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The first portion of this dissertation concerns orders of accumulation of en-

tropy. For a continuous map T of a compact metrizable space X with finite topolog-

ical entropy, the order of accumulation of entropy of T is a countable ordinal that

arises in the context of entropy structure and symbolic extensions. We show that

every countable ordinal is realized as the order of accumulation of some dynamical

system. Our proof relies on the functional analysis of metrizable Choquet simplices

and a realization theorem of Downarowicz and Serafin. Further, if M is a metrizable

Choquet simplex, we bound the ordinals that appear as the order of accumulation

of entropy of a dynamical system whose simplex of invariant measures is affinely

homeomorphic to M . These bounds are given in terms of the Cantor-Bendixson

rank of ex(M), the closure of the extreme points of M , and the relative Cantor-

Bendixson rank of ex(M) with respect to ex(M). We also address the optimality of

these bounds.

Given any compact manifoldM and any countable ordinal α, we also construct

a continuous, surjective self-map of M having order of accumulation of entropy α.



If the dimension of M is at least 2, then the map can be chosen to be a homeomor-

phism. The realization theorem of Downarowicz and Serafin produces dynamical

systems on the Cantor set; by contrast, our constructions work on any manifold

and provide a more direct dynamical method of obtaining systems with prescribed

entropy properties.

Next we consider random subshifts of finite type. Let X be an irreducible

shift of finite type (SFT) of positive entropy, and let Bn(X) be its set of words of

length n. Define a random subset ω of Bn(X) by independently choosing each word

from Bn(X) with some probability α. Let Xω be the (random) SFT built from

the set ω. For each 0 ≤ α ≤ 1 and n tending to infinity, we compute the limit of

the likelihood that Xω is empty, as well as the limiting distribution of entropy for

Xω. For α near 1 and n tending to infinity, we show that the likelihood that Xω

contains a unique irreducible component of positive entropy converges exponentially

to 1. These results are obtained by studying certain sequences of random directed

graphs. This version of “random SFT” differs significantly from a previous notion

by the same name, which has appeared in the context of random dynamical systems

and bundled dynamical systems.
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Foreword

The results contained in Chapter 2 and Appendix A of this dissertation are

joint work with David Burguet (l’ENS Cachan). The results contained in Chapters

3 and 4 are solely due to Kevin McGoff.

The results in Chapter 2 are to appear with revision in Fundamenta Mathemat-

icae [18]. The results in Chapter 3 are to appear in Journal d’Analyse Mathématique

[70]. The results in Chapter 4 are to appear in Annals of Probability [71].
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Chapter 1

Introduction

1.1 Overview

The appearance of entropy in the context of sequences of symbols goes back to

Shannon [84], for whom it served as a measure of the average information capacity

of a communication channel. Soon the concept of entropy appeared in the context of

stationary random processes, and measure-theoretic entropy become a centerpiece

of ergodic theory following the work of Kolmogorov [61, 62, 63]. The notion of

topological entropy was defined a bit later [1], and it is now considered a primary

measure of the complexity of a topological dynamical system. See [51] for a survey

of the history of entropy in dynamical systems.

In this work, a topological dynamical system is a pair (X,T ), where X is a

compact metrizable space and T is a continuous mapping of X to itself. For such

a system (X,T ), the topological entropy htop(T ) provides a well-studied measure of

the topological dynamical complexity of the system. We only consider systems with

htop(T ) <∞. Let M(X,T ) be the space of Borel probability measures on X which

are invariant under T . The entropy function h : M(X,T ) → [0,∞), where h(µ) is

the metric entropy of the measure µ, quantifies the amount of complexity in the sys-

tem that lies on generic points for µ. In this sense, the entropy function h describes

both where and how much complexity lies in the system. The theory of entropy
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structures developed by Downarowicz [35] produces a master entropy invariant in

the form of a distinguished class of sequences of functions on M(X,T ) whose limit

is h. The entropy structure of a dynamical system completely determines almost

all previously known entropy invariants such as the topological entropy, the entropy

function on invariant measures, the tail entropy (or topological conditional entropy

[73]), the symbolic extension entropy, and the symbolic extension entropy function.

Entropy structure also produces new entropy invariants, such as the order of accu-

mulation of entropy. Furthermore, the theory of entropy structures and symbolic

extensions provides a rigorous description of how entropy emerges on refining scales.

Entropy structures and the closely related theory of symbolic extensions [13] have

attracted interest in the dynamical systems literature [4, 17, 15, 33, 35, 36, 37],

especially with the intention of using entropy structure to obtain information about

various classes of smooth systems. The purpose of the Chapters 2 and 3 is to in-

vestigate a new entropy invariant arising from the theory of entropy structures: the

order of accumulation of entropy, which is denoted α0(X,T ).

A shift of finite type (SFT) is a dynamical system defined by finitely many

local transition rules. These systems have been studied for their own sake [59, 66],

and they have also served as important tools for understanding other dynamical

systems [53, 12, 32]. Each SFT can be described as the set of bi-infinite sequences

on a finite alphabet that avoid a finite list of words over the alphabet. Thus there

are only countably many SFTs up to the naming of letters in an alphabet. The

purpose of Chapter 4 is to study some typical properties within the class of SFTs.

Since there are essentially only countably many SFTs, our notion of typical involves
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randomly choosing an SFT from certain classes. Loosely speaking, a property is then

“typical” if it holds for a random SFT with high probability. The main properties

of interest for the SFTs considered in this work are emptiness, entropy, and the

number and structure of irreducible components.

1.2 Organization of the dissertation

Chapters 2, 3, and 4 are intended to be mostly self-contained treatments of the

relevant results. For that reason, some material in Chapter 3 overlaps with material

already presented in Chapter 2.

In Chapter 2, we show that every countable ordinal is realized as the order of

accumulation of some dynamical system. Our proof relies on the functional analysis

of metrizable Choquet simplices and a realization theorem of Downarowicz and

Serafin. Further, if M is a metrizable Choquet simplex, we bound the ordinals that

appear as the order of accumulation of entropy of a dynamical system whose simplex

of invariant measures is affinely homeomorphic to M . These bounds are given in

terms of the Cantor-Bendixson rank of ex(M), the closure of the extreme points of

M , and the relative Cantor-Bendixson rank of ex(M) with respect to ex(M). We

also address the optimality of these bounds.

In Chapter 3, given any compact manifold M and any countable ordinal α,

we construct a continuous, surjective self-map of M having order of accumulation

of entropy α. If the dimension of M is at least 2, then the map can be chosen to

be a homeomorphism. The realization theorem of Downarowicz and Serafin cited
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in Chapter 2 produces dynamical systems on the Cantor set; by contrast, the con-

structions in Chapter 3 work on any manifold and provide a more direct dynamical

method of obtaining systems with prescribed entropy structure properties.

Chapter 4 contains the results on random subshifts of finite type, which we

summarize as follows. Let X be an irreducible shift of finite type (SFT) of positive

entropy, and let Bn(X) be its set of words of length n. Define a random subset ω of

Bn(X) by independently choosing each word from Bn(X) with some probability α.

Let Xω be the (random) SFT built from the set ω. For each 0 ≤ α ≤ 1 and n tending

to infinity, we compute the limit of the likelihood that Xω is empty, as well as the

limiting distribution of entropy for Xω. For α near 1 and n tending to infinity, we

show that the likelihood that Xω contains a unique irreducible component of positive

entropy converges exponentially to 1. These results are obtained by studying certain

sequences of random directed graphs.
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Chapter 2

Orders of accumulation of entropy

Given a dynamical system (X,T ), one may associate a particular sequence

H(T ) = (hk) to (X,T ) with the following properties [35]:

1. (hk) is a non-decreasing sequence of harmonic, upper semi-continuous func-

tions from M(X,T ) to [0,∞);

2. limk hk = h;

3. hk+1 − hk is upper semi-continuous for every k.

This sequence, or any sequence uniformly equivalent to it (Definition 2.1.18), is

called an entropy structure for the system (X,T ) [35]. This distinguished uniform

equivalence class of sequences is an invariant of topological conjugacy of the system

[35]. Consequently, we sometimes refer to the entire uniform equivalence class of H

as the entropy structure of the system (X,T ).

Associated to a non-decreasing sequence H = (hk) of functions hk : M →

[0,∞], where M is a compact metrizable space, there is a transfinite sequence of

functions uα : M → [0,∞], indexed by the ordinals and defined by transfinite in-

duction as follows. Let f̃ denote the upper semi-continuous envelope of the function

f (Definition 2.1.14; by convention f̃ ≡ ∞ if f is unbounded). Let τk = h − hk.

Then
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• let u0 ≡ 0;

• if uα has been defined, let uα+1 = limk ũα + τk;

• if uβ has been defined for all β < α for a limit ordinal α, let uα = ˜supβ<α uβ.

The sequence (uα) is non-decreasing in α and does not depend on the particular

representative of the uniform equivalence class of H. Since M is compact and

metrizable, an easy argument (given in [13]) implies that there exists a countable

ordinal α such that uβ ≡ uα for all β ≥ α. The least ordinal α with this property

is denoted α0(H) and is called the order of accumulation of H. In the case when

M = M(X,T ) and H is an entropy structure for (X,T ), the order of accumulation

of entropy of (X,T ) is defined as α0(H). Because the entropy structure of (X,T ) is

invariant under topological conjugacy, the sequence (uα) associated to (X,T ) and

the order of accumulation α0(X,T ) are invariants of topological conjugacy.

To explain the meaning of α0(X,T ) and uα0(X,T ), we discuss symbolic exten-

sions and their relationship to entropy structures. A symbolic extension of (X,T ) is

a (two-sided) subshift (Y, S) on a finite number of symbols, along with a continuous

surjection π : Y → X (the factor map of the extension) such that π◦S = T ◦π. Sym-

bolic extensions have been important tools in the study of some dynamical systems,

in particular uniformly hyperbolic systems. A symbolic extension serves as a “loss-

less finite encoding” of the system (X,T ) [35]. If π is the factor map of a symbolic

extension (Y, S), we define the extension entropy function hπext : M(X,T ) → [0,∞)

for µ in M(X,T ) by

hπext(µ) = max{h(ν) : π∗µ = ν}.
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The number hπext(µ) represents the amount of complexity above the measure µ in

the symbolic extension. The symbolic extension entropy function of a dynamical

system (X,T ), hsex : M(X,T ) → [0, ∞], is defined for µ in M(X,T ) as

hsex(µ) = inf{hπext(µ) : π is the factor map of a symbolic extension of (X,T )},

where the infimum is understood to be ∞ if (X,T ) admits no symbolic extensions.

The symbolic extension entropy function measures the amount of entropy that must

be present above each measure in any symbolic extension of the system. Finally,

we define the residual entropy function hres : M(X,T ) → [0,∞] as hres = hsex − h.

The residual entropy function then measures the amount of entropy that must be

added above each measure in any symbolic extension of the system. The functions

hres and hsex give much finer information about the complexity of the system than

the entropy function h. These quantities are related to the entropy structure of the

system by the following remarkable result of Boyle and Downarowicz.

Theorem 2.0.1 ([13]). Let X be a compact metrizable space and T : X → X a

continuous map. Let H be an entropy structure for (X,T ). Then

hsex = h+ uHα0(X,T ).

The conclusion of the theorem may also be stated as uα0(X,T ) = hres. In this

sense, the order of accumulation α0(X,T ) and the function uα0(X,T ) each measures

a residual complexity in the system that is not detected by the entropy function h.

The order of accumulation of entropy measures, roughly speaking, over how many

distinct layers residual entropy emerges in the system [13]. It is then natural to ask

the following question.
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Question 2.0.2. Which countable ordinals can be realized as the order of accumu-

lation of entropy of a dynamical system?

It is shown in [13] that all finite ordinals can be realized as the order of accu-

mulation of dynamical system. There are constructions in [17, 37] (built for other

purposes) that show that some infinite ordinals are realized in this way, but these

constructions do not allow one to determine exactly which ordinals appear. More-

over, it is stated without proof in [35] that all countable ordinals are realized.

We prove that all countable ordinals can be realized as the order of accu-

mulation of entropy for a dynamical system (Corollary 2.3.5), answering Question

2.0.2. On account of the realization theorem of Downarowicz and Serafin (restated

as Theorem A.1.1 in this work), this result reduces to establishing the following

result, which is purely functional analytic.

Theorem 2.0.3. For every countable ordinal α, there exists a metrizable Choquet

simplex M and a sequence of functions H = (hk) on M such that

• (hk) is a non-decreasing sequence of harmonic, upper semi-continuous func-

tions from M to [0,∞);

• limk hk exists and is bounded;

• hk+1 − hk is upper semi-continuous for every k;

• α0(H) = α.

Building on the approach of Downarowicz and Serafin to reduce questions in

the theory of entropy structure to the study of functional analysis, we also consider

8



what constraints, if any, the simplex of invariant measures may place on orders of

accumulation of entropy.

Question 2.0.4. Given a metrizable Choquet simplex M , which ordinals can be re-

alized as the order of accumulation of a dynamical system (X,T ) such that M(X,T )

is affinely homeomorphic to M?

For a metrizable Choquet simplexM , we let S(M) denote the set of all ordinals

that can be realized as the order of accumulation of a sequence H on M satisfying

properties (1)-(3). The realization theorem of Downarowicz and Serafin (Theorem

A.1.1) reduces Question 2.0.4 to the following question in functional analysis.

Question 2.0.5. Given a metrizable Choquet simplex M , which ordinals are in

S(M)?

Theorem 2.4.3 answers Question 2.0.5 (and therefore Question 2.0.4) com-

pletely in the event that M is a Bauer simplex by giving a precise description of

S(M) in terms of the Cantor-Bendixson rank of the extreme points of M . Theorem

2.5.5 addresses the general case, giving constraints on S(M) in terms of Cantor-

Bendixson rank of the closure E of the space E = ex(M) of extreme points of M

and the relative Cantor-Bendixson rank of E with respect to E. Theorems 2.5.6 and

2.5.10 address the optimality of these constraints, and Section 2.5.3 summarizes our

progress on this question and poses some remaining questions.

In the language of dynamical systems, if M is a metrizable Choquet simplex,

we have found constraints on the orders of accumulation of entropy that appear

within the class of all dynamical systems (X,T ) such that M(X,T ) is affinely home-
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omorphic to M . These constraints are in terms of the Cantor-Bendixson ranks of

the closure E of the space E of ergodic measures and the relative Cantor-Bendixson

rank of E with respect to E.

2.1 Preliminaries

2.1.1 Ordinals

We assume a basic familiarity with the ordinal numbers, ordinal arithmetic,

and transfinite induction. The relevant sections in [81] provide a good introduction.

Here we briefly recall some notions that are used in this work.

We view the ordinal α as the set {β : β < α}. The symbols ω and ω1 will

always be used to denote the first infinite ordinal and the first uncountable ordinal,

respectively.

Definition 2.1.1. An ordinal α is irreducible if whenever α = α1 + α2 with

α1 ≥ α2, it follows that α2 = 0.

Recall the well-known Cantor Normal Form of an ordinal.

Theorem 2.1.2. For every ordinal α > 0, there exists natural numbers n1, . . . , nk

and ordinals β1 > · · · > βk such that α = ωβ1n1 + · · · + ωβknk. Furthermore, the

numbers n1, . . . , nk and the ordinals β1, . . . , βk are unique.

The following corollary is an easy consequence of the Cantor Normal Form.

Corollary 2.1.3. An ordinal α > 0 is irreducible if and only if there exists an

ordinal β such that α = ωβ.
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In light of this corollary, one can view the Cantor Normal Form of α as a

decomposition of α into a finite sum of irreducible ordinals.

The following corollary is then a simple consequence of Corollary 2.1.3 and

the fact that any non-zero ordinal β is either a successor ordinal or a limit ordinal.

Corollary 2.1.4. If α > 0 is countable and irreducible, then either (i) there exists

an irreducible ordinal α̃ < α such that supn∈N α̃n = α, or (ii) there exists a strictly

increasing sequence of irreducible ordinals (αk)k∈N such that supk∈N αk = α.

Any ordinal α can be viewed as a topological space with the order topology

(sets of the form {γ ∈ α : γ < β} or {γ ∈ α : β < γ} form a subbase for the

topology). With this topology, α is a completely normal, Hausdorff space, and if

α is countable, then it is a Polish space (see below for definition). The space α is

compact if and only if α is a successor ordinal. The accumulation points in α are

exactly the limit ordinals in α.

For ease of notation, if α is a successor ordinal, let α − 1 denote the unique

ordinal β such that α = β + 1. Also, for countable ordinals α ≤ β, we will write

[α, β] to denote the ordinal interval {γ : α ≤ γ ≤ β}. If β = ω1, we make the

convention that [α, β] = {γ : α ≤ γ < β}. We also make use of the notation

]α, β[= {γ : α < γ < β}, as well as the other possible “half-open” and “half-closed”

notations.
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2.1.2 Polish Spaces

A general reference that covers Polish spaces is [86]. We recall that a topo-

logical space E is a Polish space if it is separable and completely metrizable. In

particular, any compact metrizable space is Polish. Moreover, any closed subset of

a Polish space is itself a Polish space. Some of the definitions and statements below

hold for more general topological spaces, but we require them only in the case of

Polish spaces.

For any Polish space E, let E ′ denote the set of accumulation points of E,

E ′ = {x ∈ E : ∃(xn) ⊂ E \ {x}, xn → x}.

Note that E ′ is closed in E.

A subset A of a Polish space E is a perfect set if A is a compact subset of E

and A contains no isolated points (in the subspace topology). The following result

is a special case of the Cantor-Bendixson Theorem.

Theorem 2.1.5. Let E be a Polish space. Then E = C ∪A, where C is countable,

A is closed and has no isolated points, and C ∩ A = ∅.

We will also use the following fact (see [86]). Let C denote the Cantor space.

Theorem 2.1.6. Let A be a non-empty Polish space with no isolated points. Then

there is an embedding of C into A.

The following statement is an immediate corollary of the previous two theo-

rems.
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Corollary 2.1.7. Let E be any uncountable Polish space. Then there is an embed-

ding of C into E.

The following corollary is an easy consequence of Corollary 2.1.7.

Corollary 2.1.8. Let E be an uncountable Polish space. Then for every countable

ordinal α and every natural number n, there exists an embedding g : ωαn+ 1 → E.

2.1.3 Cantor-Bendixson Rank

Given a Polish space E, we now use transfinite induction to define a transfinite

sequence of topological spaces, {Γα(E)}. Let Γ0(E) = E. If Γα(E) has been defined,

then let Γα+1(E) = (Γα(E))′ ⊂ Γα(E). If α is a limit ordinal and Γβ(E) is defined

for all β < α, then let Γα(E) = ∩β<αΓβ(E). Each set Γα(E) is closed in E and

therefore Polish.

Note that Γα(E) = Γα+1(E) implies that Γα(E) has no isolated points (in the

subspace topology) and then that Γβ(E) = Γα(E) for all β > α. For any Polish

space E, Theorem 2.1.5 implies that there exists a countable ordinal α such that

Γα(E) = Γα+1(E).

Definition 2.1.9. With the notation above, the Cantor-Bendixson rank of the

space E, denoted |E|CB, is defined to be the least ordinal α such that Γα(E) =

Γα+1(E).

When E is compact, Γ|E|CB(E) is a perfect set (which may be the empty set).

Now we mention a pointwise version of Cantor-Bendixson rank.
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Definition 2.1.10. Let E be a Polish space, and let x be in E. We define the

topological rank of x, r(x), to be

r(x) =


sup{α : x ∈ Γα(E)} if x /∈ Γ|E|CB(E)

ω1 if x ∈ Γ|E|CB(E).

The following proposition follows directly from the definitions and compact-

ness.

Proposition 2.1.11. Let E be a countable, compact Polish space. Then

1. |E|CB is a successor ordinal.

2. If |E|CB = α+ 1, then Γα(E) is a non-empty, finite set, and Γα+1(E) = ∅.

3. |E|CB =
(
supx∈E r(x)

)
+ 1 =

(
maxx∈E r(x)

)
+ 1.

Now we state a well-known classification of countable, compact Polish spaces,

due to Mazurkiewicz and Sierpiński [69, p. 21]. We denote the cardinality of a set

E by |E|.

Theorem 2.1.12. Let E and F be countable, compact Polish spaces, and assume

that |E|CB = α+1. Then E and F are homeomorphic if and only if |E|CB = |F |CB

and |Γα(E)| = |Γα(F )|.

Remark 2.1.13. Let α be a countable ordinal. Then Γα(ωα + 1) = {ωα} and |ωα +

1|CB = α + 1. It follows from Theorem 2.1.12 that if γk is any increasing sequence

of ordinals such that supk γk = ωα, then ωα + 1 is homeomorphic to the one-point

compactification of the disjoint union of the spaces γk, with the point at infinity

corresponding to ωα.
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Note that for any countable ordinal α, the space ωαn+1 has Cantor-Bendixson

rank α+1 and exactly n points of topological rank α given by ωαk for k = 1, . . . , n.

Then by the above classification, the space ωαn+ 1 provides a representative of the

homeomorphism class of countable, compact Polish spaces with Cantor-Bendixson

rank α+ 1 and n points of topological rank α.

2.1.4 Upper-semicontinuity

Now we consider functions f : E → R, where E is a metrizable space. For

such a function f , we let ||f || = supx∈E |f(x)|, where the supremum is taken to be

+∞ if f is unbounded.

Definition 2.1.14. Let E be a compact metrizable space, and let f : E → R. Then

f is upper semi-continuous (u.s.c.) if one of the following equivalent conditions

holds:

1. f = infα gα for some family {gα} of continuous functions;

2. f = limn gn for some nonincreasing sequence (gn)n∈N of continuous functions;

3. For each r ∈ R, the set {x : f(x) ≥ r} is closed;

4. lim supy→x f(y) ≤ f(x), for all x ∈ E.

For any f : E → R, the upper semi-continuous envelope of f , written f̃ , is

defined, for all x in E, by

f̃(x) =


inf{g(x) : g is continuous, and g ≥ f}, if f is bounded

+∞, if f is unbounded.
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Note that when f is bounded, f̃ is the smallest u.s.c. function greater than or

equal to f and satisfies

f̃(x) = max

(
f(x), lim sup

y→x
f(y)

)
.

It is immediately seen that for any f, g : E → R, f̃ + g ≤ f̃ + g̃, with equality

holding if f or g is continuous.

Definition 2.1.15. Let π : E → F be a continuous map. If f : F → R is any

function, we define the lift of f , denoted πf , to be the function given by f ◦ π.

If π : E → F is a surjection and f : E → R is bounded, then the projection

of f , denoted f [F ], is the function defined on F by

f [F ](x) = sup
y∈π−1(x)

f(y).

Remark 2.1.16. Let π : E → F be a continuous surjection.

1. If f : F → R, then (πf)[F ] = f .

2. If f : E → R, then π(f [F ]) ≥ f , and the inequality is strict in general.

3. If f : E → R is u.s.c., then f [F ] is also u.s.c. and the supremum is attained.

4. If f : F → R is u.s.c., then πf is also u.s.c.

2.1.5 Candidate Sequences

Definition 2.1.17. A candidate sequence on a compact, metrizable space E is a

non-decreasing sequence H = (hk) of non-negative, real-valued functions on E that

16



converges pointwise to a function h. We often write limH = h. We always assume

by convention that h0 ≡ 0.

A candidate sequence H has u.s.c. differences if hk+1 − hk is u.s.c. for all

k. Note that in this case each hk is u.s.c., since h0 ≡ 0. If H has u.s.c. differences,

we may also refer to H as a u.s.c.d. candidate sequence, or we may write that H is

u.s.c.d.

Given a candidate sequence H, it is natural to seek a precise description of

the manner in which hk converges to h. For example, is this convergence uniform or

not? The notion of uniform equivalence, as defined by Downarowicz in [35], captures

exactly the manner in which hk converges to h.

Definition 2.1.18. Let H and F be two candidate sequences on a compact, metriz-

able space E. We say that H uniformly dominates F , written H ≥ F , if for all

ε > 0, and for each k, there exists `, such that fk ≤ h` + ε.

The candidate sequences H and F are uniformly equivalent, written H ∼=

F , if H ≥ F and F ≥ H.

Note that uniform equivalence is in fact an equivalence relation.

2.2 Basic Constructions

2.2.1 Order Of Accumulation

Definition 2.2.1. LetH be a candidate sequence on E. The transfinite sequence

associated to H, which we write as (uHα ) or (uα), is defined by transfinite induction
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as follows. Let τk = h− hk. Then

• let u0 ≡ 0;

• if uα has been defined, let uα+1 = limk ũα + τk;

• if uβ has been defined for all β < α for a limit ordinal α, let uα = ˜supβ<α uβ.

Note that for each α, either uα ≡ +∞ or uα is u.s.c. (since a non-increasing

limit of u.s.c. functions is u.s.c.). Furthermore, the sequence (uα) is non-decreasing

in α. It is also sub-additive in the following sense.

Proposition 2.2.2. Let H be a candidate sequence on E. Then for any two ordinals

α and β,

uα+β ≤ uα + uβ.

Proof. Let α be any ordinal. We prove the statement by transfinite induction on β.

For β = 0, the statement is trivial. Now assume by induction that the statement is

true for γ < β. If β is a successor ordinal, then by the inductive hypothesis,

uα+β = lim
k

˜(uα+(β−1) + τk) ≤ uα + lim
k

˜(uβ−1 + τk) = uα + uβ.

If β is a limit ordinal, then by the inductive hypothesis,

uα+β = ˜sup
γ<β

uα+γ ≤ uα + s̃up
γ<β

uγ ≤ uα + uβ.

If H is a candidate sequence on E, then by Theorem 3.3 in [13], there exists a

countable ordinal α such that the associated transfinite sequence satisfies uα = uα+1,

which then implies that uβ = uα for all β > α.
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Definition 2.2.3. In this setting, the least ordinal α such that uα = uα+1 is called

the order of accumulation of the candidate sequence H, which we write as either

α0(H) or αH0 .

Both the transfinite sequence and the order of accumulation are independent

of the choice of representative of uniform equivalence class [35].

While it is true that uα = uα+1 implies uα = uβ for all β > α, it is not true

that for a fixed x, uα(x) = uα+1(x) implies uβ(x) = uα(x) for all β > α. In fact, in

many of the constructions in Section 2.3 there is a point 0 and an ordinal α such

that uγ(0) = 0 for all γ < α and uα(0) = a > 0. Nonetheless, we make the following

definition.

Definition 2.2.4. Let H be a candidate sequence on E. Then for each x in E, we

define the pointwise order of accumulation of H at x, αH0 (x) or α0(x), as

αH0 (x) = inf{α : uβ(x) = uα(x) for all β > α}.

Remark 2.2.5. Note that αH0 (x) is always a countable ordinal, and

α0(H) = sup
x∈E

αH0 (x).

The following proposition relates the pointwise topological rank (Definition

2.1.10) to the pointwise order of accumulation.

Proposition 2.2.6. Let H be a candidate sequence on E. Then for any x in E,

α0(x) ≤


r(x) if r(x) is finite

r(x) + 1 if r(x) is infinite.

19



Proof. The proof proceeds by transfinite induction on r(x). If r(x) = 0 it is easily

seen that uγ(x) = 0 for all γ and α0(x) = 0.

Suppose the statement is true for all y with r(y) < α, and fix x with r(x) = α.

If α is finite, let ε = α, and if α is infinite, let ε = α + 1. We show that for all

β > α, uβ(x) = uε(x), and here we use transfinite induction on β > α. Note that

there is an open neighborhood U of x such that for all y in U , r(y) < r(x). Thus

any real-valued function f on E satisfies lim supy→x f(y) = lim supy→x, r(y)<r(x) f(y).

Suppose β > α is a successor. Then

˜(uβ−1 + τk)(x) = max
(
lim sup
y→x
r(y)<α

(uβ−1 + τk)(y), (uβ−1 + τk)(x)
)
.

Applying the induction hypotheses to all y with r(y) < α and uβ−1(x) gives that

˜(uβ−1 + τk)(x) = max
(
lim sup
y→x
r(y)<α

(uε−1 + τk)(y), (uε + τk)(x)
)
.

Letting k tend to infinity, we obtain uβ(x) = uε(x).

Suppose β is a limit ordinal. Then the inductive hypotheses imply

uβ(x) = max
(
lim sup
y→x
r(y)<α

sup
γ<β

uγ(y), sup
γ<β

uγ(x)
)

= max
(
lim sup
y→x
r(y)<α

uε−1(y), sup
γ<β

uε(x)
)

= uε(x).

It follows from the proof of Theorem 2.4.3 that these pointwise bounds on

α0(x) are optimal. Also, combining Remark 2.2.5, Proposition 2.2.6, and Proposition

2.1.11 (3), we obtain the following result.
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Corollary 2.2.7. Let H be a candidate sequence on a countable, compact Polish

space E. Then

α0(H) ≤


|E|CB − 1, if |E|CB is finite

|E|CB, if |E|CB is infinite.

2.2.2 Construction of Candidate Sequences

Now we discuss various ways of creating candidate sequences. We first begin

with elementary constructions that will be studied later in the context of Choquet

simplices.

Definition 2.2.8. Let H be a candidate sequence on E. If F is a compact subset

of E, then we define the restriction candidate sequence, H|F , on F .

Definition 2.2.9. Let H be candidate sequence on E, and let F be a compact

metrizable space with π : F → E a continuous surjection. Then the lifted candi-

date sequence of H to F , denoted πH, is the candidate sequence on F given by

(πhk) = (hk ◦ π).

Definition 2.2.10. Let F = (fk) be a candidate sequence on F , and let g : F → E

be an embedding (continuous injection). The embedded candidate sequence,

gF = (hk), on E is defined to be

hk(x) =


fk ◦ g−1(x) if x ∈ g(F )

0 if x ∈ E \ g(F ).

While all of the constructions in this section will be used, the following two

constructions (disjoint union and product candidate sequences) form the basis of

the proofs of Theorem 2.3.1 and Corollary 2.3.2.
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Definition 2.2.11. Let (Hn) be a countable collection of candidate sequences,

where Hn = (hnk) is defined on En. Then we define the disjoint union candi-

date sequence,
∐
Hn, as follows. Let E be the one-point compactification of the

disjoint union of the spaces En, with the point at infinity denoted 0. For each k,

let fk be the function on E such that fk|En = hnk and fk(0) = 0. Then the disjoint

union candidate sequence,
∐
Hn, is defined to be (fk).

Recall that ||f || denotes the supremum norm of the real-valued function f .

Lemma 2.2.12. Let (Hn) be a sequence of candidate sequences on En, where hn =

limHn. Let H =
∐
Hn. If ||hn|| → 0, then for all β,

1. uHβ (0) = lim supn ||uHn
β ||, and

2. ||uHβ || = supn ||uHn
β ||.

Proof. For each n, En is a clopen subset of E. It follows that uHγ (x) = uHn
γ (x) for

all ordinals γ, and for all x in En. Then (2) follows from the definitions and (1).

Also, upper semi-continuity of uHβ implies that uHβ (0) ≥ lim supn ||uHn
β ||. It remains

only to show the reverse inequality.

The hypotheses imply that

uH1 (0) ≤ h̃(0) ≤ lim
n
||hn|| = 0.

Now we use transfinite induction on β. The case β = 0 is trivial. Suppose

β is a successor. By sub-additivity of the transfinite sequence (Lemma 2.2.2)

uHβ (0) ≤ uHβ−1(0) + uH1 (0) = uHβ−1(0), which, along with induction, implies the
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desired inequality. Now suppose β is a limit ordinal. Monotonicity of the transfinite

sequence and induction again imply that

uHβ (0) = max
(
lim sup
y→0

uHβ (y), sup
γ<β

uHγ (0)
)
≤ lim sup

n
||uHn

β ||.

By a marked space (E,0), we mean a compact, metrizable space E together

with a marked point 0 in E.

Definition 2.2.13. Let F = (fk) and G = (gk) be two candidate sequences de-

fined on the marked spaces (E1,01) and (E2,02), respectively. Then we define

the product candidate sequence, H = F × G, on the marked product space

(E1 × E2, (01,02)) as the sequence

hk(x, y) =


fk(x) if y = 02

gk(y) if y 6= 02

Note that this definition is not symmetric under transposition of F and G. In

other words, this product is not commutative, but one may check easily that it is

associative.

Let H be a candidate sequence on the marked space (E,0). Define (H)×p to

be the candidate sequence on the product space (Ep,0p) given by iterated multipli-

cation: (H)×p = H×(p−1) ×H.

Lemma 2.2.14 (Powers Lemma). Let H be a candidate sequence on the marked

space (E,0). Suppose that for some limit ordinal α and real number a > 0,

(i) ||uγ|| ≤ a for all γ, and ||uγ|| < a for γ < α;
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(ii) uγ(0) = 0, for all γ < α, and uα(0) = a;

(iii) α0(x) ≤ α, for all x in E.

Then the transfinite sequence associated to (H)×p satisfies

(1) ||uH×p

γ || ≤ pa for all γ;

(2) ||uH×p

αk || ≤ ka and ||uH×p

γ || < ka, for all γ < αk and k ≤ p;

(3) αH
×p

0 (x) ≤ αp, for all x in Ep;

(4) uH
×p

γ (0p) = `a, for all α` ≤ γ < α(`+ 1), and ` = 0, . . . , p;

(5) αH
×p

0 (0p) = αp.

Proof. We argue by induction on p. For p = 1, the claims (1)-(5) follow from (i)-(iii).

Assume that (1)-(5) hold for p. We prove that (1)-(5) also hold with p+ 1 in

place of p. Let (upα) be the transfinite sequence forH×p = (hpk), and let hp = limH×p.

Recall that Ep+1 = Ep × E. The definition of H×(p+1) is that

hp+1
k (x, y) =


hpk(x), if y = 0

hk(y), if y 6= 0.

For all (x, y) in Ep+1, (hp+1−hp+1
k )(x, y) ≤ (hp−hpk)(x)+(h−hk)(y). It follows from

transfinite induction that for all γ, up+1
γ (x, y) ≤ upγ(x) + uγ(y). Using the inductive

hypotheses, we obtain that ||up+1
γ || ≤ ap+ a = a(p+ 1) for all γ, proving (1).

It follows from subadditivity that ||up+1
αk+γ|| ≤ k||up+1

α ||+ ||up+1
γ ||, which means

that in order to establish (2) we need only show that for all γ < α, ||up+1
γ || < a.

Furthermore, since up+1
γ is u.s.c. and therefore attains its supremum, it suffices
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to show that for all γ < α and all (x, y) in Ep+1, up+1
γ (x, y) < a. Let γ < α

and let (x, y) be in Ep+1. If y 6= 0, then there exists an open neighborhood U

of (x, y) in Ep+1 such that for all (s, t) in U , t 6= 0. Then hp+1
k (s, t) = hk(t) for

all (s, t) in U . It follows that up+1
γ (x, y) = uγ(y) < a. Now suppose y = 0. Let

ε > 0. Since uγ(0) = 0 and uγ is u.s.c., there exists an open neighborhood U of

0 in E such that for all s in U , uγ(s) ≤ ε. Then for all (t, s) in the open set

Ep × U , up+1
γ (t, s) ≤ upγ(t) + uγ(s) ≤ upγ(t) + ε. Since ε was arbitrary, we obtain

that up+1
γ (x,0) ≤ upγ(x). Using the induction hypothesis for H×p, we conclude that

up+1
γ (x,0) < a.

For any point (x, y) in Ep+1 with y 6= 0, we have already shown that up+1
γ (x, y) =

uγ(y) for all γ. For any point of the form (x,0), we have shown that up+1
α (x,0) ≤ a.

Furthermore, by upper-semicontinuity of up+1
α , we have that

up+1
α (x,0) ≥ lim sup

y→0
up+1
α (x, y) = lim sup

y→0
uα(y) = uα(0) = a.

Thus up+1
α (x,0) = a for all points of the form (x,0). This fact, in combination with

the fact that up+1
γ (x, y) = uγ(y) ≤ a for y 6= 0 and all γ, immediately implies that

up+1
α+γ(x,0) = upγ(x) + a for all x in Ep. Then induction gives statements (3)-(5).

Definition 2.2.15. For the rest of this chapter, we letHp denote the renormalized

product of H taken p times: if H×p = (h×pk ), then let Hp = (hpk) = (1
p
h×pk ).

Now we discuss more general products than just powers of the same candidate

sequence. We will only consider products of marked spaces. Let x be a point in the

product space (EN ×· · ·×E1,0), where 0 = (0N , . . . ,01). Let πi be projection onto
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Ei. Then define the function

ind(x) =


min{i : πi(x) 6= 0i} if x 6= 0

N if x = 0.

Also, let ηi(xN , . . . , x1) = (xN , . . . , xi). Note that with these notations, if (hk) =

HN × · · · × H1, then hk(x) = h
Hind(x)

k (πind(x)(x)) for all x.

Lemma 2.2.16 (Product Lemma). Let α be any non-zero countable ordinal, and

let α = ωβ1m1 + · · ·+ωβNmN be the Cantor Normal Form of α. Let a > 0 be a real

number, and suppose a1 > · · · > aN > 0 such that

N∑
i=1

ai = a,

and for each j = 1, . . . , N − 1,

aj
mj

≥
N∑

i=j+1

ai. (2.2.1)

(Note that for any a > 0, such a1, . . . , aN exist.) Now suppose that for each j in

{1, . . . , N}, Fj is a candidate sequence on (Ej,0j) such that

(i) ||uFj
γ || ≤ aj for all γ, and ||uFj

γ || < aj for γ < ωβj ;

(ii) u
Fj
γ (0j) = 0, for all γ < ωβj ;

(iii) u
Fj

ωβj
(0j) = aj;

(iv) α0(x) ≤ ωβj , for all x 6= 0j;

(v) α0(0j) = ωβj .

Denote Hj = Fmj

j and αj = ωβjmj. Then the product HN × · · · × H1 satisfies
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(1) ||uγ|| ≤ a for all γ, and ||uγ|| < a for γ < α;

(2) α0(x) ≤ α, for all x 6= 0;

(3) α0(0) = α, and uα0(0) = a. In particular, α0(HN × · · · × H1) = α.

Proof. The proof proceeds by induction on N . The case N = 1 follows from (i)-(v).

Now we assume that N > 1 and the statement holds for N − 1, and we show that

it holds for N .

LetHN×· · ·×H1 = (hk) be as above, with h = limk hk, and letHN×· · ·×H2 =

(h′k) with h′ = limk h
′
k. By the definition of the product candidate sequence, we

observe that (h − hk)(x) ≤ (h′ − h′k)(η2(x)) + (h1 − h1
k)(π1(x)). It follows that

uα(x) ≤ uHN×···×H2
α (η2(x)) + uH1

α (π1(x)) for all x in E and α.

Let x be in E. Then there exists an open neighborhood U in E such that for

all y in U , ind(y) ≤ ind(x).

If ind(x) = 1, the existence of the neighborhood U implies that uHγ (x) =

uH1
γ (π1(x)) for all γ.

Now we prove that for γ < ωβ1 and x such that ind(x) > 1, we have uHγ (x) ≤

uHN×···×H2
γ (η2(x)). Since F1 satisfies the hypotheses (i)− (v), we may apply Lemma

2.2.14 and conclude that H1 satisfies conclusions (1)-(5) in Lemma 2.2.14. Now let

γ < ωβ1 and let x be in E with ind(x) > 1. By conclusion (4) in Lemma 2.2.14

applied to H1, u
H1
γ (01) = 0. Then for any ε > 0, using that uH1

γ is u.s.c., there exists

an open neighborhood V of x such that for all y in V , uHγ (y) ≤ uHN×···×H2
γ (η2(y))+ε.

Since ε > 0 was arbitrary, we have the desired inequality.

By the induction hypothesis on N − 1 applied to HN × · · · × H2, we have
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supγ<ωβ1 u
HN×...H2
γ (η2(x)) ≤

∑N
j=2 aj. By conclusion (2) in Lemma 2.2.14 applied to

H1, ||uH1

ωβ1
|| ≤ a1

m1
. Hence, for x in E,

uHωβ1 (x) = ˜( sup
γ<ωβ1

uHγ
)
(x) ≤ max

( a1

m1

,

N∑
j=2

aj

)
≤ a1

m1

.

Then by upper semi-continuity of uH
ωβ1

, we have that for any x with ind(x) > 1,

uHωβ1 (x) ≥ lim sup
y→x

ind(y)=1

uHωβ1 (y) = lim sup
y→x

ind(y)=1

uH1

ωβ1
(π1(y)) = uH1

ωβ1
(01) =

a1

m1

.

We conclude that for any x with ind(x) > 1, uH
ωβ1

(x) = a1

m1
. By sub-additivity

(Proposition 2.2.2), we have that uH
ωβ1m1

(x) ≤ a1. By upper semi-continuity, for all

x with ind(x) > 1,

uHωβ1m1
(x) ≥ lim sup

y→x
ind(y)=1

uH1

ωβm1
(π1(y)) = uH1

ωβm1
(01) = a1.

It follows that uH
ωβ1m1

(x) = a1 for all x with ind(x) > 1, and then uH
ωβ1m1+γ

(x) =

a1 + uHN×···×H2
γ (η2(x)) for all x with ind(x) > 1 and all γ. Now with the induc-

tion hypothesis on N − 1 applied to HN × · · · × H2, the properties (1)-(3) follow

immediately.

We end this section by stating the semi-continuity properties of these new

candidate sequences.

Proposition 2.2.17. (1) If Hk is a sequence of u.s.c.d. candidate sequences and

||hk|| → 0, then H =
∐
Hk is a u.s.c.d. candidate sequence.

(2) If H1 and H2 are u.s.c.d. candidate sequences and (limH2)(02) = 0, then

H = H1 ×H2 is a u.s.c.d. candidate sequence.
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(3) If H is a u.s.c.d. candidate sequence on E and F is closed subset of E, then

H|F is a u.s.c.d. candidate sequence.

(4) If H is a u.s.c.d. candidate sequence on E and πH is the lift of H to F ,

where π : F → E is a continuous surjection, then πH is a u.s.c.d. candidate

sequence.

Proof. (1) The condition ||hk|| → 0 implies that H has u.s.c. differences at 0 for all

k.

(2) Because H1 is u.s.c.d., the condition (limH2)(02) = 0 implies that H has u.s.c.

differences at (x,02) for all x and k.

(3) The restriction of any u.s.c. function to a subset is also u.s.c.

(4) The lift of any u.s.c. function under a continuous map is also u.s.c.

2.2.3 Choquet Simplices and Candidate Sequences

The relevant chapters of [80] provide a good reference for most of the basic

facts about simplices required in this work.

Let K be a metrizable, compact, convex subset of a locally convex topological

vector space. Then the extreme points of K, ex(K), form a non-empty Gδ subset

of K. We call a function f : K → R affine (resp. convex, concave) if f(tx+ (1−

t)y) = tf(x) + (1− t)f(y) (resp. ≤,≥) for all x and y in K and all t in [0, 1].

Definition 2.2.18. Let K be a compact, convex subset of a locally convex topo-

logical vector space. Then K is a Choquet simplex if the dual of the continuous
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affine functions on K is a lattice.

For any Polish space E, let M(E) be the space of all Borel probabilities on E

with the weak* topology. If E is compact, then M(E) is a Choquet simplex, with

the extreme points given by the point measures.

Definition 2.2.19. Let K be a Choquet simplex. Then we define the barycenter

map, bar : M(K) → K, to be the function given for each µ in M(K) by

bar(µ) =

∫
y dµ(y),

where the integral means that for all continuous, affine functions f : K → R,

f(bar(µ)) =

∫
K

f dµ.

The barycenter map is well-defined, continuous, affine, and surjective (see

[80]).

If K is a metrizable Choquet simplex, then a function f : K → R is called

harmonic (resp. sub-harmonic, sup-harmonic) if for all µ in M(K),

f(bar(µ)) =

∫
ex(K)

f dµ,

(resp. ≤,≥). A harmonic (resp. sub-harmonic, sup-harmonic) function is always

affine (resp. convex, concave), but an affine (resp. convex, concave) function need

not be harmonic (resp. sub-harmonic, sup-harmonic). On the other hand, a con-

tinuous affine (resp. convex, concave) function is always harmonic (resp. sub-

harmonic, sup-harmonic). Furthermore, by standard arguments, any u.s.c. affine

(resp. concave) function is harmonic (resp. sup-harmonic). It is shown in the proof
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of Fact 2.2.24 (see Appendix B, Section A.2) that any u.s.c. convex function is

sub-harmonic.

In the metrizable case, Choquet proved the following characterization of Cho-

quet simplices.

Theorem 2.2.20 (Choquet). Let K be a metrizable, compact, convex subset of a

locally convex topological vector space. Then K is a Choquet simplex if and only if

for each point x in K, there exists a unique Borel probability measure Px on ex(K)

such that for every continuous affine function f : K → R,

f(x) =

∫
ex(K)

f dPx.

Definition 2.2.21. If K is a metrizable Choquet simplex and f : ex(K) → R is

measurable, the harmonic extension fhar : K → R of f is defined as follows: for

x in K, let

fhar(x) =

∫
ex(K)

f dPx.

Remark 2.2.22. Using Choquet’s characterization of metrizable Choquet simplices,

it is not difficult to show that if f : K → R is a measurable function and for each x

in K,

f(x) =

∫
f dPx,

then f is harmonic. It follows that the harmonic extension of a function on ex(K)

is, in fact, harmonic.

In the metrizable case, the following theorem of Choquet characterizes exactly

which topological spaces appear as the set of extreme points of a Choquet simplex.
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Theorem 2.2.23 (Choquet [26]). The topological space E is homeomorphic to the

set of extreme points of a metrizable Choquet simplex if and only if E is a Polish

space.

The following fact is stated as Fact 2.5 in [36], where there is a sketch of the

proof. We include a proof as Appendix B (Section A.2) for the sake of completeness.

Fact 2.2.24. Let K be a metrizable Choquet simplex, and let f : K → [0,∞) be

convex and u.s.c. Then (f |ex(K))
har is u.s.c.

If K is a metrizable Choquet simplex, we denote by M(ex(K)) the set of mea-

sures µ inM(K) such that µ(K\ex(K)) = 0. Consider the map π : M(ex(K)) → K

given by the restriction of the barycenter map to M(ex(K)). This restriction inher-

its the continuity and affinity of the barycenter map. Furthermore, this restriction

is always bijective (by Choquet’s characterization of metrizable Choquet simplices,

Theorem 2.2.20), but it may not have a continuous inverse. In fact, π has a contin-

uous inverse if and only if ex(K) is closed in K. These considerations lead to the

study of Bauer simplices.

Definition 2.2.25. A metrizable, compact, convex subset K of a locally convex

topological vector space is a Bauer simplex if K is a Choquet simplex such that

ex(K) is a closed subset of K.

If E is any compact, metrizable space, then M(E) is a Bauer simplex with

ex(M(E)) homeomorphic to E. If K is a Bauer simplex, then the restriction of the

barycenter map π : M(ex(K)) → K has a continuous inverse and is therefore an

affine homeomorphism from M(ex(K)) to K.
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Proposition 2.2.26. If K is a Bauer simplex and f : K → [0,∞) is bounded and

harmonic, then f̃ is harmonic and f̃ |ex(K) = f̃ |ex(K).

Proof. Since f is harmonic, in particular f is affine. Let x and y be inK, and let ax+

by be a convex combination in K. We have f̃(ax+by) ≥ f(ax+by) = af(x)+bf(y).

For fixed a, b, and y, the above formula implies that f̃(ax + by) ≥ af̃(x) + bf(y).

Now fixing a, b, and x, we obtain f̃(ax+ by) ≥ af̃(x) + bf̃(y). Now since f̃ is u.s.c.

and concave, it follows that f̃ is sup-harmonic.

Let E = ex(K). It follows from the definitions that

f(t) =

∫
E

f |E dPt ≤
∫
E

(̃f |E) dPt ≤
∫
E

f̃ dPt. (2.2.2)

Now consider the two functions g1, g2 : K → R, given for each t in E by

g1(t) =


f̃ |E(t), if t ∈ E,

0, if t /∈ E,

g2(t) =


f̃ |E(t), if t ∈ E,

0, if t /∈ E.

Since E is closed, g1 and g2 are u.s.c. They are also obviously convex. Then by Fact

2.2.24, G1 =
(
(g1)|E

)har
and G2 =

(
(g2)|E

)har
are u.s.c. Note that for t ∈ K,

G1(t) =

∫
E

(̃f |E) dPt, and G2(t) =

∫
E

f̃ dPt.

Thus, taking the u.s.c. envelope of the expressions in Equation (2.2.2) and using

that G1 and G2 are u.s.c., we have that

f̃(t) ≤
∫
E

(̃f |E) dPt ≤
∫
E

f̃ dPt, (2.2.3)
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which shows that f̃ is sub-harmonic. Now we have shown that f̃ is harmonic and

the inequalities in Equation (2.2.3) are all equalities.

A candidate sequence H = (hk) on a Choquet simplex is said to be harmonic if

each hk is harmonic. The following proposition relates the transfinite sequence of a

candidate sequence H on a Bauer simplex K to the transfinite sequence of H|ex(K).

Proposition 2.2.27. If H is a harmonic candidate sequence on the Bauer simplex

K, then for each α, uHα is harmonic and

uHα = (u
H|ex(K)
α )har. (2.2.4)

Proof. The proof proceeds by transfinite induction on α. For all k, since hk and h

are harmonic, τk = h− hk is harmonic.

Suppose uHα is harmonic and Equation (2.2.4) holds. Then uHα +τk is harmonic.

By Proposition 2.2.26, we deduce that ũHα + τk is harmonic, and for t in K,

(uHα + τk)(t) =

∫
E

˜(uHα + τk)|EdPt =

∫
E

˜
(u

H|E
α + τk)|EdPt.

Recall that {uα + τk}k is a non-increasing sequence in k. Thus we can take the

limit in k and apply the Monotone Convergence Theorem to obtain that uHα+1 is

also harmonic, and for t in K,

uHα+1(t) =

∫
E

u
H|E
α+1dPt,

which implies that Equation (2.2.4) holds with α+ 1 in place of α.

The previous arguments apply in a similar way to the case when α is a limit

ordinal.
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Remark 2.2.28. Let K be a Choquet simplex which is not necessarily Bauer. Even

when the candidate sequence H on K is harmonic, the functions uHα are not in

general harmonic. However, we check now that if H is harmonic, then uHα is concave

for all α. Assuming by induction that uHα is concave, we have that ũHα + τk is

concave, as it is the u.s.c. envelope of a concave function. Then uHα+1 is the limit of

a sequence of concave functions, and so uHα+1 is concave. Now for any countable limit

ordinal α, there is a strictly increasing sequence (αn) of ordinals tending to α. Then

supβ<α u
H
β = limn u

H
αn

since the sequence (uHβ ) is increasing in β. Then supβ<α u
H
β

is concave, as it is the limit of a sequence of concave functions (by induction), and

thus uHα is concave for any countable limit ordinal as well.

When ex(K) is not compact, M(ex(K)) is not a Bauer simplex, and the

restriction of the barycenter map to this set is not a homeomorphism. Instead of

using this restriction in such cases, we consider the Bauer simplex M(ex(K)) and

the continuous surjection π : M(ex(K)) → K, where π is the restriction of the

barycenter map to M(ex(K)). In the following two lemmas we consider candidate

sequences which may arise as embedded candidate sequences.

Lemma 2.2.29. Let E be a compact, metrizable space, and let K be a metrizable

Choquet simplex. Suppose there exists a continuous injection g : E → K. Let F be a

u.s.c.d. candidate sequence on E, let H′ = (h′k) be the embedded candidate sequence

gF , and let H be the harmonic extension of H′|ex(K) to K. If h′k+1 − h′k is convex

for each k, then H is u.s.c.d. In particular, if g(E) ⊂ ex(K) then H is u.s.c.d.

Proof. Since F is u.s.c.d. and g(E) is closed, we have that h′k+1 − h′k is u.s.c. for
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each k. Then h′k+1−h′k is convex and u.s.c. for each k. By applying Fact 2.2.24, we

obtain that hk+1 − hk is u.s.c. for each k. Thus H is u.s.c.d.

In particular, if g(E) ⊂ ex(K), then h′k+1 − h′k takes non-zero values only on

ex(K). Therefore h′k+1 − h′k is convex for each k, and by the previous argument, H

is u.s.c.d.

The following lemma is used repeatedly throughout the rest of this work. The

utility of this statement lies in the fact that it allows one to compute the transfinite

sequence on a (frequently much simpler) subset of the simplex and then write the

transfinite sequence on the entire simplex in terms the transfinite sequence on this

subset. When K is a Choquet simplex that is not Bauer and H is a harmonic candi-

date sequence on K, then this statement takes the place of an integral representation

of uHα .

Lemma 2.2.30 (Embedding Lemma). Let K be a metrizable Choquet simplex with

E = ex(K). Suppose H is a harmonic candidate sequence on K and there is a

set F ⊂ E such that the sequence {(h − hk)|E\F} converges uniformly to zero. Let

L = F , and let π : M(E) → K be the restriction of the barycenter map. Then for

all ordinals α and for all x in K,

uHα (x) = max
µ∈π−1(x)

∫
L

uH|Lα dµ, (2.2.5)

and α0(H) ≤ α0(H|L). In particular, if F is compact, then uHα |F = u
H|F
α for all α

and α0(H) = α0(H|F ).

Proof. Note that Equation (2.2.5) implies immediately that α0(H) ≤ α0(H|L).

Further, suppose F is compact. Then L = F ⊂ ex(K), and if x is in F , then
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π−1(x) = {εx}, where εx is the point mass at x. In this case Equation (2.2.5) implies

that uHα |F = u
H|F
α for all α and α0(H) = α0(H|F ). We now prove Equation (2.2.5).

Observe that since L is closed and u
H|L
α is u.s.c., the function 1L · uH|Lα is

u.s.c., where 1L is the characteristic function of the set L. Then the function µ 7→∫
L
u
H|L
α dµ is u.s.c., and therefore by Remark 2.1.16 (3), for each x in K,

sup
µ∈π−1(x)

∫
L

uHL
α dµ = max

µ∈π−1(x)

∫
L

uHL
α dµ.

Let x be in K. Since uHα is concave (see Remark 2.2.28) and u.s.c., it follows

that uHα is sup-harmonic. Therefore

uHα (x) ≥
∫
K

uHα dµ, for all µ ∈ π−1(x).

Using the fact that uHα |L ≥ u
H|L
α , we obtain, for all µ ∈ π−1(x),

uHα (x) ≥
∫
K

uHα dµ ≥
∫
L

uHα dµ ≥
∫
L

uH|Lα dµ.

It follows that for each ordinal α,

uHα (x) ≥ max
µ∈π−1(x)

∫
L

uH|Lα dµ.

We now prove using transfinite induction on α that for all α and x in K,

uHα (x) ≤ max
µ∈π−1(x)

∫
L

uH|Lα dµ, (2.2.6)

which will complete the proof of the Lemma.

The inequality in Equation (2.2.6) is trivial for α = 0. Suppose Equation

(2.2.6) holds for some ordinal α. For the sake of notation, we allow y = x in all

expressions involving lim supy→x below. First we claim that for any y in K, there
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exists a measure µy supported on L ∪ E such that µy is in π−1(y) and

max
µ∈π−1(y)

∫
L

uH|Lα dµ =

∫
L

uH|Lα dµy. (2.2.7)

Indeed, suppose the maximum is obtained by the measure ν. If ν(L) = 1, then we are

done. Now suppose ν(L) < 1. Then ν = ν(L)νL+(1−ν(L))νE\L, where νS is the zero

measure on S if ν(S) = 0 and otherwise νS(A) = 1
ν(S)

ν(S ∩ A). Let z = bar(νE\L),

which exists since νE\L is in M(E) (using that ν(E \ L) = 1− ν(L) > 0). Now let

µy = ν(L)νL + (1− ν(L))Pz. Then µy is supported on L ∪ E, bar(µy) = y, and

∫
L

uH|Lα dν ≤
∫
L

uH|Lα dµy.

Thus the maximum in Equation (2.2.7) is obtained by the measure µy, which is

supported on L ∪ E and satisfies bar(µ) = y.

Now let ε > 0. Since H is harmonic, we also have that τk is harmonic. Then

for any y in K and k large enough (depending only on ε),

uHα (y) + τk(y) = max
µ∈π−1(y)

∫
L

uH|Lα dµ+ τk(y) (2.2.8)

=

∫
L

uH|Lα dµy +

∫
τkdµy (2.2.9)

=

∫
L

uH|Lα dµy +

∫
L

τkdµy +

∫
E\L

τkdµy (2.2.10)

≤
∫
L

uH|Lα dµy +

∫
L

τkdµy + ε (2.2.11)

=

∫
L

(uH|Lα + τk)dµy + ε (2.2.12)

≤
∫
L

˜
(u

H|L
α + τk)|Ldµy + ε (2.2.13)

≤ max
µ∈π−1(y)

∫
L

˜
(u

H|L
α + τk)|Ldµ+ ε. (2.2.14)
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Then we have (allowing y = x in the limit suprema) that

uHα+1(x) = lim
k

lim sup
y→x

uHα (y) + τk(y) (2.2.15)

≤ lim
k

lim sup
y→x

max
µ∈π−1(y)

∫
L

˜
(u

H|L
α + τk)|Ldµ+ ε (2.2.16)

≤ lim
k

max
µ∈π−1(x)

∫
L

˜
(u

H|L
α + τk)|Ldµ+ ε (2.2.17)

≤ max
µ∈π−1(x)

∫
L

u
H|L
α+1dµ+ ε, (2.2.18)

where the inequalities in (2.2.17) and (2.2.18) are justified by Lemmas 2.2.33 and

2.2.34, respectively. Since ε was arbitrary, we have shown the inequality in Equation

(2.2.6) with the ordinal α replaced by α+ 1.

Now suppose the inequality in Equation (2.2.6) holds for all β < α, where α

is a limit ordinal. Using monotonicity of the sequence u
H|L
α , we see that (allowing

y = x in the limit suprema)

uHα (x) = s̃up
β<α

uHβ (x)

= lim sup
y→x

sup
β<α

max
µ∈π−1(y)

∫
L

u
H|L
β dµ

≤ lim sup
y→x

max
µ∈π−1(y)

∫
L

uH|Lα dµ

≤ max
µ∈π−1(x)

∫
L

uH|Lα dµ,

where Lemma 2.2.33 justifies the last inequality. Thus we have shown that the

inequality in Equation (2.2.6) holds for α, which completes the induction and the

proof.

Remark 2.2.31. Given the assumptions of the Embedding Lemma, if x is in ex(K),

then π−1(x) = {εx}, where εx is the point mass at x. It follows that, if x is in
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L ∩ ex(K), then uHα (x) = u
H|L
α (x) for all α. Further, if x is in ex(K) \ L, then

uHα (x) = 0 for all α.

Remark 2.2.32. With the notation of the Embedding Lemma, Equation (2.2.5) im-

plies that ||uHα || = ||uH|Lα || for all α.

Lemma 2.2.33. Let K be a metrizable Choquet simplex and L a closed subset of

K. Let f : K → [0,∞) be u.s.c. Then for all x in K,

lim sup
y→x

max
µ∈π−1(y)

∫
L

fdµ ≤ max
µ∈π−1(x)

∫
L

fdµ,

where π is the restriction of the barycenter map on M(K) to M(ex(K)).

Proof. Let T : M(K) → R be defined by T (µ) =
∫
L
fdµ. We have that fχL is u.s.c.

since f is non-negative and u.s.c. and L is closed. It follows that T is u.s.c. Then

the result follows from Remark 2.1.16 (3).

Lemma 2.2.34. Let K be a metrizable Choquet simplex and L a closed subset of

K. Let {fk : K → [0,∞)} be a non-increasing sequence of u.s.c. functions, with

limk fk = f . Then for all x in K,

lim
k→∞

max
µ∈π−1(x)

∫
L

fkdµ ≤ max
µ∈π−1(x)

∫
L

fdµ,

where π is the restriction of the barycenter map on M(K) to M(ex(K)).

Proof. Let x be in K. Define Tk : M(K) → R and T : M(K) → R by the equations

Tk(µ) =

∫
L

fkdµ, and T (µ) =

∫
L

fdµ.
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Since fkχL and fχL are u.s.c., T and Tk are u.s.c. Proposition 2.4 of [13] states (in

slightly greater generality) that

lim
k

max
µ∈π−1(x)

Tk(µ) = max
µ∈π−1(x)

lim
k
Tk(µ). (2.2.19)

By the Monotone Convergence Theorem,

T (µ) = lim
k
Tk(µ). (2.2.20)

Combining Equations (2.2.19) and (2.2.20) concludes the proof.

Even when the hypotheses of the Embedding Lemma are satisfied, it is possible

to have α0(H) < α0(H|L), as the next example shows.

Example 2.2.35. This example provides a candidate sequence H satisfying the hy-

potheses of the Embedding Lemma and α0(H) < α0(H|L), which proves that the

inequality α0(H) ≤ α0(H|L) is not an equality in general. Suppose the set of

extreme points of K consists of two points, b1 and b2, sequences {cn} and {dn}

with cn → b1 and dn → b2, and a countable collection {an}. Let b = 1
2
(b1 + b2)

in K. Suppose further that with the subspace topology inherited from K, the

set {an} ∪ {b} is homeomorphic to ω2 + 1, with the homeomorphism given by

g1 : ω2 + 1 → {an} ∪ {b} and g1(ω
2) = b. One may construct such a simplex

K as the image of M({an} ∪ {b, b1, b2} ∪ {cn} ∪ {dn}) under a continuous affine

map (Lemma 2.5.14). Let F1 = (f 1
k ) be u.s.c.d. candidate sequence on ω2 + 1 such

that α0(F1) = 2, uF1
1 (t) = uF1

2 (t) for t 6= ω2, and ||uF1
2 || = 1. Such a sequence

is given by Corollary 2.3.2. Let F2 = (f 2
k ) be the u.s.c.d. candidate sequence on
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{cn} ∪ {dn} ∪ {b1, b2} given, for x in {cn} ∪ {dn} ∪ {b1, b2} and k ≥ 1, by

f 2
k (x) =


0 if x = cn or x = dn, with k < n

1 otherwise.

Now consider the candidate sequence H′ = (h′k) on K such that for x in K,

h′k(x) =


f 1
k (g

−1
1 (x)) if x = an

f 2
k (x) if x = cn, dn

0 otherwise

Note that H′ is u.s.c.d., convex, and h′k+1 − h′k is convex. Let H be the harmonic

extension of H′|ex(K) on K. Then by Lemma 2.2.29, H is harmonic and u.s.c.d.

Let F = ex(K) and L = F = {an} ∪ {b, b1, b2} ∪ {cn} ∪ {dn}. Since L is the

disjoint union the two (clopen in L) sets {an} ∪ {b} and {b1, b2} ∪ {cn} ∪ {dn}, we

see that for t in L,

uH|Lα =


uF1
α (t), if t ∈ {an} ∪ {b}

uF2
α (t), if t ∈ {b1, b2} ∪ {cn} ∪ {dn}.

Thus α0(H|L) = max(α0(F1), α0(F2)) = α0(F1) = 2 and ||uH|L2 || ≤ 1. Also, for all

t 6= b, u
H|L
1 (t) = u

H|L
2 (t), and for t ∈ {b1, b2}, uH|L1 (t) = 1.

Applying the Embedding Lemma, we have that for all t in K,

uHα (t) = max
µ∈π−1(t)

∫
L

uH|Lα dµ. (2.2.21)

If µ ∈ π−1(t) and µ({b}) > 0, then let ν = 1
2
µ({b})(εb1 + εb2) + (1 − µ({b}))µL\{b},

where µL\{b} is the measure µ conditioned on the set L \ {b}. Then ν ∈ π−1(t),

ν({b}) = 0, and
∫
L
u
H|L
i dµ ≤

∫
L
u
H|L
i dν for i ∈ {1, 2}. Thus the maximum in
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Equation (2.2.21) is obtained by a measure µ with µ({b}) = 0. Now if µ ∈ π−1(t)

and µ({b}) = 0, then
∫
L
u
H|L
1 dµ =

∫
L
u
H|L
2 dµ since u

H|L
1 (s) = u

H|L
2 (s) for s ∈ L\{b}.

From these facts we deduce uH1 (t) = uH2 (t) for all t in K, and therefore α0(H) = 1 <

α0(H|L).

2.3 Realization of Transfinite Orders of Accumulation

Recall that for every countable ordinal α, ωα + 1 is a countable, compact,

Polish space. Then let Kα be the (unique up to affine homeomorphism) Bauer

simplex with ex(Kα) = ωα + 1. For notation, let 0α be the point ωα in Kα, and

let Eα = ex(Kα). In this section we construct, for each countable α, a harmonic,

u.s.c.d. candidate sequence Hα on Kα such that α0(Hα) = α.

The idea of the following theorem is to construct, for each countable, irre-

ducible ordinal α, a candidate sequence H such that the transfinite sequence does

not converge uniformly at α, in some sense. The main tools of the proof are the

disjoint union candidate sequence and the powers candidate sequences.

Theorem 2.3.1. For all real numbers 0 < ε < a, and for all countable, irreducible

ordinals δ and α, with δ < α, there exists a harmonic, u.s.c.d candidate sequence

Hα on Kα such that

(1) ||h|| ≤ a if α is finite, and ||h|| ≤ ε if α is infinite;

(2) ||uδ|| ≤ ε;

(3) ||uγ|| ≤ a for all γ, and ||uγ|| < a for γ < α;
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(4) h(0α) = 0, uγ(0α) = 0, for all γ < α, and uα(0α) = a;

(5) α0(Hα) = α.

Proof. Suppose that we have constructed an u.s.c.d. candidate sequenceH′ on ωα+1

and shown that it possesses properties (1)-(5). Since Kα is Bauer, Proposition 2.2.27

implies that we can let Hα be the harmonic extension of H′ to Kα and properties

(1)-(5) carry over exactly. So without loss of generality, we will define Hα directly

on Eα and work exclusively on Eα.

The rest of the proof proceeds by transfinite induction on the non-zero irre-

ducible ordinals α (α is non-zero because δ < α). This is equivalent, by Proposition

2.1.3, to writing α = ωβ and using transfinite induction on β. The base case is when

β = 0.

Case (β = 0). In this case Eω0 = E1 = ω + 1, the one-point compactification of the

natural numbers. Now δ must be 0 and by definition u0 ≡ 0. Let H = (hk), where

hk(n) = 0 if k ≤ n, hk(n) = a if k > n, and hk(01) = 0. Then h ≤ a. Since each n

is isolated in E1, r(n) = 0, which implies that α0(n) = 0 and uγ(n) = 0 for all γ (by

Proposition 2.2.6). The point at infinity, 01, has topological order of accumulation

1, which implies that α0(01) ≤ 1 (by Proposition 2.2.6). It only remains to check

that u1(01) = a. Fix k. For any n > k, τk(n) = h(n)− hk(n) = a. Thus τ̃k(01) ≥ a.

Letting k go to infinity gives that u1(01) ≥ a. Since u1 ≤ h̃ ≤ a, we obtain that

u1(01) = a, as desired.

Case (β implies β + 1). We assume the statement is true for ωβ, and we need to

show that it is true for ωβ+1 = supn ω
βn. In this case Eωβ+1 is homeomorphic to the
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one-point compactification of the disjoint union of the spaces (Eωβn) (by Theorem

2.1.12). With this homeomorphism, we may assume without loss of generality that

Eωβ+1 is the one-point compactification of the disjoint union of the spaces Eωβn. Fix

0 < ε < a, and let {ap} be a sequence of positive real numbers such that ap < a

for all p and limp ap = a. Using the induction hypothesis, for each p, we choose

a u.s.c.d. candidate sequence Hωβ on Eωβ which satisfies conditions (1)-(5) with

parameters ap, ε, and δ < ωβ. For each p, let Hp
ωβ be the p-power sequence of this

Hωβ restricted to Eωβp (note that ωω
βp + 1 ⊂ (ωω

β
+ 1)p). Then || lim(Hp

ωβ)|| ≤ a
p
,

and ||u
Hp

ωβ

ωβ || ≤ ap

p
. Let N be such that a

N
≤ ε, and define Hωβ+1 =

∐
n≥N Hn

ωβ . It

remains to check (1)-(5) for Hωβ+1 .

(1) Using that h(0ωβ+1) = 0,

||h|| = sup
n≥N

|| limHn
ωβ || = || limHN

ωβ || ≤
a

N
≤ ε < a.

(2) For irreducible δ < ωβ+1, we have δ ≤ ωβ. Monotonicity of the transfinite

sequence implies

||u
Hn

ωβ

δ || ≤ ||u
Hn

ωβ

ωβ ||,

for every n. Also, Lemma 2.2.12 implies

||uδ|| = sup
n≥N

||u
Hn

ωβ

δ ||.

Putting these inequalities together gives

||uδ|| = sup
n≥N

||u
Hn

ωβ

δ || ≤ sup
n≥N

||u
Hn

ωβ

ωβ || ≤ a

N
≤ ε.
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(3) For every γ, Lemma 2.2.12 and Lemma 2.2.14 (1) imply

||uγ|| = sup
n≥N

||u
Hn

ωβ
γ || ≤ a.

Further, for any γ < α, there exists m such that γ < ωβm. Using subadditivity

(Lemma 2.2.2), ||u
Hn

ωβ
γ || ≤ ||u

Hn
ωβ

ωβm
|| ≤ m

n
an. Then

||uγ|| = sup
n≥N

||u
Hn

ωβ
γ || ≤ max

(
a1, . . . , am, sup

n>m

m

n
an

)
< a.

(4) By definition, h(0ωβ+1) = 0. Let γ < α. There exists a k such that γ < ωβk.

Then Lemma 2.2.12, monotonicity, and Lemma 2.2.14 imply

uγ(0ωβ+1) ≤ lim sup
n→∞

||u
Hn

ωβ
γ || ≤ lim sup

n→∞
||u

Hn
ωβ

ωβk
|| ≤ lim sup

n→∞

ka

n
= 0.

Also, Lemma 2.2.12 and Lemma 2.2.14 imply

uα(0ωβ+1) ≥ lim sup
n→∞

u
Hn

ωβ
α (0ωβn) = a,

which (combining with (3)) implies that uα(0ωβ+1) = a.

(5) For x 6= 0ωβ+1 , there exists n such that x ∈ Eωβn, which implies that r(x) ≤

ωβn. Then Proposition 2.2.6 gives that α0(x) ≤ ωβn + 1 < ωβ+1. The fact that

α0(0ωβ+1) = ωβ+1 then follows immediately from (3) and (4). Thus α0(H) = ωβ+1.

Case (β limit ordinal). We assume the statement is true for all ωξ with ξ < β,

and we need to show that it is true for ωβ. In this case there is a strictly increasing

sequence of irreducible ordinals (ωβn) with supn ω
βn = ωβ, and Eωβ is homeomorphic

to the one-point compactification of the disjoint union of the Eωβn (by Remark
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2.1.13). With this homeomorphism, we may assume without loss of generality that

Eωβ is the one-point compactification of the disjoint union of the spaces Eωβn . Fix

0 < ε < a, and let {an} be a sequence of positive real numbers with an < a for all n

and limn an = a. By the induction hypothesis, for each n > 1, there exists a u.s.c.d.

candidate sequence Hωβn on Eωβn satisfying (1)-(5) with parameters an,
ε
n
, ωβn and

δn = ωβn−1 . Now fix δ irreducible with δ < ωβ. Since supn ω
βn = ωβ, there exists N

such that ωβN−1 > δ. Let Hωβ =
∐

n≥N Hωβn . All that remains is to verify (1)-(5).

(1) Using that h(0ωβ) = 0, we get

||h|| = sup
n≥N

|| limHωβn || ≤
ε

N
≤ ε.

(2) Since δ < ωβN−1 , Lemma 2.2.12 and monotonicity imply (as in the previous case)

||uδ|| ≤ sup
n≥N

||uHωβn

δ || ≤ sup
n≥N

||uHωβn

ωβn−1
|| ≤ sup

n≥N

ε

n
≤ ε.

(3) For any γ, by construction,

||uγ|| ≤ sup
n≥N

||uHωβn
γ || ≤ a.

Further, for γ < α, there exists m such that γ < ωβm . For n > m, ||uHωβn
γ || ≤ ε

n
.

Then

||uγ|| ≤ sup
n≥N

||uHωβn
γ || ≤ max

(
a1, . . . , am, sup

n>m

ε

n

)
< a.

(4) By definition, h(0ωβ) = 0. For any γ < ωβ, there exists some k such that for all

47



n ≥ k, ωβn > γ. Then

uγ(0ωβ) ≤ lim sup
n→∞

||uHωβn
γ || ≤ lim sup

n→∞
||uHωβn

ωβn−1
|| ≤ lim sup

n→∞

ε

n
= 0.

(5) For any x 6= 0α, there exists n such that x ∈ Eωβn . Then α0(x) ≤ r(x) ≤ ωβn <

ωβ. By (3) and (4), α0(0ωβ) = ωβ. Therefore α0(H) = ωβ.

Corollary 2.3.2. For all positive real numbers a and non-zero countable ordinals

α, there exists a harmonic, u.s.c.d. candidate sequence H on Kα such that the

transfinite sequence corresponding to either H or H|ex(Kα) satisfies

(1) ||uγ|| ≤ a for all γ, and ||uγ|| < a for all γ < α;

(2) h(0α) = 0, and uα(0α) = a;

(3) α0(H) = α0(H|ex(Kα)) = α.

Proof. Let α be a non-zero countable ordinal, and suppose the Cantor Normal Form

of α (as in Theorem 2.1.2) is given by

α = α1m1 + · · ·+ αNmN .

Let a1 > · · · > aN > 0 be real numbers such that
∑
aj = a and for each j =

1, . . . , N − 1,

aj
mj

≥
N∑

i=j+1

ai.

For each j = 1, . . . , N , let Fj be a harmonic, u.s.c.d. candidate sequence given by

Theorem 2.3.1 with parameters aj and αj. Define Hj to be the product sequence
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Fmj

j restricted to Kαjmj
, and let H = HN ×· · ·×H1 restricted to Kα. By definition

of H, h(0α) = 0. The rest of properties (1)-(3) follow from Lemma 2.2.16.

Corollary 2.3.3. Let a > 0, and let α be a countable, infinite ordinal. Then there is

a harmonic, u.s.c.d. candidate sequence H on Kα such that the transfinite sequence

corresponding to either H or H|ex(Kα) satisfies

(1) ||uγ|| ≤ a for all γ, and ||uγ|| < a for γ < α + 1;

(2) h(0α) = 0 and uα+1(0α) = a;

(3) α0(H) = α0(H|ex(Kα)) = α+ 1.

Proof. Using Proposition 2.2.27, we may deal exclusively with u.s.c.d. candidate

sequences on Eα (as opposed to Kα), and all properties will carry over to Kα.

The proof is executed in two stages. First we prove the statement for the

countably infinite, irreducible ordinals. In the second stage, we prove the statement

for all countable, infinite ordinals.

Stage 1. Let α be a countably infinite, irreducible ordinal. Let α = ωβ (since

α is infinite, β > 0). and let b = 2
3
a. Let F be given by Theorem 2.3.1 with

parameters b, α, ε, and δ. Recall from the proof of Theorem 2.3.1 that we may take

F = tFn, where the exact form of the Fn is as follows. Let {an} be a sequence

of positive real numbers with an < b for all n and limn an = b. If β is a successor,

then we may take Fn = Gn, where G satisfies the conclusions of Theorem 2.3.1 with

parameters an, ε, ω
β−1, and δ. Otherwise, if β is a limit with βn increasing to β,

49



then Fn satisfies the conclusions of Theorem 2.3.1 with parameters an, ε, ω
βn , and

δ. Let F = (fk), and let 0n denote the marked point in Eβn (so Eβn is the domain

of Fn). Let H = (hk) be defined by the rule

hk(x) =


fk(x) if x 6= 0n

0 if x = 0n, k ≤ n

b
2

if x = 0n, k > n.

By definition, let hk(0α) = 0. Note that H is again an u.s.c.d. sequence on Eα, and

uHγ (x) = uFγ (x) for all γ and all x 6= 0α. It follows that uHγ (x) ≤ b for all γ and all

x 6= 0α. Computing the transfinite sequence at 0α, we see that

uH` (0α) =
b

2
, for 1 ≤ ` < α

uHα (0α) = b

uHα+1(0α) = b+
b

2
= a.

Since α0(0α) ≤ r(0α)+1 = α+1, we conclude that α0(0α) = α+1. Thus we obtain

properties (1)-(3).

Stage 2. Let α = ωβ1m1 + . . . ωβNmN be the Cantor Normal Form of α.

The construction proceeds by cases. In the first case, suppose ωβN is infinite.

Let a > 0, and select a1 > · · · > aN as in Lemma 2.2.16. Let Fj be given by Lemma

2.3.1 with parameters aj and ωβj , for j = 1, . . . , N . Let F ′
N be given by Stage 1

corresponding to aN

mN
and ωβN . For j = 1, . . . , N − 1, let Hj = Fmj

j , and for j = N ,

if mN > 1, let Hj = FmN−1
N . Now let H′ be given by the product (where HN is

omitted if mN = 1)

H′ = F ′
N × (HN)× · · · × (H1),
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Let H be the restriction of H′ to Eωα+1. Note that h(0α) = 0. Then using Lemmas

2.2.14 and 2.2.16, we conclude that

α0(H) =
(N−1∑
i=1

ωβimi

)
+ ωβN (mN − 1) + (ωβN + 1) = α+ 1.

For the second case, we suppose that ωβN is finite, which implies that ωβN = 1.

Let a > 0, and select a1 > · · · > aN as in Lemma 2.2.16, with the additional

condition that aN−1

3mN−1
≥ aN . Let Fj be given by Lemma 2.3.1 with parameters aj

and ωβj , for j = 1, . . . , N . Since α is infinite, it follows that ωβN−1 is infinite. Let

F ′
N−1 be given by Stage 1 corresponding to aN−1

mN−1
and ωβN−1 (so that the condition

aN−1

3mN−1
≥ aN implies b/2 ≥ aN in the notation of Stage 1). For j ∈ {1, . . . , N−2, N},

let Hj = Fmj

j . If mN−1 > 1, let HN−1 = FmN−1−1
N−1 . Now let H′ be given by the

product (where HN−1 is omitted if mN−1 = 1):

H′ = (HN)×F ′
N−1 × (HN−1)× · · · × (H1),

Let H be the restriction of H′ to Eωα+1. Note that h(0α) = 0. Then the reader may

easily adapt the proofs of Lemmas 2.2.14 and 2.2.16 with the additional assumption

that aN−1

3mN−1
≥ aN to check that

||uH
ωβ1m1+···+ωβN−1mN−1

|| =
N−2∑
i=1

ai +
( aN−1

mN−1

(mN−1 − 1)
)

+
aN−1

mN−1

(2
3

)
||uH

ωβ1m1+···+ωβN−1mN−1+1
|| =

N−1∑
i=1

ai

||uH
ωβ1m1+···+ωβN−1mN−1+1+k

|| =
N−1∑
i=1

ai +
aN
mN

k, for k = 1, . . . ,mN ,

and,

α0(H) =
(N−2∑
i=1

ωβimi

)
+ ωβN−1(mN−1 − 1) + (ωβN−1 + 1) +mN = α+ 1.
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Remark 2.3.4. In Corollaries 2.3.2 and 2.3.3, one may further require that H|ex(Kα)

has the following property (P): for any t in ex(Kα), for any sequence {sn} of isolated

points in ex(Kα) that converges to t, lim supn τk(sn) = limn τk(sn). Let us prove this

fact. In the case α = 1, there is only one sequence of isolated points in ex(K1) ∼= ω+

1, and the candidate sequence F constructed in the proof of Theorem 2.3.1 satisfies

(P). Then we note that if each of the candidate sequences F1, . . . ,FN satisfies this

property, then so does the product F = F1 × · · · × FN . To see this fact, note that

the projection πN onto the last coordinate of any isolated point x in the product

space is not the marked point 0N , and thus F(x) = FN(πN(x)). Hence the product

candidate sequence satisfies property (P) because FN does. Now suppose there

is a sequence (Fn)n of candidate sequences such that each Fn satisfies (P). Let

hn = limFn and let In be the set of isolated points in the domain of Fn. Further

suppose that hn|In converges uniformly to 0. Then
∐

nFn satisfies (P) as well (to see

this, note that property (P) is satisfied on the domain of each candidate sequence

Fn separately because Fn has property (P), and then it is satisfied at the point at

infinity because hn|In converges uniformly to 0). The constructions used in the proofs

of Theorem 2.3.1, Corollary 2.3.2 and Corollary 2.3.3 only rely on these three types

of constructions (α = 1, product sequences, and disjoint union sequences with hn|In

tending uniformly to 0), and thus at each step we may choose candidate sequences

satisfying (P). Making these choices yields H|ex(Kα) with the desired property.

We conclude this section by stating these results in the language of dynamical
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systems. The following corollary follows from Corollary 2.3.2 by appealing to the

Downarowicz-Serafin realization theorem (Theorem A.1.1).

Corollary 2.3.5. For every countable ordinal α, there is a minimal homeomorphism

T of the Cantor set such that α is the order of accumulation of entropy of T .

2.4 Characterization of Orders of Accumulation on Bauer Simplices

Definition 2.4.1. For any non-empty countable Polish space E, we define

ρ(E) =


|E|CB − 1, if |E|CB is finite

|E|CB, if |E|CB is infinite

For any uncountable Polish space E, we let ρ(E) = ω1, the first uncountable ordinal.

Definition 2.4.2. For any metrizable Choquet simplex K, we define

S(K) = {γ : there exists a harmonic, u.s.c.d sequence H on K with α0(H) = γ}.

Recall our conventions that if β < ω1, then [α, β] denotes the ordinal interval

{γ : α ≤ γ ≤ β}, and if β = ω1, then [α, β] = {γ : α ≤ γ < β}. We also require the

use of “open” or “half-open” intervals, which have the usual definitions.

Theorem 2.4.3. Let K be a Bauer simplex. Then

S(K) = [0, ρ(ex(K))].

Proof. Let H be a harmonic, u.s.c.d. candidate sequence on K. Proposition 2.2.6

implies that

α0(H|ex(K)) ≤ ρ(ex(K)).
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and it is always true that α0(H|ex(K)) < ω1. Then since K is Bauer, Proposition

2.2.27 implies the same bounds for α0(H). It remains to show that if ex(K) is

countable, then S(K) ⊃ [0, ρ(ex(K))], and if ex(K) is uncountable, then S(K) ⊃

[0, ω1[.

Suppose E = ex(K) is countable. Let α < |E|CB. Then by Proposition 2.1.11,

there exists x in E such that r(x) = α, which implies that x is isolated in Γα(E).

Let U be a clopen neighborhood of x in E such that U ∩ (Γα(E) \ {x}) = ∅. Then

|U |CB = α + 1 and |Γα(U)| = 1. Then by the classification of countable, compact

Polish spaces (Theorem 2.1.12), there is a homeomorphism g : ωα+1 → U . LetH′ be

the u.s.c.d candidate sequence on ωα + 1 given by Corollary 2.3.2 with α0(H′) = α.

Define H on K to be harmonic extension of the embedded candidate sequence

gH′, which is harmonic and u.s.c.d by Lemma 2.2.29. Since H|E\g(ωα+1) ≡ 0, the

Embedding Lemma (Lemma 2.2.30) applies. Since g(ωα + 1) is a compact subset of

ex(K), we obtain that α0(H) = α0(H′) = α. Since α < | ex(K)|CB was arbitrary,

this argument shows that S(K) ⊃ [0, | ex(K)|CB − 1] (note that since K is Bauer,

ex(K) is compact and | ex(K)|CB is a successor). If | ex(K)|CB is infinite, then let

α = | ex(K)|CB−1 and repeat the above argument with H′ given by Corollary 2.3.3

so that α0(H) = α + 1. In this case we obtain that S(K) ⊃ [0, | ex(K)|CB]. In any

case, we conclude that S(K) ⊃ [0, ρ(ex(K))], as desired.

Now suppose E = ex(K) is uncountable. Fix α < ω1. Let g : ωα + 1 → E

be the embedding given by Proposition 2.1.8, and let Hα be the u.s.c.d. candidate

sequence on ωα +1 given by Corollary 2.3.2. Then the harmonic extension H of the

embedded candidate sequence gHα on K is harmonic and u.s.c.d. by Lemma 2.2.29.
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Furthermore, H satisfies α0(H) = α0(Hα) = α, by the Embedding Lemma (as

g(ωα+1) is a compact subset of ex(K)). Since α < ω1 was arbitrary, S(K) ⊃ [0, ω1[.

2.5 Orders of Accumulation on Choquet Simplices

In this section we address the extent to which the orders of accumulation

that appear on a metrizable Choquet simplex K are constrained by the topological

properties of the pair (ex(K), ex(K)).

We will require a relative version of Cantor-Bendixson rank, whose definition

we give here.

Definition 2.5.1. Given a Polish spaceX contained in the Polish space T , we define

the sequence {ΓαX(T )} of subsets of T using transfinite induction. Let Γ0
X(T ) = T .

If ΓαX(T ) has been defined, then let Γα+1
X (T ) = {t ∈ T : ∃(tn) ∈ ΓαX(T ) ∩ X \

{t} with tn → t}. If ΓβX(T ) has been defined for all β < α, where α is a limit

ordinal, then we let ΓαX(T ) = ∩β<αΓβX(T ).

Note that ΓαX(T ) is closed in T for all α, and ΓαX(T ) ⊂ ΓβX(T ) for α > β. For

X and T Polish, there exists a countable ordinal β such that ΓαX(T ) = ΓβX(T ) for

all α > β.

Definition 2.5.2. The Cantor-Bendixson rank of T relative to X, denoted

|T |XCB, is the least ordinal β such that ΓαX(T ) = ΓβX(T ) for all α > β.

If X is countable, then ΓαX(T ) = ∅ if and only if α ≥ |T |XCB. If X is countable
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and T is compact, then by the finite intersection property, |T |XCB is a successor

ordinal.

Definition 2.5.3. For t in T , we also define the pointwise relative topological rank

rX(t) of t with respect to X:

rX(t) =


sup{α : t ∈ ΓαX(T )} if t /∈ Γ

|T |XCB
X (T )

ω1 if t ∈ Γ
|T |XCB
X (E).

It follows that for X countable, for all t in T , rX(t) ≤ |X|CB, and thus |T |XCB ≤

|X|CB + 1. Also, |X|CB ≤ |T |XCB ≤ |T |CB.

For a Polish space T , the usual Cantor-Bendixson rank is obtained from the

relative version by taking X = T in the above construction. Thus, we have |T |TCB =

|T |CB.

2.5.1 Results for Choquet Simplices

Definition 2.5.4. Let X and T be non-empty Polish spaces, with X ⊂ T . If X is

countable, let

ρX(T ) =


|T |XCB − 1, if |T |XCB is finite

|T |XCB, if |T |XCB is infinite

If X is uncountable, let ρX(T ) = ω1.

Now we present bounds on the set S(K) (see Definition 2.4.2) for any metriz-

able Choquet simplex K. Recall our convention that for a countable ordinal β,

[0, β] = {α : 0 ≤ α ≤ β}, but for β = ω1, [0, β] = {α : 0 ≤ α < ω1} = [0, ω1[.
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Theorem 2.5.5. Let K be a metrizable Choquet simplex. Then

[0, ρex(K)(ex(K)) ] ⊂ S(K) ⊂ [0, ρ(ex(K)) ].

Proof. First we prove the lower bound on S(K).

Suppose ex(K) is uncountable, then by Corollary 2.1.8, for any countable

α, there exists a map g : ωα + 1 → ex(K), where g is a homeomorphism onto

its image. Let F be a u.s.c.d. sequence on ωα + 1, and let H be the harmonic

extension of the embedded sequence gF on K. H is a harmonic, u.s.c.d. candidate

sequence on K by Lemma 2.2.29. Also, H|ex(K)\g(ωα+1) ≡ 0. Thus the Embedding

Lemma (Lemma 2.2.30) applies, and then since g(ωα + 1) is a compact subset of

ex(K), we obtain that α0(H) = α0(F). Letting F vary over all u.s.c.d. candidate

sequences on ωα + 1, it follows that S(M(ωα + 1)) ⊆ S(K). By Theorem 2.4.3,

S(M(ωα+1)) = [0, ρ(ωα+1)]. Now ρ(ωα+1) = α if α is finite and ρ(ωα+1) = α+1 if

α is infinite. In either case, ρ(ωα+1) ≥ α. Hence S(K) ⊃ [0, α]. Since this inclusion

holds for any countable ordinal α, we have that S(K) ⊃ [0, ω1[, as desired.

If ex(K) is countable, then |ex(K)|ex(K)
CB is a successor ordinal. For each ordinal

α < |ex(K)|ex(K)
CB , we have Γαex(K)(ex(K)) 6= ∅. Fix α < |ex(K)|ex(K)

CB , and let t be in

Γαex(K)(ex(K)). Since t lies in Γαex(K)(ex(K)), there exists a map g : ωα + 1 → K,

where g is a homeomorphism onto its image, g(ωα+1) ⊂ ex(K)∪{t} and g(0α) = t,

where 0α is the point ωα in ωα + 1. Given some real number a > 0, let F = (fk)

be a u.s.c.d. candidate sequence on ωα + 1 with α0(F) = α and satisfying (1)-(3)

of Corollary 2.3.2. Recall that fk(0α) = 0 for all k. Then let H′ = (h′k) be the

embedded candidate sequence gF on K.
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Note that for s in K \ ex(K), (h′k+1 − h′k)(s) = 0. Also, for s in ex(K),

(h′k+1 − h′k)(s) ≥ 0. It follows that h′k+1 − h′k is convex on K.

Now let H = (hk), where hk is the harmonic extension of h′k on K. By Lemma

2.2.29, H is a u.s.c.d. candidate sequence on K.

Let F = g(ωα + 1)∩ ex(K), and note that H|ex(K)\F ≡ 0. Also F = g(ωα + 1)

and H|F = F ◦ g−1. Applying the Embedding Lemma (Lemma 2.2.30), we obtain

that α0(H) ≤ α0(H|F ) = α0(F) = α. We now show the reverse inequality. Recall

that t = g(0α). For γ < α, the Embedding Lemma (Lemma 2.2.30) implies that

uHγ (t) ≤ ||uFγ || < a (where the strict inequality comes from Corollary 2.3.2 (1)).

Also, uHα (t) ≥ uFα (0α) = a. From these facts, we have that α ≤ αH0 (t) ≤ α0(H).

Thus α0(H) = α.

Since α < |ex(K)|ex(K)
CB was arbitrary, we obtain that S(K) ⊃ [0, |ex(K)|ex(K)

CB [.

If |ex(K)|ex(K)
CB is infinite, then we may let α = |ex(K)|ex(K)

CB −1 and repeat the above

argument with F given by Corollary 2.3.3 so that α0(H) = α + 1. Thus we have

that S(K) ⊃ [0, ρex(K)(ex(K)) ].

Here we prove the upper bound on S(K). Suppose ex(K) is uncountable.

Then ρ(ex(K)) = ω1. Since the order of accumulation of any candidate sequence

on K is countable, we have (trivially) that S(K) ⊂ [0, ω1). Now suppose ex(K) is

countable. If H is a u.s.c.d., harmonic candidate sequence on K, then by Corollary

2.2.7, the restricted sequence H|ex(K) satisfies

α0(H|ex(K)) ≤


|ex(K)|CB − 1, if |ex(K)|CB is finite

|ex(K)|CB, if |ex(K)|CB is infinite,

which is exactly the statement that α0(H|ex(K)) ≤ ρ(ex(K)). Also, the Embedding
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Lemma (Lemma 2.2.30) implies that α0(H) ≤ α0(H|ex(K)). This establishes the

upper bound on S(K).

2.5.2 Optimality of Results for Choquet Simplices

In this section we study the optimality of the results in Theorem 2.5.5.

The following theorem answers a question of Jerome Buzzi, and answers the

question of whether the bounds in Theorem 2.5.5 can be improved using only knowl-

edge of the ordinals ρex(K)(ex(K)) and ρ(ex(K)).

Theorem 2.5.6. Let α1 ≤ α2 ≤ α3 be ordinals such that α1 and α2 are countable

successors and α3 is either a countable successor ordinal or ω1. Then there exists

a metrizable Choquet simplex K such that ρex(K)(ex(K)) = α1, S(K) = [0, α2], and

ρ(ex(K)) = α3.

We postpone the proof of Theorem 2.5.6 until after the proof of Theorem

2.5.10. The proofs of these theorems are very similar and we prefer not to repeat

the arguments unnecessarily.

Now we address the following question: can the bounds in Theorem 2.5.5

be improved with knowledge of the homeomorphism class of the compactification

(ex(K), ex(K))? We will need some definitions.

Definition 2.5.7 ([39]). If E is a topological space, then a compactification of E

is a pair (E, g), where E is a compact, Hausdorff space and g is a homeomorphism

of E onto a dense subset of E.

If E is a topological space and (E, g) is a compactification of E, then we may
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identify E with g(E) and assume that E is a subset of E. In such instances, we

may refer to E as a compactification of E, or we may refer to the pair (E,E) as a

compactification.

Consider compactifications (E,E), where E is a topological space and E is a

compactification of E. Suppose there are two such compactifications, (E1, E1) and

(E2, E2). We say that the compactifications are homeomorphic, written (E1, E1) '

(E2, E2), if there is a homeomorphism g : E1 → E2 such that g(E1) = E2. Recall

that Theorem 2.2.23 may be strengthened as follows.

Theorem 2.5.8 (Choquet [26]). Let E be a topological space and E a metrizable

compactification of E. Then there exists a metrizable Choquet simplex K such that

(ex(K), ex(K)) ' (E,E) if and only if E is Polish.

Given a Polish space E and a compactification E, the proof of Theorem 2.5.10

that is given below involves constructing a metrizable Choquet simplex K such that

(ex(K), ex(K)) ' (E,E) while simultaneously controlling the possible harmonic,

u.s.c.d. candidate sequences on K. In this sense Theorem 2.5.10 may be viewed as

a partial generalization of Theorem 2.5.8.

Remark 2.5.9. In Theorem 2.5.10, we restrict our attention to metrizable com-

pactifications of Polish spaces. Since we are only interested in studying pairs

(ex(K), ex(K)) where K is a metrizable Choquet simplex, Theorem 2.5.8 implies

that there is no loss of generality in making this restriction.

Theorem 2.5.10. Let E be a non-compact, countably infinite Polish space, and let

E be a metrizable compactification of E.
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(1) If E is countable, then for each successor β ∈ [ρE(E), ρ(E)], there exists a

Choquet simplex K such that (ex(K), ex(K)) ' (E,E) and S(K) = [0, β].

(2) If E is countable and E is uncountable, then for each countable ordinal β ≥

ρE(E), there exists a Choquet simplex K such that (ex(K), ex(K)) ' (E,E)

and S(K) ⊃ [0, β].

Observe that when E is uncountable, Theorem 2.5.5 gives that for any metriz-

able Choquet simplex K with ex(K) homeomorphic to E, S(K) = [0, ω1[. The

proofs of Theorem 2.5.10 (1) and (2) rely very heavily Lemma 2.5.14, which in turn

relies very heavily on Haydon’s proof (see [49] or [5, pp. 126-129]) of Theorem 2.2.23.

Proof of Theorem 2.5.10 (1).

2.5.2.1 Setup for proof of Theorem 2.5.10 (1)

Let β be a successor ordinal with ρE(E) ≤ β ≤ ρ(E). Let β0 = β if β is finite,

and let β0 = β − 1 if β is infinite. For notation, we let T = E and X = E. Since

T is countable and compact, T ∼= ω|T |CB−1n + 1 for some natural number n (by

Theorem 2.1.12). We may assume without loss of generality that n = 1 (if n > 1,

then T is just the finite disjoint union of the case when n = 1, and we may repeat

the following constructions independently n times). Using this homeomorphism of

T and ω|T |CB−1 + 1, we obtain a well-ordering on T such that the induced order

topology coincides with the original topology on T . Thus we may assume without

loss of generality that T = ω|T |CB−1 + 1. Also, we fix a complete metric d(·, ·) on T .

Let Y ⊂ T be the set ωβ0 + 1 in T = ω|T |CB−1 + 1. Let Z = Y \ X, which
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may be empty. There are two cases: either Y = T or Y ( T . The case Y = T

occurs if and only if β = ρ(T ), while the case Y ( T occurs if and only if β < ρ(T ).

If Y = T , then one may ignore the constructions in Sections 2.5.2.3, 2.5.2.4, and

2.5.2.5. If Y ( T , then Z may be empty. If Z is empty, then one may ignore the

construction in Section 2.5.2.2. We make the convention that an empty sum is zero.

2.5.2.2 Definition of the points zm, um, vm

Assuming Z is not empty, we will define distinct points zm ∈ Z and um, vm ∈

X. In the simplex K, they will satisfy zm = 1
2
(um + vm), and it is exactly this

formula which allows us to prove that [0, β] ⊆ S(K).

Since T is countable, Z is countable, and we may enumerate Z = {zm} (in

the case when Z is finite, this sequence is finite). If zm < ω|T |CB−1 in T , then let

um = zm + 1 and vm = zm + 2 (successor ordinals). If zm = ω|T |CB−1 in T , we let

um = 1 and vm = 2. Since X is dense in T , any isolated point in T must lie in

X. Therefore any successor ordinals in T must be in X. It follows that um, vm are

points in X.

2.5.2.3 Construction of the sets Vk

Here we will use notations defined previously, such as the relative topological

rank, rX(x), of the point x (Definition 2.5.3) and the relative Cantor-Bendixson

derivatives ΓαX(Y ) (Definition 2.5.1). Also, since it is an important hypothesis in

this section, we remind the reader that Y is clopen in T .
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In this section we assume that T \ Y is not empty, which occurs exactly when

β < ρ(T ), and we define certain sets Vk. The construction of the sets Vk and the

points xk and yk (see section 2.5.2.4) allows one to prove that S(K) ⊆ [0, β]. In the

simplex K, all points in the set Vk will lie in the convex hull of xk and yk, which will

imply that the order of accumulation cannot be increased by the points in Vk \ {yk}

(see Lemmas 2.5.12 and 2.5.15).

Below, by an interval in a subset A of T , we mean the intersection of an

interval of T (which may be a singleton) with A.

Lemma 2.5.11. If T \ Y is not empty, then there exists a collection {Vk} of non-

empty subsets of T with the following properties:

(1) if Vk ∩ Vj 6= ∅, then k = j;

(2) for each Vk there exists an ordinal αk ≥ 1 such that rX(t) = αk for all t in Vk;

(3) each Vk is a clopen interval in Γαk
X (T );

(4) if Vk ∩X 6= ∅, then Vk ∩X = {sup(Vk)};

(5) Γ1
X(T ) \ Y = ∪kVk.

(6) limk diam(Vk) = 0.

Proof. Suppose α ∈ [1, ρ(T )] and the set Aα = {t ∈ ΓαX(T ) \ Y : rX(t) = α}

is non-empty (which it must be for α = 1 since Y 6= T ). For x ∈ X ∩ Aα, let

a(x) = min{a ∈ Γ1
X(T ) \ Y : [a, x] ∩ (X ∩Aα) = {x} and [a, x] ∩ Γα+1

X (T ) = ∅}. Let

Ux = [a(x), x] ∩ ΓαX(T ) and note that Ux ⊂ Aα. The set Γα+1
X (T ) is closed and does

63



not intersect Aα, and the set X ∩Aα has no accumulation points in Aα. Thus each

Ux is a clopen interval in ΓαX(T ). Now let Uα
ω = Aα \ ∪x∈X∩AαUx, which may be

empty.

If Uα
ω is non-empty, then we claim that it is also a clopen interval in ΓαX(T ).

Let y0 = sup(X∩Aα). Note that Y is an initial subinterval of T and X∩Aα ⊂ T \Y ,

which implies that [y0,max(T )] ⊂ T \ Y . We also have that y0 is in X ∪ Γα+1
X (T ),

which implies that y0 is not in Uα
ω . We will show that Uα

ω = [y0+1,max(T )]∩ΓαX(T ).

To see this fact, first note that if y ≤ x with y ∈ Aα and x ∈ X ∩ Aα, then y ∈

∪x∈X∩AαUx. Thus we have that Uα
ω ⊂ [y0 +1,max(T )]∩ΓαX(T ). To show the reverse

inclusion, we show that [y0+1,max(T )]∩Aα = [y0+1,max(T )]∩ΓαX(T ). We assume

for the sake of contradiction that there is a point t in [y0 + 1,max(T )] ∩ Γα+1
X (T ).

From this assumption and the fact that [y0 + 1,max(T )] is open it follows that

[y0 + 1,max(T )]∩ΓαX(T )∩X has t as an accumulation point (and so, in particular,

this set is non-empty). If [y0 +1,max(T )]∩ΓαX(T )∩X contains a single point s with

rX(s) = α, then we see that s ∈ X ∩Aα and s > y0, which contradicts the definition

of y0. Now suppose that for all s in [y0 + 1,max(T )]∩ΓαX(T )∩X, rX(s) > α. Then

[y0 + 1,max(T )] ∩ ΓαX(T ) ∩X is a non-empty, countable, metrizable space with no

isolated points, which implies that it is not Polish. But [y0 + 1,max(T )] ∩ ΓαX(T ) is

closed in T , which implies that it is a Gδ in T , and X is Polish in T , which implies

it is a Gδ in T , and the intersection of two Gδ sets is a Gδ. Also, any Gδ set in a

Polish space is Polish. Thus, [y0 + 1,max(T )] ∩ ΓαX(T ) ∩X is Polish, and we arrive

at a contradiction.

Let {V ′
k} be an enumeration of all the non-empty sets Ux and Uα

ω constructed
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above, for any α ∈ [1, ρ(T )]. The collection {V ′
k} satisfies properties (1)-(5) but

not necessarily (6). However, given V ′
k a clopen interval in ΓαX(T ) contained in Aα,

we may find a finite collection of pairwise disjoint clopen intervals (in ΓαX(T )) V ′
k,i,

contained in Aα, whose union is V ′
k , such that each V ′

k,i has diameter at most 1
k
.

Re-enumerating the collection {V ′
k,i}, we obtain the required collection {Vk}.

Note that since T \X ⊂ Γ1
X(T ), we have that T \ (X ∪ Y ) = tkVk \X.

2.5.2.4 Definition of the points xk and yk

The points xk and yk are part of the construction that allows one to bound

the possible orders of accumulation on K from above.

Assuming β < ρ(T ), we let {Vk} be a collection of non-empty subsets of T

given by Lemma 2.5.11, and fix a natural number k. There are two cases: either

Vk ∩X = ∅ or Vk ∩X 6= ∅. Suppose Vk ∩X = ∅. Then choose a point tk in Vk. If

tk = sup(T ), let xk = ωβ0 + 3 and yk = ωβ0 + 4, and otherwise let xk = tk + 1 and

yk = tk + 2. If Vk ∩X 6= ∅, then let yk = sup(Vk) (which is in X by conclusion (4)

of Lemma 2.5.11). If yk = sup(T ), let xk = ωβ0 + 5 and otherwise let xk = yk + 1.

The fact that the Vk are pairwise disjoint implies that the points xk and yk are all

distinct. Note that for all k, xk and yk are in X.

Notice that the points xk, yk, zm, um, and vm and the sets Vk have been chosen

so that (i) the quantities diam(Vk), maxt∈Vk
dist(xk, t), and maxt∈Vk

dist(yk, t) each

converge to zero as k tends to infinity, (ii) d(zm, um) and d(zm, vm) each converge

to zero as m tends to infinity, (iii) the points xk, yk, zm, um, and vm are all distinct,
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(iv) the points xk, yk, um, vm are all in X, and (v) if Vk ∩X 6= ∅, then Vk ∩X = {yk}

(v) for all m and k, zm /∈ Vk, and (vi) the sets Vk are pairwise disjoint.

2.5.2.5 Definition of Fk and Gk

Choose Borel measurable functions Fk : T → [0, 1] and Gk : T → [0, 1] with

the following properties:

(1) Fk, Gk < 1 on T \X;

(2) Fk and Gk are continuous and injective on Vk and 0 on T \ Vk;

(3) Fk +Gk = χVk
;

(4) Fk(yk) = 0 and Gk(yk) = 1.

The existence of such maps follows easily from the fact that T can be order-embedded

in (0, 1) and Vk is closed.

2.5.2.6 Conclusion of the proof of Theorem 2.5.10 (1)

Let Cn = (∪nk=1Vk)∪ {z1, . . . , zn} for each n. Consider the collection of points

{xk} ∪ {yk} ∪ {um} ∪ {vm}. To each point xk we associate the function Fk. To each

point yk we associate the function Gk. To each point um or vm, we associate the

function 1
2
χzm . Then the hypotheses in Lemma 2.5.14 are satisfied by the countable

collection of closed sets {Cn}∪{Dn}, the countable collection of points {xk}∪{yk}∪

{um} ∪ {vm} in X, and the associated functions {Fk} ∪ {Gk} ∪ {1
2
χzm}. Lemma

2.5.14 gives a metrizable Choquet simplex K and a homeomorphism φ : T → ex(K)
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such that φ(X) = ex(K) and such that for all t in T \X,

φ(t) =
∑
k

Fk(t)φ(xk) +Gk(t)φ(yk) +
1

2

∑
m

χzm(t)(φ(um) + φ(vm)). (2.5.1)

Lemma 2.5.12. Let X, Y, T , and K be as above. Then for every t ∈ T \ Y , there

exists an open (in T ) neighborhood Ut and points xt and yt in X \ Y such that for

all s in Ut, either rX(s) < rX(t) or else rX(s) = rX(t) and φ(s) = asφ(xt) + bsφ(yt)

in K, with 0 ≤ as, bs ≤ 1 and as + bs = 1.

Proof. Let t ∈ T \ Y . If rX(t) = 0, then t is isolated in T and t is in X, since X

is dense in T . In this case we may choose Ut = {t} and the requirement is trivially

satisfied.

If rX(t) ≥ 1, then t is in Vk for some k. Let Ut be any open (in T ) neighborhood

of t with Γ
rX(t)
X ∩ Ut ⊆ Vk (such a neighborhood exists since Vk is an open interval

in in Γ
rX(t)
X (T )), and let xt = xk and yt = yk. We have that for each s in Ut, either

rX(s) < rX(t) or s is in Vk. If s is in Vk, then rX(s) = rX(t), and it follows from

Equation (2.5.1) that φ(s) = Fk(s)φ(xk) + Gk(s)φ(yk) in K. Also, we have that

Fk(s) +Gk(s) = 1.

By Lemmas 2.5.15 and 2.5.16, we have that S(K) ⊂ [0, ρ(Y )]. By Lemma

2.5.17, S(K) ⊃ [0, ρ(Y )]. Thus S(K) = [0, ρ(Y )] = [0, β].

This concludes the proof of Theorem 2.5.10 (1).

Proof of Theorem 2.5.10 (2).
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2.5.2.7 Setup for proof of Theorem 2.5.10 (2)

Let β be a successor ordinal with β ≥ ρE(E). Let β0 = β if β is finite and let

β0 = β−1 if β is infinite. For notation, we let T = E and X = E. Fix a metric d on

T that is compatible with the topology of T . Since T is uncountable and compact,

T contains an uncountable perfect set P . Since β0 is countable, P contains a set

Y that is homeomorphic to ωβ0 + 1. Let {aα}ω
β0

α=0 be a transfinite sequence of real

numbers aα such that 0 < aα ≤ 1 and
∑

α≤ωβ0 aα = 1 (such a sequence exists since

ωβ0 is countable). Let Z = Y \X, and choose an enumeration of Z = {zm}. Note

that Z may be empty or finite. In the construction to follow, if Z is empty then we

do not choose points um and vm, and any summation over the index m will be zero

by convention.

Let X0 = X t Z = X ∪ Y . Recall that since X is a completely metrizable

subset of the the compact metrizable space T , X is a Gδ in T (see, for example,

[86]). Y is a Gδ in T because it is compact. Therefore X0 is a Gδ in T , since it is

the union of two Gδ sets in T . Thus we may let X0 = ∩n∈NGn, where Gn is open,

G1 = T , and Gn+1 ⊂ Gn. Let Fn = T \ Gn, which is compact. Fix n. Choose a

sequence ε` strictly decreasing to 0. Let Dε(Fn) = {t ∈ T : dist(t, Fn) ≥ ε}, which is

compact for any ε. Then for each ` there exists a countable collection of open sets

{U j
` }∞j=1 such that

• Dε`(Fn) ⊂ ∪jU j
` ⊂ Dε`+1

(Fn);

• diam(U j
` ) ≤ 2−(`+n) for all j;

• diam(U j
` ) tends to 0 as j tends to infinity;
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• the collection {U j
` } separates the points in Dε`(Fn).

Then we may enumerate the collection of all sets U j
` to form the sequence {V n

k }∞k=1.

Repeating this procedure for all n, we obtain a collection of open sets V n
k such that

diam(V n
k ) ≤ 2−n and diam(V n

k ) converges to 0 as k tends to infinity with n fixed.

The sets V n
k also satisfy ∪kV n

k = Gn and separate points in Gn, for each n. For each

n and k, let gnk (t) = min(dist(t, T \V n
k ), 1) and fnk = 2−kgnk . Then for each n,

∑
k f

n
k

converges uniformly on T . Now let

hnk(t) =


0, if

∑
k f

n
k (t) = 0

fn
k (t)P

k f
n
k (t)

, if
∑

k f
n
k (t) > 0

The functions hnk are all continuous and satisfy hnk(t) > 0 if and only if t ∈ V n
k . Fur-

thermore,
∑

k h
n
k = χGn . Now we let pnk = hnk ·χT\Gn+1 and notice that

∑
n

∑
k p

n
k =

χT\(X∪Y ). Also, the collection pnk separates points in the sense that if t 6= s with t

and s in T \ (X ∪ Y ), then there exists n and k such that pnk(t) > 0 and pnk(s) = 0.

Using induction (on m, n, and k simultaneously) and the fact that X is dense

in T , we choose points um, vm, xnk , and ynk in X such that (i) d(zm, um) ≤ aαzm

and d(zm, vm) ≤ aαzm
, (ii) for each m, um and vm are not accumulation points of

Y (which is possible since the isolated points of Y , corresponding to successors of

ωβ0 +1, are dense in Y and the set X \Y accumulates at each of the isolated points

of Y that is not in X) (iii) xnk and ynk are in V n
k , and (iv) the union of all of these

points is a disjoint union.
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2.5.2.8 Conclusion of the proof of Theorem 2.5.10 (2)

Let Cn = (T \ Gn) ∪ {z1, . . . , zn}. To each point xnk or ynk , we associate the

function 1
2
pnk . To each point um or vm, we associate the function 1

2
χzm . Then the

hypotheses of Lemma 2.5.14 are satisfied by the countable collection of closed sets

{Cn}, the countable collection of points {xnk} ∪ {ynk} ∪ {um} ∪ {vm} in X, and

the associated functions{1
2
pnk} ∪ {1

2
χzm}. Lemma 2.5.14 gives a metrizable Choquet

simplex K and a homeomorphism φ : T → ex(K) such that φ(X) = ex(K) and such

that for all t in T \X,

φ(t) =
1

2

∑
n

∑
k

pnk(t)(φ(xnk) + φ(ynk )) +
1

2

∑
m

χzm(t)(φ(um) + φ(vm)).

By Lemma 2.5.17, S(K) ⊃ [0, β].

This concludes the proof of Theorem 2.5.10 (2).

Proof of Theorem 2.5.6.

Fix α1 ≤ α2 ≤ α3 as above. Let X1 = ωα1 + 1, and let T1 = X1. If α2 is finite,

let T2 = ωα2 + 1, and if α2 is infinite, let T2 = ωα2−1 + 1. In either case, let X2 be

all the isolated points (successors) in T2. Let S be a non-empty compact subset of

(0, 1)× {0} in R2, chosen so that if α3 is finite, then ρ(S) = α3 − 1, and otherwise

ρ(S) = α3. Let X3 be a bounded, countable subset of R2 \ (R × {0}) whose set of

accumulation points is exactly S. Let T3 = X3 ∪ S. Now we let T = T1 t T2 t T3

and X = X1 t X2 t X3. Below we will construct a Choquet simplex K such that

(X,T ) ' (ex(K), ex(K)). Let Y = T1 tT2, and Z = Y \X. Note that Z is actually

just the set of accumulation points in T2. We have

ρX(T ) = ρ(X1) = α1, ρ(T ) = ρ(T3) = α3, and ρ(Y ) = ρ(T2) = α2.
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Let Z = {zm}. If zm < sup(T2), choose um = zm + 1 and vm = zm + 2. If

zm = sup(T2), choose um = 1 and vm = 2 in T2. Let x0 and y0 be a choice of two

isolated points in X3. Let F : T → [0, 1] be the function such that, for a point t in

T ,

F (t) =


s, if t = (s, 0) ∈ S

0, otherwise .

Let G : T → [0, 1] be such that for t in T ,

G(t) =


1− s, if t = (s, 0) ∈ S

0, otherwise .

Let Cn = S ∪ {z1, . . . , zn} for each n. To each point um or vm, we associate the

function 1
2
χzm . To the point x0, we associate the function F , and to the point y0

we associate the function G. Then the hypotheses in Lemma 2.5.14 are satisfied by

the collection of closed sets {Cn}, the collection of points {x0, y0} ∪ {um, vm}, and

the associated functions {F,G} ∪ {1
2
χzm}. Lemma 2.5.14 gives a Choquet simplex

K and a homeomorphism φ : T → ex(K) such that φ(X) = ex(K) and such that

for all t in T \X,

φ(t) = F (t)φ(x0) +G(t)φ(y0) +
1

2

∑
m

χzm(t)
(
φ(um) + φ(vm)

)
. (2.5.2)

It follows immediately that ρex(K)(ex(K)) = ρX(T ) = α1 and ρ(ex(K)) =

ρ(T ) = α3. We show that S(K) = [0, α2].

Lemma 2.5.13. Let X, Y, T , and K be as above. Then for every t ∈ T \ Y , there

exists an open (in T ) neighborhood Ut and points xt and yt in X \ Y such that for

all s in Ut, either rX(s) < rX(t) or else rX(s) = rX(t) and φ(s) = asφ(xt) + bsφ(yt)

in K, with 0 ≤ as, bs ≤ 1 and as + bs = 1.
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Proof. Let t be in T \ Y = T3. If t is in X3, then t is isolated in T and we let

Ut = {t}. In this case the requirement on Ut is trivially satisfied.

If t is in T3\X3, then t is in S and rX(t) = 1. Let Ut be any open neighborhood

of t in T3, and let xt = x0 and yt = y0. Let s be in Ut. If s is in X3, then

rX(s) = 0 < rX(t). If s is in T3 \X3, then s is in S, and then we have rX(s) = 1 and

by Equation (2.5.2), φ(s) = F (s)φ(x0) +G(s)φ(y0), where F (s) +G(s) = 1.

Now by Lemmas 2.5.15 and 2.5.16, we have that S(K) ⊂ [0, ρ(Y )]. By Lemma

2.5.17 we have that S(K) ⊃ [0, ρ(Y )]. Then S(K) = [0, ρ(Y )] = [0, α2].

This concludes the proof of Theorem 2.5.6.

2.5.2.9 Helpful Lemmas

Recall the following notations. Suppose T is a compact, metrizable space. Let

SM(T ) denote the set of all signed, totally finite, Borel measures on T . Recall

that SM(T ) = CR(T )∗, and therefore SM(T ) inherits the structure of a normed

topological vector space over R. For µ in SM(T ), let µ = µ1 − µ2 be the Jordan

decomposition of µ. Let |µ| = µ1 + µ2. The norm on SM(T ) is then given by

||µ|| = |µ|(T ). We will use SM(T \X) to denote the set of measures µ in SM(T )

such that |µ|(X) = 0. We write SMprob(T ) = {µ ∈ SM : µ ≥ 0, ||µ|| = 1}, and for

any subset M of SM(T ), M1 = {µ ∈ SM : ||µ|| ≤ 1}. Let εxk
be the point mass

at xk.

Lemma 2.5.14. Let T be a compact, metric space, and let X be a dense, Polish

subset of T . Suppose {Cn} is a countable collection of closed subsets of T . Suppose
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{wk} is a countable collection of distinct points in X, and to each point wk there

is an associated Borel measurable function Hk : T → [0, 1]. Let Wk = supp(Hk).

Furthermore, suppose the following conditions are satisfied:

(i) Cn ⊂ Cn+1 for all n, C0 = ∅, and ∪nCn \X = T \X;

(ii)
∑

kHk ≤ 1 and
(∑

kHk

)
|T\X ≡ 1;

(iii) for all t in T \X, Hk(t) < 1;

(iv) if Hk(s) = Hk(t) for all k with t, s ∈ T \X, then s = t;

(v) for each k, there exists nk such that Wk ⊂ Cnk+1 \Cnk
, and with this notation,

Hk is continuous on Cnk+1;

(vi) maxt∈Wk
d(t, wk) converges to 0 as k tends to infinity;

(vii) if Hk(x) > 0 for x in X, then x = wk and Hk(wk) = 1.

Let ξ : SM(T ) → SM(T ), where for µ in SM(T ),

ξ(µ) = µ−
∑
k

(∫
Hk dµ

)
εwk

.

Let M = {ξ(µ) : µ ∈ SM(T \X)}, and let q : SM(T ) → SM(T )/M be the natural

quotient map. Let ψ : T → SMprob(T ) be ψ(t) = εt, and let φ = q ◦ ψ. Finally, let

K = q(SMprob(T )). Then

(1) M is a closed linear subspace of SM(T ), and thus φ is continuous;

(2) K is a metrizable Choquet simplex;

(3) φ is injective on T ;
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(4) ex(K) = φ(X);

(5) for t in T \X, φ(t) =
∑

kHk(t)φ(wk) in K.

Proof. This lemma is almost entirely a restatement of Haydon’s proof (see [49] or

[5, pp. 126-129]) of Theorem 2.2.23. There are two differences. Firstly, we allow Hk

to be positive on X, while Haydon does not. Secondly, we claim that φ is injective

on all of T , whereas Haydon claims injectivity of φ only on X. For the proofs of

properties (2), (4) and (5), theses differences do not play any role, and one may

repeat Haydon’s proof. For this reason, we will prove only (1) and (3).

(1) Note that M is a linear subspace. Recall that M being closed in the weak*

topology is equivalent to M1 being closed in the weak* topology (a proof of this

general fact, which follows from the Banach-Dieudonné Theorem, can be found in

[83]). Let σi be a sequence of measures in M1. Since ||ξ(µ)|| ≥ ||µ|| for all µ in

SM(T \ X), there exist measures µi in SM(T \ X)1 such that σi = ξ(µi). Since

each Cn is compact, each SM(Cn)1 is compact in the weak* topology. Therefore a

diagonal argument gives a subsequence {νi} of {µi} such that there exist measures

ν̂n ∈ SM(Cn+1) such that νi|Cn+1 converges to ν̂n for each n. (We note that there

may not be a measure ν̂ such that ν̂|Cn+1 = ν̂n, since ν̂n|Cn may not equal ν̂n−1.)

Let νn = ν̂n|Cn+1\X , and let 1A be the characteristic function of the set A.

Now define

ν =
∑
n

νn|Cn+1\Cn =
∑
k,n

Hk1Cn+1\Cnν
n,

where the second equality follows from hypotheses (i) and (ii). Let gnk = Hk·1Cn+1\Cn ,

and note that by hypothesis (v), gnk is continuous on Cn+1 for all k and n. Then
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gnkνi weak* converges to gnk ν̂
n as i tends to infinity. Since ||νi|| ≤ 1 and gnkνi weak*

converges to gnk ν̂
n, it follows that ||ν|| ≤ 1 and ν is in SM(T \ X). Let us show

that ξ(νi) converges to ξ(ν) in the weak* topology. Let f ∈ CR(T ). Then for any µ

in SM(T \X) we have

∫
fdξ(µ) =

∫
fdµ−

∑
k

∫
f(wk)Hk dµ =

∑
k

∫
(f − f(wk))Hk dµ =

∑
n,k

λnk(µ),

where

λnk(µ) =

∫
(f − f(wk))g

n
k dµ.

For each k and n, we have that (f − f(wk))g
n
k is continuous on Cn+1 by hypothesis

(v). Therefore, by the choice of subsequence νi, λ
n
k(νi) converges to λnk(ν̂

n). Also,

using hypothesis (vii), we have that if Hk(x)1Cn+1\Cn(x) > 0 for some x in X, then

x = wk. It follows that

λnk(ν̂
n) =

∫
(f − f(wk))Hk1Cn+1\Cn dν̂

n

=

∫
(f − f(wk))Hk1Cn+1\Cn dν

n

+ (f(wk)− f(wk))Hk(wk)1Cn+1\Cn(wk)ν̂
n({wk})

=

∫
(f − f(wk))Hk1Cn+1\Cn dν

n

=λnk(ν
n) = λnk(ν).

This calculation shows that λnk(νi) converges to λnk(ν). For fixed f in CR(T ) and

ε > 0, there exists a δ > 0 such that |f(t) − f(s)| < ε whenever d(t, s) < δ, by

uniform continuity. Then since maxt∈Wk
d(wk, t) tends to zero as k tends to infinity,

there exists k0 such that for k ≥ k0 and z ∈ Wk, |f(z) − f(wk)| < ε. Then for any
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µ in SM(T \X), and K ≥ k0 and N ,

∣∣∣∫ fdξ(µ)−
N∑
n=1

K∑
k=1

λnk(µ)
∣∣∣ =

∣∣∣∑
n>N

∑
k>K

λnk(µ)
∣∣∣

≤
∑
n>N

∑
k>K

∫
|f − f(wk)|gnk d|µ| ≤ ε||µ||,

which implies that
∑N

n=1

∑K
k=1 λ

n
k(µ) converges uniformly on SM(T\X)1 to

∫
f dξ(µ).

Using this uniform convergence and the fact that λnk(νi) converges to λnk(ν), we con-

clude that ξ(νi) converges to ξ(ν).

(3) Suppose that φ(t) = φ(s), or equivalently, εt − εs is in M. Thus there

exists a measure µ in M(T \X) such that εt − εs = ξ(µ). We consider three cases.

If t and s are both in X, then we notice that ξ(µ) = εt − εs has no mass in

T \X. As wk are all in X, it follows from the definition of ξ(µ) that we must have

|µ|(T \ X) = 0, which implies that µ is the zero measure. Then ξ(µ) is the zero

measure, and we have that εt = εs, which means that t = s.

If exactly one of t and s is in X, then we may assume without loss of generality

that t ∈ X and s ∈ T \ X. In this case, we notice that −εs = (εt − εs)|T\X =

ξ(µ)|T\X = µ|T\X = µ. Therefore we conclude that

εt = ξ(µ) + εs = ξ(µ)− µ =
∑
k

Hk(s) · εwk
. (2.5.3)

From this equation, we deduce that t = wk for some k. Then Hk(s) = 1, which

gives a contradiction since Hk < 1 on T \X by hypothesis (iii).

If t and s are both in T \X, then we see that ξ(µ) = εt − εs = ξ(µ)|T\X = µ,

which implies that
∫
Hkdµ = 0 for all k. Hence Hk(t) = Hk(s) for all k. By

hypothesis (iv), we obtain that t = s.
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Lemma 2.5.15. Let K be a metrizable Choquet simplex. Let X be a Polish subspace

of a compact metrizable space T , and let Y be clopen in T . Let φ : T → ex(K) be a

homeomorphism with φ(X) = ex(K). Suppose that for every point t in T \ Y , there

exists an open (in T ) neighborhood Ut and points xt and yt in X \ Y such that for

all s in Ut, either rX(s) < rX(t) or else rX(s) = rX(t) and φ(s) = asφ(xt) + bsφ(yt)

in K, with 0 ≤ as, bs ≤ 1 and as + bs = 1. Then for each point t in T \ Y , and any

harmonic, u.s.c.d. candidate sequence H on K,

α
H|φ(T )

0 (t) ≤


rX(t) if rX(t) is finite

rX(t) + 1 if rX(t) is infinite.

(2.5.4)

Proof. For the sake of notation, we identify X, Y , and T with their images under φ.

Observe that T \ Y is clopen in T . Thus, for every t in T \ Y , u
H|T
β (t) = u

H|T\Y

β (t)

for all ordinals β, which implies α
H|T
0 (t) = α

H|T\Y

0 (t). For the sake of notation, we

assume that H is defined only on T \ Y and uHβ = uβ.

Now we prove the lemma by transfinite induction on α = rX(t). For α = 0,

we have that rX(t) = 0, and thus t is isolated in T . Then αH0 (t) = 0.

Suppose the lemma holds for all t in T \ Y such that rX(t) < α. If α is finite,

let δ = α. If α is infinite, let δ = α + 1. We now prove that for all t in T \ Y with

rX(t) = α and all γ ≥ δ, uγ(t) = uδ(t). The proof of this statement is by transfinite

induction on γ.

Let γ > δ be a successor ordinal, and let t be in T \ Y with rX(t) = α. Let Ut

be an open neighborhood of t, and let xt and yt be corresponding to Ut according

the hypotheses. Fix ε > 0. Choose k0 such that max(τk(xt), τk(yt)) ≤ ε for all

k ≥ k0. Then if (sn) is a sequence in Ut with rX(sn) < rX(t) for all n, then using
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the inductive hypotheses, we get

(uγ−1 + τk)(sn) = (uδ−1 + τk)(sn).

If (sn) is a sequence in Ut with rX(sn) ≥ rX(t), then by the hypotheses, we have

that rX(sn) = rX(t) = α and sn = asnxt + bsnyt. Then by the induction hypothesis

on γ and the harmonicity of τk, we have that

(uγ−1 + τk)(sn) = uδ(sn) + asnτk(xt) + bsnτk(yt) ≤ ε.

Thus we may conclude that

˜(uγ−1 + τk)(t) ≤ max
( ˜(uδ−1 + τk)(t), uδ(t) + ε

)
.

Letting k tend to infinity, we obtain that uγ(t) ≤ uδ(t) + ε. Since ε was arbitrary,

we have that uγ(t) = uδ(t).

Now let γ > δ be a limit ordinal, and let t be in T \ Y with rX(t) = α. Fix

Ut, xt, and yt as in the hypotheses. Note that by the induction hypotheses, if s is

in Ut, then uβ(s) = uδ(s) for all β < γ. Then supβ<γ uβ(s) = uδ(s) for all s in Ut.

Taking upper semi-continuous envelope at t, we have that uγ(t) = uδ(t).

We conclude that for all t in T \ Y with rX(t) = α, αH0 (t) ≤ δ, as desired.

Lemma 2.5.16. Let K be a metrizable Choquet simplex. Let X be a Polish subspace

of a compact metrizable space T , and let Y be clopen in T . Let φ : T → ex(K) be a

homeomorphism with φ(X) = ex(K). Suppose that for each point t in T \Y and any

harmonic, u.s.c.d. candidate sequence H on K, Equation (2.5.4) holds. Further,

suppose that ρX(T ) ≤ ρ(Y ). Then S(K) ⊂ [0, ρ(Y )]
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Proof. Let H be a harmonic, u.s.c.d. candidate sequence on K. For t in Y , we have

that α
H|T
0 (t) = α

H|Y
0 (t) since Y is open in T . By Remark 2.2.5, α

H|Y
0 (t) ≤ α0(H|Y ).

By Proposition 2.2.6, α0(H|Y ) ≤ ρ(Y ). Putting these facts together, we obtain

α
H|T
0 (t) ≤ ρ(Y ) for all t in Y .

For t in T \Y , Equation (2.5.4) gives that if rX(t) is finite, then α
H|T
0 (t) ≤ rX(t),

and if rX(t) is infinite, then α
H|T
0 (t) ≤ rX(t) + 1. Since X is countable and T is

compact, |T |XCB is a successor, and we have rX(t) ≤ |T |XCB−1. If |T |XCB is finite, then

for all t in T \ Y we have α
H|T
0 (t) ≤ rX(t) ≤ |T |XCB − 1 = ρX(T ). If |T |XCB is infinite,

then for all t in T \ Y we have α
H|T
0 (t) ≤ rX(t) + 1 ≤ |T |XCB = ρX(T ) ≤ ρ(Y ).

We have shown that for all t in T , α
H|T
0 (t) ≤ ρ(Y ). Taking supremum over all

t in T , we have that α0(H|T ) ≤ ρ(Y ). Now using the Embedding Lemma (Lemma

2.2.30), we get that α0(H) ≤ α0(H|T ) ≤ ρ(Y ). Hence S(K) ⊂ [0, ρ(Y )].

Lemma 2.5.17. Let K be a metrizable Choquet simplex. Let X be a Polish subspace

of a compact metric space T , and let Y be a subset of T with Y ∼= ωβ0 + 1, where

β0 is a countable ordinal. Let φ : T → ex(K) be a homeomorphism with φ(X) =

ex(K). Let Y \ X = {zm}. Suppose there is countable collection of distinct points

W = {um} ∪ {vm} in X such that each point w in W is isolated in Y ∪W and for

each zm in Y \X, φ(zm) = 1
2
(φ(um) + φ(vm)). Further suppose that d(um, zm) and

d(vm, zm) both tend to 0 as m tends to infinity. Then S(K) ⊃ [0, ρ(Y )].

Proof. For the sake of notation, we identify X, Y,W and T with their images under

φ and refer to these sets as subsets of K. Then let g : Y → ωβ0 + 1 be a homeo-

morphism. For any γ in [0, β0], there is an u.s.c.d. candidate sequence F on ωγ + 1
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given by Corollary 2.3.2 with α0(F) = γ. Since ωγ + 1 ⊂ ωβ0 + 1, we may extend

F to a u.s.c.d. candidate sequence on ωβ0 + 1 (still denoted F) by letting F be

uniformly 0 off of ωγ + 1. Note that F on ωβ0 + 1 still has the properties stated

in Corollary 2.3.2. We now construct a harmonic, u.s.c.d. sequence H on K such

that α0(F) = α0(H). Let F = (fk) be given as above. Then let H′ = (h′k) be the

candidate sequence on K defined as follows. For t in K, let

h′k(t) =


0, if t /∈ Y ∪W

fk(g(t)), if t ∈ Y \W

fk(g(zm)), if t = um or t = vm.

We claim that for each k, h′k+1 − h′k is convex and u.s.c. Let t be in K. If t is in X,

then (h′k+1 − h′k)(t) =
∫
X

(h′k+1 − h′k)dPt since Pt = εt. If t is in K \ (Y ∪W ), then

0 = (h′k+1 − h′k)(t) ≤
∫
X

(h′k+1 − h′k)dPt. If t is in (Y ∪W ) \X = Y \X = Z, then

t = zm for some m, and we have that Pzm = 1
2
(εum + εvm). Then

(h′k+1 − h′k)(zm) = (fk+1 − fk)(g(zm)) =
1

2

(
(h′k+1 − h′k)(um) + (h′k+1 − h′k)(vm)

)
=

∫
X

h′k+1 − h′kdPt.

We have shown that h′k+1 − h′k is convex.

Let us prove that h′k+1−h′k is u.s.c. Since {um}, {vm} and {zm} each have the

same limit points, which are in Y (since {zm} is in Y and Y is closed), we obtain

that Y ∪W is compact in K. Thus if t is in K \ (Y ∪W ), then ˜(h′k+1 − h′k)(t) =

0 = (h′k+1− h′k)(t). For t in Y \W , assume {tn} is a sequence in K \ {t} converging

to t in K. Since (h′k+1 − h′k)|K\(Y ∪W ) ≡ 0, we may assume that tn lies in Y ∪W

for all n. For each n, if tn is not in Y , then there exists a natural number mn such
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that tn ∈ {umn , vmn}. If tn is in Y , then (h′k+1 − h′k)(tn) = (fk+1 − fk)(g(tn)), and

if tn is not Y , then there exists a natural number mn such that tn ∈ {umn , vmn}

and (h′k+1 − h′k)(tn) = (fk+1 − fk)(g(zmn)). By the choice of {um} and {vm}, we

have that{zmn} also converges to t. Then since F is u.s.c.d. and g is continuous,

we have that lim supn(h
′
k+1 − h′k)(tn) ≤ (fk+1 − fk)(g(t)) = (h′k+1 − h′k)(t). Thus

˜(h′k+1 − h′k)(t) = (h′k+1−h′k)(t). For t in W , t is isolated in Y ∪W , and we conclude

that ˜(h′k+1 − h′k)(t) = (h′k+1 − h′k)(t). Thus (h′k+1 − h′k) is u.s.c.

Now for t in K, let H = (hk), where hk is the harmonic extension of h′k on

K. H is harmonic by definition. Fact 2.2.24 states that the harmonic extension of a

non-negative, convex, u.s.c. function on a Choquet simplex K is a harmonic, u.s.c.

function on K. Applying this fact to each element in the sequence (h′k+1 − h′k), we

obtain that H is a harmonic, u.s.c.d. candidate sequence.

Let F = (Y ∩X) ∪W and L = F = Y ∪W . Note that H|X\F ≡ H′|X\F ≡ 0,

which implies that we may apply the Embedding Lemma (Lemma 2.2.30). The

Embedding Lemma gives that for all ordinals α and all t in K,

uHα (t) = max
µ∈π−1(t)

∫
L

uH|Lα dµ.

Let us now show that for all t in K,

uHα (t) = max
µ∈π−1(t)

∫
Y

uH|Lα dµ = max
µ∈π−1(t)

∫
Y

uH|Yα dµ = max
µ∈π−1(t)

∫
Y

uFα ◦ g dµ. (2.5.5)

The first equality in Equation (2.5.5) has already been justified as an application of

the Embedding Lemma. The second equality in (2.5.5) will be justified by showing

that for all ordinals α, u
H|L
α |L\Y ≡ 0 and u

H|L
α |Y = u

H|Y
α . Recall that H|Y = F ′ ◦ g,

where F ′ = (f ′k) is the candidate sequence on ωβ0 + 1 defined in terms of F = (fk)
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as follows. If t is in (ωβ0 +1) \ g(W ∩Y ), then f ′k(t) = fk(t), and if t is in g(W ∩Y ),

then f ′k(t) = fk(zm) for t = g(um) or t = g(vm). Since g is a homeomorphism, we

have that u
H|Y
α = uF

′
α ◦ g for all ordinals α. Then we will justify the third equality

in Equation (2.5.5) by proving that uFα = uF
′

α for all ordinals α. We proceed with

these steps and then conclude the proof of the lemma using Equation (2.5.5).

Notice that for all t in W , rL(t) = 0 (t is isolated in L by hypothesis). Thus,

if t ∈ W , then u
H|L
α (t) = 0 for all α.

For t in Y , suppose there is a sequence sn ∈ W such that sn converges to t and

lim sups→t τ
H|L
k (s) = limn τ

H|L
k (sn). Since sn is in W , for each n there exists mn such

that sn ∈ {umn , vmn}. Then τ
H|L
k (sn) = τ

H|L
k (zmn), zmn also converges to t, and since

zmn is in Y , τ
H|Y
k (zmn) = τ

H|L
k (zmn). Thus lim sups→t τ

H|L
k (s) = limn τ

H|Y
k (zmn). By

these considerations, we have that for all t in Y , τ̃
H|L
k (t) = τ̃

H|Y
k (t). Letting k tend

to infinity gives that u
H|L
1 (t) = u

H|Y
1 (t), for all t in Y .

Now we show by transfinite induction that u
H|Y
α = u

H|L
α |Y for all ordinals α.

The equality holds for α = 1 by the previous paragraph. Suppose by induction that

it holds for some ordinal α. For the sake of notation, we allow s = t in the following

limit suprema. Also, the limit supremum over an empty set is assumed to be 0 by

convention. For t in Y , the induction hypothesis implies that

˜
(u

H|L
α + τk)(t) = max

(
lim sup
s→t
s∈W

uH|Lα (s) + τk(s), lim sup
s→t
s∈Y

uH|Lα (s) + τk(s)
)

= max
(
lim sup
s→t
s∈W

τk(s), lim sup
s→t
s∈Y

uH|Yα (s) + τk(s)
)
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Taking the limit as k tends to infinity gives that

u
H|L
α+1(t) = max

(
u
H|L
1 (t), u

H|Y
α+1(t)

)
= max

(
u
H|Y
1 (t), u

H|Y
α+1(t)

)
= u

H|Y
α+1(t).

Thus we conclude that u
H|Y
α+1 = u

H|L
α+1|Y , proving the successor case of our induction.

For the limit case, suppose the equality holds for all ordinals β less than a limit

ordinal α. Then for t in Y , we have

uH|Lα (t) = max
(
lim sup
s→t
s∈W

sup
β<α

u
H|L
β (s), lim sup

s→t
s∈Y

sup
β<α

u
H|L
β (s)

)
= max

(
0, lim sup

s→t
s∈Y

sup
β<α

u
H|Y
β (s)

)
=uH|Yα (t),

which concludes the limit step of the transfinite induction.

Now we turn our attention towards showing that uF
′

α = uFα for all ordinals α.

By Remark 2.3.4, we assume (without loss of generality) that F has the property

(P) that for t in ωβ0 + 1,

lim sup
s→t
r(s)=0

τFk (s) = lim
s→t
r(s)=0

τFk (s). (2.5.6)

We also require the following topological fact. For every point t in Y \ I, there is a

sequence in I \W that tends to t, where I is the set of isolated points in Y . To prove

this fact, let t be a point with r(t) ≥ 1 and let U be an open (in Y ) neighborhood of

t. Suppose for the sake of contradiction that (I \W )∩U = ∅. Since Y ∼= ωβ0 + 1 (a

countable, compact Polish space), we have that I is dense in Y and Γ1(Y ) \ Γ2(Y )

is dense in Γ1(Y ). Since Γ1(Y ) \ Γ2(Y ) is dense in Γ1(Y ), there is a point t′ in U

with r(t′) = 1. Since I is dense in Y , there is a sequence wn in I ∩ U tending to t′.
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Since (I \W ) ∩ U = ∅, we must have that wn is in W and then there is a sequence

mn such that wn ∈ {umn , vmn} for all n. Then zmn tends to t′. Note that zmn is not

in W by hypothesis, and since r(t′) = 1, we must have that zmn is isolated in Y for

all large n. Thus (I \W ) ∩ U 6= ∅, a contradiction.

Using that F satisfies property (P) and the topological fact from the previous

paragraph, let us show that for any non-isolated point t in ωβ0 +1, we have τ̃F
′

k (t) =

τ̃Fk (t). First note that for every sequence sn converging to t, there is a sequence tn

converging to t such that τF
′

k (sn) = τFk (tn): if sn is not in g(W ∩Y ), then let tn = sn,

and if sn is in g(W ∩ Y ), then there exists mn such that sn ∈ {g(umn), g(vmn)}, and

one may take tn = g(zmn). It follows that lim sups→t τ
F ′
k (s) ≤ lim sups→t τ

F
k (s).

Also, since t is not isolated, t is not in g(W ∩ Y ) and τF
′

k (t) = τFk (t). We deduce

that τ̃F
′

k (t) ≤ τ̃Fk (t). Now we show the reverse inequality. If sn is a sequence con-

verging to t with r(sn) > 0, then sn is not in g(W ∩ Y ) and thus τF
′

k (sn) = τFk (sn).

In such a case, we have lim supn τ
F ′
k (sn) = lim supn τ

F
k (sn). Now let sn be a sequence

converging to t with r(sn) = 0. By the topological fact from the previous paragraph,

there is a sequence tn of isolated points in ωβ0 + 1 that are not in g(W ∩ Y ) such

that tn converges to t. Using the fact that F satisfies property (P) (see Equation

(2.5.6)), we have lim supn τ
F
k (sn) = lim supn τ

F
k (tn). Since the points tn are not in

g(W ∩ Y ) we also have that lim supn τ
F
k (tn) = lim supn τ

F ′
k (tn) ≤ lim sups→t τ

F ′
k (s).

We have shown that for every sequence sn converging to t, lim supn τ
F
k (sn) ≤

lim sups→t τ
F ′
k (s). It follows that τ̃F

′
k (t) ≥ τ̃Fk (t), and therefore we have shown

that τ̃F
′

k (t) = τ̃Fk (t).

Finally, we show that for all ordinals α, uF
′

α = uFα by transfinite induction on
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α. We make the conventions that we allow s = t in the following limit suprema, and

the limit supremum over an empty set is 0. Note that if t is isolated in ωβ0 +1, then

uFα (t) = 0 = uF
′

α (t) for all α, and thus we need only show the equality at non-isolated

points t in ωβ0 + 1. For the sake of induction, suppose the equality holds for an

ordinal α. Let t be in (ωβ0 +1)\g(I). For every sequence sn converging to t, there is

a sequence tn converging to t such that (uF
′

α + τF
′

k )(sn) = (uFα + τFk )(tn): if sn is not

in g(W ∩I), then let tn = sn, and if sn is in g(W ∩I), then there exists mn such that

sn ∈ {g(umn), g(vmn)}, and one may take tn = zmn . It follows that lim sups→t(u
F ′
α +

τF
′

k )(s) ≤ lim sups→t(u
F
α +τFk )(s). Thus we have that ˜(uF ′α + τF

′
k )(t) ≤ ˜(uFα + τFk )(t).

Now we show the reverse inequality. Let sn be a sequence in g(I) converging to t.

Then (uFα + τFk )(sn) = τFk (sn) and so lim supn(u
F
α + τFk )(sn) = lim supn τ

F
k (sn) ≤

τ̃Fk (t) = τ̃F
′

k (t) (recall that we showed the last equality in the previous paragraph).

Now let sn be a sequence in (ωβ0 + 1) \ g(I) converging to t. Since sn is not

isolated, sn is not in g(W ∩ Y ), and we have (uFα + τFk )(sn) = (uF
′

α + τF
′

k )(sn). Also,

lim supn(u
F ′
α + τF

′

k )(sn) ≤ ˜(uF ′α + τF
′

k )(t). Combining these considerations, we have

shown that

˜(uFα + τFk )(t) ≤ max
(
τ̃F

′
k (t), ˜(uF ′α + τF

′
k )(t)

)
= ˜(uF ′α + τF

′
k )(t).

Then we deduce that ˜(uFα + τFk ) = ˜(uF ′α + τF
′

k ). Taking the limit in k gives that

uFα+1 = uF
′

α+1, which concludes the successor step of the transfinite induction. For

the limit step, assume that uFβ = uF
′

β for all ordinals β less than a limit ordinal

α. We show that uFα = uF
′

α . For t in ωβ0 + 1, the induction hypothesis gives that
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(allowing s = t in the the limit suprema)

uFα (t) = lim sup
s→t

sup
β<α

uFβ (s) = lim sup
s→t

sup
β<α

uF
′

β (s) = uF
′

α (t).

We conclude that uFα = uF
′

α for all ordinals α. This fact completes the verification

of Equation (2.5.5).

It follows immediately from Equation (2.5.5) that α0(H) ≤ α0(F) = γ. We

now show the reverse inequality. Let 0γ be the marked point in Corollary 2.3.2,

and let t = g−1(0γ). Then uHγ (t) ≥ uFγ (0γ) = a. For an arbitrary α < γ, we also

have that uHα (t) ≤ ||uFα || < a by Equation (2.5.5) and Corollary 2.3.2 (1). Thus

γ = α0(t) ≤ α0(H), and we conclude that α0(H) = γ.

Since γ ≤ β0 was arbitrary, we deduce that S(K) ⊃ [0, β0]. For β finite,

β0 = β and the proof is finished in this case. On the other hand, if β is infinite,

then β0 = β − 1 and we may repeat the above argument starting with F on ωβ0 + 1

given by Corollary 2.3.3 such that α0(F) = β0 + 1. In this case, we conclude that

S(K) ⊃ [0, β0 + 1] = [0, β], which concludes the proof.

2.5.3 Open Questions

In general, our analysis leaves open the following problem.

Question 2.5.18. For a metrizable Choquet simplex K, what is S(K)?

Theorem 2.5.5 completely answers this question when ρex(K)(ex(K)) = ρ(ex(K)).

In particular, when K is Bauer or when ex(K) is uncountable, Theorem 2.5.5 gives

a complete answer. In general, Theorem 2.5.5 gives upper and lower bounds on

S(K).
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Theorem 2.5.6 shows that the bounds in Theorem 2.5.5 cannot be improved

using only knowledge of the ordinals ρex(K)(ex(K)) and ρ(ex(K))). Theorem 2.5.10

(1) shows that if ex(K) is countable, then the bounds in Theorem 2.5.5 cannot be

improved using only knowledge of the homeomorphism class of the compactifica-

tion (ex(K), ex(K)). Theorem 2.5.10 (2) shows that the upper bound in Theorem

2.5.5 cannot be improved using only knowledge of the homeomorphism class the

compactification (ex(K), ex(K)). Thus we have the following question remaining.

Question 2.5.19. Let E be a countable, non-compact Polish space, and let E be an

uncountable metrizable compactification of E. Let β be a successor in [ρE(E), ω1[.

Must there exist a metrizable Choquet simplexK such that (E,E) ' (ex(K), ex(K))

and S(K) = [0, β]?

Also, when E is countable and E is uncountable, we do not know whether the

upper bound on S(K) may be attained. We state this problem as a question as

follows.

Question 2.5.20. Let E be a countable, non-compact Polish space, and let E be

an uncountable metrizable compactification of E. Must there exist a metrizable

Choquet simplex K such that (E,E) ' (ex(K), ex(K)) and S(K) = [0, ω1[?

If the answers to Questions 2.5.19 and 2.5.20 are affirmative, then one could

conclude that the bounds in 2.5.5 cannot be improved using knowledge of the home-

omorphism class of the compactification (ex(K), ex(K)), and furthermore, one could

conclude that these bounds are obtained.
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Notice that for every simplex K for which we can compute S(K), S(K) is

either [0, ω1[ or [0, β] for a countable successor β. This observation leads to the

following two questions.

Question 2.5.21. If K is a metrizable Choquet simplex, must S(K) be an ordinal

interval?

Question 2.5.22. If K is a metrizable Choquet simplex, must S(K) be either [0, ω1[

or [0, β] for a countable successor β?

If the answers to Questions 2.5.19, 2.5.20, 2.5.21, and 2.5.22 are all affirmative,

then these results would give a complete description of the constraints imposed

on orders of accumulation by the compactification of the ergodic measures for a

dynamical system.
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Chapter 3

Orders of accumulation of entropy on manifolds

3.1 Introduction

The purpose of the current chapter is to investigate a new entropy invariant

arising from the theory of entropy structure and symbolic extensions: the order

of accumulation of entropy, which is a countable ordinal associated to the system

(X,T ), denoted α0(X,T ) or just α0(T ). The order of accumulation of entropy of the

system is an invariant of topological conjugacy that measures, roughly speaking, over

how many distinct “layers” residual entropy emerges [35]. It is shown in Chapter 2,

using a realization theorem of Downarowicz and Serafin [35, 38], that all countable

ordinals appear as the order of accumulation for a minimal homeomorphism of the

Cantor set. If follows from work of Buzzi [19] that if f is a C∞ self-map of a

compact manifold, then α0(f) = 0 (see Theorem 7.8 in [14]). Our main result,

which is contained in Theorem 3.3.3, states that if M is a compact manifold and

α is a countable ordinal, then there exists a continuous surjection f : M → M

such that α0(f) = α. Furthermore, if dim(M) ≥ 2, then f can be chosen to be a

homeomorphism. The proof of this theorem gives a much more concrete construction

of dynamical systems with prescribed order of accumulation than the proofs in

Chapter 2, which rely on a realization theorem of Downarowicz and Serafin.

This chapter is organized as follows. In Section 3.2, we recall the basic notions
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and necessary facts in the theory of entropy structures and symbolic extensions.

The main result of this chapter is stated in Section 3.3 as Theorem 3.3.3, and a

proof of this result, depending on Theorem 3.3.1, is also given in 3.3. At the end

of Section 3.3, we outline a proof of Theorem 3.3.1, and the rest of the chapter

is essentially devoted to proving that result. Section 3.4 contains some lemmas

regarding the behavior of several entropy invariants under certain suspensions and

extensions. The proof of Theorem 3.3.1 involves inductively “blowing up” periodic

points and “sewing in” more complicated dynamical behavior. The operation of

“blowing up” periodic points and “sewing in” more complicated dynamics is carried

out in Section 3.5, where we need only work in dimensions 1 and 2. Section 3.6

contains some technical lemmas in which the transfinite sequence is computed for

some specific instances of maps resulting from the blow-and-sew construction. The

transfinite induction scheme is executed in Section 3.7, which concludes with a proof

of Theorem 3.3.1.

3.2 Background

We assume some basic familiarity with ordinals (see, for instance, [81]) and

metrizable Choquet simplices (see [80]), but in this section we present the definitions

and facts required for the following sections. We will denote by N the set of positive

integers.

Definition 3.2.1. In this work, a dynamical system consists of a pair (X,T ), where

X is a compact metrizable space and T : X → X is a continuous surjection.
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Furthermore, we assume that the topological entropy of T is finite, htop(T ) <

∞. For references on the ergodic theory of such topological dynamical systems, see

[78, 87].

3.2.1 Choquet simplices and M(X,T )

Let K be a compact, convex subset of a locally convex topological vector

space. Let M(K) be the space of all Borel probability measures on K with the

weak* topology. The barycenter map, bar : M(K) → K, is defined as follows: for µ

in M(K), let bar(µ) be the unique point in K such that for each continuous affine

function f : K → R,

f(bar(µ)) =

∫
K

f dµ.

The barycenter map itself is continuous and affine.

Definition 3.2.2 ([5] p. 69). Let K be a metrizable, compact, convex subset of a

locally convex topological vector space. Then K is a metrizable Choquet simplex

if the dual of the continuous affine functions on K is a lattice.

We only need Choquet’s characterization of metrizable Choquet simplices (see

[80]): a metrizable, compact, convex subset of a locally convex topological vector

space is a metrizable Choquet simplex if and only if for each point x in K, there

exists a unique measure Px in M(K) such that Px(K \ex(K)) = 0 and bar(Px) = x,

where ex(K) is the set of extreme points of K.

Suppose K is a metrizable Choquet simplex. A Borel measurable function

f : K → R is called harmonic if, for each x in K and each Q in M(K) with
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bar(Q) = x, we have

f(x) =

∫
f dQ.

Using that Px is the unique measure supported on the extreme points of K with

barycenter x, one may check that f is harmonic if and only if f(x) =
∫
f dPx for

each x in K. If f is a real-valued function defined on the extreme points of K, then

we define the harmonic extension of f to be the function fhar : K → R given for x

in K by fhar(x) =
∫
fdPx. We also define f : K → R to be supharmonic if, for each

x in K and each Q in M(K) such that bar(Q) = x, it holds that f(x) ≥
∫
fdQ.

For a dynamical system (X,T ), we write M(X,T ) to denote the space of

Borel probability measures on X that are invariant under T . We give M(X,T )

the weak* topology. It is well known that in this setting M(X,T ) is a metrizable,

compact, convex subset of a locally convex topological vector space (see, for exam-

ple, [46, 78]). The extreme points of M(X,T ) are exactly the ergodic measures,

Merg(X,T ). Also, the statement that each invariant measure µ in M(X,T ) has a

unique ergodic decomposition [46, 78] implies that M(X,T ) is a metrizable Cho-

quet simplex (using Choquet’s characterization). In other words, we have that for

each µ in M(X,T ), there exists a unique measure Pµ in M(M(X,T )) such that

Pµ(M(X,T ) \Merg(X,T )) = 0 and bar(Pµ) = µ.

3.2.2 Dynamical systems notations

We need some notation.

Notation 3.2.3. Let (X,T ) be a dynamical system.
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• Let A be a Borel measurable subset of X. We make the convention that

M(A, T ) = {µ ∈M(X,T ) : µ(X \ A) = 0}.

• Let NW(T ) denote the non-wandering set for (X,T ).

• A measure µ in M(X,T ) as totally ergodic if µ is ergodic for the system

(X,T n), for all n ∈ N.

• If θ = {x0, . . . , xn−1} is a T -periodic orbit, then we let µθ denote the periodic

measure 1
n

∑n−1
k=0 δxk

, where δx is the point mass concentrated at the point x.

• Let h : M(X,T ) → [0, ∞) be the function that assigns to each measure in

M(X,T ) its metric entropy with respect to the system (X,T ). When we wish

to emphasize the dependence of h on the system (X,T ), we write hT . Also,

if A is a Borel partition of X, then we denote by hT (µ,A) the entropy of the

partition A with respect to the measure-preserving system (X,T, µ).

• If µ is a Borel probability measure on the space X, then supp(µ) is the inter-

section of all the closed sets C in X such that µ(C) = 1.

Recall that if µ is in M(X,T ), then supp(µ) ⊂ NW(T ).

Definition 3.2.4 ([12]). Let T be a continuous self-map of the compact metric

space X. Let ε > 0, x ∈ X, and Φε(x) = {y ∈ X : d(T nx, T ny) ≤ ε for all n}. If

there exists ε > 0 such that the topological entropy of T on the set Φε(x) is 0 for all

x ∈ X, then (X,T ) is h-expansive.
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3.2.3 Upper semi-continuity

If E is a compact metrizable space and f : E → R, then we denote by ||f ||

the supremum norm of f . For x in E, we define

lim sup
y→x

f(y) = max
(
f(x), sup{lim sup

n→∞
f(xn) : {xn}n∈N ⊂ E \ {x}, lim

n
xn = x}

)
.

Definition 3.2.5. Let E be a compact metrizable space, and let f : E → R. Then

f is upper semi-continuous (u.s.c.) if one of the following equivalent conditions

holds for all x in E,

(1) f = infα gα for some family {gα}α of continuous functions;

(2) f = limn gn for some nonincreasing sequence (gn)n∈N of continuous functions;

(3) For each r ∈ R, the set {x : f(x) ≥ r} is closed;

(4) lim supy→x f(y) ≤ f(x), for all x ∈ E.

For any f : E → R, the upper semi-continuous envelope of f , written f̃ , is

defined by letting f̃ ≡ ∞ if f is unbounded, and otherwise

f̃(x) = inf{g(x) : g is continuous, and g ≥ f}, for all x in E.

Note that f̃ is the smallest u.s.c. function greater than f and satisfies

f̃(x) = lim sup
y→x

f(y).

It is immediately seen that for any f, g : E → R, f̃ + g ≤ f̃+g̃, with equality holding

if f or g is continuous. We remark that if f : E → [0,∞) is bounded and u.s.c.,

then f achieves its supremum. Also, if K is a Choquet simplex and f : K → R is

concave and u.s.c., then f is supharmonic.
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3.2.4 Entropy structure and symbolic extensions

Definition 3.2.6. Let M be a compact metrizable space. A candidate sequence

on M is a non-decreasing sequence (hk) of functions from M to [0,∞) such that

limk hk exists and is bounded. We assume by convention that h0 ≡ 0. Given two

candidate sequences H = (hk) and F = (fk) defined on the same space, we say that

H uniformly dominates F , written H ≥ F , if for each ε > 0, and for each k, there

exists `, such that fk ≤ h` + ε. The candidate sequences H and F are uniformly

equivalent, written H ∼= F , if H ≥ F and F ≥ H. Note that uniform equivalence

is, in fact, an equivalence relation.

The uniform equivalence relation captures the manner in which sequences con-

verge to their limit. For example, if two sequences converge uniformly to the same

limit function, then they are uniformly equivalent. Also, if (hk) and (fk) are two

candidate sequences on a compact metrizable space, then limk ||hk−fk|| = 0 implies

(hk) ∼= (fk), but (hk) ∼= (fk) does not necessarily imply limk ||hk − fk|| = 0.

Definition 3.2.7 ([35]). Let X be a compact metrizable space and T : X → X a

continuous surjection. For any continuous function f : X → [0, 1], let Af be the

partition of X × [0, 1] consisting of the set {(x, t) : f(x) ≥ t} and its complement.

If F = {f1, . . . , fn} is a finite collection of continuous functions fi : X → [0, 1], then

let AF = ∨ni=1Afi
. Let {Fk}k∈N be an increasing sequence of finite sets of continuous

functions from X to [0, 1] chosen so that the partitions AFk
separate points (such

sequences exist [35]). Let λ be Lebesgue measure on [0, 1]. We defineHfun(T ) = (hk)

to be the candidate sequence on M(X,T ) given by hk(µ) = hT×Id(µ× λ,AFk
).
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Definition 3.2.8 ([35]). Let (X,T ) be a dynamical system. A candidate sequence

H on M(X,T ) is an entropy structure for (X,T ) if H ∼= Hfun(T ). We may

also refer to the entire uniform equivalence class of candidate sequences containing

Hfun(T ) as the entropy structure of (X,T ).

Downarowicz showed that many of the known methods of computing or defin-

ing entropy can be adapted to become an entropy structure. For example, suppose

(X,T ) is a dynamical system with a refining sequence {Pk}k∈N of finite Borel par-

titions of X such that the boundaries of all partition elements have zero measure

for all T -invariant measures. Then the sequence of functions (hk) defined for µ in

M(X,T ) by hk(µ) = hT (µ, Pk) is an entropy structure for (X,T ). It may happen,

though, that a particular system does not admit such a sequence of partitions (for

example, if the system has an interval of fixed points). In such a case, we give

another example of an entropy structure, known as the Katok entropy structure

[35].

Definition 3.2.9 ([35]). For an ergodic measure µ inM(X,T ), ε > 0 and 0 < σ < 1,

let

h(µ, ε, σ) = lim sup
n

1

n
log min{|E| : µ

(
∪x∈EB(x, n, ε)

)
> σ},

where B(x, n, ε) = {y ∈ X : d(T ky, T kx) < ε, for each 0 ≤ k ≤ n − 1} and d(·, ·)

is a metric compatible with the topology of X. For an invariant but non-ergodic

measure µ, define h(µ, ε, σ) by harmonic extension. Then for any sequence {εk}k∈N

tending to 0, the sequence of functions hk(µ) = h(µ, εk, σ) is an entropy structure

(for proof, see [35] if T is a homeomorphism and [16] if T is merely continuous).
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Notation 3.2.10. Let H = (hk) be a candidate sequence on K, and let π : L→ K.

We write H ◦ π to denote the candidate sequence on L given by hk ◦ π. Also, if S

is a subset of K, let H|S be the candidate sequence on S given by (hk|S).

Definition 3.2.11. Let H be a candidate sequence. The transfinite sequence

associated to H, which we write as (uHα ), is defined by transfinite induction as

follows. Let τk = h− hk. Then

• let uH0 ≡ 0;

• if uHα has been defined, let uHα+1 = limk ũHα + τk;

• if uHβ has been defined for all β < α, where α is limit ordinal, then let

uHα = s̃up
β<α

uHβ .

The sequence (uHα ) is non-decreasing in α and does not depend on the choice

of representative of uniform equivalence class [35], which allows us to make the

following definition.

Definition 3.2.12. Let (X,T ) be a topological dynamical system. Then the trans-

finite sequence associated to (X,T ) is the sequence (u
H(T )
γ ), where H(T ) is an

entropy structure for T .

Note that for each α, the function uHα is either identically equal to +∞ or it is

u.s.c. into R (since a non-increasing limit of u.s.c. functions is u.s.c.). The sequence

(uHα ) is also sub-additive in the following sense.

97



Proposition 3.2.13 ([18]). Let H be a candidate sequence on E. Then for any two

ordinals α and β,

uHα+β ≤ uHα + uHβ .

If H is a candidate sequence, then by Theorem 3.3 in [13], there exists a

countable ordinal α such that uHα = uHα+1, which then implies that uHβ = uHα for all

β > α.

Definition 3.2.14. If H is a candidate sequence, then the least ordinal α such that

uHα = uHα+1 is called the order of accumulation of H, which we write as α0(H).

If (X,T ) is a topological dynamical system, then the order of accumulation of

entropy of (X,T ), written α0(X,T ) or just α0(T ), is defined as α0(H(T )), where

H(T ) is an entropy structure for T .

To understand the meaning of the transfinite sequence and the order of accu-

mulation of entropy of (X,T ), we turn to the connection between symbolic exten-

sions and entropy structure.

Definition 3.2.15. Let (X,T ) be a topological dynamical system. A symbolic

extension of (X,T ) is a subshift (Y, S) of a (two-sided) full shift on a finite alphabet,

along with a continuous surjection π : Y → X such that T ◦ π = π ◦ S.

Definition 3.2.16. If (Y, S) is a symbolic extension of (X,T ) with factor map π,

then the extension entropy function, hπext : M(X,T ) → [0,∞), is defined for µ

in M(X,T ) by

hπext(µ) = sup{h(ν) : πν = µ}.
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The symbolic extension entropy function of a dynamical system (X,T ), hsex :

M(X,T ) → [0, ∞], is defined for µ in M(X,T ) by

hsex(µ) = inf{hπext(µ) : π is the factor map of a symbolic extension of (X,T )},

and the residual entropy function, hres : M(X,T ) → [0,∞], is defined as

hres = hsex − h.

If (X,T ) does not admit symbolic extensions, we let hsex ≡ ∞ and hres ≡ ∞, by

convention.

We think of a symbolic extension as a “lossless finite encoding” of the dynam-

ical system (X,T ) [35]. The symbolic extension entropy function quantifies at each

measure the minimal amount of entropy that must be present in such an encoding.

The study of symbolic extensions is related to entropy structures by the fol-

lowing remarkable result of Boyle and Downarowicz.

Theorem 3.2.17 ([13]). Let (X,T ) be a dynamical system with entropy structure

H. Then

hsex = h+ uHα0(T ).

Note that the conclusion of Theorem 3.2.17 could be restated as hres = uHα0(H).

This theorem relates the notion of how entropy emerges on refining scales to the

symbolic extensions of a system, showing that there is a deep connection between

these topics. Using this connection, some progress has been made in understanding

the symbolic extensions of certain classes of dynamical systems. For examples of
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these types of results, see [4, 13, 17, 15, 33, 35, 36, 37]. In light of Theorem 3.2.17, we

observe that the order of accumulation of entropy measures over how many “layers”

residual entropy accumulates in the system.

3.2.5 Background lemmas

The following lemma (Lemma 3.2.18) will be used to compute the transfinite

sequence associated to the systems that appear in Sections 3.4 - 3.7. Although the

entropy function h is a harmonic function on the simplex of invariant measures,

the functions uHα are not harmonic in general. Lemma 3.2.18 is useful because it

nonetheless provides an integral representation of the functions uHα . A candidate

sequence (hk) on a Choquet simplex such that each function hk is harmonic will

be referred to as a harmonic candidate sequence. Let K be a metrizable Choquet

simplex with E = ex(K). In Lemma 3.2.18 we identify M(C ∪ E) with the set

{µ ∈M(K) : supp(µ) ⊂ C ∪E} in the natural way, where E denotes the closure of

E in K. Also, if f is a measurable function defined on the measurable subset C of

K and µ is a measure on K, then
∫
C
f dµ is defined to be the integral with respect

to µ of the function

x 7→


f(x), if x ∈ C

0, if x /∈ C.

Lemma 3.2.18 (Embedding Lemma [18]). Let K be a metrizable Choquet simplex

with E = ex(K). Suppose H is a harmonic candidate sequence on K and there is

a set F ⊂ E such that the sequence {(h− hk)|E\F}k∈N converges uniformly to zero.

Let C be a closed subset of K such that F ⊂ C, and let Φ : M(C ∪ E) → K be the
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restriction of the barycenter map. Then for all ordinals α and for all x in K,

uHα (x) = max
µ∈Φ−1(x)

∫
C

uH|Cα dµ, (3.2.1)

and α0(H) ≤ α0(H|C). In particular, if x is an extreme point of K contained in C,

then uHα (x) = u
H|C
α (x) for all ordinals α.

The Embedding Lemma (Lemma 3.2.18) was proved in Chapter 2 as Lemma

2.2.30.

We end this section by stating some facts that will be used repeatedly in the

following sections. Facts 3.2.19 (1)-(4) are easily checked from the definitions, and

Fact 3.2.19 (5), which is proved in [18], follows from the fact that the u.s.c. envelope

of a concave function is concave and the limit of concave functions is concave.

Fact 3.2.19. Let M , M1, M2, and K be compact metrizable spaces. Then for all

ordinals γ, the following hold.

(1) If H is a candidate sequence on M and U is an open neighborhood of x in M ,

then uHγ (x) = u
H|U
γ (x).

(2) Suppose that H is a candidate sequence on M1 and M2 ⊂ M1. Then u
H|M2
γ ≤

u
H|M1
γ .

(3) Suppose that π : M → K is a continuous surjection, F is a candidate sequence

on K, and H = F ◦ π. Then uHγ ≤ uFγ ◦ π.

(4) Suppose π : M → K is continuous, surjective, and open (which is satisfied, in

particular, if π is a homeomorphism), F is a candidate sequence on K, and

H = F ◦ π. Then uHγ = uFγ ◦ π.

101



(5) Suppose H is a harmonic candidate sequence on a metrizable Choquet simplex

M . Then uHγ is concave for all γ, and since uHγ is u.s.c., uHγ is also suphar-

monic. In particular, if (X,T ) is a topological dynamical system, then there

exists a harmonic entropy structure H(T ) for T [35], and therefore u
H(T )
γ is

concave and supharmonic for all γ.

3.3 Main Results

The notation S(α, d, a) is defined in Definition 3.6.1. For our purposes now,

it suffices to use the following facts. Let D be the closed unit ball in dimension Rd,

which has boundary ∂D. Suppose a map F : D → D is in S(α, d, a). Then F is

continuous and surjective, and F is a homeomorphism when d ≥ 2. Also, F |∂D = Id,

htop(F ) <∞, α0(F ) = α and ||uH(F )
α || = a.

Theorem 3.3.1. Let d be in {1, 2}. For every countable ordinal α > 0 and any

a > 0, there is a map F in S(α, d, a).

The formal proof of Theorem 3.3.1 appears at the end of Section 3.7, since

it relies on the accumulated results of Sections 3.4 - 3.7. Using Theorem 3.3.1, we

obtain the following result.

Corollary 3.3.2. Let α be a countable ordinal, let a > 0 and let d be in N. Let D

be the closed unit ball in Rd. Then there exists a continuous surjection f : D → D

such that f |∂D = Id, α0(f) = α, and ||uH(f)
α || = a. If d ≥ 2, then f can be chosen to

be a homeomorphism.
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Proof. If d is 1 or 2, then Theorem 3.3.1 implies that there exists g in S(α, d, a),

which satisfies the conclusion of the corollary. We remark that since D and [−1, 1]d

are homeomorphic, the statement of the theorem is equivalent to the same statement

with [−1, 1]d in place of D. Thus we may consider all maps defined on [−1, 1]d with-

out loss of generality. The proof proceeds by induction on d. Suppose the corollary

holds for some d ≥ 2. Using this inductive hypothesis, choose a homeomorphism

g : [−1, 1]d → [−1, 1]d such that g|∂[−1,1]d = Id, α0(g) = α, and ||uH(g)
α || = a. Then

there exists a homeomorphism f : [−1, 1]d+1 → [−1, 1]d+1 such that f |∂[−1,1]d+1 = Id,

f(x, 0) = (g(x), 0) for x in [−1, 1]d, and NW(f) ⊂ {(x, t) ∈ [−1, 1]d × [−1, 1] : t =

0} ∪ ∂[−1, 1]d+1. Such a map f may be constructed as follows. Let

V = {(x1, . . . , xd, t) ∈ [−1, 1]d+1 : |xi| ≤ (1− |t|) for 1 ≤ i ≤ d}.

Also, define T : [−1, 1] → [−1, 1] by T (t) = t + 1
10

sin(πt). For x in ∂[−1, 1]d+1, let

f(x) = x. For (x, t) in V (where x ∈ [−1, 1]d) such that |t| < 1, let

f(x, t) =

(
(1− |T (t)|)g

(
1

(1− |t|)
x

)
, T (t)

)
.

We have defined f on V ∪∂[−1, 1]d+1. For any point p in [−1, 1]d+1\(V ∪∂[−1, 1]d+1),

let `p denote the line in Rd+1 passing through p and the origin. Let p1 and p2 be

the points such that {p1} = ∂V ∩ `p and {p2} = ∂[−1, 1]d+1 ∩ `p. Then let s in

[0, 1] be such that p = sp1 + (1 − s)p2. Now define f(p) = sf(p1) + (1 − s)f(p2).

With this definition, f is a homeomorphism of [−1, 1]d+1 (using that g|∂[−1,1]d = Id).

Furthermore, we have that f |∂[−1,1]d+1 = Id, f(x, 0) = (g(x), 0) for x in [−1, 1]d, and

NW(f) ⊂ {(x, t) ∈ [−1, 1]d× [−1, 1] : t = 0}∪ ∂[−1, 1]d+1. Then α0(f) = α0(g) = α
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and ||uH(f)
α || = ||uH(g)

α || = a. In this way we have verified the inductive hypotheses

for d+ 1, which finishes the proof of the corollary.

Todd Fisher asked the following question [45]. Given a countable ordinal α and

a compact manifold M , does there exist a continuous surjection (or homeomorphism

if dim(M) ≥ 2) f : M → M such that α0(f) = α? Theorem 3.3.3, which we view

as our main result, answers this question affirmatively.

Theorem 3.3.3. Let α be a countable ordinal and let a > 0. Let M be a compact

manifold. Then there exists a continuous surjection f : M →M such that α0(f) = α

and ||uH(f)
α || = a. If dim(M) ≥ 2, then f can be chosen to be a homeomorphism.

Proof. Let d = dim(M), and let D be the closed unit ball in Rd. By Corollary 3.3.2,

there exists a continuous onto map g : D → D such that g|∂D = Id, α0(g) = α,

||uH(g)
α || = a, and g is a homeomorphism if d ≥ 2. We define a map G : D → D

as follows. Let G|
B(0, 1

2
)

= A 1
2
,0 ◦ g ◦ A2,0, where As,p is the affine map on Rd

given by As,p(x) = sx + p and 0 is the origin. Now parametrize the annulus

{x ∈ Rd : 1
2
≤ |x| ≤ 1} with polar coordinates (r, θ) ∈ [1

2
, 1] × S1. For (r, θ) in

[1
2
, 1] × S1, let G(r, θ) = (r + 1

10
sin(2πr), θ). Now G is continuous and surjective

and satisfies G|∂D = Id and htop(G) < ∞. Also, G is a homeomorphism if d ≥ 2,

and B(0, 1
2
) is an isolated set for G. Let φ : D → M be a homeomorphism onto its

image (such a map exists since M is a manifold). Define f : M → M as follows.

For x in φ(D), let f(x) = φ(G(φ−1(x))). For x in M \ φ(D), let f(x) = x. Then

NW (f) = φ(B(0, 1
2
)) ∪ (M \ φ(int(D))). Further, f is topologically conjugate to

G|
B(0, 1

2
)

on φ(B(0, 1
2
)), and f is the identity on M \ φ(int(D)). It follows that
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α0(f) = α0(G) = α0(g) = α and ||uH(f)
α || = ||uH(G)

α || = ||uH(g)
α || = a.

The remainder of this chapter is devoted to proving Theorem 3.3.1. Let us

provide an outline of the constructions and statements that follow. The main con-

struction uses a complicated transfinite induction argument, which is similar in

format to the induction carried out in [18]. At each stage of the induction, we

assume that we have maps in S(γ, d, b) for all b > 0 and some collection of ordi-

nals γ < α (specified in the formal statements below). The goal is to show that

there exists a map in S(α, d, a) for the ordinal α and an arbitrary a > 0. We start

by choosing f in S(γ0, d, a0) and a sequence of maps {χm}m∈N such that χm is in

S(γm, d, am) (for some well-chosen ordinals {γi}i≥0 and real numbers {ai}i≥0). Then

we perform the “blow-and-sew” operation on f and {χm}m∈N, in which we “blow

up” a sequence {θm}m∈N of f -periodic orbits into tiny discs and “sew in” a tower

over the map χm on the discs corresponding to θm. This construction is executed

in such a way that from the point of view of invariant measures, the resulting map

F looks like a countable, disjoint union consisting of a principal extension over f

and towers over the maps {χm}m∈N. Using this decomposition and the inductive

hypotheses, we can prove that F is in S(α, d, a), as desired. The rest of the body

the chapter is organized as follows:

• In Section 3.4, we analyze the entropy structures and transfinite sequences

that arise from principal extensions and towers.

• In Section 3.5, the “blow-and-sew” construction is described in general, and

many properties of the resulting map F are deduced that will be used in the
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following sections.

• In Section 3.6, it is shown that if f and the maps {χm}m∈N satisfy certain

properties, mostly involving their invariant measures and transfinite sequences,

then F also satisfies some desirable properties involving its invariant measures

and transfinite sequences.

• Section 3.7 combines Sections 3.4 - 3.6 and actually carries out the transfinite

induction scheme.

3.4 Principal extensions and towers

Definition 3.4.1. Let (X,T ) be a factor of (Y, S) with factor map π. The system

(Y, S) is a principal extension of (X,T ) if hT (πµ) = hS(µ) for all µ in M(Y, S).

If (Y, S) is a principal extension of (X,T ), then we may refer to S as a principal

extension of T . The following fact is a basic result in the theory of entropy structures.

Fact 3.4.2 ([35]). If S is a principal extension of T with factor map π and H(T )

is an entropy structure for T , then H(T ) ◦ π is an entropy structure for S.

Lemma 3.4.3. Let (X, f) be a topological dynamical system. Suppose there exists

a compact subset C of M(X, f) such that for each ordinal γ and each measure µ in

M(X, f),

uH(f)
γ (µ) =

∫
C

uH(f)|C
γ dPµ. (3.4.1)

Let (Y, F ) be a principal extension of (X, f) with factor map π and induced map

M(Y, F ) →M(X, f) also denoted by π. Suppose that π|π−1(C) is a homeomorphism
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onto C. Then for each ordinal γ and each measure ν in M(Y, F ),

uH(F )
γ (ν) =

∫
π−1(C)

u
H(F )|π−1(C)
γ dPν = uH(f)

γ (π(ν)).

Proof. Let H(f) be an entropy structure for f , and let H(F ) = H(f) ◦ π, which

is an entropy structure for F by Fact 3.4.2. By monotonicity (Fact 3.2.19 (2)),

u
H(F )
γ (x) ≥ u

H(F )|π−1(C)
γ (x) for all x in π−1(C). Since π|π−1(C) is a homeomorphism

onto C, u
H(F )|π−1(C)
γ = u

H(f)|C
γ ◦ π (Fact 3.2.19 (4)). Combining these facts with

Equation (3.4.1) and the fact that u
H(F )
γ is concave (Fact 3.2.19 (5)), we obtain that

for all ordinals γ and all ν in M(Y, F ),

uH(F )
γ (ν) ≥

∫
π−1(C)

u
H(F )|π−1(C)
γ dPν =

∫
π−1(C)

uH(f)|C
γ ◦ π dPν

=

∫
C

uH(f)|C
γ dPπν = uH(f)

γ (πν).

Since π is continuous and surjective, u
H(F )
γ ≤ u

H(f)
γ ◦π (Fact 3.2.19 (3)). Combining

the above inequalities, we obtain that u
H(F )
γ = u

H(f)
γ ◦ π, and all of the above

inequalities are equalities. This concludes the proof of the lemma.

Now we turn our attention to simple towers. We begin with a definition.

Definition 3.4.4. Let (X,T ) be a topological dynamical system. Let n and p be

natural numbers with p ≤ n. Let Y = X × {0, . . . , n − 1}. We define a map

S : Y → Y as follows. Let S(x, i) = (x, i+ 1) for all x in X and i ∈ {0, . . . , n− 2}.

For each x in X, let S(x, n − 1) = (T p(x), 0). We will refer to (Y, S) (or possibly

just S) as an (n, p) tower over (X,T ) (or possibly just T ).

Notation 3.4.5. Suppose (Y, S) is an (n, p) tower over (X,T ). Let Y0 = X × {0},

and note that Y0 is invariant under Sn. Let π1 : M(Y, S) →M(Y0, S
n|Y0) be the map
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given by µ 7→ µ|Y0 . Let π2 : Y0 → X be projection onto X. With π2 as the factor

map, (Y, Sn|Y0) is a principal extension over (X,T p). Note that the maps π1 and π2

on measures are affine homeomorphisms. Further, recall that if µ is in M(Y, S), then

the measure-preserving systems (S, µ) and (T p, π2 ◦π1(µ)) are measure-theoretically

isomorphic. Let π3 : M(Y, T p) →M(X,T ) be the map π3(µ) = 1
p

∑p−1
i=0 T

iµ.

Definition 3.4.6. If S is a tower over T with notation as above, then the map

ψ = π3 ◦ π2 ◦ π1 will be referred to as the map associated to the tower S over

T .

Lemma 3.4.7. Let (X,T ) be a topological dynamical system with entropy structure

H(T ). Then pH(T ) ◦ π3 is an entropy structure for T p, where π3 : M(X,T p) →

M(X,T ) is defined by π3(µ) = 1
p

∑p−1
i=0 T

iµ.

Proof. It is shown in [13] that every finite entropy dynamical system has a zero-

dimensional principal extension. (In fact, [13] deals only with homeomorphisms,

but the natural extension T of a continuous surjection T is a homeomorphism and

a principal extension of T , and then applying [13] to T yields a zero-dimensional

principal extension of T .) Applying this fact to (X,T ), we fix a zero-dimensional

principal extension (X ′, T ′) of (X,T ) with factor map π. Then (X ′, (T ′)p) is a zero-

dimensional principal extension of (X,T p) with factor map π. We let π3 denote the

averaging map from M(X ′, (T ′)p) to M(X ′, T ′) as well as the averaging map from

M(X,T p) to M(X,T ). Note that π ◦ π3 = π3 ◦ π. Now let H(T ) be an entropy

structure for T and let H(T p) be an entropy structure for T p. We prove the lemma

by showing that H(T p) is uniformly equivalent to pH(T ) ◦ π3. Since (X ′, T ′) is zero
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dimensional, there exists a refining sequence {Pk}k∈N of clopen partitions of X ′ with

diameters tending to 0. Let H(T ′) = (hT
′

k ) and H((T ′)p) = (h
(T ′)p

k ) be the entropy

structures (for T ′ and (T ′)p respectively) defined by this sequence of partitions, i.e.

hT
′

k (µ) = hT
′
(µ, Pk) and h

(T ′)p

k (µ) = h(T ′)p
(µ, Pk). Then for any µ inM(X ′, (T ′)p), we

have that h
(T ′)p

k (µ) = h(T ′)p
(µ, Pk) = phT

′
(π3(µ), Pk) = phT

′

k (π3(µ)). Thus H((T ′)p)

is uniformly equivalent to pH(T ′)◦π3. Since T ′ is a principal extension of T and (T ′)p

is a principal extension of T p, both with factor map π, we have thatH(T ′) ∼= H(T )◦π

and H((T ′)p) ∼= H(T p) ◦ π. Combining these facts, we obtain that pH(T ) ◦ π ◦ π3
∼=

H(T p) ◦ π. Since π ◦ π3 = π3 ◦ π, we see that pH(T ) ◦ π3 ◦ π ∼= H(T p) ◦ π. Using

this fact and the definition of uniform equivalence, we see that pH(T )◦π3
∼= H(T p),

which finishes the proof of the lemma.

Lemma 3.4.8. Let (Y, S) be an (n, p) tower over (X,T ) with associated map ψ :

M(Y, S) →M(X,T ) , and let H(T ) be an entropy structure for T . Then p
n
H(T )◦ψ

is an entropy structure for S.

Proof. We use Notation 3.4.5. Note that the maps π1, π2 and π3 are each continuous

and affine. For any entropy structure H(Sn) of Sn, we have that 1
n
H(Sn) ◦ π1 is an

entropy structure for S (Theorem 5.0.3 (3) in [35]). If H(T p) is an entropy structure

for T p, then H(T p) ◦ π2 is an entropy structure for Sn by Fact 3.4.2, since Sn is

a principal extension of T p with factor map π2. By Lemma 3.4.7, we have that if

H(T ) is an entropy structure for T , then pH(T ) ◦ π3 is an entropy structure for T p.

Combining these facts, we obtain that if H(T ) is an entropy structure for T , then

p
n
H(T ) ◦ ψ is an entropy structure for S.
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Lemma 3.4.9. Let (Y, S) be an (n, p) tower over (X,T ) with associated map ψ :

M(Y, S) → M(X,T ). Let {θm}m∈N be a sequence of periodic orbits of T . Let

C(T ) = ∩∞n=1∪m≥n{µθm}. Suppose that each measure in C(T ) is totally ergodic.

Further suppose that for all µ in M(X,T ) and all ordinals α,

uH(T )
α (µ) =

∫
C(T )

u
H(T )|C(T )
α dPµ. (3.4.2)

Let {Θ`} be an enumeration of the S-periodic orbits in ∪mθm × {0, . . . , n− 1}, and

let C(S) = ∩n=1∪`≥n{µΘ`
}. Then

(1) each ν in C(S) is totally ergodic;

(2) ψ maps C(S) homeomorphically onto C(T );

(3) for all ν in M(Y, S) and all ordinals α

uH(S)
α (ν) =

∫
C(S)

u
H(S)|C(S)
α dPν =

p

n
uH(T )
α (ψ(ν)).

Proof. We use Notation 3.4.5. Let µ be in C(T ). Since µ is invariant for T , it is

also invariant for T p and we have π(µ) = µ. Further, µ is totally ergodic for T

by hypothesis, and therefore µ is totally ergodic for T p. Hence µ is an extreme

point in M(X,T p). If there were any other measure ν in π−1
3 (µ), then we would

have µ = 1
p

∑p−1
k=0 T

kν, and thus µ would be a non-trivial convex combination of

measures in M(X,T p), which would be a contradiction. Hence π−1
3 (µ) = {µ}. Since

π2◦π1 : M(Y, S) →M(X,T p) is a homeomorphism, (π2◦π1)
−1(µ) consists of exactly

one measure ν. Since (S, ν) is measure-theoretically isomorphic to (T p, µ) and µ is

totally ergodic with respect to T p, we have that ν is totally ergodic with respect to
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S. Combining these facts, we obtain that ψ−1(µ) consists of exactly one measure,

which is totally ergodic for S.

The fact that ψ−1(µ) consists of exactly one measure for each µ in C(T ) implies

that ψ−1(C(T )) = C(S) and that ψ maps C(S) bijectively onto C(T ). Since C(S)

is compact and ψ is continuous, we conclude that ψ maps C(S) homeomorphically

onto C(T ), which proves (2). The fact that ψ−1(µ) is totally ergodic for S implies

that each ν in C(S) is totally ergodic for S, proving (1).

Now Lemma 3.4.8 implies that if H(T ) is an entropy structure for T , then

p
n
H(T ) ◦ ψ is an entropy structure for S. Since ψ|C(S) is a homeomorphism onto

C(T ), Fact 3.2.19 (4) implies that u
H(S)|C(S)
γ = p

n
u
H(T )|C(T )
γ ◦ ψ|C(S). Using this fact,

as well as Equation (3.4.2) and Facts 3.2.19 (2), (3), and (5), we obtain that for any

ν in M(Y, S),

p

n

∫
C(T )

u
H(T )|C(T )
γ dPψ(ν) =

∫
C(S)

u
H(S)|C(S)
γ dPν ≤ uH(S)

γ (ν)

≤ p

n
uH(T )
γ (ψ(ν)) =

p

n

∫
C(T )

u
H(T )|C(T )
γ dPψ(ν).

Thus the above inequalities are all equalities and the proof is complete.

3.5 “Blow-and-sew”

We now begin building towards the proof of Theorem 3.3.1. The main idea

of the proof is that we may “blow-up” periodic points (to intervals in dimension 1

and to discs in dimension 2) and “sew in” more complicated dynamical behavior,

and in the process we increase the order of accumulation in a controlled way. In

this section we describe and analyze the operation of “blowing up” a sequence of
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periodic orbits and “sewing in” other maps. The basic idea of this construction

appears in Appendix C of [14]. In this section, we assume d ∈ {1, 2}.

Notation 3.5.1. Recall that we have adopted the convention that N denotes the

set of positive integers and Z≥0 = N∪ {0}. Let D be the closed unit disc in Rd. For

a subset S of Rd, let int(S) denote the interior of S, and let ∂S be the boundary

of S. For r > 0 and p in Rd, we let B(p, r) be the open ball of radius r centered

at p. Given s > 0 and a point p in Rd, let As,p be the affine map of Rd given by

As,p(x) = sx+ p.

We consider maps in the following class.

Definition 3.5.2. Define Cd to be the class of functions f : D → D with the

following properties:

(1) f is a continuous surjection, and if d = 2, then f is a homeomorphism;

(2) f |∂D = Id;

(3) htop(f) <∞.

Definition 3.5.3. Let f : D → D be continuous. Let {θm}m∈N be a sequence of

periodic orbits for f , and let S = ∪mθm. We say that f is ready for operation

on S if the following conditions are satisfied, where Q = ∪k≥0f
−k(S):

(1) for any ν in ∩∞n=1∪m≥n{µθm}, it holds that ν(∪mθm) = 0;

(2) the set Q is countable and Q ⊂ int(D);
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(3) for each point x in Q, the derivative Dfx is invertible, and if d = 2, then

detDfx > 0 for each point x in Q.

We remark that if d = 2, then in the above notation we have Q = S. To get

non-zero orders of accumulation of entropy in dimension 1, we must look outside

the class of homeomorphisms because a homeomorphism of the circle or the unit

interval has zero entropy, and therefore its order of accumulation of entropy is zero.

3.5.1 The “blow-and-sew” construction

Proposition 3.5.4 carries out the “blow and sew” procedure. See Remark 3.5.6

for an informal interpretation of Proposition 3.5.4.

Proposition 3.5.4. Suppose:

• f is a function in Cd;

• {θm}m∈N is a sequence of periodic orbits for f , and f is ready for operation

on ∪mθm;

• {χm}m∈N is a sequence of functions in Cd;

• for each natural number m, the sequence {θm` }`∈N is a sequence of periodic

orbits for χm, and χm is ready for operation on ∪` θm` ;

• {ξm}m∈N is a sequence of natural numbers satisfying 1 ≤ ξm ≤ |θm| for each

m in N, where |θm| is the length of the periodic orbit θm.

• supm
ξm
|θm|htop(χm) <∞
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Let Q = ∪m∈N,j≥0f
−j(θm), and let {qk}k∈N be an enumeration of Q. Then there

exist functions F : D → D and π : D → D, a sequence {Ki}i≥0 of pairwise disjoint,

compact subsets of D, and a sequence {φm}m∈N of C∞ diffeomorphisms, φm : D ×

{0, . . . , |θm|− 1} → Km, such that the following hold, with Lk := π−1({qk}) for each

k:

(1) F is in Cd;

(2) π is a factor map from (D, F ) to (D, f);

(3) π(Km) = θm, Lk is C∞ diffeomorphic to D for each k, π|D\(∪kLk) is injective,

and Km ⊂ ∪qk∈θm int(Lk) for each m in N.

(4) Ki is F -invariant for each i ≥ 0, K0 = D \ (∪∞k=1 int(Lk)), and ∪k∂Lk is

F -invariant.

(5) NW(F ) ⊆
⋃
i≥0Ki;

(6) F |K0 is a principal extension of f with factor map π|K0, and for ν in M(K0 \

∪k∂Lk, F ), the map π is a measure theoretic isomorphism between the measure

preserving systems (F, ν) and (f, π(ν)).

(7) φm is a topological conjugacy between F |Km and a (|θm|, ξm) tower over χm,

for each m in N.

(8) ∩∞n=1∪m≥nM(Km, F ) = (π)−1(∩∞n=1∪m≥n{µθm}) ⊂ M(K0 \ ∪k∂Lk, F ), and π

maps ∩∞n=1∪m≥nM(Km, F ) homeomorphically onto ∩∞n=1∪m≥n{µθm};

(9) F is ready for operation on ∪m,` φm(θm` × {0, . . . , |θm| − 1}).
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Remark 3.5.5. The notation in Proposition 3.5.4 is used repeatedly throughout the

rest of this work, including the symbols used to index the various sequences. Notice

that the only sequence of objects having index set different from N is {Ki}i≥0. The

symbol m is used to index the sequence of f -periodic orbits {θm}m∈N, and any object

with index m is associated to the periodic orbit θm. For example, for any m in N,

the set Km is mapped onto θm under π. The fact that the index set for the sequence

{Ki}i≥0 includes 0 highlights the special role that K0 plays in the construction (as

it does not correspond to any periodic orbit). The symbol k is used to index the

countable collection of periodic or pre-periodic points in Q, and any object with

index k is associated to the point qk.

Remark 3.5.6. Informally, we interpret Proposition 3.5.4 as follows. We begin with

a map f , which has a distinguished sequence of periodic orbits {θm}m∈N, and a

sequence of maps {χm}m∈N, each having a distinguished sequence of periodic orbits

{θm` }`∈N (because we want to use this statement in an induction). Then the propo-

sition asserts the existence of another map F with the following properties: f is a

factor of F (with map π), the non-wandering set of F is contained in ∪i≥0Ki, F has

essentially the same dynamics as f on K0, and F |Km is essentially a (|θm|, ξm) tower

over χm. In this sense, we think of “blowing up” each periodic point in ∪mθm into

a disc. Then for each m in N, we “sew in” a tower over χm (on Km) inside the discs

associated to θm to create the map F .

Proof of Proposition 3.5.4. Let f , {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, and {ξm}m∈N be

given as in the hypotheses. Let Q = ∪m∈N,k≥0f
−k(θm), and let Q = {qk}k∈N be a
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enumeration of Q. The following lemma blows up each of the points in Q into a

disc.

Lemma 3.5.7. Let Q = {qk}k∈N be a sequence of points in the interior of D.

Then there exists a summable sequence {εk}k∈N of positive real numbers, a sequence

{pk}k∈N of points in D such that B(pk, εk) is contained in int(D) for each k in N,

and a function π : D → D such that

(1) π is continuous and surjective;

(2) π−1({qk}) = B(pk, εk) for each k;

(3) π|D\∪kB(pk,εk) is a homeomorphism onto its image, D \Q.

Proof. Let Q = {qk}k∈N be as in the hypotheses. Consider Rd \ {0} in polar co-

ordinates: (r, θ) ∈ (0,∞) × Sd−1. For n in N and ε > 0, consider the function

Rε,n : Rd → Rd given by Rε,n(0) = 0 and for (r, θ) in Rd \ {0},

Rε,n(r, θ) =


0, if r ≤ ε

n

( n
n−1

(r − ε
n
), θ), if ε

n
≤ r ≤ ε

(r, θ), otherwise.

Let Sε,n : Rd → Rd be given by Sε,n(0) = 0 and Sε,n(x) = R−1
ε,n(x) for x 6= 0. Now for

p in Rd, let Rε,n,p : Rd → Rd be defined by Rε,n,p(x) = Rε,n(x − p) + p. Also define

Sε,n,p : Rd → Rd to be Sε,n,p(x) = Sε,n(x− p) + p. Note that Rε,n,p is continuous on

Rd and Sε,n,p is continuous on Rd \ {p}. Also, Sε,n,p|Rd\{p} is a homeomorphism onto

its image, with inverse given by Rε,n,p|Rd\B(0, 1
n
ε)
. Moreover, we have

(i) d(Rε,n,p(x), Rε,n,p(y)) ≤ n
n−1

d(x, y);
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(ii) d(x,Rε,n,p(x)) ≤ ε;

(iii) d(x, Sε,n,p(x)) ≤ ε.

Choose a sequence {nk}k∈N of natural numbers such that
∏∞

k=1
nk−1
nk

> 0. Let

C =
∏∞

k=1
nk

nk−1
< ∞. We make the following inductive definitions. Let δ1 > 0 be

such that dist(q1, ∂D) > δ1. Let f1 = Sδ1,n1,q1 and g1 = Rδ1,n1,q1 . If δk, fk and gk are

defined, choose δk+1 > 0 such that δk+1 < dist(fk(qk+1), ∂D∪ g−1
k ({q1, . . . , qk})) and

let fk+1 = Sδk+1,nk+1,fk(qk+1) ◦ fk and gk+1 = gk ◦ Rδk+1,nk+1,fk(qk+1). We also require

that {δk}k∈N is summable.

The properties (i)-(iii) above imply that for any k1 ≤ k2

(a) d(gk1(x), gk1(y)) ≤ (
∏k1

k=1
nk

nk−1
)d(x, y);

(b) d(gk1(x), gk2(x)) ≤
∑k2

k=k1
δk;

(c) d(fk1(x), fk2(x)) ≤
∑k2

k=k1
δk.

For each k, fk is continuous on Rd \{q1, . . . , qk} and gk is continuous on Rd. In fact,

fk is a homeomorphism from Rd\{q1, . . . , qk} to its image, and gk is its inverse. Note

that the sequences {fk}k∈N and {gk}k∈N are uniformly Cauchy by properties (b) and

(c) above. Therefore the pointwise limits f(x) = limk fk(x) and g(x) = limk gk(x)

exist for all x in Rd. Since fk is continuous on Rd \ Q for all k, and since {fk}k∈N

is uniformly Cauchy, f is continuous on Rd \ Q. The fact that gk is continuous

on Rd for each k and the sequence {gk}k∈N is uniformly Cauchy implies that g is

continuous. Using the fact that δk+1 < dist
(
fk(qk+1), ∂D ∪ g−1

k ({q1, . . . , qk})
)

for

each k, we observe that f |∂D = g|∂D = Id and if x is in g−1
m ({qk}) where k ≤ m,
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then gn(x) = gm(x) for all n ≥ m and therefore g(x) = gm(x). This last observation

means that if gm(x) is in Q for any m, then g(x) is in Q. We now consider f and g

restricted to D, and note that f and g act by the identity map on ∂D. Also, each

gk defines a continuous surjection and therefore g does as well.

Let us check that for x in D\Q, g(f(x)) = x. Note that d(gk(fk(x)), g(fk(x))) ≤∑∞
j=k δj. Letting k tend to infinity and using the continuity of g, we obtain that

g(f(x)) = x.

Finally we check that for x in g−1(D\Q), f(g(x)) = x. Let x be in g−1(D\Q).

Let ε > 0. Choose K so large that
∑

k≥K δk < ε/3. Since g(x) is not in Q, fK is

continuous at g(x). Since fK is continuous at g(x), there exists δ > 0 such that

d(y, g(x)) < δ implies d(fK(y), fK(g(x))) < ε/3. Then choose M ≥ K such that

d(gM(x), g(x)) < δ. Then

d(x, f(g(x)) ≤ d(fM(gM(x)), fK(gM(x)))+

+ d(fK(gM(x)), fK(g(x))) + d(fK(g(x)), f(g(x)))

≤ ε/3 + ε/3 + ε/3 = ε.

Since ε > 0 was arbitrary, we have that x = f(g(x)).

Now let εk = δk
nk

, pk = f(qk), and π = g. Note that the conclusions of the

lemma are satisfied by these choices.

3.5.1.1 Setup

Now we proceed with the proof of Proposition 3.5.4. Choose {εk}k∈N, {pk}k∈N,

and π satisfying the assumptions and conclusions of Lemma 3.5.7. These objects
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will remain fixed throughout the rest of the proof.

For the sake of notation, let Lk = B(pk, εk) and L = ∪kLk. Note that int(L) =

∪kB(pk, εk). Also, for each k in N, we define the natural number j(k) as the unique

solution to the equation f(qk) = qj(k).

3.5.1.2 Construction of F

We now construct F : D → D. For x in D \ L, let

F (x) = π−1 ◦ f ◦ π(x). (3.5.1)

Since L = π−1(Q) and Q is completely invariant for f , we have that if x is in D \ L

then F (x) is in D \ L. Note that F is continuous on D \ L as it is a composition

of continuous functions (recall that π−1|D\Q is continuous by Lemma 3.5.7 (3)). We

now show that the function F can be extended to a continuous map on D \ int(L)

such that F (∂B(pk, εk)) = ∂B(pj(k), εj(k)).

Suppose d = 1 (the case d = 2 is treated below). Then ∂B(pk, εk) is just

the two endpoints of an interval. Because Dfqk is invertible, f is either orientation

preserving or orientation reversing at qk. In either case, we extend F continuously

at ∂B(pk, εk) so that F maps ∂B(pk, εk) bijectively to ∂B(pj(k), εj(k)). Now we

extend F to the one-dimensional annulus {x : 1
2
εk ≤ |x − pk| ≤ εk} as follows. Let

T+ : [−1,−1
2
]∪ [1

2
, 1] → [−1,−1

2
]∪ [1

2
, 1] be given by T+(x) = x+ 1

10
sin(2π|x|). Also,

let T− = −x + 1
10

sin(2π|x|). If Dfqk > 0, let σ = +, and if Dfqk < 0, let σ = −.

Then for x such that 1
2
εk ≤ |x− pk| ≤ εk, let

F (x) =
(
Aεj(k),pj(k)

◦ T σ ◦ A−1
εk,pk

)
(x), (3.5.2)

119



where As,x is defined in Notation 3.5.1. We remark that the additional terms in-

volving sine in the functions T+ and T− are introduced for technical convenience in

proving Claim 3.5.12.

Now suppose d = 2. We have that detDf |Q > 0, which implies that for

each k, we may extend F continuously on ∂B(pk, εk) in the following way. There

is an orientation preserving homeomorphism Tk of the unit circle such that for x in

∂B(pk, εk), we let F (x) = (Aεj(k),pj(k)
◦ Tk ◦ A−1

εk,pk
)(x). Recall that any orientation

preserving homeomorphism of the unit circle to itself is homotopic to the identity.

Let Hk : [1
2
, 1] × S1 be a homotopy such that Hk(

1
2
, ·) = Id, Hk(1, ·) = Tk, and

Hk(t, ·) is a homeomorphism for each t in [1
2
, 1]. Now we extend F to the annulus

{x : 1
2
εk ≤ |x−pk| ≤ εk} as follows. We consider the annulus centered at 0 with inner

radius 1
2

and outer radius 1 in polar coordinates: {(r, θ) : r ∈ [1
2
, 1], θ ∈ S1} ⊂ R2.

For (r, θ) in this annulus, define Uk(r, θ) =
(
r+ 1

10
sin(2πr), Hk(r, θ)

)
. Now for x in

D with 1
2
εk ≤ |x− pk| ≤ εk, let

F (x) =
(
Aεj(k),pj(k)

◦ Uk ◦ A−1
εk,pk

)
(x). (3.5.3)

Up to this point in the construction, we have defined F on D \ ∪kB(pk,
1
2
εk).

Now let m be in N and suppose θm = {qk0 , . . . , qk|θm|−1
}. Let gk|θm|−1

: D → D be

χξmm , and let gki
be the identity map on D for all i ∈ {0, . . . , |θm|− 2}. Making these

choices for all m, we define gk for all k such that qk is in ∪mθm. For all k such that

qk is not in ∪mθm, let gk be the identity map on D. Now for each k in N and x in

B(pk,
1
2
εk), let

F (x) = A 1
2
εj(k),pj(k)

◦ gk ◦ A−1
1
2
εk,pk

(x). (3.5.4)
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This concludes the construction of F .

3.5.1.3 Properties of F

In this section we prove that F has properties (1)-(9) in Proposition 3.5.4.

For the sake of notation, we make some definitions. Let K0 = D \ int(L), as in the

statement of the proposition. For each m in N, let Km = ∪qk∈θmB(pk,
1
2
εk). The

following claim follows directly from the construction of F .

Claim 3.5.8 (Part of property (1)). F is a continuous surjection, and if d = 2, then

F is a homeomorphism. Also, F |∂D = Id.

Claim 3.5.9 (Property (2)). π is a factor map from (D, F ) to (D, f).

Proof. By Lemma 3.5.7, the map π is continuous and surjective. For x in D \L, we

have that π(F (x)) = f(π(x)) by definition (Equation (3.5.1)). For x in B(pk, εk), we

have that F (x) is in B(pj(k), εj(k)) by definition, and then π(F (x)) = qj(k) = f(qk) =

f(π(x)), using property (3) in Lemma 3.5.7.

Claim 3.5.10 (Property (3)). We have that π(Km) = θm for each m in N, Lk is C∞

diffeomorphic to D, π|D\int(L) is injective, and Km ⊂ int(∪qk∈θmLk).

Proof. By property (3) in Lemma 3.5.7, we have π(Km) = π(∪qk∈θmB(pk,
1
2
εk)) =

θm. The second assertion follows immediately from the fact that Lk = B(pk, εk).

The third assertion holds by Lemma 3.5.7 (3). The fourth assertion holds since

Km = ∪qk∈θmB(pk,
1
2
εk) ⊂ ∪qk∈θmLk.

The following claim follows directly from the construction.
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Claim 3.5.11 (Property (4)). Ki is F -invariant for each i ≥ 0, K0 = D \ int(L), and

∪kLk is F -invariant.

Claim 3.5.12 (Property (5)). NW(F ) ⊆
⋃
i≥0Ki.

Proof. If x is in B(pk, εk) for some k such that qk is not periodic, then x is wan-

dering because qk is pre-periodic. Now consider the periodic orbit θm. Recall

that any point in (1
2
, 1) is wandering for the map T (t) = t + 1

10
sin(2πt − π).

According to Equations (3.5.2) and (3.5.3), the radial component of F restricted

to ∪qk∈θmB(pk, εk) \ B(pk,
1
2
εk) is conjugate to a tower over T . It follows that

any x in ∪qk∈θmB(pk, εk) \ B(pk,
1
2
εk) is wandering, which means that NW(F ) ⊂

(K0) ∪
(⋃

mKm

)
.

Claim 3.5.13 (Property (6)). F |K0 is a principal extension of f with factor map π|K0 ,

and for ν in M(K0 \ ∪k∂Lk, F ), it holds that π is a measure theoretic isomorphism

between (F, ν) and (f, π(ν)).

Proof. Let ν be in M(K0 \ ∪k∂Lk, F ). By conclusion (3) of Lemma 3.5.7, the

factor map π is injective on K0 \ ∪kLk and therefore defines a measure theoretic

isomorphism between (F, ν) and (f, π(ν)). An ergodic measure ν for F |K0 that is

not in M(K0 \ ∪k∂Lk, F ) has ν(∪k∂Lk) = 1, and therefore hF (ν) = 0. It follows

that for every ν in M(K0, F ), we have hF (ν) = hf (π(ν)).

Let θm = {qk0 , . . . , qk|θm|−1
} be a periodic orbit for f labeled in such a way that

f(qki
) = qki+1

, where i + 1 is taken modulo |θm|. Let φm : D × {0, . . . , |θm| − 1} →
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∪|θm|−1
i=0 B(pki

, 1
2
εki

) be the map given by φm(x, i) = A 1
2
εki
,pki

(x).

Claim 3.5.14 (Property (7)). F |Km is topologically conjugate by the map φm to a

(|θm|, ξm) tower over χm, for each m in N.

Proof. By Equation (3.5.4), for any m and any k such that qk is in θm, F |
B(pk,

1
2
εk)

=

A 1
2
εj(k),pj(k)

◦ gk ◦ A−1
1
2
εk,pk

. Then by the choice of gk, we have that F is topologically

conjugate to a (|θm|, ξm) tower over χm, with the conjugacy given by the map φm.

Claim 3.5.15 (Property (8)). Let C0 = ∩∞n=1∪m≥nM(Km, F ) and also let C(f) =

∩∞n=1∪m≥n{µθm}. Then C0 = π−1(C(f)) ⊂ M(K0 \ ∪k∂Lk, F ), and π maps C0

homeomorphically onto C(f).

Proof. Let {µm`
}`∈N be a sequence of measures in M(D, F ) tending to µ such that

µm`
∈ M(Km`

, F ) for each `. Then the sequence {π(µm`
) = µθm`

}`∈N converges to

π(µ) by the continuity of π, which shows that C0 ⊂ π−1(C(f)).

Now let µ be in C(f), and let ν be in π−1(µ). By property (1) in the definition

of the statement that f is ready for operation on ∪mθm (Definition 3.5.3), µ(∪mθm) =

0, and thus ν(L) = 0. Therefore ν ∈ M(K0 \ ∪k∂Lk, F ), and we have shown that

π−1(C(f)) ⊂M(K0 \∪k∂Lk, F ). Since π|D\∪kLk
is a homeomorphism onto its image

D \ Q, we also have that for any µ in C(f), the set π−1(µ) consists of exactly one

measure.

Now let µθmk
converge to µ in M(D, f). By the previous statement, there

exists a measure ν such that {ν} = π−1(µ). Now choose any sequence of measures

{νmk
}k∈N such that νmk

is in π−1(µθmk
) for each k. By the sequential compactness

of M(D, F ), any subsequence {τn}n∈N of {νmk
}k∈N has a subsequence {τn`

}`∈N that
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converges to some measure τ . By continuity of π, we have π(τ) = µ. Since π−1(µ) =

{ν}, we see that τ = ν. Since this holds for any subsequence of {νmk
}k∈N, it follows

that {νmk
}k∈N converges to ν. This argument shows that C0 ⊃ π−1(C(f)), and

therefore C0 = π−1(C(f)) (since we showed the reverse inclusion at the beginning

of this proof). Since π is surjective, we also have that π(C0) = C(f).

Now we have that π|C0 is a continuous bijective map from a compact space

into a Hausdorff space. It follows that π maps C0 homeomorphically onto its image

C(f), which completes the proof.

Claim 3.5.16 (Property (1)). F is in Cd.

Proof. Claims 3.5.12-3.5.14 and the variational principle imply that

htop(F ) = max
(
htop(f), sup

m

ξm
|θm|

htop(χm)
)
.

The right-hand side of this equation is finite by hypothesis. Combining this fact

with Claim 3.5.8, we obtain that F is in Cd.

Claim 3.5.17 (Property (9)). F is ready for operation on ∪m,` ∪qk∈θm A 1
2
εk,pk

(θm` ).

Proof. First note that F is in Cd by Claim 3.5.16. Also, we have that S = ∪m,` ∪qk∈θm

A 1
2
εk,pk

(θm` ) is a countable collection of periodic points for F by Claim 3.5.14. Let

{Θi}i∈N be an enumeration of the periodic points orbits in S, and let C(F ) =

∩∞n=1∪i≥n{µΘi
}. Now we check that F satisfies the properties (1)-(3) in Definition

3.5.3.

Let ν be in C(F ). Let C0 = ∩∞n=1∪m≥nM(Km, F ). Note that C(F ) ⊂

C0 ∪
(
∪m≥1M(Km, F )

)
. By Claim 3.5.15, we have that C0 ⊂ M(K0 \ ∪k∂Lk, F ).
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Thus if ν is in C0, then ν(L) = 0. Since ∪iΘi ⊂ ∪m≥1Km ⊂ L, it follows that

ν(∪iΘi) = 0, which proves property (1) in Definition 3.5.3 in the case that ν is in

C0. Now suppose ν is in M(Km, F ) for some m ≥ 1. By Claim 3.5.14, we have

that F |Km is topologically conjugate to a tower over χm via the map φm. Any se-

quence {Θik}k∈N such that {µΘik
}k∈N converges to ν must eventually lie in Km, and

therefore ν(∪iΘi) = 0 because χm is ready for operation on ∪`θm` .

To check that F satisfies property (2) in Definition 3.5.3, we note that Q =

∪i,kF−k(Θi) is countable and contained in int(D) because f and χm satisfy these

properties with their respective sequences of periodic points, {θm}m∈N and {θm` }`∈N.

To check Property (3) in Definition 3.5.3, we need to check that DF |x is

continuous and invertible at each point x of Q and that detDF |x > 0 if d = 2. For

each point x in Q there is an open set B(pk, εk) containing x on which F is either

affine or conjugate by affine maps to a tower over χm. Property (3) in Definition

3.5.3 is satisfied at x if F is affine on B(pk, εk). If F is conjugate to a tower over χm

on B(pk, εk), then F satisfies property (3) of Definition 3.5.3 because χm satisfies

this property, which extends to simple towers.

3.5.1.4 Conclusion of the proof of Proposition 3.5.4

By Claims 3.5.8-3.5.16, properties (1)-(9) are satisfied for F , π, {Ki}i≥0, and

{φm}m∈N. This completes the proof of Proposition 3.5.4.
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3.5.2 Additional properties of the blown-up map

Definition 3.5.18. Let f , {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, and {ξm}m∈N satisfy the

hypotheses of Proposition 3.5.4. Define BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N)

to be the set of functions F in Cd such that there exists π, {Ki}i≥0, and {φm}m∈N

as in the statement of Proposition 3.5.4. In these terms, Proposition 3.5.4 asserts

that BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N) is non-empty.

Lemma 3.5.19. Let F : D → D be a continuous surjection of a compact metric

space. Suppose that NW(F ) ⊆ ti≥0Ki, where each Ki is compact, F (Ki) = Ki,

and Ki = ∪Ji
j=1K

j
i , where the sets {Kj

i }
Ji
j=1 are compact and pairwise disjoint. Also,

suppose that limi max1≤j≤Ji
diam(Kj

i ) = 0. Then there exists an entropy structure

(fk) for F with the following property: for each k, there exists I such that if i > I

then fk|M(Ki,F ) ≡ 0.

Proof. Let (fk) be the Katok entropy structure (see Definition 3.2.9) corresponding

to a sequence {εk}k∈N of positive numbers that tends to 0. Let k be given. Since

limi max1≤j≤Ji
diam(Kj

i ) = 0, there exists I such that i > I implies that diam(Kj
i ) <

εk for all 1 ≤ j ≤ Ji. Then for i > I and ergodic µ such that supp(µ) ⊂ Ki, we have

that hF (µ, εk, σ) = 0 because Ki is invariant and diam(Kj
i ) < εk for 1 ≤ j ≤ Ji.

Since this holds for ergodic measures µ with supp(µ) ⊂ Ki, it also holds for any

invariant measure µ with supp(µ) ⊂ Ki because fk is harmonic, which completes

the proof.

Lemma 3.5.20. Let F : D → D be a continuous surjection of a compact metric

space. Suppose that NW(F ) ⊆ ti≥0Ki, where each Ki is compact, F (Ki) = Ki,
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and Ki = ∪Ji
j=1K

j
i , where the sets {Kj

i }
Ji
j=1 are compact and pairwise disjoint. Also,

suppose that limi max1≤j≤Ji
diam(Kj

i ) = 0. For each i in Z≥0 fix a harmonic entropy

structure Hi = (hi`) for F |Ki
.

Then there exists a harmonic entropy structureH(F ) = (hFk ) such that hFk (µ) =

h0
k(µ) for µ with supp(µ) ⊂ K0, and for every i in N, there is a non-decreasing func-

tion `i : Z≥0 → Z≥0 with the following properties:

(1) if µ is in M(D,F ) and supp(µ) ⊂ Ki, then hFk (µ) = hi`i(k)(µ) for every k in

Z≥0.

(2) for any k in N, there exists I in N such that `i(k) = 0 for all i ≥ I.

Proof. Let F = (fk) be a harmonic entropy structure for F with the property that

for every k there exists I such that if i > I then fk|M(Ki,F ) ≡ 0 (such an entropy

structure exists by Lemma 3.5.19). Let δk > 0 be a sequence tending to 0. Let i be

in N. Since (fk|M(Ki,F )) and (hi`) are both an entropy structures for F |Ki
, we have

that (fk|M(Ki,F )) and (hi`) are uniformly equivalent. Using the definition of uniform

equivalence (in particular the fact that (fk|M(Ki,F )) is uniformly dominated by (hi`)),

we define `i(k) = min{` ≥ 0 : hi` ≥ fk|Ki
−δk} for each k in Z≥0. By construction, `i

is non-decreasing. For ergodic measures µ in M(Ki, F ), let hFk (µ) = hi`i(k)(µ). For

ergodic µ in M(K0, F ), let hFk (µ) = h0
k(µ).

Since every ergodic measure for F is in ∪iM(Ki, F ), we have defined hFk for

all ergodic measures. Define hFk on all non-ergodic measures by harmonic extension,

and let H(F ) = (hFk ). Note that since hi`i(k) is harmonic, for µ in M(Ki, F ), we have

that hFk (µ) = hi`i(k)(µ) (which shows that if (hFk ) is an entropy structure, then it
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satisfies property (1) by definition). By construction, H(F ) is harmonic. It remains

to check that H(F ) is an entropy structure for F .

We show that H(F ) is uniformly equivalent to F , which implies that H(F )

is an entropy structure for F . Since F and H(F ) are harmonic, we may restrict

attention to ergodic measures. Fix k and ε > 0, and choose k′ ≥ k large enough

that δk′ < ε. Then for every ergodic µ, we have that µ is in some M(Ki, F ), and

hFk′(µ) = hi`i(k′)(µ) ≥ fk′(µ) − δk′ ≥ fk(µ) − ε. Hence H(F ) ≥ F . Again, fix k

and ε > 0. Choose I such that fk|M(Ki,F ) ≡ 0 for all i > I (such an I exists by

the choice of the sequence (fk)). Then it follows from the definition of `i(k) that

`i(k) = 0 for all i > I (showing property (2)). Using that (fk|M(Ki,F )) and (hi`) are

uniformly equivalent for each i ≤ I (in particular, (fk|M(Ki,F )) uniformly dominates

(hi`)), there exists ki such that fki
|M(Ki,F ) ≥ hi`i(k) − ε. Let k′ = max(k0, . . . , kI).

Any ergodic measure µ is in M(Ki, F ) for some i. Let µ be ergodic in and contained

in M(Ki, F ). If i ≤ I, then fk′(µ) ≥ fki
(µ) ≥ hi`i(k)(µ) − ε = hFk (µ) − ε. If i > I,

then fk′(µ) = 0 ≥ −ε = hi`i(k)(µ) − ε = hFk (µ) − ε. Since these same bounds hold

for all ergodic µ, we have that fk′ ≥ hFk − ε, and we have shown that F uniformly

dominates H(F ). Then F and H(F ) are uniformly equivalent, and we conclude that

H(F ) is an entropy structure for F . This concludes the proof of the lemma.

Proposition 3.5.21. Let f , {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N, F , π, {Ki}i≥0,

and {φm}m∈N all be as in Proposition 3.5.4. For each m in N, let Sm = φ−1
m ◦F |Km ◦

φm and let ψm be the map associated to the tower Sm over χm (Definition 3.4.6).

For each m in N, let H(χm) = (hχm

k ) be a harmonic entropy structure for χm, and let
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H(f) = (hfk) be a harmonic entropy structure for f . Then there exists a harmonic

entropy structure H(F ) = (hFk ) for F such that

(1) for µ with supp(µ) ⊂ K0, h
F
k (µ) = hfk(π(µ));

(2) for every m and k, there exists k′ such that for each µ with supp(µ) ⊂ Km,

hFk (µ) = ξm
|θm|h

χm

k′ (ψm((φ−1
m )(µ)));

(3) for every k there exists m0 such that if m ≥ m0 and supp(µ) ⊂ Km, then

hFk (µ) = 0.

Proof. By Fact 3.4.2, (hfk ◦ π) is an entropy structure for F |K0 . By Lemma 3.4.8,

( ξm
|θm|h

χm

k ◦ ψm) is an entropy structure for Sm. Since φm is a topological conjugacy

between Sm and F |Km , we have that ( ξm
|θm|h

χm

k ◦ ψm ◦ (φ−1
m )) is an entropy structure

for F |Km . Then Lemma 3.5.20 gives that these entropy structures can be combined

to form an entropy structure for F satisfying properties (1)-(3).

The following corollary is a consequence of Proposition 3.5.21, but one may

also check it directly as in the proof of Claim 3.5.16.

Corollary 3.5.22. Let f , {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, and {ξm}m∈N satisfy the

hypotheses of Proposition 3.5.4. Further, let F be an element of the set

BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N). Then

htop(F ) = max
(
htop(f), sup

m

ξm
|θm|

htop(χm)
)

The following lemma is used to compute the transfinite sequence associated

to some of the systems in Section 3.6. In this lemma we combine our lemma for
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principal extensions (Lemma 3.4.3) and our lemma for towers (Lemma 3.4.9) with

our analysis of the “blow-and-sew” construction (Proposition 3.5.4) to give a precise

description of the measures and transfinite sequences of some maps constructed by

the “blow-and-sew” operation.

Lemma 3.5.23. Let f , {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N, F , π, {Ki}i≥0,

and {φm}m∈N all be as in Proposition 3.5.4. Let {Θk}k∈N be an enumeration of

the F -periodic orbits in ∪m,` φm(θm` × {0, . . . , |θm| − 1}). Let M = ∪iM(Ki, F ),

C(f) = ∩∞n=1∪m≥n{µθm}, C(χm) = ∩∞n=1∪`≥n{µθm
`
}, and C(F ) = ∩∞n=1∪k≥n{µΘk

}.

Suppose that

(i) each µ in C(f) is totally ergodic for f ;

(ii) for each µ in M(D, f) and each ordinal γ,

uH(f)
γ (µ) =

∫
C(f)

u
H(f)|C(f)
γ dPµ;

(iii) each µ in C(χm) is totally ergodic for χm;

(iv) for each µ in M(D, χm) and each ordinal γ,

uH(χm)
γ (µ) =

∫
C(χm)

u
H(χm)|C(χm)
γ dPµ;

(v) either htop(F |Km) tends to 0 as m tends to infinity, or for each m ≥ 1,

α0(F |Km) = 0 and htop(F |Km) = hF |Km (µ) for µ in C(F ) ∩M(Km, F ).

Then

(1) each measure ν in C(F ) is totally ergodic for F ;
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(2) C(F ) = π−1(C(f)) ∪
(⋃

m φm(ψ−1
m (C(χm)))

)
;

(3) π maps C(F ) ∩M(K0, F ) homeomorphically onto C(f);

(4) ψm ◦ (φm)−1 maps C(F ) ∩M(Km, F ) homeomorphically onto C(χm).

(5) for all x in M and all ordinals γ,

uH(F )|M
γ (x) ≤

∫
C(F )

u
H(F )|C(F )
γ dPx.

Proof. Let ν be in C(F ). Since ∩∞n=1∪m≥nM(Km, F ) ⊂ M(K0, F ) (conclusion (8)

in Proposition 3.5.4), we have that ν is in M(Ki, F ) for some i.

Suppose ν is in M(K0, F ). Then ν is in M(K0 \∪k∂Lk, F ) and π(ν) is in C(f)

by conclusion (8) in Proposition 3.5.4. By conclusion (6) in Proposition 3.5.4, we

have that π gives a measure preserving isomorphism between ν and π(ν). The fact

that ν is totally ergodic now follows from the hypothesis that π(ν) is totally ergodic

(since it is in C(f)).

Now suppose that ν is in M(Km, F ) for some m in N. By conclusion (7)

in Proposition 3.5.4, the map φm is a topological conjugacy between F |Km and a

(|θm|, ξm) tower over χm. By Lemma 3.4.9, (φ−1
m )(ν) is totally ergodic, and therefore

ν is totally ergodic, proving (1).

Property (3) is contained in conclusion (8) of Proposition 3.5.4. Using that φm

is a topological conjugacy between F |Km and a tower over χm, we obtain property

(4) from Lemma 3.4.9 (2). Then property (2) follows from properties (3) and (4)

the fact that C(F ) = ∪i≥0M(Ki, F ) ∩ C(F ).
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Now we prove (5). First note that for m ≥ 1, M(Km, F ) is open in M ,

since ∩∞n=1∪m≥nM(Km, F ) ⊂M(K0, F ) (conclusion (8) in Proposition 3.5.4). Then

Fact 3.2.19 (1) implies that for all x in M(Km, F ), u
H(F )|M
γ (x) = u

H(F )|M(Km,F )
γ (x).

Furthermore, Lemma 3.4.9 (2) and monotonicity (Fact 3.2.19 (2)) give that for x in

M(Km, F ),

u
H(F )|M(Km,F )
γ (x) =

∫
C(F )∩M(Km,F )

u
H(F )|C(F )∩M(Km,F )
γ dPx (3.5.5)

≤
∫
C(F )

u
H(F )|C(F )
γ dPx, (3.5.6)

which gives the desired inequality for all x in ∪m≥1M(Km, F ).

Next, note that M(K0, F ) \ C(F ) is open in M (by Proposition 3.5.4 (8)).

Then Fact 3.2.19 (1) gives that for all x in M(K0, F ), u
H(F )|M
γ (x) = u

H(F )|M(K0,F )
γ (x).

By Lemma 3.4.3 and Fact 3.2.19 (2), we obtain that for all x in M(K0, F ) \ C(F ),

u
H(F )|M(K0,F )
γ (x) =

∫
C(F )∩M(K0,F )

u
H(F )|C(F )∩M(K0,F )
γ dPx

≤
∫
C(F )

u
H(F )|C(F )
γ dPx,

which gives the desired inequality for all x in M(K0, F ) \ C(F ).

Lastly, we show (5) for all x in C(F ) ∩M(K0, F ) using transfinite induction.

Note that C(F ) ∩M(K0, F ) ⊂ Merg(D, F ), and therefore Px is just the point mass

at x. Thus for x in C(F ) ∩M(K0, F ) property (5) is equivalent to u
H(F )|M
γ (x) ≤

u
H(F )|C(F )
γ (x). Property (5) holds trivially for γ = 0. Now suppose for the sake of

induction it holds for an ordinal γ, and we show it holds for γ + 1. For the sake of

notation, let Mi = M(Ki, F ) \ C(F ). Let x be in C(F ) ∩M(K0, F ). Then using

the induction hypothesis and our computation of the transfinite sequence for y in
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M \ (C(F ) ∩M(K0, F )),

lim sup
y→x
y∈M

(uH(F )|M
γ + τk)(y)

= max
(
lim sup
y→x

y∈C(F )

(uH(F )|M
γ + τk)(y), lim sup

y→x
y∈M0

(uH(F )|M
γ + τk)(y),

lim sup
y→x

y∈∪m≥1Mm

(uH(F )|M
γ + τk)(y)

)

≤ max
(
lim sup
y→x

y∈C(F )

(u
H(F )|C(F )
γ + τk)(y), lim sup

y→x
y∈M0

(u
H(F )|M(K0,F )
γ + τk)(y),

lim sup
ym`

→x
ym`

∈Mm`

(u
H(F )|M(Km`

,F )

γ + τk)(ym`
)
)
.

Letting k tend to infinity in the above expressions gives that

u
H(F )|M
γ+1 (x) ≤ max

(
u
H(F )|C(F )

γ+1 (x), u
H(F )|M(K0,F )

γ+1 (x), (3.5.7)

lim sup
ym`

→x
ym`

∈Mm`

u
H(F )|M(Km`

,F )

γ (ym`
) + htop(F |Km`

)
)
.

(3.5.8)

We would like to show that the expression in the right-hand side of Equation (3.5.7)-

(3.5.8) is less than or equal to u
H(F )|C(F )

γ+1 (x), and we prove this bound by analyzing

each expression in the maximum individually. The bound is trivial for the first

expression. By Lemma 3.4.3 (applied to F |K0 , which is a principal extension of f ,

with C(f) in place of C), we have that for x in M(K0, F ),

u
H(F )|M(K0,F )

γ+1 (x) =

∫
C(F )∩M(K0,F )

u
H(F )|C(F )∩M(K0,F )

γ+1 dPx. (3.5.9)

Since C(F ) ⊂Merg(D, F ), the measure Px is the point mass at x for any x in C(F ).

Combining this fact with Equation 3.5.9 and then using Fact 3.2.19 (2) gives that

u
H(F )|M(K0,F )

γ+1 (x) = u
H(F )|C(F )∩M(K0,F )

γ+1 (x) ≤ u
H(F )|C(F )

γ+1 (x),
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which gives the desired bound on the second expression in the maximum in Equation

(3.5.7)-(3.5.8).

We bound the third expression in the maximum in Equation (3.5.7)-(3.5.8) as

follows. By hypothesis (v), either htop(F |Km) tends to 0 as m tends to infinity or for

each m, α0(F |Km) = 0 and htop(F |Km) = hF (µ) for µ in C(Km, F ). First suppose

that htop(F |Km) tends to 0. Let {ym`
}`∈N be any sequence tending to x such that

ym`
∈ M(Km`

, F ) for each `. Equation (3.5.5) implies that ||u
H(F )|M(Km`

,F )

γ || =

||u
H(F )|C(F )∩M(Km`

,F )

γ || for each `. Since u
H(F )|C(F )∩M(Km`

,F )

γ is u.s.c., there exists µm`

in C(F )∩M(Km`
, F ) such that u

H(F )|C(F )∩M(Km`
,F )

γ (µm`
) = ||u

H(F )|C(F )∩M(Km`
,F )

γ ||, for

each ` in N. Furthermore, {µm`
}`∈N tends to x because {ym`

}`∈N tends to x. Then

lim sup
`

u
H(F )|M(Km`

,F )

γ (ym`
) + htop(F |Km`

) ≤ lim sup
`

u
H(F )|C(F )∩M(Km`

,F )

γ (µm`
)

≤ lim sup
`

u
H(F )|C(F )
γ (µm`

)

≤ u
H(F )|C(F )

γ+1 (x).

It follows that

lim sup
ym`

→x
ym`

∈Mm`

u
H(F )|M(Km`

,F )

γ (ym`
) + htop(F |Km`

) ≤ u
H(F )|C(F )

γ+1 (x). (3.5.10)

Now suppose that for each m ≥ 1, α0(F |Km) = 0 and htop(F |Km) = hF (µ) for µ in

C(F ) ∩M(Km, F ). Since α0(F |Km) = 0, we have that u
H(F )|M(Km,F )
γ ≡ 0 for each

m ≥ 1. Let {ym`
}`∈N be a sequence tending to x such that ym`

is in M(Km`
, F ) for

each `. Let µm`
be in C(F )∩M(Km`

, F ), for each `. Note that {µm`
}`∈N tends to x

because {ym`
}`∈N tends to x. By Proposition 3.5.21 (3), for each k, we may assume

there exists a natural number m0 such that for m ≥ m0, it holds that hk(µm) = 0,
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which implies that τk(µm) = hF (µm). Then

lim sup
`

u
H(F )|M(Km`

,F )

γ (ym`
) + htop(F |Km`

) = lim sup
`

htop(F |Km`
)

= lim sup
`

hF (µm`
) = lim

k
lim sup

`
τk(µm`

) ≤ u
H(F )|C(F )

1 (x) ≤ u
H(F )|C(F )

γ+1 (x).

We have shown that in either case given by hypothesis (v), the third expression

in the maximum in Equation (3.5.7)-(3.5.8) is bounded above by u
H(F )|C(F )

γ+1 (x), as

desired. Thus we have shown that u
H(F )|M
γ+1 (x) ≤ u

H(F )|C(F )

γ+1 (x), which finishes the

successor case of our induction.

For the limit case, let γ be a limit ordinal and suppose property (5) holds for

all β < γ. Taking the limit supremum over the three sets C(F ), M(K0, F ) \ C(F ),

and ∪m≥1M(Km, F ) in the definition of u
H(F )|M
γ (x), we obtain

uH(F )|M
γ (x) ≤ max

(
u
H(F )|C(F )
γ (x), u

H(F )|M(K0,F )
γ (x), lim sup

ym`
→x

ym`
∈Mm`

u
H(F )|M(Km`

,F )

γ (ym`
)
)
.

(3.5.11)

By the same arguments as in the successor case, we bound the three expressions in

the maximum in Equation (3.5.11) from above by u
H(F )|C(F )
γ (x), which shows that

u
H(F )|M
γ (x) ≤ u

H(F )|C(F )
γ (x). This finishes our induction, and thus we have verified

property (5).

Lemma 3.5.24. Suppose (X,F ) is a topological dynamical system with entropy

structure H(F ). Suppose there exist closed sets C and M in M(X,F ) such that

C ⊂Merg(X,F ) ⊂M and for all x in M and all ordinals γ,

uH(F )|M
γ (x) ≤

∫
C

uH(F )|C
γ dPx.
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Then for all x in M(X,F ) and all ordinals γ,

uH(F )
γ (x) =

∫
C

uH(F )|C
γ dPx.

Proof. Since M is closed and contains Merg(X,F ), the Embedding Lemma (Lemma

3.2.18) implies that for all x in M(X,F ) and all ordinals γ,

uH(F )
γ (x) = max

µ∈Φ−1(x)

∫
M

uH(F )|M
γ dµ,

where Φ : M(M) → M(X,F ) is the restriction of the barycenter map (which is

onto since Merg(X,F ) ⊂M). By Fact 3.2.19 (2) and the fact that Px ∈ Φ−1(x),

max
µ∈Φ−1(x)

∫
M

uH(F )|M
γ dµ ≥ max

µ∈Φ−1(x)

∫
C

uH(F )|C
γ dµ

≥
∫
C

uH(F )|C
γ dPx.

For each ordinal γ, let gγ : M(X,F ) → [0,∞) be defined by

gγ(x) =


u
H(F )|C
γ (x), if x ∈ C

0, otherwise.

Note that since C is closed and u
H(F )|C
γ is u.s.c. and non-negative on C, we have that

gγ is u.s.c. on M(X,F ). Also, gγ is convex for each γ since it takes positive values

only on extreme points (using that C ⊂ Merg(X,F )). Fact 2.5 in [36] (proved in

[18]) states that the harmonic extension of a non-negative, convex, u.s.c. function is

u.s.c. and of course harmonic. Applying this fact to gγ, we obtain that the function

ghar
γ : M(X,F ) → [0,∞) defined by

ghar
γ (x) =

∫
gγ dPx =

∫
C

uH(F )|C
γ dPx
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is harmonic and u.s.c. Then for any µ in Φ−1(x), since ghar
γ is harmonic and µ is

supported on M , we have that

ghar
γ (x) = ghar

γ (bar(µ)) =

∫
M

ghar
γ dµ.

By hypothesis, we have

uH(F )|M
γ (x) ≤

∫
C

uH(F )|C
γ dPx.

Combining all of these facts, we see that for x in M(X,F ),

∫
C

uH(F )|C
γ dPx ≤ uH(F )

γ (x)

= max
µ∈Φ−1(x)

∫
M

uH(F )|M
γ dµ

≤ max
µ∈Φ−1(x)

∫
M

∫
C

uH(F )|C
γ dPτ dµ(τ)

= max
µ∈Φ−1(x)

∫
M

ghar
γ dµ

= ghar
γ (x)

=

∫
C

uH(F )|C
γ dPx.

Thus the above inequalities are actually equalities, and we have proved the lemma.

3.6 Computation of some transfinite sequences

Recall that the notation Cd was defined in Definition 3.5.2. We will be inter-

ested in the following subsets of Cd.
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Definition 3.6.1. Let α be a countable ordinal and a ≥ 0. Let S(α, d, a) be the

class of functions f in Cd such that there exists a sequence of periodic orbits {θm}m of

f such that the following conditions are satisfied, where C(f) = ∩∞N=1∪m≥N{µθm}:

(1) f is ready for operation on ∪mθm;

(2) for every µ in C(f), µ is totally ergodic;

(3) if α = 0, then C(f) = {ν}, where ν is the unique measure of maximal entropy

for f ;

(4) for all ordinals γ and all points x in M(D, f),

uH(f)
γ (x) =

∫
C(f)

u
H(f)|C(f)
γ dPx;

(5) α0(f) = α.

(6) ||uH(f)
α || = a.

Also, let S(α, d) = ∪a≥0 S(α, d, a).

Notation 3.6.2. If {θm}m∈N is a sequence of periodic orbits for f satisfying the con-

ditions in Definition 3.6.1 for f , then we write that f is in S(α, d, a) with {θm}m∈N.

Remark 3.6.3. For some pairs α and a ≥ 0, the set S(α, d, a) is trivially empty.

Indeed, if α = 0 and a > 0, then S(α, d, a) is empty. Also, if α > 0 and a = 0, then

S(α, d, a) is empty. On the other hand, in the course of proving Theorem 3.3.3, we

will show that for every countable ordinal α > 0, and every a > 0, the set S(α, d, a)

is non-empty.
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Lemma 3.6.4. Let p be a non-negative integer and a > 0. Suppose f , {χm}m∈N,

{ξm}m∈N, and {Nm}m∈N satisfy the following conditions:

• f is in S(p, d, ap
p+1

) with {θm}m∈N;

• ||uH(f)
` || = a`

p+1
for ` = 1, . . . , p;

• for each m, Nm and ξm are natural numbers and 1 ≤ ξm ≤ |θm|;

• for each m, χm is in S(0, d) with {θm` }`∈N and htop(χm) = log(Nm);

• the sequence { ξm
|θm| log(Nm)}m∈N is increasing to a

p+1
.

Then for any F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N), F is in S(p +

1, d, a), htop(F ) = max
(
htop(f), supm

ξm
|θm|htop(χm)

)
, and ||uH(F )

k || = ak
p+1

for each k

in the set {1, . . . , p+ 1}.

Proof. Let f , {χm}m∈N, {ξm}m∈N, and {Nm}m∈N be as above. By Proposition 3.5.4,

there exists F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N) with π, {Ki}i≥0,

and {φm}m∈N as in Proposition 3.5.4. Then F is in Cd and F is ready for operation

on the set S = ∪m,` φm(θm` × {0, . . . , |θm| − 1}). Let Θk be an enumeration of the

periodic orbits in S. Let

• C(F ) = ∩∞n=1∪k≥n{µΘk
};

• C(f) = ∩∞n=1∪m≥n{µθm};

• C(χm) = ∩∞n=1∪`≥n{µθm
`
};

• for each i ≥ 0, C(Ki, F ) = C(F ) ∩M(Ki, F ).
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To prove the lemma, we show the following:

(A) htop(F ) = max
(
htop(f), supm

ξm
|θm|htop(χm)

)
;

(B) for each µ in C(F ), µ is totally ergodic;

(C) for each x in M(D, F ) and each ordinal γ,

uH(F )
γ (x) =

∫
C(F )

u
H(F )|C(F )
γ dPx;

(D) α0(H(F )) = p+ 1;

(E) ||uH(F )
k || = a`

p+1
for ` = 1, . . . , p+ 1.

Corollary 3.5.22 gives (A). Lemma 3.5.23 (1) implies (B). Lemma 3.5.23 (5) and

Lemma 3.5.24 together imply (C).

Property (C) implies that α0(H(F )) ≤ α0(H(F )|C(F )) and also that ||uH(F )
k || =

||uH(F )|C(F )

k ||. Since C(F ) ⊂ Merg(D, F ), the measure Px is just the point mass at

x, for all x in C(F ). With this fact, (C) implies that u
H(F )
γ (x) = u

H(F )|C(F )
γ (x) for

all x in C(F ). It follows that α0(H(F )) ≥ α0(H(F )|C(F )), and we conclude that in

fact α0(H(F )) = α0(H(F )|C(F )). We now observe that properties (D) and (E) will

be satisfied once we show that α(H(F )|C(F )) = p + 1 and ||uH(F )|C(F )

` || = a`
p+1

for

` = 1, . . . , p+ 1. Let us prove these two facts by computing the transfinite sequence

for H(F )|C(F ).

Note that for m ≥ 1, C(Km, F ) is open in C(F ) (by Lemma 3.5.23). Then
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Fact 3.2.19 (1) and Lemma 3.4.9 give that for all x in C(Km, F ),

u
H(F )|C(F )
γ (x) = u

H(F )|C(Km,F )
γ (x)

=
ξm
|θm|

u
H(χm)|C(χm)
γ (ψm((φ−1

m )(x))).

By the hypothesis that χm is in S(0, d), u
H(χm)
γ ≡ 0 for all ordinals γ, and thus

u
H(F )|C(Km,F )
γ (x) = 0 for all x in C(F ) ∩M(Km, F ).

For x in C(K0, F ), we have that for each k,

lim sup
y→x

τk(y) = max
(

lim sup
y→x

y∈C(K0,F )

τk(y), lim sup
y→x

y∈C(F )\C(K0,F )

τk(y)
)

≤ max
(

lim sup
y→x

y∈C(K0,F )

τk(y), lim sup
m

ξm
|θm|

htop(χm)
)
.

Letting k tend to infinity and using Lemma 3.4.3 (applied to F |K0 , which is a

principal extension of f with factor map π) gives that

u
H(F )|C(F )

1 (x) ≤ max
(
u
H(F )|C(K0,F )

1 (x), lim sup
m

ξm
|θm|

htop(χm)
)

(3.6.1)

= max
(
u
H(f)
1 (π(x)), lim sup

m

ξm
|θm|

htop(χm)
)
. (3.6.2)

By hypothesis, ||uH(f)
1 || = a

p+1
and limm

ξm
|θm|htop(χm) = a

p+1
. Then by Equations

(3.6.1) and (3.6.2), we obtain u
H(F )|C(F )

1 (x) ≤ a
p+1

. Since x is in C(K0, F ), there

exist periodic orbits θmk
such that the sequence µθmk

converges to π(x). Let µmk

be the measure of maximal entropy for F |Kmk
, which exists by the fact that χmk

is

in S(0, d) (property (3) in Definition 3.6.1). Then {µmk
}k∈N converges to x, and by

the upper semi-continuity of u
H(F ))|C(F )

1 and Proposition 3.5.21 (3), we have that

u
H(F )|C(F )

1 (x) ≥ lim
`

lim sup
k

(hF − hF` )(µmk
) = lim

`
lim sup

k
hF (µmk

)

= lim sup
k

ξmk

|θmk
|
htop(χmk

) =
a

p+ 1
.
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This argument shows that for all x in C(K0, F ), it holds that u
H(F )|C(F )

1 (x) = a
p+1

.

Now we claim that by induction on `, u
H(F )|C(F )

` (x) = a
p+1

+ u
H(F )|C(K0,F )

`−1 (x) for x in

C(K0, F ). The claim holds for ` = 1. Assuming it holds for a natural number `, we

have for x in C(K0, F ),

lim sup
y→x

(u
H(F )|C(F )

` + τk)(y) =

= max
(

lim sup
y→x

y∈C(K0,F )

(u
H(F )|C(F )

` + τk)(y), lim sup
y→x

y∈C(F )\C(K0,F )

(u
H(F )|C(F )

` + τk)(y)
)

= max
(

lim sup
y→x

y∈C(K0,F )

( a

p+ 1
+ u

H(F )|C(K0,F )

`−1 + τk
)
(y), lim sup

y→x
y∈C(F )\C(K0,F )

τk(y)
)
,

where the second equality follows from the induction hypothesis on ` and the fact

that u
H(F )|C(Km,F )

` ≡ 0 for m ≥ 1. Letting k tend to infinity gives that

u
H(F )|C(F )

`+1 (x) = max
( a

p+ 1
+ u

H(F )|C(K0,F )

` (x),
a

p+ 1

)
=

a

p+ 1
+ u

H(F )|C(K0,F )

` (x).

By Lemma 3.4.3, we have u
H(F )|C(K0,F )

` (x) = u
H(f)
` (π(x)) for all x in C(K0, F ). Now

the facts α0(H(F )|C(F )) = p + 1 and ||uH(F )|C(F )

` || = a`
p+1

for ` = 1, . . . , p + 1 follow

from the hypotheses on f (in particular, α0(H(f)) = p and ||uH(f)
` || = a`

p+1
for

` = 1, . . . , p). This concludes the proof of the lemma.

Lemma 3.6.5. Let β = 0 or β = ωβ1 + · · · + ωβk , where β1 ≥ · · · ≥ βk. Let α > 1

be an irreducible ordinal such that α ≥ ωβ1 if β 6= 0. Let a > 0 and b ≥ 0. Suppose

• {αm}m∈N is a non-decreasing sequence of ordinals whose limit is α;

• {δm}m∈N is a strictly increasing sequence of ordinals whose limit is α;
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• {am}m∈N is a sequence of positive real numbers tending to infinity;

• f is in S(β, d, b) with {θm}m∈N;

• ||uH(f)
α || ≤ a;

• for each m, ξm satisfies 1 ≤ ξm ≤ |θm|, and the sequence { ξm
|θm|am}m∈N is

increasing to a;

• χm is in S(αm, d, am) with {θm` }`∈N;

• ξm
|θm|htop(χm) tends to 0;

• ξm
|θm| ||u

H(χm)
δm

|| tends to 0.

Then for any F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N), F is in S(α +

β, d, a+ b) and for any ordinal γ,

||uH(F )
γ || =


max

(
||uH(f)

γ ||, supm
ξm
|θm| ||u

H(χm)
γ ||

)
, if γ < α

a+ ||uH(f)
γ0 ||, if γ = α+ γ0.

(3.6.3)

Furthermore, if β = 0, then for any δ < α and 0 < ε < a, there exists m0 such that

for any F in BL(f, {θm+m0}m∈N, {χm+m0}m∈N, {θm+m0
` }m,`∈N, {ξm+m0}m∈N), ||uH(F )

δ || ≤

ε.

Proof. Let f , {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, and {ξm}m∈N. By Proposition 3.5.4,

there exists F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N) with π, {Ki}i≥0,

and {φm}m∈N as in Proposition 3.5.4. Then F is in Cd and F is ready for operation

on the set S = ∪m,` φm(θm` × {0, . . . , |θm| − 1}). Let Θk be an enumeration of the

periodic orbits in S. Let
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• C(F ) = ∩∞n=1∪k≥n{µΘk
};

• C(f) = ∩∞n=1∪m≥n{µθm};

• C(χm) = ∩∞n=1∪`≥n{µθm
`
};

• for each i ≥ 0, C(Ki, F ) = C(F ) ∩M(Ki, F ).

To prove the lemma, we will show the following:

(A) htop(F ) = max
(
htop(f), supm

ξm
|θm|htop(χm)

)
;

(B) for each µ in C(F ), µ is totally ergodic;

(C) for each x in M(D, F ) and each ordinal γ,

uH(F )
γ (x) =

∫
C(F )

u
H(F )|C(F )
γ dPx;

(D) α0(H(F )) = α+ β;

(E) for any ordinal γ, Equation (3.6.3) holds.

(F) if β = 0, then for any δ < α and 0 < ε < a, there exists m0 such that for any F

in BL(f, {θm+m0}m∈N, {χm+m0}m∈N, {θm+m0
` }m,`∈N, {ξm+m0}m∈N), ||uH(F )

δ || ≤

ε.

Corollary 3.5.22 gives (A). Lemma 3.5.23 (1) implies (B). Lemma 3.5.23 (5) and

Lemma 3.5.24 together imply (C).

Suppose that β = 0 and that δ < α and 0 < ε < a are given. Choose m0 such

that for all m ≥ m0, δm > δ and ξm
|θm| ||u

H(χm)
δm

|| < ε (such m0 exists by the hypotheses
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that δm tends to α and ξm
|θm| ||u

H(χm)
δm

|| tends to 0). Then property (F) follows from

property (E). It remains to show properties (D) and (E).

Property (C) implies that α0(H(F )) ≤ α0(H(F )|C(F )) and that ||uH(F )
k || =

||uH(F )|C(F )

k ||. Since C(F ) ⊂Merg(D, F ), the measure Px is just the point mass at x,

for all x in C(F ). Combining this fact with property (C) implies that u
H(F )
γ (x) =

u
H(F )|C(F )
γ (x) for all x in C(F ). It follows that α0(H(F )) ≥ α0(H(F )|C(F )) and

therefore that α0(H(F )) = α0(H(F )|C(F )). We now observe that properties (D) and

(E) will be satisfied if we show that α(H(F )|C(F )) = α + β and for all ordinals γ,

Equation (3.6.3) holds with H(F ) replaced by H(F )|C(F ). Below we prove these two

facts by computing the transfinite sequence for H(F )|C(F ), which will complete the

proof.

Note that for m ≥ 1, the set C(Km, F ) is open in C(F ) by Lemma 3.5.23.

Then Fact 3.2.19 (1) and Lemma 3.4.9 give that for all x in C(Km, F ),

u
H(F )|C(F )
γ (x) = u

H(F )|C(Km,F )
γ (x) (3.6.4)

=
ξm
|θm|

u
H(χm)|C(χm)
γ (ψm((φ−1

m )(x))). (3.6.5)

We show by transfinite induction that for γ < α and x in C(K0, F ), we have

u
H(F )|C(F )
γ (x) = u

H(F )|C(K0,F )
γ (x). The statement is trivially true for γ = 0. Suppose

it holds for γ < α. Then by the inductive hypothesis and Equation (3.6.4), for x in
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C(K0, F ),

lim sup
y→x

(u
H(F )|C(F )
γ + τk)(y) = max

(
lim sup
y→x

y∈C(K0,F )

(u
H(F )|C(F )
γ + τk)(y),

lim sup
y→x

y∈C(F )\C(K0,F )

(u
H(F )|C(F )
γ + τk)(y)

)

≤ max
(

lim sup
y→x

y∈C(K0,F )

(u
H(F )|C(K0,F )
γ + τk)(y),

lim sup
m

||uH(F )|C(Km,F )
γ ||+ ξm

|θm|
htop(χm)

)
.

Note that there exists m0 such that δm > γ for all m ≥ m0, which implies that

u
H(F )|C(Km,F )
γ ≤ u

H(F )|C(Km,F )

δm
for all large m. Then letting k tend to infinity, we

obtain

u
H(F )|C(F )

γ+1 (x) ≤ max
(
u
H(F )|C(K0,F )

γ+1 (x), lim sup
m

||uH(F )|C(Km,F )

δm
||+ ξm

|θm|
htop(χm)

)
= max

(
u
H(F )|C(K0,F )

γ+1 (x), lim sup
m

ξm
|θm|

||uH(χm)
δm

||+ ξm
|θm|

htop(χm)
)

= max
(
u
H(F )|C(K0,F )

γ+1 (x), 0
)

= u
H(F )|C(K0,F )

γ+1 (x),

using the hypotheses that ξm
|θm| ||u

H(χm)
δm

|| tends to 0 and ξm
|θm|htop(χm) tends to 0.

By Fact 3.2.19 (2), u
H(F )|C(K0,F )

γ+1 (x) ≤ u
H(F )|C(F )

γ+1 (x), and thus we conclude that

u
H(F )|C(F )

γ+1 (x) = u
H(F )|C(K0,F )

γ+1 (x), which finishes the inductive step for successors.

Now suppose that u
H(F )|C(F )

β (x) = u
H(F )|C(K0,F )

β (x) holds for all x in C(K0, F )

and all β < γ, where γ is a limit ordinal such that γ < α. Recall that for m
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sufficiently large, δm > γ. Then by the induction hypothesis, for each x in C(K0, F ),

u
H(F )|C(F )
γ (x) = lim sup

y→x
sup
β<γ

u
H(F )|C(F )

β (y)

= max
(

lim sup
y→x

y∈C(K0,F )

sup
β<γ

u
H(F )|C(F )

β (y), lim sup
y→x

y∈C(F )\C(K0,F )

sup
β<γ

u
H(F )|C(F )

β (y)
)

= max
(

lim sup
y→x

y∈C(K0,F )

sup
β<γ

u
H(F )|C(K0,F )

β (y), lim sup
y→x

y∈C(F )\C(K0,F )

u
H(F )|C(F )
γ (y)

)

≤ max
(
u
H(F )|C(K0,F )
γ (x), lim sup

m

ξm
|θm|

||uH(χm)
δm

||
)

= max
(
u
H(F )|C(K0,F )
γ (x), 0

)
= u

H(F )|C(K0,F )
γ (x)

By Fact 3.2.19 (2), u
H(F )|C(K0,F )
γ (x) ≤ u

H(F )|C(F )
γ (x), and we conclude that in fact

u
H(F )|C(F )
γ (x) = u

H(F )|C(K0,F )
γ (x), which finishes the inductive step for limit ordinals.

We have shown that for all ordinals γ < α, u
H(F )|C(F )
γ (x) = u

H(F )|C(K0,F )
γ (x) for all x

in C(F ). Now by Lemma 3.4.3, for x in C(K0, F ) and γ < α,

u
H(F )|C(F )
γ (x) = u

H(F )|C(K0,F )
γ (x) = uH(f)

γ (π(x)).

At this point we conclude based on the above facts that for γ < α,

||uH(F )|C(F )
γ || = max

(
||uH(f)

γ ||, sup
m

ξm
|θm|

||uH(χm)
δm

||
)
.

Since α is irreducible and greater than 1, α is a limit ordinal. Thus for any x
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in C(K0, F ),

u
H(F )|C(F )
α (x) = lim sup

y→x
sup
β<α

u
H(F )|C(F )

β (y)

≤ max
(

lim sup
y→x

y∈C(K0,F )

sup
β<α

u
H(F )|C(K0,F )

β (y), lim sup
m

||uH(F )|C(Km,F )
α ||

)

= max
(

lim sup
y→x

y∈C(K0,F )

sup
β<α

u
H(F )|C(K0,F )

β (y), lim sup
m

ξm
|θm|

am

)

≤ max
(
u
H(F )|C(K0,F )
α (x), a

)
.

By hypothesis, ||uH(F )|C(K0,F )
α || ≤ a, and thus we have that u

H(F )|C(F )
α (x) ≤ a. On the

other hand, since x is in C(K0, F ), there exists a sequence of periodic orbits {θmk
}k∈N

such that {µθmk
}k∈N converges to π(x). If {µmk

}k∈N is a sequence of measures such

that µmk
is in M(Kmk

, F ) for each k, then {µmk
}k∈N converges to x, and we have

u
H(F )|C(F )
α (x) ≥ lim sup

k
||u

H(F )|C(Kmk
)

α || = lim sup
k

ξmk

|θmk
|
||uH(χmk

)
α || = a.

It follows that for each x in C(K0, F ), u
H(F )|C(F )
α (x) = a.

We show by induction that for γ ≥ 0 and x in C(K0, F ),

u
H(F )|C(F )

α+γ (x) = a+ u
H(F )|C(K0,F )
γ (x). (3.6.6)

Note that Equation (3.6.6) holds for γ = 0. Now suppose Equation (3.6.6) holds for

148



some ordinal γ. Then for all x in C(K0, F ),

lim sup
y→x

(u
H(F )|C(F )

α+γ + τk)(y) = max
(

lim sup
y→x

y∈C(K0,F )

(u
H(F )|C(F )

α+γ + τk)(y),

lim sup
y→x

y∈C(F )\C(K0,F )

(u
H(F )|C(F )

α+γ + τk)(y)
)

= max
(

lim sup
y→x

y∈C(K0,F )

(a+ u
H(F )|C(K0,F )
γ + τk)(y),

lim sup
m→∞

y∈C(Km,F )

(u
H(F )|C(Km,F )
α + τk)(y)

)
.

Taking the limit as k tends to infinity gives

u
H(F )|C(F )

α+γ+1 (x) = max
(
a+ u

H(F )|C(K0,F )

γ+1 (x), a+ lim sup
m

ξm
|θm|

htop(χm)
)

= max
(
a+ u

H(F )|C(K0,F )

γ+1 (x), a+ 0
)

= a+ u
H(F )|C(K0,F )

γ+1 (x).

This completes the inductive step for successor ordinals. Now suppose Equation

(3.6.6) holds for all γ < β, where β is a limit ordinal. Then for all x in C(K0, F ),

u
H(F )|C(F )

α+β (x) = lim sup
y→x

sup
γ<β

u
H(F )|C(F )

α+γ (y)

= max
(

lim sup
y→x

y∈C(K0,F )

sup
γ<β

u
H(F )|C(K0,F )

α+γ (y), lim sup
m

||uH(F )|C(Km,F )

α+β ||
)

= max
(
a+ u

H(F )|C(K0,F )

β (x), a
)

= a+ u
H(F )|C(K0,F )

β (x),

which completes the inductive step for limit ordinals. Combining Equation (3.6.6)

with Lemma 3.4.3, we obtain that

u
H(F )|C(F )

α+γ (x) = a+ uH(f)
γ (π(x)). (3.6.7)
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Then Equation (3.6.3) follows immediately and the equality α0(H(F )|C(F )) = α+β

follows from the fact that α0(H(f)) = β. This concludes the proof of the lemma.

3.7 Constructions by transfinite induction

The following lemma serves as a base case for the transfinite induction con-

struction in this section. Recall that for any countable ordinal α and any real number

a ≥ 0, the set S(α, d, a) was defined in Definition 3.6.1.

Lemma 3.7.1. For any odd natural number N ≥ 3, there exists f in S(0, d, 0) such

that htop(f) = log(N).

Proof. In the case d = 1, let f be the linear N -tent map on [0, 1]. In the case d = 2,

let f be an adaptation of Smale’s N -horseshoe map (for a discussion of horseshoes,

see [52]) such that f : D → D is a homeomorphism and f |∂D = Id. In either case,

we have that f is a continuous surjection, f |∂D = Id, and htop(f) = log(N) < ∞,

which implies that f is in Cd. Recall that f has a unique measure of maximal

entropy, which we denote as µ. Also, there exists a sequence {µθm}m∈N of periodic

measures tending to µ with ∪mθm contained in int(D). Fix such a sequence. Let

Q = ∪kf−k(θm). Since f is N -to-one when d = 1 and f is injective when d = 2,

we have that Q is countable. Since f has at most finitely many critical points,

we assume without loss of generality that Q contains no critical points, and thus

Dfx is invertible and continuous at x for all x in Q. Furthermore, we have that if

d = 2, then detDfx > 0 for x in Q. We have shown that f is ready for operation

on ∪mθm. Now let C(f) = ∩∞n=1∪m≥n{θm}. Since {θm}m∈N tends to µ, we have
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that C(f) = {µ}. Also note that µ is totally ergodic. Recall that h-expansiveness

(Definition 3.2.4) implies that any entropy structure (hk) converges uniformly to h,

which is equivalent to uα ≡ 0 and α0(f) = 0 (see [13, 35]). Since f is h-expansive,

we have that uα ≡ 0 for all α and α0(f) = 0. Hence we have shown that f is in

S(0, d, 0).

Lemma 3.7.2. Let c ≥ log(3). Then for any p in N and a > 0, there exists F in

S(p, d, a) such that htop(F ) ≤ max(c, a
p
) and ||uH(F )

k || = ak
p

for k = 1, . . . , p.

Proof. The proof is by induction on p. Consider the case p = 1. By Lemma

3.7.1, there exists f in S(0, d, 0) with {θm}m∈N and htop(f) = log(3). Choose Nm

and ξm such that 1 ≤ ξm ≤ |θm|, Nm ≥ 3, Nm is odd, and { ξm
|θm| log(Nm)}m∈N

increases to a. By Lemma 3.7.1, there exists χm in S(0, d, 0) with {θm` }`∈N and

htop(χm) = log(Nm). Then Proposition 3.5.4 implies that there exists a function F

in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N). Lemma 3.6.4 implies that F is

in S(1, d, a). Also, htop(F ) = max(htop(f), supm
ξm
|θm|htop(χm)) ≤ max(c, a).

Now assume the lemma holds for some p. By the induction hypothesis, let f be

in S(p, d, ap
p+1

) with {θm}m∈N such that htop(f) ≤ max(c, a
p+1

) and ||uH(f)
k || = ak

p+1
for

k = 1, . . . , p. Choose Nm and ξm such that 1 ≤ ξm ≤ |θm|, Nm ≥ 3, Nm is odd, and

{ ξm
|θm| log(Nm)}m∈N increases to a

p+1
. By Lemma 3.7.1, there exists χm in S(0, d, 0)

with {θm` }`∈N and htop(χm) = log(Nm). Then Proposition 3.5.4 implies that there

exists a function F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N). Lemma 3.6.4

implies that F is in S(p+1, d, a). Also, htop(F ) = max(htop(f), supm
ξm
|θm|htop(χm)) ≤

max(c, a
p+1

), and ||uH(F )
k || = ak

p+1
for k = 1, . . . , p+ 1.
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Lemma 3.7.3. Let α > 1 be a countable, irreducible ordinal. Let C > 0. Suppose

that for any ordinal δ < α, and any real numbers ε and a such that 0 < ε < a, there

exists f in S(α, d, a) such that htop(f) ≤ c and

||uH(f)
δ || ≤ ε.

Then for any a > 0, and any natural number p > 1, there exists F in S(αp, d, a)

such that htop(F ) ≤ c and

||uH(F )
α` || = `

p
a, for ` = 1, . . . , p.

Proof. The proof proceeds by induction on p. We suppose it holds for p and show

it holds for p+ 1.

Let f be in S(αp, d, ap
p+1

) with {θm}m∈N and satisfying the inductive hypotheses

for p. Choose sequences {δm}m∈N, {ξm}m∈N, and {am}m∈N such that

• {δm}m∈N is an increasing sequence of ordinals whose limit is α;

• {am}m∈N is a sequence of positive real numbers tending to infinity;

• for each m, ξm satisfies 1 ≤ ξm ≤ |θm|, and the sequence { ξm
|θm|am}m∈N is

increasing to a
p+1

.

Applying the hypothesis of the lemma, for eachm in N, there exists χm in S(α, d, am)

with {θm` }`∈N such that htop(χm) ≤ c and ||uH(χm)
δm

|| ≤ min( a
p+1

, 1
m

). Note that since

am tends to infinity and limm
ξm
|θm|am = a

p+1
, the sequence { ξm

|θm|} tends to 0. It follows

that the sequence { ξm
|θm|htop(χm)}m∈N tends to 0. We assume without loss of general-

ity that supm{ ξm
|θm|htop(χm)}m∈N ≤ c (if this inequality is not satisfied, replace χm by
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χm+m0 for sufficiently large m0). Also, the sequence { ξm
|θm| ||u

H(χm)
δm

||}m∈N tends to 0.

By Proposition 3.5.4, there exists F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N).

We have that htop(F ) = max(htop(f), supm
ξm
|θm

htop(χm)) ≤ c. By Lemma 3.6.5, F

is in S(α+ αp, d, a
p+1

+ ap
p+1

) = S(α(p+ 1), d, a) and

• for any γ < α, ||uH(F )
γ || = max

(
||uH(f)

γ ||, supm ||u
H(χm)
γ ||

)
;

• for γ ≥ 0, ||uH(F )
α+γ || = a

p+1
+ ||uH(f)

γ ||.

Then ||uH(F )
α || = a

p+1
, and the inductive hypotheses on f imply that ||uH(F )

α` || = a`
p+1

for ` = 1, . . . , p + 1. Thus F satisfies the induction hypotheses for p + 1, and by

induction the lemma holds for all p.

Lemma 3.7.4. Let α > 1 be a countable, irreducible ordinal. Let c ≥ log(3). Then

for all ordinals δ < α and all real numbers ε and a such that 0 < ε < a, there exists

F in S(α, d, a) such that htop(F ) ≤ c and

||uH(F )
δ || ≤ ε.

Proof. The proof is by transfinite induction on the irreducible ordinals α > 1. For

notation, we let α = ωβ, and use transfinite induction on β ≥ 1.

Case (β = 1). Let f be in S(0, d) with {θm}m∈N and htop(f) = log(3) (such a map

f exists by Lemma 3.7.1). Let a, ε, and δ be as in the statement of the lemma.

Choose sequences {am}m∈N and {ξm}m∈N such that

• {am}m∈N tends to infinity;
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• ξm is a natural number such that 1 ≤ ξm ≤ |θm|;

• the sequence { ξm
|θm|am}m∈N increases to a.

By Lemma 3.7.2, there exists χm in S(m, d, am), with corresponding sequence {θm` }`∈N,

and such that htop(χm) ≤ max(c, am

m
) and ||uH(χm)

k || = amk
m

for k = 1, . . . ,m.

Note that since am tends to infinity and { ξm
|θm|am}m∈N increases to a, we have that

{ ξm
|θm|htop(χm)}m∈N tends to 0. Thus we assume without loss of generality that

supm
ξm
|θm|htop(χm) ≤ c (by replacing χm with χm+m0 for sufficiently large m0 if

necessary). Let δm = [log(m)], the integer part of log(m). Then we obtain that

{ ξm
|θm| ||u

H(χm)
δm

||}m∈N tends to 0 (since ξm
|θm| ||u

H(χm)
δm

|| = ξmam[log(m)]
|θm|m ≤ a[log(m)]

m
). By

Proposition 3.5.4, there exists F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N).

Then by Lemma 3.6.4, F is in S(ω, d, a). Furthermore, by construction we have that

htop(F ) = max(htop(f), supm
ξm
|θm|htop(χm)) ≤ c, and the final statement in Lemma

3.6.4 gives that for 0 < ε < a and δ < α, there exists m0 such that replacing χm

with χm+m0 produces F such that ||uH(F )
δ || ≤ ε.

Case (successor ordinal). Now suppose the lemma holds for the irreducible ordinal

ωβ. We show that it also holds for ωβ+1. Let f be in S(0, d) with {θm}m∈N and

htop(f) = log(3). Choose sequences {αm}m∈N, {δm}m∈N, {am}m∈N and {ξm}m∈N

such that

• αm = ωβm;

• δm = ωβ[log(m)];

• {am}m∈N is a sequence of positive real numbers tending to infinity;
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• for each m, ξm satisfies 1 ≤ ξm ≤ |θm|, and the sequence { ξm
|θm|am}m∈N is

increasing to a.

The inductive hypotheses imply that the hypotheses in Lemma 3.7.3 are satisfied

for ωβ. Applying Lemma 3.7.3 for each m in N, we obtain that there exists χm such

that

• χm is in S(ωβm, d, am) with {θm` }`∈N;

• htop(χm) ≤ c;

• ||uH(χm)
δm

|| = am[log(m)]
m

.

Since {am}m∈N tends to infinity and { ξm
|θm|am}m∈N tends to a, { ξm

|θm|}m∈N tends to

0. Therefore { ξm
|θm|htop(χm)}m∈N tends to 0. Also, we have that { ξm

|θm| ||u
H(χm)
δm

||}m∈N

tends to 0. We assume without loss of generality that supm
ξm
|θm| ||u

H(χm)
δm

|| ≤ ε.

Now let δ < α and 0 < ε < a be arbitrary. There exists m0 such that δm > δ

for all m ≥ m0. Also, there exists m1 such that a[log(m)]
m

< ε for all m ≥ m1.

Let m2 = max(m0,m1). Replace χm by χm+m2 . By Proposition 3.5.4, there ex-

ists F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N). We have that htop(F ) =

max(htop(f), supm
ξm
|θm|htop(χm)) ≤ c. Then Lemma 3.6.5 implies that F is in

S(ωβ+1, d, a) and

||uH(F )
δ || = max

(
||uH(f)

δ ||, sup
m

ξm
|θm|

||uH(χm)
δ ||

)
= sup

m

ξm
|θm|

||uH(χm)
δ || ≤ ε,

as desired.

Case (β limit ordinal). Now suppose the lemma holds for all irreducible ordinals

ωγ < ωβ, where β is a limit ordinal. We show that it also holds for ωβ. Let f be
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in S(0, d) with {θm}m∈N and htop(f) ≤ c. Choose a sequence {am}m∈N of positive

real numbers tending to infinity and an increasing sequence of ordinals {βm}m∈N

tending to β. The inductive hypothesis implies that for each m, there exists χm

in S(ωβm , d, am) with {θm` }`∈N such that htop(χm) ≤ c and ||uH(χm)

ωβm−1
|| ≤ 1

m
. Now

let δ < ωβ and ε > 0 be arbitrary. There exists m0 such that δm > δ for all

m ≥ m0. Also, there exists m1 such that 1
m
< ε for all m ≥ m1. Let m2 =

max(m0,m1). Then replace χm by χm+m2 . By Proposition 3.5.4, there exists F in

BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N). By Corollary 3.5.22, we have that

htop(F ) = max(htop(f), supm
ξm
|θm|htop(χm)) ≤ c. Then Lemma 3.6.5 implies that F

is in S(ωβ, d, a) and

||uH(F )
δ || = max

(
||uH(f)

δ ||, sup
m

ξm
|θm|

||uH(χm)
δ ||

)
= sup

m

ξm
|θm|

||uH(χm)
δ || ≤ ε,

as desired.

Proof of Theorem 3.3.1. Let α = ωβ1 + · · · + ωβn , with β1 ≥ · · · ≥ βn. We argue

by induction on n. If n = 1, then either Lemma 3.7.2 (if β1 = 0) or Lemma 3.7.4

(if β1 > 0) implies that there exists F in S(α, d, a). Suppose the statement holds

for n. We show that it holds for n + 1. If β1 = 0, then Lemma 3.7.2 implies that

F exists with the desired properties. Now suppose β1 > 0. Let a1 ≥ a0 > 0 with

a1 + a0 = a. By the induction hypothesis, there exists f in S(ωβ2 + · · ·+ ωβn , d, a0)

with {θm}m∈N. Choose sequences {am}m∈N, {δm}m∈N, and {ξm}m∈N such that

• {am}m∈N is a sequence of positive numbers tending to infinity;
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• {δm}m∈N is an increasing sequence of ordinals tending to ωβ1 ;

• 1 ≤ ξm ≤ |θm| and the sequence { ξm
|θm|am}m∈N increases to a.

Let c ≥ log(3). Then for each m, Lemma 3.7.4 implies that there exists χm in

S(ωβ1 , d, am) with {θm` }`∈N such that htop(χm) ≤ c and ||uH(χm)
δm

|| ≤ 1
m

. Note that

{ ξm
|θm|htop(χm)} tends to 0 with these choices of parameters. By Proposition 3.5.4,

there exists F in BL(f, {θm}m∈N, {χm}m∈N, {θm` }m,`∈N, {ξm}m∈N). By Lemma 3.6.5,

F is in S(ωβ1 +ωβ2 +· · ·+ωβn , d, a1+a0) = S(α, d, a), which completes the induction

and the proof.
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Chapter 4

Random subshifts of finite type

4.1 Introduction

A shift of finite type (SFT) is a dynamical system defined by finitely many

local transition rules. These systems have been studied for their own sake [59, 66],

and they have also served as important tools for understanding other dynamical

systems [53, 12, 32].

Each SFT can be described as the set of bi-infinite sequences on a finite alpha-

bet that avoid a finite list of words over the alphabet. Thus there are only countably

many SFTs up to the naming of letters in an alphabet.

For the sake of simplicity, we state our results in terms of SFTs in the intro-

duction, even though we prove more general results in terms of sequences of directed

graphs in the subsequent sections. Let X be a non-empty SFT (for definitions, see

Section 4.2.1). Let Bn(X) be the set of words of length n that appear in X. For

α in [0, 1], let Pα be the probability measure on the power set of Bn(X) given by

choosing each word in Bn(X) independently with probability α. The case α = 1/2

puts uniform measure on the subsets of Bn(X). For notation, let Ωn be the power

set of Bn(X). To each subset ω of Bn(X), we associate the SFT Xω consisting of

all points x in X such that each word of length n in x is contained in ω. With this

association, we view Pα as a probability measure on the SFTs Xω that can be built
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out of the subsets of Bn(X). Briefly, if X has entropy h(X) = log λ > 0 and n is

large, then a typical random SFT Xω is built from about αλn words, an α fraction

of all the words in Bn(X), but not all of these words will occur in any point in Xω.

Our main results can be stated as follows. Let ζX(t) denote the Artin-Mazur

zeta function ofX (see Definition 4.2.11). The first theorem deals with the likelihood

that a randomly chosen SFT is empty.

Theorem 4.1.1. Let X be a non-empty SFT with entropy h(X) = log λ. Let

En ⊂ Ωn be the event that Xω is empty. Then for α in [0, 1],

lim
n→∞

Pα(En) =


(ζX(α))−1, if α ∈ [0, 1/λ)

0, if α ∈ [1/λ, 1],

Thus when α is in [0, 1/λ), there is an asymptotically positive probability of

emptiness. The next theorem gives more information about what happens when α

lies in [0, 1/λ).

Theorem 4.1.2. Let X be a non-empty SFT with entropy h(X) = log λ. Let

Zn ⊂ Ωn be the event that Xω has zero entropy, and let In be the random variable

on Ωn which is the number of irreducible components of Xω. Then for 0 ≤ α < 1/λ,

(1) limn→∞ Pα(Zn) = 1;

(2) the sequence (In) converges in distribution to the random variable I∞ such that

P(I∞ = 0) = (ζX(α))−1 and for k ≥ 1,

P(I∞ = k) = (ζX(α))−1
∑
S⊂N
|S|=k

∏
s∈S

α|γs|

1− α|γs|
,

where {γi}∞i=1 is an enumeration of the periodic orbits in X;
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(3) the random variable I∞ has exponentially decreasing tail and therefore finite

moments of all orders.

Our next result describes the entropy of the typical random SFT when α lies

in (1/λ, 1].

Theorem 4.1.3. Let X be an SFT with positive entropy h(X) = log λ. Then for

1/λ < α ≤ 1 and ε > 0,

lim
n→∞

Pα(|h(Xω)− log(αλ)| ≥ ε) = 0,

and the convergence to this limit is exponential in n.

Finally, we have a result concerning the likelihood that a random SFT will

have a unique irreducible component of positive entropy when α is near 1.

Theorem 4.1.4. Let X be an irreducible SFT with positive entropy h(X) = log λ.

Let Wn ⊂ Ωn be the event that Xω has a unique irreducible component C of positive

entropy and C has the same period as X. Then there exists c > 0 such that for

1− c < α ≤ 1,

lim
n→∞

Pα(Wn) = 1;

furthermore, the convergence to this limit is exponential in n.

There have been studies of other objects called random subshifts of finite type

in the literature [11, 10, 43, 54, 55, 56, 57, 58], but the objects studied here are

rather different in nature. The present work is more closely related to perturbations

of SFTs, which have already appeared in works by Lind [64] in dimension 1 and by

160



Pavlov [77] in higher dimensions. In those works, the main results establish good

uniform bounds for the entropy of an SFT obtained by removing any single word of

length n from a sufficiently mixing SFT as n tends to infinity. Random SFTs may

also be interpreted as dynamical systems with holes [22, 21, 23, 24, 25, 29, 28, 30, 31,

67, 68], in which case the words of length n in X that are forbidden in the random

SFT Xω are viewed as (random) holes in the original system X. The question of

whether an SFT defined by a set of forbidden words is empty has been studied

in formal language theory and automata theory, and in that context it amounts

to asking whether the set of forbidden words is unavoidable [7, 20, 50]. Also, the

random SFTs considered here can be viewed as specific instances of random matrices

(see [6, 72]) or random graphs (see [3, 8, 40, 41, 42, 48, 47, 74]), and the concept of

directed percolation on finite graphs has appeared in the physics literature in the

context of directed networks [76, 82]. To the best of our knowledge, the specific

considerations that arise for our random SFTs seem not to have appeared in any of

this wider literature.

This chapter is organized as follows. Section 4.2 contains the necessary back-

ground and notation, as well as some preliminary lemmas. The reader familiar with

SFTs and directed graphs may prefer to skip Sections 4.2.1 and 4.2.2, referring back

as necessary. In Section 4.3 we discuss the likelihood that a random SFT is empty,

and in particular we prove Theorem 4.1.1. The remainder of the main results are

split into two sections according to two cases: α ∈ [0, 1/λ) and α ∈ (1/λ, 1]. The

case α ∈ [0, 1/λ) is treated in Section 4.4, and the case α ∈ (1/λ, 1] is addressed in

Section 4.5. Section 4.6 discusses some corollaries of the main results.
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4.2 Preliminaries

4.2.1 Shifts of finite type and their presentations

For a detailed treatment of SFTs and their presentations, see [66]. In this

section we describe three ways to present an SFT: with a finite list of forbidden

words over a finite alphabet, with a finite, directed graph, or with a square, non-

negative integer matrix.

Let A be a finite set, which we will call the alphabet. An element b ∈ An

is called a word of length n. Let Σ = AZ, endowed with the product topology

induced by the discrete topology on A. Then Σ is a compact metrizable space,

which is called the full shift on A. Let σ : Σ → Σ be the left shift, i.e. for x = (xi)

in Σ, let (σ(x))i = xi+1. With this definition σ is a homeomorphism of Σ.

A subset X of Σ is called shift-invariant if σ(X) = X. A closed, shift-invariant

subset of Σ is called a subshift. For any subshift X, the language B(X) of X is

the collection of all finite words (blocks) that appear in some sequence x in X. Note

that B(X) = ∪Bn(X), where Bn(X) is the set of all words of length n that appear

in some sequence x in X. (By convention we set B0(X) = {ε}, where ε denotes the

empty word). Given a set F of words on A, we may define a subshift X(F) as the

set of sequences x in Σ such that no word in F appears in x. One may check that

this procedure indeed defines a subshift. If X is a subshift and there exists a finite

set of words F = {F1, . . . , Fk} such that X = X(F), then X is called a subshift

of finite type (SFT).

The natural notion of isomorphism for SFTs is called conjugacy. Two SFTs X
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and Y are conjugate, written X ∼= Y , if there exists a homeomorphism φ : X → Y

such that φ ◦ σ = σ ◦ φ. An SFT X is irreducible if for every two non-empty open

sets U and V and every N in N, there exists n ≥ N such that σn(U) ∩ V 6= ∅. An

SFT X is mixing if for every two non-empty open sets U and V in X, there exists

n0 in N such that for all n ≥ n0, we have σn(U) ∩ V 6= ∅. Mixing and irreducibility

are conjugacy-invariant. We now define the higher block presentations of an SFT.

Definition 4.2.1. Let X be an SFT. The n-block presentation of X, denoted

X [n] is defined as follows. The alphabet for X [n] is Bn(X). We define the code

φn : X → Bn(X)Z by the equation

φn(x)i = x[i, i+ n− 1], (4.2.1)

for all x in X. Then X [n] = φn(X). For all n ≥ 1, we have that X [n] ∼= X, where

the conjugacy is given by φn.

Definition 4.2.2. The entropy of an SFTX is defined as h(X) = limn
1
n

log |Bn(X)|.

Alternatively, one may define SFTs in terms of finite directed graphs. A

directed graph G = (V,E) consists of a set of vertices V and a set of edges E such

that for each edge e ∈ E, there is a unique initial vertex, i(e) ∈ V , and a unique

terminal vertex, t(e) ∈ V . We view the edge e as going from i(e) to t(e). We allow

self-loops, but for the sake of convenience we assume (without loss of generality

for our considerations) that there are no multiple edges. In this chapter, we make

the standing convention that “graph” means directed graph. We will collect our

standing assumptions in Standing Assumptions 4.2.21.
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Definition 4.2.3. Given a directed graph G, we define the edge shift XG to be

the set of all bi-infinite (oriented) walks on G, i.e. XG = {x ∈ EZ : t(xj) =

i(xj+1) for all j ∈ Z}.

Any edge shift is an SFT (trivially). Let us show that any SFT is conjugate

to an edge shift. If X = X(F) is an SFT and F is a finite set of forbidden words,

then X ∼= XG, where G = (V,E) is defined as follows. Let n0 = max{|F | : F ∈ F}.

Then let V = Bn0−1(X) and E = Bn0(X). Further, for any edge e ∈ Bn0(X), we let

i(e) = e[1, n0 − 1] and t(e) = e[2, n0]. The same construction works with n in place

of n0 for any n ≥ n0.

If G is a graph such that X ∼= XG, we say that XG is an edge presentation of

X, or sometimes just a presentation of X. The adjacency matrix A of a directed

graph G may be defined as follows. Fix an enumeration of the vertices in G. Then

let Ak` be the number of distinct edges e in G such that i(e) = vk and t(e) = v`. A

square, non-negative integral matrix A is irreducible if for each pair i, j and each

N , there exists n > N such that (An)ij > 0. A matrix A is non-degenerate if it

has no zero row and no zero column. If A is non-degenerate, then the edge shift XG

is irreducible if and only if A is irreducible. Also, if A is non-degenerate, then the

edge shift XG is mixing if and only if there exists n0 such that for all n ≥ n0 and

all pairs i, j, it holds that (An)ij > 0. A matrix is primitive if it satisfies the latter

property. A path in G is a finite sequence {ej}nj=1 of edges such that t(ej) = i(ej+1)

for j = 1, . . . , n − 1. If b = b1 . . . bn is a path in G, we say that b goes from vertex

i(b1) to vertex t(bn). We denote by Bk(G) the set of paths of length k in G. By
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convention, we set B0(G) = V .

Definition 4.2.4. For a path b in G, let V (b) and E(b) be the set of vertices and

the set of edges traversed by b, respectively.

Definition 4.2.5. Let X be an SFT. An irreducible component Y of X is a non-

empty, maximal SFT contained in X such that Y is irreducible. Let G be a graph.

An irreducible component C of G is a non-empty, maximal subgraph of G such

that the adjacency matrix of C is irreducible. The reader should be advised that in

some papers the definition of irreducible component includes trivial components (a

single vertex with no edges adjacent to it), but the definition given here does not

include trivial components.

Definition 4.2.6. Let G be a finite, directed graph. For n ≥ 1, define G[n] =

(V [n], E[n]), the n-block graph of G, as follows. Let V [n] = Bn−1(G) and E[n] =

Bn(G), such that if e ∈ E[n], then i(e) = e[1, n − 1] and t(e) = e[2, n]. Note that

G[1] = G.

If X = XG for some graph G, then it follows immediately from the definitions

that X [n] = XG[n] .

Definition 4.2.7. Let G = (V,E) be a graph. For p in N, we define the p-th power

graph, Gp = (V p, Ep) as follows. Let V p = V and Ep = Bp(G). If b = b1 . . . bp is an

edge in Gp, then we let i(b) = i(b1) and t(b) = t(b1).

Definition 4.2.8. Let G = (V,E) be a graph. Define the transpose graph, GT =

(V T , ET ), as follows. Let V T = V and ET = E, where an edge e in GT goes from t(e)
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to i(e). In other words, the transpose graph is just the graph formed by reversing

the direction of all the edges in G.

Given a square, non-negative, integral matrix A, one may also define an SFT

XA as follows. Let G be a directed graph whose adjacency matrix is exactly A (such

a graph always exists). Then let XA be the edge shift defined by G.

Recall the following basic facts (which may be found in [66]). For an SFT X,

we have h(X) = infn
1
n

log |Bn(X)|. If X is a non-empty SFT and X = XA for a

square, non-negative integral matrix A, then h(X) = log λ, where λ is the spectral

radius of A. By the Perron-Frobenius Theorem, if A is non-negative and irreducible,

then there exists a strictly positive (column) vector v such that Av = λv, and there

exists a strictly positive (row) vector w such that wA = λw. Furthermore, v and w

are each unique up to a positive scalar.

Definition 4.2.9. For any non-negative integer matrix A, let λA be the spectral

radius of A, and let χA be the characteristic polynomial of A. Then let Sp×(A)

be the non-zero spectrum of the matrix A, which is defined as the multiset of

non-zero roots of χA listed according to their multiplicity. If A is the adjacency

matrix of the graph G, we define λG = λA and Sp×(G) = Sp×(A).

If XA
∼= XB for two non-negative integral matrices A and B, then Sp×(A) =

Sp×(B). Also, if A is primitive, then max{|β| : β ∈ Sp×(A) \ {λA}} < λA. Finally,

if A is irreducible, then there exists a unique σ-invariant Borel probability measure

µ on XA of maximal entropy. Let us describe some basic properties of µ. We

associate a word b = b1 . . . bk in X to the cylinder set Cb = {x ∈ X : x[1, k] =
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b}. In this way we interpret the measure of words in B(X) as the measure of the

corresponding cylinder set. Let v be a positive right eigenvector of A and w a

positive left eigenvector of A, and suppose they are normalized so that w · v = 1.

Our standing assumption that there are no multiple edges means that that Aij ≤ 1

for all i, j. Then for a vertex u in V , we have µ(u) = wuvu, and for b ∈ Bn(XA), we

have that

µ(b) = wi(b1)λ
−n
A vt(bn). (4.2.2)

Now we define two objects, the period and the zeta function, which contain

combinatorial information about the cycles in a graph G (alternatively, one may

refer to the periodic points in an SFT X).

Definition 4.2.10. For an SFT X, let per(X) be the greatest common divisor of

the sizes of all periodic orbits in X. For a graph G, let per(G) be the greatest

common divisor of the lengths of all cycles in G.

Definition 4.2.11. Let X be an SFT and Np = |{x ∈ X : σp(x) = x}|. Then the

Artin-Mazur zeta function of X (see [66]) is, by definition,

ζX(t) = exp

(
∞∑
p=1

Np

p
tp

)
.

For a graph G, let ζG = ζXG
.

For a graph G, note that |{x ∈ XG : σp(x) = x}| is the number of cycles of

(not necessarily least) period p in G, and

ζG(t) =
1

det(I − tA)
=

∏
λ∈Sp×(G)

1

1− λt
.

Also, ζG has radius of convergence 1/λG and limt→1/λ−G
ζG(t) = +∞.
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4.2.2 Sequences of graphs under consideration

In this chapter we consider sequences of graphs (Gn) that grow in some way.

A particular example of such a sequence is the sequence of n-block graphs of an

SFT X. Indeed, by taking (Gn) to be such a sequence in Theorems 4.3.1, 4.4.2,

4.5.13, and 4.5.15, we obtain the theorems stated in the introduction. Generalizing

to the graph setting also allows one to consider sequences of graphs presenting SFTs

which are conjugate to a fixed SFT X, where the sequences need not be the n-block

sequence for X. To indicate the generality of the arguments further, though, we

formulate and prove the results for sequences of graphs that do not necessarily

present conjugate SFTs. Before we move on to these results, we need to define

several notions regarding the manner of growth of the sequence (Gn).

Let G be a finite, directed graph with adjacency matrix A. We will have use

for the following notations.

Definition 4.2.12. Let

Perp(G) = {b ∈ Bp(G) : i(b1) = t(bp)}, and Per(G) = ∪∞p=1 Perp(G).

For b in Perp(G), let θ(b) be the set of all paths c in Perp(G) such that there exists

a natural number ` such that c = bτ`(1) . . . bτ`(p), where τ is the permutation of

{1, . . . , k} defined in cycle notation by (1 . . . k).

Definition 4.2.13. For each vertex u in G, let dout(u) = |{e ∈ E : i(e) = u}| and

din(u) = |{e ∈ E : t(e) = u}|. Then let

dmax(G) = max{max(dout(u), din(u)) : u ∈ V }.
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In order to measure the separation of periodic orbits in G, we make the fol-

lowing definition.

Definition 4.2.14. Let

z(G) = max{n ≥ 0 : ∀b, c ∈ ∪np=1 Perp(G) with c /∈ θ(b), V (b) ∩ V (c) = ∅},

where V (b) is the set of vertices traversed by the path b.

As a measure of the size of G, we consider the following quantity.

Definition 4.2.15. If A has spectral radius λ > 1, then let

m(G) = dlogλ |V |e.

To measure a range for uniqueness of paths in G, we make the following

definitions.

Definition 4.2.16. Let

U1(G) = sup{n : ∀i, j it holds that (An)ij ≤ 1}

U2(G) = sup{n : ∀u ∈ V and 1 ≤ s < t ≤ n, |{b ∈ Bt(X) : i(b1) = u, bs = bt}| ≤ 1}

U(G) = min(U1(G), U2(G)).

We use the transition length as a type of diameter of G.

Definition 4.2.17. Let

R(G) = inf{n : ∀i, j,∃k ≤ n, (Ak)ij > 0}.
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Here we briefly recall the notion of the weighted Cheeger constant of an irre-

ducible, directed graph G. The weighted Cheeger constant was defined and studied

in [27]. Let µ be the measure of maximal entropy of XG, and let F : E → [0, 1]

be given by F (e) = µ(e). For any vertex v in V , let F (v) =
∑

i(e)=v F (e) =∑
t(e)=v F (e). Then for any subset of vertices S ⊆ V , let F (S) =

∑
v∈S F (v), and

for any two subsets S, T ⊆ V , let

F (S, T ) =
∑
i(e)∈S
t(e)∈T

F (e).

In general F (S, T ) is not symmetric in S and T since G is directed. Let E(S, T ) be

the set of edges e in G such that i(e) ∈ S and t(e) ∈ T . Let S = V \ S.

Definition 4.2.18. The weighted Cheeger constant of G is defined as

cw(G) = inf
∅(S(V

F (S, S)

min(F (S), F (S))
,

and the unweighted Cheeger constant of G is defined as

c(G) = inf
0<|S|≤|V |/2

|E(S, S)|
|S|

.

Definition 4.2.19. We say that G is a directed b-expander graph if c(G) ≥ b.

Also, a sequence of directed graphs (Gn) is a uniform expander sequence, if

there exists a b > 0 such that Gn is a directed b-expander for each n.

We will also have use for the following quantity related to the spectral gap of

G.

Definition 4.2.20. Let g(G) = min
{

1− |λi|
λ

: λi ∈ Sp×(G) \ {λ}
}

.
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We make the following standing assumptions, even though some of the state-

ments we make may hold when these restrictions are relaxed. In particular, Theo-

rems 4.3.1 and 4.4.2 do not require that An is irreducible, nor do they require that

λ > 1 (see Remark 4.6.1).

Standing Assumptions 4.2.21. Recall that “graph” means directed graph. Let

(Gn) be a sequence of graphs with associated sequence of adjacency matrices (An).

Unless otherwise stated, we will make the following assumptions:

• for each n, each entry of An is contained in {0, 1};

• each An is irreducible;

• for each n, Sp×(An) = Sp×(A1);

• λ := λA1 > 1;

• limnm(Gn) = ∞.

Remark 4.2.22. Note that |Perp(Gn)| = tr(Apn), which depends only on Sp×(An)

and p. Therefore the standing assumptions imply that |Perp(Gn)| does not depend

on n, and therefore per(Gn) and ζGn do not depend on n.

Additional conditions that we place on sequences of graphs will come from

the following list. (Different theorems will require different assumptions, but the

sequence of n-block graphs of an irreducible graph with spectral radius greater than

1 will satisfy conditions (C1)-(C8) below by Proposition 4.2.29.)

Definition 4.2.23. We define the following conditions on a sequence of graphs (Gn)

with sequence of adjacency matrices (An):
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(C1) there exists ∆ > 0 such that dmax(Gn) ≤ ∆ for all n (bounded degree).

(C2) z(Gn) tends to infinity as n tends to infinity (separation of periodic points);

(C3) there exists C > 0 such that z(Gn) ≥ Cm(Gn) for all n (fast separation of

periodic points);

(C4) there exists C > 0 such that U(Gn) ≥ m(Gn)− C for all n (local uniqueness

of paths);

(C5) there exists C > 0 such that R(Gn) ≤ m(Gn) + C for all n (small diameter);

(C6) there existsK > 0 such that maxu∈Vn µ(u) ≤ Kminu∈Vn µ(u) for all n (bounded

distortion of vertices) and maxe∈En µ(e) ≤ Kmine∈En µ(e) for all n (bounded

distortion of edges);

(C7) there exists K > 0 such that maxiw
n
i ≤ Kminiw

n
i and maxi v

n
i ≤ Kmini v

n
i

for all n, where wn is a positive left eigenvector of An and vn is a positive right

eigenvector of An (bounded distortion of weights);

(C8) (Gn) is a uniform expander sequence, and (GT
n ) is a uniform expander sequence

(forward/backward expansion).

Now we establish some lemmas, which will be used in the subsequent sections.

Lemma 4.2.24. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21. Then (C7) implies (C1) and (C6) for both (Gn) and (GT
n ).

Proof. First note that if (C7) holds for (Gn), then it also holds for (GT
n ) since a

positive left eigenvector for ATn is given by (vn)T and a positive right eigenvector for
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ATn is given by (wn)T . Therefore we only need to show that (C7) for (Gn) implies

(C1) and (C6) for (Gn) (since the same argument will apply to (GT
n )).

Let wn and vn be positive left and right eigenvectors for An, respectively, and

assume that wn · vn = 1. Recall with this normalization, if u is a vertex in Vn, then

µ(u) = wnuv
n
u . Then condition (C7) implies that there exists K > 0 such that for all

n,

max
u

µ(u) ≤ max
u

wnu max
u

vnu ≤ K2 min
u
wnu min

u
vnu

≤ K2 min
u
wnuv

n
u = K2 min

u
µ(u).

Similarly, (C7) implies that there exists K ′ > 0 such that for all n, we have that

maxe∈En µ(e) ≤ K ′ mine∈En µ(e) (recall that µ(e) = wni(e)λ
−1vnt(e)). Thus (C7) implies

(C6).

Note that for e in En, we have that

µ(e|i(e)) =
wni(e)λ

−1vnt(e)
wni(e)v

n
i(e)

=
vnt(e)
λvni(e)

.

Then condition (C7) implies that there exists a uniform constant K > 0 such that

µ(e|i(e)) ≥ K−1 for all n and all e in En. We also have that

µ(u) =
∑

e:i(e)=u

µ(e) ≥
∑

e:i(e)=u

K−1µ(u) = |{e : i(e) = u}|K−1µ(u).

Since Gn is irreducible (by Standing Assumptions 4.2.21), we know that µ(u) > 0,

and therefore we have that for any n, and any u in Vn,

|{e ∈ En : i(e) = u}| ≤ K,

which implies that maxu dout(u) is uniformly bounded in n. A similar argument
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shows that maxu din(u) is uniformly bounded in n, which shows that dmax(Gn) is

uniformly bounded in n and gives (C1).

Recall that for a graph G, the quantities g(G) and cw(G) were defined in

Definitions 4.2.20 and 4.2.18, respectively.

Lemma 4.2.25. Let G be a graph with primitive adjacency matrix A. Then it holds

that cw(G) ≥ 1
2
g.

Proof. This lemma is a consequence of [27, Theorems 4.3 and 5.1], as we now explain.

Since A is primitive, there exists a strictly positive vector v and λ ≥ 1 such that

Av = λv. Let P be the stochastic matrix defined by Pij =
Aijvj

λvi
. Then P is

the transition probability matrix corresponding to the random walk defined by the

measure of maximal entropy µ on XG. We have that Sp×(P ) = 1
λ

Sp×(A). Given

such a transition probability matrix, Chung defines a Laplacian L and proves [27,

Theorem 4.3] that the smallest non-zero eigenvalue of L, denoted λ1, satisfies the

following inequality:

min
{

1− |ρ| : ρ ∈ Sp×(P ) \ {1}
}
≤ λ1. (4.2.3)

We remark that the left-hand side of the inequality in [27, Theorem 4.3] is equal

to the left-hand side of Equation (4.2.3) since A is primitive (not just irreducible).

Note that the left-hand side of Equation (4.2.3) equals g(G), as defined in Definition

4.2.20. After defining the weighted Cheeger constant (as in Definition 4.2.18), Chung

proves [27, Theorem 5.1] that

cw(G) ≥ 1

2
λ1. (4.2.4)
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Combining the inequalities in Equations (4.2.3) and (4.2.4), we obtain the desired

inequality.

Recall that the p-th power graph was defined in Definition 4.2.7.

Lemma 4.2.26. Let G be a graph with irreducible adjacency matrix. Let p =

per(G). Let Gp,0 be an irreducible component of Gp, the p-th power graph of G. Let

g = g(Gp,0) (which does not depend on the choice of irreducible component in Gp).

Then there exists b > 0, depending only on g and p, such that cw(G) ≥ b.

Proof. Let G, p, and g be as in the statement of the lemma. If p = 1, then Lemma

4.2.25 immediately gives the result. Now we assume p ≥ 2. The fact that G is

irreducible and per(G) = p implies that there is a partition of the vertices into

p non-empty subsets, V = ∪p−1
j=0V

j, such that for each edge e with i(e) ∈ V j, it

holds that t(e) ∈ V j+1, where the superscripts are taken modulo p. Let X = XG

(Definition 4.2.3), and for each j = 0, . . . , p− 1, let Xj = {x ∈ X : i(x0) ∈ V j}. For

any set S ⊂ V with 0 < |S| < |V | and j = 0, . . . , p− 1, define

CS = {x ∈ X : i(x0) ∈ S}, CS = XG \ CS,

Cj
S = Xj ∩ CS, and Cj

S = Xj ∩ CS.

Recall that we denote by µ the measure of maximal entropy on X, and we may

write cw(G) as follows:

cw(G) = inf
∅(S(V

µ(CS ∩ σ−1CS)

min(µ(CS), µ(CS))

= inf
∅(S(V

max

(
µ(CS ∩ σ−1CS)

µ(CS)
,
µ(CS ∩ σ−1CS)

µ(CS)

)
.
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We also use the following notation:

ri =
µ(Ci

S)

µ(CS)
, and ri =

µ(Ci
S)

µ(CS)
. (4.2.5)

Let us establish a useful inequality. For i = 0, . . . , p−1 and 1 ≤ ` ≤ p, note that

each point x in Ci
S∩σ−`Ci+`

S also lies in Cj
S∩σ−1Cj+1

S for j = min{k > 0 : σkx /∈ CS}.

Thus

µ

(
Ci
S ∩ σ−`Ci+`

S

)
≤

p−1∑
j=0

µ

(
Cj
S ∩ σ

−1Cj+1
S

)
= µ

(
CS ∩ σ−1CS

)
. (4.2.6)

To complete the proof, we will find b > 0 in terms of g and p so that for S ⊂ V

with 0 < |S| < |V |, we have that

b ≤ max

(
µ(CS ∩ σ−1CS)

µ(CS)
,
µ(CS ∩ σ−1CS)

µ(CS)

)
. (4.2.7)

The bound b will be the minimum of four bounds, each coming from a particular

type of set S ⊂ V .

Consider the following conditions on the set S, which we will use to break our

proof into cases:

(I) there exists i ∈ {0, . . . , p− 1} such that µ(Ci
S) ∈ {0, 1};

(II) µ(Ci
S) ≤ 1/2p for each i, or µ(Ci

S) ≥ 1/2p for each i;

(III) 1/4p ≤ µ(Ci
S) ≤ 3/4p for each i.

Now we consider cases.

Case: (I) holds, i.e. there exists i ∈ {0, . . . , p− 1} such that µ(Ci
S) ∈ {0, 1}.

Assume first that µ(Ci
S) = 0, which implies that µ(Ci

S) = µ(Xi). Choose j such
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that µ(Cj
S) = maxk µ(Ck

S), and finally choose 1 ≤ ` ≤ p such that j + ` = i (mod

p). Then by inequality (4.2.6) and the shift-invariance of µ, we have that

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Cj

S ∩ σ−`C
j+`
S )

µ(CS)
≥ µ(Cj

S ∩ σ−`Xj+`)

pmaxk µ(Ck
S)

=
µ(Cj

S)

pµ(Cj
S)

=
1

p
.

Now assume µ(Ci
S) = 1. Choose j such that µ(Cj

S) = maxk µ(Ck
S), and finally choose

1 ≤ ` ≤ p such that i + ` = j (mod p). Then by (4.2.6) and the shift-invariance of

µ,

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Ci

S ∩ σ−`Ci+`
S )

µ(CS)
≥ µ(Xi ∩ σ−`Cj

S)

pmaxk µ(Ck
S)

=
µ(Cj

S)

pµ(Cj
S)

=
1

p
.

Let b1 = 1/p, and note that if condition (I) holds, then the inequality in (4.2.7)

holds with b1 in place of b.

Case: (I) does not hold, but (II) holds, i.e. 0 < µ(Ci
S) ≤ 1/2p for all i, or

1 > µ(Ci
S) ≥ 1/2p for all i. Assume first that 0 < µ(Ci

S) ≤ 1/2p for all i. Since∑
i ri = 1 and ri ≥ 0 for all i, there exists j such that rj ≥ 1/p. Then by (4.2.6)

and the definition of ri in (4.2.5),

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Cj

S ∩ σ−pC
j
S)

µ(CS)
= rj

µ(Cj
S ∩ σ−pC

j
S)

µ(Cj
S)

≥ 1

p
· µ(Cj

S ∩ σ−pC
j
S)

µ(Cj
S)

.

Let Gp,j be the irreducible component of Gp with vertex set V j. Then Gp,j has prim-

itive adjacency matrix, and g = g(Gp,j) > 0. Lemma 4.2.25 gives that cw(Gp,j) ≥

1
2
g. Since µ(Cj

S) ≤ 1/2p and µ(Cj
S) + µ(Cj

S) = µ(Xj) = 1/p, we have that

min(µ(Cj
S), µ(Cj

S)) = µ(Cj
S), and thus

µ(Cj
S ∩ σ−pC

j
S)

µ(Cj
S)

≥ cw(Gp,j) ≥ 1

2
g.

Let b2 = g/2p. We have shown that for S such that µ(Ci
S) ≤ 1/2p for each i, the

inequality in (4.2.7) holds with b2 in place of b. For S such that 1 > µ(Ci
S) ≥ 1/2p
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for each i, choose j such that rj ≥ 1/p. Then an analogous argument gives that the

inequality in (4.2.7) holds with b2 in place of b.

Case: (III) holds, i.e. 1/4p ≤ µ(Ci
S) ≤ 3/4p for all i. A simple calculation

yields that ri ≥ 1/3p and ri ≥ 1/3p for each i. Using (4.2.6), we see that for each j,

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Cj

S ∩ σ−pC
j
S)

µ(CS)
= rj

µ(Cj
S ∩ σ−pC

j
S)

µ(Cj
S)

≥ 1

3p
· µ(Cj

S ∩ σ−pC
j
S)

µ(Cj
S)

,

(4.2.8)

and

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Cj

S ∩ σ−pC
j
S)

µ(CS)
= rj

µ(Cj
S ∩ σ−pC

j
S)

µ(Cj
S)

≥ 1

3p
· µ(Cj

S ∩ σ−pC
j
S)

µ(Cj
S)

.

(4.2.9)

Then since Gp,j has primitive adjacency matrix, Lemma 4.2.25 and inequalities

(4.2.8) and (4.2.9) give that the inequality in (4.2.7) holds with b3 := g/6p in place

of b.

Case: each of (I), (II), and (III) does not hold, i.e. we assume that S is such

that 0 < µ(Ci
S) < 1 for each i, there exists i1 and i2 such that µ(Ci1

S ) > 1/2p and

µ(Ci2
S ) < 1/2p, and there exists i3 such that either µ(Ci3

S ) < 1/4p or µ(Ci3
S ) > 3/4p.

Suppose first that µ(Ci3
S ) < 1/4p. Choose j such that µ(Cj

S) = maxk µ(Ck
S), and

choose 1 ≤ ` ≤ p such that j + ` = i3 (mod p). Calculation gives that µ(Ci3
S ) <

1
2
µ(Cj

S). Then by (4.2.6) and the shift-invariance of µ,

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Cj

S ∩ σ−`C
j+`
S )

pµ(Cj
S)

≥ µ(Cj
S)− µ(Ci3

S )

pµ(Cj
S)

≥
µ(Cj

S)− 1
2
µ(Cj

S)

pµ(Cj
S)

=
1

2p
.

Now assume µ(Ci3
S ) > 3/4p. Choose j such that µ(Cj

S) = maxk µ(Ck
S), and choose

1 ≤ ` ≤ p such that j + ` = i2 (mod p). Calculation reveals that µ(Ci2
S ) < 2

3
µ(Cj

S).
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Then by (4.2.6) and the shift-invariance of µ,

µ(CS ∩ σ−1CS)

µ(CS)
≥ µ(Cj

S ∩ σ−`C
j+`
S )

pµ(Cj
S)

≥ µ(Cj
S)− µ(Ci2

S )

pµ(Cj
S)

≥
µ(Cj

S)− 2
3
µ(Cj

S)

pµ(Cj
S)

=
1

3p
.

Let b4 = 1/3p. We have shown that for S in this case, the inequality in (4.2.7) holds

with b4 in place of b.

Now let b = min(b1, b2, b3, b4) = min(1/p, g/2p, g/6p, 1/3p) = g/6p, which

depends only on g and p. We have shown that cw(G) ≥ b.

Recall that the transpose graph GT of a graph G was defined in Definition

4.2.8.

Lemma 4.2.27. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21 and such that both (Gn) and (GT
n ) have bounded degrees and bounded

distortion of edges and vertices (conditions (C1) and (C6) in 4.2.23). Then (Gn)

and (GT
n ) are both uniform expander sequences (condition (C8) in 4.2.23).

Proof. We check that conditions (C1) and (C6) for (Gn) together imply that (Gn)

is a uniform expander sequence, and then the same argument will apply to (GT
n )

since (C1) and (C6) also hold for (GT
n ).

Recall the following notation. Let F : En → [0, 1] be given by F (e) = µ(e),

where µ is the measure of maximal entropy on XGn . Also, cw(Gn) denotes the

weighted Cheeger constant of Gn (Definition 4.2.18). By the Standing Assumption

4.2.21, Sp×(Gn) = Sp×(G1) for each n. Therefore per(Gn) does not depend on n,

and we let p = per(G1). Let Gp,0
n be an irreducible component of the p-th power
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graph of Gn, and let gn = g(Gp,0
n ). Since gn only depends on the non-zero spectrum

of Gn, which is constant in n by the Standing Assumption 4.2.21, we have the gn is

constant in n. Let g = g1. By Lemma 4.2.26, there exists bn > 0, depending only gn

and per(Gn), such that cw(Gn) ≥ bn. Since we have that gn = g and per(Gn) = p

for all n, we may choose b := b1, and we obtain that cw(Gn) ≥ b > 0 for all n.

Now we relate cw(Gn) to c(Gn) (Definition 4.2.18) using properties (C1) and

(C6). For notation, let m = m(Gn). Since (Gn) satisfies conditions (C1) and (C6),

there exists K1, K2 > 0 such that for every n and every subset S ⊂ Vn,

K1|S|λ−m ≤ F (S) ≤ K2|S|λ−m,

and

K1|En(S, S)|λ−m ≤ F (S, S) ≤ K2|En(S, S)|λ−m.

We already have that cw(Gn) ≥ b, which implies that for every S such that ∅ ( S (

Vn,

b ≤ F (S, S)

min(F (S), F (S))
≤ K2|En(S, S)|λ−m

min(F (S), F (S))
.

Now assume 0 < |S| ≤ |Vn|/2. If min(F (S), F (S)) = F (S), then min(F (S), F (S)) =

F (S) ≥ K1|S|λ−m. If min(F (S), F (S)) = F (S), then we have min(F (S), F (S)) =

F (S) ≥ K1|S|λ−m ≥ K1|S|λ−m. Combining these estimates gives that for all S such

that 0 < |S| ≤ |Vn|/2, we obtain that

|En(S, S)| ≥ b
K1

K2

|S|,

which shows that (Gn) is a uniform (bK1

K2
)-expander sequence.
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Lemma 4.2.28. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21 and bounded distortion of weights (condition (C7) in 4.2.23). Then

(1) there exists K > 0 such that for all n, k, and S ⊂ Bk(Gn),

K−1|S| ≤ λm(Gn)+kµ(S) ≤ |S|K;

(2) there exists a K > 0 such that for all n, k, e ∈ En, and S ⊂ Bk(Gn),

K−1|S ∩ Cn,k
e | ≤ λkµ(S|Cn,k

e ) ≤ K|S ∩ Cn,k
e |,

where Cn,k
e = {b ∈ Bk(Gn) : b1 = e};

(3) there exists K > 0 such that for all n, k, and 1 ≤ s < t ≤ k, it holds that

µ(As,t) ≤ Kλ−m(Gn), where As,t = {b ∈ Bk(Gn) : bs = bt};

(4) there exists K > 0 such that for all n, k > U(Gn), and u ∈ Vn, it holds that

µ(Perk(Gn)|Cn,k
u ) ≤ Kλ−U(Gn), where Cn,k

u = {b ∈ Bk(Gn) : i(b1) = u} and

U(Gn) was defined in Definition 4.2.16.

Proof. For notation, let m = m(Gn) and U = U(Gn).

Proof of (1). We have that

1 =
∑
u∈Vn

µ(u) =
∑
u∈Vn

wnuv
n
u .

Then condition (C7) implies that there exists K1 > 0 such that for each n and u in

Vn,

K−1
1 |Vn|−1 ≤ wnuv

n
u ≤ K1|Vn|−1.
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By the definition of m, there exists K2 > 0 such that K−1
2 |Vn|−1 ≤ λ−m ≤ K2|Vn|−1.

It follows that there exists K3 > 0 such that for each n and u in Vn,

K−1
3 λ−m ≤ wnuv

n
u ≤ K3λ

−m.

Then (C7) implies that there exists K4 > 0 such that for any n and any three

vertices u, u1 and u2 in Vn,

K−1
4 wnu1

vnu2
≤ wnuv

n
u ≤ K4w

n
u1
vnu2
.

Finally, we conclude that there exists K5 > 0 such that for each n, k, and b in

Bk(Gn), we have that

K−1
5 λ−(m+k) ≤ µ(b) = wni(b)λ

−kvnt(b) ≤ K5λ
−(m+k).

The statement in (1) follows.

Proof of (2). The statement in (2) follows from the statement in (1) and the

fact that µ(Cn,k
e ) = µ(e).

Proof of (3). Note that from (1) we have that there exists K > 0 such that

µ(As,t) =
∑

γ∈Pert−s(Gn)

µ(γ) ≤ Kλ−(m+t−s)|Pert−s(Gn)|.

Since Sp×(An) does not depend on n by our Standing Assumptions 4.2.21, we have

that |Pert−s(Gn)| does not depend on n. Clearly, |Pert−s(Gn)|λ−(t−s) is bounded as

t− s tends to infinity. Therefore there exists K ′ such that

µ(As,t) ≤ K ′λ−m,

as desired.
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Proof of (4). By (2), we have that there exists K1 > 0 such that for all n,

k > U , and u in Vn,

µ(Perk(Gn)|Cn,k
u ) ≤ K1λ

−k|Perk(Gn) ∩ Cn,k
u |.

By (2), there exists K2 > 0 such that for all n, k > U , and u in Vn,

|Bk−U(Gn) ∩ Cn,k−U
u | ≤ K2λ

k−U .

By definition of the uniqueness parameter U , each path in Bk−U(Gn) ∩ Cn,k−U
u can

be continued in at most one way to form a path in Perk(Gn)∩Cn,k
u . Therefore, with

K3 = K1K2 > 0, we have that for all n, k > U , and u in Vn,

µ(Perk(Gn)|Cn,k
u ) ≤ K1K2λ

−kλk−U = K3λ
−U .

Proposition 4.2.29. Let G1 be a graph with irreducible adjacency matrix A1 having

entries in {0, 1} and spectral radius λ > 1. Let Gn = G
[n]
1 for n ≥ 2. Then the

sequence (Gn) satisfies the Standing Assumptions 4.2.21 and conditions (C1)-(C8).

Moreover,

(i) dmax(Gn) = dmax(G1) for all n;

(ii) there exists C > 0 such that |m(Gn)− n| ≤ C for all n;

(iii) z(Gn) ≥ 1
2
(n− 1) for all n;

(iv) U(Gn) ≥ n− 1 for all n;

(v) R(Gn) ≤ n+R(G1) for all n.
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Proof. One may easily check from the definitions that each An has entries in {0, 1},

each An is irreducible, and Sp×(Gn) = Sp×(G1). We show below that m(Gn) tends

to infinity as n tends to infinity, which gives that (Gn) satisfies the Standing As-

sumptions 4.2.21.

The set of in-degrees that appear in Gn is constant in n, and so is the set

of out-degrees that appear in Gn. Therefore dmax(Gn) = dmax(G1), which implies

condition (C1).

By definition, m(Gn) = dlogλ |Vn|e. Since Gn = G
[n]
1 , we have that |Vn| =

|Bn−1(G1)|. By standard Perron-Frobenius theory, there exist constants K1 and K2

such that K1λ
n ≤ |Bn(G1)| ≤ K2λ

n. It follows that there exists a constant C > 0

such that |m(Gn)− n| ≤ C, and in particular, m(Gn) tends to infinity.

Recall the higher-block coding map φn : XG1 → XGn (see Definition 4.2.1). If

x is a point in XG1 , then let Vn(x) be the set of vertices in Gn traversed by φn(x).

Let us show that z(Gn) ≥ (n−1)/2. Recall Fine and Wilf’s Theorem [44], which can

be stated as follows. Let x be a periodic sequence with period p, and y be a periodic

sequence with period q. If x[i+1, i+n] = y[i+1, i+n] for n ≥ p+q−gcd(p, q) and i

in Z, then x = y. It follows from this theorem that if x and y lie in distinct periodic

orbits ofXG1 and have periods less than or equal to (n−1)/2, then Vn(x)∩Vn(y) = ∅.

Thus z(Gn) ≥ (n− 1)/2, and in particular (Gn) satisfies conditions (C2) and (C3).

Note that the map φn gives a bijection between Bk(Gn) and Bk+n−1(G1) for

all k ≥ 0. Using this map, we check that U(Gn) ≥ n − 1 as follows. For any two

paths b, c ∈ Bn−1(G1), there is at most one path of length 2n − 2 in G1 of the

form bc (since every edge in such a path is specified by either b or c). This fact
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implies that U1(Gn) ≥ n − 1. Now if b is in Bn−1(G1) and 1 ≤ s < t ≤ n − 1

are given, then there is at most one path c in Bt+n−2(G1) such that c[1, n − 1] = b

and c[s, s + n − 2] = c[t, t + n − 2]; indeed, if c is such a path, then c[1, n − 1]

is determined by b, and c[n, t + n − 1] is determined by the periodicity condition

c[s, s+ n− 2] = c[t, t+ n− 2]. This fact implies that U2(Gn) ≥ n− 1, and thus we

have that U(Gn) ≥ n− 1, which, in particular, gives condition (C4).

Let us check that R(Gn) ≤ n + R(G1), which will imply that (Gn) satisfies

condition (C5). The statement that R(Gn) ≤ n+ R(G1) is equivalent to the state-

ment that for any two paths b, c ∈ Bn−1(G1), there exists a path d in G1 of length

less than or equal to R(G1) such that bdc is a path in G1. In this formulation, the

statement is clearly true, since, by the definition of R(G1), there is a path d from

t(b) to i(c) of length less than or equal to R(G1), and then the concatenation bdc

gives a path in G1.

Let w1 be a positive left (row) eigenvector for A1 (corresponding to the eigen-

value λ), and let v1 be a positive right (column) eigenvector for A1 (correspond-

ing to the the eigenvalue λ). Let b ∈ Bn−1(G1) = Vn. Then let wnb = w1
i(b)

and vnb = v1
t(b)λ

−(n−1). Then wn is a positive left eigenvector for An and vn is

a positive right eigenvector for An. It follows that (Gn) satisfies conditions (C6)

and (C7). In fact, to satisfy (C7), we may choose K = max(K1, K2), where

K1 = (maxiw
1
i )(miniw

1
i )
−1 and K2 = (maxi v

1
i )(mini v

1
i )
−1.

Condition (C8) follows from the fact that (Gn) satisfies condition (C7) (by

applying Lemmas 4.2.24 and 4.2.27 in succession).
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4.2.3 Probabilistic framework

Let Ω be the probability space consisting of the set {0, 1}n and the probability

measure Pα, where Pα is the product of the Bernoulli measures on each coordinate

with parameter α ∈ [0, 1]. There is a natural partial order on Ω, given by the

relation ω ≤ τ if and only if ωi ≤ τi for i = 1, . . . , n. We say that a random variable

χ on Ω is monotone increasing if χ(ω) ≤ χ(τ) whenever ω ≤ τ . An event A is

monotone increasing if its characteristic function is monotone increasing. Monotone

decreasing is defined analogously. Monotone random variables and events have been

studied extensively [47]; however, we require only a small portion of that theory. In

particular, we will make use of the following proposition, a proof of which may be

found in [47].

Proposition 4.2.30 (FKG Inequality). If X and Y are monotone increasing ran-

dom variables on {0, 1}n, then Eα(XY ) ≥ Eα(X)Eα(Y ).

It follows easily from the FKG Inequality that if ∩Fj is a finite intersection

of monotone decreasing events, then Pα(∩Fj) ≥
∏

Pα(Fj) (use induction and note

that if χF is the characteristic function of the monotone decreasing event F , then

−χF is monotone increasing). In fact, we only use this corollary, but we nonetheless

refer to it as the FKG Inequality.

For a finite, directed graph G, we consider the discrete probability space on

the set ΩG = {0, 1}E, where Pα is the product of the Bernoulli(α) measures on each

coordinate. The set ΩG corresponds to the power set of E in the usual way: ω

in ΩG corresponds to the set F in 2E such that e is in F if and only if ω(e) = 1.
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Furthermore, ΩG corresponds to the space of subgraphs of G: for ω in ΩG, define the

subgraphG(ω) to have vertex set V and edge set Fω, where an edge e in E is included

in Fω ⊂ E if and only if ω(e) = 1. In the percolation literature, the edges e such that

ω(e) = 1 are often called “open,” and the remaining edges are called “closed.” Since

we are interested in studying edge shifts defined by graphs, we will refer to an edge e

as “allowed” when ω(e) = 1 and “forbidden” when ω(e) = 0. Finally, each ω in ΩG

can be associated to the SFT Xω defined as the set of all bi-infinite, directed walks

on G that traverse only allowed edges (with respect to ω). The probability measure

Pα corresponds to allowing each edge of G with probability α, independently of all

other edges. For the sake of notation, we suppress the dependence of Pα on the

graph G.

Definition 4.2.31. In this chapter, we consider the following conjugacy invariants

of SFTs. Let E be the property containing only the empty shift. Let Z be the

property containing all SFTs with zero entropy. By convention, we let E ⊂ Z. For

any SFT X, let h(X) be the topological entropy, and let I(X) be the number of

irreducible components of X. If X is non-empty, let β(X) be defined by the equation

h(X) = log(β(X)). If X is empty, let β(X) = 0. If S is a property of SFTs and

G is a finite directed graph, then let SG ⊂ ΩG be the set of ω in ΩG such that Xω

has property S. If f is a function from SFTs to the real numbers and G is a finite

directed graph, then let fG : ΩG → R be the function fG(ω) = f(Xω).
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4.3 Emptiness

Recall that Sp×(G), ζG, and z(G) were defined in Definitions 4.2.9, 4.2.11, and

4.2.14, respectively.

Theorem 4.3.1. Let (Gn) be a sequence of graphs such that Sp×(Gn) = Sp×(G1)

for all n and either (i) λ = λG1 = 1 or (ii) λ = λG1 > 1 and z(Gn) tends to infinity

as n tends to infinity. Let ζ = ζG1. Then

lim
n→∞

Pα(EGn) =


(ζ(α))−1, if α ∈ [0, 1/λ)

0, if α ∈ [1/λ, 1].

Remark 4.3.2. Theorem 4.1.1 can be obtained as a corollary of Theorem 4.3.1 by

taking (Gn) to be the sequence of n-block graphs of X. Indeed, if the SFT X in

Theorem 4.1.1 has zero entropy, then λ = 1, and the conclusion of Theorem 4.1.1

follows from case (i) in Theorem 4.3.1. If the SFT X in Theorem 4.1.1 has positive

entropy, then λ > 1 and z(Gn) tends to infinity by the exact same argument in

the proof of Proposition 4.2.29 (iii), and therefore the conclusion of Theorem 4.1.1

follows from case (ii) in Theorem 4.3.1.

In this section we provide a proof of Theorem 4.3.1. Before proceeding with

the proof, we state a fact that will be useful in the investigations that follow. Recall

that for a path b, we denote by V (b) the set of vertices traversed by b.

Lemma 4.3.3. Suppose G is a directed graph. Suppose b is in Per(G) such that

|V (b)| < per(b). Then there exists a path c in Per(G) such that per(c) < per(b) and

V (c) ⊂ V (b).
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Proof. Let v be in V (b). Then there exists a return path to v following b, and we

may choose a shortest return path c to v using only vertices in V (b). Then c is in

Per(G) and per(c) < per(b), as desired.

Proof of Theorem 4.3.1. Recall that an SFT is non-empty if and only if it contains

a periodic point (see [66]).

First, assume that case (i) holds, which means that λ = 1. In this case, each

XGn contains finitely many orbits. Further, the number of periodic orbits of each

period in XGn is constant, and the probability of each periodic orbit being allowed

in Xω is constant. Therefore the conclusion follows immediately, since the sequence

Pα(EGn) is constant.

Now assume that case (ii) holds. For the moment, consider a fixed natural

number n. Let {γj}j∈N be an enumeration of the periodic orbits of XGn such that

if i ≤ j then per(γi) ≤ per(γj). Let pi = per(γi) = |γi|. Let Vn(γj) be the vertices

in Gn traversed in the orbit γj and let En(γj) be the edges in Gn traversed in the

orbit γj.

Now for each j, let Aj be the event that γj is allowed, which is the event that

all of the edges in En(γj) are allowed. Let Fj be the event that γj is forbidden,

which is Acj, the complement of Aj. Notice that Aj is a monotone increasing event

(if ω is in Aj and ω ≤ ω′, then ω′ is in Aj), and Fj is a monotone decreasing event.

The fact that an SFT is non-empty if and only if it contains a periodic point implies

that EGn = ∩Fj.

Combining the definition of z(Gn) and Lemma 4.3.3, we obtain that if per(γi) ≤
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z(Gn), then |En(γi)| = pi. It follows that Pα(Fi) = 1 − αpi for each i such that

pi ≤ z(Gn). Furthermore, the definition of z(Gn) implies that the events Fi such

that pi ≤ z(Gn) are all jointly independent. These observations give that

Pα(EGn) = Pα

(⋂
j∈N

Fj

)
≤ Pα

( ⋂
pi≤z(Gn)

Fi

)
(4.3.1)

=
∏

pi≤z(Gn)

Pα(Fi) =
∏

pi≤z(Gn)

(1− αpi). (4.3.2)

Using Lemma 4.3.3, we see that there is great redundancy in the intersection

∩Fj. Eliminating some of this redundancy, we obtain the following:

⋂
j∈N

Fj =
⋂

j:|En(γj)|=pj

Fj. (4.3.3)

Then using Lemma 4.3.3 again and the fact that |En(γj)| ≤ |En|, we see that the

intersection on the right in Equation (4.3.3) is actually a finite intersection. Applying

the FKG Inequality, we obtain that

Pα(EGn) = Pα

(⋂
j∈N

Fj

)
= Pα

( ⋂
j:|En(γj)|=pj

Fi

)
≥

∏
j:|En(γj)|=pj

Pα(Fi) (4.3.4)

=
∏

j:|En(γj)|=pj

(1− αpj) ≥
∏

j:pj≤|En|

(1− αpj). (4.3.5)

Combining the inequalities in (4.3.1), (4.3.2), (4.3.4) and (4.3.5) gives that for

each n, ∏
pj≤|En|

(1− αpj) ≤ Pα(EGn) ≤
∏

pi≤z(Gn)

(1− αpi). (4.3.6)

By the Standing Assumption that Sp×(Gn) = Sp×(G1), we have that |Perp(Gn)|

is independent of n. Since z(Gn) and |En| tend to infinity as n tends to infinity,

Equation (4.3.6) gives that

lim
n→∞

Pα(EGn) =
∞∏
j=1

(1− αpj).
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Then Theorem 4.3.1 follows from the well-known product formula for ζ (see [66]),

which may be stated as

(ζ(t))−1 =
∞∏
j=1

(1− tpj),

along with the fact that ζ(t) converges for t < 1/λ and diverges to +∞ for t ≥ 1/λ.

4.4 Subcritical phase

In this section we study random SFTs in the subcritical phase: 0 ≤ α < 1/λ.

The main result of this section is Theorem 4.4.2. Let us fix some notation for this

section. We consider a sequence of graphs (Gn) such that Sp×(Gn) = Sp×(G1)

and z(Gn) tends to infinity as n tends to infinity, with λ = λG1 ≥ 1 and ζ = ζG1 .

Since Sp×(Gn) = Sp×(G1), there exist shift-commuting bijections φn : Per(XG1) →

Per(XGn). In other words, there exist bijections φn from the set of cyclic paths in G1

to the set of cyclic paths in Gn such that if b is in Perp(G1), then φn(b) is Perp(Gn).

If b is in Per(G), then we refer to θ(b) (recall Definition 4.2.12) as a cycle. Using the

fixed bijections φn, we may refer to a cycle γ as being in Gn for any n. We fix an

enumeration of the cycles in G1, {γi}i∈N, and then since the bijections φn are fixed,

this choice simultaneously gives enumerations of all the cycles in each Gn. For any

s in N, let ps = per(γs). Let us begin with a lemma.

Lemma 4.4.1. Let (Gn) be a sequence of graphs such that Sp×(Gn) = Sp×(G1) and

z(Gn) tends to infinity as n tends to infinity, with λ = λG1 ≥ 1 and ζ = ζG1. Given

a non-empty, finite set S in N, let DGn(S) be the event that the set of allowed cycles
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is {γs : s ∈ S}. Then

lim
n→∞

Pα(DGn(S)) =


(ζ(α))−1

∏
j∈S

αpj

1−αpj , if α ∈ [0, 1/λ)

0, if α ∈ [1/λ, 1],

The proof of Lemma 4.4.1 is an easy adaptation of the proof of Theorem 4.3.1,

and we omit it for the sake of brevity.

Recall that I(X) denotes the number of irreducible components in the SFT

X, and for any graph G, the random variable IG : ΩG → Z≥0 is defined by the

equation IG(ω) = I(Xω).

Theorem 4.4.2. Let (Gn) be a sequence of graphs such that Sp×(Gn) = Sp×(G1)

and either (i) λ = λG1 = 1 or (ii) λ = λG1 > 1 and z(Gn) tends to infinity as n

tends to infinity. Let ζ = ζG1. Then for 0 ≤ α < 1/λ,

(1) limn→∞ Pα(ZGn) = 1;

(2) the sequence (IGn) converges in distribution to the random variable I∞ such

that P(I∞ = 0) = (ζ(α))−1 and for k ≥ 1,

P(I∞ = k) = (ζ(α))−1
∑
S⊂N
|S|=k

∏
s∈S

αps

1− αpj
,

where {γi}∞i=1 is an enumeration of the cycles in G1;

(3) the random variable I∞ has exponentially decreasing tail and therefore finite

moments of all orders.

Remark 4.4.3. One obtains Theorem 4.1.2 as a consequence of Theorem 4.4.2 by

taking (Gn) to be the sequence of n-block graphs of a non-empty SFT X. Indeed,
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if the SFT X in Theorem 4.1.2 has zero entropy, then λ = 1, and the conclusions of

Theorem 4.1.2 follow from the case (i) in Theorem 4.4.2. If the SFT X in Theorem

4.1.2 has positive entropy, then λ > 1 and z(Gn) tends to infinity by the exact same

argument in the proof of Proposition 4.2.29 (iii), and therefore the conclusions of

Theorem 4.1.2 follow from case (ii) in Theorem 4.4.2.

Proof of Theorem 4.4.2. Let (Gn) be as above. Let 0 ≤ α < 1/λ.

First, assume that case (i) holds, which means that λ = 1. Conclusion (1)

follows immediately, since for each n, we have that Pα(ZGn) = 1 (the random SFT

Xω satisfies 0 = h(Xω) ≤ h(XGn) = log λ = 0). Also, the fact that λ = 1 is

equivalent to the fact that G1 (and therefore Gn) contains only finitely many cycles.

Then conclusions (2) and (3) also follow immediately, since the sequence IGn is

constant.

Now assume that case (ii) holds. Recall that we have an enumeration {γi}i∈N

of the cycles in G1, which we refer to as an enumeration of the cycles in Gn, for any

n, using the bijections φn. Also recall that for any non-empty, finite set S ⊂ N, we

denote by DGn(S) the event in ΩGn consisting of all ω such that the set of cycles in

Gn(ω) is exactly {γs : s ∈ S}.

Proof of Theorem 4.4.2 (1). Recall that an SFT has zero entropy if and

only if it has at most finitely many periodic points [66]. Then we have that

ZGn = EGn ∪

( ⋃
S⊂N

0<|S|<∞

DGn(S)

)
. (4.4.1)

Also note that by the definition of DGn(S), the union in (4.4.1) is a disjoint union.
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Thus we have that

Pα(ZGn) = Pα(EGn) +
∑
S⊂N

0<|S|<∞

Pα(DGn(S)).

Now let S1, . . . SJ be distinct, non-empty, finite subsets of N. Then by Theorem

4.3.1 and Lemma 4.4.1 we have that

lim inf
n→∞

Pα(ZGn) ≥ lim
n→∞

Pα(EGn) +
J∑
j=1

lim
n→∞

Pα(DGn(Sj))

= (ζ(α))−1
(
1 +

J∑
j=1

∏
s∈Sj

αps

1− αps

)
.

Since J and S1, . . . , SJ were arbitrary, we conclude that

lim inf
n→∞

Pα(ZGn) ≥ (ζ(α))−1

(
1 +

∑
S⊂N

0<|S|<∞

∏
s∈S

αps

1− αps

)
.

Using the facts that αps/(1 − αps) =
∑∞

k=1(α
ps)k and α < 1/λ (which implies that

the relevant infinite products and series converge uniformly), one may easily check

that (
1 +

∑
S⊂N

0<|S|<∞

∏
s∈S

αps

1− αps

)
= ζ(α).

Thus we have shown that lim infn Pα(ZGn) ≥ 1. Since lim supn Pα(ZGn) ≤ 1, we

conclude that limn Pα(ZGn) = 1.

Proof of Theorem 4.4.2 (2). Since IGn takes values in Z≥0, the sequence

(IGn) converges in distribution to I∞ if and only if Pα(IGn = k) converges to Pα(I∞ =

k) for each k in Z≥0.

Note that IGn(ω) = 0 if and only if ω is in EGn , which implies that Pα(IGn =

0) = Pα(EGn). Thus for α < 1/λ, Theorem 4.3.1 implies that Pα(IGn = 0) converges

to (ζ(α))−1 as n tends to infinity.
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Now let k be in N. Recall that {γi}∞i=1 is an enumeration of the cycles in G1,

and we have fixed bijections between these cycles and the cycles in each Gn. By

Theorem 4.4.2 (1), we have that limn Pα(ZGn) = 1, and therefore Pα(IGn = k) =

Pα({IGn = k} ∩ZGn) + εn, where εn tends to 0 as n tends to infinity. Thus we need

only focus on events of the form {IGn = k} ∩ ZGn for some k. Now if ω is in ZGn ,

then IGn(ω) is the number of periodic orbits in Xω. Thus

Pα({IGn = k} ∩ ZGn) =
∑
S⊂N
|S|=k

Pα(DGn(S)).

For any n in N, let T 0
n = Pα(EGn). For k in N and n in N, let

T kn =
∑
S⊂N
|S|=k

Pα(DGn(S)).

We have that
∑∞

k=0 T
k
n = Pα(ZGn), and therefore limn

∑∞
k=0 T

k
n = 1 by Theorem

4.4.2 (1). Also, using Lemma 4.4.1, we have that lim infn T
k
n ≥ T k, where T 0 =

(ζ(α))−1 and for k in N,

T k = (ζ(α))−1
∑
S⊂N
|S|=k

∏
s∈S

αps

1− αps
.

Further, we have that
∑∞

k=0 T
k = 1. It follows from these facts that limn T

k
n = T k.

Thus we have shown that for k in N,

lim
n

Pα
(
IGn = k

)
= lim

n
Pα
(
{IGn = k} ∩ ZGn

)
= (ζ(α))−1

∑
S⊂N
|S|=k

∏
s∈S

αps

1− αps
,

as desired.

Proof of Theorem 4.4.2 (3). For k in N, let

T k = Pα(I∞ = k) = (ζ(α))−1
∑
S⊂N
|S|=k

∏
s∈S

αps

1− αps
.
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We show that there for any real number δ > 0, there exists k0 such that T k+1 ≤ δT k

for all k ≥ k0. Let δ > 0. Since α < 1/λ, we have that

∑
i∈N

αpi

1− αpi
<∞.

Now choose k0 such that ∑
i≥k0

αpi

1− αpi
< δ.

In the following sums, we will use that any set S ⊂ N with |S| = j can be written

as S = {s1, . . . , sj}, where s1 < · · · < sj. Note that in this case sj ≥ j. Then for

k ≥ k0 we have

(ζ(α))T k+1 =
∑
S⊂N

|S|=k+1

k+1∏
i=1

αpsi

1− αpsi
=
∑
S⊂N
|S|=k

k∏
i=1

αpsi

1− αpsi

∑
j>sk

αpj

1− αpj

≤
∑
S⊂N
|S|=k

k∏
i=1

αpsi

1− αpsi

∑
j>k0

αpj

1− αpj
≤

(∑
S⊂N
|S|=k

k∏
i=1

αpsi

1− αpsi

)
δ

= (ζ(α))T kδ.

Since α < 1/λ, we have that 0 < ζ(α) < ∞, and we conclude that T k+1 ≤ δT k for

all k ≥ k0.

We recognize the distribution of I∞ as the sum of countably many independent

Bernoulli trials, where the probability of success of trial i ∈ N is given by αpi for

some enumeration {γi}i∈N of the cycles in G1 (or any Gn). We record some facts

about this distribution in the following corollary.

Corollary 4.4.4. With the same hypotheses as in Theorem 4.4.2, the characteristic
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function of I∞ is given by

ϕI∞(t) = (ζ(α))−1
∏
s

(
1 + eit

αps

1− αps

)
,

where the product is over all periodic orbits in X. It follows that the moment gen-

erating function of I∞ is given by

MI∞(t) = (ζ(α))−1
∏
s

(
1 + et

αps

1− αps

)
.

Remark 4.4.5. In Theorems 4.3.1 and 4.4.2, we assert the existence of various limits

to certain values. Beyond the bounds given in our proofs, we do not know at which

rates these sequences converge to their limits.

4.5 Supercritical Phase

In this section we study random SFTs in the supercritical phase. The main

results are Theorem 4.5.13 and Theorem 4.5.15. On a first reading, the reader may

prefer to skip Section 4.5.1 and refer back to it as necessary. Our proof of Theorem

4.5.13 relies, in part, on showing that with large probability the number of allowed

words of length k in a random SFT is close to (αλ)k, for a particular choice of

k. In our proof, we choose k to be polynomial in m = m(Gn) for two reasons.

Firstly, we need k to dominate m, so that the k-th root of the number of words of

length k gives a good upper bound on the Perron eigenvalue of the random SFT.

Secondly, k should be subexponential in m, essentially because most paths in Gn

with length subexponential in m are self-avoiding, and we need good bounds on the

probability of paths of length k that exhibit “too-soon-recurrence.” For context,
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we recall a result of Ornstein and Weiss [75]. In fact, their result is quite general,

but we only recall it in a very specific case. Let X be an irreducible SFT with

measure of maximal entropy µ. For x in X, let Rn(x) be the first return time

(greater than 0) of x to the cylinder set x[1, n] under σ. Then the result of Ornstein

and Weiss implies that for µ-a.e. x in X, limn n
−1 logRn(x) = h(X). It follows

from this result that for k polynomial in n, the µ-measure of the set of words of

length k with a repeated n-word tends to 0. In the following lemmas, we give some

quantitative bounds on the µ-measure of the set of paths of length k in Gn with

k− j repeated edges, where the important point for our purposes is that the bounds

improve exponentially as j decreases. To get these bounds we employ some of the

language and tools of information theory. After getting a handle on the µ-measure

of paths in Gn with certain self-intersection properties, our assumption that (Gn)

satisfies condition (C7) in 4.2.23 implies that µ-measure on paths is the same as the

counting measure up to uniform constants.

4.5.1 Information theory and lemmas

In keeping with the convention of information theory, log(x) denotes the base

2 logarithm of x.

Definition 4.5.1. A binary n-code on an alphabet A is a mapping C : An →

{0, 1}∗, where {0, 1}∗ is the set of all finite words on the alphabet {0, 1}. We

may refer to such mappings simply as codes. A code is faithful if it is injective.

The function that assigns to each w in An the length of the word C(w) is called
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the length function of the code, and it will be denoted by L when the code is

understood. A code is a prefix code if w = w′ whenever C(w) is a prefix of

C(w′). A Shannon code with respect to a measure ν on An is a code such that

L(w) = d− log ν(w)e.

We note that for a measure ν on An, there is a prefix Shannon code on An with

respect to ν [85]. We will also require the following two lemmas from information

theory.

Lemma 4.5.2 ([85]). Let A be an alphabet. Let Cn be a prefix-code on An, and let

µ be a shift-invariant Borel probability measure on AZ. Then

µ
(
{w ∈ An : L(w) + log µ(w) ≤ −a}

)
≤ 2−a.

Proof. Let B = {w ∈ An : L(w) + log µ(w) ≤ −a}. Then for any w in B, we have

that µ(w) ≤ 2−L(w)2−a. The Kraft inequality for prefix codes [85, p. 73] states that

since L is a prefix code,
∑

w∈An 2−L(w) ≤ 1. Hence

µ(B) =
∑
w∈B

µ(w) ≤ 2−a
∑
w∈B

2−L(w) ≤ 2−a.

Lemma 4.5.3 ([85]). There is a prefix code C : N → {0, 1}∗ such that `(C(n)) =

log(n) + o(log(n)), where `(C(n)) is the length of C(n).

Definition 4.5.4. A prefix code satisfying the conclusion of Lemma 4.5.3 is called

an Elias code.
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Recall that if b is a path in the graph G = (V,E), then we denote by E(b)

the set of edges traversed by b. Let (Gn) be a sequence of graphs satisfying our

Standing Assumptions 4.2.21.

Definition 4.5.5. For each n, k, and 1 ≤ j ≤ k − 1, let

N j
n,k = {b ∈ Bk(Gn) : |En(b)| ≤ j}.

Definition 4.5.6. For each n, k, and 1 ≤ j ≤ 2k − 1, let

Dj
n,k = {(b, c) ∈ Bk(Gn)×Bk(Gn) : En(b) ∩ En(c) 6= ∅, |En(b) ∪ En(c)| ≤ j}.

Definition 4.5.7. For each n, k, and 1 ≤ j ≤ k − 1, let

Qj
n,k = {b ∈ Perk(Gn) : |En(b)| ≤ j}.

Definition 4.5.8. For each n, k, and 1 ≤ j ≤ 2k − 1, let

Sjn,k = {(b, c) ∈ Perk(Gn)× Perk(Gn) : En(b) ∩ En(c) 6= ∅, |En(b) ∪ En(c)| ≤ j}.

For any of the sets defined in Definitions 4.5.5 - 4.5.8, we use a “hat” to denote

the set with “≤” replaced by “=” in the definition. For example,

N̂ j
n,k = {b ∈ Bk(Gn) : |En(b)| = j}.

The “hat” notation will only appear in the proof of Theorem 4.5.13. The following

four lemmas find bounds on |N j
n,k|, |D

j
n,k|, |S

2k−1
n,k |, and |Sjn,k|.

The following lemma bounds the µ-measure (and therefore the cardinality) of

the set of paths of length k in Gn that traverse at most j < k edges. The proof

relies on a general principle in information theory (made precise by Lemma 4.5.2):
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a set of words that can be encoded “too efficiently” must have small measure. In

order to use this principle, we find an efficient encoding of the paths of length k

in Gn that traverse at most j edges. The basic observation behind the coding is

trivial: a path of length k that only traverses j < k edges must have k− j repeated

edges. Therefore, instead of encoding each of the k− j repeated edges explicitly, we

simply encode some combinatorial data that specifies when “repeats” happen and

when the corresponding edges are first traversed.

Lemma 4.5.9. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21 and such that (Gn) has local uniqueness of paths and bounded distortion

of weights (conditions (C4) and (C7) in 4.2.23). Then there exists a polynomial

p0(x) and n0 such that for each n ≥ n0, k > U(Gn) and 1 ≤ j ≤ k − 1,

µ(N j
n,k) ≤ p0(k)

min(k−j, k/U(Gn))λ−(m(Gn)+k−j),

and

|N j
n,k| ≤ p0(k)

min(k−j, k/U(Gn))λj.

Proof. Consider (Gn), n, k, and j as in the hypotheses. Let m = m(Gn) and

U = U(Gn). A path b in N j
n,k from vertex s to vertex t contributes wns v

n
t λ

−k to

µ(N j
n,k). The condition (C7) gives a uniform constant K such that wns v

n
t is bounded

below by (K2|Vn|)−1 = (K2λm)−1. Therefore the bound on |N j
n,k| follows from the

bound on µ(N j
n,k), since |N j

n,k| ≤ K2λm+kµ(N j
n,k) (as in Lemma 4.2.28 (1)). We now

proceed to show the bound on µ(N j
n,k).

Let r = k − j. Consider b in N j
n,k. Then there exists 1 < t1 < · · · < tr ≤ k

such that bti = bsi
for some 1 ≤ si < ti, for each i = 1, . . . , r, where si = min{s ≥
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1 : bs = bti}. Now we define a set I ⊂ {1, . . . , r} by induction. Let i1 = 1 and

I1 = {i1}. Assuming by induction that ij and Ij have been defined and that ij < r,

we define ij+1 and Ij+1 as follows:

• if tij+1 − tij > U , let ij+1 = ij + 1;

• otherwise, if tij+1 − tij ≤ U , then let

ij+1 = max{ij < i ≤ r : ti − tij ≤ U}.

Let Ij+1 = Ij ∪ {ij+1}. This induction procedure terminates when ij = r for some

j ≤ r, and we denote this terminal j by j∗. Let I = Ij∗ . Note that for each

0 ≤ s ≤ k − U , we have that

|{i ∈ I : s+ 1 ≤ ti ≤ s+ U}| ≤ 2.

It follows that |I| ≤ min(r, 2k/U + 2).

Having defined the set I, we now decompose the integer interval {1, . . . , k}

into subintervals. First, let

J = ∪j∗j=1{tij} ∪ {1 ≤ s ≤ k : ∃ij, ij+1 ∈ I, tij+1
− tij ≤ U and tij ≤ s ≤ tij+1

}.

Let J1, . . . , JN be the maximal disjoint subintervals (with singletons allowed) of

{1, . . . , k} such that J = J1 ∪ · · · ∪ JN and J` < J`+1. Note that
∑N

`=1 |J`| = |J | ≥ r

andN ≤ |I|. Then let I1, . . . , IN+1 be the maximal disjoint subintervals of {1, . . . , k}

such that

• I` ⊂ {1, . . . , k} \ J for each ` = 1, . . . , N + 1;
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• ∪N+1
`=1 I` = {1, . . . , k} \ J ;

• and for each ` = 1, . . . , N , we have that I` is non-empty and I` < I`+1.

In summary, we have that {1, . . . , k} = I1∪J1∪ · · ·∪ IN ∪JN ∪ IN+1, and only IN+1

may be empty.

For any 1 ≤ s < t ≤ k, let As,t = {b ∈ Bk(Gn) : bs = bt}. By Lemma 4.2.28

(3), there exists a uniform constant K1 such that

µ(As,t) ≤ K1λ
−m. (4.5.1)

For notation, if I is a subset of {1, . . . , k}, then bI is b restricted to I. Since µ

is 1-step Markov on XGn , we have that

µ(b|As1,t1) = µ(bI1|As1,t1)
N∏
`=1

µ(bJ`
|As1,t1 ∩ bI1...I`)

N+1∏
`=2

µ(bI`|As1,t1 ∩ bI1...J`−1
)

(4.5.2)

= µ(bI1|As1,t1)
N∏
`=1

µ(bJ`
|bI1...I`)

N+1∏
`=2

µ(bI`|bI1...J`−1
) (4.5.3)

Given b, we may form si, ti, I` and J` as above, and then we encode b as

follows

(1) encode s1 and t1 using an Elias code;

(2) encode bI1 using a prefix Shannon code with respect to µ(·|As1,t1);

(3) assuming bI1...I` has been encoded, we encode bJ`
by encoding si and ti for each

i in I such that ti ∈ J`, using an Elias code (and note that this information

completely determines bJ`
by definition of U and construction of J);
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(4) assuming bI1...J`−1
has been encoded, we encode bI` using a prefix Shannon

code with respect to µ(·|bI1...J`−1
).

Now we analyze the performance of the code. Since the code is a concatenation

of prefix codes, it is a prefix code. Since U tends to infinity as n tends to infinity

(by (C4)) and k > U , there exists n0 such that for n ≥ n0 and 1 ≤ s ≤ k, the length

of the codeword in the Elias encoding of s is less than or equal to 2 log k. Then we

have, neglecting bits needed to round up,

L(b) ≤ − log µ(bI1|As1,t1) + |I|(4 log k) +
N+1∑
`=2

− log µ(bI`|bI1...J`−1
). (4.5.4)

Combining Equations (4.5.2), (4.5.3), and Equation (4.5.4), we have that

L(b) + log µ(b) ≤ |I|(4 log k) + log µ(As1,t1) +
N∑
`=1

log µ(bJ`
|bI1...I`). (4.5.5)

Now by Lemma 4.2.28 (2) and (3), there exist uniform constants K2 and K3 such

that

L(b) + log µ(b) ≤ |I|(4 log k) +K2 −m log λ+NK3 − |J | log λ (4.5.6)

= |I|(4 log k) +K2 +NK3 − (m+ |J |) log λ. (4.5.7)

By construction, |I| ≤ min(k − j, 2k/U + 2), N ≤ |I|, and |J | ≥ r = k − j. Then

by Lemma 4.5.2, there exists a uniform constant K4 > 0 such that

µ(N j
n,k) ≤ (K4k

4)min(k−j, 2k/U+2)λ−(m+k−j). (4.5.8)

Letting p0(x) = K5x
12, for some uniform constant K5 > 0, we obtain that

µ(N j
n,k) ≤ p0(k)

min(k−j, k/U)λ−(m+k−j),

which completes the proof.
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The following lemma bounds the µ×µ-measure (and therefore the cardinality)

of the set of pairs paths of length k in Gn that share at least one edge and together

traverse at most j < 2k edges. The general strategy of encoding pairs of paths using

combinatorial data and appealing to information theory is similar to that of Lemma

4.5.9. Lemma 4.5.10 involves the additional hypothesis that there exists a uniform

bound R such that for any pair of paths (u,w) in Gn, there exists a path uvw in Gn

with |v| ≤ R. Using this hypothesis, one observes that pairs of paths can essentially

be concatenated in Gn and then treated as single paths as in Lemma 4.5.9.

Lemma 4.5.10. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21 and such that (Gn) has local uniqueness of paths, small diameter, and

bounded distortion of weights (conditions (C4), (C5) and (C7) in 4.2.23). Then

there exists a polynomial p1(x) and n1 such that for n ≥ n1, k > R(Gn) and

1 ≤ j ≤ 2k − 1,

µ× µ(Dj
n,k) ≤ p1(k)

min(2k−j, k/U(Gn))λ−(m(Gn)+2k−j),

and

|Dj
n,k| ≤ p1(k)

min(2k−j, k/U(Gn))λj+m(Gn).

Proof. Consider (Gn), n, k, and j as in the hypotheses. Let m = m(Gn), U =

U(Gn), and R = R(Gn). Note that the bound on |Dj
n,k| follows from the bound on

µ × µ(Dj
n,k), since condition (C7) implies that there exists a uniform constant K

such that |Dj
n,k| ≤ Kλ2m+2kµ× µ(Dj

n,k) (as in Lemma 4.2.28 (1)). We now proceed

to show the bound on µ× µ(Dj
n,k).
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By the definition of R, for every pair (b, c) ∈ Bk(Gn)×Bk(Gn), there exists a

path d1 in Gn such that |b| ≤ R and bdc is in B2k+|d1|(Gn). We choose a single such

d1 for each pair (b, c), and we choose a (possibly empty) path d2 such that bd1cd1

is in B2k+R(Gn) (whose existence is guaranteed by the fact that Gn is irreducible).

If (b, c) ∈ Dj
n,k, then bd1cd2 is in N j+R

n,2k+R. Using condition (C5), we have that

R ≤ m + C for a uniform constant C. Then we have that there exist uniform

constants K1, K2, and K3 such that for each n, each k, and each pair (b, c) in

Bk(Gn)×Bk(Gn),

µ× µ((b, c)) ≤ K1λ
−(2m+2k) ≤ K2λ

−(m+R+2k) ≤ K3µ(bd1cd2).

Thus Lemma 4.5.9 implies that there exists a polynomial p0(x) and n0 such that for

n ≥ n0,

µ× µ(Dj
n,k) ≤ K3µ(N j+R

n,2k+R) ≤ K3p0(2k +R)min(2k−j, (2k+R)/U)λ−(m+2k−j).

With n1 = n0 and p1(x) = K4p0(3x)
3 for a uniform constant K4, we have

µ× µ(Dj
n,k) ≤ p1(k)

min(2k−j, k/U)λ−(m+2k−j),

which completes the proof.

The following two lemmas (Lemmas 4.5.11 and 4.5.12) give bounds on the µ×µ

measure (and therefore the cardinality) of the set of pairs of periodic paths in Gn

with certain overlap properties. The general ideas are similar to those in Lemmas

4.5.9 and 4.5.10, but in order to get precise bounds on the relevant sets, we exploit

the fact that these sets consist of pairs of periodic paths. In other words, when we
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encode paths using their the pattern of “repeats,” we also take into account their

assumed periodicity.

Lemma 4.5.11. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21 and bounded distortion of weights (condition (C7) in 4.2.23). Then

there exists a polynomial p2(x) and n2 such that for each n ≥ n2 and k > U(Gn),

µ× µ(S2k−1
n,k ) ≤ p2(k)λ

−(2m(Gn)+U(Gn)),

and

|S2k−1
n,k | ≤ p2(k)λ

2k−U(Gn).

Proof. Consider (Gn), n, and k as in the hypotheses. Let m = m(Gn) and U =

U(Gn). Note that the bound on |S2k−1
n,k | follows from the bound on µ×µ(S2k−1

n,k ), since

condition (C7) implies that there exists a uniform constant K such that |S2k−1
n,k | ≤

Kλ2m+2kµ×µ(S2k−1
n,k ) (as in Lemma 4.2.28 (1)). We now proceed to show the bound

on µ× µ(S2k−1
n,k ).

Let b be in Perk(Gn). Let e be in En(b). For i = 1, . . . , k, let Ci ⊂ Bk(Gn) be

the set of paths c of length k in Gn such that ci = e. Then Lemma 4.2.28 (parts (1)

and (4)) implies that there exist uniform constants K1 and K2 such that

µ(Perk(Gn) ∩ C1) = µ(C1)µ(Perk(Gn)|C1) ≤ K1λ
−mµ(Perk(Gn)|C1) (4.5.9)

≤ K2λ
−(m+U). (4.5.10)

Let C be the set of paths c of length k in Gn such that e ∈ En(c). Then C = ∪ki=1Ci,

and by shift-invariance of µ,

µ(Perk(Gn) ∩ C) ≤
k∑
i=1

µ(Perk(Gn) ∩ Ci) ≤ K2kλ
−(m+U). (4.5.11)
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Since e ∈ En(b) was arbitrary, it follows from inequality (4.5.11) that

µ({c ∈ Perk(Gn) : En(c) ∩ En(b) 6= ∅}) ≤
∑

e∈En(b)

µ({c ∈ Perk(Gn) : e ∈ En(c)})

≤ K2

∑
e∈En(b)

kλ−(m+U) ≤ K2k
2λ−(m+U).

Since b ∈ Perk(Gn) was arbitrary, we conclude that there exists a uniform constant

K3 such that

µ× µ(S2k−1
n,k ) ≤ K2µ(Perk(Gn))k

2λ−(m+U) ≤ K3k
2λ−(2m+U),

where the last inequality follows from Lemma 4.2.28 (4). This inequality completes

the proof.

Lemma 4.5.12. Let (Gn) be a sequence of graphs satisfying the Standing Assump-

tions 4.2.21 and such that (Gn) has local uniqueness of paths, small diameter, and

bounded distortion of weights (conditions (C4), (C5) and (C7) in 4.2.23). Then

there exists a polynomial p3(x) and n3 such that for n ≥ n3, k > U(Gn), and

1 ≤ j ≤ 2k − 1,

µ× µ(Sjn,k) ≤ p3(k)
k/U(Gn)λ−(m(Gn)+U(Gn)+2k−j),

and

|Sjn,k| ≤ p3(k)
k/U(Gn)λj+m(Gn)−U(Gn).

Proof. Consider (Gn), n, k, and j as in the hypotheses. Let m = m(Gn), U =

U(Gn), and R = R(Gn). Note that the bound on |Sjn,k| follows from the bound on

µ × µ(Sjn,k), since condition (C7) implies that there exists a uniform constant K
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such that |Sjn,k| ≤ Kλ2m+2kµ × µ(Sjn,k) (as in Lemma 4.2.28 (1)). We now proceed

to show the bound on µ× µ(Sjn,k).

Let e be in En and let C1 be the set of paths b of length k in Gn such that

b1 = e. Then it follows from Lemma 4.2.28 (4) that there exists a uniform constant

K1 such that

µ(Perk(Gn)|C1) ≤ K1λ
−U . (4.5.12)

To each pair (b, c) in Sjn,k, let us associate a particular path of length 2k+R in Gn,

which we construct as follows. Let (b, c) be in Sjn,k. By definition of Sjn,k, there is

at least one edge e in En(b) ∩ En(c). Let τ be the cyclic permutation of {1, . . . , k}

of order k given by (12 . . . k). Let τ act on periodic paths of length k in Gn by

permuting the indices: τ(b1 . . . bk) = bτ(1) . . . bτ(k). Then let b′ be in {τ `(b) : ` ∈

{1, . . . , k}, τ `(b)k = e}. Similarly, let c′ be in {τ `(c) : ` ∈ {1, . . . , k}, τ `(c)1 = e}.

Now choose a path d1 in Gn such that |b′d1c
′| ≤ R and b′d1c

′ is a path in Gn (the

existence of such a path d1 is guaranteed by the definition of R). By irreducibility of

Gn we also choose a (possibly empty) path d2 in Gn such that b′d1c
′d2 is in B2k+R.

We associate the path b′d1c
′d2 to the pair (b, c), and note that there exist uniform

constants K2, K3, and K4 (by Lemma 4.2.28 (1) and condition (C5)) such that

µ× µ((b, c)) ≤ K2λ
−(2m+2k) ≤ K3λ

−(m+R+2k) ≤ K4µ(b′d1c
′d2). (4.5.13)

Now we use the same construction as in the proof of Lemma 4.5.9 with only

slight modification. We encode the words b′d1c
′d2 as follows.

(1) Construct I, J , and the partition of {1, . . . , 2k+R} as in the proof of Lemma

4.5.9, with the additional condition that J ∩{k+ 1, . . . , k+R} = ∅. (In other
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words, we ignore any “repeats” introduced by d.)

(2) Encode b′ as in the proof of Lemma 4.5.9.

(3) To encode the path d1, we first encode the fact that b′k = c′1 (by encoding k

and k + |d1| using an Elias code), and then encode d1 using a prefix Shannon

code with respect to µ(·|Ak,k+|d1| ∩ b′).

(4) Encode c′ as in the proof of Lemma 4.5.9.

(5) Encode d2 using a prefix Shannon code with respect to µ(·|b′d1c
′).

For large n, encoding the fact that b′k = c′1 adds less than 4 log(2k+R) to L(b′d1c
′d2).

On the other hand, we have that there is a uniform constant K5 > 0 such that

µ(Ak,k+|d1||b′) ≤ K5λ
−U , by Lemma 4.2.28 (4). Thus, there exists n3 and a uniform

constant K6 such that for n ≥ n3, we have

L(b′d1c
′d2) + log µ(b′d1c

′d2) ≤ (|I|+ 1)(4 log(2k+R)) +NK6− (m+U + |J |) log λ,

(4.5.14)

with |I| ≤ 2k/U + 2, N ≤ |I|, and |J | ≥ 2k− j − 1. Then by Lemma 4.5.2 there is

a polynomial p4(x) such that for n ≥ n3,

µ({b′d1c
′d2 : (b, c) ∈ Sjn,k}) ≤ p4(k)

k/Uλ−(m+U+2k−j). (4.5.15)

Note that the number of pairs (b, c) associated to the a path b′d1c
′d2 is at most k2,

and hence

µ× µ(Sjn,k) ≤ k2p4(k)
k/Uλ−(m+U+2k−j). (4.5.16)

Now let p3(x) = x2p4(x), and the proof is complete.
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4.5.2 Entropy

Recall that if G is a graph, then βG is the random variable such that βG(ω) is

the spectral radius of the adjacency matrix of G(ω).

Theorem 4.5.13. Let (Gn) be a sequence of graphs that satisfies the Standing As-

sumptions 4.2.21 and such that (Gn) has local uniqueness of paths, small diameter,

and bounded distortion of weights (conditions (C4), (C5), and (C7) in 4.2.23). Then

for 1/λ < α ≤ 1 and ε > 0,

lim
n→∞

Pα(|βGn − αλ| ≥ ε) = 0,

and the convergence to the limit is exponential in m(Gn).

Remark 4.5.14. If we assume thatX is irreducible in the statement of Theorem 4.1.3,

then Theorem 4.1.3 is a direct corollary of Theorem 4.5.13, obtained by choosing

(Gn) to be the sequence of n-block graphs of an irreducible SFT with positive entropy

(and using the fact that such a sequence satisfies the hypotheses of Theorem 4.5.13

by Proposition 4.2.29). In the case when X is reducible, X has a finite number of

irreducible components of positive entropy, X1, . . . , Xr, and there exist i such that

h(Xi) = h(X). For all large n, we have that Bn(Xi) ∩ Bn(Xj) = ∅ for i 6= j, which

means that the entropies of the random subshifts appearing inside each of these

components are mutually independent. Applying Theorem 4.5.13 to each of these

components, we obtain Theorem 4.1.3 for reducible X.

Proof of Theorem 4.5.13. Let α be in (1/λ, 1]. Let m = m(Gn) and U = U(Gn).

Let b be a path in Gn = (Vn, En). Let ξb : Ωn → R be the random variable defined
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by

ξb(ω) =


1, if b is allowed in Gn(ω)

0, else.

Now let

φn,k =
∑

b∈Bk(Gn)

ξb, and ψn,k =
1

|Vn|
∑

b∈Perk(Gn)

ξb.

For each n and k, we have that ψn,k ≤ βkn ≤ φn,k. Indeed, ψn,k is the average number

of loops of length k based at a vertex in Gn. Thus there is at least one vertex v with

at least ψn,k loops of length k based at v, and it follows that k−1 logψn,k ≤ log βn

since these loops may be concatenated freely. Also, it follows from subadditivity

that log βn = limk k
−1 log φn,k = infk k

−1 log φn,k, which implies that βkn ≤ φn,k for

all n and k.

Fix 0 < ν < 1, and let k = dm1+νe + i, where i is chosen such that 0 ≤ i ≤

per(G1) − 1 and per(G1) divides k. Recall that if (Gn) is the sequence of n-block

graphs of a fixed graph G, then by Proposition 4.2.29 we have that m and n differ

by at most a uniform constant, and thus k ∼ n1+ν . We will show below that as n

tends to infinity,

(I)
(
Eαφn,k

)1/k
tends to αλ;

(II)
(
Eαψn,k

)1/k
tends to αλ;

(III) there exists K1 > 0 and ρ1 > 0 such that
Var(φn,k)

(Eαφn,k)2
≤ K1e

−ρ1m;

(IV) there exists K2 > 0 and ρ2 > 0 such that
Var(ψn,k)

(Eαψn,k)2
≤ K2e

−ρ2m.

Recall Definitions 4.5.5 - 4.5.8, as well as the modification of these definitions
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using “hats.” Notice that

Eαφn,k =
∑

b∈Bk(Gn)

Eαξb =
∑

b∈Bk(Gn)

α|En(b)| =
k∑
j=1

αj|N̂ j
n,k|.

Also,

|Vn|Eαψn,k =
∑

b∈Perk(Gn)

Eαξb =
∑

b∈Perk(Gn)

α|En(b)| =
k∑
j=1

αj|Q̂j
n,k|.

Regarding variances, we have

Var(φn,k) =
∑

(b,c)∈Bk(Gn)2

α|En(b)∪En(c)|(1− α|En(b)∩En(c)|) ≤
2k−1∑
j=1

αj|D̂j
n,k|,

and

|Vn|2 Var(ψn,k) =
∑

(b,c)∈Perk(Gn)2

α|En(b)∪En(c)|(1− α|En(b)∩En(c)|) ≤
2k−1∑
j=1

αj|Ŝjn,k|.

For the remainder of this proof, we use the following notation: if (xn) and (yn)

are two sequences, then xn ∼ yn means that the limit of the ratio of xn and yn tends

to 1 as n tends to infinity.

Proof of (I). By Lemma 4.2.28 (1), there exists a uniform constant K1 > 0

such that

Eαφn,k =
k∑
j=1

αj|N̂ j
n,k| ≥ αk

k∑
j=1

|N̂ j
n,k| = αk|Bk(Gn)| ≥ K1α

kλm+k. (4.5.17)

Taking k-th roots, letting n tend to infinity, and using that m/k ∼ m−ν tends to 0,

we obtain that lim infn
(
Eαφn,k

)1/k ≥ αλ.

By Lemma 4.2.28 (1) and Lemma 4.5.9, we have that there exists n0, a poly-
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nomial p0(x), and a uniform constant K2 > 0 such that for n ≥ n0,

Eαφn,k =
k∑
j=1

αj|N̂ j
n,k|

≤
k−1∑
j=1

αj|N j
n,k|+ αk|Bk(Gn)|

≤
(
p0(k)

)k/U(k−1∑
j=1

(αλ)j

)
+K2α

kλk+m

≤ (αλ)kλm

(
1

αλ− 1
p0(k)

k/Uλ−m +K2

)
.

By condition (C4) and the fact that k ∼ m1+ν , we have that

• m tends to infinity as n tends to infinity by the Standing Assumptions 4.2.21;

• m/k ∼ m−ν , which tends to zero as n tends to infinity;

• U ≥ m− C, which tends to infinity as n tends to infinity.

Taking k-th roots and letting n tend to infinity, we have that lim supn
(
Eαφn,k

)1/k ≤
αλ, which concludes the proof of (I).

Proof of (II). Let p = per(G1) = per(Gn). Note that since p divides k, there

exists a uniform constant K3 > 0 such that |Perk(Gn)| ≥ K3λ
k for large enough k.

We choose n large enough so that this inequality is satisfied. Then we have that

Eαψn,k = |Vn|−1

k∑
j=1

αj|Q̂j
n,k|

≥ |Vn|−1αk
k∑
j=1

|Q̂j
n,k|

= |Vn|−1αk|Perk(Gn)|

≥ K3λ
−mαkλk.
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Taking k-th roots, letting n tend to infinity, and using that m/k ∼ m−ν tends to

0, we get that lim infn
(
Eαψn,k

)1/k ≥ αλ. Recall that 0 ≤ ψn,k ≤ φn,k. Therefore it

follows from (I) that lim supn
(
Eαψn,k

)1/k ≤ αλ. Thus we have shown (II).

Proof of (III). For j ≤ 2k − 1, Lemma 4.5.10 implies that there is n1 and

a polynomial p1 such that |Dj
n,k| ≤ p1(k)

k/Uλj+m and |D2k−1
n,k | ≤ p1(k)λ

2k+m for

n ≥ n1. Now using that Eαφn,k ≥ K1α
kλm+k (see Equation (4.5.17)), we obtain

that there exists a uniform constant K5 > 0 such that

Varφn,k
(Eαφn,k)2

≤
∑2k−1

j=1 αj|D̂j
n,k|

K2
1α

2kλ2m+2k

=

∑2k−m−1
j=1 αj|D̂j

n,k|+
∑2k−1

j=2k−m α
j|D̂j

n,k|
K2

1α
2kλ2m+2k

≤
∑2k−m−1

j=1 αj|Dj
n,k|+ α2k−m∑2k−1

j=2k−m |D̂
j
n,k|

K2
1α

2kλ2m+2k

≤
p1(k)

k/Uλm
∑2k−m−1

j=1 (αλ)j + α2k−m|D2k−1
n,k |

K2
1α

2kλ2m+2k

≤ K5p1(k)
k/Uλm(αλ)2k−m + α2k−mp1(k)λ

2k+m

K2
1α

2kλ2m+2k

≤ K5

K2
1

p1(k)
k/U

(αλ)mλm
+

p1(k)

K2
1(αλ)m

≤ K5

K2
1

(
p1(k)

k/Um

(αλ)

)m

+
p1(k)

K2
1(αλ)m

.

Using the facts that U ≥ m−C and k ∼ m1+ν , we have that k/Um is asymptotically

bounded above by 2mν−1. Since ν− 1 < 0, it holds that p1(k)
k/Um tends to 1. Thus

we obtain that for any 0 < ρ1 < lnαλ, there exists K6 > 0 and n2 such that for

n ≥ n2, it holds that Varφn,k(Eαφn,k)
−2 ≤ K6e

−ρ1m, which proves (III).

Proof of (IV). For j ≤ 2k − 1, Lemma 4.5.12 together with (C4) implies
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that there is n3 and a polynomial p3 such that |Sjn,k| ≤ p3(k)
k/Uλj for n ≥ n3. Also,

Lemma 4.5.11 implies that there is n4 and a polynomial p2 such that |S2k−1
n,k | ≤

p2(k)λ
2k−U for n ≥ n4. Now using that |Vn|Eαψn,k ≥ K3α

kλk, we obtain that there

exists K7 > 0 such that, with K := K3,

Varψn,k
(Eαψn,k)2

≤
∑2k−1

j=1 αj|Ŝjn,k|
K2α2kλ2k

=

∑2k−U−1
j=1 αj|Ŝjn,k|+

∑2k−1
j=2k−U α

j|Ŝjn,k|
K2α2kλ2k

≤
∑2k−U−1

j=1 αj|Sjn,k|+ α2k−U∑2k−1
j=2k−U |Ŝ

j
n,k|

K2α2kλ2k

≤
p3(k)

k/U
∑2k−U−1

j=1 (αλ)j + α2k−U |S2k−1
n,k |

K2α2kλ2k

≤ K7p3(k)
k/U(αλ)2k−U + α2k−Up2(k)λ

2k−U

K2α2kλ2k

≤ K7

K2

p3(k)
k/U

(αλ)U
+

p2(k)

K2(αλ)U

≤ K7

K2

(
p3(k)

k/U2

(αλ)

)U

+
p2(k)

K2(αλ)U
.

Using the facts that U ≥ m−C and k ∼ m1+ν , we have that k/U2 is asymptotically

bounded above by 2mν−1. Since ν − 1 < 0, it holds that p3(k)
k/U2

tends to 1. Thus

we obtain that for any 0 < ρ2 < logαλ, there exists K8 > 0 and n5 such that for

n ≥ n5,

Varφn,k
(Eαφn,k)2

≤ K8e
−ρ2m,

which proves (IV).

Proof of Theorem 4.5.13 using (I)-(IV). Recall that ψn,k ≤ βkn ≤ φn,k.

Let ε > 0. Since αλ > 1, we may assume without loss of generality that αλ− ε > 1.
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Then

Pα
(
|βn − αλ| ≥ ε

)
= Pα

(
βn ≥ αλ+ ε

)
+Pα

(
βn ≤ αλ− ε

)
(4.5.18)

= Pα
(
βkn ≥ (αλ+ ε)k

)
+Pα

(
βkn ≤ (αλ− ε)k

)
(4.5.19)

≤ Pα
(
φn,k ≥ (αλ+ ε)k

)
+Pα

(
ψn,k ≤ (αλ− ε)k

)
. (4.5.20)

We will bound each of the two terms in Equation (4.5.20). Notice that

Pα
(
φn,k ≥ (αλ+ ε)k

)
= Pα

(
φn,k − Eαφn,k ≥ (αλ+ ε)k − Eαφn,k

)
= Pα

(
φn,k − Eαφn,k ≥ Eαφn,k

(( αλ+ ε

(Eαφn,k)1/k

)k
−1

))
.

Let d1
n,k = (Var(φn,k))

1/2/Eαφn,k. Then by Chebychev’s Inequality,

Pα
(
φn,k ≥ (αλ+ ε)k

)
= (4.5.21)

= Pα

(
φn,k − Eαφn,k ≥ (Var(φn,k))

1/2 1

d1
n,k

(( αλ+ ε

(Eαφn,k)1/k

)k
−1

))
(4.5.22)

≤

(
d1
n,k

( αλ+ε
(Eαφn,k)1/k )k − 1

)2

. (4.5.23)

The denominator in the right-hand side of (4.5.23) might be 0 for finitely many n,

but by properties (I) and (III), there exists K9 > 0 such that for large enough n,

Pα
(
φn,k ≥ (αλ+ ε)k

)
≤

(
d1
n,k

( αλ+ε
(Eαφn,k)1/k )k − 1

)2

≤ K9e
−ρ1m.

Similarly, we let d2
n,k = (Var(ψn,k))

1/2/Eαψn,k, and then Chebychev’s Inequal-
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ity gives that

Pα
(
ψn,k ≤ (αλ− ε)k

)
= (4.5.24)

= Pα

(
ψn,k − Eαψn,k ≤ (Var(ψn,k))

1/2 1

d2
n,k

(( αλ− ε

(Eαψn,k)1/k

)k
−1

))
(4.5.25)

≤

(
d2
n,k

( αλ−ε
(Eαψn,k)1/k )k − 1

)2

(4.5.26)

Again, the denominator in the right-hand side might be 0 for finitely many n, but

by properties (II) and (IV), there exists K10 > 0 such that for large enough n,

Pα
(
ψn,k ≤ (αλ− ε)k

)
≤

(
d2
n,k

( αλ−ε
(Eαψn,k)1/k )k − 1

)2

≤ K10e
−ρ2m.

In conclusion, we obtain that there exists K11 > 0 such that for large enough n,

Pα(|βn − αλ| ≥ ε) ≤ K11e
−min(ρ1,ρ2)m.

4.5.3 Irreducible components of positive entropy

Theorem 4.5.15. Let (Gn) be a sequence of graphs that satisfies the Standing As-

sumptions 4.2.21, with p = per(G1) = per(Gn), and such that

• (Gn) has bounded degrees (condition (C1) in 4.2.23),

• (Gn) has fast separation of periodic points (condition (C3) in 4.2.23),

• and (Gn) has uniform forward and backward expansion (condition (C8) in

4.2.23).
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Let UGn be the event in ΩGn that Gn(ω) contains a unique irreducible component C

of positive entropy. Also, let WGn be the event (contained in UGn) that the induced

edge shift on C has period p. Then there exists c > 0 such that for 1− c < α ≤ 1,

lim
n→∞

Pα(UGn) = 1, and lim
n→∞

Pα(WGn) = 1,

and the convergence to these limits is exponential in m(Gn).

Remark 4.5.16. Theorem 4.1.4 is a corollary of Theorem 4.5.15: ifX is an irreducible

SFT of positive entropy, then the sequence of n-block graphs for X satisfies the

hypotheses of Theorem 4.5.15 by Proposition 4.2.29. In fact, if X is a reducible SFT,

we may apply Theorem 4.1.4 to each irreducible component independently, which

allows us to conclude the following. Let X be a reducible SFT with irreducible

components X1, . . . , Xr such that pi = per(Xi) for each i. Let Wn be the event

in Ωn that Xω has exactly r irreducible components with periods p1, . . . , pr. Then

there exists c > 0 such that for α ∈ (1− c, 1], we have that limn Pα(Wn) = 1, with

exponential (in n) convergence to the limit.

Definition 4.5.17. Let G be a directed graph. For each vertex v in G, and for each

ω in ΩG, let Γ+
ω (v) be the union of {v} and the set of vertices u in G such that there

is an allowed path from v to u in G(ω). Similarly, for each vertex v in G and each ω

in ΩG, let Γ−ω (v) be the union of {v} and the set of vertices u in G such that there

is an allowed path from u to v in G(ω). Also, let Iω(v) = Γ+
ω (v) ∩ Γ−ω (v), which is

the vertex set of the irreducible component containing v in G(ω).

The proof of the following proposition is an adaptation of the proof of Lemma

2.2 in [3].
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Proposition 4.5.18. Let (Gn) be a sequence of graphs satisfying the Standing As-

sumptions 4.2.21 and such that (Gn) has bounded degrees and uniform forward and

backward expansion (conditions (C1) and (C8) in 4.2.23). Let rn be a sequence

of integers such that rn ≥ am(Gn), for some a > 0, for all large n. Let C+
Gn

be

the event in ΩGn consisting of all ω such that there exists a vertex v in Gn with

rn ≤ Γ+
ω (v) ≤ |Vn|/2. Then there exists c > 0 such that for α > 1− c,

lim
n→∞

Pα(C+
Gn

) = 0, (4.5.27)

and the convergence of this limit is exponential in m(Gn). Furthermore, the same

statement holds with “+” replaced by “−”.

Proof. Let m = m(Gn). Let b > 0 be such that both (Gn) and (GT
n ) are b-expander

sequences (where the existence of such a b is guaranteed by condition (C8)). We

use the notation in Definition 4.5.17. For any v in Vn and any ω in ΩGn , the set

Γ+
ω (v) has the property that all edges in En(Γ

+
ω (v),Γ+

ω (v)) are forbidden (by ω).

Then the fact that Gn is a b-expander implies that for a particular subset S of Vn,

the probability that S = Γ+
ω (v) for some v is bounded above by (1 − α)b|S|. The

number of subsets S of Vn with |S| = r that could appear as Γ+
ω (v) for some v is

bounded above by (∆e)r, where e is the base of the natural logarithm [3, Lemma

2.2] (see also [2, Lemma 2.1] or [60, p. 396, Exercise 11]). Then for α such that
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∆e(1− α) < 1, we have that for any 0 ≤ rn ≤ |Vn|/2,

Pα(C+
Gn

) = Pα(∃v such that rn ≤ |Γ+
ω (v)| ≤ |Vn|

2
) (4.5.28)

≤

|Vn|
2∑

r=rn

|Vn|(∆e)r(1− α)br (4.5.29)

≤ |Vn|(∆e(1− α)b)rn
1

1−∆e(1− α)
(4.5.30)

≤ (λ1/a∆e(1− α)b)am
1

1−∆e(1− α)
. (4.5.31)

Thus there is a c > 0 (depending only on a, b, λ, and ∆) such that if α > 1 − c,

then the right-hand side of the inequality in (4.5.31) tends to zero exponentially in

m(Gn) as n tends to infinity. In particular, we may take

c =

(
1

λ

)1/ab(
1

∆e

)1/b

.

Since (GT
n ) is also a uniform b-expander, the same estimates hold with C−

Gn
in

place of C+
Gn

.

Proof of Theorem 4.5.15. Let (Gn) be as in the statement of Theorem 4.5.15. Let

m = m(Gn), z = z(Gn), and p = per(G1) = per(Gn). We use the notation in

Definition 4.5.17. Consider the following events:

F+
n = {ω ∈ Ωn : ∀v ∈ Vn,Γ+

ω (v) ≤ z(Gn)− 2p or Γ+
ω (v) > |Vn|/2}

F−
n = {ω ∈ Ωn : ∀v ∈ Vn,Γ−ω (v) ≤ z(Gn)− 2p or Γ−ω (v) > |Vn|/2}

Fn = F+
n ∩ F−

n .

Recall that condition (C3) gives a > 0 such that z ≥ am. Note that Proposition

4.5.18 gives c > 0 such that for 1−c < α ≤ 1, there exists K1, K2 > 0 and ρ1, ρ2 > 0
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such that for large n,

Pα(Ωn \ F+
n ) ≤ K1e

−ρ1m and Pα(Ωn \ F−
n ) ≤ K2e

−ρ2m.

Fix such an α, and note that for all large enough n, we have the following estimate:

Pα(Ωn \ Fn) ≤ 2 max(K1, K2)e
−min(ρ1,ρ2)m.

Consider ω in Fn. Suppose that there exists v1 and v2 in Vn such that |Iω(v1)| >

z − 2p and |Iω(v2)| > z − 2p. Then by definition of Fn, we must have that Γ+
ω (v1)∩

Γ−ω (v2) 6= ∅ and Γ−ω (v1) ∩ Γ+
ω (v2) 6= ∅. It follows that there is a path from v1 to

v2 in Gn(ω), and there is a path from v2 to v1 in Gn(ω). Thus Iω(v1) = Iω(v2).

We have shown that for ω in Fn, there is at most one irreducible component of

cardinality greater than z − 2p. Note that this argument implies that for ω in

Fn, all allowed periodic orbits γ such that |Vn(γ)| > z − 2p must lie in the same

irreducible component.

By definition of z, if Iω is an irreducible component of Gn(ω) with positive

entropy, then |Iω| > z (since it must contain at least two periodic orbits with

overlapping vertex sets). We deduce that for ω in Fn, there is at most one irreducible

component of Gn(ω) with positive entropy.

We now show that there exists an irreducible component of positive entropy

with probability tending exponentially to 1. Let z1 = z − i, where i is chosen (for

each n) such that 0 ≤ i ≤ p − 1 and p divides z1. Then let z2 = z1 − p. Consider

the following sequences of random variables:

fn =
∑

b∈Perz1 (Gn)

ξb, and gn =
∑

b∈Perz2 (Gn)

ξb. (4.5.32)
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Note that by the definition of z and Lemma 4.3.3, we have that |En(b)| = |b| for any

periodic path b with period less than or equal to z. Furthermore, any two such paths

are disjoint. Therefore the random variables {ξb}b∈Perz1 (Gn) are jointly independent,

and the random variables {ξb}b∈Perz2 (Gn) are also jointly independent. Thus

Eαfn =
∑

b∈Perz(Gn)

αz1 = αz1|Perz1(Gn)|,

Eαgn =
∑

b∈Perz2 (Gn)

αz2 = αz2|Perz2(Gn)|,

Var(fn) =
∑

b∈Perz1 (Gn)

αz1(1− αz1) = αz1(1− αz1)|Perz1(Gn)|

Var(gn) =
∑

b∈Perz2 (Gn)

αz2(1− αz2) = αz2(1− αz2)|Perz2(Gn)|.

As n tends to infinity, z tends to infinity since z ≥ am and m tends to infinity.

Then by the Standing Assumptions 4.2.21 (in particular, we use that Sp×(Gn) =

Sp×(G1)) and the fact that p divides z1 and z2, we have that each of of the sequences

λ−z1|Perz1(Gn)| and λ−z2|Perz2(Gn)| tends to a finite, non-zero limit as n tends to

infinity (and in fact the limit is p). For two sequences xn and yn of positive real

numbers, let xn ∼ yn denote the statement that their ratio tends to a finite, non-

zero limit as n tends to infinity. Then we have that Eαfn ∼ (αλ)z1 ∼ Var(fn) and

Eαgn ∼ (αλ)z2 ∼ Var(gn). Note that Eαfn ≥ Var(fn) and Eαgn ≥ Var(gn). A simple

application of Chebychev’s inequality implies that

Pα(fn ≤ 0) ≤ Pα
(
fn − Eαfn ≤ −Var(fn)

)
≤
(

1

Var(fn)1/2

)2

∼
( 1

αλ

)z1
≤
( 1

αλ

)am−i
,
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and

Pα(gn ≤ 0) ≤ Pα
(
gn − Eαgn ≤ −Var(gn)

)
≤
(

1

Var(gn)1/2

)2

∼
( 1

αλ

)z2
≤
( 1

αλ

)am−i−p
.

We have shown that the probability that there is no periodic orbit of period z1 tends

to 0 exponentially in m as n tends to infinity, and the probability that there exists

no periodic orbit of period z2 tends to 0 exponentially in m as n tends to infinity.

In summary, we have shown that the following events occur with probability

tending to 1 exponentially in m as n tends to infinity:

• there exists a periodic point of period z − i;

• there exists a periodic point of period z − i− p;

• any two periodic points of period greater than z−2p lie in the same irreducible

component (of necessarily positive entropy);

• there is at most one irreducible component of positive entropy.

We conclude that with probability tending to 1 exponentially in m as n tends to

infinity, there exists a unique irreducible component of positive entropy, and the

induced edge shift on that component has period p.

4.6 Remarks

Remark 4.6.1. The proofs of Theorems 4.3.1 and 4.4.2 do not require all of the Stand-

ing Assumptions 4.2.21. In fact, these proofs only use that Sp×(Gn) = Sp×(G1) for

each n and that z(Gn) tends to infinity as n tends to infinity.
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Remark 4.6.2. Theorem 4.3.1 states that at the critical threshold α = 1/λ, the

probability of emptiness tends to zero. Using the fact that entropy is a monotone

increasing random variable (as defined in Section 4.2.3), one may deduce from Theo-

rem 4.5.13 that for α = 1/λ, the probability that the random SFT has zero entropy

tends to 1. It might be interesting to know more about the behavior of typical

random SFTs at the critical threshold.

Remark 4.6.3. We have considered only random Z-SFTs, but one may also consider

random Zd-SFTs for any d in N by adapting the construction of Ωn and Pα in

the obvious way. It appears that most of the proofs presented above may not be

immediately adapted for d > 1, but there is one exception, which we state below.

Let X be a non-empty Zd-SFT. For d > 1, there are various zeta functions for X

(for a definition distinct from ours, see [65]); we consider

ζX(t) = exp

(
∞∑
p=1

Np

p
tp

)
,

where Np is the number of periodic points x in X such that the number of points

in the orbit of x divides p. The function ζX has radius of convergence 1/ρ, where

log ρ = lim supp p
−1 log(Np). For example, for a full Zd shift on a symbols, ρ = a,

regardless of d. Using exactly the same proof as presented in Section 4.3, we obtain

that

lim sup
n→∞

Pα(En) ≤


(ζX(α))−1, if α ∈ [0, 1/ρ)

0, if α ∈ [1/ρ, 1].

For α ≥ 1/ρ, this bound implies that the limiting probability of emptiness is 0. In

this context, we note that there is no algorithm, which, given a Zd-SFT X defined
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by a finite list of finite forbidden configurations, will decide whether X is empty

[9]. Nonetheless, we may be able to compute the limiting probability of emptiness.

For example, if X is a full shift on a symbols, then for α ≥ 1/a, we have that the

limiting probability of emptiness is 0.

Remark 4.6.4. One may also consider more general random subshifts. Recall that a

set X ⊂ AZ is a subshift if it is closed and shift-invariant. For a non-empty subshift

X and a natural number n, we may consider the (finite) set of subshifts obtained

by forbidding words of length n from X. After defining a probability measure

Pα on this space as in Section 4.2, we obtain random subshifts of X. Now we

may investigate the asymptotic probability of properties of these random subshifts.

Recall that any subshift X can be written as ∩Xn, where (Xn) is a sequence of

SFTs (called the Markov approximations of X) and limn h(Xn) = h(X). A subshift

X is called almost sofic [79] if there exists a sequence (Xn) of irreducible SFTs such

that Xn ⊂ X and limn h(Xn) = h(X). Using this inner and outer approximation by

SFTs, the conclusion of Theorem 4.1.3 still holds if the system X is only assumed

to be an almost sofic subshift.

Remark 4.6.5. Theorem 4.5.15 asserts the existence of a constant c > 0, but we are

left with several questions about this constant. Fix a sequence (Gn) satisfying the

hypotheses of Theorem 4.5.15. Let α∗ = inf{α > 0 : limn Pα(Un) = 1}. What is α∗?

What is α∗ in the case that (Gn) is the sequence of n-block graphs of a mixing SFT

of positive entropy (or even a full shift)?
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Appendix A

Additional facts

A.1 The Realization Theorem of Downarowicz and Serafin

For general references on the ergodic theory of topological dynamical systems,

see [46, 78, 87]. For a topological dynamical system (X,T ), we write M(X,T ) to

denote the space of Borel probability measures on X which are invariant under T .

We give M(X,T ) the weak* topology. It is well known that in this setting M(X,T )

is a metrizable, compact, convex subset of a locally convex topological vector space

(see, for example, [46, 78]). The set of extreme points ofM(X,T ) is the set of ergodic

measures, Merg(X,T ). Furthermore, the fact that each measure µ in M(X,T ) has a

unique ergodic decomposition (see [46, 78]) translates to the fact that M(X,T ) is a

Choquet simplex. Since we are only interested in simplices arising from dynamical

systems, we consider only metrizable Choquet simplices. It was shown in [34] that

every metrizable Choquet simplex K can be obtained as the space of invariant Borel

probability measures for a dynamical system.

We write h : M(X,T ) → [0, ∞) to denote the function that assigns to each

measure µ in M(X,T ) its metric entropy. For any dynamical system (X,T ), Boyle

and Downarowicz defined a reference candidate sequence Href (X,T ) on M(X,T )

that is u.s.c.d. and harmonic. Further, Downarowicz defined an entropy structure

on M(X,T ) to be any candidate sequence on M(X,T ) that is uniformly equivalent
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to Href (see Section 2.1.5 for definitions). Almost all known methods of defining or

computing entropy can be adapted to form an entropy structure [35]. The work of

Downarowicz and Serafin [38] implies the following realization theorem:

Theorem A.1.1 ([35, 38]). Let H be a candidate sequence on a Choquet simplex

K that is uniformly equivalent to a harmonic candidate sequence with u.s.c. differ-

ences. Then H is (up to affine homeomorphism) an entropy structure for a minimal

homeomorphism of the Cantor set.

The importance of Theorem A.1.1 lies in the fact that it allows one to translate

questions in the theory of entropy structures and dynamical systems into the terms

of functional analysis.

A.2 Proof of Fact 2.2.24

The following fact was given as Fact 2.5 in [36], where there is a sketch of the

proof. In this appendix we fill in some details of this proof.

Fact (Fact 2.2.24). Let K be a metrizable Choquet simplex, and let f : K → [0,∞)

be convex and u.s.c. Then (f |ex(K))
har is u.s.c.

Proof. Let f : K → [0,∞) be convex and u.s.c. Let g : M(K) → [0,∞) be defined

for each µ in M(K) as

g(µ) =

∫
fdµ.

Now let G : K → [0,∞) be given by G(x) = sup{g(µ) : bar(µ) = x} for all x in

K. We have that g is u.s.c. because f is u.s.c., and G is u.s.c. because g is u.s.c.

(Remark 2.1.16 (iii)).
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Now we claim that f(x) ≤
∫
fdµ for any µ such that bar(µ) = x. To see this,

fix x and µ such that bar(µ) = x. Let fm be a decreasing sequence of continuous

functions, fm : K → [0,∞), whose limit is f . Let δ > 0. Partition the support of µ

into a finite number of sets Sj of diameter smaller than δ. For each j, if µ(Sj) > 0,

let zj = bar(µSj
), where µSj

is the measure µ conditioned on the set Sj. Then let

ν =
∑

j µ(Sj)εzj
. Note that bar(ν) = bar(µ) = x, and ν tends to µ in M(K) as

δ tends to zero. We have shown that there exists a sequence of measures νk such

that each νk is a finite convex combination of point measures, νk converges to µ

in M(K), and bar(νk) = x for each k. Now choose such a sequence νk, and note

that for any m, any ε > 0, and any large enough k (depending on ε and m), by the

convexity of f ,

f(x) ≤
∫
f dνk ≤

∫
fm dνk ≤

∫
fm dµ+ ε.

Lettingm tend to infinity, the Dominated Convergence Theorem implies that f(x) ≤∫
fdµ + ε. Since ε was arbitrary, we see that f(x) ≤

∫
fdµ, which implies in

particular that f(x) ≤
∫
fdPx.

Then for any µ with bar(µ) = x,

∫
fdµ ≤

∫ (∫
fdPy

)
dµ(y) =

∫
f dPx,

where the equality of the last two expressions follows from the fact that x 7→
∫
f dPx

defines a harmonic function on K (Remark 2.2.22).

Thus G(x) =
∫
fdPx, which shows that G = (f |ex(K))

har. Since G is u.s.c.,

the proof is complete.
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