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Several influential Earth system science studies in the last three decades were 

based on Normalized Difference Vegetation Index (NDVI) data from Advanced Very 

High  Resolution  Radiometer  (AVHRR)  series  of  instruments.  Although  AVHRR 

NDVI data  are  known to  have  significant  uncertainties resulting  from  incomplete 

atmospheric correction, orbital drift,  sensor degradation, etc.,  none of these studies 

account for them. This is primarily because of unavailability of comprehensive and 

location-specific quantitative uncertainty estimates.

The first part of this dissertation investigated the extent of uncertainty due to 

inadequate atmospheric correction in the widely used AVHRR NDVI datasets.  This 

was accomplished  by comparison  with  atmospherically  corrected  AVHRR data  at 

AErosol  RObotic  NETwork  (AERONET)  sunphotometer  sites  in  1999.  Of  the 

datasets included in this study, Long Term Data Record (LTDR) was found to have 

least errors (precision=0.02 to 0.037 for clear and average atmospheric conditions) 



followed by Pathfinder AVHRR Land (PAL) (precision=0.0606 to 0.0418), and Top 

of Atmosphere (TOA) (precision=0.0613 to 0.0684).  

` Although the use of field data is the most direct type of validation and is used 

extensively  by  the  remote  sensing  community,  it  results  in  a  single  uncertainty 

estimate and does not account for spatial heterogeneity and the impact of spatial and 

temporal  aggregation.  These  shortcomings  were  addressed  by  using  Moderate 

Resolution Imaging Spectrometer (MODIS) data to estimate uncertainty in AVHRR 

NDVI data. However, before AVHRR data could be compared with MODIS data, the 

nonstationarity introduced by inter-annual variations in AVHRR NDVI data due to 

orbital  drift  had  to  be  removed.  This  was  accomplished by using  a  Bidirectional 

Reflectance Distribution Function (BRDF) correction technique originally developed 

for MODIS data. 

The results from the evaluation of AVHRR data using MODIS showed that in 

many regions  minimal  spatial  aggregation  will  improve  the  precision  of  AVHRR 

NDVI data significantly. However temporal aggregation improved the precision of 

the data to a limited extent only.

The research presented in this dissertation indicated that the NDVI change of 

~0.03 to ~0.08 NDVI units in 10 to 20 years, frequently reported in recent literature, 

can  be  significant  in  some  cases.  However,  unless  spatially  explicit  uncertainty 

metrics are quantified for the specific spatiotemporal aggregation schemes used by 

these studies,  the significance of observed differences between sites and temporal 

trends in NDVI will remain unknown.
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Preface

Parts of the material presented in this dissertation have already been published 
in peer-reviewed journals. The results from chapter 2 have been published in Remote 
Sensing of Environment, while material presented in chapter 3 is being revised for 
publication in the Canadian Journal of Remote Sensing. The manuscript presenting 
results  from chapter  4  is  under  preparation  for  publication in  Remote  Sensing of 
Environment.

All  the three papers have Dr.  Vermote and Dr.  Prince as second and third 
author respectively. I was responsible for all of the analysis presented in these papers 
as well as the manuscript development. Dr. Vermote and Dr. Prince provided detailed 
guidance in development of the research and in the writing process.
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Chapter 1: Introduction

1.1. Overview

The  Advanced  Very  High  Resolution  Radiometer  (AVHRR)  is  a 

meteorological  sensor  system  onboard  the  National  Oceanic  and  Atmospheric 

Administration  (NOAA)  series  of  polar-orbiting  satellites  (Kidwell  1998).  The 

AVHRR sensor collects data in the visible, near infrared and thermal infrared wave 

lengths. After its capability for measuring Earth surface properties was demonstrated 

(Townshend  and  Tucker  1981;  Tucker  et  al.  1984),  these  data  have  been  used 

extensively  for  Earth  system  science  research.  The  most  useful  features  of  the 

AVHRR  dataset  are:  its  temporal  extent  of  nearly  three  decades;  appropriate 

resolution for global and regional scale monitoring (finest  resolution of local area 

coverage 1km2, and global area coverage 4.4km2); and the extension of the record by 

next  generation  sensors,  like  Visible  Infrared  Imager/radiometer  Suite  (VIIRS) 

(Tucker et al. 2005; van Leeuwen et al. 1999).

Many  Earth  surface  vegetation  studies  make  use  of  the  visible  and  near-

infrared  channels  of  the  AVHRR  in  the  form  of  vegetation  indices,  chiefly  the 

Normalized Difference Vegetation Index (NDVI). Many other AVHRR derived data 

products also use NDVI as a primary input, e.g., global land cover maps (DeFries et 

al. 1995; DeFries et al. 1999), Net Primary Production (NPP) (Prince and Goward 

1995),  burned  area  product  (Barbosa  et  al.  1999),  Fraction  of  Absorbed 

Photosynthetically Active Radiation (fPAR)  (Myneni et al. 1997b), Leaf Area Index 
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(LAI) (Myneni et al. 1997b), land surface temperature (Jin 2004), and air temperature 

(Prihodko and Goward 1997).

Several influential Earth system science studies in the last three decades were 

based on NDVI data from AVHRR series of instruments. For example Myneni et al., 

(1997) and Tucker et al., (2001) used AVHRR NDVI data to show an increase in plant 

growth and lengthening of the growing season in northern high latitudes. Tucker et 

al., (1991) used these data to estimate the spatial extent of the Sahara Desert and its 

inter-annual variation.   Slayback et al., (2003) found consistent greening in global 

latitudinal bands from 35° to 75° N for years 1982-1999. There are many more such 

examples  of  AVHRR  NDVI  based  studies,  which  are  considered  significant 

contributions  and  are  cited  widely  by  the  scientific  community  (Anyamba  and 

Eastman 1996; Bounoua et al. 2000; Cao et al. 2004; Fang et al. 2003; Hicke et al. 

2002; Ichii et al. 2002; Jia et al. 2003; Lambin and Ehrlich 1997; Lee et al. 2002; Liu 

et al. 1994; Lucht et al. 2002; Myneni et al. 1997a; Paruelo et al. 2004; Piao et al.  

2004; Piao et al. 2003; Runnstrom 2000; Slayback et al. 2003; Stockli and Vidale 

2004;  Tucker  et  al.  2001;  Vicente-Serrano and Heredia-Laclaustra  2004; Yu et  al. 

2003; Zhou et al. 2003; Zhou et al. 2001).

Although,  AVHRR NDVI data  are  known to have  significant  uncertainties 

resulting  from shortcomings  like  incomplete  atmospheric  correction,  orbital  drift, 

sensor degradation (El Saleous et al. 2000),  none of these studies account for them. 

This is primarily because of unavailability of comprehensive and location specific 

quantitative uncertainty estimates. 
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Most previous investigations of uncertainty in AVHRR NDVI data (Cihlar et 

al.  1998; Eklundh 1995; Fensholt  et  al.  2006a; Fensholt  et  al.  2006b; Gallo et  al. 

2005; Goward et al. 1993; Nagol et al. 2009) have focused on individual sources of 

error and did not account for the impact of spatial  and temporal aggregation.  The 

current  work  was  primarily  motivated  by  this  deficiency.  The  overall  guiding 

principle of this research was to increase the value of AVHRR NDVI data for Earth 

science research. 

1.2. Background

1.2.1. Normalized Difference Vegetation Index (NDVI)

    ---  Eq: 1-1

NDVI (Eq:1-1) was first suggested by Rouse et al., (1973) and is one of the 

earliest and most popular vegetation indices. It attempts to decrease the atmospheric 

and  surface  Bidirectional  Reflectance  Distribution  Function  (BRDF)  effects  by 

normalizing the difference between red and NIR by total radiation. (Rouse et al. 1973)

NDVI has been shown to have a linear relationship with fPAR, from which 

important  Earth  surface  biophysical  variables  like  LAI  and  NPP can  be  derived 

(Myneni et al. 1997b; Prince and Goward 1995; Tucker 1979). This correlation is 

strongest  when a vegetation canopy is  neither  dense nor  sparse.  When vegetation 

cover  is  too  sparse,  the  background  signal  (e.g.,  soil  color/moisture)  can  change 
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NDVI significantly (Huete and Jackson 1987). However, when vegetation cover is 

too dense, NDVI starts to saturate at LAI ≥ 2 and no longer correlates well with one 

widely-used aspect of the surface vegetation condition, that is LAI (Hatfield et al. 

1985).

Variations in atmospheric composition (in particular aerosols and water vapor) 

affect the satellite based NDVI measurements significantly. Presence of atmospheric 

aerosols increases red reflectance, which in turn decreases NDVI. In AVHRR sensors, 

the broad spectral response functions the presence of atmospheric water vapor also 

decrease NDVI by causing a decrease in NIR reflectance (El Saleous et al. 2000). 

Presence  of  sub-pixel  or  thin  cirrus  clouds  are  difficult  to  detect  and  can  also 

significantly  contaminate  NDVI  measurements  of  vegetation  and  lead  to 

misinterpretations.  Surface  and  atmospheric  BRDF  is  another  source  of  error  in 

NDVI signal (El Saleous et al. 2000; Kaufmann et al. 2000). For these reasons, use of 

satellite based NDVI data requires greater caution than is generally the case.

1.2.2. AVHRR Sensor

The AVHRR was  designed in  the  mid 1970s  for  meteorological  purposes. 

From 1978 onwards three versions of AVHRR instrument have been flown on the 

NOAA series of polar-orbiting satellite systems (Kidwell 1998). The first version of 

AVHRR instrument, which had a four band configuration, was carried on the TIROS-

N satellite platform (launched October 1978). This was subsequently improved to a 

five-channel instrument (AVHRR/2) that was initially carried on NOAA-7 (launched 

June 1981). The latest version is a six channel instrument (AVHRR/3), which was 
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first carried on the NOAA-15 satellite platform launched in May 1998 (Robel 2007). 

Of  these  three  versions,  data  from the  AVHRR/2  and  AVHRR/3  instruments  are 

extensively used by the Earth system science community.

In the AVHRR/2 configuration, the AVHRR instruments collect data in a red 

(0.58–0.68 µm), a NIR (0.725–1.10 µm),  a mid-infrared (3.55–3.93 µm) and two 

thermal  (10.5–11.3  µm  &  11.5–12.5  µm)  spectral  channels.  Starting  with  the 

AVHRR/3 the sensor operation alternated between bands centered on 1.6 µm (channel 

3a) during the day and on 3.75 µm (channel 3b) at night, unfortunately disrupting 

continuity of the channel 3 data, but the historical configuration returned in May 2003 

when NOAA-16 again operated channel 3b continuously (Robel 2007).

In  addition,  the  AVHRR/3  instruments  allow  improved  low  energy/light 

detection by incorporation of  dual  gain sensor  characteristics for  visible  and NIR 

channels. The first half of the dynamic range of an AVHRR/3 channel represents 0 to 

25% of  the  maximum detectible  radiance  at  sensor,  while  the  remaining  75% is 

represented by the second half of the dynamic range (Heidinger et al. 2002). 
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Fig. 1-1: NOAA AVHRR Global Area Coverage (GAC) data are generated by  

averaging four out of every five samples (LAC pixels) along every third scan-line.

The spatial resolution of the AVHRR data is approximately 1.1 km (~0.01° 

Local Area Coverage (LAC) data at nadir. Due to onboard resource limitations, the 

processor on board the satellite samples the real-time AVHRR data to produce the 

reduced resolution Global Area Coverage (GAC) data. GAC data are generated by 

averaging four out of every five samples (LAC pixels) along every third scan-line 

(Fig.  1-1).  Although,  the  resultant  data  are  treated  as  4 km resolution,  the  actual 

spatial resolution of a GAC data pixel is 1.1x4.4 km with a gap of 3.3 km between the  

scan  lines  (Kidwell  1998).  The  10-bit  radiometric  precision  of  the  AVHRR data  is 

retained.
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1.2.3. Critical Aspects of Data from AVHRR Instruments

For long-term monitoring of land surface biophysical variables, it is essential 

that the data are well calibrated and exhibit a consistent dynamic range throughout the  

time series. However, AVHRR instruments lack onboard calibration for both red and 

NIR channels, the data is inherently difficult to correct for atmospheric interference 

(El Saleous et al. 2000), and the systematic changes in sun-sensor geometry due to 

satellite  orbital  drift  (temporal  precession  of  the  equatorial  crossing-time)  add 

additional difficulty for the data users.

1.2.3.1. Sensor Degradation

The sensor calibration process relates radiometer response of the instrument to 

incoming  radiation  flux.  The  AVHRR instruments  are  thoroughly  calibrated  only 

before satellite launch. Past studies have shown that the calibration coefficients of 

reflectance channels change abruptly after launch and then continue changing slowly 

throughout the lifetime of satellites. These changes have generally been attributed to 

changes in sensor response as well as distortion of the spectral response function due 

to  sensor  degradation.  The  lack  of  onboard  calibration  to  monitor  these  changes 

makes  post-launch  vicarious  calibration  mandatory  and  needs  to  be  continuously 

updated (Abel et al. 1993; Gorman and McGregor 1994; Gutman 1999; Heidinger et 

al. 2002; Holben et al. 1990; Rao and Chen 1995; Rao and Chen 1996; Teillet et al. 

1990; Vermote and Kaufman 1995).

Typically,  the  AVHRR reflectance  data  are  calibrated  by observing a  time 

series of AVHRR data over radiometrically stable targets of known reflectance. For 
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example, many scientists have used observations over desert sites (Heidinger et al. 

2002; Rao and Chen 1995; Rao and Chen 1996). Kaufman and Holben (1993) utilized 

atmospheric scattering and sun-glint over the ocean in addition to desert reflectance 

measurements  for  calibration  of  AVHRR  reflectance  data.  Loeb  (1997)  utilized 

observations  over  snow/ice  covered Polar  Regions.  Vermote  and Kaufman (1995) 

used ocean observations to track the degradation of channel 1 and observations of 

clouds to monitor the changes in the channel 1/channel 2 ratio. (Kaufman and Holben 1993; Loeb 1997; Vermote and Kaufman 1995)

However, the accuracy of these vicarious calibration techniques is limited by 

the  necessary  assumptions  employed,  which  include  assumptions  about  the 

atmospheric  conditions,  surface  BRDF and natural  seasonal  variability  of  the  so-

called stable target.  The calibration accuracy achieved by these approaches  is  not 

better than 5% (Vermote and Saleous 2006a). 

A much improved calibration technique is presented by El Saleous, (2000). 

This method estimates the offsets  for calibration equations of AVHRR reflectance 

channels by averaging the deep space measurements available in each scan line, while  

the  gains  of  the calibration equations  are  estimated  using the in-flight  calibration 

method,  presented in  Vermote  and Kaufman (1995).  Additional,  ancillary datasets 

including  detailed  atmospheric  composition  information,  wind speed,  and  reliable 

cloud  detection  algorithms  are  used  to  improve  the  performance  of  in-flight 

calibration method. This method has a demonstrated calibration accuracy of 1% (El 

Saleous et al. 2000; Pedelty et al. 2007; Vermote and Saleous 2006a).

The  presence  of  dual-gain  reflectance  channels  on  the  current  series  of 

AVHRR  sensors  (AVHRR/3  instruments)  complicates  the  calibration  processes 

8



considerably.  Heidinger  et  al.,  (2002)  and  Vermote  et  al.,  (2006)  have  presented 

calibration methods that use data from Moderate Resolution Imaging Spectrometer 

(MODIS) instruments for calibration of the AVHRR dual-gain reflectance channels 

(accuracy = 1%).

1.2.3.2. Orbital Drift

TIROS-N satellites which carry the AVHRR instruments are deployed on sun 

synchronous orbits. However, these sensor platforms suffer temporal recession of the 

equatorial  crossing-time  as  each  platform  ages  (Privette  et  al.  1995).  This 

phenomenon  is  commonly  known  as  orbital  drift.  Solar  zenith  angle  (SZA) 

differences due to orbital drift are greatest near lower latitudes and steadily decrease 

with increase in latitude. For example, by year 1999, SZA at equator for the NOAA-

14 AVHRR instrument deviated more than 35° from the angle at launch sun-sensor 

geometry.  However,  at  60°  latitude,  owing  to  increase  in  the  number  of  satellite 

overpasses per day at high latitudes the change in SZA was only ~5° (Privette et al.  

1995).

Surface BRDF and variation of atmospheric path length due to change in SZA 

makes NDVI sensitive to the orbital drift  (El Saleous et al. 2000; Los et al. 2005; 

Sellers  et  al.  1996;  Tanre  et  al.  1992).  At  the  top  of  the  canopy  (TOC),  NDVI 

increases with increase in solar zenith angle (Deering et  al.  1992). This is due to 

increase in the fraction of solar radiation intercepted by the vegetation canopy. Past 

studies have shown that sensitivity of TOC NDVI to changes in SZA decreases with 

increase in LAI (Kaufmann et al. 2000).
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Conversely, when considering the top of the atmosphere (TOA), an increase in 

SZA leads to a decrease in NDVI. This is due to the increase in atmospheric path 

length, which leads to an increase in path radiance in red and a decrease in NIR due to 

atmospheric absorption (Holben 1986; Privette et al. 1995; Tanre et al. 1992). The 

sensitivity  of  TOA NDVI to  orbital  drift  increases  with  increase  in  LAI.  This  is 

because  increase  in  LAI  leads  to  reduced  red  reflectance,  while  the  atmospheric 

contribution to the at-sensor red channel measurement (path radiance) increases with 

increase of SZA. Because NDVI is highly sensitive to red reflectance, orbital drift 

alone  can  cause  considerable  decrease  in  NDVI  estimates.  This  atmospheric 

component  of  the  impact  of  orbital  drift  on  AVHRR-NDVI  time  series  data  is 

commonly observed at dense tropical forest sites (Tucker et al. 2005). Because, the 

impact of orbital drift on NDVI is systematic, it limits the investigation of temporal 

and spatial trends in land surface NDVI.

A number of empirical and statistical techniques have been used to deal with 

the impact of orbital drift. For example, Sellers et al., (1996) uses a simple empirical 

procedure, where straightforward empirical relationships between AVHRR NDVI and 

SZA were developed for dense green vegetation and bare soil land cover. These two 

relationships were then used to normalize the data to at nadir illumination condition 

by  assuming  a  linear  relationship  between  SZA correction  and  NDVI  magnitude 

(Sellers et al. 1996). Jiang et al., (2008) dealt with the impact of orbital drift in Global 

Vegetation Index (GVI-2) dataset  by adjusting the NDVI values  to  same level  as 

NDVI data from the year of satellite launch. Pinzon et al., (2005) used an adaptive 

empirical mode decomposition (EMD) method to statistically remove the impact of 
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solar zenith angle drift in GIMMS NDVI dataset (Tucker et al. 2005). Several past 

studies  have  proposed  orbital  drift  correction  by  systematic  BRDF normalization 

using semi-empirical kernel models (Latifovic et al. 2003; Los et al. 2005; Privette et 

al.  1997;  Roujean et  al.  1992).  Most  of  these  studies  have  derived BRDF kernel 

parameters from AVHRR data themselves, even though most of the AVHRR datasets 

have incomplete atmospheric correction and inaccurate cloud masks.  To overcome 

this shortcoming, Bacour et al., (2006) used POLDER data to parameterize BRDF 

kernels, but this method needed an a priori knowledge of existing land cover. (Bacour et al. 2006)

1.2.3.3. Atmospheric Correction

Atmospheric  scattering  and  absorption  substantially  affect  the  AVHRR 

reflectance channels.   The red and NIR channels are spectrally broad and include 

ozone and water vapor absorption bands. The channel 1 (red) encompasses an ozone 

absorption  band  and  a  weak  water  vapor  absorption  band.  The  channel  2  (NIR) 

contains a strong water vapor absorption band extending from 0.930 to 1.000 µm 

(Fig. 1-2) (Tanre et al. 1992; van Leeuwen et al. 1999). Because of this, the visible 

and  near-infrared  radiation  reaching  the  satellite  is  differentially  absorbed  by 

atmospheric  gases.  Molecular  backscatter  by  atmospheric  aerosols  introduces  an 

additional directional reflectance (path radiance), which has high temporal as well as 

spatial variability (El Saleous et al. 2000; Tanre et al. 1992).
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Fig. 1-2: AVHRR NOAA-14 spectral response function

Water vapor absorption can cause a 10-30% reduction of reflectance in NIR 

channel, while ozone absorption can reduce red channel reflectance by 5-15%, while 

atmospheric molecular scattering (Raleigh scattering) and aerosol effects can increase 

red  channel  reflectance  as  much as  the  reflectance  of  vegetated  surfaces.  During 

dense  haze,  path radiance  can completely obscure  surface  properties.  In  terms of 

NDVI,  even  moderate  haze  can  decrease  the  true  NDVI  of  a  densely  vegetated 

surface by as much as ~ 0.1 (Tanre et al. 1992). 

Unlike MODIS, AVHRR instruments do not have additional spectral channels 

that allow derivation of information about atmospheric composition to be used for 

atmospheric  correction.  However,  correction  for  Raleigh  scattering,  and  ozone 

absorption can be performed easily and has been included in processing streams of 
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many publicly available AVHRR NDVI datasets (James and Kalluri 1994; Pedelty et 

al.  2007).  Correction  for  water  vapor  absorption,  which  is  crucial  for  obtaining 

reliable  NDVI  measurements  over  sparsely  vegetated  areas,  has  also  been 

successfully implemented by El Saleous, (2000). The aerosol effect which is highly 

variable in both space and time domains is the most challenging factor to correct. 

Temporal compositing techniques, like maximum NDVI, are widely used to minimize 

the effect of atmospheric spectral attenuation (Cihlar et al. 1994; Holben 1986), but 

this technique is of limited use in daily or short compositing periods (El Saleous et al.  

2000).

1.2.4. Publicly available processed AVHRR NDVI datasets

Most  vegetation  studies  do  not  use  NDVI  data  calculated  from  at-sensor 

measures  (TOA)  from  individual  overpasses,  but  use  processed  and  composited 

datasets. Some examples of GAC data based global datasets are LTDR (Long Term 

Data  Record)  (Pedelty  et  al.  2007),  PAL (Pathfinder  AVHRR  Land)  (James  and 

Kalluri 1994), GIMMS (Global Inventory Modeling and Mapping studies) (Tucker et 

al. 2005), GVI (Global Vegetation Index) (Gutman et al. 1995; Kogan and Zhu 2001), 

GEOCOMP by Canadian Centre for Remote Sensing (CCRS) and a dataset produced 

at Joint Research Center (JRC) in Italy (Malingreau and Belward 1994).

There are also LAC datasets at 1km resolution. For example, the global 1km 

resolution NDVI produced by USGS (Eidenshink and Faundeen 1994; Teillet et al. 

2000), a regional 1km dataset for conterminous USA and Alaska (Eidenshink 2006; 
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Eidenshink  1992),  a  similar  dataset  produced  by  CCRS  for  the  Northern  USA 

(Latifovic et al. 2005), and pan European 1km AVHRR NDVI data  produced by JRC 

in Italy (Swinnen et al. 2007). There are similar projects in many other regions such 

as South-Africa, UK, Sweden, and Australia..

Some of these datasets are partially corrected for atmospheric perturbation and 

may omit extreme view zenith angles. Most of these datasets also use some kind of 

spatiotemporal  aggregation,  such  as  temporal  maximum  value  compositing,  and 

spatiotemporal  smoothing.  These  corrections  and  aggregation  techniques  are 

generally  acknowledged  to  decrease  uncertainty  in  the  satellite  measurements  of 

surface properties (Cihlar et al. 1998; Holben 1986). Table 1-1 presents a summary of 

dataset characteristics for some commonly used AVHRR NDVI datasets. Of these 

datasets, GIMMS dataset is currently the most popular while the relatively new LTDR 

dataset  has  the  most  comprehensive  processing  to  date.  These  two  datasets  are 

discussed in more detail below.
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Table 1-1. Summary of dataset characteristics for some AVHRR NDVI datasets

15

Name of dataset LTDR  V3 PAL GIMMS-G GVI USGS USGS global

Spatial Extent Global Global Global Global
Conterminous 

USA and 
Alaska

Global

Spatial Resolution 0.05 degree (5km) 8 km 8 km 16 km 1km 1, 2, 4, 8, 16 km

                      Temporal
                    Compositing period

Daily
10 day & 
monthly

bimonthly
weekly & 
monthly

weekly & 
biweekly

10day

Availability 1981- 2006 1981-2000 1981-2006 1985-2000 1989-present

06/1992 to 09/1993 
and 

02/1995 to 05/1996

Calibration
(Vermote and 

Kaufman 1995; 
Vermote and 

Saleous 2006b)

(Rao and 
Chen 1996)

(Los 1998; Rao 
and Chen 1996)

(Rao and Chen 
1996)

(Heidinger et al. 
2002; Teillet 
and Holben 

1994; Vermote 
and Kaufman 

1995)

(Teillet et al. 1990; 
Vermote and 

Kaufman 1995)

Cloud Screening

Red thresholds 
from MODIS 
global surface 

reflectance 
database

CLAVR
(Stowe et al. 

1995)

Temperature 
thrusholds for 

channel 5
No

CLAVR
(Stowe et al. 

1995)
no

Raleigh correction Yes Yes No No Yes Yes

Ozone correction Yes Yes No No Yes Yes

Water Vapor 
correction

Yes No No No Yes No

Atmospheric 
Aerosol correction

Expected in next 
version

No

No
(corrected for 

volcanic aerosols)
(Vermote and 
Saleous 1997)

No No No

Data Input
GAC (Global Area 

Coverage )
GAC GAC GAC

LAC (Local 
Area 

Coverage )
LAC

Orbital Drift 
Yes 

BRDF correction
(Vermote et. 2009)

No

Yes
Statistical time-

series adjustment
(Pinzon et al. 

2002)

No No No

Key Citation
(Pedelty et al. 

2007)

(James and 
Kalluri 
1994)

(Tucker et al. 
2005)

(Kidwell 1994, 
1997)

(Eidenshink 
2006; 

Eidenshink 
1992)

(Eidenshink and 
Faundeen 1994; 

Teillet et al. 2000)

 



1.2.4.1. Long-Term Data Record (LTDR)

LTDR is a consistent, long term dataset based on the AVHRR and MODIS 

data. LTDR is processed from AVHRR GAC data. The product includes daily NDVI 

as well as surface reflectance and radiance data at a spatial resolution of 0.05° (~5km 

at equator), which matches the Climate Modeling Grid (CMG).

The LTDR processing includes vicarious calibration of the visible and NIR 

channels using a  cloud/ocean technique,  which has  been shown to have  1% error 

(Vermote and Kaufman 1995; Vermote and Saleous 2006b). The Earth location of 

each sensor measurement is mapped using inverse navigation technique (Rosborough 

et al. 1994). Unlike, forward navigation method, this technique does not lead to data 

gaps  and  geophysical  bias  (El  Saleous  et  al.  2000).  The  atmospheric  correction 

includes  removal  of  the  effects  of  Raleigh  scattering,  ozone,  and  water  vapor. 

Ancillary data for water vapor and ozone correction were acquired from the NOAA 

Center for Environmental Prediction (NCEP) and Total Ozone Mapping Spectrometer 

(TOMS) respectively. An aerosol correction for this dataset is still being implemented 

(Pedelty et al. 2007) and not yet available in this version (LTDR version 3).

The LTDR version 3 data are normalized to a uniform sun-sensor geometry 

using the  BRDF correction  technique  developed for  MODIS data  (Vermote  et  al. 

2009a). This BRDF correction technique will be discussed in detail in chapter 3 of 

this dissertation. This version of the dataset also uses an improved cloud masking 

technique  based  on  monthly  thresholds  for  BRDF corrected  visible  channel.  The 

global  maps  of  visible  channel  thresholds are  calculated  from monthly mean and 

standard deviation of BRDF corrected (Vermote et al. 2009a) MODIS Terra and Aqua 
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data  at  CMG  resolution  of  0.05  degrees  (Vermote  et  al.  2009b).  The  dataset  is 

available in non-composited daily format with detailed ancillary data. This allows the 

data  users  to  choose  the  appropriate  compositing  technique  suitable  to  their 

application.  The characteristics of some commonly used compositing methods are 

presented in chapter 4.

1.2.4.2. Global Inventory Modeling and Mapping studies (GIMMS)

GIMMS-g (Global Inventory Modeling and Mapping Studies) NDVI data are 

currently the most commonly used AVHRR NDVI data for time series analysis. Like 

LTDR, GIMMS data are also derived from GAC data. The GIMMS data processing 

includes calibration,  corrections for orbital  drift,  corrections for volcanic aerosols, 

and  spatiotemporal  smoothing  for  removal  of  non-vegetation  signal  to  produce 

bimonthly Maximum Value Composite (MVC) NDVI data. The data are currently 

(2010) available for years 1981 to 2006 (Tucker et al. 2005).

The GIMMS dataset also uses  inverse navigation to map Earth location to 

each sensor measurement (El Saleous et al. 2000).  Each composite image is further 

checked for navigation accuracy manually by comparing with a reference continental 

coastline map. Images with navigation errors greater than one pixel are investigated 

further, reprocessed and manually registered to the reference data.

The  red  and  NIR channel  data  from NOAA-7  to  14  are  calibrated  using 

coefficients from Vermote and Kaufman (1995). The resulting NDVI fields are further 

adjusted  using  desert  calibration  technique  from  Los  (1998).  The  data  are  then 

corrected for the effects of solar zenith angle drift using a statistical method (EMD) 
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described in Pinzon (2005). However, the GIMMS NDVI data derived from NOAA-

16 uses  preflight  coefficients  for  calibration  of  red and NIR channels  to  produce 

bimonthly NDVI composites. The EMD method is then used directly to ensure zero 

inter-annual slopes at desert sites and also to adjust for the impact of solar zenith 

angle drift.  The NOAA-16 NDVI data are then inter-calibrated to NOAA-14 data 

using SPOT Vegetation NDVI time series data (Tucker et  al.  2005). The dynamic 

range  of  the  entire  NDVI  dataset  is  further  adjusted  using  non-linear  regression 

equations  to  make  it  compatible  with  NDVI  data  from  the  MODIS  and  SPOT 

VEGETATION instruments (Tucker et al. 2005).  (Pinzon et al. 2005)

The  GIMMS  dataset  does  not  employ  any  atmospheric  correction  except 

during  the  El  Chichon  and  Mt.  Pinatubo  volcanic  stratospheric  aerosol  periods 

(Vermote  and  Saleous  1997) and  relies  solely  on  bimonthly  maximum  value 

compositing  technique  to  reduce  the  impact  of  atmospheric  variations.  Cloud 

screening is performed by a channel 5 thermal mask of 0o C for all continents and a 

10o C mask for Africa. 

1.2.5. Uncertainty in Remotely Sensed Quantitative Data 

The outcome of any quantitative measurement depends not only on the item 

being measured, but also on the measuring system, the procedure, the operator, the 

environment  and  many  other  sources  (Bell  1999).  Thus,  all  measurements  have 

associated uncertainties which reflect incompleteness in knowledge of the quantity 

being measured and have probabilistic basis. 
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Uncertainty in remotely sensed data is assessed by the validation process. The 

accepted definition of validation in Earth observation context is: assessment of the 

quality of the data by independent means (Justice et al.  2000). The satellite-based 

remotely  sensed  data  products  are  usually  validated  by  comparison  with  similar 

products derived from independent sources. These independent products are derived 

from a combination of in situ data and imagery from airborne and satellite based 

sensors. 

For the validation process to be valid, the accuracy of the independent data 

product (reference data) has to be traceable to some known standard or, at minimum, 

it should be stable, consistent, and considerably more accurate than the signal that is 

being evaluated (Justice et al. 2000; Morisette et al. 2002). 

To facilitate this activity an extensive network of validation sites called Earth 

Observation System (EOS) Land Validation Core Sites has been established at both 

regional and global scale (Morisette et al. 2002). This network adds to existing field 

programs like the LTER (Long Term Ecological Research) network (Franklin et al. 

1990), science data networks like FLUXNET (Baldocchi et al. 2001), and AERONET 

(AErosol RObotic NETwork) (Holben et al. 2001) and international research efforts 

like  the  Southern  Africa  Fire  and  Atmosphere  Research  Initiative  2000 (SAFARI 

2000) (Swap et al. 2000), and the Committee on Earth Observing Satellites (CEOS) 

working group on Calibration and Validation (WGCV) (Justice et al. 2000).

The MODIS Land data products validation process makes extensive use of 

data from these networks to derive reference data. One of the primary difficulties in 

using in situ data for validation is the scaling (aggregation) of the point data from 
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validation sites to the coarser spatial resolution of remotely sensed global or regional 

datasets (Morisette et al. 2002). This difference in scale is resolved by coupling field 

data with airborne data from sources like  MODIS Airborne Simulator (MAS),  the 

Airborne  Visible  Infrared  Imaging  Spectrometer  (AVIRIS),  and  MODIS  Quick 

Airborne  Looks  (MQUALS) and  higher  resolution  satellite  imagery  data  from 

instruments like IKONOS,  Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), and Landsat (Morisette et al. 2002).

1.2.6. Past Studies on uncertainty in AVHRR NDVI data

AVHRR, unlike MODIS has not been subjected to such a rigorous validation 

process. Past studies of uncertainty in AVHRR reflectance and NDVI datasets have 

used various methodologies such as comparison with improved data from the same 

(Goward et  al.  1993) or other sensors,  validation using in situ data (Fensholt  and 

Sandholt 2005), analysis of variation of the measurements for assumed stable targets 

(Cihlar et  al.  1998) and use of spatial  statistical  methods such as semivariograms 

(Eklundh 1995). The AVHRR data have often been evaluated by comparison with 

better  processed data  from other  sensors,  for example Fensholt  et  al.  (2006) who 

evaluated GIMMS and PAL AVHRR NDVI datasets by comparing them to data from 

SPOT, and Gallo et al. (2005) who compared AVHRR NDVI data with MODIS and 

investigated the feasibility of attaining continuity of NDVI products through future 

sensors systems. 

Most  of  the  past  investigations  of  uncertainty  in  AVHRR reflectance  and 

NDVI data have not been comprehensive either in scope or scale. They have mostly 
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focused on specific aspects of the uncertainty and their results are relevant to specific 

sites  or  regions  only.  For  example,  the study presented by Stellmes et  al.  (2010) 

evaluated NDVI trends in AVHRR data by comparing them to trends in Landsat data. 

The relevance of results from this study is limited to parts of Mediterranean. Fensholt 

et  al.,  (2005) evaluated vegetation indices  from AVHRR and MODIS instruments 

using 2 years of in situ data in Senegal. Fensholt et al., (2006) investigated how well  

AVHRR NDVI data from GIMMS and PAL datasets  correlate with SPOT data in 

African  continent.  Gallo  et  al.,  (2005) similarly  investigated  the  strength  of 

correlation between AVHRR and MODIS data in the conterminous United States. 

Numerous other examples also exist in recent literature (Brown et al. 2006; Cihlar et 

al.  1998; Eklundh 1995; Fensholt  et  al.  2009; Goward et  al.  1993; Ji et  al. 2008; 

Kangas  et  al.  2001;  Ouaidrari  et  al.  2003;  Pouliot  et  al.  2010).  Because  many 

influential studies in the field of Earth system science have been based on AVHRR 

NDVI, a thorough understanding of uncertainty is long overdue. (Fensholt et al. 2006a; Fensholt and Sandholt 2005; Gallo et al. 2005; Stellmes et al. 2010)

1.2.7. Precision Assumed for AVHRR NDVI data

The  approximate  precision  of  NDVI  of  terrestrial  vegetation  is  often, 

implicitly, assumed to be between ~0.03 and ~0.08 NDVI units. For example Jia et 

al., (2003) reported changes in the vegetation of arctic Alaska over 21 years using 

AVHRR data of 0.056±0.0032 to 0.082±0.028 NDVI units. Slayback et al., (2003) 

reported an increase of 0.027 to 0.081 NDVI units for a period of 18 years (1982-99) 

for global latitude bands from 35° to 75° N. Piao et al., (2003) reported an increase of 

similar magnitude (0.0325 NDVI units) in 18 years in China. There are many other 

studies  using  AVHRR NDVI  (Piao  et  al.  2006;  Young  and  Harris  2005),  where 
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changes much smaller  than 0.03 units  are  treated as  significant.  At  this  time,  the 

accuracy of the AVHRR data implied in these studies has not been validated and the 

significance of the differences is not stated explicitly. Thus, it is possible that some 

studies have assumed greater accuracy than is justified.

1.2.8.  Statistical  Framework  for  Estimation  of  Uncertainty  in 

Remotely Sensed Data

The National Polar-orbiting Operational Environmental Satellite System 

(NPOESS) project has defined a statistical framework which represents uncertainty in 

two components: (1) systematic bias; and (2) random-error. Of these two, the random-

error component represents relative error which is pertinent for inter-annual studies, 

while the information about systematic bias becomes relevant only when the data are 

being used in conjunction with other datasets. This study will primarily focus on 

random-error component of uncertainty (Fig. 1-3). To facilitate discussion the terms 

‘random-error’ and ‘uncertainty’ will be used interchangeably in rest of this 

dissertation.
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Fig.  1-3: Statistical framework used for calculation of random-error.. This analysis  

used non-composited daily NDVI data from 2003 to 2006.
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Analysis presented in Fig. 1-3 illustrates a statistical framework for estimation 

of the uncertainty (random-error) using growing season NDVI data from an 

agricultural site in southwestern Australia. Uncertainty here is calculated as the 

standard deviation of the data relative to the systematic-bias line. The systematic-bias 

line can be estimated using two methods: (1) by fitting a first order polynomial to the 

two dimensional scatter plot comparing AVHRR NDVI data to the reference data; (2) 

when the slope of the polynomial is one or the R-squared of the polynomial fit is too 

low the bias can be directly estimated as the mean of deviations of the AVHRR NDVI 

data from the reference data. The uncertainty of 0.04 estimated for LTDR AVHRR 

NDVI data at the example site in Fig. 1-3, implies that, at this site an NDVI value of 

0.6 will actually have 68% probability of ranging between 0.56 and 0.64 (i.e. 

0.6±0.04) and 95% probability of ranging from 0.52 to 0.68 (i.e. 0.06±0.08).

When evaluating satellite data using in situ measurements the presence of 

systematic-bias is not necessarily an evidence of error. Rather it could be a result of 

fundamental differences in sensor design (e.g., spectral response function, radiometric 

resolution, sensor calibration, etc.), atmospheric interference in satellite data, and 

shortcomings in the process of scaling up the point data to the coarser satellite 

resolution (Cohen and Justice 1999; Morisette et al. 2002). Random-error on the other 

hand can be attributed to measurement error, variations in atmospheric composition, 

residual cloud contamination, geolocation error, and surface and atmospheric BRDF 

effects in satellite data.

When evaluating a satellite based remotely sensed dataset using a higher quality 

satellite based dataset, the systematic-bias is a result of differences in sensor design 
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and deployment, such as spatial resolution, spectral response function, sensor 

calibration, radiometric resolution, sun-sensor geometry, and differences in post-

processing algorithms (atmospheric correction, BRDF correction, and vicarious 

calibration). The random-error can be attributed to the geolocation error, and variation 

of pixel size in relation to viewing geometry, and the complex interactions of the 

differences between the sensor systems. Clearly, for this method of evaluation to be 

valid, the reference dataset has to have significantly lower error.

1.3. Research Goals and Dissertation Structure

Steps Research Chapters
Part 1  Investigation of errors due to atmospheric variation Chapter 2
Part 2  Investigation of impact of orbital drift Chapter 3

Part 3
 Quantification of overall uncertainty and impact of spatial 
and temporal aggregation Chapter 4

Table 1-2: Flow of the research activities within the dissertation structure

The overall goal of this research was to estimate uncertainty of AVHRR NDVI 

data and the impact of various degrees of spatial and temporal aggregation. This was 

achieved in 3 steps (Table 1-2). The first part investigated the extent of uncertainty 

due to inadequate atmospheric correction in the three widely-used, publicly-available, 

AVHRR NDVI datasets. The second part investigated the interaction between surface 

and atmospheric BRDF and its contribution to the sensitivity of AVHRR-NDVI time 

series  data  to  orbital  drift.  A new  approach  for  surface  BRDF  correction  was 

proposed. The third part focused on  estimation of spatially-explicit, comprehensive 

uncertainty metrics for AVHRR NDVI data and the impact of various degrees and 

types of temporal and spatial aggregation. This part primarily focused on the LTDR 
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dataset.  The overall  guiding principle  of the investigation was to  provide detailed 

information about the precision of AVHRR NDVI data and the corrections that can 

increase the value of the data for Earth science research. 

 This  dissertation  consists  of  5  chapters.  The  Chapters  2,  3,  and  4  are 

presented in the self-contained format of journal articles (one of which is published 

and one in review) and present  results  from parts 1,  2,  and 3 of this  dissertation 

respectively  (Table  1-2).  Chapter  5  summaries  the  results  and  discusses  their 

implications on Earth system science studies.
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Chapter 2: Investigation of Errors Due to Atmospheric 

Composition

2.1. Introduction

Most of the available AVHRR NDVI datasets have incomplete atmospheric 

correction,  resulting  in  considerable,  but  largely  unknown,  uncertainty  in  the 

significance of differences in NDVI and other short wave observations from AVHRR 

instruments.  The purpose of  this  study was to  gain a  better  understanding of  the 

impact of this incomplete or absent atmospheric correction in widely-used, publicly 

available processed AVHRR-NDVI long-term datasets. 

Three datasets were evaluated: TOA; PAL; and an early version of the new 

Long Term Data Record (LTDR) (http://ltdr.nascom.nasa.gov/ltdr/ltdr.html) (Pedelty 

et  al.  2007).  The other publicly available datasets  like GIMMS and GVI have no 

atmospheric correction and rely solely on temporal compositing to reduce the effects 

of changes in atmospheric  properties.  Uncertainty was assessed by comparing the 

processed AVHRR datasets to atmospherically corrected AVHRR data at AERONET 

sites and analyzing simulated AVHRR NDVI data. 

2.2. Data and Methods

2.2.1. Approach

The  extent  of  uncertainty  due  to  inadequate  atmospheric  correction  in  the 

widely used AVHRR NDVI datasets was investigated by comparison with data to 
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which  comprehensive  atmospheric  correction  has  been  applied.  Atmospheric 

compositions derived from AERONET sunphotometer data were used for space and 

time-specific atmospheric correction. These corrected data are referred to as reference 

data.  The statistical  framework presented in chapter 1 (section 1.2.8) was used to 

estimate uncertainty metrics.

AERONET is an aerosol monitoring system and part of the extensive remote 

sensing validation networks established in recent years over a wide variety of land 

cover types and latitudinal zones. AERONET is a world-wide network of automatic 

sun and sky scanning spectral radiometers which measure every 15 min. The data 

from these instruments are processed to derive atmospheric aerosol optical properties, 

precipitable water, and aerosol size distribution (Holben et al. 2001). In 1999, there 

were about 100 operational sites and by 2006, the network had grown to more than 

300. 

This study evaluated TOA (no atmospheric correction) (Pedelty et al. 2007), 

PAL, and LTDR datasets. The PAL processing stream includes correction for Raleigh 

scattering  and  ozone,  while  the  early  version  of  LTDR  that  was  tested  here  is 

corrected for Rayleigh scattering, ozone, and atmospheric water vapor (Pedelty et al. 

2007). PAL data were resampled from 8km to 5km resolution using nearest neighbor 

method  to  make  them  comparable  to  LTDR  and  TOA data  with  5km  (0.05° ) 

resolution. The year 1999 was used for this investigation because non-composited, 

individual, satellite overpass data were available for all three datasets used (TOA, 

PAL, and LTDR) and there were an adequate number of operational AERONET sites.
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Although the data from year 1999 provided a useful overview of the error 

patterns in AVHRR NDVI data record, it represented only one year and most of the 

data were in North America and in semi-arid and desert areas elsewhere, owing to the 

smaller  network  of  AERONET stations  at  that  time.  Moreover,  aggressive  cloud 

masking derived from AERONET led to very few data being available to investigate 

the  impacts  of  temporal  compositing.  To  overcome  these  shortcomings,  further 

analysis was performed on simulated AVHRR data for representative sites in tropical 

forest (Belterra, Brazil), savanna (Skukuza, South Africa), and semi-arid (Sevilleta, 

Arizona,  USA)..  This was done by using atmospheric  conditions and cloud cover 

frequency from AERONET, NDVI phenology derived from MODIS, and sun-target-

sensor geometry from the full length (1981-2000) of the AVHRR data record.

2.2.2. Reference Data

Comprehensive atmospheric correction was carried out on TOA AVHRR data 

for 9 pixel matrices centered on each available AERONET site (Fig. 2-1) using the 6S 

(Vermote  et  al.  1997)  atmospheric  radiative  transfer  program.  Aerosol  optical 

thickness, aerosol size distribution, and precipitable water data from AERONET as 

well as ozone concentration data from TOMS (Total Ozone Mapping Spectrometer) 

(McPeters and Labow 1996) were utilized in this atmospheric correction process. The 

TOMS  instruments  measure  ultraviolet  (UV)  radiation  backscattered  by  Earth’s 

atmosphere  and  surface  at  wavelengths  between  310  -  380  nm.  UV wavelengths 

shorter  than 340 nm are used to  estimate ozone concentration in the atmospheric 

column.
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Fig. 2-1: Schematic view of the data processing for reference data

Only AVHRR pixels with view zenith angle less than 42° were used. The data 

were masked for cloud and cloud shadow using quality flags from LTDR (El Saleous 

et  al.  2000;  Stowe  et  al.  1995).  Further  cloud  masking  was  performed  using  an 

aggressive  AERONET  derived  cloud  mask.  After  application  of  6S  to  remove 

atmospheric effects from the reference data, the NDVI and surface reflectance were 

used to  estimate the  magnitude  of  the errors  of  the  publicly-available,  processed, 

AVHRR NDVI datasets. After masking for cloud and water, approximately 580 data 

points (sites x days) remained from 48 AERONET sites (Fig.  2-2).  Of these data 

points 29% were clear (AOT < 0.05), 62% were average (AOT = 0.05 to 0.25), and 

9% were hazy (AOT > 0.25). Most of these data points were in North America (60%) 

or in semi-arid (30%) and desert (17%) areas elsewhere (Fig. 2-2).
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Fig. 2-2: Spatial distribution of AERONET sites used to calculate reference data. After masking for cloud, cloud shadow,  

and view zenith angle greater than 42°, only 580 data points from 48 AERONET sites remained for use in calculation of  

the reference data. The number of data points is indicated by the diameter of the circle (see inset).
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2.2.3 Simulated AVHRR time series

6S radiative transfer program was used to create a 1981 to 2000 simulated 

time series for AERONET sites: Belterra (54.952° W, 2.649° S), Skukuza (31.588° E, 

24.992° S), and Sevilleta (106.885° W, 34.355° N) to represent forest, savanna, and 

semi-arid land cover types respectively. Atmospheric composition and a cloud mask 

were derived from one representative year of AERONET measurements and TOMS. 

Representative  phenology  was  derived  from  MODIS  data.  The  sun-sensor-target 

geometry was extracted from LTDR data. Solar zenith angle and view zenith angles 

were constrained to less than 75° and 50° respectively.

At-surface reflectance measures derived from MODIS was first converted to 

TOA at-sensor measure using 6S. The calculated TOA reflectance data were then 

corrected for Raleigh scattering and atmospheric absorption using 6S to produce PAL 

type data.  Further introduction of correction for water vapor simulated LTDR data. 

2.3. Results and Discussion 

Comparison of data from red and near infra-red channels of TOA, PAL and 

LTDR datasets with reference data at the AERONET stations (Table 2-1) showed that 

in both channel 1 and 2 LTDR has greatly improved systematic-bias and uncertainty 

when compared to PAL and TOA data. PAL consistently underestimated reflectance 

in both channels, which can be attributed to use of obsolete calibration and lack of 

water  vapor  correction.  The  comparison  of  the  NDVI  from  these  datasets  with 

reference data shows that LTDR is closest (systematic-bias = -0.024, uncertainty = 
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0.037  for  data  points  with  average  atmospheric  conditions)  followed  by  PAL 

(systematic-bias = -0.035, uncertainty = 0.068), and TOA (systematic-bias = -0.112, 

uncertainty = 0.0684) (Table 2-1). 
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Table 2-1: Systematic-bias and uncertainty for red channel (CH1), near infrared channel (CH2), and NDVI for TOA, PAL,  

and LTDR data. Of the 580 data points 168 (29%) were clear, 360 (62%) were average, and 52 (9%) were hazy.

Band DATA Clear (AOT <  0.05) Average (AOT = 0.05 to 0.25) Hazy (AOT > 0.25)

Systematic-bias Uncertainty Systematic-bias Uncertainty Systematic-bias Uncertainty

CH1 ΤΟΑ -0.0020 0.0219 -0.0060 0.0265 -0.0120 0.0352

CH1 PAL -0.0225 0.0228 -0.0189 0.0214 -0.0121 0.0409

CH1 LTDR 0.0005 0.0079 0.0032 0.0174 0.0152 0.0267

CH2 ΤΟΑ -0.0358 0.0261 -0.0425 0.0303 -0.0561 0.0286

CH2 PAL -0.0508 0.0386 -0.0577 0.0366 -0.0786 0.0413

CH2 LTDR -0.0002 0.0102 -0.0023 0.0182 0.0004 0.0212

NDVI ΤΟΑ -0.0791 0.0613 -0.1120 0.0684 -0.1521 0.1059

NDVI PAL -0.0145 0.0606 -0.0352 0.0418 -0.1137 0.0877

NDVI LTDR -0.0064 0.0206 -0.0243 0.0373 -0.0612 0.0780
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Simulated Land
Clear

 (AOT <  0.05)
Average

 (AOT = 0.05 to 0.25)
Hazy 

(AOT > 0.25)

Data cover Systematic-bias Uncertainty Systematic-bias Uncertainty Systematic-bias Uncertainty

ΤΟΑ semi-arid -0.0616 0.0226 -0.0667 0.0234 -0.1400 0.0629

ΤΟΑ savanna -0.1701 0.0436 -0.1770 0.0510 -0.3047 0.1816

ΤΟΑ forest -0.2469 0.0821 -0.2804 0.0849 -0.5861 0.1880

PAL semi-arid -0.0393 0.0114 -0.0514 0.0155 -0.1323 0.0781

PAL savanna -0.0792 0.0154 -0.1072 0.0426 -0.2523 0.1711

PAL forest -0.0555 0.0263 -0.1242 0.0719 -0.5077 0.2185

LTDR semi-arid -0.0071 0.0610 -0.0109 0.0109 -0.0846 0.0850

LTDR savanna -0.0137 0.0105 -0.0379 0.0356 -0.1661 0.1641

LTDR forest -0.0252 0.0206 -0.0845 0.0611 -0.4291 0.1988

Table 2-2: Systematic-bias, and Uncertainty for NDVI from simulated TOA, PAL, and LTDR datasets. For the forest site;  

20 (4%), 376 (75%), and 105 (21%) of 501 data points had clear, average, and hazy atmospheres respectively. For the  

savanna site; 40 (9%), 317 (71%), and 89 (20%) of 446 data points had clear, average, and hazy atmosphere respectively.  

For the semi-arid site; 384 (52%), 348 (47%), and 8 (1%) of 740 data points had clear, average, and hazy atmosphere  

respectively.
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Land
cover

Comp
Period

Clear (AOT <  0.05) Average (AOT = 0.05 to 0.25) Hazy (AOT < 0.25)
Systematic

-bias Uncertainty % data 
Systematic

-bias Uncertainty % data 
Systematic

-bias Uncertainty % data 

Semi-arid daily -0.0611 0.0217 52 -0.0643 0.0214 47 -0.1400 0.0629 1

Semi-arid 10day -0.0514 0.0191 55 -0.0541 0.0186 45 - - 0

Semi-arid 15day -0.0485 0.0174 58 -0.0514 0.0178 42 - - 0

Semi-arid monthly -0.0447 0.0157 69 -0.0474 0.0197 31 - - 0

Savanna daily -0.1614 0.0360 9 -0.1727 0.0470 71 -0.3067 0.2130 20

Savanna 10day -0.1516 0.0316 11 -0.1594 0.0420 71 -0.3072 0.2158 18

Savanna 15day -0.1499 0.0328 11 -0.1573 0.0426 72 -0.3026 0.2059 17

Savanna monthly -0.1487 0.0328 16 -0.1528 0.0416 72 -0.2552 0.1716 12
Forest daily -0.2347 0.0702 3 -0.2830 0.0774 72 -0.5241 0.1585 22

Forest 10day -0.2179 0.0663 3 -0.2610 0.0754 75 -0.5223 0.1694 22
Forest 15day -0.2075 0.0415 3 -0.2554 0.0722 77 -0.5428 0.1663 20
Forest monthly -0.1967 0.0302 4 -0.2434 0.0721 74 -0.5036 0.1401 22

Table 2-3: Impact of temporal maximum value compositing (MVC) on Systematic-bias, and Uncertainty for simulated TOA  

NDVI time series data
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The error  budget  of  simulated time series  (Table 2-2)  compares  well  with 

empirically derived error budget in Table 2-1. For the forest and savanna sites most of 

the data points (> 70%) had average atmospheric conditions (AOT = 0.05 to 0.25) and 

about 20% were hazy (AOT>0.25).  However, for semi-arid site more than half data 

points had clear atmospheric conditions (AOT < 0.05) and only 0.5% points were 

hazy. Both the direct validation (Table 2-1) and site specific simulated error budget 

(Table 2-2) show that in hazy conditions all three datasets become very unreliable 

with uncertainty as high as 0.22 in the forest site. These results show uncertainty for 

TOA NDVI data ranged from 0.023 for clear atmospheric conditions at the semi-arid 

site to  0.085 for average  atmospheric conditions at the forest site (not considering 

data  points  with  hazy atmospheric  conditions).  For  LTDR NDVI data  uncertainty 

varied between 0.0061 for clear atmospheric conditions at semi-arid site to 0.0611 for 

average  atmospheric conditions at forest site. A similar decrease in uncertainty was 

observed at the savanna site.

Usually AVHRR time series data are used in temporally composited format. 

Many  methods  are  used  for  compositing,  of  which  MVC  (Maximum  Value 

Composite)  (Holben  1986)  is  most  widely  used.  Various  lengths  of  compositing 

periods are used. Table 2-3 shows the impact of simple temporal MVC on bias and 

uncertainty of TOA NDVI data at forest, savanna and semi-arid sites. From Table 2-3 

it  can be observed that there is no significant impact of temporal compositing on 

Uncertainty in all three sites in average as well as hazy atmospheric conditions. Most 

of the data points selected for savanna and forest sites with MVC criteria had average 

and  hazy  atmospheric  conditions.  It  was  also  observed  that  various  degrees  of 
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compositing  did  not  significantly  change  the  proportion  of  data  points  in  clear, 

average,  and hazy atmosphere categories. This was due to persistent high aerosol 

content in atmosphere which limits the capacity of MVC method to find a clear day. 

This persistence of high aerosols is a common feature of these and similar sites. MVC 

was useful only in sites where high aerosol content persisted for shorter periods than 

the length of the composing period. Cloud frequency and high values of AOT play an 

important role in the effectiveness of MVC.

2.4. Conclusions 

The results presented in the Tables 2-1 and 2-2 show that LTDR has the least 

errors  followed  by  PAL,  and  TOA.  Of  the  two  metrics  (systematic-bias,  and 

uncertainty (random-error)) used to describe the errors; uncertainty, which represents 

standard deviation of the estimates adjusted for the mean bias is most pertinent for 

inter-annual studies as it represents random component of the error.

Although both PAL and LTDR data have lower error budget in both clear and 

average  atmospheric  conditions,  it  was  observed  that  magnitude  of  bias  and 

uncertainty  is  driven  primarily  by  aerosol  content  in  the  atmosphere  and  its 

interaction with solar illumination angle and cloud frequency. It was also seen that 

temporal  maximum  value  compositing  technique  does  not  cause  significant 

improvement of the error budget in regions experiencing persistently high AOT due 

to, for example, biomass burning. Thus implementation of aerosol correction or at 

least some technique to identify and reject even MVCs that still have high aerosol 

contamination would greatly improve the error budget of the data records.
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Spatiotemporal aggregation techniques, which are used extensively by NDVI 

data  users,  can decrease  uncertainty but  one has to  be  careful  to  account  for  the 

spatiotemporal autocorrelation. For example if a region is experiencing fairly uniform 

atmospheric conditions for extended periods of time, spatiotemporal aggregation will 

not decrease the impact of atmosphere on the data. Non-stationarity introduced in the 

data  due  to  systematic  intra-annual  and  inter-annual  changes  in  sun-sensor-target 

geometry (orbital drift) also has to be considered. The next chapter will focus on the 

impact of orbital drift on long-term AVHRR NDVI time series data.
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Chapter 3: Investigation of Impact of Orbital Drift on 

Long-Term AVHRR NDVI Time Series Data

3.1. Introduction

The NDVI time series data derived from AVHRR series of instruments suffer 

from significant variations as a result of the orbital drift of the satellites through their 

active  lives.  Orbital  drift  causes  a  systematic  change  in  SZA.  The  sensitivity  of 

AVHRR NDVI  data  to  the  SZA change  depends  on  surface  BRDF,  atmospheric 

composition and the type of atmospheric correction used. The systematic error caused 

by orbital  drift  hinders  the  detection  and interpretation  of  temporal  Earth-surface 

vegetation dynamics.

The research presented in this chapter had two objectives. The first objective 

was to investigate the contributions of surface and atmospheric bidirectional effect to 

the impact of orbital  drift  on AVHRR-NDVI time series data. The second was to 

examine the effectiveness of MODIS based BRDF parameters (Vermote et al. 2009a) 

for remediation of the impact of orbital drift on AVHRR NDVI data.

3.2. Data and methods

3.2.1. Impact of Orbital Drift on AVHRR NDVI Time Series

The contribution of surface BRDF and atmosphere to the impact of orbital 

drift on AVHRR-NDVI time series data was investigated using simulated NDVI time 
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series  data  with  varying  degrees  of  vegetation  cover  (10%,  50%,  and  95%); 

atmospheric composition (TOC; and TOA); and at different latitudes (0°, 30°, and 

60°). These simulated time series data were created using actual sun sensor geometry 

for specific latitudes and 0° longitude. The temporal extent of the simulated data was 

restricted to the first 5 years (1995 to 1999) of NOAA-14 satellite’s operational life. A 

constant  AOT (Aerosol  Optical  Thickness) of  0.15 was assumed and view zenith 

angle (VZA), and SZA were restricted to values below 45°, and 75° respectively. 

Inter-annual and seasonal variations in vegetation and atmospheric conditions in the 

modeled time series were kept constant to facilitate examination of trends introduced 

by surface and atmospheric BRDF. Contributions of atmosphere and surface BRDF to 

the impact of orbital drift on AVHRR NDVI time series data were estimated using the 

6S atmospheric radiative transfer program (Vermote et al.  1997) and the FLIGHT 

(Forest LIGHT) model (North 1996).

FLIGHT is a  3D canopy radiative transfer  model which  uses Monte Carlo 

simulation of photon transport to simulate light interaction in the forest canopy. The 

spatial discontinuity of the forest canopy is approximated using a hybrid approach. 

Geometric  primitives  (circle,  ellipse,  cylinder  and  cone)  are  used  to  define  the 

structural elements (crowns and trunks) of the forest. Foliage is approximated within 

the crowns by foliage structural parameters (area density, angular distribution, and 

size)  and  optical  properties  of  leaf  and  branch  material.  BRDF  is  estimated  by 

simulation of the photon path and the chain of scattering events incurred by a photon 

during its journey from the source to the receiver or to its absorption within a forest 

representation. The photon path simulation is modified to reflect finite sized scatters 
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(Jupp and Strahler 1991). The model has been validated against field measurements 

and by inter-comparison with other three dimensional radiative transfer models (Pinty 

et  al.  2004).  Comparisons  with  ground (PARABOLA) and  airborne  (ASAS)  data 

confirmed the ability of FLIGHT model to estimate BRDF and albedo for even the 

most complex case of open coniferous canopies (North et al. 1996; North 1996), with 

an error of 2% for bidirectional reflectance factors (BRF) and 0.5% for albedo.

 3.2.2.  Effectiveness  of  MODIS  BRDF  parameters  for  BRDF 

Correction of AVHRR NDVI Time Series Data

 The effectiveness of the BRDF correction technique developed for MODIS 

data (Vermote et al. 2009a) in removing the impact of surface BRDF on the effects of 

orbital drift on AVHRR NDVI data was examined by applying this technique directly 

to modeled TOC NDVI time series data as well as actual AVHRR NDVI data from 

LTDR  dataset  (http://ltdr.nascom.nasa.gov/).  Two  sites,  with  different  degrees  of 

vegetation cover (50% and 95%), were used for this purpose (Fig. 3-1). The analysis 

was restricted to the data from first 5 years (1995 to 1999) of NOAA-14 satellite’s  

operational 1 life. The VZA was restricted to less than 45° and solar zenith angle was 

restricted to less than 75°.
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Fig. 3-1: Aerial views of sites used for BRDF correction. Site 1 has 50% vegetation cover and is located in south-western  

Australia  (116.167°E,  32.1944°S).  Site  2,  with 95% vegetation  cover,  is  located  in  north-eastern  Australia  (145.8°E,  

17.4°S).
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3.2.2.1. Study Sites

Of the two sites used in this study (Fig. 3-1), the first site (Site-1) is located in 

south-western Australia (116.167°E, 32.1944°S) and has 50% vegetation. Data from 

this site were used to illustrate the effectiveness of BRDF correction technique on 

sites expected to experience high impact of orbital drift on TOC NDVI. Site-2 has 

95% vegetation cover, and is  located in north-eastern Australia (145.8°E, 17.4°S). 

Data from this site were used to demonstrate the impact of BRDF correction on sites 

with minimal impact of orbital drift on TOC NDVI but prominent contribution of 

atmospheric  BRDF. Both  of  these sites have evergreen vegetation and experience 

fairly low aerosol contamination. The rationale behind using only evergreen sites was 

to facilitate investigation of the impact of orbital drift alone on the inter-annual NDVI 

trends.

3.2.2.2. The MODIS BRDF Correction Technique

The MODIS BRDF correction technique presented by Vermote et al., (2009) 

assumes that the shape of the BRDF varies more slowly than the reflectance and this 

change is  linearly related  to  NDVI.  This relationship with NDVI is  then  used to 

account  for  seasonal  variations  in  BRDF  shape.  A relationship  between  BRDF 

parameters and NDVI for each pixel is then derived from the full MODIS time series 

record. Because this method uses MODIS data for definition of BRDF shape, it is not 

limited by incomplete atmospheric correction and inaccurate cloud masks of AVHRR 

NDVI datasets. 
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The BRDF shape can be described by two parameters, R (surface scattering) 

and V (volume/canopy scattering).  Assumption of a constant BRDF shape for the 

entire year allows an easy inversion of parameters R and V from MODIS data. These 

parameters can then be used for BRDF correction of reflectance the AVHRR time 

series data. MODIS directional reflectance time series data, when corrected using this 

method,  showed  considerable  decrease  in  high  frequency  variability.  However, 

vegetation structure generally has an annual phenological cycle of greening, growth, 

and senescence, which has a direct effect on the BRDF. Therefore, parameters V and 

R also vary with seasonal change in vegetation greenness (NDVI). Inclusion of this 

variation of V and R parameters in relation to NDVI in the BRDF correction process 

improved  the  correction  of  the  MODIS  time  series  data.  A full  description  and 

discussion of this method can be found in Vermote et al., (2009). 

3.2.2.3. Modeled AVHRR TOC reflectance data

Modeled AVHRR TOC reflectance data were calculated for these two sites 

using FLIGHT,  which is  capable  of  modeling  the  impact  of  extreme solar  zenith 

angles on directional reflectance of a vegetated surface. For each site, the FLIGHT 

model  was first  parameterized using  approximate  forest  structural  values  (percent 

forest  cover,  mean crown diameter,  and  mean canopy height)  inferred  from high 

resolution satellite imagery (Fig. 3-1). The foliage parameters (leaf area density, leaf 

angular distribution, and leaf size, and optical properties of leaf and branch, etc) were 

populated using default values provided by the FLIGHT model (Table 3-1). These 

parameters were then iteratively varied within a reasonable range to arrive at the red 
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and NIR BRDF shapes, representing the variation of reflectance in relation to VZA, 

similar to the ones produced by BRDF parameters from MODIS data (Vermote et al. 

2009a) at a constant SZA of 45°. The goal was to create a realistic definition of forest  

vegetation structure in  FLIGHT model  to  facilitate  the investigation of  impact  of 

extreme SZA variations present in AVHRR datasets.

FLIGHT Parameters Site-1 Site-2
% Vegetation cover 50 95
Crown diameter/height 1 1
Total canopy height 10 m 55 m
Scene LAI 2 6
Leaf red reflectance 0.07 0.045
Leaf NIR reflectance 0.45 0.5
Leaf red transmittance 0.015 0.02
Leaf NIR transmittance 0.39 0.4
Bark red reflectance 0.23 0.1
Background NIR reflectance 0.21 0.5

Table 3-1: Vegetation structural and optical information used to parameterize the  

flight model for forests at two sites depicted in Fig. 3-1.

This study also utilized AVHRR data from the LTDR version-2 dataset. The 

product includes daily surface reflectance and NDVI products at a resolution of 0.05°. 

This  version includes  atmospheric  corrections  for  Rayleigh  scattering,  ozone,  and 

water vapor. Aerosol correction is still being implemented (Pedelty et al. 2007).
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3.3. Results and Discussion

3.3.1. Impact of Orbital Drift on AVHRR NDVI Time Series

The impact of vegetation cover on the relationship between TOC-NDVI and 

SZA presented in Fig. 3-2 indicated that the magnitude of TOC NDVI increased with 

an increase in SZA. It was also observed that the NDVI times-series data at sites with 

95%  and  10%  vegetation  cover  showed  a  lesser  impact  of  SZA change  when 

compared to the site with 50% vegetation cover. The rate of change of NDVI per 10° 

SZA was 0.070 for the site with 50% vegetation cover, while at sites with 10%, and 

95% vegetation cover the rate of change of NDVI was only 0.013, and 0.008 NDVI 

units per 10° SZA.

Fig. 3-2: The effects  of  forest  vegetation cover on the relationship between solar  

zenith angle (SZA) and top of the canopy (TOC) NDVI
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The combined impact of surface and atmospheric BRDF on AVHRR-NDVI 

time series is presented in Fig. 3-3 and Table 3-2. At the equator, the modeled TOC 

NDVI data for the site  with 50% vegetation cover (Site-1) showed a positive trend of 

0.0218 NDVI per year (Fig. 3-3 and  Table 3-2), a trend that was greatly weakened at 

TOA to  a  mere 0.0061 NDVI per  year.  This  was  because,  unlike  surface  BRDF, 

atmospheric components introduce a negative trend in NDVI with increase in SZA. 

The same phenomenon was also observed in NDVI time series data at the sites with 

10%, and 95% vegetation cover, where a weak positive trend was removed. (Fig. 3-3; 

Table 3-2).

Latitude
Percent 

Tree Cover

Yearly Rate of 
change in NDVI
TOC TOA

0 95 0.0033 -0.0053
0 50 0.0218 0.0061
0 10 0.0053 0.0000

30 95 0.0014 -0.0031
30 50 0.0148 0.0005
30 10 0.0049 -0.0004
60 95 0.0022 -0.0022
60 50 0.005 -0.0043
60 10 0.0038 -0.0017

Table  3-2:  Yearly  rate  of  change  in  modeled  AVHRR NDVI data  for  5  years  of  

NOAA-14 (Fig. 3-3). These trends were calculated by fitting linear regression lines to  

yearly average NDVI.
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Fig. 3-3:  Impact of orbital drift on AVHRR data modeled for TOA and TOC NDVI  
data for first  5 years of NOAA-14 satellite’s  operational life  (1995 to 1999) with  
various degrees of vegetation cover at 0°, 30°, and 60° latitudes. These time series  
were produced using FLIGHT canopy radiative transfer model and 6S atmospheric  
radiative transfer program. The simulation assumes evergreen vegetation cover and  
AOT = 0.15.  Note:  The high frequency variation observed in SZA, which is due to  
inclusion of data from multiple orbits, causes a similar high frequency variation in  
NDVI time series. The thick line represents a 10 day mean NDVI and the thinner lines  
(not always separable from the mean) represent the maximum and minimum value of  
NDVI for the same 10 day period.
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At 30° latitude the SZA had a weaker inter-annual trend leading to similarly 

weak inter annual trends in TOC NDVI. For example, at the site with 50% vegetation 

cover, the trend was only 0.0148 NDVI per year when compared to 0.0218 NDVI per 

year at equator. However there was a seasonal component to SZA which created intra-

annual patterns similar to seasonal vegetation dynamics. At 50% vegetation cover, 

this seasonality was fairly prominent even in TOA NDVI data (Fig. 3-3; Table 3-2).

At 60° latitude there were practically no inter-annual trends in SZA, hence 

there were no inter-annual trends in either TOC or TOA NDVI. However there was a 

strong seasonal component to the SZA trend, which led to a similarly prominent, but 

false impression of seasonal vegetation dynamics in TOC NDVI data. Especially at 

beginning and end of the growing season, when SZA was very high, both the surface 

BRDF and the atmospheric impact were extreme and sometimes canceled each other 

out. This phenomenon could be seen in the TOA NDVI time series where both sites 

(50% and 10% vegetation cover) at 60° latitude showed no intra-annual variations, 

although there were strong intra-annual variations in TOC NDVI.

3.3.2.  Effectiveness  of  MODIS  BRDF  parameters  for  BRDF 

correction of AVHRR NDVI time series data

Fig.3-4  demonstrates  the  effectiveness  of  MODIS  BRDF  parameters  for 

normalization of the modeled AVHRR TOC NDVI to 45° SZA and 0° VZAs. The 

inter-annual  trend  of  0.02  NDVI  units  per  year  in  TOC  NDVI  was  reduced 
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considerably to a trend of 0.005 NDVI units per year for site 1 (~50% vegetation 

cover). The spurious seasonality was also considerably reduced. The TOC NDVI time 

series data for site  2 (~95% forest  cover) had a weak inter-annual trend of 0.004 

NDVI units per year which was only slightly affected by BRDF correction. However, 

the  large  inter-annual  variation  in  near  infrared  was  greatly  reduced.  The  BRDF 

correction technique was further tested directly on AVHRR data from LTDR dataset 

(Fig. 3-5). Although the AVHRR data used for this study did not include correction 

for aerosol, the BRDF normalization improved surface reflectance and NDVI trends 

considerably. In both modeled TOC and actual AVHRR data the high frequency noise 

in red and NIR channels due to VZA variation was also effectively removed (Fig. 3-

5).
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Fig. 3-4: The effect of MODIS BRDF correction technique in removing the impact of  

orbital drift on top of canopy (TOC) NDVI data. On the left are the data without the  

BRDF correction and on the right are the data with the MODIS BRDF correction.  

Red, near infrared and NDVI are shown for 5 years of AVHRR data. The inter-annual  

NDVI trend was estimated by fitting a linear polynomial to yearly NDVI averages.
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Fig. 3-5: This figure shows the impact of different levels of correction on AVHRR NDVI time series data. It can be observed that  
atmospheric correction of LTDR NDVI data removes negative trends introduced by atmosphere and exposes positive trends due to  
surface BRDF. It also shows the effectiveness of MODIS BRDF correction technique in removing the positive trends introduced by  
surface BRDF. The inter-annual NDVI trend was estimated by fitting a linear polynomial to yearly NDVI averages.
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3.4. Conclusions

The analysis presented in this chapter indicates that the extent of vegetation 

cover is a crucial factor affecting sensitivity of TOC NDVI time series data to orbital 

drift. This sensitivity was found to be highest at vegetation cover close to 50%. At 

both 10% and 95% vegetation cover, the impact of SZA change on TOC NDVI was 

negligible (Fig. 3-2, 3-3). For dense tropical forest sites, the atmosphere was found to 

be the dominant source of inter-annual NDVI trends. SZA for sites at high latitudes 

showed prominent seasonality with very high solar zenith angles at the beginning and 

end  of  the  growing  season.  At  these  high  SZAs,  impact  of  both  surface  and 

atmospheric  BRDF was  also  extreme,  thus  severely  decreasing  the  reliability  of 

phenological metrics derived from NDVI data.

As noted before, TOC NDVI usually shows a positive relationship with solar 

zenith angle, while the atmosphere imposes a negative relationship in TOA NDVI 

data.  It  was  observed  that  depending  on  the  SZA,  atmospheric  composition,  and 

vegetation cover of the site being studied, either one of these opposite relationships 

can  dominate  the  other,  sometimes  even  canceling  each  other  out  and  causing  a 

spurious improvement in  the quality  of  the data.  Thus the atmospheric  correction 

exposed the surface BRDF effect on NDVI time series suppressed by atmospheric 

interference.  Clearly with  improvements  in  atmospheric  correction,  an  operational 

BRDF  correction  technique  significantly  improves  the  precision  of  the  AVHRR 

NDVI data. In this study it was found that the BRDF correction technique developed 

for MODIS data (Vermote et al. 2009a) provides a promising method to remove the 
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contribution of surface BRDF to the impact of orbital drift on NDVI and is worth 

applying  to  future  developments  of  AVHRR  processing  such  as  the  new  LTDR 

archive. 
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Chapter 4:  Quantification of Overall  Uncertainty and 

Impact of Spatial and Temporal Aggregation 

4.1. Introduction

Although previous investigations of uncertainty in  the AVHRR NDVI data 

have given some valuable insights (Cihlar et al. 1998; Eklundh 1995; Fensholt et al. 

2006a; Fensholt  et  al.  2006b; Gallo et  al. 2005; Goward et  al. 1993; Nagol  et  al. 

2009),  most of them, including the research presented in chapters 2 and 3, do not 

include all sources of uncertainty. AVHRR NDVI data are normally used with some 

kind of temporal as well as spatial aggregation (averaging, maximum value or median 

value compositing,  etc)  to  reduce the  impact  of  various  shortcomings in  the data 

processing.  These  compositing  methods  are  generally  believed  to  decrease 

uncertainty in the data considerably (Cihlar et al. 1994; Holben 1986), yet there have 

been no studies to quantify the extent of these positive effects. Bearing in mind the 

many influential studies of Earth system science that have been based on AVHRR 

NDVI, a better understanding of uncertainty is of critical importance. The purpose of 

the research presented in this chapter was to estimate uncertainty in AVHRR NDVI 

data  and  to  investigate  the  impact  of  various  degrees  of  spatial  and  temporal 

aggregation.
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4.2. Data and methods

The  uncertainty  in  AVHRR NDVI  data  was  estimated  by  comparison  with 

coincident  data  from MODIS Aqua  instrument.  The  relatively  low uncertainty  in 

MODIS data (0.007 to 0.017 NDVI units) (Vermote et al. 2006) when compared to 

that of AVHRR data (0.0206 to 0.078 NDVI units) (chapter-2) makes this approach of 

estimating  uncertainty  reasonable.  However,  this  method  does  not  account  for 

residual errors in the MODIS data itself,  which can lead to an underestimation of 

uncertainty. The extent of this underestimation is indeterminable, because the spatial 

variability and the impact of spatial and temporal aggregation on the uncertainty in 

MODIS data is not yet determined. One chief advantage of using this framework is 

that, it allows the calculation of location specific estimates of uncertainty and also 

account for impacts of spatial and temporal aggregation. 

The temporal overlap between NOAA-16 and MODIS Aqua instruments (2003-

2006) was used for estimation of uncertainty. This study used NDVI data from three 

regions, Australia, the Sahel region in Africa, and Northern South-America, to sample 

a wide range of vegetation types and atmospheric compositions (Fig. 4-1).

The statistical  framework defined in  section 1.2.8 (chapter  1) was used to 

estimate  uncertainty  (random  error)  in  the  AVHRR  NDVI  data.  The  uncertainty 

statistic was calculated as the standard deviation of the data points relative to the 

systematic bias line. The systematic component (bias) was estimated by fitting a first 

order polynomial to the two dimensional scatter plot comparing AVHRR NDVI data 

to the reference data (MODIS Aqua data). 
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Fig. 4-1: The three regions (Australia, Sahel, and northern South-America) and the locations of the sites (Table 4-1) where  

further study of the impact of spatial and temporal aggregation on uncertainty in AVHRR NDVI data was conducted. 
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Site ID Region Land cover Type long lat

1 Australia Cropland 117.80 -32.65

2 Australia Savanna 143.00 -16.50

3 Australia Open Shrubland 134.65 -25.30

4 Australia Woody Savanna 147.75 -25.10

5 Australia Mixed (Grassland / open Shrubland) 134.20 -17.55

6 Sahel (Africa) Cropland -15.65 14.15

7 Sahel (Africa) Grassland 8.35 13.45

8 Sahel (Africa) Open Shrubland -0.45 15.90

9 Northern South America Mixed (Forest / Bare) -45.40 -10.10

10 Northern South America Mixed (Woody Savanna / Cropland) -59.95 -16.00
Table 4-1: Locations and land cover of the sites in Australia, Sahel region of Africa,  

and Northern South America where further study of impact of spatiotemporal  

aggregation on AVHRR NDVI uncertainty and its implication for study of inter-

annual NDVI time series trends was carried out.

4.2.1. AVHRR data

The AVHRR NDVI data from LTDR version-3 dataset were used in this study 

(http://ltdr.nascom. nasa.gov/ltdr/ltdr.html) (Pedelty et al. 2007). The product includes 

daily NDVI as well as surface reflectance data at a spatial resolution of 0.05°, which 

matches the Climate Modeling Grid (CMG) used for MODIS Terra and Aqua.

The  LTDR  preprocessing  includes  vicarious  calibration,  atmospheric 

correction for Rayleigh scattering, ozone, and water vapor, and  an improved cloud 

mask  technique  (Vermote  et  al.  2009b).  The  AVHRR data  were  normalized  to  a 

uniform sun-sensor  geometry using the BRDF correction technique  developed for 

MODIS data (Vermote et  al.  2009a).  This technique has been demonstrated to  be 
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reasonably effective in removing the impact of orbital drift on AVHRR NDVI data 

(chapter 3).

4.2.2. Reference data (MODIS Aqua data)

The MODIS Aqua based CMG surface reflectance product (MYD09CMG) 

was used as reference data for estimating the uncertainty in LTDR AVHRR NDVI 

data. Data from MODIS Terra instrument were not included because of a more than 4 

hours of difference in overpass time when compared to AVHRR instruments, while 

Aqua platform has a near simultaneous overpass.

The MODIS CMG data product is estimated daily on a 0.05 degree grid using 

MODIS  Level-1B  bands  1-7  (459-2155nm).  The  MODIS  CMG  atmospheric 

correction scheme accounts for the effects of atmospheric gases, aerosols, and thin 

cirrus clouds. The data were further corrected for BRDF effect using the technique 

proposed by Vermote et al., (2009).

4.2.3. Impact of Spatial and Temporal Aggregation on AVHRR NDVI 

Uncertainty (Random Error)

The impact of spatial aggregation on the uncertainty in AVHRR NDVI data 

was  investigated  by  comparison  with  reference  data  at  various  levels  of  spatial 

aggregation (1x1, 3x3, 5x5, 7x7 pixel matrix averages) for the dominant land cover 

types in the three regions (Australia, Sahel, and northern South-America) (Fig. 4-1). 

Since NDVI is a non-linear transformation, the spatial aggregation was performed in 
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the  spectral  domain before calculation  of  NDVI.  A land cover map derived from 

MODIS data (MOD12C1) for year 2004 was used in the analysis. MOD12C1 has a 

resolution of 0.05 degrees and is derived with the same algorithm used in the Global 1 

km Land Cover Type product  (MOD12Q1) (Hodges 2002). This product  contains 

three  classification  schemes,  of  which,  IGBP (International  Geosphere  Biosphere 

Programme) global vegetation classification scheme was used in this study. The map 

gives the dominant land cover type and the sub-grid frequency of the other land cover 

classes.

All the pixels in each dominant land cover type, except the ones on the edge 

of the land cover patches, were included in the calculation of final precision statistic 

for  that  land  cover  type.  Any  spatially  aggregated  pixels  with  even  one  cloud 

contaminated pixel were excluded. Impact of commonly used temporal compositing 

techniques  were  investigated  only  for  3x3pixel  spatial  aggregates.  The  temporal 

compositing techniques included in this analysis were: 1) monthly maximum value, 

2) monthly median, 3) monthly average, 4) quarterly average, and 5) yearly average. 

4.2.4. Estimation of Location Specific Uncertainty and Evaluation 

of the Significance of Interannual Trends

In  previous  sections  overall  uncertainty  estimates  for  different  land  cover 

types in various regions were addressed. However uncertainty at different locations 

within a  land cover type  can show significant  variations,  the impact  of  sub-pixel 

variability in NDVI was also not accounted for. AVHRR NDVI data from the same 

dataset, depending on the spatial and temporal compositing scheme used, can have 
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different degrees uncertainty. This makes it necessary for an AVHRR NDVI data user 

to estimate uncertainty for the specific location and aggregation scheme they have 

chosen to use. 

Here ten sites from Australia, northern South America, and Sahel region of 

Africa  (Table  4-1;  Fig.  4-1)  were  used  to  illustrate  the  method  for  estimation  of 

uncertainy in AVHRR NDVI data for specific  locations and aggregation schemes. 

Two aggregation schemes involving spatial aggregation over 0.15ºx0.15º area (3x3 

pixels) and 0.45ºx0.45º area (9x9 pixels) and temporal aggregation over a month were 

examined. 

Using  the  uncertainty  estimates  for  AVHRR  NDVI  data,  to  evaluate  the 

significance of the observed inter-annual trends involves a few additional steps. Of 

the two aggregation schemes examined the one involving spatial aggregation over 

9x9pixel area was used to illustrate these steps. The 18 year period (1982 to 1999) 

was used for the trend analyses. To use the uncertainty estimates for validation of 

observed  inter-annual  NDVI  change  in  pre  NOAA-16  era  (year  ≤2000),  it  was 

necessary  to  assume  that  the  LTDR  V3  processing  sufficiently  deals  with  the 

systematic errors arising from sensor degradation, and orbital drift.

The  inter-annual  trends  in  AVHRR NDVI  data  were  calculated  using  the 

method utilized by Donohue et al., (2009) for calculating inter-annual fPAR trends in 

Australia. This method uses linear (ordinary least squares) regressions on a month-by-

month basis. Trends were estimated for each of the twelve months in the year (e.g., 

trend for January, February, March, etc.).  Because these regressions are linear, the 

yearly or  seasonal  inter-annual  trends can be estimated by averaging the monthly 
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trends. The inter-annual trend calculated using this method is less vulnerable to data 

gaps. (Donohue et al. 2009)

The uncertainty estimate for each monthly inter-annual trend was calculated 

by introducing the NDVI uncertainty into the linear regression model as measurement 

error. The uncertainty in inter-annual trend estimated in this manner is a combination 

of  measurement  error  (uncertainty  in  AVHRR  NDVI  data)  and  coefficient  of 

determination (R-squared) of the linear regression model. Due to this the uncertainty 

estimates  are  sensitive  to  the  length  of  time  series  and  the  data  gaps  also.  The 

uncertainty statistic for the yearly inter-annual NDVI trend was then estimated by 

calculating quadratic mean of the uncertainty in the twelve monthly trends. The goal 

here was to demonstrate the calculation of thresholds for inter-annual NDVI change 

that must be exceeded for the observed trends to be considered significant.

63



4.3. Results

4.3.1. Impact of Spatial and Temporal Aggregation on AVHRR 
NDVI Uncertainty (Random Error)

Fig. 4-2:  Impact of spatial aggregation on uncertainty in LTDR AVHRR NDVI data.  

The spatial aggregation was performed in the spectral domain before calculation of  

NDVI. 
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Uncertainty in the LTDR AVHRR NDVI data, to which no spatial or temporal 

aggregation was applied, varied from 0.036 in Australian open shrub-land to 0.11 for 

evergreen broadleaf forests in northern South-America (Fig. 4-2).  The investigation 

into  the  impact  of  spatial  aggregation  (Fig.  4-2)  revealed  that  the  uncertainty  in 

AVHRR NDVI data decreases greatly as more pixels are aggregated. Even a 3x3pixel 

(9 pixels) aggregation considerably reduced the uncertainty in the data for all the land 

cover types in the three regions.  For example,  just  by aggregation over 3x3 pixel 

matrices,  the uncertainty in  AVHRR NDVI measures  in  northern South-American 

evergreen broadleaf forests decreased from 0.11 to 0.06. Further aggregation over 7x7 

pixel matrices (49 pixels) further decreased the uncertainty to 0.048 NDVI units. The 

uncertainty for Australian woody savanna showed a similar improvement from 0.068 

to 0.039, and 0.029 at 3x3 and 7x7 pixel aggregation respectively. Uncertainty for 

other  land  cover  types  from  all  three  regions,  including  Sahel,  showed  similar 

improvements. Most of the improvement was achieved with 3x3 pixel aggregation 

step. Although further spatial aggregation resulted in some reduction in uncertainty, it 

was  relatively  small  (Fig.  4-2).  Because  of  this,  all  further  analyses  of  errors  in 

AVHRR NDVI data were conducted on 3x3 pixel aggregates.

 Investigation into the impact of three different monthly temporal aggregation 

schemes  (maximum  value,  median,  and  average)  conducted  on  3x3pixel  spatial 

aggregates (Fig.4-3) revealed that all three of these compositing schemes resulted in 

only slight decrease in uncertainty. 
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Fig. 4-3: Impact  of  various types of monthly  temporal  compositing techniques on  

uncertainty in LTDR AVHRR NDVI data.
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Fig.  4-4: Impact  of  the  temporal  extent  of  aggregation  on  uncertainty  in  LTDR  

AVHRR NDVI data

A consistent decrease in uncertainty was observed with increase in temporal 

extent of aggregation (Fig. 4-4). For example, the uncertainty in AVHRR NDVI in 

Australian evergreen broadleaf forests decreased from 0.044 NDVI units for daily 

data  to  0.036,  0.031,  and  0.020  NDVI  units  for  monthly,  quarterly,  and  yearly 

temporal  aggregation  respectively.  The  uncertainty  for  northern  South-American 

woody savanna showed a similar reduction of uncertainty from 0.056 NDVI units for 
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daily data to 0.054, 0.042, and 0.029 NDVI units for monthly, quarterly, and yearly 

temporal  aggregation respectively.  Most  of the other land cover types in  all  three 

regions  showed  similar  pattern.  However  for  northern  South-American  evergreen 

broadleaf forests, even yearly aggregation resulted in only ~10% (0.01 NDVI units) 

reductions in uncertainty. This may be due consistently hazy atmospheric conditions 

and limited availability of cloud free days.

Fig. 4-5:  The LTDR AVHRR NDVI uncertainty at the 10 study sites (Table 4-1). 
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The examination of the location specific uncertainty estimates for monthly 

3x3 and 9x9 pixel aggregates for the 10 sites (Fig. 4-5) revealed that sites with sub-

pixel heterogeneity in NDVI benefited more by spatial aggregation. For example the 

uncertainty in AVHRR NDVI data for the mixed (grassland/open shrubland) site in 

Australia  decreased  from 0.028 to  0.018 NDVI  units  and the  uncertainty  for  the 

mixed (Forest / Bare) site in northern South America decreased from 0.028 to 0.012 

NDVI  units  (Fig.  4-5).  Similar  improvements  were  observed  at  mixed  (woody 

savanna / cropland) site in northern South America and the woody savanna site in 

Australia. On the other hand, increase in spatial extent of aggregation from 3x3pixel 

area to 9x9 pixel area had little impact on uncertainty estimates at sites which were 

homogeneous, e.g. the cropland, grassland, and open shrubland sites in Sahel and the 

open sbrubland site in Australia ,

The validation of the inter-annual NDVI change for 18 years (1982 to 1999) at 

the  10  sites  (Fig.  4-6)  revealed  that  only  two  sites,  the  grassland  site  (0.027 

NDVI/18years)  and  the  open  shrubland  site  (0.028  NDVI/18years)  in  the  Sahel, 

showed an NDVI change significant at 67% confidence interval. Only the cropland 

site in Australia showed an NDVI change (0.07 NDVI/18years) that was significant at 

95% confidence  interval.  Although  the  Australian  savanna  site  showed an  NDVI 

change  of  0.047  NDVI/18  years,  it  was  not  significant  at  even  67% confidence 

interval (Fig. 4-6). This showed that higher NDVI change does not always result in 

higher confidence. 
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Fig. 4-6: Total NDVI change observed in the 18 year time period of 1982 to 1999.  

The red lines represent the uncertainty.
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4.4. Discussion

The uncertainty estimates for un-aggregated LTDR AVHRR NDVI (0.036 to 

0.11 NDVI units)  (Fig.  4-2)  were  found to be much higher  than the inter-annual 

change considered significant by many previous studies (Jia et al. 2003; Piao et al. 

2003; Piao et al. 2006; Slayback et al. 2003; Young and Harris 2005). Most of this 

uncertainty  can  be  ascribed  to  lack  of  comprehensive  atmospheric  correction  in 

AVHRR dataset (Pedelty et al. 2007). Because the GAC sampling scheme can select a 

different sub-pixel area on every overpass, high sub-pixel variability in NDVI can 

considerably increase the uncertainty.

It was observed that even limited spatial aggregation of 3x3 pixels (0.15x0.15 

degrees)  reduced the  uncertainty considerably.  However,  sites with high sub-pixel 

heterogeneity  benefited  from  further  spatial  aggregation  (Fig.  4-5).  The  results 

presented in section 4.3.1 (Fig.4-2) showed that degrading the resolution of AVHRR 

data from 0.05 degrees to 0.15 degrees is a reasonable technique for reduction of 

uncertainty  in  AVHRR NDVI data.  For  many applications  the  benefit  due  to  the 

reduction of uncertainty achieved in this way would outweigh the disadvantages due 

to decrease in spatial resolution.

It  was  also  observed  that,  after  3x3pixel  spatial  aggregation,  temporal 

aggregation to monthly time period resulted in only slight reduction in uncertainty 

(Fig.  4-3).  The temporal  aggregation of data to which no spatial  aggregation was 

applied was also found to reduce uncertainty, but to a limited extent only. Moreover, 

in many parts of the world the temporal aggregation method is severely limited by the 

number of cloud free days available during a compositing period 
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Of  the  three  monthly  temporal  compositing  techniques  tested  (maximum 

value, median, and average), the monthly averaging technique produced slightly but 

consistently  better  results.  This  is  in  contrast  with  the  general  understanding that 

MVC is the best compositing technique. This can be attributed to better cloud masks, 

improved  atmospheric  correction,  and  BRDF  correction  employed  in  the  LTDR 

dataset when compared to earlier AVHRR NDVI datasets. These improvements in the 

data processing make the ability of MVC technique to decrease the impact of partial 

atmospheric correction and inaccurate cloud masks redundant.

The  technique  of  evaluation  of  AVHRR  NDVI  data  by  comparison  with 

MODIS data  allows for  estimation  of  uncertainty  at  any geographic location  and 

aggregation scheme (Fig.4-5). This location-specific uncertainty can then be used to 

evaluate the significance of observed inter-annual NDVI trends and anomalies (Fig. 

4.6). This technique accounts for spatial heterogeneity of uncertainty in the AVHRR 

NDVI data  as well  as the impact of the specific spatial  and temporal aggregation 

scheme being used.  However,  to  be able  to use the uncertainty estimates  derived 

using  data  from years  2003 to  2006 to  evaluate  the  observed inter-annual  NDVI 

trends and anomalies in pre 2000 era, it is necessary to make sure that there is no 

significant sensor degradation, and orbital drift related non-stationarity in the data.

4.5. Conclusions

This  study  empirically  demonstrated  that,  in  many  regions,  minimal 

spatiotemporal  aggregation  considerably  decreases  the  uncertainty  in  the  LTDR 

AVHRR NDVI data. Aggregation beyond 3x3 pixels was found useful at sites with 

high sub-pixel NDVI heterogeneity. 
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The framework for estimation of uncertainty presented in this chapter not only 

accounts for the impact of spatial and temporal aggregation but also provides a way to 

calculate location specific error estimates. These error estimates can be used to set 

informed confidence intervals for future global change and regional studies of inter-

annual vegetation dynamics. 
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Chapter 5: Overview and Discussion

The  goal  of  this  dissertation  was  to  systematically  investigate  and 

quantify the uncertainty in AVHRR NDVI data. The primary sources of uncertainty in 

the  NDVI datasets  derived from NOAA  AVHRR  data  are:  1)  partial  atmospheric 

correction;  2)  orbital  drift;  3)  sensor  degradation;  and  4)  geolocation  error.  The 

second  chapter  of  this  dissertation  investigated  the  impact  of  partial  atmospheric 

correction and the third chapter dealt with non-stationarity introduced by orbital drift 

in the AVHRR NDVI time-series data. In the fourth chapter, instead of quantifying 

uncertainty from individual sources and then accounting for the complex interactions 

between  each  of  them,  overall  uncertainty  in  AVHRR NDVI  data  was  estimated 

directly by comparison with MODIS data for the years 2002-2006, the overlap period 

between the two sensors (MODIS Aqua and NOAA-16 AVHRR). This technique also 

facilitated the investigation of the impact of spatial and temporal aggregation. Next 

section will give an overview of the results from second, third, and fourth chapters 

followed by a discussion of implications of these results 

5.1. Overview of the Results

The incompleteness or absence of atmospheric correction is a major source of 

uncertainty in the AVHRR NDVI data. The research presented in chapter 2 assessed 

the uncertainty due to this shortcoming in three publicly available, processed AVHRR 

NDVI datasets  (LTDR, PAL, and TOA). This assessment revealed that, of the three 

AVHRR  NDVI  datasets  investigated,  LTDR  dataset  has  the  lowest  uncertainty. 

Uncertainty estimates for the LTDR dataset were found to be 0.021, 0.037, and 0.078 

74



NDVI units for clear, average, and hazy atmospheric conditions respectively (Fig. 5-

1; Table 2-1).

Fig. 5-1: Summary of results from Chapter 2. Uncertainty in NDVI for TOA, PAL,  

and LTDR datasets (Table 2-1). 

 

AVHRR  NDVI  data  is  nearly  always  used  with  some  form  of  temporal 

compositing to decrease the impact of atmospheric interference and residual cloud 

contamination. For example, the GIMMS dataset is available with 15 day maximum 

value compositing and PAL dataset is available with 10 day and monthly maximum 

value compositing. Even LTDR dataset, which provides daily NDVI data, has been 

used with temporal compositing (Alcaraz-Segura et al. 2010). In most cases AVHRR 

NDVI data are further spatially aggregated, sometimes over vast regions. The spatial 

and  temporal  aggregation  is  generally  claimed  to  decrease  the  uncertainty 
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considerably (Cihlar et al. 1998; Cihlar et al. 1994; Holben 1986). However, due to 

limited spatial and temporal coverage of AERONET data, the analysis presented in 

chapter 2 could not  account for these improvements.  The spatial  heterogeneity of 

uncertainty was also not addressed.  One more limitation was that,  the network of 

AERONET sites did not sample all land cover types and latitudinal zones (Fig. 2-2).

Another major shortcoming in the AVHRR NDVI data is the non-stationarity 

caused by orbital  drift.  The orbital  drift  related non-stationarity in AVHRR NDVI 

time-series,  not  only  hinders  the  detection  and  interpretation  of  inter-annual 

vegetation dynamics; it also flouts the assumption of normal distribution essential for 

estimation of the uncertainty. The third chapter of this dissertation investigated the 

impact  of  this  shortcoming  and  the  effectiveness  of  BRDF  correction  technique 

proposed by Vermote et al., (2009) in dealing with it. 

The results indicated that, for sites with dense as well as sparse vegetation 

cover,  atmosphere  is  the  primary  source  of  the  orbital-drift-related,  inter-annual 

NDVI trends. However, at vegetation cover close to 50%, the surface BRDF effect 

was the dominant  source.  Investigation into effectiveness of the BRDF correction 

technique (Vermote et al. 2009) indicated it to be a promising method for reducing the  

contribution of surface BRDF to the impact  of orbital  drift.  Some of the positive 

attributes of this method are: 1) It does not require an a priori knowledge of the land 

cover type and vegetation structure; and 2) limited availability of cloud free data, 

does not affect the derivation of BRDF parameters.

However the BRDF correction method does not address the spurious negative inter-

annual NDVI trends caused by systematic increase in atmospheric path length due to 
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orbital drift. The term “spurious trend” here refers to the inter-annual trend in AVHRR 

NDVI time-series data caused, not by actual vegetation dynamics on earth surface, 

but by orbital drift or other shortcomings in the sensor system and post-processing. 

The magnitude of this trend can be estimated as the inter-annual trend of AVHRR and 

MODIS-Aqua  NDVI differences  (AVHRR NDVI –  MODIS-Aqua  data).  Fig.  5-2 

(site-2)  illustrates  the  presence  of  the  spurious  negative  trends  using  data  at  an 

agricultural site in eastern Henan province of China, as an example. More than 60% 

of the data at this site had AOT greater than 0.25. This constant hazy atmosphere and 

an annual 4° SZA increase due to orbital drift resulted in a spurious negative inter-

annual trend of 0.02 NDVI units for the four year period (2003-2006). The spurious 

negative  inter-annual  trends  in  AVHRR NDVI  data  were  also  observed  in  other 

regions like Sub-Sahelian tropical savannas, tropical forests, and in regions where 

occurrence of high AOT coincided with peak growing season.

In  some  vegetated  hilly  regions  spurious  positive  NDVI  trends  were  also 

observed.  Fig.  5-2 (site-1)  illustrates  this  using a  site  in  north  eastern Himalayan 

region. At this site an annual SZA increase of 4° during the four year period of 2003 

to  2006 resulted  in  a  corresponding spurious  positive  inter-annual  trend of  0.052 

NDVI units.  Similar prominent trends were also observed in other vegetated hilly 

regions near Himalayan, and Andes mountain ranges.
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Fig. 5-2: Examples of orbital drift related spurious inter-annual NDVI trends. The  

green,  blue,  and black  colored  data  represent  MODIS  Aqua NDVI data,  AVHRR  

NDVI data,  and the  difference  between these  two data  (AVHRR NDVI -  MODIS  

NDVI) respectively. The thick red line represents the spurious inter-annual trend. The  

magnitude of the spurious NDVI trend was determined by estimating slope of the  

linear curve fitted to the LTDR AVHRR NDVI and MODIS-Aqua data differences.  

Site-1  (115.05E,  34.25N)  is  located  in  vegetated  hilly  regions  of  northeastern  

Himalayan range. Site-2 (101.188E, 28.04N) has mixed agricultural and urban/built-

up land cover and is located in Eastern Henan province of China.
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The results presented in the second and third chapters of this dissertation dealt 

with individual sources of uncertainty. The goal of the research presented in fourth 

chapter was to estimate the overall uncertainty in the AVHRR NDVI data directly by 

comparison with MODIS data. The impact of temporal and spatial aggregation was 

also examined. 

Only LTDR AVHRR NDVI dataset was included in this analysis.  GIMMS 

dataset was excluded because its processing includes temporal smoothing, removal of 

non-vegetation NDVI signal, and manipulation of dynamic range making the direct 

comparison of individual NDVI data to the MODIS data unreasonable. The lack of 

BRDF correction in GIMMS data further complicates the situation. 

Investigation into the impact of various degrees of spatial aggregation (Fig. 4-

4 to 4-7) on the uncertainty in LTDR AVHRR NDVI data (section 4.2.1) indicated 

that  minimal  spatial  aggregation  (3x3  pixel  spatial  averaging)  decreased  the 

uncertainty considerably.  Further spatial  aggregation was generally found to be of 

little benefit (Fig. 4-5).

5.2. Global Uncertainty Maps

The method of location specific uncertainty estimation discussed in chapter 4 

can be used to create global and regional uncertainty maps for various spatial and 

temporal  aggregation  schemes.  These  maps  can  then  be  used  to  evaluate  and 

understand the significance of inter-annual trends and anomalies in LTDR AVHRR 

NDVI data. Fig. 5-3 presents an example of an uncertainty map for LTDR AVHRR 

NDVI data with a  3x3 pixel  spatial  aggregation.  This uncertainty map revealed a 

considerable amount of spatial heterogeneity of uncertainty. 
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Fig.  5-3: Global  uncertainty  map  of  3x3  pixel  spatial  aggregates  (averages)  for  LTDR  

AVHRR NDVI data. Deserts, urban areas, wetlands, and the pixels with less than 30 data  

points were excluded from the analysis.

Fig. 5-4: Land cover map derived from MODIS data (MOD12C1) for year 2004 with  

IGBP classification schemes
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 The regions with low vegetation cover, like the open shrublands in Australia, 

southern  Africa,  southern  South  America,  and  southern  North  America  showed 

uncertainty  close  to  0.02  NDVI units  (Fig.  5-3;  Fig.  5-4).  Parts  of  grasslands  in 

central Asia and Sahelian region also showed similarly low uncertainty (Fig. 5-3; Fig. 

5-4). This can be attributed to low sensitivity of NDVI to atmospheric interference  as 

well as BRDF effect, in sparsely vegetated regions (section 3.3.1; Fig. 3-2: Fig. 3-3).

Relatively high uncertainty was observed in regions with denser vegetation 

cover, like croplands, savannas, and forests. This may be due to higher sensitivity to 

atmospheric  interference  (Fig.  3-2).  Uncertainty estimates  higher  than 0.035 were 

observed for many pixels in regions like the sub-Sahelian savannas, Bolivian tropical 

forests, and croplands in Indian Gangetic plains, North America, and eastern China, 

where high NDVI and high AOT occur simultaneously (Fig. 5-3; Fig. 5-4).  

In  some  regions  (Fig.  5-3:  Regions  A,  C,  E)  the  non-stationarity  in  the 

AVHRR NDVI time-series data, due to atmospheric BRDF and orbital drift (Fig. 5-2: 

Site-2), was a significant contributor to the high uncertainty (> 0.06 NDVI units). 

Similarly  high  uncertainty  estimates  were  also  observed  in  some  vegetated  hilly 

regions (Fig. 5-3: Regions B, D). This can be attributed to surface BRDF related non-

stationarity described in Fig. 5-2 (Site-1).
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Fig. 5-5: Mean uncertainty of each land cover type. Deserts, urban areas, wetlands,  

and the pixels with less than 30 data points were excluded from the analysis.

The summary, the AVHRR NDVI uncertainty estimates for each land cover 

type (Fig. 5-5; 5-4) revealed that the uncertainty varies from 0.025 NDVI units for 

open  shrubland  to  0.04  NDVI  units  for  evergreen  broadleaf  forest.  A  closer 

examination of the uncertainty map (Fig. 5-3) revealed a considerable variability of 

uncertainty within each land cover type; this variability was observed to be primarily 

caused by a combination of atmospheric conditions, surface vegetation conditions, 

and topography.

One of the chief limitations for location specific uncertainty estimation, that is 

estimation  of  uncertainty  at  an  individual  AVHRR pixel,  is  the  unavailability  of 

adequate data for valid application of the statistical  framework defined in section 

1.2.8. Due to this it was not possible to estimate uncertainty in many regions like 

large tracts of tropical forests, tundra, and boreal forests (Fig. 5-3). 
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At  many  sites  considerable  seasonal  variability  in  uncertainty  was  also 

observed. This seasonal variability showed a strong correlation with the magnitude of 

NDVI. One can account for this seasonal variability by estimating uncertainty for 

individual months, seasons, or NDVI bins (e.g. 0 to 0.2, 0.4 to 0.5, and 0.8 to 1.0 

NDVI  units,  etc.)  separately.  However  such  an  endeavor  is  again  hindered  by 

inadequate data availability. One technique to overcome this problem is to estimate 

uncertainty for whole regions or sub-regions instead of individual pixels. 

5.3.  Impact  of  Uncertainty  in  AVHRR-NDVI  Data  on  Inter-annual 

Trends

The inter-annual trends in AVHRR NDVI data are generally estimated using 

linear  (ordinary  least  squares)  regression  (Donohue et  al.,  2009;  Jia  et  al.,  2003; 

Slayback et al., 2003; Piao et al. 2006; Young and Harris 2005). The uncertainty in 

the  inter-annual  trend  estimated  using  this  technique  depends  not  only  on  the 

magnitude of uncertainty in AVHRR NDVI data (measurement error) but also on the 

coefficient  of  determination  (R-squared).  Coefficient  of  determination  is  greatly 

affected by the length of the time series. This understanding was used to quantify the 

impact of uncertainty in AVHRR NDVI data on inter-annual NDVI trends for various 

lengths of time-series using a Monte Carlo approach. During this analysis the data 

were assumed stationary and without temporal gaps. A sample of the results, form the 

Monte Carlo simulations, is presented in Table 5-1. These results can be utilized to 

translate the magnitude of NDVI uncertainty to an estimate of the minimum change 

in NDVI that can be considered significant over a given time period. 
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NDVI 
precision

Time  Series 
Length

Minimum Valid
NDVI Change
(95% Confidence Interval)

0.02 20 Years 0.0310
0.03 20 Years 0.0466
0.04 20 Years 0.0621
0.06 20 Years 0.0931
0.02 10 Years 0.0439
0.03 10 Years 0.0659
0.04 10 Years 0.0879
0.06 10 Years 0.1318

Table 5-1: Minimum Valid NDVI change for various degrees of NDVI uncertainty for  

10 and 20 year time period

For  example  it  can  be  ascertained  that,  at  95%  confidence  interval,  the 

uncertainty  of  0.021  NDVI  units  for  LTDR  NDVI  data  in  clear  atmospheric 

conditions as reported in chapter 2 (Fig. 5-1) translates to an uncertainty of 0.046 and 

0.032 NDVI units for the total observed change over a period of 10 and 20 years 

respectively.  This  implies  that  when  using  LTDR  NDVI  data  even  under  clear 

atmospheric conditions the observed changes in NDVI must be at least 0.046 over 10 

years  and  0.032  over  20  years  for  the  change  to  be  significant.  For  average 

atmospheric conditions the observed changes in NDVI must be at least 0.081 over 10 

years or 0.057 over 20 years.

5.4. Implications of the results

The results  from the  investigation of  uncertainty  in  AVHRR NDVI are of 

considerable  significance  and suggest  that  the  conclusions  of  several  influential 

studies  of  inter-annual  vegetation  dynamics  that  have  treated  small  differences  in 
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AVHRR NDVI as indicators of significant change should be revisited. For example, 

Tucker et al., (2001) reported an increase of 0.031 and 0.033 NDVI units for a 10 

year period (1982-1991) in the 45°-75° latitudinal zone of North America and Eurasia 

respectively. An increase of 0.036 and 0.026 NDVI units was also reported for the 

same regions during the 8 year time period between 1992 and 1999. Another study by 

Zhou et al., (2001) reported an increase of 0.046 and 0.032 NDVI units over North 

America and Eurasia respectively over a period of 19 years (1981-1999). Both of 

these studies used GIMMS dataset, which has uncertainty similar to TOA data. When 

examined in the context of the uncertainty in AVHRR NDVI reported in chapter 2 

(Fig.  5-1), these NDVI changes cannot be considered significant. There are many 

similar examples where small changes in NDVI are reported as significant (Myneni et 

al. 1997; Slayback et al. 2003; Tucker et al. 1991). 

The spatially explicit uncertainty estimates presented in Fig 5-3 provide a tool 

for location specific examination of the significance of the reported NDVI changes. 

For example, Donohue et al., (2009) reported an increase of 0.0182 fPAR units in 26 

years  (1981-2006) in  Australia.  This was estimated by averaging individual  inter-

annual fPAR trends for all the pixels in Australia. The fPAR data used in this study 

was  derived  from  PAL  and  Commonwealth  Scientific  and  Industrial  Research 

Organization  (CSIRO) AVHRR NDVI datasets  (King et  al.  2003:  Donohue et  al. 

2008). The NDVI data were converted to fPAR using simple linear transformation 

equations. Here the relationship between the fPAR and LTDR AVHRR NDVI data 

was calculated in order to transform fPAR back to NDVI. The result was a change of 

0.012 NDVI units  over  the  26  years.  The  average  uncertainty  in  LTDR AVHRR 
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NDVI data for Australian continent was found to be 0.022 NDVI units.  Using the 

technique presented in section 5.3, it was determined that a minimum change of 0.029 

NDVI units over a period of 26 years is required for the change to be considered 

significant. The LTDR dataset has a much advanced processing when compared to the 

dataset used in the  Donohue et al. (2009)  study, so the uncertainty of 0.022 NDVI 

units  is  likely  to  be  a  substantial  underestimation.  Even  if  this  underestimated 

uncertainty is considered valid for this dataset the NDVI increase of 0.012 observed 

by Donohue et al. (2009) is not significant.

Fig. 5-6: Bioclimatic subzones in the Arctic slope of Alaska investigated by Jia et al.,  

(2003).

As discussed  earlier,  in  cases  where  inadequate  availability  of  data  makes 

estimation  of  location  specific  uncertainty  impossible,  the  uncertainty  can  be 

estimated for a region or a sub-region as a whole.  An example of the use of this 

Low Shrub

Erect Dwarf Shrub

Prostrate Dwarf Shrub

The Arctic Slope 
of Alaska

86



method is demonstrated here by estimating uncertainty in peak growing season NDVI 

data for the Erect Dwarf Shrub bioclimatic subzone of Alaskan Arctic slope (Fig. 5-6) 

(Jia et al. 2003). For this exercise uncertainty estimates for LTDR data were assumed 

applicable to GIMMS data used by Jia et al., (2003). The uncertainty in peak growing 

season NDVI data for the region was found to be 0.035 NDVI units. For the same 

bioclimatic subzone, Jia et al., (2003) reported an increase of 0.082 NDVI units over 

a period of 20 years (1981-2001). The uncertainty of 0.035 NDVI units implies that a 

minimum increase of 0.054 NDVI units is required for the change to be valid at 95 % 

confidence interval (Section 5.3). Because the reported increase of 0.082 NDVI units 

in  yearly  peak  NDVI  is  more  than  this  threshold  (0.054)  it  can  be  considered 

significant.

The  above  two  examples  demonstrate  the  effectiveness  of  this  method  to 

interpret  the  significance  of  the  inter-annual  vegetation  dynamics  inferred  from 

AVHRR NDVI data. This considerably enhances the value of the AVHRR NDVI data.

5.5. Future Directions

The uncertainty map presented in Fig. 5-3 does not cover large tracts of Earth 

surface and also does not account for temporal variability in uncertainty. This was 

primarily due to inadequate availability of cloud and snow free data. The discussion 

in sections 5.2 and 5.4 suggested that this problem can be overcome by estimating 

uncertainty  for  bioclimatic  sub-zones  instead  of  individual  pixel  locations.  The 

bioclimatic sub-zones can be characterized by intersecting aerosol climatology maps 

with land-cover map, eco-region map, or even percent vegetation cover map. This 

approach will also provide adequate data for estimation of uncertainty for individual 
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NDVI bins or compositing periods to account for seasonal variability in uncertainty. 

A global  uncertainty  map  produced  using  this  approach  can  be  of  considerable 

relevance to the Earth system science research community.

The uncertainty in AVHRR NDVI data estimated by direct comparison with 

MODIS Aqua data does not account  for the uncertainty MODIS data themselves, 

which  can  be  as  high  as  0.017  NDVI  (Vermote  et  al.  2006).  A better  spatial 

characterization of uncertainty in MODIS data and the quantification of impact of 

spatial and temporal aggregation can considerably improve the uncertainty estimates 

for AVHRR data.

Even after BRDF correction and vicarious calibration, evidence of substantial 

non-stationarity was found in AVHRR NDVI data at  vegetated areas experiencing 

constant hazy atmosphere and in vegetated hilly regions (Fig. 5-2). Presence of non-

stationarity leads to overestimation of uncertainty and also hampers the detection of 

inter-annual  trends.  Availability  of  a  global  map  of  degree  of  non-stationarity  in 

AVHRR data could be of substantial value.

Most of the future use of AVHRR NDVI data is expected to be in conjunction 

with data from MODIS, or similar sensors like VIIRS (Gallo et al. 2005; Nagol et al. 

2009; Pedelty et al. 2007; van Leeuwen et al. 1999).  In this context not only the 

random component of uncertainty but the systematic bias also becomes relevant. A 

detailed  study  of  this  aspect  of  uncertainty  can  considerably  improve  the  inter-

calibration between NDVI data from AVHRR and MODIS instruments, as is being 

undertaken by the LTDR project. 
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Both empirical (Tucker et al. 2005) as well as analytical (van Leeuwen et al. 

2006) equations have been developed for inter-calibration of AVHRR and MODIS 

data. Most of these do not account for spatial variability of the systematic bias caused 

by  changes  in  surface  and  atmospheric  conditions.  By  comparing  AVHRR  data 

directly to MODIS, more precise and location specific, inter-calibration equations can 

be developed. This kind of study would enhance the interoperability between AVHRR 

and MODIS datasets.
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