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Using definability of types for stable formulas, one develops the powerful tools

of stability theory, such as canonical bases, a nice forking calculus, and stable em-

beddability. When one passes to the class of dependent formulas, this notion of

definability of types is lost. However, as this dissertation shows, we can recover

suitable alternatives to definability of types for some dependent theories. Using

these alternatives, we can recover some of the power of stability theory.

One alternative is uniform definability of types over finite sets (UDTFS). We

show that all formulas in dp-minimal theories have UDTFS, as well as formulas with

VC-density < 2. We also show that certain Henselian valued fields have UDTFS.

Another alternative is isolated extensions. We show that dependent formulas

are characterized by the existence of isolated extensions, and show how this gives

a weak stable embeddability result. We also explore the idea of UDTFS rank and

show how it relates to VC-density.

Finally, we use the machinery developed in this dissertation to show that VC-

minimal theories satisfy the Kueker Conjecture.
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Chapter 1

Introduction

1.1 Overview

As the purpose of this document is to generalize results from stability theory

to the unstable setting, it is only natural to ask: What is stability theory? Stability

theory was developed primarily by Shelah in the 1970’s and 1980’s. It is built out of

a generalization of Morley’s Categoricity Theorem, which states that if a complete

theory in a countable language is categorical in some uncountable power, then it

is categorical in all uncountable powers. Shelah generalized this result [22], cate-

gorizing when a theory has a certain number of isomorphism classes of models of

a given cardinality (i.e., understanding what he calls I(λ, T )). This work brought

out many model-theoretic tools for stable theories, including forking calculus, sta-

ble embeddability, and definability of types. This work also led to the development

of other model-theoretic dividing lines, including superstability, ℵ0-stability, depen-

dence, strong dependence, and dp-minimality.

One of the main tools used in [22] and stability theory in general is the notion

of definability of types. The existence of uniform definability of types allows one to

show that, given any set B and any externally definable subset C ⊆ B, there is a

definition for C over B itself (i.e., B is stably embedded). It also allows for a better

understanding of types and type spaces. If a formula has uniform definability of
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types, then the number of types in that formula over any infinite set is bounded by

the cardinality of that set. More generally, in a stable theory where all formulas

have uniform definability of types, there exists a class of cardinals λ such that, for

all sets B with |B| = λ, the number of all types over B is bounded by λ.

Many important theories are stable, including the theory of algebraically closed

fields, differentially closed fields, and modules over rings. However, there are many

theories that are not stable, yet interesting to many mathematicians. These include,

for example, the theory of the real field, the p-adic field, dense linear order without

endpoints, and the random graph.

More recently, model theorists including Shelah have been studying a general-

ization of stability known as dependence. Shelah’s study of dependence began with

[22] and continued in [23, 24]. There are many interesting theories that are depen-

dent yet unstable, including the theory of the real field, the p-adic field, and dense

linear order without endpoints. However, a major problem that arises from working

with dependent theories is that we lose much of the power of stability theory. For

example, sets are not necessarily stably embedded and there is no control over the

size of the type space. Most notably, we lose uniform definability of types for some

formulas. The main question this thesis seeks to answer is: Can we find a suitable

replacement for definability of types in dependent theories. We give partial answers

to this question, suggesting several alternatives, and show how to recover some of

the strength of stability theory in the process.

In Section 1.2, we introduce the background material necessary for this thesis,

giving basic definitions and results, mostly from [22]. In Section 1.3, we discuss in

2



more detail the issue of definability of types. In Section 1.4, we outline the body of

this thesis and highlight key results.

1.2 Types, Stability, and Dependence

We use standard set-theoretic notation regarding ordinals and sets of functions.

For example, 0 = ∅, 1 = {0}, 2 = {0, 1}, and ω = {0, 1, 2, ...}. So we see that

2 ∈ 5 and we write “<” to mean “∈” for ordinals. For two fixed sets A,B, the

set of functions from A to B is denoted AB. Thus, 52 is the set of functions from

5 = {0, 1, 2, 3, 4} to 2 = {0, 1}, which has 32 elements. A function is a collection

of ordered pairs, so, for example, {(0, 0)} is the function from {0} to itself. We use

this fact to simplify notation in Section 2.7.

We begin with a language L and a complete, first-order L-theory T with infinite

models. In our discussions, it benefits us to fix a large, sufficiently saturated model

of T called the “monster model.” We denote this by C. The idea is that we only

consider models M |= T that have a small cardinality compared to the saturation

of C. Therefore, we may assume that M � C. Likewise, any “set” is a subset of C

of a small cardinality compared to the saturation of C and arbitrary elements are

contained in C. For any sentence θ over C, we abbreviate C |= θ by |= θ. For most

of our discussion, it suffices to consider models of size at most 2ℵ0 .

By a “formula” we mean an ∅-definable L-formula unless otherwise specified.

For convenience, we sometimes write x = (x0, ..., xn−1) for variables x0, ..., xn−1, so

we would write the formula ϕ(x0, ..., xn−1) as ϕ(x). The length of x = (x0, ..., xn−1)
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is n and is denoted lg(x). The same holds for tuples of elements from C. That is,

if a0, ..., an−1 ∈ C, we may write a = (a0, ..., an−1) and say that the length of a is

lg(a) = n. Of course, if ϕ(x) is a formula and a ∈ Clg(x), then ϕ(a) denotes the

a-definable L-formula defined by substitution. Sometimes we partition the variables

of a formula into two clusters. When we fix a partitioned formula

ϕ(x; y) = ϕ(x0, ..., xn−1; y0, ..., ym−1),

we mean to remember which elements are on the left and which are on the right. We

often call the variables on the left the free variables and the variables on the right

the parameter variables. When we have a list of tuples of variables, we sometimes

denote this with a boldface variable to shorten notation. For example, we could

write ϕ(x; y0, ..., yk−1) as ϕ(x;y). If θ(x) is a formula, then denote θ(x)0 = ¬θ(x)

and θ(x)1 = θ(x). For Θ(x) a set of formulas, let

±Θ(x) = {θ(x)t : t < 2, θ ∈ Θ}.

We define |T | to be the cardinality of all L-formulas modulo T -equivalence.

Fix a partitioned formula ϕ(x; y). We say that a setB ⊆ Clg(y) is ϕ-independent

if, for all maps s ∈ B2, the set of formulas {ϕ(x; b)s(b) : b ∈ B} is consistent.1 We

say that ϕ has independence dimension N < ω, which we denote by ID(ϕ) = N , if

N is maximal such that there exists a ϕ-independent set B ⊆ Clg(y) with |B| = N .

If no such maximal N exists, we say that ϕ is independent and write ID(ϕ) = ∞.

1Saying that B is ϕ-independent is the same as saying that B is shattered by ϕopp, the formula

ϕ with the opposite partitioning.
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Definition 1.2.1. A partitioned formula ϕ(x; y) is dependent if ID(ϕ) = N for

some N < ω. A theory T is dependent if all partitioned formulas are dependent.

Notice that all of these notions are dependent on how the formula ϕ is par-

titioned. For example, there exists a formula that is dependent when partitioned

one way and independent when partitioned another (let ψ(x; y) be an independent

formula, let ϕ(x, y, z) = (x = y) ∧ ψ(y, z), and consider ϕ(x; y, z) and ϕ(x, y; z)).

Fix now a set of formulas

∆(x; y) = {ϕi(x; y) : i ∈ I}.

By a “∆-type over B” for some small subset B ⊆ Clg(y) we mean a maximal consis-

tent set of formulas of the form ϕi(x; b)
t for i ∈ I, t < 2, and b ∈ B. If p is a ∆-type

over B, we say that p has domain dom(p) = B. For a set B ⊆ Clg(y), the space of

all ∆-types is denoted S∆(B). For any element a ∈ Clg(x) and any set B ⊆ Clg(y),

let tp∆(a/B) be the following ∆-type (in S∆(B)):

tp∆(a/B) = {ϕ(x; b)t : ϕ ∈ ∆, b ∈ B, t < 2, |= ϕ(a; b)t}.

Any ∆-type gives rise to a function δ ∈ (B×∆)2 where, for all b ∈ B and ϕ ∈ ∆,

ϕ(x; b)δ(b,ϕ) ∈ p(x).

We call this δ the function associated to the ∆-type p. For B0 ⊆ B, p ∈ S∆(B),

and δ associated to p, let

pB0(x) = {ϕ(x; b)δ(b,ϕ) : b ∈ B0, ϕ ∈ ∆}

denote the restriction of p to B0. If ∆ = {ϕ(x; y)} (i.e., ∆ is a single formula, ϕ),

then we say “ϕ-type” for “{ϕ}-type,” let Sϕ(B) = S{ϕ}(B), etc. If B1 ⊆ B0 ⊆ B,
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p ∈ Sϕ(B), and δ is the function associated to p (note here that since {ϕ} is a

singleton, we may assume δ ∈ B2), let

pB0,B1(x) = {ϕ(x; b)δ(b) : b ∈ B0 −B1} ∪ {¬ϕ(x; b)δ(b) : b ∈ B1}.

That is, pB0,B1 is pB0 except we negate all instances of ϕ on elements of B1. Some-

times we call this perturbing pB0 by B1. One should note that pB0,B1 need not be a

ϕ-type because it need not be consistent. This notation is used primarily in Section

2.4.

Notice that, since we are assuming that C is sufficiently saturated, all ∆-types

have a realization in C (so long as they are over a “small” set). Thus, for all

p ∈ S∆(B), there exists a such that p = tp∆(a/B). For any such a, we say a |= p.

For the moment, set ∆∗(x; y0, y1, ...) equal to all formulas partitioned in this manner

(though there are infinitely many variables, each formula in ∆∗ uses only finitely

many of them). Then, for any set B ⊆ Clg(y), we let Sx(B) = S∆∗(Bω), the space of

all types in the variables x over B. Since this really only depends on lg(x), we let

Sn(B) denote S(x0,...,xn−1)(B), the space of n-types over B. For any a ∈ Clg(x), let

tp(a/B) = tp∆∗(a/Bω), the (full) type of a over B. We say that p is a partial type

if p ⊆ q for some type q.

The following two definitions are used in Section 3.3. We say that a partial

type p(x) is finitely satisfied over a set A ⊆ Clg(x) if, for all finite partial subtypes

p0 ⊆ p, there exists a ∈ A such that a |= p0. Given sets B ⊆ C ⊆ Cn and an

ultrafilter D on B, the average type of D over C is the type

Av(D, C)(x) = {δ(x) parameter-definable type over C : δ(B) ∈ D}.
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With most of the background out of the way, we begin with the definition of

stable formulas.

Definition 1.2.2. We say that a partitioned formula ϕ(x; y) has the order property

if there exists {ai : i < ω} with lg(ai) = lg(x) for all i < ω and {bj : j < ω} with

lg(bj) = lg(y) for all j < ω such that, for all i, j < ω, |= ϕ(ai; bj) if and only if i < j.

We say that ϕ is stable if it does not have the order property. We say that a theory

T is stable if all partitioned formulas are stable.

Notice that if ϕ is stable, then it is dependent (otherwise, independence pro-

vides a witness to the order property). Stable theories have many interesting prop-

erties. First, we define the notion of the Shelah 2-rank of a type (from [22], where

Shelah denotes it by Rlg(x)(p,∆, 2)). Let ∆(x; y) be a finite partitioned collection

of formulas and p ∈ S∆(B). Then the Shelah 2-rank of p, denoted R2,∆(p), is an

ordinal-valued function on ∆-types defined inductively as follows:

(i) R2,∆(p) ≥ 0 always.

(ii) R2,∆(p) ≥ δ for δ a limit ordinal if R2,∆(p) ≥ α for all α < δ.

(iii) R2,∆(p) ≥ α+1 if, for all finite ∆-types q ⊆ p, there are two ∆-types q0, q1 ⊇ q

such that there exists a parameter-definable formula θ with θ ∈ q0 and ¬θ ∈ q1

and R2,∆(qi) ≥ α for both i < 2.

Finally, we say that R2,∆(p) = ∞ if R2,∆(p) ≥ α for all ordinals α. A priori the

Shelah 2-rank of a formula could be any ordinal or even ∞. However, if ϕ is stable,

then the 2-rank of all types are finite. Moreover, the size of type spaces are bounded.
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Theorem 1.2.3 (Theorem II.2.2 of [22]). The following are equivalent for a parti-

tioned formula ϕ(x; y):

(i) ϕ(x; y) is stable.

(ii) For all B ⊆ Clg(y) with |B| ≥ ℵ0, |Sϕ(B)| ≤ |B|.

(iii) R2,ϕ(p) < ω, for all ϕ-types p.

Chris Laskowski has a slightly different proof for Theorem 1.2.3 (iii)⇒ (i) that

is useful in Section 3.2 when we introduce another rank (and show it is bounded by

the Shelah 2-rank, see Theorem 3.2.8). This proof is presented in that section. The

following theorem is known as “sufficiency of a single variable.”

Theorem 1.2.4 (Theorem II.2.13 and Theorem II.4.11 of [22]). For a theory T , the

following hold:

(i) T is stable if and only if all partitioned formulas ϕ(x; y) (with lg(x) = 1) are

stable.

(ii) T is dependent if and only if all partitioned formulas ϕ(x; y) are dependent.

Instead of checking all formulas for stability (or dependence), it suffices to

check only formulas of the form ϕ(x; y). This is noteworthy because we show a

similar result for UDTFS theories (see Lemma 2.3.6). This gives some evidence

(albeit very little) that dependence is equivalent to UDTFS, as both have sufficiency

of a single variable. Both dependence and stability of formulas are preserved under

reduct, which is a question that is still open for formulas with UDTFS. For more on
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UDTFS, see Section 2.3. More facts about stable formulas and theories are discussed

in Section 1.3.

Another useful tool in studying theories is indiscernible sequences. For ex-

ample, we use indiscernible sequences in Section 2.2 when studying definability of

types. Fix a set of formulas ∆(y0, ..., yn) with lg(yi) = lg(yj) for all i, j ≤ n. Fix a

linear order (I,<) where |I| is small in comparison to the saturation of C and let

〈bi : i ∈ I〉 be a sequence of elements with each bi ∈ Clg(y0).

Definition 1.2.5. We say that 〈bi : i ∈ I〉 is a ∆-indiscernible sequence if, for all

i0 < i1 < ... < in and j0 < j1 < ... < jn from I and for all δ ∈ ∆,

|= δ(bi0 , ..., bin) ↔ δ(bj0 , ..., bjn). (1.1)

We say that 〈bi : i ∈ I〉 is a ∆-indiscernible set if, for all i0, i1, ..., in ∈ I distinct, for

all j0, ..., jn ∈ I distinct (regardless of order), and for all δ ∈ ∆, (1.1) holds.

We say that 〈bi : i ∈ I〉 is a indiscernible sequence (respectively, set) if it

is a ∆-indiscernible sequence (respectively set) for all sets of formulas ∆ of the

appropriate free variables (i.e., arbitrarily many tuples of variables, each of length

lg(bi)).

We use the following fact, which follows from Erdös-Rado Theorem. Specifi-

cally, we use this in the proof of Theorem 2.2.1.

Lemma 1.2.6. For all cardinals κ, there exists a λ (depending on κ and |T |) such

that, for all sets {bi : i < λ}, there exists I ⊆ λ with |I| = κ such that 〈bi : i ∈ I〉 is

an indiscernible sequence.
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Indiscernible sequences give us a means of analyzing the stability or depen-

dence of a formula.

Theorem 1.2.7 (Theorem II.2.20 and Theorem II.4.13 of [22]). The following holds

for a partitioned formula, ϕ(x; y):

(i) If ϕ is stable, then there exists n < ω such that, for all a ∈ Clg(x) and all

indiscernible sequences 〈bi : i ∈ I〉 of the appropriate length,

|{i ∈ I :|= ϕ(a; bi)}| ≤ n or |{i ∈ I :|= ¬ϕ(a; bi)}| ≤ n.

(ii) If ϕ is dependent, then there exists n < ω such that, for all a ∈ Clg(x) and

all indiscernible sequences 〈bi : i ∈ I〉, the truth value of ϕ(a; bi) alternates

at most n times (i.e., there do not exist i0 < ... < in from I such that |=

ϕ(a; bi`) ↔ ¬ϕ(a; bi`+1
) for all ` < n).

We use part (ii) of this theorem for Lemma 2.2.4 (and we provide a proof

there). This gives rise to another rank to measure the complexity of a dependent

formula, namely the alternation rank. We say that a formula has alternation rank

n < ω if n is minimal such that, for all a and 〈bi : i ∈ I〉, the truth value of ϕ(a; bi)

alternates at most n times. We denote this by alt(ϕ) = n. If no such n exists, we

say alt(ϕ) = ∞.

Indeed there are other ranks by which to measure the complexity of a formula.

For a partitioned formula ϕ(x; y), we say that ϕ has VC-dimension n < ω (denoted

VC(ϕ) = n) if ID(ϕopp) = n, where ϕopp(y;x) = ϕ(x; y), i.e., ϕopp is ϕ with the

opposite partitioning. Here VC stands for Vapnik-Chervonenkis for two probabilists,

Vladimir Vapnik and Alexey Chervonenkis.
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Related is a notion called VC-density. We say that the formula ϕ has VC-

density ` for some ` ∈ R if ` is the infimum over all `′ ∈ R such that there exists

K < ω such that, for all finite non-empty B ⊆ Clg(y),
∣∣Sϕ(B)

∣∣ ≤ K|B|`′ . We denote

this by VCden(ϕ) = `. If no such ` exists, say VCden(ϕ) = ∞. With this, we get

the following theorem.

Theorem 1.2.8 (Theorem 2.4 of [17], Sauer’s Lemma [21], and others). The fol-

lowing are equivalent for a partitioned formula, ϕ(x; y):

(i) ID(ϕ) <∞ (i.e., ϕ is dependent).

(ii) VC(ϕ) <∞.

(iii) alt(ϕ) <∞.

(iv) VCden(ϕ) <∞.

Later, when we discuss UDTFS rank in Section 3.2, we analyze more closely

how all of these ranks relate. Of course, there exist formulas with infinite Shelah

2-rank that are still dependent (take any dependent unstable formula). So Shelah

2-rank does not fit in nicely with these ranks measuring various levels of dependence.

We conclude this section with two definitions regarding subclasses of all de-

pendent theories. The first deals with theories that define a linear order < on C.

The second one generalizes the first and does not require a linear order. One should

note that any theory that defines an infinite linear order is necessarily unstable.

However, it may still be dependent.
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Definition 1.2.9. Suppose the language L includes < a binary relation and T

includes the axioms that < is a linear order on C. We say that T is o-minimal if,

for all formulas ϕ(x; y) and all b ∈ Clg(y), the set {a ∈ C :|= ϕ(a; b)} is a union of

finitely many points and intervals of C. We say that T is weakly o-minimal if, for

all models M |= T , all formulas ϕ(x; y), and all b ∈ M lg(y), {a ∈ M :|= ϕ(a; b)} is a

union of finitely many <-convex subsets of M .

Definition 1.2.10. A theory T is dp-minimal if, for all formulas ϕ(x; y) and ψ(x; z)

and all {bi : i < ω} and {cj : j < ω} (of the appropriate length), there exists

i0, j0 < ω such that the following {ϕ, ψ}-type is inconsistent

{ϕ(x; bi0), ψ(x; cj0)} ∪ {¬ϕ(x; bi) : i < ω, i 6= i0} ∪ {¬ψ(x; cj) : j < ω, j 6= j0}.

By compactness, if T is dp-minimal and ϕ(x; y) and ψ(x; z) are partitioned

formulas, then there exists K < ω such that the condition in Definition 1.2.10 holds

for all sets {bi : i < K} and {cj : j < K}. We use this fact in the proof of Theorem

2.4.1. We get the following relation of theories, which is easily checked.

Proposition 1.2.11. If T is o-minimal or weakly o-minimal, then T is dp-minimal.

If T is dp-minimal, then T is dependent.

As we show in Section 3.2, there are theories which are not dp-minimal but

are dependent (even with UDTFS). There are stable as well as unstable theories

that are dp-minimal. Since stable theories are not o-minimal, there are dp-minimal

theories that are not o-minimal.
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1.3 Definability of Types

We now discuss the notion of definability of types and list some of the conse-

quences of this property. The idea is the following: We want to better understand

and control the space of types over a set. One way of understanding a type is finding

a definition for it. Fix ϕ(x; y) a partitioned formula and p a ϕ-type.

Definition 1.3.1. A parameter-definable formula ψ(y) defines p if, for all b ∈

dom(p), ϕ(x; b) ∈ p(x) if and only if |= ψ(b).

On its face, this notion is quite trivial. In fact, for any ϕ-type p, let a be a

realization of p. Then, the formula ψ(y) = ϕ(a; y) defines p. Our goal is three-fold:

(1) We want definitions for all ϕ-types p.

(2) We want to reduce the domain over which the definitions of p are defined.

Preferably, we want the definition to be defined over dom(p).

(3) We want our definition to be uniform. That is, for any given ϕ, we want a

single ∅-definable formula ψ(y; z) such that, when we plug in values for z, we

get definitions for any ϕ-type.

As we will see shortly, in stable formulas ϕ, (1), (2), and (3) hold in the strongest

sense. However, when we pass to more general formulas, we lose some of this. In

Chapter 2, we show that, for a large class of formulas ϕ (possibly all dependent

formulas), we achieve the strong form of (2) and (3), but fail on (1). We still have

a uniform definition ψ, but it only works for finite ϕ-types. In Section 3.3, we take

another approach to definability of types. There we get a version of definability
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of types for all dependent formulas, ϕ, that has (1), but we only achieve a weaker

form of (2) and no (3). However, this is still strong enough to get a weak stable

embeddability result (see Corollary 3.3.5).

As promised, we have the following result for stable formulas:

Theorem 1.3.2 (Theorem II.2.12 of [22]). The following are equivalent for a par-

titioned formula, ϕ(x; y):

(i) ϕ is stable.

(ii) There exists ψ(y; z0, ..., zn−1) with lg(y) = lg(zi) for all i < n such that, for

all B ⊆ Clg(y) and all p ∈ Sϕ(B), there exists b0, ..., bn−1 ∈ B such that

ψ(y; b0, ..., bn−1) defines p.

This theorem is exactly what we try to capture with both UDTFS and Isolated

Extensions (see Definition 2.1.1 and Theorem 3.3.3 below). Notice the similarities

between the condition of Theorem 1.3.2 and Definition 2.1.1. Except for the word

“finite,” they are identical.

One immediate consequence of uniform definability of types is stable embed-

dability. We say that a subset B ⊆ Cn is stably embedded if, for all parameter-

definable formulas ϕ(x0, ..., xn−1) (not necessarily defined over B), there exists a

parameter-definable formula ψ(x0, ..., xn−1) defined over B such that, for all b ∈ B,

|= ϕ(b) ↔ ψ(b). That is, all externally definable subsets of B are, in fact, internally

definable. For stable theories, we get the following result:

Corollary 1.3.3. If T is stable, then all sets B are stably embedded.

14



Additionally, definability of types gives an explicit reason for the bound on type

spaces. To illustrate this, let us sketch a proof of Theorem 1.2.3, (i) ⇒ (ii) assuming

Theorem 1.3.2. Fix ϕ stable, so by Theorem 1.3.2, there exists ψ(y; z0, ..., zn−1) that

uniformly defines ϕ-types. Fix some B ⊆ Clg(y) with |B| ≥ ℵ0. For each p ∈ Sϕ(B),

there exists c ∈ Bn such that ψ(y; c) defines p. It is easy to see, however, that

one formula cannot define more than a single type over a given domain. Therefore,∣∣Sϕ(B)
∣∣ ≤ |Bn| = |B|.

When generalizing definability of types to dependent theories, one should note

that a different version of a type space bound holds for dependent formulas. By

Theorem 1.2.8 (i) ⇔ (iv), we get the following:

Corollary 1.3.4. A partitioned formula ϕ(x; y) is dependent if and only if there

exists n,K < ω such that, for all finite B ⊆ Clg(y),
∣∣Sϕ(B)

∣∣ ≤ K · |B|n.

This finite version of Theorem 1.2.3, (i) ⇔ (ii) for dependent formulas is part

of the motivation for UDTFS. In fact, as we see in the proof of Proposition 2.3.3

below, as definability of types “explains” type space bounds for stable formulas,

UDTFS “explains” type space bounds for some dependent formulas.

1.4 Outline of Thesis

The remainder of this thesis presents the work of this author. It should be

noted that the material from Sections 2.2, 2.3, and 2.4 have been submitted for

publication [11] and the material from Section 3.3 will appear in the Proceedings of

the American Mathematical Society [9].
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In Chapter 2 we introduce the notion of uniform definability of types over finite

sets (UDTFS), motivate it, and show results regarding it. The following summarizes

these results:

(i) (Theorem 2.2.1) A formula ϕ is dependent if and only if it has uniform defin-

ability of types over finite indiscernible sequences.

(ii) (Lemma 2.3.6) A theory T has UDTFS if and only if all formulas of the form

ϕ(x; y) has UDTFS.

(iii) (Theorem 2.4.1) If a theory T is dp-minimal, then T has UDTFS.

(iv) (Theorem 2.4.3) If a formula ϕ has VC-density < 2, then ϕ has UDTFS.

(v) (Theorem 2.5.3) If a Henselian valued field of equicharacteristic zero is such

that the theory of the residue field and the theory of the value group have

UDTFS, then the theory of the whole valued field has UDTFS.

(vi) (Theorem 2.6.6) A formula ϕ is stable if and only if there exists n < ω such

that, for all ϕ-types p, there exists c ∈ (dom(p))n such that p does not ∆n,ϕ-

split over {c} (see (2.5) below).

(vii) (Theorem 2.7.10) If a formula ϕ is maximum, then ϕ has UDTFS.

In Chapter 3 we discuss other definability of types notions, including UDTFS

ranks and isolated extensions. The following summarizes the results of Chapter 3:

(viii) (Theorem 3.2.4) If there exists k < ω such that all formulas of the form ϕ(x; y)

have UDTFS rank ≤ k, then all formulas of the form ϕ(x; y) have UDTFS
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rank ≤ k · lg(x). In particular, if k = 1, then T has VC-density one.

(ix) (Theorem 3.3.3) A formula ϕ is dependent if and only if, for all ϕ-types p,

there exists an elementary ϕ-isolated ϕ-extension p′ (see Definition 3.3.2).

(x) (Corollary 3.3.5) If T is dependent, then for any set B in a model M , there

exists (N ;B′) � (M ;B) such that all externally parameter-definable subsets

of B are definable over B′.

(xi) (Theorem 3.4.3) For all formulas ϕ(x; y) from a dp-minimal theory with a

linear order, there exists N < ω such that, for every finite B ⊆ Clg(y) and every

a ∈ Clg(x), there exists B0 ⊆ B with |B0| ≤ N such that tp(a/B0) ` tpϕ(a/B).

In Chapter 4, we discuss VC-minimal theories in more detail. The following

summarizes the results of Chapter 4:

(xii) (Theorem 4.2.2) If T is VC-minimal, then T is convexly orderable.

(xiii) (Theorem 4.4.4) If T is such that there exists (R,M) is a density d rank (see

Definition 4.4.3) on parameter-definable formulas (e.g., d = 1 for Morley rank

and degree for strongly minimal theories), then T has VC-density d.

(xiv) (Theorem 4.5.4) If T is weakly VC-minimal, then either T is stable or T eq

defines an infinite linear order.

(xv) (Corollary 4.5.6) If T is weakly VC-minimal, then T satisfies the Kueker Con-

jecture.
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It is only fitting that we end this thesis with a result on the Kueker Conjecture,

as this was the initial motivation for a large portion of this work.
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Chapter 2

Uniform Definability of Types over Finite Sets

For this chapter, we work in a complete theory T with monster model C.

2.1 Overview

The main goal of this chapter is to study a generalization of definability of

types to a subclass of dependent theories known as uniform definability of types

over finite sets (UDTFS). The study of UDTFS began with Johnson and Laskowski

in [15]. They were analyzing compression schemes for concepts classes (see Section

2.7) and discovered that it was directly related to model theory. This motivated the

definition of UDTFS (which was originally called uniform type definition in [15]).

The following definition is due to Laskowski:

Definition 2.1.1. A partitioned formula ϕ(x; y) has uniform definability of types

over finite sets (UDTFS ) if there exists a formula ψ(y; z0, ..., zn−1) (with lg(y) =

lg(zi) for all i < n) such that, for all finite B ⊆ Clg(y) with |B| ≥ 2 and all p ∈ Sϕ(B),

there exists c0, ..., cn−1 ∈ B such that, for all b ∈ B, ϕ(x; b) ∈ p(x) if and only if

|= ψ(b; c0, ..., cn−1).

We say that a theory T has uniform definability of types over finite sets (UDTFS )

if all partitioned formulas of T have UDTFS.

19



Notice that this differs from Shelah’s notion of uniform definability of types

that characterizes stability (Theorem 1.3.2) only in the fact that we demand that B

be finite. This one simple change vastly expands the class of formulas and theories

that have a notion of definability of types. It is clear that stable formulas (hence

stable theories) have UDTFS and that formulas with UDTFS are dependent. The

main open question, known as the UDTFS Conjecture, is: Does UDTFS charac-

terizes dependence for formulas? This chapter gives various partial results to this

conjecture.

In Section 2.2, we show that having uniform definability of types over finite in-

discernible sequences (instead of merely sets) actually does characterize dependence

for formulas. In Section 2.3, we develop basic properties of UDTFS, including suffi-

ciency of a single variable and closure under boolean combinations. In Section 2.4,

we prove that all dp-minimal theories have UDTFS. This implies that all o-minimal

theories, all VC-minimal theories, and all VC-density one theories have UDTFS.

In Section 2.5, we show that, given a Henselian valued field of equicharacteristic

zero in the Denef-Pas language, if the residue field and value group have UDTFS,

then the entire valued field has UDTFS. In Section 2.6, we give a characterization of

UDTFS in terms of non-∆-splitting and discuss the Splitting Conjecture. Finally, in

Section 2.7, we discuss the relationship between UDTFS and compression schemes

for concept classes, as described in [15]. We show what the results of this chapter

entail for compression schemes. We also use the results of Floyd and Warmuth in

[7] to show that all maximum formulas have UDTFS.
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2.2 Finite Indiscernible Sequences

Before launching into our discussion of UDTFS, let us first introduce another

concept that actually proves to be equivalent to dependence. The following definition

is only used in this section. We say that a partitioned formula ϕ(x; y) has uniform

definability of types over (finite) indiscernible sequences (UDT(F)IS ) if there exists

a formula ψ(y; z0, ..., zn−1) (with lg(y) = lg(zi) for all i < n) such that, for all

(finite) indiscernible sequences 〈bi : i ∈ I〉 (with lg(bi) = lg(y) for all i ∈ I) and all

p ∈ Sϕ({bi : i ∈ I}), there exists i0, ..., in−1 ∈ I such that ψ(y; bi0 , ..., bin−1) defines

p.

Theorem 2.2.1. For a partitioned formula ϕ(x; y), the following hold:

(i) ϕ is stable if and only if ϕ has UDTIS.

(ii) ϕ is dependent if and only if ϕ has UDTFIS.

Notice that Theorem 2.2.1 (i) holds when we replace “indiscernible sequences”

with arbitrary sets (see Theorem 1.3.2 above). However, it is still open whether or

not (ii) holds with a similar modification. Studying this question is the basis of this

chapter. We see by the analysis of this section that using indiscernible sequences

instead of sets tends to smooth things out a bit.

Before we prove Theorem 2.2.1, let us deal with the case where ϕ is dependent.

First, fix a set of formulas ∆(z0, z1, ..., zn) with lg(zi) = lg(zj) for all i, j ≤ n.

Definition 2.2.2. We say that ∆ is closed under permutations if, for all σ ∈ Sn+1
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(where Si is the symmetric group on i) and for all δ ∈ ∆, the formula

δσ(z0, z1, ..., zn) = δ(zσ(0), zσ(1), ..., zσ(n)) (2.1)

is also in ∆.

Notice that if ∆ is all formulas (of a fixed length and partitioning), then ∆

is closed under permutations. The following lemma shows that if ∆ is any set of

formulas closed under permutations, for any ∆-indiscernible sequence that is not a

∆-indiscernible set, there exists an instance of ±∆ that defines the linear order of

the indiscernible sequence. The proof of this lemma is based on a modification of

the proof of Theorem II.4.7 of [22].

Lemma 2.2.3. If ∆(z0, z1, ..., zn) is a set of formulas that is closed under permu-

tations, (I,<) is a linear order with |I| > n, and 〈bi : i ∈ I〉 is a ∆-indiscernible

sequence that is not a ∆-indiscernible set, then there exists t < n − 1 and δ ∈ ±∆

such that

|= δ(bi0 , ..., bit , bit+1 , ..., bin) ∧ ¬δ(bi0 , ..., bit−1 , bit+1 , bit , bit+2 , ..., bin)

for some (equivalently all) i0 < ... < in from I. In other words, δ is “order sensitive”

at t.

Proof. To simplify notation, assume that 0 < 1 < ... < n is in I and we show this for

b0, ..., bn. Since 〈bi : i ∈ I〉 is a ∆-indiscernible sequence that is not a ∆-indiscernible

set, there exists some δ′ ∈ ±∆ witnessing this fact. That is, |= δ′(b0, ..., bn) but

|= ¬δ′(bσ(0), ..., bσ(n)) for some σ ∈ Sn+1. However, Sn+1 as a group is generated by
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elements of the form (t t+1) for t < n (i.e., the permutation that is the identity on

all of n+ 1 except that it swaps t and t+ 1). So, there exists another σ ∈ Sn+1 and

t < n such that

|= δ′(bσ(0), ..., bσ(n)) ∧ ¬δ′(b(τ◦σ)(0), ..., b(τ◦σ)(n))

where τ = (t t+1). Since ∆ is closed under permutations, if we let δ = δ′σ as in

(2.1), then we see that

|= δ(b0, ..., bn) ∧ ¬δ(bτ(0), ..., bτ(n)),

which is exactly what we aimed to show.

Suppose now that I = L < ω (so I is finite) and take n, ∆, δ, and t as in

Lemma 2.2.3. Then we can take the initial t elements and final n− t− 1 elements

of the ∆-indiscernible sequence 〈bi : i < L〉 and get that the formula

θ(y0; y1) = δ(b0, ..., bt−1, y0, y1, bL−n+t+1, ..., bL−1)

defines the linear order of the sequence 〈bi : t ≤ i ≤ L − n + t〉. That is, for all

distinct i, j with t ≤ i, j ≤ L − n − t, |= θ(bi, bj) if and only if i < j. A theme

of this chapter is the following: creating a definable finite partial order is our main

way of obtaining uniform definability of types. However, we should note here that

we need a suitable choice of ∆. In particular, if we can possibly hope for a uniform

type definition, we need ∆ to be finite.

Fix ϕ(x; y) a dependent partitioned formula with independence dimension N .

Define ∆n,ϕ, a finite collection of formulas, as follows:

∆n,ϕ(z0, ..., zn) =

{
∃x

(∧
i≤n

ϕ(x; zi)
t(i)

)
: t ∈ n+12

}
. (2.2)
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Notice that ∆n,ϕ is closed under permutations. We now show that it suffices to

consider ∆N,ϕ to break up the finite index set I into boundedly many pieces that

are constant on ϕ(a; y) for any choice of a ∈ Clg(x).

Lemma 2.2.4 (Theorem II.4.13 of [22]). Let ∆ = ∆N,ϕ (where N = ID(ϕ)), (I,<)

be a linear order, 〈bi : i ∈ I〉 be a ∆-indiscernible sequence, and a ∈ Clg(x).

(i) There exists K ≤ N + 1 <-convex subsets of I, I0, ..., IK−1, such that, for all

i ∈ I, |= ϕ(a; bi) if and only if i ∈ I` for some ` < K.

(ii) If 〈bi : i ∈ I〉 be a ∆-indiscernible set and |I| ≥ 2N + 1, then there exists

I0 ⊆ I with |I0| ≤ N and t < 2 such that, for all i ∈ I, |= ϕ(a; bi)
t if and only

if i ∈ I0.

This is due to Shelah, but we sketch the proof here for completeness.

Proof. (i): If not, then there exists i0 < ... < i2N+1 from I such that |= ϕ(a; bi`) if

and only if ` is odd. By ∆-indiscernibility, for any t ∈ N+12,

|= ∃x
∧
`≤N

ϕ(x; bi`)
t(`).

This contradicts the fact that N = ID(ϕ).

(ii): If not, then there exists distinct i0, ..., i2N+1 ∈ I such that |= ϕ(a; bi`) if

and only if ` is odd. The proof follows as in (i).

We now introduce one more lemma before proving Theorem 2.2.1. This is

proved exactly like Lemma 2.3.5, which in turn is proved like Theorem II.2.12 (1)

of [22].

24



Lemma 2.2.5. Fix ϕ(x; y) a partitioned formula and {ψ`(y; z0, ..., zn−1) : ` < L} a

finite collection of formulas such that, for all finite indiscernible sequences 〈bi : i ∈ I〉

and for all p(x) ∈ Sϕ({bi : i ∈ I}), there exists ` < L and i0, ..., in−1 ∈ I such that

ψ`(y; bi0 , ..., bin−1) defines p. Then, ϕ has UDTFIS.

We are now ready to prove the main theorem. Fix any partitioned formula

ϕ(x; y) (not necessarily dependent).

Proof of Theorem 2.2.1. (i): Suppose first that ϕ(x; y) is unstable, so ϕ has the

order property. By compactness and the Erdös-Rado Theorem, there exists an

infinite indiscernible sequence in y and another infinite sequence in x witnessing the

order property. By compactness, there exists an indiscernible sequence 〈bq : q ∈ Q〉

and a set {ar : r ∈ R} such that |= ϕ(ar; bq) if and only if r < q. Suppose, by means

of contradiction, that there exists a formula ψ(y; z0, ..., zn−1) witnessing UDTIS.

Then, for each r ∈ R, there exists q0, ..., qn−1 ∈ Q such that ψ(y; bq0 , ..., bqn−1)

defines the type tpϕ(ar/{bq : q ∈ Q}). However, for different r ∈ R, these types are

different. Hence |R| = |Qn|, a contradiction.

Conversely, suppose ϕ is stable. By Theorem 1.3.2 (Theorem II.2.12 of [22]),

there exists a formula ψ(y; z0, ..., zn−1) witnessing uniform definability of ϕ-types

over all sets. Hence, this ψ also witnesses that ϕ has UDTIS.

(ii): Assume that ϕ is independent. By compactness and the Erdös-Rado

Theorem, there exists an indiscernible sequence 〈bi : i < ω〉 such that the set

{bi : i < ω} is ϕ-independent. Suppose, by means of contradiction, that there exists

a formula ψ(y; z0, ..., zn−1) witnessing UDTFIS. Then, for each L < ω, the number

25



of ϕ-types over {bi : i < L} is bounded by Ln. On the other hand, since {bi : i < L}

is ϕ-independent, the number of ϕ-types is exactly equal to 2L. Therefore, 2L ≤ Ln.

However, since n is fixed and L < ω is arbitrary, this is a contradiction.

Conversely, assume that ϕ is dependent. Let N = ID(ϕ) and let ∆ = ∆N,ϕ as

in (2.2). We now define finitely many formulas ψ`(y; z) that satisfy the hypotheses

of Lemma 2.2.5, showing that ϕ has UDTFIS. First, for each t < 2, let

ψt(y; z0, ..., zN) =

(∨
i≤N

y = zi

)t

.

Now, for each t < N , δ ∈ ±∆, K ≤ N + 1 and s ∈ N+12, let

θt,δ(y0, y1; z0, ..., zN) = δ(z0, ..., zt−1, y0, y1, zt+2, ..., zN)

and let

ψt,δ,K,s(y; z0, ..., zN , w0, ..., w2K−1) =∨
i≤N

y = zi →
∨

i≤N,s(i)=1

y = zi

 ∧

( ∨
j<2K

y = wj

)
∧

(∧
i≤N

y 6= zi ∧
∧
j<2K

y 6= wj →
∨
j<K

(θt,δ(w2j, y; z) ∧ θt,δ(y, w2j+1; z))

)
.

Think of θt,δ as defining the order of the sequence, as in Lemma 2.2.3. Also think

of the zi as the boundaries of the indiscernible sequence and think of wj as the

endpoints of the convex sets I0, ..., IK−1 given by Lemma 2.2.4 (i). So ψt,δ,K,s says

that either y is equal to an appropriate zi or wj, or it falls within one of the convex

components Ij. We now show that these ψt and ψt,δ,K,s satisfy the hypotheses of

Lemma 2.2.5.

Fix a finite indiscernible sequence 〈bi : i < L〉, let B = {bi : i < L} and

fix p ∈ Sϕ(B). First, if L ≤ 2N , we may use ψt trivially to define p. Second, if
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〈bi : i < L〉 is a ∆-indiscernible set, then, by Lemma 2.2.4 (ii), there exists I0 ⊆ L

with |I0| ≤ N and t < 2 such that, for all i < L, ϕ(x; bi)
t ∈ p(x) if and only if i ∈ I0.

Hence, ψt(y; bi0 , ..., biN ) defines p, where I0 = {i0, ..., iN}.

Therefore, we may assume that 〈bi : i < L〉 is a ∆-indiscernible sequence that is

not a ∆-indiscernible set. By Lemma 2.2.3, there exists t < N and δ ∈ ±∆ such that

θt,δ(y0, y1; b0, ..., bt, bL−N+t, ..., bL−1) defines the sequence order for t ≤ i ≤ L−N + t.

By Lemma 2.2.4 (i) on the ∆-indiscernible sequence 〈bi : t ≤ i ≤ L−N + t〉, there

exists K ≤ N+1 and <-convex subsets of {t, ..., L−N+t}, I0, ..., IK−1 such that, for

all i with t ≤ i ≤ L−N + t, ϕ(x; bi) ∈ p(x) if and only if i ∈ Ij for some j < K. Let

s ∈ N+12 be such that ϕ(x; bi)
s(i) ∈ p(x) for all i ≤ t and ϕ(x; bL−N+i−1)

s(i) ∈ p(x)

for all t < i ≤ N . Let m2j,m2j+1 be the endpoints of Ij inclusive. Then, we can see

that

ψt,δ,K,s(y; b0, ..., bt, bL−N+t, ..., bL−1, bm0 , ..., bm2K−1
)

defines p, as desired.

This proof also shows that if we assume that ϕ is dependent with independence

dimension N , then there exists a uniform definition of ϕ-types over finite ∆N,ϕ-

indiscernible sequences. We use finiteness of the sequence in two places: our ability

to define the linear order θt,δ and our ability to choose endpoints of the convex sets,

m2j and m2j+1. Therefore, suitable generalizations can be made for indiscernible

sequences with different index sets. For example, there exists a uniform definition

of ϕ-types over ∆N,ϕ-indiscernible sequences indexed by ω + N (one needs to add

a few definitions for the case where the truth value is cofinal in ω). This clearly
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cannot generalize to all index sets (for example, if ϕ is unstable, we see from the

proof that the index set Q does not work).

This result relies heavily on our ability to define the linear order of the se-

quence. As the remainder of this chapter demonstrates, we can prove that a for-

mula has UDTFS if we can come up with a similar notion of a definable order. For

example, in Section 2.4, we use the ordering ≤p to produce a uniform definition. Is

there a generalization of linear order that holds for dependent theories and can be

used to prove that all dependent theories have UDTFS?

2.3 Basic Properties of UDTFS

In this section, we discuss basic properties of UDTFS. Some of these properties

were worked out by Laskowski and Johnson in [15] and that is noted when we

present them. We include proofs of these for completeness. Recall Definition 2.1.1,

ϕ(x; y) has UDTFS if there exists ψ(y; z) such that, for all finite B ⊆ Clg(y) and all

p ∈ Sϕ(B), there exists c ∈ Bn such that ψ(y; c) defines p. In this case, we say that

ψ is a uniform definition of ϕ-types over finite sets.

First, note that UDTFS is a property of the theory. This is because, for

each formula ϕ(x; y), the fact that ψ(y; z0, ..., zn−1) is a uniform definition for finite

ϕ-types is expressible as the following collection of sentences: {σK : K < ω} where

σK = ∀y0...yK∀x
∨
i∈nK

(∧
k<K

ϕ(x; yk) ↔ ψ(yk; yi(0), ..., yi(n−1))

)
.

Second, note that UDTFS is dependent on the way we partition a formula. As

before, if we let ψ(x; y) be an independent formula, and let ϕ(x, y, z) = (x = y) ∧
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ψ(y, z), then we see that ϕ(x; y, z) has UDTFS but ϕ(x, y; z) does not. It is still

open whether or not the reduct of the a theory with UDTFS still has UDTFS; one

could accidentally “throw out” the definition when taking reducts.

The following lemma follows easily by the arguments in [22]:

Lemma 2.3.1. If ϕ(x; y) and ψ(x; z) have UDTFS, then the following formulas also

have UDTFS:

(i) (ϕ ∧ ψ)(x; y, z) = ϕ(x; y) ∧ ψ(x; z).

(ii) (¬ϕ)(x; y) = ¬ϕ(x; y).

In other words, the class of formulas that have UDTFS and have the same free

variables x is closed under boolean combinations.

Proof. Fix ϕ(x; y) and ψ(x; z) with UDTFS, witnessed by γϕ(y;w0, ..., wn) and

γψ(z; v0, ..., vn) respectively. Then, notice that

(γϕ ∧ γψ)(y, z;w0, v0, ..., wn, vn) = γϕ(y;w) ∧ γψ(z;v)

is a uniform definition of (ϕ ∧ ψ)-types over finite sets. Similarly, ¬γϕ(y;w) is a

uniform definition of (¬ϕ)-types over finite sets.

The next proposition follows by definition and Theorem 1.3.2 (also see Theo-

rem II.2.12 of [22]):

Proposition 2.3.2. If ϕ(x; y) is a stable formula, then ϕ has UDTFS. Thus, stable

theories have UDTFS.
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The following proposition puts UDTFS between stability and dependence. It

is due to Chris Laskowski (unpublished).

Proposition 2.3.3. If a partitioned formula ϕ(x; y) has UDTFS, then ϕ is depen-

dent.

Proof. If ϕ(x; y) has UDTFS, then it certainly has UDTFIS (as defined in Section

2.2). Therefore, by Theorem 2.2.1 (ii) (⇐), ϕ is dependent.

It is still open whether or not all dependent formulas have UDTFS or even

if all dependent theories have UDTFS. This is known as the UDTFS Conjecture,

and was first proposed by Laskowski (unpublished). Laskowski classifies this as an

“open question” and not a conjecture, but this author will go out on a limb:

Conjecture 2.3.4 (UDTFS Conjecture). For a partitioned formula ϕ(x; y), ϕ is

dependent if and only if ϕ has UDTFS.

We discuss the implications of this conjecture and the evidence for it at the

end of this section.

The next lemma shows that we do not need a single uniform definition of ϕ-

types over finite sets; it suffices to have a fixed finite number of them instead. This

simplifies showing that formulas and theories have UDTFS. This is essentially due

to Shelah in the proof of Theorem II.2.12 (1) in [22], where he shows it for standard

definability of types.

Lemma 2.3.5. Fix ϕ(x; y) a partitioned formula and {ψ`(y; z0, ..., zn−1) : ` < L} a

finite collection of formulas such that, for all finite non-empty B ⊆ Clg(y) and for
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all p(x) ∈ Sϕ(B), there exists ` < L and c0, ..., cn−1 ∈ B such that ψ`(y; c0, ..., cn−1)

defines p. Then, ϕ has UDTFS.

Proof. Let ϕ and ψ` for ` < L be given as in the hypothesis. Consider the following

formula:

ψ(y; z0, ..., zn−1, w, v0, ..., vL−1) =
∧
`<L

(w = v` → ψ`(y; z0, ..., zn−1).

We claim that this is a uniform definition of ϕ-types over finite sets, showing that

ϕ has UDTFS. Fix any finite B ⊆ Clg(y) with |B| ≥ 2 and any p ∈ Sϕ(B). By the

hypothesis, there exists ` < L and c ∈ Bn such that ψ`(y; c) defines p. Fix any

b 6= b
′
from B (this is where we use the hypothesis that |B| ≥ 2) and let bi = b for

all i < L, i 6= ` and let b` = b
′
. Then, the following defines p:

ψ(y; c, b
′
, b0, ..., bL−1).

Now we exhibit another lemma that reduces the difficulty in showing that a

theory has UDTFS.

Lemma 2.3.6 (Sufficiency of a single variable). A theory T has UDTFS if and only

if all formulas of the form ϕ(x; y) have UDTFS (where lg(x) = 1).

Proof. One direction is trivial, so suppose that all formulas of the form ϕ(x; y) have

UDTFS. We show that a formula ϕ(x; y) has UDTFS by induction on n = lg(x).

Of course, n = 1 is taken care of by assumption, so suppose n > 1.

Consider the repartitioned formula ϕ̂(x0, ..., xn−2;xn−1, y) = ϕ(x; y). Since

ϕ̂ has only n − 1 free variables, by induction hypothesis, there exists a uniform
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definition of ϕ̂-types over finite sets, say ψ(xn−1, y;w0, z0, ..., wk−1, zk−1) (where

lg(zi) = lg(y) for all i < k). Now let

ψ∗(xn; y, z0, ..., zk−1) = ψ(xn−1, y;xn−1, z0, ..., xn−1, zk−1)

(where we substitute xn−1 for each wi and repartition). Since this has only one free

variable, by hypothesis, there exists a uniform definition of ψ∗-types over finite sets,

say

γ(y, z0, ..., zk−1; v0, u0,0, ..., u0,k−1, ..., v`−1, u`−1,0, ..., u`−1,k−1)

(so each (vj, uj,0, ..., uj,k−1) corresponds to (y, z0, ..., zk−1)). Finally, let

γ∗(y; z0, ..., zk−1, v0, ..., v`−1) =

γ(y, z0, ..., zk−1; v0, z0, ..., zk−1, ..., v`−1, z0, ..., zk−1)

(so we substitute zi for each uj,i and repartition). We claim that γ∗ is a uniform

definition of ϕ-types over finite sets, completing the proof.

Fix B ⊆ Clg(y) finite and fix p ∈ Sϕ(B). Let ai ∈ C be such that (a0, ..., an−1) |=

p. Consider the ϕ̂-type

p̂(x0, ..., xn−2) = tpϕ̂(a0, ..., an−2/an−1
_B)

where an−1
_B = {(an−1, b) : b ∈ B}. As ψ is a uniform definition of ϕ̂-types over

finite sets, there exists some (an−1, c0), ..., (an−1, ck−1) ∈ an−1
_B (i.e., c0, ..., ck−1 ∈
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B) such that

for all b ∈ B, ϕ(x; b) ∈ p if and only if

ϕ̂(x0, ..., xn−2; an−1, b) ∈ p̂(x0, ..., xn−2) if and only if

|= ψ(an−1, b; an−1, c0, ..., an−1, ck−1) if and only if

|= ψ∗(an−1; b, c0, ..., ck−1).

Now consider the ψ∗-type q(xn−1) = tpψ∗(an−1/B
_(c0, ..., ck−1)). As γ is a uniform

definition of ψ∗-types over finite sets, there exists some d0, ..., d`−1 ∈ B such that

for all b ∈ B, |= ψ∗(an−1; b, c0, ..., ck−1) if and only if

γ(b, c0, ..., ck−1; d0, c0, ..., ck−1, ..., d`−1, c0, ..., ck−1) if and only if

γ∗(b; c0, ..., ck−1, d0, ..., d`−1).

If we string all of these equivalent conditions together, we see that

γ∗(y; c0, ..., ck−1, d0, ..., d`−1)

defines p, as desired.

We used nothing about finiteness, so this provides a new proof for the suffi-

ciency of a single variable for stable formulas (i.e., Theorem 1.2.4 (i) above). If the

UDTFS Conjecture holds, this provides another proof of the sufficiency of a single

variable for dependent formulas as well (i.e., Theorem 1.2.4 (ii) above). Take note

of the fact that, if ϕ̂ has a finite type definition with k parameter tuples and ψ∗ has

a finite type definition with ` parameter tuples, then ϕ has a finite type definition

of k + ` tuples. We use this fact to prove Theorem 3.2.4 below.
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Lemma 2.3.6 is used to prove UDTFS for a theory whose formulas with one

free variable are well understood. For example, we use it to show that all dp-minimal

theories have UDTFS (see Theorem 2.4.1 below).

The next two sections provide more examples of theories and formulas that

have UDTFS. Using the methods of these proofs as a template, we suggest potential

methods for proving the UDTFS Conjecture and provide more evidence for it. As

we see in Section 2.7, the UDTFS Conjecture implies the Warmuth Conjecture

(Conjecture 2.7.7 below). However, our main motivation is model-theoretic: The

UDTFS Conjecture would provide a ideal generalization of uniform definability of

types to dependent formulas.

2.4 dp-Minimal Theories have UDTFS

In this section, we prove the following theorem:

Theorem 2.4.1. If T is dp-minimal, then T has UDTFS.

This has the following corollary:

Corollary 2.4.2. The following theories have UDTFS:

(i) T = Th(Qp; +, ·, 0, 1) (the theory of the p-adic field).

(ii) T = Th(Z; +, <) (the theory of Presburger arithmetic).

(iii) Any VC-minimal T (see Definition 4.1.1 below).

(iv) Any VC-density one theory T (see Definition 3.2.5 below).
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(v) Any o-minimal or weakly o-minimal theory T (originally due to Johnson and

Laskowski in [15]).

Along the way, we also provide a proof of the following theorem:

Theorem 2.4.3. If ϕ(x; y) is any formula and N is a positive integer such that, for

all B ⊆ Clg(y) with |B| = N , we have that |Sϕ(B)| ≤ N(N+1)
2

, then ϕ has UDTFS.

Therefore, if ϕ has VC-density < 2, then ϕ has UDTFS. One should note that

the bound given by the theorem, N(N+1)/2, is exactly one less than the maximum

for independence dimension two given by Sauer’s Lemma. We discuss this more in

Subsection 2.7.2.

Recall the definition of dp-minimality (Definition 1.2.10). An ICT-pattern is

a pair of formulas ϕ(x; y) and ψ(x; z) together with two sequences 〈bi : i < ω〉 and

〈cj : j < ω〉 such that, for all i0, j0 < ω, the following type is consistent:

{ϕ(x; bi0), ψ(x; cj0)} ∪ {¬ϕ(x; bi) : i < ω, i 6= i0} ∪ {¬ψ(x; cj) : j < ω, j 6= j0}.

Therefore, T is dp-minimal if and only if there exists no ICT-pattern. For our

purposes, ICT-patterns do not suffice. Instead, we look at a notion we call a TP-

pattern.1

Definition 2.4.4. A TP-pattern is a formula ϕ(x; y) with a single free variable x

together with a sequence of lg(y)-tuples 〈bi : i < ω〉 such that, for all ` < k < ω, the

1This author created this terminology for [11], intending TP to stand for triangle pattern,

without realizing that the word pattern was used twice.
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following formula holds:

∃x

(
ϕ(x; bk) ∧ ϕ(x; b`) ∧

∧
i<k,i6=`

¬ϕ(x; bi)

)
.

We now show that having a TP-pattern is equivalent to having a ICT-pattern,

providing a new characterization of dp-minimality and simplifying our proof of The-

orem 2.4.1.

Proposition 2.4.5. A theory T is dp-minimal if and only if T has no TP-pattern.

Proof. Suppose first that T has a TP-pattern, say ϕ(x; y) and 〈bi : i < ω〉. Define

ψ as follows:

ψ(x; y0, y1) = (ϕ(x; y0) ↔ ϕ(x; y1))

and let K be any positive integer. By Ramsey’s Theorem, we may assume that

〈bi : i < ω〉 is ∆-indiscernible for ∆ = ∆4K,ϕ as in (2.2) (from Section 2.2). By the

definition of a TP-pattern, the following is consistent:

{¬ϕ(x; bi) : i < 2K} ∪ {ϕ(x; b2K)} ∪ {¬ϕ(x; bi) : 2K < i ≤ 6K} ∪ {ϕ(x; b6K+1)}.

Let a realize this type. By pigeon-hole principal, there exists some t < 2 such

that, for infinitely many i > 6K + 1, |= ϕ(a; bi)
t. By replacing 〈bi : i < ω〉 with a

subsequence, we may assume that |= ϕ(a; bi)
t for all i > 6K + 1 (notice that being

∆-indiscernible is closed under subsequence). Therefore, we have that the following

is consistent, witnessed by a:

{ψ(x; b2i, b2i+1) : i < K} ∪ {¬ψ(x; b2K , b2K+1)} ∪ {ψ(x; b2i, b2i+1) : K < i < 3K}∪

{¬ψ(x; b6K , b6K+1)} ∪ {ψ(x; b2i, b2i+1) : 3K < i < 4K}.
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By ∆-indiscernibility of 〈bi : i < ω〉, we have that, for all ` < K and K ≤ k < 2K,

the following is consistent:

{ψ(x; b2i, b2i+1) : i < K, i 6= `} ∪ {¬ψ(x; b2`, b2`+1)}∪

{ψ(x; b2i, b2i+1) : K ≤ i < 2K, i 6= k} ∪ {¬ψ(x; b2k, b2k+1)}.

Since K < ω was arbitrary, by compactness there exists ci, dj ∈ Clg(y) for all i, j < ω

such that, for all `, k < ω, the following is consistent:

{ψ(x; c2i, c2i+1) : i < ω, i 6= `} ∪ {¬ψ(x; c2`, c2`+1)}∪

{ψ(x; d2i, d2i+1) : i < ω, i 6= k} ∪ {¬ψ(x; d2k, d2k+1)}.

Then ¬ψ, ¬ψ, 〈(c2i, c2i+1) : i < ω〉, and 〈(d2i, d2i+1) : i < ω〉 form an ICT-pattern.

Thus, T is not dp-minimal.

Conversely, suppose that T is not dp-minimal and let ϕ(x; y), ψ(x; z), 〈bi : i <

ω〉, and 〈cj : j < ω〉 be a ICT-pattern witnessing this. Then define θ as follows:

θ(x; y, z) = ¬(ϕ(x; y) ↔ ψ(x; z)).

Then one easily checks that θ together with 〈(bi, ci) : i < ω〉 form a TP-pattern.

Compactness together with Proposition 2.4.5 yields the following result:

Lemma 2.4.6. Fix T a dp-minimal theory. For all ϕ(x; y), there exists K < ω

such that, for all 〈bi : i < K〉 with bi ∈ Clg(y) for all i, we have that the following

two conditions hold:

(i) There exists ` < k < K such that

|= ¬∃x

(
ϕ(x; bk) ∧ ϕ(x; b`) ∧

∧
i<k,i6=`

¬ϕ(x; bi)

)
.
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(ii) There exists ` < k < K such that

|= ¬∃x

(
¬ϕ(x; bk) ∧ ¬ϕ(x; b`) ∧

∧
i<k,i6=`

ϕ(x; bi)

)
.

With TP-patterns defined, we move on to decision processes. Fix a partitioned

formula ϕ(x; y). Fix B ⊆ Clg(y) finite and p ∈ Sϕ(B). Let δ ∈ B2 be the function

associated to p (i.e., ϕ(x; b)δ(b) ∈ p(x) for all b ∈ B).

Definition 2.4.7. For any ϕ-type q(x) and any b ∈ B, we say that q decides ϕ(x; b)

if either q(x) ` ϕ(x; b) or q(x) ` ¬ϕ(x; b). We say that q decides ϕ(x; b) correctly

(with respect to p) if q(x) ` ϕ(x; b)δ(b) (i.e., q decides ϕ(x; b) and it implies the

instance of ±ϕ(x; b) contained in p).

Notice that q need not be a ϕ-subtype of p. In fact, when it is, the following

lemma is immediate since p is consistent:

Lemma 2.4.8. For any ϕ-subtype q ⊆ p and any b ∈ B, if q decides ϕ(x; b) then it

does so correctly.

For any subsets B1 ⊆ B0 ⊆ B, recall the definitions of pB0 and pB0,B1 from

Section 1.2 (pB0 is the restriction of p to B0 and pB0,B1 is pB0 perturbed by B1).

Definition 2.4.9. Fix B0 ⊆ B and b ∈ B. We say that B0 ∗-decides ϕ(x; b) if pB0

decides ϕ(x; b) or there exists b0 ∈ B0 such that pB0,{b0} is consistent and decides

ϕ(x; b). We say that B0 ∗-decides ϕ(x; b) correctly if B0 ∗-decides ϕ(x; b) and we

have that one of the following holds:

(i) pB0 decides ϕ(x; b) (hence correctly by Lemma 2.4.8), or
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(ii) For all b0 ∈ B0 such that pB0,{b0} is consistent and decides ϕ(x; b), pB0,{b0}

decides ϕ(x; b) correctly.

So B0 ∗-decides ϕ(x; b) if there exists a perturbation of pB0 of size at most

one that decides ϕ(x; b). By Lemma 2.4.8, if pB0 decides ϕ(x; b), then it does so

correctly. Therefore, the only way B0 would ∗-decide ϕ(x; b) incorrectly is if pB0

does not decide ϕ(x; b) and, for some b0 ∈ B0, pB0,{b0} is consistent and decides

ϕ(x; b) incorrectly. That is, pB0,{b0} ` ¬ϕ(x; b)δ(b).

One can generalize ∗-decides to perturbations of size at most `, called ∗`-

decides (so ∗-decides is ∗1-decides). However, the Making Correct Decisions Lemma

(Lemma 2.4.11 below) does not hold for any perturbation of size greater than 1.

Still, somehow modifying the remaining argument to work for ∗`-decisions may lead

to a proof for the UDTFS Conjecture.

The concept of ∗-decides captures one possible way of constructing an algo-

rithm to define the ϕ-type p. If we can construct, in a uniform manner, a small

collection of small subsets of B which, when chosen in a certain order, ∗-decides

ϕ(x; b) correctly for all b ∈ B, we can get a uniform definition of ϕ-types over finite

sets. We now show how to construct such a collection.

As orderings aided us in proving UDTFIS for dependent formulas in Section

2.2, we define a quasi-ordering on P(B), the powerset of B, as follows:

For B0, B1 ∈ P(B), let B0 ≤p B1 if pB0(x) ` pB1(x).

We say that B0 is p-equivalent to B1, denoted B0 ≡p B1, if B0 ≤p B1 and B1 ≤p B0.

Clearly ≡p is an equivalence relation on P(B) and ≤p is a partial ordering on
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P(B)/ ≡p. In fact, B0 ≤p B1 if and only if the set of realizations of pB0 is contained

in pB1 , so B0 ≡p B1 if and only if the set of realizations of pB0 equals the set

of realizations of pB1 . We say that B0 <p B1 if B0 ≤p B1 but B1 6≤p B0. For

completeness, p∅ is the empty ϕ-type, which is realized by all a ∈ Clg(x). Therefore,

B0 ≤p ∅ for all B0 ∈ P(B) and ∅ ≤p B0 if and only if pB0 is realized by all elements of

Clg(x). Now consider the following lemma, which is immediate from the definitions:

Lemma 2.4.10. For the quasi-ordering ≤p, the following hold:

(i) For all B0, B1 ∈ P(B), B0 ⊆ B1 implies that B1 ≤p B0.

(ii) For all B0, B1 ∈ P(B) and all B′
0 ⊆ B0, B0 ≤p B1 if and only if B0 ≤p B1∪B′

0.

(iii) If B ⊆ P(B) and B1 ∈ B, then there exists a B0 ≤p B1 such that B0 ∈ B

and, for all other B2 ∈ B, B2 ≤p B0 implies that B2 ≡p B0 (we call such B0

≤p-minimal elements of B).

Notice that (iii) holds because B, hence B, is finite. Surprisingly, this is our

only use of finiteness in the proof of Theorem 2.4.1. That it, it is our only obstacle

for showing general uniform definability of types for dp-minimal theories (since there

are unstable dp-minimal theories, this is an unavoidable obstacle).

A great deal of mileage can be obtained by using ≤p-minimal elements. Let B

be any non-empty set of subsets of B. Consider the following lemma about correct

decisions using ≤p-minimality:

Lemma 2.4.11 (Making Correct Decisions Lemma). Fix b ∈ B, B0 ∈ B ≤p-

minimal in B, and b0 ∈ B0. If
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(i) pB0,{b0} is consistent and decides ϕ(x; b),

(ii) pB0 does not decide ϕ(x; b), and

(iii) there exists B1 ≤p B0 − {b0} such that B1 ∪ {b} ∈ B,

then pB0,{b0} decides ϕ(x; b) correctly.

This lemma is the driving force behind creating an algorithm for correctly

deciding ϕ(x; b) for all b ∈ B given only a small amount of data from p. It says that,

to get correct decisions, we need only find a B with good closure properties.

Proof of Lemma 2.4.11. Since pB0 does not decide ϕ(x; b), by definition of ≤p, we

have that B0 6≤p {b}. Therefore, by Lemma 2.4.10 (ii),

B0 6≡p

(
B0 − {b0}

)
∪ {b}. (2.3)

Now, by means of contradiction, suppose that pB0,{b0} decides ϕ(x; b) incorrectly.

That is, suppose that

p(B0−{b0})(x) ∪
{
¬ϕ(x; b0)

δ(b0)
}
` ¬ϕ(x; b)δ(b).

By contrapositive, we get that p(B0−{b0})∪{b} ` p{b0}. Therefore, by definition of ≤p,

(
B0 − {b0}

)
∪ {b} ≤p B0.

Combined with (2.3), we get

(
B0 − {b0}

)
∪ {b} <p B0.

Using hypothesis (iii), we note that

B1 ∪ {b} ≤p

(
B0 − {b0}

)
∪ {b} <p B0
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and B1 ∪ {b} ∈ B. This contradicts the ≤p-minimality of B0 in B.

We now construct a collection of subsets of B for which the Making Correct

Decisions Lemma shows that, when chosen in the correct order, these subsets cor-

rectly decide ϕ(x; b) for all b ∈ B. First, notice that everything worked out above for

subsets of B works for sequences in B by considering the images of those sequences.

With this in mind, we define Bn, a set of sequences from B of length n, inductively

as follows:

For n = 1, let B1 = {〈b〉 : b ∈ B and ϕ(x; b)t is consistent for both t < 2}

(i.e., for all b ∈ B, 〈b〉 ∈ B1 if and only if ∅ 6≡p 〈b〉 if and only if p〈b〉,〈b〉 is consistent).

For n > 1, let

Bn = {β_〈b〉 : b ∈ B, β ∈ Bn−1, and β does not ∗-decide ϕ(x; b)}.

We state an equivalent definition for Bn in the following lemma:

Lemma 2.4.12. The sequence β = 〈b0, ..., bn−1〉 ∈ Bn if and only if

(i) for all ` < n, pβ,〈b`〉 is consistent, and

(ii) for all ` < k < n, p〈bi:i≤k〉,〈b`,bk〉 is consistent.

Proof. We prove this by induction on n. The case n = 1 is clear by definition. So

suppose n > 1 and let β′ = 〈bi : i < n− 1〉 (i.e., β restricted to n− 1).

First suppose that β ∈ Bn. By definition of Bn, we see that β′ ∈ Bn−1.

Therefore, by induction, pβ′,〈b`〉 is consistent for each ` < n − 1 and p〈bi:i≤k〉,〈b`,bk〉

is consistent for each ` < k < n − 1. However, β′ does not ∗-decide ϕ(x; bn−1)

by definition of Bn. Thus, pβ′ ∪ {ϕ(x; bn−1)
t} is consistent for both t < 2 and
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pβ′,〈b`〉 ∪ {ϕ(x; bn−1)
t} is consistent for each ` < n− 1 and t < 2. Therefore, pβ,〈b`〉 is

consistent for each ` < n and p〈bi:i≤k〉,〈b`,bk〉 is consistent for each ` < k < n.

Conversely, suppose that pβ,〈b`〉 is consistent for each ` < n and p〈bi:i≤k〉,〈b`,bk〉 is

consistent for each ` < k < n. Clearly this condition is closed downward, so it holds

for β′. Therefore, by induction, β′ ∈ Bn−1. By means of contradiction, suppose that

β′_〈bn−1〉 /∈ Bn. This means exactly that β′ ∗-decides ϕ(x; bn−1) by definition of Bn.

As above, this implies that either pβ,〈b`〉 is inconsistent for some ` < n or pβ,〈b`,bn−1〉

is inconsistent for some ` < n− 1. This contradicts our assumption.

We get the following as a corollary:

Corollary 2.4.13. If β = 〈b0, ..., bn−1〉 ∈ Bn, then the following hold:

(i) For all k ≤ n and all subsequences β0 ⊆ β (not necessarily initial sequences)

of length k, β0 ∈ Bk.

(ii)
∣∣Sϕ({bi : i < n})

∣∣ > n(n+1)
2

.

(iii) For all b ∈ B, if β does not ∗-decide ϕ(x; b), then β_〈b〉 ∈ Bn+1.

Proof. (i): This follows from the characterization of Bn in Lemma 2.4.12. Conditions

(i) and (ii) of that lemma are clearly closed under subsequence.

(ii): Again this follows from Lemma 2.4.12. Condition (i) of that lemma yields

n new types and condition (ii) of that lemma yields
(
n
2

)
new types. Together with

the original p, there are at least 1 + n+
(
n
2

)
> n(n+ 1)/2 types over {bi : i < n}.

(iii): This follows from the original definition of Bn.
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We now define, for each n ≥ 1 and each ≤p-minimal element β of Bn, a set

H(β) of non-empty sequences inductively as follows (note that H stands for history,

as one can think of it as showing the history of how β is “built” up):

For n = 1 and any ≤p-minimal element β of B1, let H(β) = {β}. For n > 1,

fix any ≤p-minimal element β of Bn. Let β = 〈b0, ..., bn−1〉 and, for each i < n, let

βi be the subsequence of β given by

βi = 〈b0, ..., bi−1, bi+1, ..., bn−1〉.

That is, βi is the (n − 1)-element subsequence of β obtained by removing the ith

element. By Corollary 2.4.13 (i), βi ∈ Bn−1, so by Lemma 2.4.10 (iii), there exists

β′i ∈ Bn−1 such that β′i ≤p βi and β′i is ≤p-minimal. Fix any such choice of β′i for

each i < n and let

H(β) =
⋃
i<n

H(β′i) ∪ {β}.

This defines H on all ≤p-minimal elements of Bn for each n < ω, as desired. Note

that |H(β)| is a function only of lg(β). In fact, define fH : ω → ω as follows:

fH(0) = 0 and fH(n) = n · fH(n − 1) + 1 for n ≥ 1. Then |H(β)| = fH(lg(β)).

We now show that elements of H(β), when chosen in a particular manner, correctly

∗-decide ϕ(x; b).

Lemma 2.4.14. Fix b ∈ B, n < ω, and β ∈ Bn ≤p-minimal. Let k ≤ n be minimal

such that there exists β′ ∈ H(β) with lg(β′) = k and β′ ∗-decides ϕ(x; b). Then, any

such β′ ∗-decides ϕ(x; b) correctly.

Proof. First, it suffices to assume that k = n and β′ = β by replacement. We now

prove this statement by induction on n.
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If n = 1, then take β ∈ B1 ≤p-minimal. If pβ decides ϕ(x; b), then it does so

correctly by Lemma 2.4.8. So assume that pβ does not decide ϕ(x; b). Therefore,

b 6≡p ∅, so 〈b〉 ∈ B1. By Lemma 2.4.11 (Making Correct Decisions), if pβ,β decides

ϕ(x; b), then it does so correctly. Therefore, if β ∗-decides ϕ(x; b), then it does so

correctly.

Suppose now that n > 1. By Lemma 2.4.8, we may assume that pβ does not

decide ϕ(x; b). So assume that pβ,〈b`〉 decides ϕ(x; b), where we let β = 〈b0, ..., bn−1〉.

Consider β′` ≤p β` as defined above. We have that β′` ∈ H(β) and lg(β′`) = n−1 < n.

By minimality of k = n, β′` does not ∗-decide ϕ(x; b). By Lemma 2.4.13 (iii),

β′`
_〈b〉 ∈ Bn (this follows by definition of Bn). These are the exact hypotheses of

the Making Correct Decisions Lemma (Lemma 2.4.11). Therefore, pβ,〈b`〉 decides

ϕ(x; b) correctly. Since ` < n was arbitrary such that pβ,〈b`〉 decides ϕ(x; b), we see

that β ∗-decides ϕ(x; b) correctly.

All the pieces are now in place. In the following Theorem, we show how to put

the pieces together to get UDTFS. Theorems 2.4.1 and 2.4.3 follow as a corollary.

Theorem 2.4.15. Fix a partitioned formula ϕ(x; y) and a K < ω. Suppose that,

for all finite B ⊆ Clg(y) and all p ∈ Sϕ(B), the set BK = ∅ where Bn is defined as

above for our choice of B and p. Then, ϕ has UDTFS.

Proof. We need to consider fH(K) many sequences, each of length at most K. For

each i < fH(K), we encode sequences of length mi ≤ K as zi = (z0,i, ..., zmi−1,i).

Let s ∈ K×fH(K)2 encode the fact that “ϕ(x; zj,i)
s(j,i) is in our type.” There is a first

order formula θi,s(y; zi) that says: “the sequence encoded by zi ∗-decides ϕ(x; y)
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with respect to the type denoted by s.” For example,

θi,s(y; zi) =
∨
t<2

∀x

( ∧
j<mi

ϕ(x; zj,i)
s(j,i) → ϕ(x; y)t

)
∨

∨
j0<mi

(
∃x

( ∧
j<mi,j 6=j0

ϕ(x; zj,i)
s(j,i) ∧ ¬ϕ(x; zj0,i)

s(j0,i)

)
∧
∨
t<2

∀x

( ∧
j<mi,j 6=j0

ϕ(x; zj,i)
s(j,i) ∧ ¬ϕ(x; zj0,i)

s(j0,i) → ϕ(x; y)t

))
.

In a similar manner, there exists a formula θ∗i,s(y; zi) that says that “the sequence

encoded by zi ∗-decides ϕ(x; y) positively with respect to the type denoted by s”

(i.e., θ∗i,s holds when the sequence ∗-decides ϕ(x; y) correctly and ϕ(x; y) is in our

type and θ∗i,s fails when the sequence ∗-decides ϕ(x; y) correctly and ¬ϕ(x; y) is in

our type). For example,

θ∗i,s(y; zi) =∀x

( ∧
j<mi

ϕ(x; zj,i)
s(j,i) → ϕ(x; y)

)
∨

(∧
t<2

¬∀x

( ∧
j<mi

ϕ(x; zj,i)
s(j,i) → ϕ(x; y)t

)
∧

∨
j0<mi

(
∃x

( ∧
j<mi,j 6=j0

ϕ(x; zj,i)
s(j,i) ∧ ¬ϕ(x; zj0,i)

s(j0,i)

)
∧

∀x

( ∧
j<mi,j 6=j0

ϕ(x; zj,i)
s(j,i) ∧ ¬ϕ(x; zj0,i)

s(j0,i) → ϕ(x; y)

)))
.

Now we can encode an algorithm that finds the first ∗-decision, and checks whether

or not it holds positively. Namely,

ψs(y; z0, ..., zfH(K)−1) =
∧

i<fH(K)

(
θi,s(y; zi) ∧

∧
i′<i

¬θi′,s(y; zi′) → θ∗i,s(y; zi)

)
.

We claim that the set {ψs : s ∈ K×fH(K)2} is a uniform definition of ϕ-types over

finite sets, completing the proof.
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Fix a finite B ⊆ Clg(y) and p ∈ Sϕ(B). Choose n maximum such that Bn 6= ∅

for our choice of B and p. This exists and n < K by hypothesis. Choose any

≤p-minimal β ∈ Bn and let H = H(β). Let H = {γi : i < fH(n)} ordered by length

of γi (that is, if i < j, then lg(γi) ≤ lg(γj)). So γi = 〈bj,i : j < mi〉 for some mi ≤ n.

Choose bj,i arbitrarily for i < fH(n),mi ≤ j < K and fH(n) ≤ i < fH(K), j < K.

Choose s ∈ K×fH(K)2 such that

p{bj,i} =
{
ϕ(x; bj,i)

s(j,i)
}

for all (j, i) ∈ K × fH(K). So, if δ is associated to p, then s(j, i) = δ(bj,i). Finally,

we claim that ψs(y; b0,0, ..., bK−1,fH(K)−1) defines p, as desired.

Fix b ∈ B. By Lemma 2.4.14, if β′ ∈ H(β) is ever minimal such that β′

∗-decides ϕ(x; b), then it does so correctly. Therefore, |= ψs(b; b0,0, ..., bK−1,fH(K)−1)

if and only if ϕ(x; y) ∈ p(x). On the other hand, if no β′ ∈ H(β) ∗-decides ϕ(x; b),

then by Lemma 2.4.13 (iii), β_〈b〉 ∈ Bn+1. However, this contradicts our choice of

n (since Bn+1 = ∅). Therefore, ψs works.

We can now prove Theorems 2.4.1 and 2.4.3.

Proof of Theorem 2.4.3. Fix a partitioned formula ϕ(x; y) and N < ω such that, for

all B ⊆ Clg(y) with |B| = N ,
∣∣Sϕ(B)

∣∣ ≤ N(N+1)/2. Fix any p ∈ Sϕ(B). By Lemma

2.4.13 (ii), if BN 6= ∅, then for any β ∈ Bn, |Sϕ(β)| > N(N+1)/2, a contradiction to

our assumption. Therefore, BN = ∅. Thus, by Theorem 2.4.15, ϕ has UDTFS.

Proof of Theorem 2.4.1. By sufficiency of a single variable (Lemma 2.3.6), it suffices

to check that formulas of the form ϕ(x; y) have UDTFS, so fix such a ϕ. Let K < ω
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be given for ϕ as in Lemma 2.4.6. We claim that B2K−1 = ∅ for any choice of finite

B ⊆ Clg(y) and p ∈ Sϕ(B). Thus, by Theorem 2.4.15, ϕ has UDTFS.

Suppose, by means of contradiction, that B2K−1 6= ∅ for some choice of B and

p. Fix β ∈ B2K−1. By pigeon-hole principal, there exists t < 2 and a subsequence

〈b0, ..., bK−1〉 = β0 ⊆ β of length K such that, for all i < K, ϕ(x; bi)
t ∈ p(x) (i.e., p

is constant on β0). By Lemma 2.4.13 (i), β0 ∈ BK . Therefore, by Lemma 2.4.12, for

all ` < k < K,

p{bi:i≤k},{b`,bk}(x)

is consistent. However, since p is constant on β0, we have that, for all ` < k < K,

{ϕ(x; bi)
t : i < k, i 6= `} ∪ {¬ϕ(x; b`)

t,¬ϕ(x; bk)
t}

is consistent. This contradicts our choice of K as in Lemma 2.4.6 (i.e., it contradicts

the non-existence of a TP-pattern in ±ϕ of length K).

In Chapter 4, we define VC-minimal theories and note that all VC-minimal

theories are dp-minimal. This implies Corollary 2.4.2 (iii). By Theorem 4.1.2 (i), all

o-minimal and weakly o-minimal theories are VC-minimal, so this implies Corollary

2.4.2 (v). In Section 4.4, we define VC-density one theories and note that all such

theories are dp-minimal. This implies Corollary 2.4.2 (iv). Theorem 6.6 of [6] says

that the p-adic field is dp-minimal, thus Corollary 2.4.2 (i) holds. Finally, one

can show that Presburger arithmetic is dp-minimal (see Example 2.5 in [8]), thus

Corollary 2.4.2 (ii) holds.

One should note that UDTFS does not characterize dp-minimality. There are

examples of stable theories that are not dp-minimal (see Theorem 3.5 (iii) of [18],
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for example). However, since stable theories have UDTFS, this shows that UDTFS

does not imply dp-minimal. Even unstable UDTFS does not imply dp-minimal, as

we show in Section 4.3. For more examples of dp-minimal theories, see [6], [8], [18],

and [27].

2.5 UDTFS and Valued Fields

As in Shelah’s work on strongly dependent theories of valued fields in [26],

we consider a language called the Denef-Pas language. The Denef-Pas language has

three sorts: the valued field sort, which we denote K, the value group sort, which we

denote Γ, and the residue field sort, which we denote k. We put the ring language

and a partial function for the inverse on the sorts K and k and the language of

ordered abelian groups (written additively, with a function for subtraction) on Γ.

Finally, we have two maps between sorts: the valuation map, v : K → Γ and the

angular component map, ac : K → k. We also consider a variation on this language

which we call the “Denef-Pas ω-language” (which is still a first-order language). In

this language, we replace ac with a collection of formulas acn indexed by n ∈ ω.

These are again maps of the form acn : K → k. The theory of valued fields in

the Denef-Pas language (respectively the Denef-Pas ω-language) says that Γ is an

ordered abelian group, K and k are fields, and v and ac (respectively acn for all

n ∈ ω) satisfy the natural demands on them. The theory of valued fields in the

Denef-Pas ω-language also requires that Γ have a least positive element, called 1Γ

(or simply 1).
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Definition 2.5.1. We say that a theory T in the Denef-Pas language (or the Denef-

Pas ω-language) has elimination of field quantifiers if all formulas are T -equivalent

to a boolean combination of atomic formulas, formulas only on the sort k (i.e., all

free and bounded variables in the formula are from the k sort), and formulas only

on the sort Γ.

Theorem 2.5.2 (Theorem 4.2 of [5]). (i) If p is any prime, and T is the theory,

in the Denef-Pas ω-language, of the p-adic field, then T has elimination of

field quantifiers.

(ii) If char(k) = 0, Γ has a least positive element, 1Γ, and K is a Henselian valued

field, then the theory of (K, k,Γ) in the Denef-Pas ω-language has elimination

of field quantifiers.

(iii) If char(k) = 0, Γ is divisible, and K is a Henselian valued field, then the theory

of (K, k,Γ) in the Denef-Pas language has elimination of field quantifiers.

As in Shelah’s paper on strongly dependent theories, we now prove an Ax-

Kochen-style transfer result about UDTFS for valued fields in the Denef-Pas lan-

guage (and ω-language).

Theorem 2.5.3. Let T be any complete theory of valued fields, in either the Denef-

Pas language or the Denef-Pas ω-language, that has elimination of field quantifiers.

If T |k (i.e., the theory T only on the sort k with the induced language) and T |Γ have

UDTFS, then T has UDTFS.

By abuse of notation, let K = KC, Γ = ΓC, and k = kC (the three sorts of C).
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Let F be the prime field of K (so F = Q if char(K) = 0 and Fp if char(K) = p > 0).

Similarly, let F ′ be the prime field of k. To prove the theorem, we must first

understand the formulas of T . By elimination of field quantifiers, all formulas are

T -equivalent to a boolean combination of formulas of the form:

(i) ϕk a formula only in the sort k,

(ii) ϕΓ a formula only in the sort Γ,

(iii) g(x) = 0 for some g ∈ F (x) with x variables in the K sort,

(iv) τ(v(g0(x)), ..., v(gn−1(x)), y) = 0 for some g0, ..., gn−1 ∈ F (x) and some term

τ(z0, ..., zn−1, y) from the Γ sort,

(v) τ(v(g0(x)), ..., v(gn−1(x)), y) < 0 for some g0, ..., gn−1 ∈ F (x) and some term

τ(z0, ..., zn−1, y) from the Γ sort, and

(vi) f(ac(g0(x)), ..., ac(gn−1(x)), y) = 0 for gi ∈ F (x) with x from the K sort and

for f ∈ F ′(z0, ..., zn−1, y) with zi and y from the k sort.

(vi)∗ If we are working in the ω-language, replace ac(gi) with acmi
(gi) for some

mi ∈ ω for i < n.

This is true because (iii) through (vi) enumerate all possible atomic formulas,

up to T -equivalence. For any atomic formula, the relation symbol is either = in

the sort K (i.e., formula (iii)), = or < in the sort Γ (i.e., formulas (iv) and (v)

respectively), or = in the sort k (i.e., formula (vi)).
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By Lemma 2.3.6, it suffices to check that each of these formulas individually

has UDTFS. By assumption, formulas as in (i) and (ii) already have UDTFS. For

(iii), we can reduce to the case where g ∈ F [x]. For (iv), since v is a homomorphism

from K to Γ, we may combine all gi’s into a single g ∈ F (x) and move the remaining

variables to the other side of the equation. We can do this similarly for (v), so this

yields:

(iv)’ v(g(x)) = τ(y) for some g ∈ F (x) and some term τ(y) from the Γ sort,

(v)’ v(g(x)) < τ(y) for some g ∈ F (x) and some term τ(y) from the Γ sort.

Furthermore, (iv)’ can actually be broken down into boolean combinations of in-

stances of (v)’. That is, v(g(x)) = τ(y) is T -equivalent to ¬(v(g(x)) < τ(y)) ∧

¬(v(g(x)−1) < −τ(y)). So it suffices to show that formulas of the form (iii) (for

g ∈ F [x]), (v)’, and (vi) have UDTFS (or (vi)∗ if we are working in the ω-language).

Lemma 2.5.4. If ϕ(x; y) = [g(x, y) = 0] for some g ∈ F [x, y], then ϕ has UDTFS.

Proof. Let n be the x-degree of g. For any b ∈ K lg(y), g(x, b) has at most n solutions

in K. Therefore, the following formula can define any non-trivial ϕ-type:

ψ(y; z0, ..., zn−1) = ∀x

(∧
i<n

g(x, zi) = 0 → g(x, y) = 0

)

(because a non-empty intersection of sets of size at most n is equal to an intersection

of at most n of them). This shows ϕ has UDTFS.

This takes care of the formulas in (iii) with one free variable. For (v)’, consider

the following lemma:
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Lemma 2.5.5. If ϕ(x; y, z) = [v(h(x, y)) < τ(z)] for some h ∈ F (x, y) and τ(z) is

some term in the Γ sort, then ϕ has UDTFS.

Proof. First, let h(x; y) = f(x; y)/g(x; y) for f, g ∈ F [x; y], let n be the x-degree of

f and m the x-degree of g. Let f(x; y) = f ∗n(y)x
n + ... + f ∗0 (y) and let g(x; y) =

g∗m(y)xm + ...+ g∗0(y) for f ∗i , g
∗
j ∈ F (y). Therefore, the formula ϕ reduces to

v(f ∗n(y)x
n + ...+ f ∗0 (y)) < τ(z) + v(g∗m(y)xm + ...+ g∗0(y)).

We now show, by induction on n + m, that formulas of this form have UDTFS. If

n + m = 0, then we have a formula where x is a dummy variable. In this case,

ϕ(x; y, z) clearly has UDTFS. Now suppose n+m > 0.

This breaks down further into three cases, n = m, n < m, and n > m.

Case 1. m = n.

Notice that in this case ϕ(x; y, z) is T -equivalent to

v

(
xn +

∑
i<n

(f ∗i (y)/f
∗
n(y))x

i

)
− v

(
xn +

∑
i<n

(g∗i (y)/g
∗
n(y))x

i

)
<

τ(z)− v(f ∗n(y)) + v(g∗n(y)).

For notational simplicity, let f ∗∗i = f ∗i /f
∗
n and g∗∗i = g∗i /g

∗
n for i ≤ n and let f ∗∗ =∑

i≤n f
∗∗
i x

i and g∗∗ =
∑

i≤n g
∗∗
i x

i. Hence, ϕ is T -equivalent to

v(f ∗∗(x; y))− v(g∗∗(x; y)) < τ(z)− v(f ∗n(y)) + v(g∗n(y)).

Notice that f ∗∗(x; y)− g∗∗(x; y) has x-degree less than n as

f ∗∗(x; y)− g∗∗(x; y) =
∑
i<n

[f ∗∗i (y)− g∗∗i (y)]xi.
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Therefore, the formula v(g∗∗(x; y)) < v(f ∗∗(x; y)− g∗∗(x; y)) has UDTFS, by induc-

tion, say witnessed by ψ+(y;w+). Similarly, v(g∗∗(x; y)) > v(f ∗∗(x; y) − g∗∗(x; y))

has UDTFS, say witnessed by ψ−(y;w−). If v(g∗∗(x; y)) < v(f ∗∗(x; y) − g∗∗(x; y))

holds, then, by the strong triangle inequality, v(f ∗∗(x; y)) = v(g∗∗(x; y)) holds.

Therefore, in this case, ϕ(x; y, z) is T -equivalent to τ(z)− v(f ∗n(y)) + v(g∗n(y)) > 0,

which is a formula without x. Similarly, if v(g∗∗(x; y)) > v(f ∗∗(x; y) − g∗∗(x; y))

holds, then

v(f ∗∗(x; y)) = v(f ∗∗(x; y)− g∗∗(x; y)).

Therefore, in this case, ϕ(x; y, z) is T -equivalent to

v(f ∗∗(x; y)− g∗∗(x; y))− v(g∗∗(x; y)) < τ(z)− v(f ∗n(y)) + v(g∗n(y)).

This is T -equivalent to

v((f ∗∗(x; y)− g∗∗(x; y))f ∗n(y)) < τ(z) + v(g∗∗(x; y)g∗n(y)),

which has UDTFS by induction, say witnessed by γ1(y, z;w1). Finally, if v(g∗∗(x; y))

= v(f ∗∗(x; y)− g∗∗(x; y)) holds, then ϕ(x; y, z) is T -equivalent to

v(f ∗∗(x; y))− v(f ∗∗(x; y)− g∗∗(x; y)) < τ(z)− v(f ∗n(y)) + v(g∗n(y)),

which again has UDTFS by induction, say witnessed by γ2(y, z;w2). Collecting

these three possibilities together into a single formula, we see that the following

formula witnesses the fact that ϕ has UDTFS:

(ψ+ → [τ(z) + v(f ∗n(y))− v(g∗n(y)) > 0]) ∧ (ψ− → γ1) ∧ (¬ψ+ ∧ ¬ψ− → γ2). (2.4)

Case 2. m < n.
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First, by dividing both sides by f ∗n(y) (i.e., subtracting v(f ∗n(y))), we may

assume that f ∗n = 1. Fix B ⊆ K lg(y) × Γlg(z) finite and a ∈ K. Choose (b0, c0) ∈ B

such that v(f(a; b0)) ≥ v(g(a; b0)) + τ(c0) (i.e., ¬ϕ(a; b0, c0) holds) and v(g(a; b0)) +

τ(c0) is ≤-maximal such (if no such (b0, c0) exists, then the type is trivial). Now fix

any (b, c) ∈ B and we describe a uniform algorithm to determine ϕ(a; b, c), showing

that ϕ has UDTFS.

Subcase 2(a). v(g(a; b)) + τ(c) > v(g(a; b0)) + τ(c0).

First notice that this formula has UDTFS, since m < n and using induction.

If this holds, then the maximality of the choice of (b0, c0) ∈ B implies that ϕ(a; b, c)

holds.

Subcase 2(b). v(g(a; b))+τ(c) ≤ v(g(a; b0))+τ(c0) and v(f(a; b)−f(a; b0)) <

v(g(a; b)) + τ(c).

Notice that, since f ∗n = 1,

f(x; y)− f(x; y′) =
∑
i<n

[f ∗i (y)− f ∗i (y
′)]xi.

Therefore, the formula v(f(x; y)−f(x; y′)) < v(g(x; y))+τ(z) has UDTFS by induc-

tion. Now, if Subcase 2(b) holds, suppose by way of contradiction that ¬ϕ(a; b, c)

also holds. Then we would have v(f(a; b)) ≥ v(g(a; b)) + τ(c), hence

v(f(a; b)) > v(f(a; b)− f(a; b0)).

By strong triangle inequality, we get that v(f(a; b0)) = v(f(a; b) − f(a; b0)). By

assumption,

v(f(a; b0)) < v(g(a; b)) + τ(c) ≤ v(g(a; b0)) + τ(c0),

55



contrary to the assumption that ¬ϕ(a; b0, c0) holds. Therefore, Subcase 2(b) implies

that ϕ(a; b, c) holds.

Subcase 2(c). v(g(a; b))+τ(c) ≤ v(g(a; b0))+τ(c0) and v(f(a; b)−f(a; b0)) ≥

v(g(a; b)) + τ(c).

Suppose, by way of contradiction, that Subcase 2(c) holds and ϕ(a; b, c) holds.

Then v(f(a; b)) < v(g(a; b)) + τ(c), hence v(f(a; b)) < v(f(a; b) − f(a; b0)). By

strong triangle inequality, v(f(a; b0)) = v(f(a; b)), hence

v(f(a; b0)) < v(g(a; b)) + τ(c) ≤ v(g(a; b0)) + τ(c0),

contrary to the assumption that ¬ϕ(a; b0, c0) holds. Therefore, Subcase 2(c) implies

that ¬ϕ(a; b, c) holds.

As in Case 1, since all formulas distinguishing the three subcases have UDTFS,

we can replace them with the formulas witnessing their UDTFS, thus showing that

ϕ itself has UDTFS.

Case 3. m > n.

This is similar to Case 2. As before, we may assume that g∗m = 1. Fix

B ⊆ K lg(y) × Γlg(z) finite and a ∈ K. Choose (b0, c0) ∈ B such that v(f(a; b0)) <

v(g(a; b0)) + τ(c0) (i.e., ϕ(a; b0, c0) holds) and v(f(a; b0))− τ(c0) is ≤-maximal such

(if no such (b0, c0) exists, then the type is trivial). Now fix any (b, c) ∈ B and we

describe a uniform algorithm to determine ϕ(a; b, c), showing that ϕ has UDTFS.

Subcase 3(a). v(f(a; b))− τ(c) > v(f(a; b0))− τ(c0).

In this case ¬ϕ(a; b, c) holds.

Subcase 3(b). v(f(a; b))− τ(c) ≤ v(f(a; b0))− τ(c0) and v(f(a; b))− τ(c) <
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v(g(a; b)− g(a; b0)).

As before, we can show that, in this case, ϕ(a; b, c) holds.

Subcase 3(c). v(g(a; b)) + τ(c) ≤ v(g(a; b0)) + τ(c0) and v(f(a; b))− τ(c) ≥

v(g(a; b)− g(a; b0)).

In this case, ¬ϕ(a; b, c) holds.

As in Case 1 and Case 2, this algorithm shows that ϕ has UDTFS.

In addition to the form taken in Lemma 2.5.5, formulas in (v)’ with a single

non-parameter variable can also have the form ϕ(x; y, z) = [v(h(y)) < τ(x, z)]. The

terms of an abelian group are very simple; we can show that this formula takes the

form

mx > v(h(y)) + τ0(z)

for some m ∈ Z and some term τ0. Now given B ⊆ K lg(y) × Γlg(z) finite and a ∈ Γ,

we simply choose (b0, c0) ∈ B such that ma > v(h(b0))+ τ0(c0) and v(h(b0))+ τ0(c0)

is ≤-maximal such (if none exists, the type is trivial). Then, for any (b, c) ∈ B,

ϕ(a; b, c) ⇔ [v(h(b)) + τ0(c) ≤ v(h(b0)) + τ0(c0)].

This shows that formulas of the form ϕ(x; y, z) = [v(h(y)) < τ(x, z)] have UDTFS.

In combination with Lemma 2.5.5, we see that all formulas of the form (v)’ with one

free variable have UDTFS. It remains to show that formulas of the form (vi) (or, in

the case of the Denef-Pas ω-language, (vi)∗) with one free variable have UDTFS.

Lemma 2.5.6. If ϕ(x; y, z) = [f(ac(g0(x, y)), ..., ac(gn−1(x, y)), z) = 0] as in (vi),

then ϕ has UDTFS.
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Before giving the full proof of Lemma 2.5.6, we give a simple example. Suppose

that ϕ(x; y, z) = [ac(x − y) = z]. If we are given B ⊆ K × k finite and a ∈ K, the

first step toward developing a uniform algorithm for determining the truth value of

ϕ(a, b, c) for (b, c) ∈ B is to choose a closest approximation b0 to a (then we can

replace a with b0 in most cases). Consider the following facts about ac in valued

fields:

Remark 2.5.7. For K a valued field, the following hold for all a, b ∈ K:

(i) ac(ab) = ac(a) · ac(b),

(ii) v(a) = v(b) and v(a− b) > v(a) implies that ac(a) = ac(b),

(iii) v(a) = v(b) = v(a− b) implies that ac(a− b) = ac(a)− ac(b), and

(iv) v(a) < v(b) implies that ac(a− b) = ac(a).

So to approximate a with an element b0 requires v(a − b0) to be large. With

this is mind, choose (b0, c0) ∈ B such that v(a − b0) is ≤-maximal. For any other

(b, c) ∈ B, we have v(a − b) ≤ v(a − b0). If v(a − b) < v(a − b0), then, by Remark

2.5.7 (iv), ac(a− b) = ac(b0 − b). Therefore, in this case, ϕ(a; b, c) holds if and only

if ac(b0 − b) = c. If v(a − b) = v(a − b0), then, by the strong triangle inequality,

v(b − b0) ≥ v(a − b), yielding another two cases. If v(b0 − b) > v(a − b), then, by

Remark 2.5.7 (ii), ac(a− b) = ac(a− b0). Fix (b1, c1) ∈ B such that ac(a− b0) = c1,

if such an element exists (otherwise, the type in this case is trivial). Therefore, in

this case, ϕ(a; b, c) holds if and only if c1 = c. The only remaining case is when

v(a − b) = v(a − b0) = v(b0 − b). In this case, by Remark 2.5.7 (iii), ac(a − b) =
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ac(a− b0) + ac(b0 − b). Now fix (b2, c2) ∈ B such that ac(a− b0) + ac(b2 − b0) = c2,

if such an element in B exists (if not, then the type in this case is trivially false).

Hence ac(a− b0) = c2−ac(b2− b0). Then, ϕ(a; b, c) holds if and only if ac(a− b) = c

if and only if ac(a− b0) + ac(b0 − b) = c if and only if

c2 − ac(b2 − b0) + ac(b0 − b) = c.

Since these three cases are determined by formulas with UDTFS (namely of the

form (iv) and (v) above), this gives us a uniform algorithm for determining the

truth value of ϕ(a, b, c). Therefore, ϕ has UDTFS. Now consider the general case.

Proof of Lemma 2.5.6. Let ϕ(x; y, z) = [f(ac(g0(x, y)), ..., ac(gn−1(x, y)), z) = 0] as

in (vi). We first construct polynomials gji ∈ F [x, y0, ..., yj] and hji ∈ F [y0, ..., yj] by

induction on j. First, let h0
i be the leading polynomial coefficient of gi(x, y0) in the x

variable and let g0
i (x, y0) = gi(x, y0)/h

0
i (y0) (so g0

i has leading polynomial coefficient

1 in the x variable). Now suppose gj−1
i and hj−1

i are constructed. Temporarily,

define

g∗(x; y0, ..., yj) = [gj−1
i (x; y0, ..., yj−2, yj)− gj−1

i (x; y0, ..., yj−2, yj−1)].

Note that degx(g
∗) < degx(g

j−1
i ) because gj−1

i has leading coefficient 1 in the x

variable. If degx(g
∗) = 0, we terminate the construction, let gji = g∗, hji = 1, and

set Ni = j (in this case, notice that gji ∈ F [y0, ..., yj], as there is no x variable).

Otherwise, let hji be the leading coefficient of g∗ in the x variable and set gji =

g∗/hji . Since degx(gi) = degx(g
0
i ) is finite, this process must terminate for all i < n,

producing a sequence (N0, ..., Nn−1).
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Using these gji and hji , along with the approximation trick used in the example

above, we produce a uniform algorithm for determining ϕ-types over finite sets,

showing ϕ has UDTFS. Fix B ⊆ K lg(y) × klg(z) finite and a ∈ K. We construct

(b
j

i , c
j
i ) ∈ B inductively as follows: Choose (b

0

i , c
0
i ) ∈ B such that v(g0

i (a; b
0

i )) is ≤-

maximal. If (b
j−1

i , cj−1
i ) ∈ B and j < Ni, let (b

j

i , c
j
i ) ∈ B such that v(gji (a; b

0

i , ..., b
j

i ))

is ≤-maximal. Let

b = b
0

0
_..._b

N0−1

0
_..._b

0

n−1
_..._b

Nn−1−1

n−1

and, by abuse of notation, let

gji (a;b, y) = gji (a; b
0

i , ..., b
j−1

i , y),

gji (a;b) = gji (a; b
0

i , ..., b
j−1

i , b
j

i ), and

hji (a;b, y) = hji (a; b
0

i , ..., b
j−1

i , y)

for all i < n and appropriate j. This simplifies further notation. When j = Ni, we

may drop the a as x is a dummy variable in gNi
i . Fix (b, c) ∈ B. Now, for any i < n

and j < Ni, we have three cases (just as in the example above):

Case 1(i,j). v(g
j
i (a;b, b)) < v(gji (a;b)).

In this case, using Remark 2.5.7 (iv), we see that

ac(gji (a;b, b)) = ac(gji (a;b, b)− gji (a;b)) = ac(hj+1
i (a;b, b)) · ac(gj+1

i (a;b, b)).

Case 2(i,j). v(g
j
i (a;b, b)− gji (a;b)) > v(gji (a;b, b)) = v(gji (a;b)).

By Remark 2.5.7 (ii), we see that ac(gji (a;b, b)) = ac(gji (a;b)).

Case 3(i,j). v(g
j
i (a;b, b)− gji (a;b)) = v(gji (a;b, b)) = v(gji (a;b)).
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By Remark 2.5.7 (iii), we see that

ac(gji (a;b, b)) = ac(gji (a;b)) + ac(gji (a;b, b)− gji (a;b))

hence

ac(gji (a;b, b)) = ac(gji (a;b)) + ac(hji+1(b, b)) · ac(gj+1
i (a;b, b)).

In this fashion, we can reduce the entire polynomial equation of ϕ depending

on only 3(
P

i<n Ni) many cases, each of which is distinguishable by formulas with

UDTFS. Encode these cases by ρ : {(i, j) : i < n, j < Ni} → {1, 2, 3} where

ρ(i, j) = 1 if Case 1(i,j) holds, ρ(i, j) = 2 if Case 2(i,j) holds, and ρ(i, j) = 3 if Case

3(i,j) holds. We then encode ac(gji (a;b, b)) by the variable wi,j, ac(gji (a;b)) by the

variable vi,j, and ac(hji (a;b, b)) by the variable ui,j in the following formula:

ψ(vi,j;ui,j, wi,Ni
, z) = (∃wi,j)i<n,j<Ni

[ ∧
ρ(i,j)=1

wi,j = ui,j+1wi,j+1 ∧
∧

ρ(i,j)=2

wi,j = vi,j∧

∧
ρ(i,j)=3

vi,j + ui,j+1wi,j+1 ∧ f(w0,0, ..., wn−1,0, z) = 0
]

(where ui,j ranges over j ≤ Ni but vi,j only ranges over j < Ni). Notice that ψ is

a formula only in the k sort. By the assumption that T |k has UDTFS, we know ψ

has UDTFS, say by γ. Let

B∗ = {µ(b, c) : (b, c) ∈ B}

where

µ(b, c) = µ(b, c;b) = 〈ac(hji (b, b))〉i<n,j≤Ni

_〈ac(gNi
i (b, b))〉i<n_c

(notice that µ is a definable function). Let

a∗ =
〈
ac
(
gji (a;b)

)〉
i<n,j<Ni

.
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By UDTFS on tpψ(a∗/B∗), there exists (d`, e`) ∈ B for ` < L such that, for all

(b, c) ∈ B, ψ(a∗;µ(b, c)) holds if and only if γ(µ(b, c);µ(d0, e0), ..., µ(dL−1, eL−1))

holds.

Therefore, ϕ(a; b, c) holds if and only if f(ac(g0(a; b)), ..., ac(gn−1(a; b)), c) = 0

if and only if ψ(a∗;µ(b, c)) holds if and only if

γ(µ(b, c);µ(d0, e0), ..., µ(dL−1, eL−1))

holds. This shows that ϕ has UDTFS.

In a manner very similar to Lemma 2.5.4, we can prove that formulas of the

form

ϕ(x; y, z) = [f(ac(g0(y)), ..., ac(gn−1(y)), x, z) = 0]

have UDTFS. Thus, all formulas of the form (vi) with one free variable have UDTFS.

Now consider the Denef-Pas ω-language and formulas of the form (vi)∗. We

have a remark for acn corresponding to Remark 2.5.7 on ac:

Remark 2.5.8. For K a valued field, the following hold for all a, b ∈ K and all n ∈ ω:

(i) acn(ab) =
∑

i≤2n aci(a) · ac2n−i(b),

(ii) v(a) = v(b) and v(a− b) > v(a) + n implies that acn(a) = acn(b),

(iii) v(a) = v(b) and v(a−b) = v(a)+i for some 0 ≤ i ≤ n implies that acn(a−b) =

acn+i(a)− acn+i(b),

(iv) v(a) < v(b)− n implies that acn(a− b) = acn(a), and

(v) v(a) = v(b)− i for some 0 < i < n implies that acn(a− b) = acn(a)− acn−i(b).
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A proof similar to the one for Lemma 2.5.6 show that formulas of the form

ϕ(x; y, z) = [f(ac`0(g0(x, y)), ..., ac`n−1(gn−1(x, y)), z) = 0]

have UDTFS. The argument is more complicated, mainly due to the fact that acn(a·

b) is not necessarily equal to acn(a) · acn(b) for n > 0. Instead, when we decompose

products inside acn as we did with ac in the proof of Lemma 2.5.6, we get instead a

linear combination of aci (as in Remark 2.5.8 (i)). This complicates the argument,

but it remains essentially the same. As in Lemma 2.5.4, we can also show that

formulas of the form

ϕ(x; y, z) = [f(ac`0(g0(y)), ..., ac`n−1(gn−1(y)), x, z) = 0]

have UDTFS. Thus, all formulas of the form (vi)∗ with one free variable have

UDTFS. We therefore conclude that Theorem 2.5.3 holds.

We get the following corollary of the theorem:

Corollary 2.5.9. The following theories have UDTFS:

(i) The theory of the p-adic field in the Denef-Pas ω-language.

(ii) The theory of the field R((t)) in the Denef-Pas ω-language.

(iii) The theory of the field C((tQ)) in the Denef-Pas language.

(iv) Algebraically closed valued fields of equicharacteristic zero (with a non-trivial

valuation) in the Denef-Pas language.

Proof. (i): Note that (Z; +, <) has UDTFS by 2.4.2 (ii). Also, k = Fp which is

finite, hence has UDTFS. By Theorem 2.5.2 (i) and Theorem 2.5.3, the theory of

the p-adic field has UDTFS in the Denef-Pas ω-language.
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(ii): Again (Z; +, <) has UDTFS. The real field R is o-minimal, hence has

UDTFS by Corollary 2.4.2 (v). Therefore, by Theorem 2.5.2 (ii) and Theorem 2.5.3

the theory of R((t)) has UDTFS in the Denef-Pas ω-language.

(iii): Note that (Q; +, <) is o-minimal, hence has UDTFS by Corollary 2.4.2

(v). The theory of the complex field is stable (in fact ℵ0-stable), hence has UDTFS.

Therefore, the theory of C((tQ)) has UDTFS by Theorem 2.5.2 (iii) and Theorem

2.5.3.

(iv): One can show that such fields have a divisible value group and a alge-

braically closed residue field. Hence, this follows similarly to (iii).

Instead of the Denef-Pas (ω-)language, we can use a simpler, one-sorted lan-

guage, Lval = {0, 1,+,−, ·, |}. Here we interpret 0, 1,+,−, · in the standard way and

| is the binary relation where x|y if and only if v(x) ≤ v(y). In this language, the the-

ory of algebraically closed valued fields of characteristics (p, q), denoted ACVF(p,q),

has elimination of quantifiers. As in Lemma 2.5.5, we get the following:

Lemma 2.5.10. If f(x; y), g(x; y) ∈ Z[x; y] and ϕ(x; y) = f(x; y)|g(x; y), then ϕ

has UDTFS.

And thus, we get the following result:

Theorem 2.5.11. If T is an Lval-theory of valued fields that eliminates quantifiers,

then T has UDTFS.

Therefore, ACVF(p,q) in the language Lval has UDTFS. Since UDTFS is not

closed under reducts, this does not follow immediately from Corollary 2.5.9 (iv).
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However, it can be shown that ACVF(p,q) is VC-minimal (see Theorem 3.7 of [12]),

hence dp-minimal, so this also follows as a corollary of Theorem 2.4.1.

2.6 ∆-Splitting and Coherence

UDTFS is closely related to a notion developed by Shelah called non-splitting.

In our context, fix a formula ϕ(x; y), a set of formulas ∆(y; z), two sets B ⊆ Clg(y)

and C ⊆ Clg(z), and a ϕ-type p ∈ Sϕ(B).

Definition 2.6.1. We say that p does not ∆-split over C if, for all b0, b1 ∈ B with

tp∆(b0/C) = tp∆(b1/C), we have that ϕ(x; b0) ∈ p(x) if and only if ϕ(x; b1) ∈ p(x).

Note that, in [22], Shelah calls this ({ϕ},∆)-non-splitting.

In our context, we usually consider finite sets ∆ of the form ∆(y; z0, ..., zn−1)

where lg(zi) = lg(y) and C = {c}. For the moment, let us make a definition

measuring the complexity of a formula in terms of non-splitting. We say that a

partitioned formula ϕ(x; y) has finite non-splitting if there exists a finite set of

formulas ∆(y; z0, ..., zn−1) such that, for all finite B ⊆ Clg(y) and all p ∈ Sϕ(B),

there exists c ∈ Bn such that p does not ∆-split over {c}.

Theorem 2.6.2. Fix a partitioned formula ϕ(x; y). Then ϕ has finite non-splitting

if and only if ϕ has UDTFS.

Proof. Suppose first that ϕ(x; y) has UDTFS, witnessed by ψ(y; z0, ..., zn−1). Then

we claim that ∆ = {ψ} suffices to show that ϕ has finite non-splitting. Fix any

B ⊆ Clg(y) and p ∈ Sϕ(B). By UDTFS, there exists c ∈ Bn such that ψ(y; c) defines
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p. Now fix b0, b1 ∈ B such that tpψ(b0/{c}) = tpψ(b1/{c}). This means exactly that

|= ψ(b0; c) ↔ ψ(b1; c).

Therefore, by the definition of defines, ϕ(x; b0) ∈ p(x) if and only if ϕ(x; b1) ∈ p(x),

showing that p does not ψ-split over {c}.

Conversely, suppose that ϕ(x; y) has finite non-splitting. Let ∆(y; z0, ..., zn−1)

witness this. For each I ⊆ ∆2, consider the following formula:

ψI(y; z0, ..., zn−1) =
∨
µ∈I

∧
δ∈∆

δ(y; z0, ..., zn−1)
µ(δ).

We claim that these ψI witness the fact that ϕ has UDTFS. Fix any finite B ⊆ Clg(y)

and p ∈ Sϕ(B). By finite non-splitting, there exists (c0, ..., cn−1) = c ∈ Bn such

that p does not ∆-split over {c}. Let

I∗ =

{
µ ∈ ∆2 : for all b ∈ B with

∧
δ∈∆

δ(b; c0, ..., cn−1)
µ(δ), ϕ(x; b) ∈ p(x)

}
.

Since p does not ∆-split over {c}, if any b ∈ B is such that ϕ(x; b) ∈ p(x), then all

b
′ ∈ B with the same ∆-type over {c} as b are also such that ϕ(x; b

′
) ∈ p(x). So we

see that this actually partitions B and I∗ describes this partition. Therefore, it is

easy to check that ψI∗(y; c) defines p, as desired.

A question one could ask is which ∆ are needed to get finite non-splitting.

A particularly nice set ∆ is the following: Given ϕ(x; y) a partitioned formula and

n < ω, let

∆n,ϕ(y; z0, ..., zn−1) =

{
∃x

(
ϕ(x; y)s ∧

∧
i<n

ϕ(x; zi)
t(i)

)
: s < 2, t ∈ n2

}
. (2.5)
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This is the same as the ∆n,ϕ defined in (2.2) except that we have partitioned the

formulas. This particular set ∆n,ϕ is used in Section 3.3 when we discuss the Isolated

Extension Theorem. For this discussion, we show how ∆n,ϕ is related to the notion

of coherence from [14]. In this paper, Johnson defines coherence as follows: Fix

a partitioned formula ϕ(x; y), B ⊆ Clg(y), B0 ⊆ B, and p ∈ Sϕ(B) (we use the

language of Section 2.4, see Definition 2.4.7).

Definition 2.6.3. We say that B0 is coherent at p if

(i) For all b ∈ B, there exists q ∈ Sϕ(B0) such that q decides ϕ(x; b); and

(ii) For any b0, b1 ∈ B such that, for all q ∈ Sϕ(B0), q decides ϕ(x; b0) if and only

if q decides ϕ(x; b1), we have that there exists q0 ∈ Sϕ(B0), t(0), t(1) < 2 such

that q0(x) ` ϕ(x; b0)
t(0) ∧ ϕ(x; b1)

t(1) and either

(a) ϕ(x; b0)
t(0), ϕ(x; b1)

t(1) ∈ p(x) or

(b) ¬ϕ(x; b0)
t(0),¬ϕ(x; b1)

t(1) ∈ p(x).

Finally, say that ϕ is coherent if there exists k < ω such that, for all finite B and

p ∈ Sϕ(B), there exists B0 ⊆ B with |B0| ≤ k such that B0 is coherent at p.

We get the following result relating non-∆n,ϕ-splitting to coherence:

Proposition 2.6.4. Fix B0 ⊆ B ⊆ Clg(y) with B0 finite and p ∈ Sϕ(B) and let

n = |B0|. If B0 is coherent at p, then p does not ∆n,ϕ-split over {c}, where c is an

enumeration (in any order) of the elements of B0.

Proof. Fix B0 ⊆ B ⊆ Clg(y) with B0 finite, p ∈ Sϕ(B), and suppose that B0 is

coherent at p. Let n = |B0|, c be an enumeration of all of the elements in B0, and
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let ∆ = ∆n,ϕ. Fix b0, b1 ∈ B such that tp∆(b0/{c}) = tp∆(b1/{c}). Therefore, for

all q ∈ Sϕ(B0), q decides ϕ(x; b0) if and only if q decides ϕ(x; b1) (because, in the

type tp∆(b0/{c}) are formulas of the form

±∀x
(∧

q(x) → ϕ(x; y)t
)

for all q ∈ Sϕ(B0) and t < 2). By clause (ii) of Definition 2.6.3, this implies that

there exists q0 ∈ Sϕ(B0), t(0), t(1) < 2 such that q0 ` ϕ(x; b`)
t(`) for both ` < 2

and either ϕ(x; b`)
t(`) ∈ p(x) for both ` < 2 or ¬ϕ(x; b`)

t(`) ∈ p(x) for both ` < 2.

However, since tp∆(b0/{c}) = tp∆(b1/{c}), we see that t(0) = t(1). Therefore,

ϕ(x; b0) ∈ p(x) if and only if ϕ(x; b1) ∈ p(x). This means exactly that p does not

∆-split over {c}, as desired.

This generalizes Theorem 4.2 of [14], which states that if a formula ϕ is coher-

ent, then it has UDTFS. If a formula ϕ is coherent, then ∆ = ∆n,ϕ suffices to show

that ϕ has finite non-splitting by Proposition 2.6.4. Therefore, by Theorem 2.6.2,

ϕ has UDTFS. By Theorem 5.4 of [14], formulas of the form ϕ(x; y) in dp-minimal

theories are coherent. Therefore, ∆ = ∆n,ϕ suffices for such formulas to show they

have finite non-splitting. This leads to the following open question, which is far

stronger than the UDTFS Conjecture:

Open Question 2.6.5 (Splitting Conjecture). If ϕ is dependent, then does there

exist n < ω such that ∆ = ∆n,ϕ witnesses that ϕ has finite non-splitting?

Surprisingly enough, this holds for stable formulas. In fact, we have the fol-

lowing characterization of stability:
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Theorem 2.6.6. A partitioned formula ϕ(x; y) is stable if and only if there exists

n < ω such that, for all B ⊆ Clg(y) and all p ∈ Sϕ(B), there exists c ∈ Bn such that

p does not ∆n,ϕ-split over {c}.

Our proof of this theorem is based on the proof of Lemma 2.2 in [19]. In that

lemma, Pillay shows that, over models, one can take the type definition of a stable

formula to be a boolean combination of instances of the that formula.

One direction of Theorem 2.6.6 is clear by definability of types (see Theorem

1.3.2 and the proof of Theorem 2.6.2 above). So assume that ϕ is stable and let

N < ω be such that there exists no ai ∈ Clg(x) and bj ∈ Clg(y) for i, j < N such that,

for all i, j < N , |= ϕ(ai; bj) if and only if i < j and there exists no a′i ∈ Clg(x) and

b
′
j ∈ Clg(y) for i, j < N such that, for all i, j < N , |= ¬ϕ(a′i; b

′
j) if and only if i < j.

For each n < 2N , let

Xn = {0, 1} × P({0, 1, ..., n− 1})

and let Mn = |Xn| = 2n+1. Let fn : Mn → Xn be any bijection (to put an

ordering on Xn). For any m < Mn, let fn(m) = (fn0 (m), fn1 (m)) for fn0 (m) < 2 and

fn1 (m) ∈ P(n). Finally, let M =
∑

n<2N Mn.

Now start with any B ⊆ Clg(y) and any p ∈ Sϕ(B). For simplicity, let a |= p.

Assume that there exists b, b
′ ∈ B such that |= ϕ(a; b) and |= ¬ϕ(a; b

′
), otherwise p

does not ∆M,ϕ-split over any subset of BM . We now construct inductively, for each

n < 2N and m < Mn, I
n
m ⊆Mn, q

n(x0, ..., xn) and qnm(x0, ..., xn) (consistent) partial

types over B, and b
n

m ∈ B as follows:

For n = 0 and m < M0 = 2, let b
0

m ∈ B be such that |= ¬ϕ(a; b
0

m)f
0
0 (m) (these
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exists by hypothesis). Let I0 = {0, 1} and let q0
0 = q0

1 = ∅.

Suppose now that n ≥ 0 and, for all k < n, Ikm, qkm, and b
k

m are defined for all

m < Mk. Then, let

qn(x0, ..., xn) = qnMn−1(x0, ..., xn−1) ∪ {¬ϕ(xn; b
k

m)f
k
0 (m) : k ≤ n,m < Mk}.

In other words, qn is qnMn−1 together with tpϕ(a/{b
k

m : k ≤ n,m < Mk})(xn). Since

qnMn−1 is consistent and a realizes the xn portion of the type, then we see that qn is

consistent.

Suppose now that n ≥ 1, m < Mn, q
n−1 is defined, and Inm′ , qnm′ , and b

n

m′ are

defined for all m′ < m (when m = 0, set In−1 = In−1
Mn−1−1 and qn−1 = qn−1, so we simply

include the items from the previous level of the construction). Let (t,W ) = fn(m),

so t = fn0 (m) < 2 and W = fn1 (m) ∈ P(n). If there exists b
n

m ∈ B such that

(i) |= ¬ϕ(a; b
n

m)t, and

(ii) qnm−1(x0, ..., xn−1) ∪ {ϕ(xi; b
n

m)t : i ∈ W} is consistent,

then let b
n

m ∈ B be such a witness, let Inm = Inm−1 ∪ {m}, and let

qnm(x0, ..., xn−1) = qnm−1(x0, ..., xn−1) ∪ {ϕ(xi; b
n

m)t : i ∈ W}.

By assumption, qnm is consistent. If there exists no such b
n

m ∈ B satisfying (i) and

(ii), then let Inm = Inm−1, let qnm = qnm−1, and let b
n

m ∈ B be arbitrary so that only (i)

holds (again, this exists by hypothesis).

Finally, let In = InMn−1 and let q = q2N−1. We have now constructed q a partial

type over B with at most M elements from B. Now consider the following lemma.
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Lemma 2.6.7. For any W ⊆ 2N and any t < 2, if there exists b ∈ B such that

q(x0, ..., x2N−1) ∪ {ϕ(xi; b)
t : i ∈ W}

is consistent and |= ¬ϕ(a; b)t, then, for any realization (a0, ..., a2N−1) |= q, there

exists mk ∈Mk for k ∈ W such that, for all i, k ∈ W ,

|= ϕ(ai; b
k

mk
)t if and only if i < k.

That is, 〈ai : i ∈ W 〉 and 〈bkmk
: k ∈ W 〉 witness that ϕt has the order property of

length |W |.

Proof. Fix (a0, ..., a2N−1) |= q. Fix any k ∈ W and let W ′ = W ∩ k. Choose

m = mk < Mk such that fk0 (m) = t and fk1 (m) = W ′. We first claim that m ∈ Ik.

Since

q(x0, ..., x2N−1) ∪ {ϕ(xi; b)
t : i ∈ W}

is consistent, so is the subtype

qkm−1(x0, ..., xk−1) ∪ {ϕ(xi; b)
t : i ∈ W ′}

(if m = 0, let qk−1 = qk−1 as in the construction above). Thus cases (i) and (ii) of the

construction are met (for condition (i), note that |= ¬ϕ(a; b)t). Therefore, m ∈ Ik

and, furthermore, b
k

m is a witness to this fact. That is, |= ¬ϕ(a; b
k

m)t and

{ϕ(xi; b
k

m)t : i ∈ W ′} ⊆ q.

Thus, by construction, for all i < k with i ∈ W (i.e. all i ∈ W ′), ϕ(xi; b
k

m)t ∈ q.

Hence, |= ϕ(ai; b
k

m)t. On the other hand, for all i ≥ k, ¬ϕ(xi; b
k

m)t ∈ q (since, by
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construction, in q the variables xi for i ≥ k match a on b
k

m). Thus we see that, for

all i ∈ W ,

|= ϕ(ai; b
k

mk
)t if and only if i < k.

This yields the desired conclusion.

Therefore, since we chose N to witness the fact that the order property fails

for ϕ and ¬ϕ, if W ⊆ 2N with |W | = N , then, for any t < 2, if there exists b ∈ B

such that

q(x0, ..., x2N−1) ∪ {ϕ(xi; b)
t : i ∈ W}

is consistent, then |= ϕ(a; b)t. However, by pigeon-hole principal, for any b ∈ B,

there exists t < 2 and W ⊆ 2N with |W | = N such that

q(x0, ..., x2N−1) ∪ {ϕ(xi; b)
t : i ∈ W}

is consistent. Therefore, for all b ∈ B, |= ϕ(a; b) if and only if, for some W ⊆ 2N

with |W | = N ,

q(x0, ..., x2N−1) ∪ {ϕ(xi; b) : i ∈ W}

is consistent. With this, we are ready to prove Theorem 2.6.6.

Proof of Theorem 2.6.6. Suppose that ϕ(x; y) is stable and N and M are as above.

We claim that n = M suffices. Fix any B ⊆ Clg(y) and p ∈ Sϕ(B). Let q and b
k

m ∈ B

for k < 2N and m < Mk be as above. Finally, let c = (b
k

m : k < 2N,m < Mk). We

claim that p does not ∆M,ϕ-split over {c}.
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Fix b, b
′ ∈ B such that ϕ(x; b) ∈ p(x) and ¬ϕ(x; b

′
) ∈ p(x). By the characteri-

zation above, there exists W ⊆ 2N with |W | = N such that

q(x0, ..., x2N−1) ∪ {ϕ(xi; b) : i ∈ W}

is consistent and

q(x0, ..., x2N−1) ∪ {ϕ(xi; b
′
) : i ∈ W}

is inconsistent (since it is for all such W ). This implies that

θ(y) = ∃x0...∃x2N−1

(∧
q(x0, ..., x2N−1) ∧

∧
i∈W

ϕ(xi; y)

)
holds for b and fails for b

′
. For each k < 2N , let

qk(x) = {ϕ(x; b
k

m)t : m < Mk, t < 2, ϕ(xk; b
k

m)t ∈ q}

be the restriction of q to the variable xk. Then, we see that θ(y) is equivalent to

θ′(y) =
∧

k<2N,k∈W

∃x
(∧

qk(x) ∧ ϕ(x; y)
)
∧

∧
k<2N,k/∈W

∃x
(∧

qk(x)
)
.

However, θ′ is equivalent to a boolean combination of formulas from ∆M,ϕ(y; c).

Therefore, since |= θ′(b) ∧ ¬θ′(b), we see that

tp∆M,ϕ
(b/{c}) 6= tp∆M,ϕ

(b
′
/{c}).

This means exactly that p does not ∆M,ϕ-split over {c}.

2.7 Applications to Compression Schemes

2.7.1 Concept Classes and Compression Schemes

In [15], Johnson and Laskowski discover a relationship between UDTFS and

(extended) compression schemes from computer science. In fact, the idea of com-
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pression schemes was the inspiration for Laskowski’s definition of UDTFS. This

chapter summarizes the work of Johnson and Laskowski from [15] and discusses

how the results of this thesis contribute to the field of computer science.

The basic idea is the following: We have a set X and a set of subsets of X, C,

and we wish to measure the complexity of this set on finite subsets of X by sampling

points in X. For simplicity of notation, we actually take C ⊆ X2 (where 2 = {0, 1})

and think of these as the characteristic functions of the subsets of X in question.

We call such C concept classes on X. For this discussion, we are only interested in

finite subsets of X, so define C|fin as follows:

C|fin = {f |Y : f ∈ C, Y ⊆ X finite}.

Consider the following definition from [15] which is an adaptation of the definition

of an extended compression scheme introduced by Floyd and Warmuth in [7]:

Definition 2.7.1. Fix C ⊆ X2 and d < ω. We say that C has an (extended d-

sequence) compression scheme if there exists a compression function κ : C|fin → Xd

and a set of finitely many recovery functions R (with ρ : Xd → X2 for each ρ ∈ R)

such that, for every f ∈ C and Y ⊆ X finite, there exists ρ ∈ R such that

(i) κ(f |Y ) ∈ Y d; and

(ii) ρ(κ(f |Y )) extends f |Y (as functions).

Finally, we simply say that C has a compression scheme if it has a extended d-

sequence compression scheme for some d < ω. The dimension of a compression

scheme is the minimal such d.
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This captures one method of measuring the complexity of C. Another way of

capturing the complexity of a concept class is the VC-dimension. We say that a

concept class C ⊆ X2 has VC-dimension d for some d < ω if d is maximal such that

there exists Y ⊆ X with |Y | = d and
∣∣C|Y ∣∣ = 2d (where C|Y = {f |Y : f ∈ C}). We

say that C is a VC-class if it has a finite VC-dimension.

Another measure of complexity is VC-density. A concept class C ⊆ X2 has

VC-density r for some r ∈ R if r is the infimum of all r′ ∈ R such that there exists

K < ω such that, for all finite Y ⊆ X,
∣∣C|Y ∣∣ < K · |Y |r′ . By Sauer’s Lemma [21], we

get that if C has VC-dimension d, then C has VC-density ≤ d. Conversely, it is clear

that if C has finite VC-density, then C is a VC-class. One should also note that if C

has a d-dimensional compression scheme, then it has VC-density ≤ d. Therefore, if

C has a compression scheme, then C is a VC-class.

Example 2.7.2. Let X = R and let C = {χ[a,b] : a, b ∈ R, a < b}, where χA denotes

the characteristic function of A ⊆ X. So C is the concept class of closed intervals in

R. One checks that C has VC-dimension 2, VC-density 1, and a compression scheme

of dimension 2 (the last fact actually follows from the discussion of UDTFS rank in

Section 3.2).

Compression schemes are intimately related to UDTFS. Starting with X any

set and C ⊆ X2, construct an L-structure MC in the language L = {U,R} (for U

a unary relation symbol and R a binary relation symbol) as follows: Let MC have

universe CtX (where t denotes disjoint union), let UMC = C, and let R(f, x) hold in

MC if and only if f ∈ C, x ∈ X, and f(x) = 1. This provides a way to encode C into
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a model-theoretic structure. We now get the following result relating compression

schemes to UDTFS (for a proof, see the proof of Proposition 3.2.9 below):

Proposition 2.7.3 (Johnson and Laskowski, [15]). If C ⊆ X2 is such that R has

UDTFS in MC, then C has a compression scheme.

We can also go the other direction, starting with a formula with UDTFS

and producing a concept class with a compression scheme. Suppose ϕ(x; y) is a

partitioned formula in T with UDTFS (and recall that C is a monster model for T ).

Let X = Clg(y) and let

Cϕ =
{
χϕ(a;C) : a ∈ Clg(x)

}
.

We get the following result:

Proposition 2.7.4 (Johnson and Laskowski, [15]). If ϕ has UDTFS, then Cϕ has

a compression scheme.

In [15], they mention that Cϕ has a compression scheme for any stable ϕ and

prove that Cϕ has a compression scheme for any ϕ from an o-minimal theory, T (by

showing that such theories have UDTFS).

The results of this thesis produce more concept classes that have compression

schemes. By Theorem 2.4.1, all concept classes Cϕ with ϕ from a dp-minimal theory

have a compression scheme. For example, by the results of [6], this implies that

concept classes Cϕ with ϕ from Th(Qp; +, ·, |, 0, 1) have compression schemes.

Example 2.7.5. Working in Th(Qp; +, ·, |, 0, 1), let ϕ(x0, x1; y) = x1|(y−x0). Then

Cϕ is the following concept class on Qp:

Cϕ = {χD : D ⊆ Qp, D is a closed ball in Qp}.
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Therefore, we see that the concept class of closed balls in Qp has a compression

scheme. Similarly, the concept class of open balls in Qp has a compression scheme.

By the results of Section 2.5, fields such as R((t)) have UDTFS. Therefore, con-

cept classes of uniformly definable subsets of R((t)) also have compression schemes.

The same is true of other fields such as C((t)) and C((tQ)). Considering UDTFS

rank in Section 3.2 allows us to bound the dimension of the compression scheme.

If we suppose that ϕ has UDTFS rank r, then Cϕ has a compression scheme of

dimension ≤ r.

Theorem 2.4.3 provides an interesting result on concept classes. Fix X any

set and C ⊆ X2 any concept class. Then, we get the following result:

Corollary 2.7.6. If there exists N < ω such that, for all Y ⊆ X with |Y | = N ,∣∣C|Y ∣∣ ≤ N(N+1)
2

, then C has a compression scheme. In particular, if C has VC-density

< 2, then C has a compression scheme.

This analysis of compression schemes leads to several open questions. The

biggest of which is known as the Warmuth Conjecture (from [7]):

Conjecture 2.7.7 (Warmuth Conjecture). If C is a VC-class, then C has a com-

pression scheme.

Of course, the UDTFS Conjecture implies the Warmuth Conjecture, but not

conversely. In fact, this leads to another interesting open question:

Open Question 2.7.8. If ϕ is such that Cϕ has a compression scheme, then does

ϕ have UDTFS?
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Certainly UDTFS implies a compression scheme, but the converse need not

hold. In the definition of compression schemes, there is no mention of “definability”

of the compression scheme. In fact, we could even alter the language of MC and, if

R has UDTFS in that expanded language, then C would still have a compression

scheme.

2.7.2 Maximum Formulas

Going the other direction, we use a result about concept classes to prove that

a certain class of formulas has UDTFS. First, by Sauer’s Lemma, we know that if a

partitioned formula ϕ(x; y) has independence dimension d < ω, then, for any finite

B ⊆ Clg(y) with |B| ≥ d, ∣∣Sϕ(B)
∣∣ ≤∑

i≤d

(
|B|
i

)
.

When a formula attains this maximum bound for all such B, then we say that this

formula is maximum of dimension d. For example, consider any infinite set X and

let Cd = {f ∈ X2 : |supp(f)| ≤ d} for some fixed d < ω (where supp(f) = {x ∈

X : f(x) = 1}). Finally, let M = MCd
in the language L = {U,R} as defined in the

previous subsection. Then one can see that R is a maximum formula of dimension

d in M . There are other examples of maximum formulas, and these were studied in

the context of concept classes by Floyd and Warmuth in [7].

Given a concept class C on a set X, we say that C is maximum of dimension

d < ω if R is maximum with dimension d in MC. That is, for all finite Y ⊆ X with
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|Y | ≥ d, ∣∣C|Y ∣∣ =
∑
i≤d

(
|Y |
i

)
.

We get the following result about maximum concept classes.

Theorem 2.7.9 (Theorem 10 of [7]). Fix d < ω, X a finite set with |X| ≥ d, and

let C ⊆ X2 be a maximum concept class of dimension d. Then, for each f ∈ C,

there exists Y ⊆ X with |Y | = d such that, for all x ∈ (X − Y ) and all g ∈ Y 2,

g ∪ f |{x} ∈ C|Y ∪{x}.

That is, the value of f on any x ∈ (X − Y ) is determined, since there is at

most one t < 2 such that g ∪ {(x, t)} is extendable to a function in C for all g ∈ Y 2

(otherwise, Y ∪{x} would witness that C has VC-dimension d+1, a contradiction).

Using the dictionary between concept classes and formulas, we can use Theorem

2.7.9 to get a result for maximum formulas.

Theorem 2.7.10. If ϕ(x; y) is maximum of dimension d < ω, then ϕ has UDTFS.

Furthermore, ϕ has UDTFS rank ≤ d (see Section 3.2).

Proof. Fix ϕ(x; y) a maximum formula of dimension d < ω. Consider, for each

s ∈ d2, the formula

ψs(y; z0, ..., zd−1) =

(∧
i<d

y 6= zi ∧
∧
t∈d2

∃x

(
ϕ(x; y) ∧

∧
i<d

ϕ(x; zi)
t(i)

))
∨

∨
i<d,s(i)=1

(y = zi).

We claim that these define ϕ-types over finite sets. Fix any B ⊆ Clg(y) finite and

p ∈ Sϕ(B). If |B| < d, we can use ψs trivially to define p. For each q ∈ Sϕ(B), let
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δq ∈ B2 be the function associated to q (so ϕ(x; b)δq(b) ∈ q(x) for all b ∈ B). Let

X = B and let

C = {δq : q ∈ Sϕ(B)}.

It is easy to show that C is of maximum dimension d, so the hypotheses of Theorem

2.7.9 are met. Therefore, if we let f = δp, then there exists B0 ⊆ B with |B0| = d

such that, for all b ∈ (B − B0), ϕ(x; b) ∈ p(x) if and only if δp(b) = 1 if and only if

f(b) = 1 if and only if g ∪ {(b, 1)} extends to a function in C for all g ∈ B02. This is

true if and only if

ϕ(x; b) ∧
∧
i<d

ϕ(x; ci)
t(i)

is consistent for every t ∈ d2 where B0 = {ci : i < d}. Therefore, letting s ∈ d2 be

such that s(i) = δp(ci), we see that

ψs(y; c0, ..., cd−1)

defines p. Thus, ϕ has UDTFS, as desired.

Furthermore, since ψs has only d parameter tuples, we see that the UDTFS

rank of ϕ is ≤ d.

Moreover, we see from the proof above that if ϕ is maximum of dimension

d < ω, then the Splitting Conjecture (Open Question 2.6.5) holds for ϕ (with

n = d).

Combined with Theorem 2.4.3, one may be tempted to conclude that this

implies all formulas ϕ with independence dimension two have UDTFS. However,

this does not necessarily follow.
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Example 2.7.11. Let Xn be an n-element set for all n ≥ 2 and let X =
∐

n≥2Xn.

Let Cn be maximum of dimension 2 on Xn. Finally, let

C = {c ∈ X2 : (∃n ≥ 2)(c|Xn ∈ Cn ∧ (∀m 6= n)(c|Xm = 0))}.

Let M = MC as above. Then, for any n ≥ 2,

∣∣SR(Xn)
∣∣ > n(n+ 1)/2.

So the condition of Theorem 2.4.3 is not met. However, R is clearly not maximal

of dimension 2, so the condition of Theorem 2.7.10 above is not met. So we cannot

conclude from these that R has UDTFS. However, one can see that this particular

R actually does have UDTFS.

It is the opinion of this author that we should somehow be able to amalgamate

the procedure of Theorem 2.7.10 and the procedure of Theorem 2.4.3 to produce a

means of showing that formulas of independence dimension two have UDTFS. With

any luck, this may also give a means of showing, in general, that dependent formulas

have UDTFS.
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Chapter 3

Other Definability of Types Notions in Dependent Theories

3.1 Overview

The main goal of this chapter is to study other generalizations of definability

of types to subclass of dependent theories. The study of these notions branched off

of this author’s study into UDTFS.

In Section 3.2, we study UDTFS rank and show how it relates to VC-density

and other ranks. This ties up some loose ends from the last chapter, including

how to compute compression scheme dimensions from model-theoretic notions. Our

main result is Theorem 3.2.4, where we show how to calculate the UDTFS rank of

all formulas from only those with one free variable. This has applications to showing

certain theories have VC-density one.

In Section 3.3, we examine isolated extensions as another alternative to de-

finability of types, this time for all dependent formulas. The main result of this

section is the Isolated Extension Theorem, Theorem 3.3.3. This has several corol-

laries, including a new notion of definability of types and a weak notion of stable

embeddability for dependent theories (see Corollary 3.3.5).

In Section 3.4, we talk briefly about the work of Pierre Simon in [28] and give

some results relating to dp-minimal theories. In particular, we show that Conjecture

4.7 of [28] holds for dp-minimal theories with a linear order (see Theorem 3.4.3).
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3.2 UDTFS ranks and VC-Density

3.2.1 UDTFS rank

In this section, the main object of our study is UDTFS rank. This rank is

closely related to the VCm property from [3].

Definition 3.2.1. A formula ϕ(x; y) has UDTFS rank n < ω (denoted RUDTFS(ϕ) =

n) if n is minimal such that there exists finitely many formulas {ψ`(y; z0, ..., zn−1) :

` < L} such that, for all finite non-empty B ⊆ Clg(y) and for all p(x) ∈ Sϕ(B), there

exists ` < L and c0, ..., cn−1 ∈ B such that ψ`(y; c0, ..., cn−1) defines p. If no such n

exists, we let RUDTFS(ϕ) = ∞.

Clearly ϕ has UDTFS if and only if RUDTFS(ϕ) < ∞. We list several other

simple observations:

Proposition 3.2.2. For a fixed partitioned formula ϕ(x; y) with UDTFS, the fol-

lowing hold:

(i) VCden(ϕ) ≤ RUDTFS(ϕ).

(ii) alt(ϕ) ≤ 2 · RUDTFS(ϕ).

Proof. (i): Let {ψ`(y; z0, ..., zn−1) : ` < L} witness that RUDTFS(ϕ) = n and we show

that, for all finite B ⊆ Clg(y),
∣∣Sϕ(B)

∣∣ ≤ L · |B|n, as desired. Each type p ∈ Sϕ(B)

is associated to ` < L and c ∈ Bn via a choice such that ψ`(y; c) defines p. This is

clearly an injective map, so
∣∣Sϕ(B)

∣∣ ≤ |L×Bn| = L · |B|n.

(ii): Again, let {ψ`(y; z0, ..., zn−1) : ` < L} witness that RUDTFS(ϕ) = n.

Suppose, by means of contradiction, that alt(ϕ) > 2n. Let 〈bi : i ∈ I〉 be an
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indiscernible sequence and a ∈ Clg(x) witnessing alt(ϕ) > 2n. Therefore, there exists

i0 < i1 < ... < i2n from I such that

|= ϕ(a; bij) ↔ ¬ϕ(a; bij+1
)

for all j < 2n (i.e., the subsequence alternates with respect to the truth value of

ϕ(a; y)). Let B = {bij : j ≤ 2n} and fix p = tpϕ(a/B). By definition of UDTFS

rank, there exists ` < L and c0, ..., cn−1 ∈ B such that ψ`(y; c0, ..., cn−1) defines p.

By pigeon-hole principal, there exists j0 < 2n such that bj0 and bj0+1 are not among

the ct’s. Therefore, by indiscernibility,

|= ψ`(bj0 ; c0, ..., cn−1) ↔ ψ`(bj0+1; c0, ..., cn−1).

That is,

ϕ(x; bj0) ∈ p(x) if and only if ϕ(x; bj0+1) ∈ p(x).

This contradicts the fact that the sequence alternates with respect to the truth value

of ϕ(a; y). Therefore, alt(ϕ) ≤ 2n, as desired.

The result of Proposition 3.2.2 (ii) is surprising, since the exact same result

holds if we replace RUDTFS with ID. That is, for any dependent formula ϕ, alt(ϕ) ≤

2 · ID(ϕ). This follows from the proof of Lemma 2.2.4 (i) and is originally due

to Shelah in [22]. The relationship between the independence dimension and the

UDTFS rank is unknown (they could, in fact, be equal). However, it is known that

the UDTFS rank can be much higher than the VC-density. Consider the following

example, due to Alfred Dolich (unpublished):
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Example 3.2.3. Fix any n ≥ 2. We exhibit an example where VCden(ϕ) = 1 but

RUDTFS(ϕ) = n.

Let L = {E,U,R} for E,R binary relation symbols and X a unary relation

symbol. Let M be the L-structure given by

M = ω × (2n t {I ⊂ 2n : |I| = n}),

where we let EM((i, a), (j, b)) hold if and only if i = j, XM(i, b) holds if and only if

b ∈ 2n (the first part of the disjoint union), and RM((i, a), (j, b)) holds if and only

if i = j, a ∈ {I ⊂ 2n : |I| = n}, b ∈ 2n, and b ∈ a. We claim that R(x; y) has

VC-density 1 and UDTFS rank n.

For any (i, b) ∈ XM , there are at most
(
2n
n

)
elements (i, a) such that M |=

R((i, a), (i, b)). From this, one easily checks that, for any finite B ⊆ M ,
∣∣SR(B)

∣∣ ≤(
2n
n

)
· |B|, hence showing that VCden(R(x; y)) ≤ 1. One easily checks that it

is, in fact, equal to one. Next, for any permutation σ ∈ S2n and any i0 <

ω, there exists an L-automorphism of M , which we call σi0 , where σi0(i, x) =

(i, x) for all i 6= i0, σ
i0(i0, x) = (i0, σ(x)) for x ∈ 2n, and σi0(i0, {p0, ..., pn−1}) =

(i0, {σ(p0), ..., σ(pn−1)}). Fix B = {(0, b) : b ∈ 2n} and let a = (0, I) for any I ⊆ 2n,

|I| = n, and consider p = tpR(a/B). If we assume, by means of contradiction, that

RUDTFS(R(x; y)) < n, then there exists a defining formula ψ(y, z0, ..., zn−2) for p.

That is, there exists b0, ..., bn−2 ∈ 2n such that ψ(y, (0, b0), ..., (0, bn−2)) defines p.

Choose any c0 ∈ I − {b0, ..., bn−2} (which exists since |I| = n and |{b0, ..., bn−2}| ≤

n − 1) and c1 ∈ 2n − (I ∪ {b0, ..., bn−2}) (which also exists by counting). Let

σ = (c0 c1), the permutation of S2n swapping c0 and c1 but fixing everything else.
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Then, since c0 ∈ I, R((0, I), (0, c0)) holds, hence ψ((0, c0), (0, b0), ..., (0, bn−2)) holds

as this defines p. So we get

c0 ∈ I hence |= σ0[ψ((0, c0), (0, b0), ..., (0, bn−2))] hence

|= ψ((0, c1), (0, b0), ..., (0, bn−2)) hence c1 ∈ I.

contrary to our choice of c1 /∈ I. Therefore, no such definition exists, so we see that

RUDTFS(R(x; y)) ≥ n. One can check, however, that a definition with n parameters

exists. Also note that ID(R(x; y)) = n.

We see from this example that both UDTFS rank and independence dimen-

sion are sensitive to small portions of the theory, while VC-density ignores smaller

subpieces of the structure for a more big-picture look. Depending on the context,

one of these viewpoints may be preferable.

Now that we have an understanding of how UDTFS rank relates to other

ranks, we present the main result of this section.1

Theorem 3.2.4. Fix T a theory and k < ω. If all formulas of the form ϕ(x; y)

have UDTFS rank ≤ k, then all formulas of the form ϕ(x; y) have UDTFS rank

≤ k · lg(x).

Before proving this, we examine some of the consequences. Most notably, it

allows us to measure the density of a theory.

Definition 3.2.5. For a fixed k < ω, a theory T has VC-density k if, for all

partitioned formulas ϕ(x; y), VCden(ϕ) ≤ k · lg(x).

1This result is similar to the sufficiency of a single variable result for the VCm property in [3].

86



The following is an immediate consequence of Theorem 3.2.4 and Proposition

3.2.2 (i):

Corollary 3.2.6. Fix T a theory and k < ω. If, all formulas of the form ϕ(x; y)

have UDTFS rank ≤ k, then T has VC-density k.

A simple calculation shows the following, originally due to Aschenbrenner,

Dolich, Haskell, MacPherson, and Starchenko in [3]:

Corollary 3.2.7. If T is weakly o-minimal, then T has VC-density one.

Proof. We actually show that any formula of the form ϕ(x; y) have UDTFS rank

≤ 1. By Corollary 3.2.6, this suffices to show that T has VC-density one.

Fix any such formula, ϕ(x; y). Then, by weak o-minimality of T , there exists

some K < ω such that, for all b ∈ Clg(y), ϕ(C; b) is a union of at most K convex

subsets of C. Let ψi(x; y) be so that, for each b ∈ Clg(y), ψi(C; b) is the ith convex

subset of ±ϕ(C; b) (this is clearly definable, and there are at most 2K + 1 of them;

see, for example, the proof of Proposition 4.3.3). For each i < 2K + 1, let

γi(y; z) = ∀x(ψi(x; z) → ∃x′(x′ ≥ x ∧ ψi(x′; z) ∧ ϕ(x′; y))).

We claim that {γi(y; z) : i < 2K + 1} can be used to define ϕ-types over finite sets,

thus showing that RUDTFS(ϕ) ≤ 1. Fix any finite B ⊆ Clg(y) and a ∈ C. Then, for

each b ∈ B, let V (b) = ψi(C; b) for the i < 2K + 1 such that |= ψi(a; b) (there exists

exactly one such i). Let V = {V (b) ∩ [a,∞) : b ∈ B} and choose b0 ∈ B such that

V (b0) ∩ [a,∞) is ⊆-minimal in V . Let i0 be such that V (b0) = ψi0(C; b0). Then

we claim γi0(y; b0) defines tpϕ(a/B), as desired. For any b ∈ B, γi0(b; b0) holds if
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and only if V (b0) is cofinal in ϕ(C; b) if and only if ϕ(a; b) holds (by minimality of

V (b0) ∩ [a,∞) in V).

We now prove the main theorem, which essentially follows from the proof of

Lemma 2.3.6.

Proof of Theorem 3.2.4. Fix a partitioned formula ϕ(x; y) with n = lg(x). Suppose

that ϕ̂(x0, ..., xn−2;xn−1, y) = ϕ(x; y) has UDTFS rank ≤ K0 and we take a set of

formulas

{ψ`(xn−1, y;w0, z0, ..., wK0−1, zK0−1) : ` < L0}

witnessing this. As in the proof of Lemma 2.3.6, for each ` < L0, let

ψ∗
` (xn; y, z0, ..., zk−1) = ψ`(xn−1, y;xn−1, z0, ..., xn−1, zk−1)

and suppose that ψ∗
` (xn; y, z) has UDTFS rank ≤ K1 for each ` < L0. For each

` < L0, suppose this is witnessed by

{
γ`,`′(y, z0, ..., zK0−1; v0, u0,0, ..., u0,K0−1, ..., vK1−1, uK1−1,0, ..., uK1−1,K0−1) : `′ < L1

}
.

Again, as in the proof of Lemma 2.3.6, for each ` < L0 and `′ < L1, let

γ∗`,`′(y; z0, ..., zK0−1, v0, ..., vK1−1) =

γ`,`′(y, z0, ..., zK0−1; v0, z0, ..., zK0−1, ..., vK1−1, z0, ..., zK0−1).

Then, just as in the proof of Lemma 2.3.6, we see that {γ∗`,`′ : ` < L0, `
′ < L1} is a

witness to the fact that RUDTFS(ϕ) ≤ K0 +K1.

Now, given the above information, we prove the theorem by induction on

n = lg(x). For n = 1, this is given by hypothesis. Fix n > 1, fix ϕ(x; y) with
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n = lg(x). Note that ϕ̂ has UDTFS rank ≤ k · (n − 1) by induction and each ψ∗
`

has UDTFS rank ≤ k by assumption. Therefore, RUDTFS(ϕ) ≤ k(n− 1) + k = kn,

as desired.

This gives us one way of showing that theories have VC-density k for various

k < ω. Are there other ways of proving theories have bounded VC-density? We

come back to this question in Section 4.4 when we show that, in particular, all

strongly minimal theories have VC-density one. This does not follow from Theorem

3.2.4; Example 4.3.5 below shows that strongly minimal theories can have formulas

with UDTFS rank 2.

For a moment, we move back to the stable setting. The following theorem is

due to Laskowksi (unpublished).

Theorem 3.2.8 (Laskowski). Fix a stable formula ϕ(x; y). Then,

RUDTFS(ϕ) ≤ R2,ϕ(∅),

where ∅ is the empty ϕ-type.

Proof. Since ϕ is stable, R2,ϕ(∅) is finite, say n = R2,ϕ(∅). For each s ∈ n2, define

θs(x; z0, ..., zn−1) =
∧
i<n

ϕ(x; zi)
s(i)

(so θs is used to encode a finite ϕ-type of size ≤ n). For each K < ω, let

ψK,s(y; z) = ∃(wν : ν ∈ ≤K2)∧
η∈K2

∃x

(
θs(x; z) ∧ ϕ(x; y) ∧

∧
i<K

ϕ(x;wη|i)
η(i)

)
.
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So ψK,s encodes that the type encoded by θs, together with the positive instance of

ϕ(x; y), has Shelah 2-rank ≥ K. We claim that {ψK,s : K ≤ n, s ∈ n2} is a witness

to the fact that ϕ has UDTFS rank ≤ n.

Fix any B ⊆ Clg(y) finite and p ∈ Sϕ(B). Say that R2,ϕ(p) = ` ≤ n. Let

q0 = ∅ and inductively define qi ⊆ p as follows: Fix i > 0. If there exists b ∈ B

so that qi−1 ∪ p{b} has Shelah 2-rank < R2,ϕ(qi−1), then let qi = qi−1 ∪ p{b} for any

such b. Otherwise, the construction halts and let q = qi−1 and K = R2,ϕ(q). Since

R2,ϕ(q0) = n and R2,ϕ(p) = `, this construction halts in at most n − ` steps and

K ≤ n. Now, by construction, for each b ∈ B,

R2,ϕ(q ∪ p{b}) = R2,ϕ(q) = K.

Therefore, ϕ(x; b) ∈ p(x) if and only if q(x) ∪ {ϕ(x; b)} has Shelah 2-rank ≥ K.

Therefore, if we choose ci ∈ B for i < n and s ∈ n2 so that

q(x) = {ϕ(x; ci)
s(i) : i < n}

(allowing for some overlap if |q| < n), then we see that ψK,s(y; c) defines p, as

desired.

3.2.2 Applications to Compression Schemes

We now discuss applications of UDTFS rank to compression schemes. Recall

the definitions of concept classes and compression schemes from Subsection 2.7.1.

Fix X any set and let C ⊆ X2 be a concept class. Use the same definition of MC

as in Subsection 2.7.1. We get the following refinement of Proposition 2.7.3, which

essentially follows from the proof in [15], but we include it here for completeness:
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Proposition 3.2.9 (Johnson and Laskowski, [15]). If RUDTFS(R(x; y)) = d in MC,

then C has an extended d-sequence compression scheme.

Proof. Let {ψ`(y; z0, ..., zd−1) : ` < L} witness the fact that R(x; y) has UDTFS

rank d. Each ψ` gives rise to a function ρ` : Xd → X2 in the following manner:

[ρ`(c0, ..., cd−1)](b) = 1 if and only if MC |= ψ`(b; c0, ..., cd−1)

for all b, c0, ..., cd−1 ∈ X. Similarly, we have κ : C|fin → Xd defined as follows:

Start with f ∈ C and Y ⊆ X finite. Then consider the type pf,Y = tpR(f/Y ).

By definition, there exists c0, ..., cd−1 ∈ Y such that ψ`(y; c0, ..., cd−1) defines p. Set

κ(f |Y ) = (c0, ..., cd−1). Now, it is easy to check that κ is a compression function

and {ρ` : ` < L} are recovery functions witnessing the fact that C has an extended

d-sequence compression scheme.

Coupled with Theorem 3.2.4 above, we can now compute the dimension of

many compression schemes. For example, consider Th(R;<,+, ·, 0, 1). This is o-

minimal, so by the proof of Corollary 3.2.7, all formulas of the form ϕ(x; y) have

UDTFS rank ≤ lg(x). Therefore,

(i) The concept class Cdisks = {χD : D ⊆ R2, D is an open disk } has a compres-

sion scheme of dimension ≤ 3. This is because Cdisks = Cϕ for

ϕ(x0, x1, x2; y0, y1) = [(y0 − x0)
2 + (y1 − x1)

2 < x2].

(ii) The concept class Crect of axis-parallel rectangles has a compression scheme of

dimension ≤ 4, since Crect = Cϕ for

ϕ(x0, x1, x2, x3; y0, y1) = [(x0 < y0 < x1) ∧ (x2 < y1 < x3)].
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Both of these particular examples are already known, but we illustrate here a general

method for computing the dimension of any compression scheme uniformly definable

in the real ordered field. As another example, consider the following:

(iii) Consider the concept class Cp−disks = {χD : D ⊆ Qp, D is an closed disk} of

closed disks in the p-adic field. Then Cp−disks = Cϕ where ϕ(x0, x1; y) = x1|(y−

x0) (in the language Lval = {0, 1,+,−, ·, |} as defined in Section 2.5). One

easily computes that RUDTFS(ϕ) = 2. Therefore, Cp−disks has a compression

scheme of dimension ≤ 2.

3.3 Isolated Extension Theorem

The main theorem of this section, Theorem 3.3.3, characterizes dependent

formulas using the notions of ϕ-isolation and ϕ-definability. These differ from the

concept of UDTFS dramatically. First of all, we are no longer only working over

finite domains, but types of any size. Secondly, the definition one obtains is not

uniform and it is not over the original domain of the type. However, it does have

a very special form (namely, it is a ϕ-definition), and it holds for all dependent

formulas.

One interesting thing about Theorem 3.3.3 is that it is a local result; it de-

scribes the behavior of a specific ϕ-type for a dependent formula ϕ regardless of

the complexities of the ambient theory (e.g., even when the whole theory is inde-

pendent). Another noteworthy fact is that this gives a new result even for stable

formulas. This is discussed in Subsection 3.3.3.
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3.3.1 The Isolated Extension Theorem

We begin with some definitions that are relevant to this section. Fix a parti-

tioned formula ϕ(x; y). First, we define ϕ-isolation and ϕ-definitions:

Definition 3.3.1. We say that a ϕ-type p is ϕ-isolated if there exists a finite ϕ-

subtype p0(x) ⊆ p(x) such that p0(x) ` p(x). We say that a parameter-definable

formula ψ(x) is a ϕ-formula if it is of the form ψ(x) =
∧
i<n ϕ(x; bi)

s(i) for some

n < ω, elements bi, and some s ∈ n2. We say that a parameter-definable formula γ(y)

ϕ-defines a ϕ-type p if γ defines p and it is of the form γ(y) = ∀x(ψ(x) → ϕ(x; y))

for some ϕ-formula ψ.

Notice that a ϕ-type is ϕ-isolated if and only if there exists a ϕ-formula ψ(x)

over dom(p) such that p(x) is equivalent to ψ(x) (namely, take ψ to be the conjunc-

tion of the witnessing finite ϕ-subtype of p). This holds if and only if there exists a

ϕ-definition of p over dom(p), namely ∀x(ψ(x) → ϕ(x; y)).

For M |= T and B ⊆ M lg(y), consider the language LB = L ∪ {PB}, an

expansion of L by adding a single lg(y)-ary predicate, PB. Let (M ;B) be the obvi-

ous LB-structure. By “(N ;B′) � (M ;B)” we mean that (N ;B′) is an elementary

extension of (M ;B) in the language LB.

Definition 3.3.2. Fix M |= T and B ⊆ M lg(y). We say that a ϕ-type p′ is an

elementary ϕ-extension of the ϕ-type p ∈ Sϕ(B) if p′ extends p and dom(p′) ⊆ B′

for some (N ;B′) � (M ;B).

We are now ready to state the main theorem of this section. The proof is

presented in Subsection 3.3.2.
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Theorem 3.3.3 (Isolated Extension Theorem). For any partitioned formula ϕ(x; y),

the following are equivalent:

(i) ϕ is dependent.

(ii) For all ϕ-types p, there exists a ϕ-isolated elementary ϕ-extension of p.

Moreover, if the above conditions hold, we can choose p′ a ϕ-isolated elementary ϕ-

extension of p ∈ Sϕ(B) such that
∣∣dom(p′)− B

∣∣ ≤ 2 · ID(ϕ). Finally, fixing m < ω

and B ⊆ Mm, if we let (N ;B′) � (M ;B) be |B|+-saturated, then for all dependent

formulas ϕ(x; y) with lg(y) = m and all p ∈ Sϕ(B), there exists p′ a ϕ-isolated

extension of p with dom(p′) ⊆ B′.

We get the following corollary:

Corollary 3.3.4 (Elementary ϕ-definability of types). If M |= T , m < ω, and

B ⊆ Mm, then there exists (N ;B′) � (M ;B) such that, for all dependent formulas

ϕ(x; y) with lg(y) = m, for all p(x) ∈ Sϕ(B), there exists γ(y) defined over B′ that

ϕ-defines p.

Proof. Fix M |= T , m < ω, and B ⊆ Mm and let (N ;B′) � (M ;B) be |B|+-

saturated. Then, by Theorem 3.3.3, there exists p′ a ϕ-isolated extension of p with

dom(p′) ⊆ B′. Since p′ is ϕ-isolated, there exists γ over dom(p′) ⊆ B′ that ϕ-defines

p′. Clearly, this γ also ϕ-defines p.

As in the stable case, we get a weak form of stable embeddability:

Corollary 3.3.5 (Weak Stable Embedability). If M |= T for a dependent theory

T , m < ω, and B ⊆ Mm, then there exists (N ;B′) � (M ;B) such that, for all
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parameter-definable formulas ϕ(y) with lg(y) = m defined over any elementary su-

permodel of M , there exists a formula γ(y) defined over B′ such that ϕ(B) = γ(B).

Moreover, we may take γ to be of the form ∀x(ψ(x) → ϕ(x; y)) for some ϕ-formula

ψ.

Proof. Fix (N ;B′) � (M ;B) |B|+-saturated. For any parameter-definable formula

ϕ(y), say ϕ(y) = ϕ0(a; y) for some ∅-definable formula ϕ0 and some a. Let p =

tpϕ0
(a/B). As ϕ0 is dependent, by Corollary 3.3.4, there exists γ(y) that ϕ0-defines

p. Then, by definition, ϕ(B) = γ(B).

3.3.2 Proof of the Isolated Extension Theorem

First, to show (ii) implies (i), we exhibit the contrapositive. Assume that

ϕ(x; y) is independent. By compactness, there exists a model M with an infinite

ϕ-independent set B. Let (N ;B′) � (M ;B) by any extension. By elementarily, it

follows that all finite subsets of B′ are ϕ-independent (for each n < ω, consider the

LB-sentence

σn = ∀y0, ..., yn−1

( ∧
i<j<n

yi 6= yj ∧
∧
i<n

PB(yi) →
∧
s∈n2

∃x

(∧
i<n

ϕ(x; yi)
s(i)

))

and note that {σn : n < ω} holds in (M ;B)). Let p′ be any extension of p to a

ϕ-type with dom(p′) ⊆ B′. Fix any finite subtype p0(x) ⊆ p′(x). For any p1 a finite

ϕ-subtype of p′ with p0(x) ⊂ p1(x), since dom(p1) is ϕ-independent, we cannot have

p0 ` p1. Therefore, p0 6` p′. This shows that no elementary ϕ-extension of p is

ϕ-isolated. Therefore, (ii) implies (i).

To show (i) implies (ii), we first establish the following proposition:
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Proposition 3.3.6. Fix a theory T , Θ(y) a partial type over ∅, ϕ(x; y) a dependent

formula, M |= T , B ⊆ Θ(M), and N � M that is |B|+-saturated. Then, there

exists C ⊆ Θ(N) with |C| ≤ 2 · ID(ϕ) and an extension p′(x) ∈ Sϕ(B ∪ C) of p(x)

that is ϕ-isolated.

Assuming Proposition 3.3.6, we finish the proof of Theorem 3.3.3. To see (i)

implies (ii), fix a dependent formula ϕ(x; y), M |= T , B ⊆ M lg(y), and p ∈ Sϕ(B).

We work in the language LB and let Θ(y) = {PB(y)}. By upward Löwenheim-

Skolem, there exists (N ;B′) � (M ;B) that is |B|+-saturated. By Proposition 3.3.6,

there exists C ⊆ Θ((N ;B′)) = B′ with |C| ≤ 2 · ID(ϕ) and a type p′ ∈ Sϕ(B ∪ C)

extending p that is ϕ-isolated. Hence p′ is an elementary ϕ-extension of p that is

ϕ-isolated, so condition (ii) holds. Moreover,
∣∣dom(p′)−B

∣∣ ≤ 2 · ID(ϕ), as desired.

Finally, this holds for any choice of (N ;B′) � (M ;B) that is |B|+-saturated. This

completes the proof of Theorem 3.3.3.

So we now aim to prove Proposition 3.3.6. Fix a dependent formula ϕ(x; y)

in a theory T and Θ(y) any partial type over ∅. Let n = ID(ϕ), the independence

dimension of ϕ, and let ∆(y; z0, ..., zn−1) = ∆n,ϕ as in (2.5). Fix M |= T , B ⊆

Θ(M), N � M that is |B|+-saturated, and p ∈ Sϕ(B). If B is finite, then p is

already ϕ-isolated, so assume that B is infinite. We now define the notion of a good

configuration. This allows us to build up the external C in, at most, ID(ϕ) steps

(adding two elements at a time):

Definition 3.3.7. A good configuration of p of size K < ω is a sequence c = 〈ci,t :

i < K, t < 2〉 such that the following conditions hold:
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(i) ci,t |= Θ(y) for all i < K, t < 2;

(ii) p(x) ∪ {ϕ(x; ci,t)
t : i < K, t < 2} is consistent; and

(iii) For all s ∈ K2 and all j < K, cj,0 and cj,1 have the same ∆-type over (B ∪

{ci,s(i) : i 6= j})n.

If c is a good configuration of p of size K, let pc = p(x) ∪ {ϕ(x; ci,t)
t : i < K, t < 2}

as in (ii).

The first thing to note is that these good configurations are used to extend the

ϕ-type p in a very specific way. These could, a priori, be arbitrarily large. However,

the fact that ϕ is dependent forces good configurations to be of bounded size.

Lemma 3.3.8. If c = 〈ci,t : i < K, t < 2〉 is a good configuration of p of size K,

then K ≤ n = ID(ϕ).

Proof. Suppose not, i.e., K > n. A good configuration of size n+ 1 explicitly gives

us a special ϕ-type over 2(n+1) parameters. Using condition (iii), we can translate

this to 2n+1 distinct ϕ-types over n+ 1 parameters, producing a ϕ-independent set

of size n + 1, contrary to the fact that n = ID(ϕ). Specifically, for each s ∈ n+12,

notice that

|= ∃x
∧

i<n+1

ϕ(x; ci,s(i))
s(i) (3.1)

because {ϕ(x; ci,s(i))
s(i) : i < n + 1} is a consistent type. Now notice that, for any
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j ≤ n,

|= ∃x

(∧
i<j

ϕ(x; ci,0)
s(i) ∧

∧
j≤i<n+1

ϕ(x; ci,s(i))
s(i)

)
⇒

|= ∃x

(∧
i≤j

ϕ(x; ci,0)
s(i) ∧

∧
j<i<n+1

ϕ(x; ci,s(i))
s(i)

)
(3.2)

because cj,0 and cj,1 have the same ∆-type over (ci,0 : i < j)_(ci,s(i) : j < i ≤ n)

(to see this, use condition (iii) of Definition 3.3.7 with the function s′ = {(i, 0) : i <

j} ∪ {(i, s(i)), j ≤ i ≤ n}). Starting with (3.1), and using (3.2) and induction, we

get that

|= ∃x
∧

i<n+1

ϕ(x; ci,0)
s(i).

As s ∈ n+12 was arbitrary, we see that {ci,0 : i < n + 1} is a ϕ-independent set,

contradicting the fact that n = ID(ϕ).

If we fix c a maximal good configuration for the ϕ-type p, then we argue in

the remaining lemmas that pc is ϕ-isolated. If no such maximal good configuration

exists, then use Lemma 3.3.8 to show that ϕ is not actually dependent.

Now that we have defined good configurations, we need a sufficient condition

for taking a good configuration and building a larger one out of it. Clearly any new d0

and d1 we would like to add must realize Θ and must be so that ¬ϕ(x; d0)∧ϕ(x; d1) is

consistent with pc(x). However, condition (iii) of Definition 3.3.7 is trickier to satisfy.

Not only do d0 and d1 have to have the same ∆-type over (B ∪ {ci,s(i) : i < K})n

for all s ∈ K2, but, for each j < K, cj,0 and cj,1 have to have the same ∆-type over

(B ∪ {ci,s(i) : i 6= j} ∪ {dt})n for all s ∈ K2 and t < 2. With this in mind, we now

give a sufficient condition for adding to a good configuration.
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Lemma 3.3.9. If c = 〈ci,t : i < K, t < 2〉 is a good configuration of p and there

exists d0 and d1 such that:

(i) d0, d1 |= Θ(y);

(ii) pc(x) ∪ {ϕ(x; dt)
t : t < 2} is consistent;

(iii) tp∆(d0/(B ∪ C)n) = tp∆(d1/(B ∪ C)n); and

(iv) tp∆(d0/(B ∪ C)n) is finitely satisfiable in B.

Then, c_〈d0, d1〉 is a good configuration of p of size K + 1 (where C = {ci,t : i <

K, t < 2}).

Proof. Clearly all conditions for c_〈d0, d1〉 to be a good configuration of p are met

except perhaps the condition that cj,0 and cj,1 have the same ∆-type over (B∪{ci,s(i) :

i 6= j} ∪ {dt})n for all s ∈ K2, t < 2. So suppose this fails, and fix the s ∈ K2 and

t < 2 where this fails.

Then there exists δ ∈ ±∆ such that N |= δ(cj,0, e) ∧ ¬δ(cj,1, e) for some

e ∈ (B ∪ {ci,s(i) : i 6= j} ∪ {dt})n. Since cj,0 and cj,1 have the same ∆-type over

(B∪{ci,s(i) : i 6= j})n, we may assume that e = (dt, e
′) for some e′ from (B∪{ci,s(i) :

i 6= j})n−1 (we could have repeated instances of dt, but this would only trivially

change the argument, so we may assume not). Therefore, we get that:

N |= δ(cj,0, dt, e
′) ∧ ¬δ(cj,1, dt, e′). (3.3)

By condition (iii), we may assume that t = 0. Then by condition (iv), there

exists b ∈ B such that:
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N |= δ(cj,0, b, e
′) ∧ ¬δ(cj,1, b, e′). (3.4)

But, as (b, e′) ∈ (B ∪ {ci,s(i) : i 6= j})n, this contradicts the fact that cj,0 and

cj,1 have the same ∆-type over (B ∪ {ci,s(i) : i 6= j})n.

So fix c = 〈ci,t : i < K, t < 2〉 a maximal good configuration of p and let

C = {ci,t : i < K, t < 2}. Therefore, pc is a ϕ-type over B ∪ C Let s(x) be any

extension of pc(x) to a complete type in Sx(B ∪C). Define the partial type rs(y) as

follows:

rs(y) = {∃x(ϕ(x; y)t ∧ ψ(x)) : ψ ∈ s, t < 2} ∪Θ(y).

Lemma 3.3.10. Given rs as above, rs(y) is not finitely satisfied in B.

Proof. Suppose, by means of contradiction, that rs is finitely satisfied in B. Let D

be an ultrafilter on B such that for all parameter-definable δ(y) ∈ rs(y), δ(B) ∈ D

(by finite satisfiability of rs in B, the set {δ(B) : δ ∈ rs} has the finite intersection

property, hence can be completed to an ultrafilter by Zorn’s Lemma). Let q(y) =

Av(D, B∪C), the average type of D over B∪C. That is, for any parameter-definable

formula δ(y) over B ∪C, δ(y) ∈ q(y) if and only if δ(B) ∈ D. Then q ∈ Sy(B ∪C),

q extends rs, and q is finitely satisfied in B. Let q′ = q|∆ (the restriction to the

∆-type over (B ∪ C)n).

Now notice that {∃x(ϕ(x; y)t ∧ ψ(x))} ∪ q(y) is consistent for each ψ ∈ s and

each t < 2 (as q extends rs). Since s is closed under conjunction, by compact-

ness we get that s(x) ∪ {ϕ(x; y)t} ∪ q(y) is consistent for each t < 2. Therefore,
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s(x) ∪ {ϕ(x; y)t} ∪ q′(y) ∪ {θ(y)} is consistent for each t < 2 and each θ(y) a fi-

nite conjunction of formulas from Θ(y) (as q′(y) ∪ Θ(y) ⊆ q(y)). This means that

s(x) ∪ {∃y(ϕ(x; y)t ∧ θ(y) ∧ ψ(y))} is consistent for each ψ(y) a finite conjunction

of formulas from q′(y) and each θ(y) a finite conjunction of formulas from Θ(y).

But, since s is a complete type in the variables x, s decides all formulas of the form

∃y(ϕ(x; y)t ∧ θ(y) ∧ ψ(y)). Therefore, we get that:

∃y(ϕ(x; y)t ∧ θ(y) ∧ ψ(y)) ∈ s(x).

Choose ψt(x) a finite conjunction of formulas from q′(y) and θt(y) a finite conjunction

of formulas from Θ(y) for both t < 2. Then ∃yt(ϕ(x; yt)
t ∧ θt(yt) ∧ ψt(yt)) ∈ s(x)

for both t < 2. Therefore, we get that:

s(x) ∪ {∃y0(¬ϕ(x; y0) ∧ θ0(y0) ∧ ψ0(y0))} ∪ {∃y1(ϕ(x; y1) ∧ θ1(y1) ∧ ψ1(y1))}

is consistent. Now, by compactness,

u(x, y0, y1) = s(x) ∪ {¬ϕ(x; y0) ∧ ϕ(x; y1)} ∪ q′(y0) ∪ q′(y1) ∪Θ(y0) ∪Θ(y1)

is consistent. So, taking any realization (a, d0, d1) of u(x, y0, y1) from N , we see

that d0, d1 |= Θ(y), d0, d1 |= q′(y), and pc(x) ∪ {ϕ(x; dt)
t : t < 2} is consistent. So

conditions (i), (ii), and (iii) of Lemma 3.3.9 are met. However, since q is finitely

satisfied in B, q′ is finitely satisfied in B. Therefore, condition (iv) of Lemma 3.3.9

is met, so c_〈d0, d1〉 is a good configuration of p. This contradicts the maximality

of c.

We now show how the non-finite-satisfiability of rs in B leads to a formula
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definition of pc(x). Again, fix c = 〈ci,t : i < K, t < 2〉 a maximal good configuration

of p and let C = {ci,t : i < K, t < 2}.

Lemma 3.3.11. For any s(x) ∈ Sx(B ∪ C) an extension of pc(x), there exists a

formula γ(x) ∈ s(x) such that γ(x) ` pc(x).

Proof. Consider rs as given above. By Lemma 3.3.10, rs is not finitely satisfiable in

B. Thus, there exists ψ0(x), ..., ψL−1(x) ∈ s(x) and t(0), ..., t(L− 1) < 2 such that,

for all b ∈ B,

N |= ¬

(∧
`<L

∃x(ϕ(x; b)t(`) ∧ ψ`(x))

)

(notice here that b |= Θ(y) for all b ∈ B, so all the formulas in Θ(y) ⊆ rs(y) are

always realized in B). Taking ψ(x) =
∧
`<L ψ`(x), we see that, for all b ∈ B, there

exists t < 2 such that

N |= ¬∃x(ϕ(x; b)t ∧ ψ(x)).

Therefore, for all b ∈ B, N |= ∀x(ψ(x) → ϕ(x; b)) or N |= ∀x(ψ(x) → ¬ϕ(x; b)).

Let γ(x) be defined as follows:

γ(x) = ψ(x) ∧
∧

i<K,u<2

ϕ(x; ci,u)
u.

Since s is closed under conjunction and s extends pc, we get that γ(x) ∈ s(x).

To prove that γ(x) ` pc(x), notice that, for all b ∈ B, there exists t < 2 such

that ψ(x) ` ϕ(x; b)t, hence ϕ(x; b)t ∈ s(x). But s extends pc, so we get that

ϕ(x; b)t ∈ pc(x). Similarly, γ(x) ` ϕ(x; ci,u)
u for all i < K and u < 2. Therefore,

γ(x) ` pc(x).
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Now that we have a formula definition for pc(x) for each s ∈ Sx(B ∪ C)

extending pc, we see that a single formula is equivalent to pc(x) using compactness.

After that, we show that this implies that a finite ϕ-subtype of pc(x) is equivalent

to the whole of pc(x).

Lemma 3.3.12. If c = 〈ci,t : i < K, t < 2〉 is a maximal good configuration of p

(and C = {ci,t : i < K, t < 2}), then there exists a formula ψ(x) over B ∪ C such

that ψ(x) is equivalent to pc(x).

Proof. For each such s ∈ Sx(B ∪ C) extending pc(x), define γs(x) to be a formula

such that γs(x) ∈ s(x) and γs(x) ` pc(x) as given in Lemma 3.3.11.

Consider the following partial type over B ∪ C:

Σ(x) = {¬γs(x) : s ∈ Sx(B ∪ C) and s(x) ⊇ pc(x)} ∪ pc(x).

Note that Σ(x) is inconsistent, since otherwise we would have a |= pc(x) yet a |=

¬γs(x) for any s(x) extending pc(x). In particular, a |= ¬γs0(x) for s0 = tp(a/B∪C).

This contradicts the fact that s0(x) ` γs0(x). Therefore, by compactness, there exists

some finite set S0 ⊆ Sx(B ∪C) of types extending pc so that Σ0(x) = {¬γs(x) : s ∈

S0} ∪ pc(x) is inconsistent. Let ψ(x) =
∨
s∈S0

γs(x).

Certainly ψ(x) ` pc(x) as γs(x) ` pc(x) for all s ∈ S0. Conversely, if a |= pc(x),

then a 6|= {¬γs(x) : s ∈ S0} (by the inconsistency of Σ0(x)). Therefore, a |= ψ(x).

Hence, pc(x) ` ψ(x), as desired.

Lemma 3.3.13. If c = 〈ci,t : i < K, t < 2〉 is a maximal good configuration of p

(and C = {ci,t : i < K, t < 2}), then there exists a finite ϕ-subtype p0(x) ⊆ pc(x) so

that p0(x) ` pc(x).
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Proof. First let ψ(x) be a formula over B ∪ C that is equivalent to pc(x), given by

Lemma 3.3.12. Then consider {¬ψ(x)} ∪ pc(x), a partial type over B ∪ C. This is

clearly inconsistent. Therefore, there exists a finite subset p0(x) ⊆ pc(x) such that

{¬ψ(x)} ∪ p0(x) is inconsistent. That is, p0(x) ` ψ(x) and, therefore, we get that

p0(x) ` pc(x).

We are now ready to prove Proposition 3.3.6, hence finish our proof of Theorem

3.3.3.

Proof of Proposition 3.3.6. Take c = 〈ci,t : i < K, t < 2〉 any maximal good config-

uration of p and let C = {ci,t : i < K, t < 2}. By definition, C ⊆ Θ(N). By Lemma

3.3.8, K ≤ n, hence |C| ≤ 2·n. Let p′(x) = pc(x) = p(x)∪{ϕ(x; ci,t)
t : i < K, t < 2}.

By Lemma 3.3.13, there exists a finite p0(x) ⊆ p′(x) so that p0(x) ` p′(x). Therefore,

p′(x) is ϕ-isolated.

This concludes our proof of the Isolated Extension Theorem. In the next

subsection, we discuss the applications of this theorem to the stable setting.

3.3.3 Stable Case

Since stable formulas are, in particular, dependent, all stable formulas have the

property of Theorem 3.3.3 (ii). But what is the ϕ-isolated elementary ϕ-extension

p′(x) of a given ϕ-type p(x)? In the interesting case when p(x) is not already ϕ-

isolated, p′(x) is a forking extension of p(x). This follows from the Open Mapping

Theorem (i.e., the fact that the restriction map from non-forking ϕ-extensions of
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Sϕ(B) to Sϕ(B) is open) as, if p has a non-forking ϕ-isolated extension, then it is

already ϕ-isolated.

On the issue of uniformity, the results of Theorem 3.3.3 differ strongly from

the standard definability of ϕ-types in the stable case, as in Theorem 1.3.2. In

the case where ϕ is stable, we can use a compactness argument to get a uniform

definition of ϕ-types. Note, however, that this uniform definition is not necessarily

a ϕ-definition. One cannot, in general, get a uniform ϕ-definition of all ϕ-types,

even in the case where ϕ is stable.

Example 3.3.14. We use a classic example to illustrate this point. Let T be the

theory, in the language L = {E} with a single binary relation E, stating that E is

an equivalence relation with infinitely many E-equivalence classes all of infinite size.

This theory is certainly stable, and even ℵ0-stable. Fix M |= T and let B ⊂ M be

a set containing one element from one class, two from another, three from a third

class, and so on. Finally, let ϕ(x; y, z, w) be the formula given by:

ϕ(x; y, z, w) = [(z = w → x = y) ∧ (z 6= w → E(x, y))]

(so ϕ encodes the two formulas x = y and E(x, y) into a single formula). Now let

n ∈ ω be arbitrary and let a ∈ M − B be in the E-equivalence class with exactly

n elements of B in it; call this class [a]E. Finally, let pn(x) = tpϕ(a/B). Now, for

any (N ;B′) � (M ;B), notice that the E-equivalence class with exactly n elements

from B still has exactly n elements from B′, so [a]E ∩ B′ = [a]E ∩ B. However,

this shows that any ϕ-extension of pn to some p′ with dom(p′) ⊆ B′ is ϕ-isolated

only by a finite subtype whose domain contains [a]E ∩ B (this is because we need
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the full set [a]E ∩ B to say that x 6= b for each b ∈ ([a]E ∩ B) yet E(x, b) for some

(all) b ∈ ([a]E ∩ B)). As |[a]E ∩ B| = n and n < ω was arbitrary, we see from this

example that there is no uniform bound on the size of the ϕ-isolating ϕ-subtype of

the elementary ϕ-extension given by Theorem 3.3.3, even in the stable case.

3.4 Distal Theories and Finite Type Implications

This chapter gives an answer to the conjecture of Simon in [28] in the case

of dp-minimal theories with a linear order and discusses the notion of finite type

definitions.

We say that two indiscernible sequences 〈bi : i ∈ I〉 and 〈cj : j ∈ J〉 have the

same EM-type if, for all n < ω, all i0 < ... < in from I, and all j0 < ... < jn from J ,

tp(bi0 , ..., bin/∅) = tp(cj0 , ..., cjn/∅).2 For any linear order (I,<), a non-principal cut

C of I is a subset of I such that C is downward closed, C has no largest element, and

I − C has no smallest element. Using these definitions, we define distal sequences

and distal theories:

Definition 3.4.1 (Definition 2.1 of [28]). An infinite indiscernible sequence 〈bi : i ∈

I〉 is distal if, for every indiscernible sequence 〈cj : j ∈ J〉 with the same EM-type

as 〈bi : i ∈ I〉 and (J,<) dense, for every distinct non-principal cuts C1 and C2 of J

with C1 ⊆ C2, and for every d1, d2, if the sequences

〈cj : j ∈ C1〉_〈d1〉_〈cj : j ∈ I − C1〉 and 〈cj : j ∈ C2〉_〈d2〉_〈cj : j ∈ I − C2〉
2Here EM stands for Ehrenfeucht-Mostowski.
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are each indiscernible, then the sequence

〈cj : j ∈ C1〉_〈d1〉_〈cj : j ∈ C2 − C1〉_〈d2〉_〈cj : j ∈ I − C2〉

is indiscernible. We say that a theory T is distal if all infinite indiscernible sequences

are distal.

Simon says that distal theories are intended to be, in some sense, purely in-

stable. He goes on to show a remarkable result about distal theories, namely that

T is distal if and only if all generically stable measures are smooth (see Theorem

1.1 of [28]). For this discussion, we are primarily interested in the conjecture at the

end of the paper. Namely,

Conjecture 3.4.2 (Conjecture 2.29 of [28]). Let T be distal and ϕ(x; y) be any

partitioned formula. Then, there exists N < ω such that, for every finite B ⊆

Clg(y) and every a ∈ Clg(x), there exists a subset B0 ⊆ B with |B0| ≤ N such that

tp(a/B0) ` tpϕ(a/B).

The converse of this conjecture is true, as noted by Simon in [28]. By this

conjecture, Simon intends to show how UDTFS can be separated into isolation

in the distal case and “pure definability” in the non-distal dependent case. By

Corollary 2.28 of [28], dp-minimal theories with a linear order are distal. We now

exhibit a partial solution to Conjecture 3.4.2:

Theorem 3.4.3. Fix T a dp-minimal theory with a definable linear order on C.

For every partitioned formula ϕ(x; y), there exists N < ω such that, for every finite

B ⊆ Clg(y) and every a ∈ Clg(x), there exists a subset B0 ⊆ B with |B0| ≤ N such

that tp(a/B0) ` tpϕ(a/B).
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Before proving the theorem, we discuss a notion we call finite type implication.

Definition 3.4.4. We say that a partitioned formula ϕ(x; y) has finite type impli-

cations if there exists a finite set of partitioned formulas {ψ`(x; z0, ..., zN−1) : ` < L}

such that, for all finite B ⊆ Clg(y) and all a ∈ Clg(x), there exists b0, ..., bN−1 ∈ B and

` < L such that

(i) |= ψ`(a; b0, ..., bN−1); and

(ii) ψ`(x; b0, ..., bN−1) ` tpϕ(a/B)(x).

This is clearly a stronger condition than the conclusion of Conjecture 3.4.2.

Therefore, to prove Theorem 3.4.3, it suffices to show that all partitioned formulas

in a dp-minimal theory with a linear order have finite type implications. Finite type

implications is clearly strictly stronger than UDTFS.

Proposition 3.4.5. If a partitioned formula ϕ(x; y) has finite type implications,

then ϕ has UDTFS.

Proof. Fix ψ`(x; z0, ..., zN−1) as in Definition 3.4.4 and let γ`(y; z) be defined as

follows:

γ`(y; z) = ∀x
(
ψ`(x; z) → ϕ(x; y)

)
.

It is clear that the γ` are uniform definitions for finite ϕ-types. By Lemma 2.3.5, ϕ

has UDTFS.

Just as the sufficiency of a single variable holds for UDTFS (Lemma 2.3.6), it

also holds for finite type implications.
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Proposition 3.4.6. If T is a theory such that all partitioned formulas of the form

ϕ(x; y) have finite type implications, then all partitioned formulas have finite type

implications.

Proof. By induction on n = lg(x). The case n = 1 is given by hypothesis, so assume

n > 1. Fix ϕ(x0, ..., xn−1; y) any partitioned formula. Let ϕ̂(x0, ..., xn−2;xn−1, y) =

ϕ(x; y). By induction, there exists ψ`(x0, ..., xn−2;w0, z0, ..., wN0−1, zN0−1) for ` < L0

exhibiting the fact that ϕ̂ has finite type implications. For each ` < L0 and t < 2,

let

γt,`(xn−1; y, z0, ..., zN0−1) = ∀x0...xn−2(
ψ`(x0, ..., xn−2;xn−1, z0, ..., xn−1, zN0−1) → ϕ(x; y)t

)
.

By hypothesis, γt,` has finite type implications, so there exists

ρt,`,`′(xn−1;w0,v0, ..., wN1−1,vN1−1)

witnessing this for `′ < L1. Finally, let δt,`,`′ be given as follows:

δt,`,`′(x;w, z) = ρt,`,`′(xn−1;w0, z, ..., wN1−1, z)∧

ψ`(x0, ..., xn−2;xn−1, z0, ..., xn−1, zN0−1).

We claim that {δ0,`,`′ ∧ δ1,`,`′ : ` < L0, `
′ < L1} witnesses that ϕ has finite type

implications.

Fix a ∈ Cn and B ⊆ Clg(y) finite. By definition of finite type implications on

(a0, ..., an−2) and an−1
_B, there exists ci ∈ B for i < N0 and ` < L0 such that

(a0, ..., an−2) |=ψ`(x0, ..., xn−2; an−1, c0, ..., an−1, cN0−1) `

tpϕ̂((a0, ..., an−2)/an−1
_B).
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That is, for any b ∈ B and t < 2 such that |= ϕ(a; b)t,

|= ∀x0...∀xn−1

(
ψ`(x0, ..., xn−2; an−1, c0, ..., an−1, cN0−1) → ϕ(x0, ..., xn−2, an−1; b)

t
)
.

That is, |= γt,`(an−1; b, c). By the definition of finite type implications on an−1 and

B_c, for each t < 2 there exists dt,j for j < N1 and `′ < L1 such that

an−1 |=ρt,`,`′(xn−1; dt,0, c, ..., dt,N1−1, c) `

tpγt,`
(an−1/B

_c)

Clearly a |= δ0,`,`′(x;d0, c) ∧ δ1,`,`′(x;d1, c), by construction. Now suppose

(e0, ..., en−1) |= δ0,`,`′(x;d0, c) ∧ δ1,`,`′(x;d1, c)

and fix b ∈ B and t < 2 such that |= ϕ(a; b)t. Then, in particular, (e0, ..., en−1) |=

δt,`,`′(x;dt, c), so by definition,

en−1 |= tpγt,`
(an−1/B

_c).

Therefore, |= γt,`(en−1; b, c). Hence, by definition of γt,`,

|= ∀x0...∀xn−1

(
ψ`(x0, ..., xn−2; en−1, c0, ..., en−1, cN0−1) → ϕ(x0, ..., xn−2, en−1; b)

t
)
.

In particular, since (e0, ..., en−2) |= ψ`(x0, ..., xn−2; en−1, c0, ..., en−1, cN0−1), we see

that |= ϕ(e; b)t. Since b ∈ B was arbitrary, we see that e realizes the type tpϕ(a/B).

This is the desired conclusion.

In light of Proposition 3.4.6, in order to prove Theorem 3.4.3, it suffices to

check that, in a dp-minimal theory with a linear order, all formulas of the form

ϕ(x; y) have finite type implications. For the remainder of this section, let T be
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a dp-minimal theory and let < be a definable linear order on C. Fix ϕ(x; y) any

formula.

Since T is dp-minimal, the formulas {ϕ(x; y), ψ(x; z0, z1)} do not form an ICT-

pattern, where ψ(x; z0, z1) = (z0 < x ≤ z1) (see Section 2.4 for a definition). By

compactness, there exists K < ω such that, for all b0, ..., bK−1 ∈ Clg(y), all c0 < ... <

cK from C, and both t < 2, there exists i0, j0 < K such that

|= ¬∃x

(
cj0 < x ≤ cj0+1 ∧ ¬ϕ(x; bi0)

t ∧
∧
i6=i0

ϕ(x; bi)
t

)
. (3.5)

For simplicity, define γi0,t(x;b) for each i0 < K and t < 2 as follows:

γi0,t(x; b0, ..., bK−1) = ¬ϕ(x; bi0)
t ∧
∧
i6=i0

ϕ(x; bi)
t.

For each b0, ..., bK−1 ∈ Clg(y), t < 2, and i < K, consider the following defini-

tion:

Definition 3.4.7. We say that a sequence d0 < ... < dL from C is (i, t)-full for

b = (b0, ..., bK−1) if the following conditions hold:

(i) |= γi,t(dj;b) for all j ≤ L; and

(ii) |=
∧
i′<K,i′ 6=i ∃x(dj < x < dj+1 ∧ γi′,t(x;b)) for all j < L.

So not only do we demand that each dj satisfy γi,t(x;b), but between each of

them there is a witness to γi′,t(x;b) for all other i′ < K. Because of dp-minimality,

there is a restriction on the length of (i, t)-full sequences.

Lemma 3.4.8. If d0 < ... < dL is a sequence that is (i, t)-full for b, then L < K.
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Proof. Suppose that L ≥ K. Then, notice that the following is true for all i, j < K:

|= ∃x
(
dj < x ≤ dj+1 ∧ γi,t(x;b)

)
.

By definition of γi,t, this contradicts (3.5).

For each b ∈ (Clg(y))K , a ∈ C, i < K, and t < 2, let W (a,b, i, t) be the

largest (ordered by inclusion) convex subset of C containing a such that, for all e ∈

W (a,b, i, t), |= ¬γi,t(e;b) (if |= γi,t(a;b), then W (a,b, i, t) = ∅, but this can only

happen for at most one i < K). These convex sets are themselves partially ordered

by inclusion. So let W (a,b, t) be a maximal such convex set and let i(a,b, t) < K be

so that W (a,b, t) = W (a,b, i(a,b, t), t). We now show that these sets are uniformly

definable over b.

Fix t < 2. For each i < K and ` < K, let θi,`,t(w0, ..., w`; z) encode the fact

that w0 < ... < w` is (i, t)-full for z, which is expressible as a ∅-definable first-order

formula. For example,

θi,`,t(w0, ..., w`; z) =
∧
j≤`

γi,t(wj; z) ∧
∧
j<`

( ∧
i′<K,i′ 6=i

∃x(wj < x < wj+1 ∧ γi′,t(x; z))

)
.

For each I ⊆ K, L ∈ KK, and j ∈ K(K + 1), let

ψI,L,j,t(x; z) =
∧
i∈I

∀w0...wL(i)

(
θi,L(i),t(w0, ..., wL(i); z) → wj(i)−1 < x < wj(i)

)
,

where we let w−1 = −∞ and wj(i) = ∞ for j(i) > L(i). Finally, let ψ0(x; z) = (x =

x).

Lemma 3.4.9. For each b ∈ (Clg(y))K, a ∈ C, and t < 2, there exists I ⊆ K,

L ∈ KK, and j ∈ K(K + 1) such that ψI,L,j,t(C;b) = W (a,b, t) (or ψ0(C;b) = C =

W (a,b, t)).
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Proof. Let W = W (a,b, t) and let I = {i < K : (∀e ∈ W )(|= ¬γi,t(e,b))}. Since

i(a, c, t) ∈ I, we know that |I| ≥ 1. If W = C, then ψ0(x;b) defines W , so suppose

not. Therefore, for all i ∈ I, there exists at least one di ∈ C with |= γi,t(di;b).

Claim 1. If i ∈ I, d0, d1 |= γi,t(x;b), and d0 < W < d1, then d0 < d1 is

(i, t)-full for b.

To see this, it suffices to show that condition (ii) of Definition 3.4.7 is satisfied,

as condition (i) is given by hypothesis. If, by means of contradiction, there exists

i′ < K with i′ 6= i so that, for all e with d0 < e < d1, |= ¬γi′,t(e;b), then the interval

[d0, d1] ⊆ W (a,b, i′, t). However, since W ⊆ (d0, d1), we get a contradiction to the

maximality of W = W (a, c, t).

Now, for each i ∈ I, let L(i) be maximal so that there exists di,0 < ... < di,L(i)

a sequence that is (i, t)-full for b. Then, for each i ∈ I, there exists j(i) with

0 ≤ j(i) ≤ L(i) + 1 such that di,j(i)−1 < W < di,j(i) (where we set di,−1 = −∞ and

di,L(i)+1 = ∞).

Claim 2. For all e ∈ C, e ∈ W if and only if, for all i ∈ I, for all sequences

d′0 < ... < d′L(i) that are (i, t)-full for b, d′j(i)−1 < e < d′j(i) (where again we use the

convention that d′−1 = −∞ and d′L(i)+1 = ∞).

To see this, first suppose that e ∈ W and fix i ∈ I and a sequence d′0 <

... < d′L(i) that is (i, t)-full for b. Suppose, by means of contradiction, that d′j′−1 <

e < d′j′ for some j′ 6= j(i). Then, d′j′−1 < W < d′j′ . Without loss of generality,

suppose j′ > j(i) (the other direction follows by symmetry). By our first claim,

d′0 < ... < d′j′−1 < di,j(i) < ... < di,L(i) is (i, t)-full for b. As j′ > j(i), this sequence

has length > L(i), contradicting the maximality of L(i).
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Conversely, suppose that, for all i ∈ I, for all sequences d′0 < ... < d′L(i) that

are (i, t)-full for b, d′j(i)−1 < e < d′j(i). By means of contradiction, suppose that

e /∈ W . Without loss of generality, we may suppose e < W (the other direction

follows by symmetry). Then, there exists i′ ∈ I and e′ with e ≤ e′ < W so that

|= γi′,t(e
′;b) (if not, then for any f ∈ W , [e, f ] ∪W ⊆ W (a,b, i′, t), which would

contradict the maximality of W = W (a,b, t)). Fix any d′0 < ... < d′L(i′) that are

(i′, t)-full for b. Thus d′j(i′)−1 < e ≤ e′ by hypothesis on i′. However, by the other

direction, we have that W < d′j(i′), hence d′j(i′)−1 < e′ < W < d′j(i′). By our first

claim, d′0 < ... < d′j(i′)−2 < e′ < d′j(i′) < ... < d′L(i) is (i, t)-full for b. By hypothesis,

this means that e′ < e < d′j(i′). However, this contradicts the fact that e ≤ e′.

By our second claim, it is clear that ψI,L,j,t(C;b) = W .

Let I : (2× 2) → P(K), L : (2× 2) → KK, and j : (2× 2) → K(K+1). Define

θI,L,j(x; z0,0, z0,1, z1,0, z1,1) =
∧
s,t<2

ψI(s,t),L(s,t),j(s,t),t(x; zs,t).

Finally, let

δI,L,j(x; z0,0, z0,1, z1,0, z1,1,w0,w1) = θI,L,j ∧
∧

i<K−1,t<2

ϕ(x;wi,t)
t.

We claim that the δI,L,j witness the fact that ϕ(x; y) has finite type implications.

Fix B ⊆ Clg(y) finite, a ∈ C, and t < 2 and let

W ∗
t =

⋂
b∈BK

W (a,b, t).

Since this is the intersection of finitely many convex subsets of C, there exists

b0,t,b1,t ∈ BK such that

W ∗
t = W (a,b0,t, t) ∩W (a,b1,t, t).
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So we see that W ∗
0 ∩W ∗

1 =
⋂
s,t<2W (a,bs,t, t), which is defined by the formula

θ(x) = θI,L,j(x;b0,0,b0,1,b1,0,b1,1)

for an appropriate choice of I(s, t),L(s, t), j(s, t), as given by Lemma 3.4.9. Clearly

|= θ(a) and, for all c ∈ BK and t < 2, θ(C) ⊆ W (a, c, t). For each t < 2, let

Bt = {b ∈ B :|= ϕ(a; b)t}. Now, as we did in Section 2.4, we put a quasi-order on a

subset of P(Bt). Notice that, for all c0, ..., cK−1 ∈ B, there exists i0 < K such that

|= ∀x

(
θ(x) ∧

∧
i6=i0

ϕ(x; ci)
t → ϕ(x; ci0)

t

)
(3.6)

(this is because θ(C) ⊆ W (a, c, t) by construction, hence there exists i0 < K such

that |= ∀x(θ(x) → ¬γi0,t(x; c)), but this is exactly (3.6)).

Lemma 3.4.10. Fix t < 2. Then, either for all b ∈ Bt, |= ¬ϕ(a; b)t or there exists

c0, ..., cK−2 ∈ Bt such that

θ(x) ∧
∧

i<K−1

ϕ(x; ci)
t ` tpϕ(a/Bt)(x).

Proof. If Bt = ∅, then clearly |= ¬ϕ(a; b)t for all b ∈ B, so we may assume that Bt 6=

∅. If |Bt| < K, then we can set Bt = {c0, ..., cK−2} and this choice of c0, ..., cK−2 ∈ Bt

clearly works. So we may also assume that |Bt| ≥ K. Let [Bt]
K−1 = {C ⊆ B :

|C| = K − 1} and define a partial order, ≤a, on the set [Bt]
K−1, as follows:

C0 ≤a C1 if and only if tpϕ(a/C0)(x) ∪ {θ(x)} ` tpϕ(a/C1)(x).

Notice that this is the same as ≤p defined in Section 2.4.1 where we let p(x) =

tpϕ(a/B)(x) ∪ {θ(x)}. Therefore, it is easy to see that Lemma 2.4.10 holds for ≤a,
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and ≤a-minimal elements exist. Choose C0 ∈ [Bt]
K−1 ≤a-minimal in [Bt]

K−1 and

let C0 = {c0, ..., cK−2}. We claim that these ci’s work.

By way of contradiction, suppose θ(x) ∧
∧
i<K−1 ϕ(x; ci)

t 6` tpϕ(a/Bt)(x). Fix

b ∈ Bt such that

|= ¬∀x

(
θ(x) ∧

∧
i<K−1

ϕ(x; ci)
t → ϕ(x; b)t

)
.

However, as established in (3.6), there exists i0 < K − 1 such that

|= ∀x

(
θ(x) ∧

∧
i<K−1,i6=i0

ϕ(x; ci)
t ∧ ϕ(x; b)t → ϕ(x; ci0)

t

)
.

Therefore, we see that C0 − {ci0} ∪ {b} <a C0, contrary to the minimality of C0.

Hence, c0, ..., cK−2 works to prove the lemma.

Finally, for each t < 2, let ct = (c0,t, ..., cK−2,t) be given as in Lemma 3.4.10

(in the case where |= ¬ϕ(a; b)t for all b ∈ B, we ignore this value of t < 2). By

Lemma 3.4.10 on both t < 2 simultaneously, we see that

θ(x) ∧
∧

i<K−1,t<2

ϕ(x; ci,t)
t ` tpϕ(a/B)(x).

That is,

δI,L,j(x;b0,0,b0,1,b1,0,b1,1, c0, c1) ` tpϕ(a/B)(x).

Hence, we see that ϕ(x; y) has finite type implications. Since ϕ(x; y) was arbitrary,

by Proposition 3.4.6, all formulas ϕ(x; y) in a dp-minimal theory with a definable

linear order on C have finite type implications. This completes the proof of Theorem

3.4.3 and answers Conjecture 3.4.2 for dp-minimal theories with a definable linear

order on C.
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Chapter 4

VC-Minimal Theories and Variants

4.1 Overview

In this chapter, we take a slight detour from our main goal of investigating

definability of types to discuss VC-minimal theories. VC-minimal theories were

invented by Hans Adler in [2]. In that paper, he shows that VC-minimal theo-

ries generalize o-minimal and weakly o-minimal theories. Additionally, VC-minimal

theories are dp-minimal, hence they have UDTFS by Theorem 2.4.1.

For the remainder of this chapter, fix a theory T with monster model C.

Definition 4.1.1. A set of formulas Φ = {ϕi(x; yi) : i ∈ I} is a VC-instantiable

family if, for all i, j ∈ I, b ∈ Clg(yi), and c ∈ Clg(yj), one of the following four

conditions holds:

(i) |= ¬∃x(ϕi(x; b) ∧ ϕj(x; c)),

(ii) |= ¬∃x(¬ϕi(x; b) ∧ ϕj(x; c)),

(iii) |= ¬∃x(ϕi(x; b) ∧ ¬ϕj(x; c)), or

(iv) |= ¬∃x(¬ϕi(x; b) ∧ ¬ϕj(x; c)).

An instance of Φ means ϕi(x; b) for some i ∈ I and b ∈ Clg(yi). We say that a theory

T is VC-minimal if there exists a VC-minimal instantiable family Φ such that all
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parameter-definable formulas ψ(x) are T -equivalent to a boolean combination of

instances of Φ.

VC-minimal theories have a “backbone” of formulas that have independence

dimension ≤ 1. VC-minimality was developed primarily to generalize the appear-

ance of swiss cheeses (see Proposition 7 of [2]). We get the following theorem relating

VC-minimality to other model-theoretic properties:

Theorem 4.1.2 ([2]). The following hold:

(i) If T is strongly minimal, o-minimal, or weakly o-minimal, then T is VC-

minimal.

(ii) The theory ACVF in the language Lval (as in Theorem 2.5.11) is VC-minimal.

(iii) If T is VC-minimal, then T is dp-minimal.

In Section 4.2, we explore a notion called convexly orderable. Our main result

is to show that any model of a VC-minimal theory is convexly orderable. In Section

4.3, we develop several alternatives to VC-minimality, including full VC-minimality

and weak VC-minimality. In Section 4.4, we discuss the conjecture from [3]: All

VC-minimal theories have VC-density one (Conjecture 4.4.1 below). Although this

question is still open, we present evidence for the truth of the conjecture in this

section. Finally, we conclude this thesis with a proof of Kueker’s Conjecture for

weakly VC-minimal theories in Section 4.5.
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4.2 Convexly Orderable Structures

The main objective of this section is to show that VC-minimal theories are

“like” weakly o-minimal theories. In a weakly o-minimal theory T , for any formula

ϕ(x; y), there exists K < ω such that, for all b ∈ Clg(b), ϕ(C; b) is a union of at most

K convex subsets of C. Thus, models of a weakly o-minimal theories are convexly

orderable, defined as follows:

Definition 4.2.1. Fix an L-structure M . We say that M is convexly orderable

if there exists a linear order < on M (not necessarily definable) such that, for all

formulas ϕ(x; y), there exists K < ω such that, for all b ∈M lg(b), ϕ(M ; b) is a union

of at most K <-convex subsets of M .

In fact, it is clear that if M is a reduct of a weakly o-minimal theory, then M

is convexly orderable. More is true.

Theorem 4.2.2. If T is a VC-minimal theory and M |= T , then M is convexly

orderable.

In order to prove this, we actually show something more general about sets

with independence dimension ≤ 1. Fix X any set and A ⊆ P(X) (so A is a set of

subsets of X). Since X is fixed beforehand, for any A ⊆ X, let A0 = X − A and

A1 = A. We say that A has independence dimension n < ω if n is maximal such

that there exists B ⊆ A with |B| = n and, for all s ∈ B2, we have
⋂
B∈B B

s(i) 6= ∅.

We denote this by IDX(A) = n. Let L = {U,R} as in Section 2.7 and let MA be the

L-structure where MA = M = X t A, UM = X, and RM(x,A) holds if and only if
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x ∈ X, A ∈ A, and x ∈ A. Then, A has independence dimension n if and only if

R(x; y) has independence dimension n in MA in the usual sense. This construction

is similar to the one in Section 2.7, except we demand here that A is a set of subsets

of X and not a set of functions from X2 and, when constructing MA, we reverse the

roles of X and A with respect to R. Both of these changes are superficial, but aid

in the presentation of this section.

Proposition 4.2.3. If X is any set and A ⊆ P(X) has independence dimension

≤ 1, then there exists < a linear order on X such that, for all A ∈ A, either A0 is

a <-convex subset of X or A1 is a <-convex subset of X.

First we show this for finite A, then use compactness to yield the general

result.

Lemma 4.2.4. Fix X any set and let A ⊆ P(X) be any finite set of subsets of X

that has independence dimension at most one. Then, there exists a linear order <

on X such that, for all A ∈ A, either A0 or A1 is a <-convex subset of X.

Proof of Lemma 4.2.4. Notice that it suffices to show this for A such that ∅ /∈ A

and X /∈ A (regardless of the order we put on X, these two sets are convex). We

first prove the following claim via induction on the size of A:

Claim 1. If A is such that there exists no A,B ∈ A where A∩B 6= ∅, (B−A) 6= ∅,

and (A−B) 6= ∅, then there exists a linear order < on X such that, for all A ∈ A,

A is a <-convex subset of X.

Proof of Claim 1. This proceeds by induction on |A|. If |A| = 1, this is trivial,

so suppose not. Fix A ∈ A that is ⊆-maximal. As stated above, we may assume
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A 6= X. Then, for all B ∈ A, notice that either B ⊆ A0 or B ⊆ A1, but not both.

To see this, suppose that A0 ∩ B1 6= ∅ and A1 ∩ B1 6= ∅. Further, suppose that

A1 ∩ B0 = ∅ (i.e., A ⊂ B). This contradicts the maximality of A, so A1 ∩ B0 6= ∅.

Hence A ∩B 6= ∅, (B − A) 6= ∅, and (A−B) 6= ∅, contrary to assumption.

Therefore, we can break up A− {A} into two disjoint subsets:

At = {B ∈ A : B 6= A ∧B ⊆ At}

for each t < 2. Now, as At has independence dimension ≤ 1 with respect to At, by

induction hypothesis there exists an ordering <t on At such that, for all B ∈ At, B

is a <t-convex subset of At. Define < globally by letting < extend <0 and <1 and

setting A0 < A1 (i.e., for all a0 ∈ A0 and a1 ∈ A1, a0 < a1). Then, for all B ∈ A,

either:

(i) B = At for some t < 2 and B is clearly <-convex;

(ii) B ∈ A0 and B is <0-convex, hence since B ⊆ A0 and < extends <0, B is

<-convex; or

(iii) B ∈ A1 and B is <1-convex, hence since B ⊆ A1 and < extends <1, B is

<-convex.

Claim 1 2

Now, more generally, fix A ⊆ P(X) finite with IDX(A) ≤ 1. Fix any A ∈ A

(recall that we may assume A 6= X and A 6= ∅). Now, by independence dimension

≤ 1, for any B ∈ A, one of the following four conditions hold:

(i) B0 ⊆ A0,
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(ii) B0 ⊆ A1,

(iii) B1 ⊆ A0, or

(iv) B1 ⊆ A1,

Let At = {Bs : B ∈ A−{A}, s < 2, Bs ⊆ At} for each t < 2. By the statement

above, for any B ∈ A− {A}, there exists t, s < 2 such that Bs ∈ At. Furthermore,

At has independence dimension ≤ 1 with respect to At for both t < 2 (replacing B

with B0 does not change the independence dimension). We claim that At satisfies

the hypotheses of Claim 1, hence showing that there is a linear order <t on At so

that, for all B ∈ At, B is a <t-convex subset of At.

To see this, choose any B0, B1 ∈ At and suppose that B0∩B1 6= ∅, (B0−B1) 6=

∅, and (B1 − B0) 6= ∅. Then, since At 6= X and B0, B1 ⊆ At, we have that

B0 ∪B1 6= X. These four conditions together contradict the fact that IDX(A) ≤ 1.

Now, as before, let < be the global ordering on X that extends <0 and <1

so that A0 < A1. Then, we claim that this ordering on X satisfies the desired

condition. To see this, fix any B ∈ A. Then, for some t, s < 2, Bs ∈ At (hence

Bs ⊆ At). Therefore, Bs is a <t-convex subset of At. As < extends <t and Bs ⊆ At,

Bs is a <-convex subset of X. That is, we have shown that all elements of A are

either <-convex subsets of X or the compliment of <-convex subsets of X. This

concludes the proof of the lemma.

Proof of Proposition 4.2.3. Fix any set X and fix A ⊆ P(X) with independence

dimension ≤ 1. Consider the language L which consists of unary predicate symbols
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PB for each B ∈ A and let M = (X;B)B∈A be the natural L-structure. Let

L′ = L ∪ {<}, where < is a binary relation symbol. By compactness and Lemma

4.2.4, there exists N �M such that N is naturally an L′-structure with each PB(N)

a <-convex subset of N or the compliment of a <-convex subset of N . However,

being a convex subset is closed under linear subspace. Thus, if we consider < |X×X ,

we get a linear ordering on X with the desired result.

We are now ready to prove Theorem 4.2.2, showing that a structure with a

VC-minimal theory is convexly orderable.

Proof of Theorem 4.2.2. Fix T a complete theory, and M |= T . Suppose T is VC-

minimal and let Ψ = {ψi(x; zi) : i ∈ I} be a VC-minimal instantiable family

witnessing this fact. Fix a formula ϕ(x; y). Then, by compactness, there exists

a number K < ω such that, for all b ∈ M lg(y), ϕ(x; b) is a boolean combination of

at most K instances of formulas from Ψ. Let A = {ψi(M ; ci) : i ∈ I, ci ∈ M lg(zi)}.

By VC-minimality, the independence dimension of A is ≤ 1. Thus, by Proposition

4.2.3, there exists a linear order < on M so that all elements of A are either <-

convex or the compliment of a <-convex set. Therefore, for any b ∈ M lg(y), since

ϕ(M ; b) is a boolean combination of at most K elements from A, it is a union of at

most K + 1 <-convex subsets of M .

Reducts of convexly orderable structures are convexly orderable. One inter-

esting open question we get from this is the following: Does being the reduct of

a structure with a VC-minimal theory characterize convexly orderability? We can
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relate theories with convexly orderable structures to notions of VC-density and dp-

minimality?

Proposition 4.2.5. If T is any complete theory all of whose models are convexly

orderable, then all formulas of the form ϕ(x; y) (with x a singleton) have VC-density

≤ 1.

Proof. Fix M |= T , so M is convexly orderable, and fix < an ordering on M witness-

ing this fact. By definition, there exists K < ω such that, for all b ∈M lg(y), ϕ(M ; b)

is a union of at most K <-convex subsets of M . Therefore, there are at most 2K

“endpoints” (i.e., the truth value of ϕ(x; b) alternates at most 2K times). So if we

take any finite B ⊆ M lg(y), there are at most 2K · |B| “endpoints” from all the

ϕ(M ; b) as we range over all b ∈ B. Therefore, we get that |Sϕ(B)| ≤ 2K · |B|+ 1,

hence ϕ has VC-density ≤ 1.

The proof of Proposition 3.2 in [6] yields: If T is a theory such that all formulas

of the form ϕ(x; y) have VC-density ≤ 1, then T is dp-minimal. Therefore, we get

the following corollary:

Corollary 4.2.6. If T is any complete theory all of whose models are convexly

orderable, then T is dp-minimal.

Convexly orderability does not characterize dp-minimality. Consider the fol-

lowing example taken from Proposition 3.7 in [6]:

Example 4.2.7. Let L = {Pn : n < ω1} for Pn unary predicates. For any I, J ⊂ ω1

124



finite and disjoint, let

σI,J = ∃x

(∧
i∈I

Pi(x) ∧
∧
j∈J

¬Pj(x)

)
and let T = {σI,J : for all such I, J}. As shown in [6], T is complete, has quantifier

elimination, and is dp-minimal. However, we claim that T has no convexly orderable

structure. Suppose, by way of contradiction, that M |= T is convexly orderable,

witnessed by <. By pigeon-hole principal, there exists N < ω and I ⊆ ω1 with

|I| = ℵ1 such that Pi(M) is the union of at most N <-convex subsets of M for all

i ∈ I. Hence, for each i ∈ I, Pi(M) has at most 2N “endpoints.” Therefore, for any

k < ω and any finite I0 ⊆ I with |I0| = k, there are, at most, 2Nk + 1 ∆I0-types

over ∅ (where ∆I0 = {Pi(x) : i ∈ I0}). However, by M |= σI1,I0−I1 for all I1 ⊆ I0,

there are 2k ∆I0-types over ∅. Hence 2k ≤ 2Nk + 1 for all k < ω, a contradiction.

We should remark that if we replace L with L = {Pn : n < ω} and build the

corresponding theory T , then T is actually VC-minimal, hence also has a convexly

orderable model. In fact, the following is a VC-instantiable family for T :{∧
i<n

Pi(x)
s(i) ∧ Pn(x) : n < ω, s ∈ n2

}
.

4.3 Fully VC-Minimal Theories and Weakly VC-Minimal Theories

In this section, we discuss two variants of VC-minimality. The first is full VC-

minimality, which is stronger than VC-minimality. We show that weakly o-minimal

theories are fully VC-minimal (Proposition 4.3.3) and that fully VC-minimal theo-

ries have VC-density one (Proposition 4.3.4). However, we show that not all VC-

minimal theories are fully VC-minimal, so this does not prove Conjecture 4.4.1. We
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discuss this conjecture more in Section 4.4. The second variant we discuss is weakly

VC-minimal. We show that VC-minimal theories are weakly VC-minimal, but not

conversely. This definition is key to Section 4.5, where we show that all weakly

VC-minimal theories satisfy the Kueker Conjecture (Corollary 4.5.6 below).

4.3.1 Fully VC-Minimal Theories

Definition 4.3.1. Say that T is fully VC-minimal if there exists a family of formulas

Ψ (each of which has x as a free variable) such that:

(i) For all ψ0(x; y0), ψ1(x; y1) ∈ Ψ, b0 ∈ Clg(y0), and b1 ∈ Clg(y1), there exists

t(0), t(1) < 2 such that

|= ¬∃x(ψ0(x; b0)
t(0) ∧ ψ1(x; b1)

t(1)).

(ii) For all formulas ϕ(x; y), there exists ψ(x; y) a boolean combination of formulas

from Ψ with free variables (x; y) such that ϕ(x; y) is equivalent to ψ(x; y).

Lemma 4.3.2. This definition is equivalent to the same definition after replacing

(ii) with the following condition:

(ii)’ For all formulas ϕ(x; y) and all b ∈ Clg(y), there exists ψ0(x; y), ..., ψn−1(x; y) ∈

Ψ such that ϕ(x; b) is equivalent to a boolean combination of the formulas

ψi(x; b) for i < n.

First, notice that this only differs from the definition of VC-minimal in that

we insist that the instances of ψi be exactly ψi(x; b) for the same b from ϕ(x; b).

Therefore, it is clear from this lemma that VC-minimal implies fully VC-minimal.
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Proof of Lemma 4.3.2. Since it is clear that (i) and (ii) implies (i) and (ii)’, it suffices

to show that (i) and (ii)’ implies (i) and (ii). So let Ψ be given satisfying (i) and

(ii)’. First, let

Ψ′ = Ψ ∪ {δ(y) : x is not a free variable in y}.

Since x acts as a dummy variable in each δ(y) ∈ Ψ′ −Ψ, it should be clear that Ψ′

still satisfies (i). We claim that Ψ′ now satisfies (ii).

Fix any formula ϕ(x; y). By (ii)’ and compactness, there exists finitely many

formulas γ0(x; y), ..., γ`(x; y) that are each a boolean combination of formulas from

Ψ′ such that, for all b ∈ Clg(b), ϕ(x; b) is equivalent to γi(x; b) for some i ≤ ` (Let

Σ(y) = {¬∀x(ϕ(x; y) ↔ γ(x; y)) : γ a boolean combination of formulas from Ψ}

and use compactness on this partial type to yield the desired result). Now let

δi(y) = ∀x(ϕ(x; y) ↔ γi(x; y))

for each i ≤ ` and we see that ϕ(x; y) is equivalent to

∧
i≤`

δi(y) → γi(x; y).

As δi(y) ∈ Ψ′, this is a boolean combination of formulas from Ψ′, hence showing

(ii).

Proposition 4.3.3. If T is weakly o-minimal, then T is fully VC-minimal.

Proof. For each formula ϕ(x; y) from T and each n < ω, we define the formula that

gives the nth leftward ray carved out by ϕ(x; y):

ψϕ,n(x; y) = ¬∃w0...wn

(
x = wn ∧

∧
i<n

(
wi < wi+1 ∧ ϕ(wi; y) 6↔ ϕ(wi+1; y)

))
.
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Then, let

Ψ = {ψϕ,n(x; y) : ϕ(x; y) is any formula, n < ω}.

For all b ∈ Clg(y) and all formulas ϕ(x; y), ψϕ,n(x; b) is a downward-closed convex set.

Therefore, we see that Ψ satisfies (i). By definition of weak o-minimality and ψϕ,n,

it is clear that condition (ii)’ holds for any ϕ(x; y). Therefore, by Lemma 4.3.2, we

see that T is fully VC-minimal.

Proposition 4.3.4. If T is fully VC-minimal, then T has VC-density one.

Proof. We first show that any formula of the form ϕ(x; y) has UDTFS rank ≤ 1. By

Corollary 3.2.6, this implies T has VC-density one. Fix ϕ(x; y) any such formula.

By condition (ii) of Definition 4.3.1, there exists γ(x; y) a boolean combination of

formulas from Ψ with free variables (x; y) such that ϕ is equivalent to γ. Say that

γ(x; y) =
∨
µ∈I

(∧
i<n

ψi(x; y)
µ(i)

)

for n < ω, I ⊆ n2, and ψ0, ..., ψn−1 ∈ Ψ.

We now generate a uniform algorithm for determining ϕ-types using only a

single instance, showing ϕ has UDTFS rank ≤ 1. Fix B ⊆ Clg(y) finite and a ∈ C.

Choose i < n, t < 2, and b0 ∈ B such that

(i) |= ψi(a; b0)
t, and

(ii) ψi(x; b0)
t is `-minimal such.

By condition (i) of Definition 4.3.1, for all j < n and b ∈ B, one of the following

holds:
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(i) ψi(x; b0)
t ` ψj(x; b);

(ii) ψi(x; b0)
t ` ¬ψj(x; b);

(iii) ψj(x; b) ` ψi(x; b0)t; or

(iv) ¬ψj(x; b) ` ψi(x; b0)t.

If (i) holds, then |= ψj(a; b) and if (ii) holds, then |= ¬ψj(a; b), so we may assume

(i) and (ii) fails. If (iii) holds, then this contradicts the `-minimality of ψi(x; b0)
t

unless |= ¬ψj(a; b). Similarly, if (iv) holds, then |= ψj(a; b). Thus, ψj(a; b) holds if

and only if

δi,j,t(b; b0) =∀x(ψi(x; b0)t → ψj(x; b))∨

[¬∀x(ψi(x; b0)t → ¬ψj(x; b)) ∧ ∀x(¬ψj(x; b) → ψi(x; b0)
t)]

holds. Finally, notice that γ(a; b) holds if and only if

δ′i,t(b; b0) =
∨
µ∈I

(∧
j<n

δi,j,t(b; b0)
µ(j)

)

holds. Therefore, we see that the set {δ′i,t(y; y0) : i < n, t < 2} shows that ϕ has

UDTFS rank ≤ 1. This concludes the proof.

Since weakly o-minimal theories are fully VC-minimal, Proposition 4.3.4 gen-

eralizes the result of Corollary 3.2.7. The problem with full VC-minimality is that,

unlike normal VC-minimality, it does not generalize strong minimality. That is,

there exists strongly minimal theories that are not fully VC-minimal. It is worse

than that; there are strongly minimal theories with a formula ϕ(x; y) that does not
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have UDTFS rank ≤ 1. So the methods of Proposition 4.3.4 cannot be used to yield

VC-density one in the case of certain strongly minimal theories.

Example 4.3.5. In the theory ACF0 and the theory ACVF(0,0), the formula ϕ(x; y)

given by ϕ(x; y0, y1) = [x2 + y0x+ y1 = 0] has UDTFS rank 2.

Proof of Example 4.3.5. Suppose, by means of contradiction, that {ψ`(y0, y1; z0, z1) :

` < L} is a finite list of formulas witnessing that ϕ has UDTFS rank 1 (so either

in the language of ACF0 or ACVF(0,0)). Notice that C |= ACF0 and C((tQ)) |=

ACVF(0,0), so we work in C the common subfield of both.

Fix α0, α1, α2, α3 ∈ C algebraically independent. For any i < j < 4, there

exists σi,j an automorphism of C that permutes αi and αj and fixes the other two

αk’s. This can be extended, in the obvious manner, to an automorphism of C((tQ)).

For each i < j < 4, define bi,j = (b0i,j, b
1
i,j) so that

x2 + b0i,jx+ b1i,j = (x− αi)(x− αj).

Let B = {bi,j : i < j < 4} and let p(x) = tpϕ(α0/B). Notice that σi,j(bi,j) = bi,j,

σi,j(bi,k) = bj,k, and σi,j(bk,`) = bk,` for {i, j, k, `} = 4 by definition. Also notice that,

for any i < j < 4, |= ϕ(α0; bi,j) if and only if i = 0 (this is the only way for α0

to be a root of (x − αi)(x − αj)). Now, by the fact that {ψ`(y0, y1; z0, z1) : ` < L}

witnesses UDTFS in ϕ, there exists `0 < L and i0 < j0 < 4 such that the formula

ψ`0(y; bi0,j0)

defines p. We now have two cases to consider.

Case 1. i0 = 0.
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In this case, consider σ = σ0,j0 and fix k ∈ 4 − {0, j0}. Since |= ϕ(α0; b0,k),

we get that |= ψ`0(b0,k; b0,j0). Hence, since σ is an automorphism, we see that |=

ψ`0(σ(b0,k);σ(b0,j0)), i.e., |= ψ`0(bj0,k; b0,j0). By definition, we see that |= ϕ(α0; bj0,k),

which is clearly a contradiction.

Case 2. i0 > 0.

In this case, let 0 < k < 4 and k /∈ {i0, j0} (there is one such element). Con-

sider now σ = σ0,k, so σ still fixes bi0,j0 . Now |= ϕ(α0; b0,i0), hence |= ψ`0(b0,i0 ; bi0,j0).

Therefore, |= ψ`0(σ(b0,i0);σ(bi0,j0)), i.e., |= ψ`0(bk,i0 ; bi0,j0), hence |= ϕ(α0; bk,i0). This

is again a contradiction.

Since these are the only two cases to consider, we see that no such {ψ`(y; z) :

` < L} can exist. Hence, the UDTFS rank of ϕ is at least two. It is easy to check

that ϕ has UDTFS rank 2.

By the proof of Proposition 4.3.4, ACF0 and ACVF(0,0) cannot possibly be

fully VC-minimal. The property of VC-minimality has the advantage of essentially

being the fusion of weakly o-minimal and strongly minimal. This is basically why

ACVF(0,0), which has both a weakly o-minimal part (the value group) and a strongly

minimal part (the residue field), is VC-minimal. Example 4.3.5 is disappointing

because it means that the method of Corollary 3.2.6 cannot be used to show that

ACVF(0,0) has VC-density one. In Section 4.4, we discuss another approach and

show that, in particular, strongly minimal theories have VC-density one (Theorem

4.4.4).
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4.3.2 Weakly VC-Minimal Theories

We now turn our attention to weakly VC-minimal theories.

Definition 4.3.6. We say that T is weakly VC-minimal if, for all formulas ϕ(x; y)

and all b ∈ Clg(y), there exists formulas ψ0(x; z0), ..., ψn−1(x; zn−1) each with inde-

pendence dimension ≤ 1 and c0, ..., cn−1 from C of the appropriate length such that

ϕ(x; b) is a boolean combination of the ψi(x; ci)’s.

If T is VC-minimal and Φ is a VC-minimal instantiable family witnessing this,

then, in particular, each formula in Φ has independence dimension ≤ 1 (by itself).

Hence, T is also weakly VC-minimal. To see that this is actually a strictly weaker

notion, consider Example 4.2.7 above. This example is not VC-minimal, but it is

weakly VC-minimal, since each ϕ(x; y) = Pi(x) has independence dimension ≤ 1.

In fact, weakly VC-minimal theories are not necessarily even dp-minimal.

Example 4.3.7. Fix n > 1 and let M = Qn. For each i < n, let <i be a binary

relation on M defined by (x0, ..., xn−1) <i (y0, ..., yn−1) if and only if xi < yi. Finally,

let T = Th(M ;<i)i<n. In much the same way as one shows it for Th(Q;<), we can

see that T has quantifier elimination. Therefore, since x <i y has independence

dimension one for all i < n, we see that T is weakly VC-minimal. However, T is not

dp-minimal, witnessed by the formulas y <0 x <0 z and y <1 x <1 z.

In fact, the dp-rank of T (as defined in [16]) is at least n, showing that there

are weakly VC-minimal theories with arbitrarily large dp-rank. Consequently, there

are weakly VC-minimal theories with arbitrarily large VC-density. One could also
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use Example 1.3 in [16], as the theory presented there is weakly VC-minimal and

not dp-minimal. Clearly weakly VC-minimal theories are dependent. Consider the

following modification to Example 4.3.7 showing that dependence does not imply

weak VC-minimality:

Example 4.3.8. Let M = Q2 and let < be the binary relation (x0, x1) < (y0, y1) if

and only if x0 < y0 and x1 < y1. Let T ∗ = Th(M ;<) and notice that this is a reduct

of the theory from Example 4.3.7 for n = 2, as x < y if and only if x <0 y ∧ x <1 y.

Therefore, T is dependent. However, reflection along a line (τa : M → M via τa(x)

is the reflection of x along the line of slope one through a ∈M) is an automorphism

of (M ;<). This, coupled with quantifier elimination of T from Example 4.3.7, shows

that the only independence dimension ≤ 1 formula with non-parameter variable x

is x = y (use automorphisms to alter an instance of ϕ to overlap independently with

the original).

One can also see that T ∗ is not dp-minimal. Consider bi = (i,−i) for all i ∈ Z.

Then, for any integers k < `, the <-type

pk,`(x) = {x 6< bi : i < k} ∪ {x < bi : k ≤ i < `} ∪ {x 6< bi : ` ≤ i}

is consistent, witnessed by a = (k − 1/2,−` + 1/2) ∈ Q2. Therefore, if we let

ψ(x; y0, y1) = x < y0 6↔ x < y1, then ψ together with 〈(b2i, b2i+1) : i ∈ ω〉 is a

TP-pattern as defined in Definition 2.4.4. Therefore, by Proposition 2.4.5, T ∗ is not

dp-minimal. This leads to an interesting open question: Does dp-minimality imply

weak VC-minimality?
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One should also notice that < has UDTFS in T ∗. In fact, one can easily

see that T from Example 4.3.7 has UDTFS (since UDTFS is closed under boolean

combinations). Therefore, since T is not dp-minimal and unstable, this shows that

Theorem 2.4.1 is not tight (i.e., there are unstable UDTFS theories that are not

dp-minimal).

4.4 VC-Density One

The main objective of this section is to develop tools to address the following

conjecture, posed by Aschenbrenner, Dolich, Haskell, MacPherson, and Starchenko

in [3]:

Conjecture 4.4.1 ([3]). If T is VC-minimal, then T has VC-density one.

We cannot answer this question yet, but we have several methods to attack

this problem. First of all, there is the idea of UDTFS rank and the method of

Corollary 3.2.6. In this section, we develop another method that, for example, has

the following corollary:

Theorem 4.4.2. If T is strongly minimal, then T has VC-density one.

This was independently shown by Aschenbrenner, Dolich, Haskell, MacPher-

son, and Starchenko in [3]. We begin by discussing a notion of a rank, which is

exactly the Morley rank and Morley degree when T is strongly minimal.

Definition 4.4.3. Fix d < ω and let R and M be two functions from parameter-

definable formulas to Z. The pair (R,M) is called a density d rank on T if the
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following conditions hold for all parameter-definable formulas, ϕ(x) and ψ(x), where

n = lg(x).

(i) −1 ≤ R(ϕ) ≤ n · d, 1 ≤M(ϕ), and R(ϕ) = −1 if and only if ϕ is inconsistent.

(ii) If ψ ` ϕ, then R(ψ) ≤ R(ϕ) and, if R(ψ) = R(ϕ), then M(ψ) ≤M(ϕ).

(iii) R(ϕ ∧ ψ) = R(ϕ) or R(ϕ ∧ ¬ψ) = R(ϕ).

(iv) If R(ϕ) = R(ϕ ∧ ψ) and M(ϕ ∧ ψ) < M(ϕ), then R(ϕ) = R(ϕ ∧ ¬ψ).

(v) If ψ′(x) is a parameter-definable formula, ψ ` ϕ, ψ′ ` ϕ, and R(ϕ) = R(ψ) =

R(ψ′) > R(ψ ∧ ψ′), then M(ϕ) ≥M(ψ) +M(ψ′).

(vi) For all ∅-definable θ(x; y), there exists M∗ < ω such that, for all b ∈ Clg(y)

M(θ(x; b)) ≤M∗.

If we let ϕ(x; y) be an ∅-definable formula, we can extend (R,M) a density

d rank to finite ϕ-types in the following manner: Say that R(p) = R(
∧
p) and

M(p) = M(
∧
p) for any finite ϕ-type p. Using this, we can count types and get the

following result:

Theorem 4.4.4. For any d < ω, if there exists (R,M) a density d rank on T , then

T has VC-density d.

First, we begin with a lemma on density d ranks for some fixed d < ω.

Lemma 4.4.5. If (R,M) is a density d rank on T and ϕ(x; y) is ∅-definable formula,

then the following hold:
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(i) If p is a ϕ-type over a finite set B, B0 ⊆ B, and, for all B1 with B0 ⊂ B1 ⊆ B

and |B1 − B0| = 1, we have that M(p|B1) = M(p|B0) and R(p|B1) = R(p|B0),

then R(p) = R(p|B0) and M(p) = M(p|B0).

(ii) There exists g : (nd + 1) → ω such that, for all finite ϕ-types p, there exists

p0 ⊆ p with |p0| ≤ g(R(p)) such that R(p0) = R(p).

(iii) There exists M∗∗ < ω such that, for all finite ϕ-types p, M(p) ≤M∗∗.

Proof. (i): By induction on m = |B − B0|. If m = 1, this follows immediately,

so suppose m > 1. By induction, we may assume that M(p|B1) = M(p|B0) and

R(p|B1) = R(p|B0) for all B1 with B0 ⊂ B1 ⊆ B and |B1 − B0| < m. Fix any

two such B1, B2 so that B = B1 ∪ B2. Let θ0(x) =
∧
p|B0 , let θ1(x) =

∧
p|B1 , and

let θ2(x) =
∧
p|B2 . We have that R(θ0) = R(θ1) = R(θ2), θ1 ` θ0, and θ2 ` θ0.

By Definition 4.4.3 (v), if R(θ1 ∧ θ2) < R(θ0), then M(θ0) ≥ M(θ1) + M(θ2).

This contradicts our assumption that M(p|B1) = M(p|B0) and M(p|B2) = M(p|B0).

Thus, R(p) = R(p|B0). Furthermore, if M(p) < M(p|B0), then M(θ1 ∧ θ2) < M(θ1).

Thus, R(θ1 ∧ ¬θ2) = R(θ1) = R(θ0) by Definition 4.4.3 (iv). Thus, M(θ0) ≥

M(θ2) + M(θ1 ∧ ¬θ2) ≥ M(θ2) + 1 = M(θ0) + 1, a contradiction. Therefore,

M(p) = M(p|B0).

(ii): By Definition 4.4.3 (vi), for each ` < ω, there exists M∗
` so that, for all

ϕ-types p with |p| = `, M(p) ≤ M∗
` (a ϕ-type of size ` is merely an instance of∧

i<` ϕ(x; yi)
t(i) for some t ∈ `2, so take the maximal corresponding M∗ over each

t ∈ `2). Define g(nd) = 0 and recursively define g(k) = g(k + 1) +M∗
g(k+1) + 1. We

claim this g works.
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By (reverse) induction on k = R(p). This is trivial if k = R(x = x) ≤ nd, as

R(∅) = R(x = x), where ∅ denotes the empty ϕ-type. Now assume k < R(x = x).

Choose p′ ⊆ p with R(p′) > k and R(p′) is minimal such. By induction, there exists

p0 ⊆ p′ with |p0| ≤ g(k + 1) and R(p0) = R(p′).

Case 1. There exists b ∈ (dom(p)− dom(p0)), R(p0 ∪ p|{b}) < R(p0).

Then R(p) = R(p0 ∪ p|{b}) by minimal choice of p′.

∣∣p0 ∪ p|{b}
∣∣ = |p0|+ 1 ≤ g(k + 1) + 1 ≤ g(k).

Case 2. For all b ∈ (dom(p)− dom(p0)), R(p0 ∪ p|{b}) = R(p0).

Suppose there exists b ∈ (dom(p) − dom(p0)), R(p0 ∪ p|{b}) = R(p0) and

M(p0 ∪ p|{b}) < M(p0). In this case, add p|{b} to p0, and repeat this at most

M(p0) ≤M∗
g(k+1) steps to produce p1 ⊆ p with |p1| ≤ |p0|+M∗

g(k+1), R(p1) = R(p0),

and M(p1) is minimal. If this does not hold, immediately set p0 = p1. Now suppose

that, for all b ∈ (dom(p)−dom(p1)), R(p1∪p|{b}) = R(p1). By minimality of M(p1),

M(p1 ∪ p|{b}) = M(p1). By (i) of this lemma, R(p) = R(p1) = R(p0) = R(p′) > k =

R(p), a contradiction. Thus, there exists some b ∈ (dom(p) − dom(p1)) such that

R(p1 ∪ p|{b}) < R(p1). Hence, R(p1 ∪ p|{b}) = R(p) by minimality. As in Case 1, we

get that

∣∣∣p1 ∪ p|{b}
∣∣∣ = |p1|+ 1 ≤ |p0|+M∗

g(k+1) + 1 ≤ g(k + 1) +M∗
g(k+1) + 1 ≤ g(k)

as desired.

(iii): LetM∗∗ = max{M∗
` : ` ≤ g(0)} for g andM∗

` from (ii). Fix p any finite ϕ-

type. By (ii), there exists p0 ⊆ p with |p0| ≤ g(R(p)) ≤ g(0) such that R(p0) = R(p).

Then, M(p0) ≤M∗
|p0| ≤M∗∗ and M(p) ≤M(p0), so M(p) ≤M∗∗.
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We are now ready to prove the main theorem.

Proof of Theorem 4.4.4. Fix a formula ϕ(x; y), let n = lg(x), and let (R,M) be a

density d rank. For any finite ϕ-type p and any finite B ⊇ dom(p), define

Spϕ(B) = {q a ϕ-type over B : q ⊇ p}.

So if we let ∅ denote the empty ϕ-type, then Sϕ(B) = S∅ϕ(B). Let M∗∗ be as in

Lemma 4.4.5 (iii) above, so M(p) ≤M∗∗ for all finite ϕ-types p. We now claim that

the following holds for all finite ϕ-types p and all B ⊇ dom(p):

|Spϕ(B)| ≤ (M∗∗)R(p) ·M(p) · |B − dom(p)|R(p).

By applying this to ∅, we get the desired conclusion (as R(∅) = R(x = x) ≤ nd by

Definition 4.4.3 (i)).

The claim follows by induction on R(p) and M(p) and |B−dom(p)|. If R(p) =

0, then Definition 4.4.3 (v) yields that there are, at most, M(p) extensions of p to

finite ϕ-types. Hence, |Spϕ(B)| ≤M(p), as desired.

Let k = R(p), ` = M(p), and m = |B − dom(p)|. For simplicity of notation,

let Li = (M∗∗)i. Suppose k > 0. We aim to show that

|Spϕ(B)| ≤ Lk · ` ·mk.

Case 1. There exists b ∈ (B − dom(p)) such that R(p ∪ {ϕ(x; b)t}) = k for both

t < 2.

In this case, let p0 = p ∪ {¬ϕ(x; b)} and let p1 = p ∪ {ϕ(x; b)}. By Definition

4.4.3 (v), ` ≥M(p0) +M(p1). By induction hypothesis,

|Sp0ϕ (B)| = Lk ·M(p0) · (m− 1)k and |Sp1ϕ (B)| = Lk ·M(p1) · (m− 1)k.
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Therefore, since Spϕ(B) = Sp0ϕ (B) ∪ Sp1ϕ (B), we get that

|Spϕ(B)| ≤ Lk ·M(p0) · (m− 1)k + Lk ·M(p1) · (m− 1)k ≤ Lk · ` ·mk

as desired.

Case 2. For all b ∈ (B − dom(p)), R(p ∪ {ϕ(x; b)t}) < k for some t < 2.

In this case, let p0 = p ∪ {ϕ(x; b)t} and let p1 = p ∪ {ϕ(x; b)1−t} for the given

t < 2. By Definition 4.4.3 (iii), R(p1) = k, so M(p1) ≤ ` by (ii). By the induction

hypothesis on m,

|Sp1ϕ (B)| ≤ Lk ·M(p1) · (m− 1)k ≤ Lk · ` · (m− 1)k.

On the other hand, since R(p0) < k, we have that

|Sp0ϕ (B)| ≤ LR(p0) ·M(p0) · (m− 1)R(p0) ≤ Lk−1 ·M(p0) · (m− 1)k−1.

By Lemma 4.4.5 (iii), M(p0) ≤M∗∗, so we have that

|Sp0ϕ (B)| ≤ Lk−1 ·M∗∗ · (m− 1)k−1 = Lk · (m− 1)k−1.

(as Lk−1 = (M∗∗)k−1). Thus,

|Spϕ(B)| ≤ Lk · ` · (m− 1)k + Lk · (m− 1)k−1 ≤ Lk · ` ·mk

as desired.

Now, applying this claim to p = ∅, we get

|Sϕ(B)| ≤ (M∗∗)n+1 · |B|nd

for all finite B. So ϕ(x; y) has VC-density d · lg(x). Since ϕ was arbitrary, T has

VC-density d.
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Notice that we only use the density rank (R,M) relative to ϕ to show that ϕ

has VC-density ≤ n, so if we want to show that ϕ has VC-density ≤ k for any k, we

need only have a density rank relativized to ϕ with maximal rank k. For the case

when d = 1, we get that T having a density one rank implies that T has VC-density

one.

One should note that Morley rank and Morley degree satisfy all the axioms of

Definition 4.4.3 except possibly (i) (i.e., that R(ϕ) ≤ nd for all ϕ(x) with n = lg(x))

and (vi) (i.e., a bound on the Morley degree of formulas). Therefore, if we can show

that (i) and (vi) hold for (MR,Md) for some d < ω, then this would imply that

(MR,Md) is a density d rank and T has VC-density d. We show this in the following

corollary, independently due to Aschenbrenner, Dolich, Haskell, MacPherson, and

Starchenko in [3]:

Corollary 4.4.6. If T is ℵ1-categorical, then T has VC-density MR(x = x) (in par-

ticular, since such theories are totally transcendental, they have finite VC-density).

Proof. Let d = MR(x = x) and we aim to show that (MR,Md) is a density d rank.

By Theorem 4.4.4, this suffices. First, all such theories T are superstable, so the

Lascar equality holds:

U(a/B ∪ {c}) + U(c/B) = U(a, c/B).

In ℵ1-categorical theories, U = MR, so this holds for Morley rank (see, for example,

Corollary 2 of [20]). In particular, we see that MR is additive, so MR(x = x) ≤

lg(x) ·MR(x = x) = nd for n = lg(x). Therefore, condition (i) of Definition 4.4.3

holds for MR.
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It is not hard to see that T does not have the finite cover property (see Def-

inition II.4.1 of [22]). Therefore, by Theorem II.4.4 of [22], for any θ(x; y), there

exists M∗ < ω such that, for all b ∈ Clg(y), the Morley degree of θ(x; b) is, at most,

M∗. Therefore, condition (vi) of Definition 4.4.3 holds for Md. Hence, (MR,Md) is

a density d rank, as we aimed to show.

If T is strongly minimal, then T is ℵ1-categorical and MR(x = x) = 1. There-

fore, Theorem 4.4.2 follows as a corollary of Corollary 4.4.6. Notice that all we

are using about ℵ1-categorical theories is that the Morley Rank is additive and the

Morley degree is bounded. So we can replace the hypotheses with this instead.

4.5 Kueker’s Conjecture

First we consider a lemma to simplify cases where we have instances of formulas

equivalent to instances of formulas from a fixed set.

Lemma 4.5.1. Let Ψ = {ψi(x; zi) : i ∈ I} be any set of formulas and let ϕ(x; y) be

a formula. Suppose that, for all b ∈ Clg(y), there exists an i ∈ I and a c ∈ Clg(zi) so

that ϕ(C; b) = ψi(C; c). Then, there exists a finite I0 ⊆ I such that, for all b ∈ Clg(y),

there exists an i ∈ I0 and a c ∈ Clg(zi) so that ϕ(x; b) is equivalent to ψi(x; c).

Proof. Consider the following partial type in y over ∅:

Σ(y) = {¬∃zi∀x(ϕ(x; y) ↔ ψi(x; zi)) : i ∈ I}

By assumption, Σ is inconsistent. Therefore, by compactness, there exists a finite
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I0 ⊆ I so that

Σ0(y) = {¬∃zi∀x(ϕ(x; y) ↔ ψi(x; zi)) : i ∈ I0}

is inconsistent. This yields the desired conclusion.

This has the following corollary on weak VC-minimality.

Corollary 4.5.2. If T is weakly VC-minimal and ϕ(x; y) is a formula, then there

exists finitely many formulas Ψ0 = {ψi(x; zi) : i ∈ I0}, each a boolean combination

of formulas with independence dimension ≤ 1 (in the variable x), such that, for any

b ∈ Clg(y), there exists i ∈ I0 and c ∈ Clg(zi) such that ϕ(x; b) is equivalent to ψi(x; c).

Proof. Let Ψ be all boolean combinations of formulas with independence dimension

≤ 1 in the variable x, then use Lemma 4.5.1 to conclude.

Lemma 4.5.3. If T is weakly VC-minimal and all independence dimension ≤ 1

formulas of the form ϕ(x; y) are stable, then T is stable.

Proof. Suppose that each independence dimension ≤ 1 formula of the form ψ(x; y)

is stable but, by means of contradiction, T is not stable. Then, by sufficiency of

a single variable for stability (Theorem 1.2.4 (i)), there exists a formula ϕ(x; y)

that is unstable. By Corollary 4.5.2, if we let Θ be all boolean combinations of

independence dimension ≤ 1 formulas in the variable x, then there exists a finite

Θ0 ⊆ Θ such that, for all b ∈ Clg(y), there exists θ(x; z) ∈ Θ0 and c ∈ Clg(z) such that

ϕ(x; b) is equivalent to θ(x; c). Now let 〈ai : i < ω〉 and 〈bj : j < ω〉 witness the fact

that ϕ(x; y) has the order property (i.e., |= ϕ(ai; bj) if and only if i < j). By pigeon-

hole principal and reindexing, we may assume that there is a single θ(x; z) ∈ Θ0
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such that, for all j < ω, there exists cj ∈ Clg(z) such that ϕ(x; bj) is equivalent to

θ(x; cj). Therefore, 〈ai : i < ω〉 and 〈cj : j < ω〉 are a witness to the fact that θ has

the order property. However, θ is a boolean combination of independence dimension

≤ 1 formulas in the variable x, each of which is stable by hypothesis. Since stability

is closed under boolean combinations, this is a contradiction.

Theorem 4.5.4. If T is weakly VC-minimal, then either T is stable or T eq defines

an infinite linear order.

Proof. Assume T is weakly VC-minimal and unstable. Then, by Lemma 4.5.3, there

exists a formula ϕ(x; y) that has independence dimension ≤ 1 and is unstable. Since

ϕ is unstable, there exists 〈ai : i ∈ Q〉 and 〈bj : j ∈ Q〉 such that, for all i, j ∈ Q,

|= ϕ(ai; bj) if and only if i < j (by compactness). We claim that the following is a

definable quasi-linear-order in T : Let

y0 ≤ y1 =
(
∀x(ϕ(x; y0) → ϕ(x; y1))

)
and let

D = {b ∈ Clg(y) : b0 ≤ b ≤ b1}.

First, it is clear that D and ≤ are definable. Moreover, it is clear that ≤ is a quasi-

ordering on D. To see that D is non-empty, take any i, j ∈ Q with i < j. Then we

get that

(i) |= ϕ(ak; bi) ∧ ϕ(ak; bj) for any k < i,

(ii) |= ¬ϕ(ai; bi) ∧ ϕ(ai; bj), and

(iii) |= ¬ϕ(aj; bi) ∧ ¬ϕ(aj; bj).
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By independence dimension ≤ 1, |= ∀x(ϕ(x; bi) → ϕ(x; bj)). Thus, bi ≤ bj if and

only if i ≤ j. In particular, this shows that bi ∈ D for all i ∈ Q with 0 ≤ i ≤ 1.

It also shows that all such bi are non-≤-equivalent. It remains to show that ≤ is a

linear quasi-order (i.e., all two elements of D are comparable).

Suppose that b, b
′ ∈ D yet b 6≤ b

′
and b

′ 6≤ b. Then, by definition, ∃x(ϕ(x; b) ∧

¬ϕ(x; b
′
)) and ∃x(¬ϕ(x; b) ∧ ϕ(x; b

′
)) both hold. As witnessed by a−1, for example,

∃x(ϕ(x; b)∧ϕ(x; b
′
)) holds. As witnessed by a2, for example, ∃x(¬ϕ(x; b)∧¬ϕ(x; b

′
))

holds. These four statements together contradict the fact that ϕ has independence

dimension ≤ 1.

Therefore, (D,≤) is a definable quasi-linear-order. Hence, if we take the nat-

ural ∅-definable equivalence relation bEb
′
defined by b ≤ b

′ ∧ b′ ≤ b, we see that

(D/E,≤) is an infinite T eq-definable linear order.

We are now ready to discuss the Kueker Conjecture.

Conjecture 4.5.5 (Kueker’s Conjecture). If T is a theory in a countable language

such that every uncountable model of T is ℵ0-saturated, then T is ℵ0-categorical or

ℵ1-categorical.

Corollary 4.5.6. If T is weakly VC-minimal, then T satisfies the Kueker Conjec-

ture.

Proof. By Section 3 of [13], if T is stable, then the Kueker Conjecture holds for T .

Therefore, we may assume that T is unstable. By Theorem 4.5.4, we have that T eq

has a infinite definable linear order. By Proposition 4.1 of [13], this implies that the

Kueker Conjecture holds for T .
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As a corollary, if T is VC-minimal, then T has the stable / infinite interpretable

linear order dichotomy as in Theorem 4.5.4. Thus, T satisfies the Kueker Conjecture.

What other dependent theories have this stable / infinite interpretable linear order

dichotomy? For any such theory, the Kueker Conjecture certainly holds by the

above argument. One of this author’s goals in his future research is to prove the

Kueker Conjecture for UDTFS theories. This can either be accomplished by showing

UDTFS theories have a stable / infinite interpretable linear order dichotomy or by

showing it directly as in the stable case of [13].
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