCHO peaked at 60 x1015 molec/cm2. 
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The model overpredicts the frequency of average HCHO columns less than 15 x1015 

molec/cm2.  In general, HCHO columns in the model are underpredicted.  The base 

case simulation and lightning sensitivity simulation produced similar results.  

Inclusion of lightning NOx emissions has little impact on HCHO tropospheric 

column.   

4.5.1.3 WRF/Chem NO2 Column Sensitivity 
 
 The contribution of lightning NOx emissions to the tropospheric column is 

defined as the difference between lightning NOx sensitivity simulation and the base 

simulation described in Chapter 3.  Figure 4.9 shows the July 8 -11, 2007 change in 

tropospheric NO2 columns associated with lightning NOx emissions. Largest lightning 

NOx contributions are seen over and downwind of convective events.  On July 8 and 

9, large scale subsidence associated with an anticyclone over the Mid-Atlantic region 

suppresses convection and lightning activity.  On July 8, 12 UTC, the LNOx 

contribution in the vicinity of convective storms over the Great Lakes and off the 

coast of South Carolina (i.e. where LNOx NO2 column fraction is more than 80 %) is 

4.14-4.61 x1015 molecules/cm2, with peak values of 15-22 x1015 molecules/cm2. 

These values are larger than what was obtained for eastern U.S. by Martin et al. 

[2007]. The contribution of lightning-induced NOx from these storms to downwind 

TES and OMI O3 retrievals during the Mid-Atlantic smog event will be examined in 

more detail in section 4.5.2.  Afternoon thunderstorm activity is seen on July 9 over 

northern New England and part of southeast U.S.  July 10 stands out with greatest 

LNOx contribution across the domain.  A band of thunderstorms passing through the 

Washington, D.C.-Baltimore metropolitan area is clearly seen in peak NO2 values of 
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12-14 x1015 molecules/cm2. 

 

Figure 4.9 NO2 tropospheric column difference between WRF/Chem simulation with lightning 
NO emissions (E_lightNO)  and standard simulation (E_base) for July 8-11, 2007 smog event. 

 Upper level O3 enhancements associated with convective activity in this region were 

analyzed in more detail using Beltsville, MD ozonesondes and WRF/Chem in section 

3.5.4.  The strongest storm appears off the North Carolina coast in the continental 

pollutant outflow region with ∆NO2 above 40 x1015 molecules/cm2.  While the 

calculated twenty four hour accumulated precipitation within the storm off the coast 

of North Carolina on July 10, 18 UTC was 12-25 mm in the model and 100-125 mm 

in NCEP hourly, multi-sensor National Precipitation Analysis (NCEP NPA).  The 

model is possibly underestimating the intensity of convective vertical mixing within 

these intense storms.  July 11, 18 UTC shows widespread convection ahead of a cold 
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front passing from the northwest through the eastern U.S.  The cold front pushes 

anthropogenic pollution in combination with lightning-induced NOx off the east coast 

over the western North Atlantic.  

4.5.1.4 WRF/Chem Surface and Column O3 Sensitivity 
 
 Next, I determine the contribution of lightning NOx to surface O3 and 

tropospheric column O3.   Figure 4.10 shows the increase in model surface 8-hr 

maximum ozone in the Mid-Atlantic region due to lightning NOx emissions.  Ozone 

increases are expected in regions of enhanced NO2 (seen in Figure 4.9) and 

downwind of convective events. Transport of lightning-produced NO2, photochemical 

production of O3, and longer lifetime explain more widespread ∆O3 distribution than 

∆NO2 (compare Figure 4.9 and Figure 4.10).  On July 8, the effects of convective 

storms over the Great Lakes on surface O3 are negligible; thunderstorms off the 

southeast coast produced 4-6 ppbv enhancements.  On July 9, 6-8 ppbv surface O3 

enhancements are seen over Arkansas, northern Alabama, and in the pollutant 

outflow region off the coast of North Carolina.  July 10, 2007 convective activity in 

the Midwest increased surface O3 by 4-6 ppbv slightly improving average hit rate 

from 44.6% in the base simulation to 46.4 % and critical success index (CSI) from 

30.6 % to 31.1 %.  Greatest enhancements of 8-10 ppbv are seen in the southeast U.S. 

on July 11.  Overall, lightning emissions slightly increased surface O3 model bias and 

error with respect to Air Quality System (AQS) (Table 4.1), but improved 

representation of the upper troposphere (as will be discussed in Table 4.4).    
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Figure 4.10 Surface 8-hr maximum ozone difference between WRF/Chem simulation with 
lightning NO emissions (E_lightNO)  and standard simulation (E_base) for July 8-11, 2007 smog 
event. 

The contribution of lightning NO to surface O3 is shown as a function of surface O3 

concentrations (from e_base) in Table 4.2.  In general, the LNOx contribution to 8-hr 

maximum O3 is largest on good air quality days (e.g., O3 < 65 ppbv); contributions on 

poor air quality days are usually small.  Although, on July 11, widespread convection 

ahead of the approaching cold front yields average ∆O3 values of 1.51-1.99 ppbv for 

all levels of air quality.  Typically, lightning-generating convective storms are 

conducive to mixing polluted boundary layer with cleaner upper level air; conversely, 

worst air quality days result from stagnant conditions and lack of convective storms.  
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MB 

(ppbv) 

NMB 

(%) 

RMSE 

(ppbv) NME (%) r 

σ 

(ppbv) 

E_base 0.59 1.14 11.01 16.22 0.7 10.99 

E_lightNO 1.46 2.81 11.39 16.89 0.68 11.29 

Table 4.1 Average discrete evaluation results for observed and simulated 8-hr maximum ozone 
at AQS sites for WRF/Chem base (e_base) and lightning sensitivity run (e_lightNO).  Evaluation 
of discrete forecasts was done using mean bias (MB), normalized mean bias (NMB), root mean 
square error (RMSE), normalized mean error (NME), correlation coefficient (r), and standard 
deviation (σ).   

 
  O3 <65  65 ≤ O3 < 75 75 ≤ O3 <85 O3 ≥85 

20070708 0.57 0.43 0.42 0.25 

20070709 1.14 0.29 0.22 0.18 

20070710 1.70 0.86 1.02 0.78 

20070711 1.51 1.86 1.99  

All 1.23 0.61 0.62 0.50 

Table 4.2 Mean contribution to surface 8-hr maximum O3 (ppbv) in e_lightNO, varying with 
model air quality in the e_base simulation.  

 
 Figure 4.11 shows WRF/Chem recent lightning contribution to tropospheric 

column ozone.  Lightning makes a broad contribution across the domain due to upper 

tropospheric NOx lifetime of a few days.  On July 9, 6-9 DU enhancements are seen 

off the coast of southeast U.S.  Most notable enhancements of 10-12 DU are on July 

10 and July 11, days of widespread convective activity in the region.  O3 

enhancements of 10-12 DU are seen in the pollutant outflow region off the North 

Carolina coast on July 10 and over northern New England on July 11.  Results from 

this section will be used to distinguish lightning-induced O3 from anthropogenic O3 

within tropospheric column observed from space.   

 My results should be considered in the context of nonlinear response of O3 

production to LNOx emissions.  I cannot quantify LNOx O3 production in the real 
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atmosphere.  The lightning-induced O3 contribution is due to a combination of 

sources, such as LNOx emissions and anthropogenic or natural hydrocarbons 

entrained into convective thunderstorms.   

 

Figure 4.11 O3 tropospheric column difference between WRF/Chem simulation with lightning 
NO emissions (E_lightNO)  and standard simulation (E_base) for July 8-11, 2007 smog event. 

Another limitation of the LNOx sensitivity simulation is possible introduction of 

LNOx emissions in the mid to upper troposphere where model convection is not co-

located.  This could result in slower LNOx dispersal, temporary accumulation of NOx 

and excessive O3 production in the model, in the presence of O3 precursors.  Until a 

WRF/Chem algorithm that allocates LNOx emissions to modeled convection grid 

cells is available [Hopkins et al., 2010], approximation methodology used here is a 

starting point for WRF/Chem LNOx studies. 



 

 111 
 

4.5.2 Model and Satellite Measurement Comparison 
 
 For comparison with TES special observations, OMI and WRF/Chem model 

ozone profiles are sampled along the Aura orbit for the TES Step and Stare 

observations over the Mid-Atlantic region on July 7, 9 and 11, 2007.  All profiles are 

interpolated onto the TES pressure grid.  In the next section, I compare TES, OMI, 

OMI/MLS, and WRF/Chem derived tropospheric column ozone sampled along the 

TES orbit.  This comparison does not use TES and OMI averaging kernels, and is 

meant as a qualitative comparison of the spatial distribution of model-based and 

satellite-based TCO values.  In order to take into consideration the vertical sensitivity 

of TES and OMI instruments, in section 4.5.2.3  I apply TES and OMI averaging 

kernels to WRF/Chem for comparison of TES and OMI ozone retrievals. 

4.5.2.1 TCO and AOD analysis 

 Figure 4.12 shows OMI/MLS (top), OMI (second row), and WRF/Chem  

(third row) calculated tropospheric column ozone over the Mid-Atlantic region for 

July 7, 2007 18 UTC (left), July 9, 2007 18 UTC (center) and July 11, 2007 17 UTC 

(right).  TES TCO is overlaid on top of each sub-plot.  The bottom row compares 

model smoothed with OMI averaging kernel (background) and model smoothed with 

the TES averaging kernel (filled circles) for the same time period.  Discussion of 

averaging kernel analysis will follow in section 4.5.2.3.  TES profiles that were 

filtered out based on the TES quality control flag are not plotted.    Outflow of 

pollution off the U.S. east coast over the Atlantic Ocean is captured by all satellite 

products and the model during the three days of comparison.     
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Figure 4.12  OMI/MLS (top row), OMI (second row), E_lightNO WRF/Chem (third row)  
tropospheric column ozone over the Mid-Atlantic region for July 7, 2007 18 UTC (left),  July 9, 
2007 18 UTC (center) and July 11, 2007 17 UTC (right).  TES TCO is overlaid on top of each 
sub-plot.  The bottom row shows WRF/Chem smoothed with OMI averaging kernel (AK) and 
WRF/Chem smoothed with TES AK (filled in circles along TES overpass.).  OMI, OMI/MLS, 
and TES tropopause pressures are used for respective TCO calculations. WRF/Chem TCO was 
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calculated using the average of OMI, OMI/MLS, and TES tropopause pressure along the TES 
overpass (i.e. 175 hPa). 

 
 On July 7 WRF/Chem and OMI are showing a large region of TCO 

enhancement (Figure 4.12d and Figure 4.12g) off the east coast of the U.S. downwind 

of a July 5-6, 2007 smog event in South Carolina and Georgia.   

 Concurrent high AOD and O3 are associated with boundary layer pollution 

outflow. Boundary layer ozone formation is sensitive to column aerosol content and 

thickness of the aerosol layer [Kondragunta, 1997].  AOD from MODIS (Figure 

4.13a) indicates enhancements across North Carolina and South Carolina 

corresponding to the observed OMI O3 enhancements in Figure 4.12d.   

   

 

 

Figure 4.13 Aerosol optical depths at 550 nm from Terra/MODIS for (a) July 7 and (b) July 10. 
White areas indicate missing data.    
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Of the three TES overpasses the greatest TCO enhancements (60-64 DU) 

occur on July 9 in the continental pollutant outflow region over the western North 

Atlantic Ocean (31°N - 39°N and 71.6°W - 69.1°W).  These ozone columns are in the 

85th percentile of all July (2005-2008) TES measurements in this region.  On the 

same day, OMI detects peak TCO values off the coast of North Carolina and South 

Carolina.  OMI/MLS detects continental pollution outflow, but TCO values are the 

lowest of all calculated TCO products not exceeding 50 DU.  In addition, OMI/MLS 

TCO is very low over the Northern New England and Great Lakes states.  This is at 

least partially because the derived stratospheric ozone over northern New England 

and Canada is believed to be biased high and is subtracted off the OMI total column 

to yield small TCO values.  There are typically systematic low biases in the surface to 

200 hPa column [Schoeberl et al., 2007] of about 6 DU due to high bias in the MLS 

stratospheric column.  The biases are not subtracted in the TCO comparison to 

represent the product as it is available to the scientific community. 
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Figure 4.14 OMI/MLS and OMI tropospheric column ozone on July 10, 2007 18 UTC. 

Early morning (~10:30 AM) July 10 MODIS AOD shows a mass of 

particulate matter extending from the mid-Atlantic region and New England out over 

the ocean (Figure 4.13b).  OMI and OMI/MLS show significant TCO amounts across 

the Washington, D.C region at this time (Figure 4.14).  MODIS AOD off the coast of 

North Carolina is not available, but AOD > 0.5 are visible in pixels adjacent to 

missing data.  OMI observations on July 10 over North Carolina show an O3 peak of 

60-65 DU (Figure 4.14) that is attributed to surface pollution and lightning-induced 

NO2 and O3.  

On July 11, a midlatitude cyclone is positioned over the Northeast U.S. with 

the warm front pushing through Massachusetts and the cold front stretching across 
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New York, Pennsylvania, and West Virginia (Figure 3.1e).  OMI, TES and 

WRF/Chem identify high TCO values (> 60 DU) over northern New England states 

and Quebec, Canada associated with convective outflow  and lightning ahead of the 

warm front (Figure 4.12c,f,i).  Also a low level jet exists east of the Appalachian 

Mountains and transports pollution from southwest to northeast mixing with outflow 

ahead of the cold front as seen in TCO enhancements.  High TCO values (> 65 DU) 

in the OMI and OMI/MLS products on July 11 over the Great Lakes region are 

associated with proximity of the 300 mb jet stream.  The tropopause is ill defined at 

this location and uncertainties in stratospheric O3 column are affecting the 

tropospheric O3 column.  WRF/Chem is unable to capture this intrusion since the 

model does not have stratospheric chemistry and the stratosphere is not well 

represented in the regional model.  Overall, WRF/Chem simulates the continental 

outflow of pollution over the Atlantic Ocean in general agreement with satellite 

detected outflow, except that WRF/Chem peak TCO in the outflow region does not 

extend as far south as OMI and TES TCO (Figure 4.12g,h).   

Differences in tropopause heights range from 0.1-1 km between the three 

satellite products.  To minimize differences in TCO values due to differing 

tropopause heights, a pressure-averaged mean volume mixing ratio (VMR in ppmv) is 

calculated following the definition by Ziemke et al. [2006]: 

1.27( )
surface tropopause

TCOVMR
P P

=
−

,                  (1) 

where TCO is in DU and P is in hPa. 

TES, OMI/MLS, OMI, and WRF/Chem (e_lightNO) calculated tropospheric 

ozone VMRs along the on July 7, 9, and 11 TES overpasses are shown in Figure 4.15.  
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To separate the signature of continental outflow pollution I compare TCO VMR 

values over land and ocean (Table 4.3).  Overall, TES detects the highest TCO VMR 

values, with average values of 47.5-49.5 ppbv over the ocean and 38.1-44.0 ppbv 

over land.  Most of the land retrievals are in the regions of low pollution, while ocean 

retrievals sample the continental outflow region. OMI and OMI/MLS average TCO is 

also greater over the ocean.  OMI/MLS has the lowest TCO values.  WRF/Chem 

average TCO VMR is 41.8-45.0 ppbv over the continental outflow region and 30.9-

44.7 ppbv over land.  WRF/Chem simulated outflow region does not extend as far 

east as sampled on July 9 and 11 by the TES and OMI overpasses.  This is probably 

because the model underpredicted peak 8-hr maximum O3 on July 9 and was late in 

clearing out pollutants following the passage of the cold front in late afternoon July 

11 (Section 3.5).   
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Figure 4.15 TES, OMI/MLS, OMI, and WRF/Chem (E_lightNO) calculated VMR tropospheric 
column ozone along the TES overpass on July 7, 2007 18 UTC,  July 9, 2007 18 UTC and July 11, 
2007 17 UTC.  Direction of Aura overpass is from southeast to northwest (68°W to 80°W). 
Vertical line separates land profiles on the left from ocean profiles (right). 
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Model mean biases and correlations with OMI, OMI/MLS, and TES VMR 

along TES overpasses for the base and lightning sensitivity simulations are 

summarized in Table 4.4.  Model correlation coefficients (R) are slightly improved 

from 0.46-0.64 in e_base to 0.47-0.67 in e_lightNO. Model mean bias with respect to 

OMI and TES is improved from -10.1 and -10.7 ppbv to -5.38 ppbv and -6.40 ppbv 

with inclusion of lightning NOx emissions.  

  TES (ppbv) OMI/MLS (ppbv) OMI (ppbv) WRF/Chem (ppbv) 

  Ocean Land Ocean Land Ocean Land Ocean  Land 

7/7/2007 47.5 41.1 36.0 26.7 44.7 39.3 45.0 30.9 

7/9/2007 49.5 38.1 40.1 24.3 44.5 39.6 41.8 35.7 

7/11/2007 49.5 44.0 39.2 34.1 44.6 47.5 44.6 44.7 

Table 4.3 TES, OMI/MLS, OMI, and WRF/Chem TCO averages over ocean and land for July 7, 
9, and 11, 2007. 

 
 (WRF, OMI/MLS) (WRF, OMI) (WRF, TES) 

 R MB R MB R MB 

E_base 0.64 4.56 0.50 -10.1 0.46 -10.7 

E_lightNO 0.67 9.30 0.65 -5.38 0.47 -6.40 

Table 4.4 Correlations and mean biases for VMR calculated along TES overpasses for July 7, 9, 
and 11, 2007. 

Mean bias with respect to OMI/MLS increased from 4.56 ppbv to 9.30 ppbv, 

due to lightning-induced O3 enhancements over New England that were not seen in 

OMI/MLS TCO on July 11 but seen in WRF/Chem, TES and OMI (Figure 4.11d, 

Figure 4.12f, Figure 4.12i).  Overall, satellite instruments and the LNOx model 

simulation detect the greatest TCO values over the continental outflow region over 

the ocean.  Adding lightning improved model and observation agreement. 
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4.5.2.2 TES and OMI O3 and CO zonal averages and a priori  

 Figure 4.16 shows zonal averages (86°W - 68°W) of OMI O3, TES O3, TES 

CO, and their respective a prioris along the TES overpass for July 7, 9 and 11, 2007.  

The enhanced TES O3 and CO from surface to 700 hPa between 31°N–35°N and 

37°N -39°N is due in part to Mid-Atlantic pollution outflow transported by the 

predominantly westerly upper-level winds.  Large enhancements in O3 and CO are 

seen in ocean profiles (between 31°N–35°N and 37°N -39°N) that are not identified 

in the TES a priori(Figure 4.16 d,f). 

 

Figure 4.16 Zonal mean (68°W-86°W) concentration of a) OMI O3 a priori, b) OMI O3; c) TES 
O3 a priori, d) TES O3; e) TES CO a priori, and f) TES CO averaged over July 7, 9, and 11, 2007. 

Surface pollution and lightning-induced O3 contribute to the high tropospheric 

O3 column over the continental outflow region.  LNOx O3 is also seen in the northern 

New England high tropospheric O3 values in TES and OMI.  While TES and OMI a 
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priori profiles are similar, OMI shows a greater upper tropospheric O3 contribution 

north of 43°N (Figure 4.16b).  In these figures, OMI does not show substantial 

pollution outflow along the TES retrievals, however it does show considerable 

outflow 1-3° west of the TES overpass (Figure 4.12d, Figure 4.12e). 

4.5.2.3 OMI and TES averaging kernel analysis   
 

Direct intercomparison of TES and OMI ozone profile products requires 

accounting for the different vertical resolutions and sensitivities of the two 

instruments.  TES and OMI retrievals contain unique averaging kernels (AK) and a 

priori profiles.  When comparing satellite measurements to model simulations with 

greater vertical resolution than satellite retrievals, retrieval averaging kernels need to 

be applied to the high-resolution model output so the model is sampled with the same 

vertical sensitivity that the instrument is sampling the real atmosphere.  The model 

ozone profiles (xmodel) are convolved with the measurement averaging kernel matrix 

(A) to obtain the same vertical resolution profiles (x’model) as satellite retrievals: 

'
model_TES _ model _A ( )apriori TES TES apriori TESx x x x≈ + −                                                                 (2)  

'
model_OMI _ model _A ( )apriori OMI OMI apriori OMIx x x x≈ + −                                                               (3)  

Where xapriori is the a priori profile used in OMI or TES retrievals.  The difference 

between the model ozone processed with the TES and OMI O3 averaging kernels is 

given by: 
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model_TES model_OMI' 'x x∆ ≈ −                                                                                                         (4)  

Zhang et al. [2010] used a chemical transport model (GEOS-Chem) as a platform for 

intercomparison of tropospheric ozone retrievals from TES and OMI for 2006.  They 

found that 500 hPa differences between TES and OMI in summertime northern mid-

latitudes exceeded 10 ppbv. Here I use WRF/Chem as a basis for comparing TES and 

OMI O3 measurements for a smog event in the Mid-Atlantic region. WRF/Chem 

output is sampled at the location of satellite retrievals and interpolated onto TES (and 

OMI) pressure levels.  Then using Equations 2 (and 3), the TES (and OMI) averaging 

kernel is applied to the interpolated model profiles to produce WRF/Chem profiles 

smoothed to represent TES (and OMI) vertical sensitivity. 

 Figure 4.17 shows the effect of smoothing WRF/Chem O3 profiles with OMI 

vs. TES averaging kernels for all co-located Aura retrievals during the July 7, 9, and 

11, 2007 smog event separated into retrievals over land and ocean.  Correlations 

between the model smoothed with OMI AK and model smoothed with TES AK over 

ocean and land are 0.69 and 0.55, respectively.   
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Figure 4.17 Differences between WRF/Chem (E_lightNO) smoothed with OMI averaging kernel 
and TES averaging kernel for Aura retrievals on July 7, 9, and 11, 2007 separated into ocean 
retrievals and land retrievals.   The best-fit line is also shown.    

 
The lower correlations over land may be due to different vertical distributions over 

land and water.  Generally more surface ozone is found over land than over water.  

Mean differences between TES and OMI (from Eq 4.) are 3.1 ppbv over ocean and 

7.5 ppbv over land. In Figure 4.12j -Figure 4.12i differences between model 

smoothed with TES and model smoothed with OMI averaging kernels is generally 

lower off the U.S. east coast and higher over northern New England States and 

southern Canada.  The high bias of TES with respect to OMI is largest on July 7 over 

Southern Canada and on July 11 over northern New England. 

  Table 4.5 shows statistical analysis of model to satellite measurement 

comparison, before and after application of the TES and OMI averaging kernels.   

Mean bias, correlation coefficient (r) and reduced chi-squared (χ2) were calculated for 

1) TES(OMI) and raw WRF profiles and 2) TES(OMI) and WRF profiles convolved 
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with the TES(OMI) averaging kernel within three levels P> 700 hPa, 500-700 hPa 

and P>175 hPa.  Reduced chi-squared (χ2) analysis is given by: 

2
2

1

1 ( )
N

i i

i i

Obs Model
N

χ
σ=

−
= ∑ ,         (5) 

 where σ  is observational uncertainty, contained within TES and OMI data sets.  In 

general, a reduced chi-squared value of one indicates the model profile is within 

uncertainty of observations.    

 Overall, application of the averaging kernel improved model to satellite 

observation comparison.  Application of the TES averaging kernel lowered model 

mean bias for the tropospheric column (P > 175 hPa) and lower troposphere (P>700 

hPa) to -2.88 ppbv and -7.68 ppbv, yet slightly increased negative bias within the 

500-700 hPa layer.  Correlation coefficient decreased and reduced chi-squared 

increased following application of the averaging kernel.  Model columns can decrease 

or increase after convolution with the averaging kernel, depending on the initial shape 

of model vertical profile.  WRF/Chem peak TCO values were displaced to the west of 

TES retrieved TCO over the western North Atlantic, so low correlation values and 

high reduced chi-squared values are expected.  Application of the OMI averaging 

kernel improved model to OMI comparison.  Mean bias for the tropospheric column 

and lower troposphere was lowered, correlation coefficient was increased and 

reduced chi-squared value is pushed closer to unity (MB= -5.88 ppbv, r = 0.8, χ2= 

1.59).  Between 500 hPa and 700 hPa, low model mean bias slightly increased.  

Statistical comparison shows that application of OMI/TES averaging kernels 

generally improves the OMI/TES and model comparison. 
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    TES OMI 

    WRF Raw  

WRF 

(TES AK) WRF Raw 

WRF 

(OMI AK) 
P 

> 
17

5 
hP

a 

MB (ppbv) -19.3 -2.88 7.12 -5.88 

r 0.46 0.19 0.52 0.80 

χ2 79.2 133.2 2.58 1.59 

50
0-

70
0 

hP
a 

MB (ppbv) -1.91 -2.74 -6.94 -7.27 

r 0.19 0.03 0.3 0.45 

χ2 11.1 27.2 5.02 2.61 

P 
> 

70
0 

hP
a MB (ppbv) -13.1 -7.68 -4.19 -5.67 

r 0.10 -0.09 0.34 0.42 

χ2 49.9 59.2 1.96 1.16 

Table 4.5 Comparison of mean bias, correlation coefficient (r), and chi-squared of TES (OMI) 
and raw WRF and TES (OMI) and WRF convolved with TES (OMI) averaging kernel for three 
levels: P > 175 hPa, 500-700 hPa, and P > 700 hPa.  

  

 I initialized HYSPLIT [Draxler and Rolph, 2003] back trajectories from July 

7 TES land retrievals with highest biases with respect to OMI.  Back trajectories 

confirmed northwest to southeast flow through dense smoke west of the Hudson Bay 

at about 800 hPa on July 6 0-12 UTC.   
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Figure 4.18 NOAA HYSPLIT back trajectories starting at 4km from TES observations on July 
7, 2007 18 UTC where TES-OMI bias exceeded 30 ppbv.  

 

The National Geophysical Data Center (NGDC) at National Oceanic and 

Atmospheric Administration (NOAA) satellite fire detections analyses indicated 

forest fires and smoke layer in this region of northern Manitoba, Canada during July 

5-7, 2007 (Figure 4.19).  
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Figure 4.19 Fire locations identified by MODIS, AVHRR, and GOES during July 5-7, 2007. 
Analyzes smoke is shaded. Plot generated by National Geophysical Data Center (NGDC) at 
National Oceanic and Atmospheric Administration (NOAA): 
http://map.ngdc.noaa.gov/website/firedetects/viewer.htm.  

 
 TES is an infrared spectrometer and has greater sensitivity to boundary layer O3 than 

the ultraviolet OMI spectrometer.  Boundary layer smoke plumes from the Canadian 

forest fires are sampled better by the TES instrument.  Therefore at least a portion of 

the 30 ppbv TES - OMI bias on July 7 is likely due to O3 with a forest fire source.  On 

July 11, both TES and OMI measure O3 tropospheric column increase ahead of the 

approaching warm front, but some of the maxima are not co-located.  Even after 

adjusting TES O3 amounts for their assumed 3-7 ppbv high bias, TES VMR in the 

continental pollutant outflow region remain above 70 ppbv.       

http://map.ngdc.noaa.gov/website/firedetects/viewer.htm�
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4.5.3 Source of high TES and OMI ozone distribution  
 
 The NOAA HYSPLIT model [Draxler and Rolph, 2003] was run with 

NCAR/NCEP 2.5° x 2.5° global reanalysis meteorological data to analyze the source 

of high ozone air (observed by TES and OMI) off the coast of Delaware, Maryland, 

Virginia, North Carolina, and South Carolina.  TES profile locations during the July 

9, 2007 Step and Stare overpass were used to initialize 72-hour back trajectories.  

Back trajectories were run starting at 2 km, 4 km, and 7 km.  TES measurements in 

the continental outflow region are influenced by two regimes of back trajectories:  1) 

northwesterly wind that passes over the Great Lakes into the Mid-Atlantic region and 

2) westerly wind from Louisiana and Florida.  Both regimes are influenced by a 

combination of boundary layer pollution and lightning.  

 

 

 

 

 
 
 

Figure 4.20 NOAA HYSPLIT back trajectories starting at 2 km, 4km, and 7 km from TES 

observations on July 9, 2007 18 UTC for Regime 1. 

Figure 4.20 shows the results for three levels in the lower and middle 

troposphere for regime 1.  TES tropospheric column ozone in this area peaked at 64 

DU.  The air mass has slowly passed over the Delaware, Maryland, and Virginia 

region within the previous 24 hours at a fairly constant altitude of 2 km.  The 

a) 2 km  b)4 km  c) 7 km  
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boundary layer in the model extends up to 2500 m in the late afternoon on July 8, 

2007 at the time of the calculated back trajectories in the region.  The air mass picked 

up the boundary layer pollution along its path.  During the preceding 48 hours the air 

mass moved quickly over Lake Michigan and Lake Superior.  For all altitudes the air 

mass passed over the same region: the Great Lakes, the Ohio River Valley into the 

Mid-Atlantic region.  Analysis of NLDN lightning maps showed that regime 1 back 

trajectories were also affected by lightning-induced nitrogen oxides.  Regime 1 back 

trajectories started at 4 km and 7 km passed through a storm over Lake Michigan 

(discussed in section 4.5.1.3) at an altitude of 3.5 – 8.5 km at about 12 UTC on July 8, 

2007.     

 
 
 
 

Figure 4.21 NOAA HYSPLIT back trajectories starting at 2 km, 4km, and 7 km from TES 

observations on July 9, 2007 18 UTC for Regime 2. 

 

TES tropospheric column ozone for regime 2 reached a maximum of 61 DU.   

According to back trajectories starting at 2 km for this regime (Figure 4.21), the slow 

moving air mass passed over coastal North Carolina, South Carolina, and Georgia on 
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July 7, 2007, picking up surface pollution as reported by AQS ground stations. NLDN 

lightning maps showed that regime 2 back trajectories were also influenced by LNOx 

(discussed in section 4.5.1.3).  Regime 2 back trajectories started at 4 km and 7 km 

passed through a storm over Georgia and parts of South Carolina at an altitude of 5 – 

6.5 km at about 18-23 UTC on July 8, 2007.  Cloud-to-ground flash rates of 10-50 

flashes/hr were observed during this 4-6 hr long storm.   

 Following convection, a large percentage of lightning-induced NOx remains in 

the middle and upper troposphere [Ott et al., 2010], where the lifetime of NOx is 

longer and photochemical production of ozone is more efficient [Wu et al., 2007] than 

in the boundary layer.  GEOS-Chem simulated sensitivity of tropospheric O3 columns 

to lightning NOx emissions were on the order of 8-10 DU over the pollutant outflow 

region off the coast of Georgia and South Carolina [Martin et al., 2007].  The LNOx 

contribution to regimes 1 and 2 was only about 1-2 DU, due to the long travel time 

and mixing of the lightning affected air masses. A combination of lightning-induced 

nitrogen oxides and boundary layer pollution contributed to the TES reported TCO in 

regimes 1 and 2 over the western North Atlantic Ocean.   

4.5.4 O3-CO over the outflow region 
 
 O3-CO correlations can give insight into the source of an increase in O3 and 

CO pollutants in the plume sampled by the TES instrument.  Figure 4.22 shows TES 

O3-CO scatter plot for three Step and Stare overpasses within the pollutant outflow 

region (30°N – 40°N) during July 7-11, 2007.    Only observations from surface to 

600hPa are used to exclude the influence of stratospheric intrusions at the tropopause 

interface.  A linear regression line is calculated using the reduced major axis (RMA) 
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method [Hirsch and Gilroy, 1984], where the slope (∆O3/∆CO) represents the O3-CO 

enhancement ratio.  For the analyzed overpasses, TES O3 and CO show a positive 

enhancement ratio of 0.51 mol/mol and a weak correlation coefficient R=0.3.  

Enhancement ratio and correlation coefficient calculated for P > 800 hPa and 600 < P 

< 800 hPa separately are ∆O3/∆CO =0.57, R=0.54 and ∆O3/∆CO =0.53, R=0.22, 

respectively. 

    

Figure 4.22 TES CO-O3 relationship at P > 800 hPa (black diamonds) and 600-800 hPa (blue 
triangles) during July 7, 9, and 11, 2007 Step and Stare observations over the western Atlantic 
ocean  (20°N – 40°N). RMA regression line is shown for all data points.   

Higher enhancement ratio and correlation are expected in the surface to 800 hPa layer 

where fresh CO and O3 pollution are found.  The slope is within the range of previous 

works analyzing summertime in situ and satellite observations over the Eastern U.S.  

Slopes derived from July-August 2004 International Consortium on Atmospheric 

Transport and Transformation (ICARTT) campaigns are 0.31-0.44 mol/mol with 
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R=0.5-0.67 [Fehsenfeld et al., 2006; Singh et al., 2006]. Zhang et al. [2006] reported 

enhancement ratios of 0.72 mol/mol and R=0.34 for ICARTT observations in a 

smaller domain (30°N-40°N, 70°W-80°W, 600-650 hPa) after excluding fresh 

pollution plumes and stratospheric influence.  With the same approach, Zhang et al. 

[2006] derived a TES ∆O3/∆CO ratio of 0.81 mol/mol and R = 0.53.  Without 

filtering out fresh plumes and stratospheric component, the ratio decreased to 0.55 

mol/mol.  Hegarty et al. [2009] computed a ratio of 0.15-0.23 mol/mol for TES 

summertime 2004-2006 measurements over the western North Atlantic.      

 A higher ∆O3/∆CO enhancement ratio is expected due to ozone production in 

the free troposphere from exported NOy species [Honrath et al., 2004]  As was shown 

in section 4.5.2.2, TES captured some of the CO variability over the pollutant outflow 

region, where enhanced O3 was observed.  Also in section 4.5.3 I showed the 

contribution of lightning-induced O3 to the TES TCO columns sampled on July 9.  

The high ratio and low correlation are also indicative of a mixture of natural and 

anthropogenic sources in the sampled plume.   

 Lightning-induced O3 contributes to a higher enhancement ratio and a low 

correlation coefficient.  However, due to differences in instrument vertical 

sensitivities care must be taken in comparing satellite derived enhancement ratios 

with in situ ratios in previous studies.  A limitation of this comparison is that only 

three Aura Step and Stare overpasses are available during the course of the July 7-11, 

2007 Mid-Atlantic smog event.  Analysis of a larger number of profiles could yield 

better statistical comparison. 
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4.6 Conclusions 
 
 I used a regional model to simulate continental pollution outflow during a 

severe July 2007 smog event in the eastern U.S.  TES, OMI, and OMI/MLS satellite 

instruments and WRF/Chem (constrained with lightning emissions) detect the 

greatest TCO values over the western North Atlantic Ocean.  The model 

representation of NO2 and O3 tropospheric columns improved with the addition of 

lightning-NOx.  In the LNOx sensitivity run, tropospheric NO2 column increased by 4-

10 x 1015 molecules/cm2, tropospheric column ozone was enhanced 6-10 DU and 

surface O3 was enhanced 4-8 ppbv in areas downwind of convective events within 

pollutant outflow region.  Comparison with standard OMI tropospheric NO2 column 

product confirmed the WRF/Chem NO2 enhancements in the vicinity of convective 

storms. 

 Upper level winds and convection ahead of a passing cold-front at the end of 

the smog event exported a large amount of anthropogenic and natural O3 and NOx 

from the continent over the western North Atlantic.  O3 enhancements in profiles over 

ocean are not seen in the a priori, suggesting that satellites are detecting ozone with 

possible sources from surface pollution and lightning NOx.  HYSPLIT back 

trajectories associated with high TES and OMI TCO over western North Atlantic 

Ocean were influenced by a combination of boundary layer pollution and lightning-

induced O3.  In one regime, back trajectories from TES retrievals passed over the 

Baltimore-Washington metropolitan area and the Great Lakes region within the 

preceding 72 hours.  Another regime was influenced by transport of polluted air mass 

off the coast of Georgia, North Carolina and South Carolina.  Both regimes 
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encountered lightning activity.  Calculated TES O3-CO correlations over the western 

Northern Atlantic region yielded a high ∆O3/∆CO enhancement ratio of 0.51 mol/mol 

and a weak correlation coefficient R=0.3.  Contribution of lightning-induced O3 to 

high TES TCO explain low correlation with surface CO and high enhancement ratio. 

Finally, I used WRF/Chem to investigate the signature of pollution in the lower 

troposphere and link the satellite retrieved increased tropospheric column ozone with 

the smog event.  I applied the TES and OMI averaging kernels to WRF/Chem for 

better analysis of the two satellite instruments with different vertical sensitivity.  

Mean difference between the TES and OMI instruments is 3.07 ppbv over ocean and 

7.54 ppbv over land.  In general, TES has a higher bias than OMI with respect to in 

situ measurements. Here higher average TES land retrievals than OMI are also 

explained by sampling an aged air mass from boreal forest fires in Manitoba on July 7 

and differences in sampling outflow ahead of approaching warm front in a mid-

latitude cyclone on July 11. 

 I used OMI and TES retrievals to map outflow of eastern U.S. pollution 

during a severe smog event and showed that natural and anthropogenic sources 

contribute to high TCO in retrieved pollutant outflow plumes.  The OMI/MLS TCO 

product did not capture the high distribution of O3 in this event; but the OMI product, 

TES and the model show a large maximum off the U.S. East Coast.  In view of the 

proposed satellite geostationary missions to monitor air quality, better temporal and 

spatial data availability will contribute to better statistical analysis of pollutant plumes 

on a regional scale. 
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Chapter 5   Open convection cells and their role in the 
redistribution of tropospheric ozone: WMONEX O3 
observations 

5.1 Introduction 
 
 Winter Monsoon Experiment (WMONEX) 1978/1979 was an international 

atmospheric–oceanic experiment over the Western Pacific Ocean focusing on the 

global and regional aspects of the winter monsoon circulation over East Asia and 

Australia [Greenfield and Krishnamurti, 1979].  This campaign included research 

aircraft, ships, soundings, radar, and surface stations – all deployed to study the 

circulation features of the winter monsoon.  Some of the major scientific findings 

during this campaign were characterization of the structure and dynamics of cold 

surges over the South China Sea and interaction with planetary-scale circulations.  A 

regular diurnal convection cycle was described off the coast of Borneo with 

convection developing over land in the late afternoon and new convection forming 

offshore at midnight.  Houze et al [1981] characterized the development of this off 

shore convection into a mature mesoscale system in the early morning hours.  This 

mesoscale system dissipated typically at midday.  Here, I present the WMONEX O3 

measurements taken aboard the NCAR Electra as it flew over the Western Pacific 

through the remnant of one of these dissipated storms.  The WMONEX ozone data 

have not been published prior to this study.   

Convective cloud observations from first satellites revealed cellular cloud patterns 

not discernable from Earth’s surface.  The so-called mesoscale cellular convection 

(MCC) pattern is an organized array of three-dimensional polygonal open or closed 
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cells over vast regions of oceans [Hubert, 1966]. Open cell circulation (Figure 5.1 and 

Figure 5.2a) has downward motion and clear sky in the center, and is surrounded by 

cloud associated with upward motion [Atkinson and Zhang, 1996].  

 

Figure 5.1 Convective cloud ring over the Southern Pacific Ocean.  Image STS 032-097-006 
courtesy of Earth Sciences & Image Analysis Laboratory, NASA Johnson Space Center 
(http://eol.jsc.nasa.gov) 

 
Closed cells have the opposite circulation (Figure 5.2b). Warm air is rising in the 

center, and sinking around the edges, so clouds appear in cell centers, but evaporate 

around cell edge.    

 

a) 

http://eol.jsc.nasa.gov/�
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Figure 5.2 a) Open and b) closed cell mesoscale cellular convection. Figure adapted from 
http://apollo.lsc.vsc.edu/classes/met455/notes/section9/1.html. 

In highly convective regions, open cells occur over areas with significant air-sea 

temperature difference, while closed cells form over regions with weak air-sea 

temperature gradient.  Open cells frequently occur within cold-air outbreaks (CAO), 

when cold, dry air from continents is advected over a warmer ocean surface [Atkinson 

and Zhang, 1996].  For open cell and closed cell convection aspect ratios of 

horizontal scale, x, to vertical scale, z, are:  

Open Cell: 15
1

x
z
=   and Closed Cell: 30

1
x
z
=  

 While there is little in reviewed literature on the dynamics of concentric cloud 

formation, such cloud rings are an example of open convection where a broad 

downwelling region is surrounded by thin regions of ascent [e.g., Helfand and 

Kalnay, 1983].  Evidence from previous studies suggests that cloud rings are the 

remains of collapsed thunderstorms: forming and decaying convective clouds 

[Loranger, 1974].  All cloud ring events were noted in tropical, marine environments 

(Figure 5.3).   

b) 

http://apollo.lsc.vsc.edu/classes/met455/notes/section9/1.html�
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Figure 5.3 Global climatology of cellular convective clouds over oceans. Hatched areas are 
regions where open convection cells predominate.  Shaded areas are regions where closed cells 
are more common. Dashed streamlines show cold currents; solid streamlines show warm 
currents.  Adapted from [Agee et al., 1973].  

 

The abundance of warm, moist, and unstable air parcels in marine environments 

facilitates thunderstorm formation.  As the convective cloud reaches its mature stage, 

strong updrafts develop.  Radiative and evaporative cooling in the cloud top can cause 

precipitation and downdrafts.  If there is weak vertical wind shear, the thunderstorm 

is upright and the rainy downdraft undercuts the updrafts.  Falling precipitation 

suppresses rising air drafts by frictional drag, and the storm begins to dissipate or 

collapse.  The subsiding air may combine with ascending surface air and form 

convective clouds around the collapsing thunderstorm.  The formed cloud ring is 

characterized by ascending air in the convective walls and subsiding air in the central 

clear region.  Ruprecht et al. [1973] found that the equivalent potential temperature, a 

measure of internal energy and moisture content of an air parcel, decreased within the 

cloud ring and increased within the cloud walls.  The reduced equivalent potential 
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temperature inside the ring can be explained by the subsidence of dry air from aloft.  

Likewise, an increase in potential temperature inside cloud walls is due to upward 

convection of moist, marine air.  In this chapter, I examine these properties using the 

first in situ ozone measurements within the cloud ring.   

5.2 Background 
 

Convection associated with thunderstorms is an important mechanism of 

tropospheric air transport.  Rapid convective updrafts redistribute trace gases within 

the troposphere [Chatfield and Crutzen, 1984; Dickerson et al., 1987].  Likewise, 

synoptic-scale frontal systems transport air downwards from the upper troposphere 

[Luke et al., 1992].  In the marine boundary layer ozone photochemical lifetime is 

less than a week, increasing with height to 1 month at 6 km and 1 year at 10 km [e.g., 

Kley et al., 1996].  Consequentially, lifetime of lower tropospheric ozone is enhanced 

by the upward convective transport.  On the other hand, lifetime of upper 

tropospheric ozone decreases as it is transported to the lower troposphere where it is 

more efficiently destroyed [Lelieveld and Crutzen, 1994].  Lawrence et al. [2004] 

used a global model to show that convection shortens the lifetime of ozone in marine 

environments but lengthens it over continents for a net impact of increasing the 

lifetime and burden of tropospheric ozone.  In this chapter I provide observations of 

these model predictions.   

Tropospheric ozone is destroyed by photochemical reactions in unpolluted air.  

The photochemistry of O3 in the troposphere is initiated by photolysis of O3 at 

wavelengths less than 340 nm [Levy, 1971]:   

(R1) O3 + hv → O(1D) + O2     (λ < 340 nm)  
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The highly reactive excited atomic oxygen, O(1D), reacts with the gas phase H2O to 

generate tropospheric OH radicals: 

(R2) O(1D) + H2O → 2OH 

Reactions R1 and R2 are a primary source of tropospheric OH radicals and removal 

of O3.  The OH species can undergo further reactions, contributing to ozone 

destruction: 

(R3) OH + O3 → HO2 + O2 

(R4) HO2 + O3 → 2O2 + OH 

(R5) HO2 + HO2 → H2O2 + O2 

In addition, halogens, particularly bromine in sea salt, can destroy tropospheric ozone 

catalytically [e.g., Vogt et al., 1996; Dickerson et al., 1999]: 

(R6) Br + O3 → BrO + O2 

(R7) BrO + HO2 → HOBr + O2 

(R8) HOBr + hv → OH + Br 

The marine boundary layer is characterized by a local maximum in H2O and sea-salt 

Br, and undergoes rapid photochemical destruction of ozone by reactions R1-R8.  In 

polluted environments oxides of nitrogen lead to ozone production: 

(R9) HO2 + NO → NO2 + OH 

(R10) NO2 + hv → O + NO 

(R11) O + O2 + M → O3 + M 

 Emissions from East Asia have been detected thousands of kilometers 

downwind both on the west and the east coast of North America [e.g. Jaffe et al., 

2003].  Asian pollution plumes enhance high pollution episodes and increase 
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“background” concentrations making it more difficult to comply with National 

Ambient Air Quality Standards (NAAQS).  Surface ozone in the western U.S. in 

April-May is on average enhanced by 3-6 ppbv as a result of Asian anthropogenic 

emissions [Yienger et al., 2000].  Similarly, Fiore et al. [2002] showed that 

anthropogenic emissions in Asia and Europe contribute to an increase in summer time 

afternoon ozone concentrations in surface air over the conterminous United States by 

about 4-7 ppbv.  As East Asia continues to grow economically and its emissions 

continue to increase, there is a need to better understand mechanisms for export of 

Asian pollution to the global atmosphere.  Because ozone is central to the chemistry 

of the atmosphere and is itself a greenhouse gas, evidence of long-term trends in 

tropospheric ozone would be useful for quantifying climate change.  The data from 

the 1978-1979 WMONEX, a sample of which is presented here, could offer a useful 

benchmark for comparison with future observations. 

5.3 Observations 
 
 This study uses NCAR Electra aircraft data from Winter Monsoon Experiment 

(WMONEX) based in Malaysia between November 17, 1978 and January 9, 1979.  

This campaign included flights over the Pacific Ocean and South China Sea (Figure 

5.4).   
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Figure 5.4  Collection of available measurements for all WMONEX flights.  Scale (minutes 
within 1° x 1° grid) at lower right.  The bold black line depicts the December 29, 1978 flight track 
when several cloud rings were penetrated. 

 
A number of variables were measured from the NCAR Electra as it flew over the 

Western Pacific.  After successfully converting the archived data from an archaic 

GENPRO-I data format into a readable one the ozone data are analyzed and published 

for the first time here. Figure 5.5 is a plot of average ozone mixing ratios over the 

South China during WMONEX.  The tropical, marine lower troposphere is 

characterized by low ozone concentrations; here averaged 40.2 ppbv.   
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Figure 5.5. Average ozone mixing ratios (ppbv) over the South China Sea measured at cruise 
altitude 5.5 km – 6.5 km. 

 
The ozone mixing ratio measurements taken during the WMONEX 1978 mission 

provide a benchmark to test for trends in the composition of the atmosphere, and thus 

climate forcing, over the western Pacific – an area surrounded by countries that have 

been developing rapidly in the intervening decades.  Direct comparison of these 

observations to more recent data for the same Southern Oxidation Index (SOI) is 

impossible, since no field campaigns have examined the chemical composition of air 

over the South China Sea in December since WMONEX,  

 I concentrated on the flight with several documented occurrences and 

penetrations of ring clouds.  Cloud rings were visually identified during the 

December 29, 1978 flight by observers on the aircraft and later from time-lapse 16 

mm films.  During this flight, the aircraft flew at a cruising altitude of 6 km from 
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Kuala Lumpur (3°N, 101°E) to Kota Kinabalu (5°N, 116°E) in East Malaysia, 

crossing the South China Sea.  The tropopause height was about 19 km during 

WMONEX flights.   

5.4 Ozone Loss during Measurement 
 
 During WMONEX flights, ozone was sampled directly from the ventilation 

system of the Electra aircraft, supplied by the engine compressors; passage through 

the compressors resulted in a loss of ozone.  Comparisons of ozone measured directly 

in ambient air to air that has passed through engine compression systems [e.g. Prados 

et al., 1999] typically show that about 5 % of the ozone is destroyed by surface 

deposition.   

Average Ambient O3 (ppbv) Average Cabin O3 (ppbv) 

40.4 26.0 

41.4 29.2 

36.2 25.9 

35.2 24.8 

33.2 22.2 

29.1 19.7 

27.3 20.8 

33.0 17.5 

31.5 21.3 

26.7 17.2 

20.2 16.9 

 

Table 5.1 Average ambient O3 and average cabin O3 measured aboard NOAA’s P3 on August 29, 

2008. 

The loss of ozone within air compressors inside of NOAA’s P3 (same as 

NCAR Electra) aircraft was tested during a hurricane Gustav research flight from 
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Florida to Cuba on August 29, 2008. The TECO ozone analyzer was set up to 

manually switch between sampling ambient air and cabin air every 5-10 seconds.  

Cabin and ambient measurements were averaged to represent the same altitude (Table 

5.1).  Figure 5.6 shows the ratio between average inside and outside O3 as sampled by 

TECO; R2 is 0.75.  The average ratio of cabin sampled ozone to ambient sampled 

ozone is 0.57±0.24 with a confidence interval of 95%.  The confidence interval is 

computed using bSdft( ×= ),α , where t is the critical value of the t statistic and Sb is 

the standard error in the slope.  All WMONEX O3 plots are adjusted for the 0.57 

ratio.   

August 29, 2008 - P3 flight

y = 0.57x + 3.58
R2 = 0.75
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Figure 5.6 Loss of O3 within air compressors inside of P3 aircraft. 

 
Since WMONEX O3 measurements are the average cabin O3 mixing ratios, 

relationship shown in Figure 5.6 can be used to adjust 1978/1979 measurements for 

comparisons with future field campaigns over Indonesia or modeling studies. These 

O3 observations are useful for characterizing lower tropospheric chemical and 

mesoscale processes during the winter monsoon, as discussed in the next section.      
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5.5 Results 
 
 A Dasibi ultraviolet absorption sensor monitored ozone mixing ratios during 

the flight (Figure 5.7).  Although the average background ozone for this flight was 

around 30 ppbv, significant signal increases were noted throughout the flight.  While 

the 12:00 LST peak has been identified as a cyclone [Bolhofer et al., 1981] from the 

mainland of Asia which brought with it both polluted continental outflow and dry, 

descending stratospheric air, all other signal peaks are postulated to correspond to 

cloud rings.   

 

Figure 5.7 Ozone mixing ratio series with respect to distance and local time for part of the 
December 29, 1978 flight.  Distance is measured as traversed flight path from Kuala Lumpur.  
Flight start time 00:41 UTC (8:41 LST) and end time 8:48 UTC (16:48 LST).  Flight altitude was 
nearly constant at ~6 km until descent for landing, starting at 16:20 LST, 3810 km from Kuala 
Lumpur.  Largest cloud ring is about 50-100 km in diameter, smallest are about 10 km. 

At 11:40 LST there are two signal peaks, each of about 72 ppbv, measuring about 10 

km and 20 km in covered distance.  Similar spikes were recorded at 14:50 LST, 78 

ppbv mixing ratio was measured within a 10 km stretch and 96 ppbv within 20 km.  

Ozone mixing ratios of 70-80 ppbv were also recorded at 11:00 LST and 14:20 LST.    
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The longest in duration ozone local maximum was at 16:30 LST with mixing ratio of 

75 ppbv within a 50-100 km width.  All of these ozone mixing ratio spikes are 

postulated to correspond to clear regions within cloud rings with subsiding ozone-rich 

upper tropospheric air, transporting ozone downward.  The validity of this conclusion 

depends on the characteristics of ozone mixing ratio in a pristine, marine 

environment. 

The vertical ozone distribution in the clean, tropical troposphere is typified by 

the electrochemical concentration cell (ECC) ozonesonde observations made at 

American Samoa, South Pacific (14°S, 170°W) from April 1986 – May 1990.  

Average seasonal vertical ozone distribution for December, January, February months 

was assessed using 26 profiles.  For the 500 hPa to 300 hPa pressure levels, 

corresponding to the WMONEX cruising altitude, the mean ozone mixing ratio was 

33 ppbv and 32 ppbv respectively [Komhyr, 1992].  Similarly, average ratios of 34 

ppbv were observed for December – March 1998-2002 period at Watukosek, Java 

(7.5°S, 112.7°E), one of the sites of Southern Hemisphere Additional Ozonesondes 

project [Thompson et al., 2003].  Average WMONEX ozone mixing ratio at an 

altitude of 6 km over the South China Sea was 40.2 ppbv (after applying correction 

for loss of ozone in air compressors).  In general, over equatorial oceans, ozone 

destruction by reactions R1 and R2 is enhanced by high levels of ultraviolet radiation 

and high humidity.  Ozone mixing ratios of 70-80 ppbv are rarely observed in the 

tropical, marine boundary layer.   

The last peak in ozone time series (see Figure 5.8a) was analyzed using 

shortwave irradiance data, measured during the flight (Figure 5.8b).   
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Figure 5.8 (a) Blow up of ozone mixing ratios observed on December 29, 1978 in a cloud ring 
penetrated as the aircraft descended into Kota Kinabalu.  X-axis is the distance from Kuala 
Lumpur; approximate altitude shown below distance.  (b) Same as (a) but for downward 
shortwave radiation; the instrument automatically zeros every 600 seconds.  Irradiance reaches 
a local maximum around 3900 km from Kuala Lumpur in the center of the cloud ring. 

Reductions in downward shortwave irradiance indicate clouds above the 

aircraft.  Irradiance is higher in clear regions, where incoming solar radiation is 

maximized, and lower in cloudy regions, where clouds block incoming solar 

radiation.  The last ozone local maximum of the flight corresponds to a local 

maximum in the solar irradiance plot at about 3900 km from Kuala Lumpur.  The 

irradiance local maximum is surrounded by two well-formed local minima, adjacent 

to the ozone peak.  Simultaneous ozone and irradiance peaks can be interpreted as a 

clear sky region with subsiding upper-tropospheric air.  The irradiance minima and 
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ozone mixing ratio minima on both sides of this clear region correspond to convective 

clouds, transporting low-ozone marine air upward.  These data were collected near 

the end of the flight, while the aircraft was descending prior to landing.  The resulting 

plots confirm the occurrence of cloud rings, noted visually by observers on the 

aircraft. 

5.6 Discussion 
 

The Asian winter monsoon is distinguished by cold-surges, low-level winds 

over the South China Sea.  As the cold air moves off the China coast, there is an 

enhancement of moisture transport equatorward, which increases deep convective 

activity over the South China Sea [Johnson and Zimmerman, 1986].  On December 

28 and 29, 1978 a rapid-moving cold surge moved off the coast of south China and 

spread southward.  Cold surges over the warm ocean should be conducive to open 

convection [Helfand and Kalnay, 1983].  Convective activity increased in the central 

part of the South China Sea and cyclonic circulation intensified in the region of the 

December 29 flight [Bolhofer et al., 1981].  Houze et al. [1981] discovered that 

convection in this region underwent an extremely regular diurnal cycle.  The cycle of 

convection began at midnight when an off shore low-level wind began (Figure 5.9). 

Convergence of this wind and monsoonal northeasterly flow just off the east coast of 

Borneo resulted in formation of convective cells.  The system dissipated at midday, 

when the offshore wind became onshore wind and convergence concentrated over 

land.         

Throughout the flight, winds were on the order of 2 -10 m/s with a vertical 

shear less than 8 m/s between the surface and 6 km altitude.  According to the 
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collapsed thunderstorm hypothesis, convection and minimal vertical wind shear are 

conductive to cloud ring formation [Loranger, 1994].  The cloud rings witnessed 

during the December 29 flight could have indeed been formed by collapsing 

thunderstorms.   

 

Figure 5.9 Schematic of the development of diurnal mesoscale precipitation system off the coast 
of Borneo. Adapted from [Houze et al, 1981].  

The origin of ozone enhanced air within the cloud rings must be examined.  

According to the collapsed thunderstorm hypothesis, the developed thunderstorm at 

its mature stage entrains air parcels with higher ozone concentration from the upper 

troposphere.  As the thunderstorm decays, the ozone rich air descends within the 

cloud ring, exiting at the cloud base. Observed air parcels with mixing ratios on the 
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order of 80-90 ppbv are probably of upper tropospheric origin.  Yet, the equivalent 

potential temperature in the upper troposphere would have been too great in 

magnitude to allow air parcels to descend to the observed altitude of 6 km.     

Alternatively, the high ozone mixing ratios measured in the cloud rings over 

the South China Sea are more likely explained by active convection over Indonesia 

several days before the WMONEX observations. The NCEP Reanalysis (available 

from http://www.cdc.noaa.gov/cdc/reanalysis/) 200 hPa wind field maps confirmed 

the east-west wind flow pattern over Indonesia and the South China Sea during the 

week prior to December 29 measurements. Upward transport and mixing of urban 

polluted air with upper tropospheric air, NO production by lightning, followed by 

photochemical ozone production during westward transport, could have provided 

sufficiently large ozone mixing ratios to the 10-12 km altitude region over the South 

China Sea.  The collapsed thunderstorm could have then entrained this enhanced 

ozone and brought it down to 6 km.  According to the World Fire Atlas provided by 

European Space Agency (available at http://shark1.esrin.esa.it/ionia/FIRE) December 

is not a biomass-burning month in Indonesia.  Therefore, biomass-burning pollution 

is not a likely contributor.  Observations from the BIBLE-A experiment showed that 

during transport from the tropical Pacific Ocean to Western Indonesia, which takes 

about 2.6 days in the upper troposphere, the ozone mixing ratio of an air mass 

increased.  With median NO of about 100 pptv, Kita et al. [2003] estimated median 

O3 production of 2.1 ppbv/day in the transported air mass.  Moreover, during BIBLE-

A experiment most air masses encountered cumulus clouds within 24-48 hours prior 

to observation [Kita et al., 2003].  The ozone mixing ratio increase in BIBLE-A is 

http://shark1.esrin.esa.it/ionia/FIRE�
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due to the mixing of upper tropospheric air with convectively lifted polluted, urban 

air and NO production by lightning.  The same transport and mixing mechanism 

would have influenced the air masses observed during WMONEX.  I investigated the 

increase in ozone mixing ratio due to lightning produced NO to explain the 

WMONEX observations.                       

I used a three-dimensional cloud-scale chemical transport model (CSCTM) 

developed by the University of Maryland Atmospheric Chemistry Group to 

approximate the net ozone production due to lightning NO in a convective cloud 

[DeCaria, 2000].  The model was initialized by profiles of O3, NO, NO2, CO, and 4 

species of hydrocarbons including isoprene.  These profiles were chosen to represent 

relatively clean tropical conditions with a lightning NOx signal of 500 pptv 

superimposed in the upper troposphere.  According to the NASA’s Lightning Imaging 

Sensor (LIS) data (available at http://thunder.nsstc.nasa.gov) there is higher lightning 

frequency over Indonesian islands in December, the beginning of the local wet 

season, than in September.  So the NO mixing ratios used in the model were higher 

than those observed during the Bible-A study in the months of September and 

October.  Daily ozone profiles for 8 days after the modeled lightning episode are 

illustrated in Figure 5.10.   

http://thunder.nsstc.nasa.gov/�
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Figure 5.10 Daily ozone production for 8 days following the modeled lightning episode.  The left-
most profile is the initialization profile.   

 
Most ozone production takes place in the upper-tropospheric layers, where NO was 

produced by lightning.  Above 10 km, 7-14 ppbv O3 were produced within first day 

after lightning, 4-8 ppbv O3 within second day, and 3-5 ppbv O3 within third day.  

Ozone production aloft continued at smaller rates after the fifth day, averaging 1-2 

ppbv/day.  Thus ozone production within the first 48 hours after lightning is on the 

order of 11 – 22 ppbv. Not only is the produced ozone not destroyed in the 

subsequent days, it is augmented at a small but steady rate.  Therefore, with upstream 

lightning there could have been sufficient ozone at 8-14 km to be entrained and cause 

the observed ozone enhancements at 6 km in the areas of subsiding air.  Thus the 
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upstream lightning scenario can be applied to explain the ozone peaks observed 

during WMONEX flights. 

The proximity of the Intertropical Convergence Zone accounts for frequent 

lightning activity over Indonesia.  The WMONEX flights took place during the wet 

season, time of enhanced convection in the tropics.  During this season lightning 

occurrence at peak time of 15 LST over Indonesian islands is three times the rate of 

occurrence over ocean [Hidayat and Ishii, 1999].  Indeed, according to LIS data, 

there is substantial lightning activity over Indonesia in Decembers with equivalent 

ENSO index as in 1978.  Since the easterlies carry the upper tropospheric air from the 

Pacific Ocean, I conjecture that the NO enhancement of air by lightning occurred 

over Eastern Indonesia.  Within 24 – 48 hours after the lightning activity, net ozone 

production in the affected air mass is on the order of 11 – 22 ppbv.  The easterlies 

carry this air mass from Eastern Indonesia to the South China Sea, with transport time 

of 24 – 48 hours during which the air probably subsided by 1-2 km.  In the South 

China Sea the ozone enhanced air is entrained by developing convective clouds.  

Under the conditions of low vertical sheer, a convective cloud collapses, bringing air 

from 8 – 10 km downward.  The descending air within the cloud exits the cloud base 

on its sides and combines with ascending lower tropospheric air, which forms the 

cloud ring.  Ozone trends within such clouds support the postulated transport 

mechanisms of collapsed thunderstorms.  Changes in ozone concentration during 

penetration of a cloud ring correspond to subsiding upper tropospheric air currents 

within the center of the cloud ring and upward moving lower tropospheric air within 

the convective cloud walls.  The WMONEX ozone mixing ratios of 70-80 ppbv in the 
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cloud ring center could have been produced in outflow from a thunderstorm over 

Eastern Indonesia 2 – 3 days prior to observations.  The hypothesis of cloud rings 

formed by collapsed thunderstorms is supported by WMONEX observations.    

5.7 Conclusions 
 

The ozone mixing ratio measurements taken during the Winter MONEX 1978 

mission provide a benchmark to test for trends in the composition of the atmosphere, 

and thus climate forcing, over the western Pacific – an area surrounded by countries 

that have been developing rapidly in the intervening decades.  The observations in 

cloud rings support the hypothesis that convective cloud rings result from collapsed 

thunderstorms.  The measurements further demonstrate how convective mixing, as 

predicted by numerical models, can lead to vertical transport and destruction of ozone 

over remote, tropical, marine environments.  The subsiding air channel within the 

cloud ring’s clear region transports upper tropospheric air into the lower levels where 

ozone’s lifetime is shorter.  Though this rare cloud phenomenon only occurs in 

tropical, marine environments, it may offer a useful test bed where atmospheric 

scientists can investigate the impact of convective clouds on the composition of the 

atmosphere.  The natural formation of convective cloud rings in tropical regions 

presents a beautiful display in the sky for visual enjoyment and provides novel insight 

into the interaction of cumulus convection and tropospheric chemistry.  
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Chapter 6 Conclusions  

6.1 Summary 
 
 Summertime smog episodes are frequent in the Mid-Atlantic region.  In this 

work, I analyzed the July 7-11, 2007 air pollution event during which 8 hour 

maximum ozone mixing ratios in northeastern Maryland reached 125 ppbv.  This is 

the worst smog event in Maryland to date since the implementation of SIP Call power 

plant NOx emission reduction in 22 eastern states in 2003.  The meteorological setup 

for this smog event included a Bermuda High pressure system off the U.S. east coast, 

formation of midlatitude cyclone over southern Canada, clear skies, hot temperatures 

(~37°C), low southwesterly winds and plenty of vehicle NOx and VOC emissions.   

Development of the Low Level Jet and Appalachian Leeside Trough on July 10 set up 

large-scale southwest flow along the eastern sea-board, transporting pollutants from 

the southeast U.S. to New England.  Several large thunderstorm systems occurred 

over the eastern U.S. over the course of the smog episode, creating the potential of 

this regional pollution event to be exported from North America and contribute to 

hemispheric pollution.  The smog event ended as the cold front associated with the 

midlatitude cyclone near James Bay pushed through the region on July 12, sweeping 

pollution out over the western North Atlantic Ocean.  

 I used a regional chemical transport model (WRF/Chem V3.1.1) with 

RADM2 chemical mechanism to simulate the July 7-11, 2007 smog event. In Chapter 

3, I evaluated model performance against surface and ozonesonde measurements 

across the eastern U.S.  WRF/Chem-calculated trace gases (O3, NOx, CO) and 
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meteorological parameters (T) were compared to ground observations and 

ozonesonde profiles.  Mean bias, root mean square error and correlation coefficient 

(r) from WRF/Chem 8-hr O3 maximum and AQS observations during July 6-11, 2007 

were 0.59 ± 11.0 ppbv, 11.0 ppbv, and 0.7, respectively. However the low mean 

biases are a result of underpredicted O3 in the northeast and overpredicted O3 in the 

southeast.  WRF/Chem captures mean ozone mixing ratios, but shows less variability 

than is observed.  The model underestimated the magnitude of the 8-hr maxima 

observed on July 9, 2007 in the densely populated northeast.  WRF/Chem has 

difficulty correctly representing O3 mixing ratios in the southeast, showing a high 

bias of 8-11 ppbv at the peak of the smog event.  Using FDDA analysis nudging 

increased surface ozone biases to 17.2-24.3 ppbv in the southeast U.S, highlighting 

the sensitivity of photochemical O3 production to model generated meteorological 

fields.   

Comparison at individual sites showed that the model captures the diurnal 

temporal and spatial variations in O3 and passage time of the cold front.  Over the 

course of the smog episode WRF/Chem underpredicts daytime O3 at rural Pinnacles, 

NY and Great Smokies, TN sites and suburban Aldino, MD AQS site.  In JST and 

YRK, GA sites daytime and nighttime O3 is overpredicted.  Ozone overprediction in 

the southeast U.S. is attributed to overpredicted temperature (>1.5°C) in the model.  

In a separate run, 3-D analysis nudging increased surface ozone biases by 12 ppbv in 

the southeast U.S.  This is attributed to increased insolation and temperature in the 

FDDA run. 
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The RADM2 chemical mechanism used in this simulation does not account for 

NOx lifetime-extending reservoir species: organo-nitrates and nitryl chloride.  In 

sensitivity simulation where heterogeneous production of HNO3 was eliminated to 

simulate the maximum effect of recycling of NOx through ClNO2 chemistry,  daytime 

O3 mean biases at Aldino, Pinnacles and Great Smokies sites were reduced by 3-5 

ppbv.  Another sensitivity simulation showed that low biases in O3 dry deposition 

velocities contribute to insufficient nighttime depletion of O3 at SEARCH sites and 

Aldino, MD.  

Analysis of Beltsville ozonesondes showed that the model captures the vertical 

distribution of ozone up to 600 hPa.  The model-simulated ozone plume extends into 

the 815 hPa and 730 hPa pressure layers, a portion of the troposphere where ozone 

information can be retrieved from satellite measurements.  In Chapter 4, the model 

representation of NO2 and O3 tropospheric columns improved with the addition of 

lightning-NOx emissions at the location of NLDN flash rates.  Upper level winds and 

convection ahead of a passing cold-front at the end of the smog event exported a large 

amount of anthropogenic and natural O3 and NOx from the continent over the western 

North Atlantic.  The OMI/MLS TCO product did not capture the high distribution of 

O3 in this event; but the OMI product, TES and the model show a large maximum off 

the U.S. East Coast.  In the LNOx sensitivity run, tropospheric NO2 column increased 

by 4-10 x 1015 molecules/cm2, tropospheric column ozone was enhanced 6-10 DU 

and surface O3 was enhanced 4-8 ppbv in areas downwind of convective events 

within pollutant outflow region. 
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O3 enhancements in profiles over ocean are not seen in the CO and O3 a priori, 

suggesting that satellites are detecting ozone with possible sources from surface 

pollution and lightning NOx.   HYSPLIT back trajectories associated with high TES 

and OMI TCO over western North Atlantic Ocean were influenced by a combination 

of boundary layer pollution and lightning-induced O3.  In one regime, back 

trajectories from TES retrievals passed over the Baltimore-Washington metropolitan 

area and the Great Lakes region within the preceding 72 hours.  Another regime was 

influenced by transport of polluted air mass off the coast of Georgia, North Carolina 

and South Carolina.  Both regimes encountered lightning activity.  Calculated TES 

O3-CO correlations over the western Northern Atlantic region yielded a high 

∆O3/∆CO enhancement ratio of 0.51 mol/mol and a weak correlation coefficient 

R=0.3.  The contribution of lightning-induced O3 to high TES TCO explain low 

correlation with surface CO and high enhancement ratio.  OMI and TES retrievals 

were used to map outflow of eastern U.S. pollution during a severe smog event.  I 

showed that natural and anthropogenic sources contribute to high TCO in retrieved 

pollutant outflow plumes.   

In Chapter 5, a historical O3 data set from the 1978-1979 Winter Monsoon 

Experiment (WMONEX) over the Western Pacific was used to investigate open 

convection cells.  These tropical cloud rings are characterized by circular structure 

with cumulus ring walls and a clear area in the center, presenting an interesting 

mesoscale dynamics problem and probable net sink for tropospheric O3.  I examined 

in situ O3 measurements within convective ring clouds.  Presented here for the first 

time, WMONEX ozone observations were used to demonstrate how convection leads 
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to the redistribution and destruction of ozone in the tropical marine environment.  O3 

was observed to increase in the clear center of the cloud ring and decrease in the 

convective cloud walls, consistent with subsidence of ozone-rich air from the upper 

troposphere and lifting of ozone-depleted air from below.  The 70-80 ppb O3 mixing-

ratios within the rings were too high to descend directly from aloft.  I showed that the 

O3 within the cloud rings over the South China Sea possibly originated in upwind 

convective clouds, undergoing lightning NO production, over Indonesia.  From a 

chemical transport model, ozone production due to lightning NO in a convective 

cloud was on the order of 11-22 ppb within 48 hours of the lightning occurrence. 

These tropical ozone data from the late 1970’s may also serve as a benchmark for 

assessing changes in atmospheric composition resulting from emission changes in 

rapidly developing East Asia.        

6.2 Recommendations for Future Work 
 
 Many of the limitations of the current study can be used as a starting point for 

future work.  Deficiencies in the RADM2 chemical mechanism used in this 

dissertation can be addressed by adjusting reaction rates of NOx species within known 

uncertainties.  More importantly, development of a chemical mechanism that takes 

into account organo-nitrates (including isoprene nitrates) and nitryl chloride 

chemistry is needed to improve regional air quality modeling efforts.  More ground 

and in-situ observations of alkyl nitrates and NOy species would help develop a more 

accurate and explicit chemical mechanism.     

 The use of Four-Dimensional Data Assimilation in regional WRF/Chem 

studies needs to be studied closer, especially for the Southeast U.S. region, where 
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high temperature biases result in overprediction of O3 production.  Meteorology fields 

nudged with analysis and observational data improve WRF meteorology only runs 

[Zhang et al., 2009].  Ambient temperature and planetary boundary layer heights are 

possibly driving some of the high model biases in the Southeast U.S. More 

observations of PBL heights are needed to confirm model performance.  A network of 

wind profilers and Light Detection and Ranging (LIDAR) instruments is needed over 

contiguous U.S. for improvement of modeling studies.             

 For WRF/Chem studies in the mid-to-upper troposphere, more rigorous 

algorithm is needed to distribute lightning NO emissions within the modeling domain.   

Ideally, lightning emissions should be prescribed to grid boxes, where convection 

with lightning is occurring.  More accurate lightning NO emissions in the model will 

improve the accuracy of predicted NO and O3 profiles and surface fields.   

 Winter MONEX observations over the Western Pacific can be used in 

atmospheric composition studies in conjunction with future campaigns.  East Asian 

countries are undergoing fast economic growth and rapid urbanization at the expense of 

the environment.  Fossil fuel and biomass burning emissions are rapidly increasing in this 

region.  Southeast Asia Composition, Cloud, Climate Coupling Regional Study 

(SEAC4RS) is currently planned for 2012 in the tropical Southeast Asia.  This 

airborne campaign will investigate atmospheric processes related to deep convection, 

atmospheric chemistry, aerosols and clouds in the marine, tropical environment.      

WMONEX measurements can be used to investigate changes in atmospheric 

composition in a quickly developing, overpopulated region with growing 

environmental problems.    
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Appendix A:  Evaluation of convection in MM5/CMAQ 
  
 The timing and location of convection can determine when and where 

maximum pollutant concentrations are observed. How realistically a regional-scale or 

a multi-scale chemical transport model depicts an air pollution event or its transport 

depends on meteorological fields used in the model.  

 Before the emergence of WRF/Chem as a leading regional chemical model, 

Community Multiscale Air Quality modeling system (CMAQ) was the main model 

used for regional air quality modeling.  Prior to availability of WRF meteorological 

fields, CMAQ incorporated meteorological output fields from the fifth-generation 

Pennsylvania State University–National Center for Atmospheric Research Mesoscale 

Model (MM5) modeling system.  Thus how well CMAQ simulates vertical uplift of 

pollution during convective events depends on how well MM5 captures convective 

events in comparison with observations.   

 A verification of short-range numerical model forecasts of warm season 

convection was conducted over two U.S. regions: Northeast and Midwest.  All 

available days from the summer 2002 were evaluated using accumulated precipitation 

products from the NCEP hourly, multi-sensor National Precipitation Analysis (NCEP 

NPA) and MM5 model with Modified Blackadar PBL scheme and Kain–Fritsch 

convective parameterization.   

 Area averages over two 500 km2 regions show good agreement between 

model forecast and observations with an average R2 value of 0.76.  The square of the 

correlation coefficient decreases to 0.42 as the area of comparison is gradually 

decreased to a 16 km2 region.  Analysis of the diurnal cycle of model and observed 
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accumulated precipitation showed that MM5 peak precipitation is on average 2-3 

hours earlier and 25% - 42% greater in magnitude than NCEP NPA (Figure A.).  

Overall MM5 correctly forecasts large-scale convective events, but time lag in the 

peak precipitation might be problematic for air quality modeling.   

 Verification of convective occurrence was based on contingency table (Table 

A.1) in which each element of the table equals the number of occurrences in which 

CMAQ and NCEP did or did not report precipitation over a 24 hour period [Wilks, 

1995].  The canonical threat score is a measure of the fractional overlap between the 

observed and model areas meeting or exceeding a specified precipitation threshold 

(here 1.25 mm):   

  Observed 

   Yes No 

Fo
re

ca
st

 Yes A b 

No C d 

   

Table A.1 A 2x2 contingency table. Shaded boxes are correct forecasts. 
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Figure A.1 Total hourly precipitation for June and July 2002 in the two 500 km2 regions: 
Northeast and Midwest.  

Contingency forecasts of the area coverage of the 24-h accumulated 

precipitation in convective events show skill comparable to the lower-resolution, 

operational models (Table A.2), with median threat scores of 0.358 and 0.326 for all 

modes of convection (defined as linear, multicellular, or isolated) for Northeast and 

Midwest respectively.  The definitions for the convection modes are as follows: 

linear convection - length to width ratio of at least 3:1, persists for at least 3 hours, 

and has an areal coverage of at least 500 km2; multicellular convection - length:width 

ratio less than 3:1, persists for at least 3 hours and has an areal coverage of at least 

500 km2, isolated convection - spatial coverage of less than 500 km2.  Analysis was 

performed only for days when convection occurred.  When calculated by convective 
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mode, threat scores are highest for most organized modes with largest spatial scale – 

linear (0.721, 0.533) and multicellular (0.55, 0.344), and the lowest for small scale 

isolated events (0.171, 0.134). Threat scores are comparable with published results 

for operational models.   

Percentile Threat Score (Threshold = 1.25 mm) 

All Convection Northeast (43  days) Midwest (43 days)      

25th 0.171 0.180 

50th 0.358 0.326 

75th 0.636 0.466 

Linear Northeast (5  days) Midwest (7 days) 

25th 0.638 0.438 

50th 0.721 0.533 

75th 0.818 0.674 

Multicellular Northeast (20 days) Midwest (25 days) 

25th 0.333 0.250 

50th 0.550 0.344 

75th 0.678 0.434 

Isolated Northeast (18 days) Midwest (11 days) 

25th 0.124 0.109 

50th 0.171 0.134 

75th 0.288 0.200 

 

Table A.2.  Threat scores calculated by type of convection (all, linear, multicellular, isolated) and 
by region (Northeast, Midwest). 

 
  Overall MM5 and NCEP Stage II observations show good agreement.  The 

limiting resolution for agreement is variable from 5°x5° to 1°x1°.  MM5 shows 
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stronger peak precipitation a few hours before actually observed in NCEP NPA. This 

time lag in diurnal cycle should be considered when analyzing CMAQ simulations. 
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