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Traffic accidents are one of the major causes of death in the United States. In 

2008 alone, more than 37,000 fatalities occurred, accounting for one fatality every 

thirteen minutes. More than one tenth of fatal accidents occur when pavements are wet 

and slippery. In wet conditions, a water film is created between the pavement surface and 

the tire, thereby reducing the amount of available friction.  

There are several factors that affect the level and type of friction between tires and 

a wet pavement surface. Some of these factors are microtexture and macrotexture, age of 

pavement, seasonal and environmental factors, traffic level and composition, individual 

and blend aggregate properties, binder used in mix, and road location/geometry. The 

research presented in this dissertation explores the impact of aggregate and mixture 



 

 

properties as well as the role of route characteristics, such as traffic intensity and 

composition, on the friction performance of Hot Mix Asphalt (HMA) pavements.   

In the research, various databases for construction, material, pavement management and 

traffic condition were examined. The data included 5 years of pavement friction readings, 

construction and material data, and traffic monitoring data. The research included 

reviewing aggregate quality requirements and friction measurements, and compiling, 

categorizing and examining the various databases to develop a working dataset/s. In 

addition, a methodology was developed to isolate and analyze data specific to a given 

roadway constructed using a known type of aggregate and mix material.  The results were 

then used to estimate pavement friction service life in terms of cumulative traffic loading. 

Multivariate Regression methods were employed to establish the relationship between 

Friction Number (FN) and cumulative AADT, for specific aggregates.  

The research also included establishing relationships between material 

properties/route characteristics and pavement friction, and investigating/developing a 

model that can be used to predict the friction performance of pavements based on these 

factors. Partial Least Squares (PLS) Regression, a type of Structural Equation Modeling 

(SEM) method, was used to extract factors from datasets in order to formulate, test and 

validate several models out of which the most significant model was selected. 
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Chapter 1.  Introduction 

1.1. Background 

Traffic accidents are one of the major causes of death in the United States. In 2008 alone, 

more than 37,000 fatalities occurred out of more than 10 million motor vehicle accidents 

(Census, 2010). The National Highway Traffic Safety Administration (NHTSA) 

estimates the rate of fatality at 1(one) fatality every 13 minutes; In addition, the cost of 

traffic crashes is estimated at more than $200 Billion every year (Noyce et al., 2005; 

NHTSA, 2004; NHTSA, 2007). Based on national estimates, approximately 13.5 percent 

of fatal accidents occur when pavements are wet and slippery. In addition, a report by the 

Maryland State Highway Administration indicated that approximately 18% of fatal 

accidents and 24.3% of all accidents occur when pavements are wet (Chelliah et al, 

2003).  

 

Many studies have indicated that there is a significant relationship between wet 

pavements and traffic crashes. In wet conditions, a water film is created between the 

pavement surface and the tire, which acts as a lubricant, thereby reducing the amount of 

contact between the grooving on the tire and the aggregates that make up the pavement 

surface (Flintsch et al., 2005). The water film results in hydroplaning, a condition in 

which there will be no or minimal friction between the tires of a vehicle and the 

pavement surface. In such a case, the driver of the vehicle would be unable to stop or 

steer the vehicle in the desired direction, especially at high speeds.  
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There are several key factors that affect the level and type of friction between vehicle 

tires and a wet pavement surface. Some of these factors are microtexture and 

macrotexture of pavement surface, age of pavement surface, seasonal and environmental 

factors, traffic level and composition, individual and blend aggregate properties, type and 

grade of binder used in mix, and road location/geometry. It is important to ensure that the 

design, construction and maintenance of pavements take into consideration these factors 

in order to maximize the friction performance of pavements. This research attempts to 

estimate the friction performance of pavements based on five years of pavement friction 

readings in Maryland and material data related to mix and aggregate properties, as well as 

route related information such as pavement age, traffic count and composition.  

 

1.2 Problem statement 

There is a significant amount of research conducted to increase the life span and 

performance of pavement materials. However there are currently no direct specifications 

available for the selection and use of aggregate and mixture design to assure satisfactory 

frictional performance. Moreover, there is not enough research on the interdependency of 

factors that affect pavement friction and how they can be used in combination to estimate 

the overall performance and friction-related lifespan of pavements. Over the years 

Maryland State Highway Administration (SHA) has encountered issues related to 

aggregate quality in regards to pavement friction. Furthermore, increased variability in 

aggregate friction test results has prompted a review of the existing approach to aggregate 

friction evaluation. To address this issue, SHA has established on-going partnering and 

quarry inspections with aggregate suppliers, and has previously conducted a research 
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project (Phase I Aggregate Data Study) that had an objective to evaluate existing 

aggregate data including laboratory test results and petrographic analysis with a particular 

focus on the frictional properties of aggregates. The objective of this research project was 

to i) estimate pavement friction service  life for mixtures with aggregates from a variety 

of quarries that supply material for Maryland SHA‘s roadway projects, and ii) relate 

pavement friction performance to aggregate and mix material properties as well as route 

related factors.  

 

1.3. Objectives of research 

The overall goal of this research project was to develop a methodology for predicting 

pavement friction life (friction performance) for mixtures with aggregates from a variety 

of quarries, and eventually relate pavement friction to aggregate properties. The specific 

objectives were: 

 

1. Identify the major factors affecting field pavement friction; 

 

2. Using the SHA pavement friction records, examine which parameters affect 

pavement friction for specific mixtures and aggregates; 

 

3. Develop a methodology for predicting pavement friction life; 

 

4. Combine SHA pavement friction and mixture data to identify any relationships 

between aggregate material properties and field pavement friction. 
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5. Develop a model that can be used to predict the friction performance of 

pavements. 

 

1.4. Research Approach and Methodology 

To achieve these objectives, the work under this research included:  

i) reviewing the current state of practice in aggregate quality requirements 

and pavement friction measurements;  

ii) compiling, categorizing and examining SHA‘s database for the 

following datasets: 

a. Pavement friction data 

b. Field pavement friction testing equipment variability data 

c. Aggregate quality database along with the aggregate quality 

requirements identified in the Phase I research study;  

d. Traffic and Construction data 

iii) identifying the need for any additional field and lab testing data needed 

to complement the existing aggregate material and friction databases;  

iv) developing a methodology for predicting pavement friction 

performance of selected mixture types and  aggregates; and,  

v) establishing the relationships between material properties/route 

characteristics and pavement friction.  
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1.5 Organization of document 

This dissertation is organized into 8 chapters as described briefly in the following 

paragraphs: 

Chapter 1: Introduction  

 

Chapter 2: Literature Review – This chapter provides an overview and background 

information on pavement-tire friction (skid resistance), as well as the 

physical mechanism of pavement friction. This chapter also discusses the 

primary factors involved in tire-pavement friction interaction by categorizing 

them into Material Related, Loading/Age Related, Environmental/Site 

Related and Testing/Vehicle Related. 

 

Chapter 3: Database and records used in research - This chapter outlines the types and 

extent of data used to conduct the research. The data sources include 

pavement friction records, materials / mix design data, aggregate lab test 

information and equipment repeatability test data. 

 

Chapter 4: Equipment Variability Study – This chapter discusses the statistical analysis 

conducted to investigate equipment repeatability and variability among the 

pavement friction testing equipment. 

 

Chapter 5: Initial Analysis on Evaluation Factors Affecting Pavement Friction – This 

chapter discusses the preliminary data investigation and analysis to identify 
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the various variables that are related to pavement friction. The analysis was 

conducted on major data sets to assess quality and validity of the data. 

 

Chapter 6 :  Methodology for Predicting Pavement Friction Life – This chapter discusses 

the ‗10- step‘ methodology that was followed in identifying, categorizing, 

simplifying and analyzing the bulk friction and material data into a usable 

form. This chapter also provides a description on the approach that was 

followed to identify specific aggregates sources and the various analysis 

techniques. The analysis investigated the use of Cumulative Annual Average 

Traffic (Cum AADT) and Equivalent Standard Axle Load (ESAL) based 

analysis to describe the friction performance of pavements together with 

aggregate and route characteristics. 

 

Chapter 7: Detailed Analysis and Modeling –This chapter builds on the steps, 

assumptions and analysis on the dataset and conclusions that resulted from 

the work in preceding chapters. This chapter outlines the approach and 

various attempts considered to arrive at valid mathematical models including 

Ordinary Least Squares and Structural Equation Model techniques. These 

models can be used to estimate friction performance of pavements based on 

the material, traffic and construction information of a given pavement.  

 

Chapter 8: Summary and Conclusions – Summary of the results and outcomes of the 

research as well as conclusions based on the data analysis and modeling are 

presented in this chapter. 
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Chapter 2.  Literature Review 

 

2.1. Background on Pavement-Tire Friction (Skid Resistance) 

Friction is generally defined as the resisting force created between a surface (or two 

surfaces) and an object, acting in the opposite direction of the intended motion. Pavement 

Friction (Skid resistance) can be defined as the resistance force developed at the interface 

of a pavement surface and the tire of a vehicle traveling on the road. The interaction 

between the rubber and the pavement surface can be in the form of sliding or rolling 

(AASHTO Guide, 2008). When any two materials come into contact, energy dissipation 

occurs as rubber from the tire interacts with surface material from the pavement. The two 

types of energy dissipation are hysteresis and adhesion (AASHTO Guide, 2008; FHWA, 

2006). During contact, the tire (which is made up of a visco-elastic material) undergoes 

deformation while the pavement, being relatively rigid, suffers minimal or small 

deformation. Energy is dissipated during the interaction between the tire and the 

pavement surface. This phenomenon is known as hysteresis (Li, Noureldin, and Zhu 

2003). The greater the energy dissipation of the tire in contact with the pavement, the 

better the skid resistance of the subject pavement. On the other hand, when the tire is 

pressed against the pavement material, molecular bonds are formed between the tire and 

surface particles. The larger the number of bonds formed in such manner, the greater the 

energy required to break the bonds and therefore better skid resistance is achieved. The 

shearing of these bonds is called adhesion (Li, Noureldin, and Zhu 2003).  
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Figure 2-1.Key mechanisms of pavement–tire friction (AASHTO Guide, 2008) 

 

In terms of skid resistance, there are two kinds of friction: static and kinetic friction. 

Static friction is the result of the interlocking of the irregularities of two surfaces (tire and 

pavement) to prevent any relative motion until and up to some motion occurs. Just after 

the motion occurs, the two surfaces start moving against one another and static friction 

will give way to kinetic friction. The purpose of the kinetic friction is to keep the object 

in motion. Usually the kinetic friction is less in magnitude than the static friction.  

 

Friction is often represented by a coefficient that is unitless (designated as μ). The 

coefficient of friction is a function of the normal (reaction) force in a direction 

perpendicular to the surface (and the resisting force which is parallel to the surface and 

acting in the opposite direction to the motion). The coefficient of friction is given as 

follows per the Law of Coulomb/Amonton: 
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μ =F/N         (Eq.2.1) 

Where μ = coefficient of friction; 

F = tractive/friction force 

N = normal force on tire (Equal to Weight on wheel, Fw) 

 

 

Figure 2-2. Simplified Diagram of Forces Acting on a Rotating Wheel (Adopted 

from AASHTO Guide, 2008) 

 

2.2. Mechanism of Pavement Friction 

 

For a vehicle traveling on given pavement, there are two forms of friction acting on the 

tire of the vehicle – longitudinal and side force friction. In longitudinal friction, there are 

two modes of operation between the pneumatic tire and road surface; rolling and 

constant-braked. In the free rolling mode (no braking), the relative speed between the tire 

circumference and the pavement, also known as the slip speed, is zero. In the constant-

braked mode, the slip speed increases from zero to a potential maximum of the speed of 

the vehicle. A locked-wheel state is often referred to as a 100 percent slip ratio and the 
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free-rolling state is a zero percent slip ratio. This relationship is depicted as follows 

(Meyer, 1982): 

 

S = V- Vp; where Vp= (0.68 ω r)      (Eq. 2.2) 

Where:   S = Slip speed, mi/hr. 

 V = Vehicle speed, mi/hr. 

 VP = Average peripheral speed of the tire, mi/hr. 

 ω = Angular velocity of the tire, radians/sec. 

  r = Average radius of the tire, ft. 

 

2.3. Primary Factors Involved in Tire-Pavement Friction Interaction   

 

The factors that determine the friction outcome of a given pavement can be summarized 

in four major categories namely Material-Related, Loading/age-related, 

environmental/site- related, and Testing/Vehicle Operation- related. 

 

2.3.1. Material Related 

 

Materials involved in the tire-pavement interaction are the rubber that makes up the tire, 

and materials that make up the pavement surface structure (aggregates and asphalt binder 

in the case of Flexible Pavements; aggregates and Portland cement in the case of Rigid 

Pavements). The tire, being a viscoelastic material, is susceptible to significant 

temperature and moisture changes. Pavement wetness especially has an impact on the 
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dissipation of energy at the contact surface between the tire and the pavement. In 

addition, the condition and type of tire plays a significant role on how water film trapped 

between the rubber and the pavement can drain out, leading to an increase in the adhesion 

between the tire and the pavement. Draining of water out of the tire-pavement interlock is 

a function of the tire tread design and the level of smoothness of the tire. Macrotexture 

(the series of larger irregularities formed by the spaces between individual aggregate 

particles) provides channels through which water can be expelled out of the tire-

pavement interface. At high speeds, tread depth is particularly important for vehicles 

driving over thick films of water. Therefore smooth tires have a significantly lower wet 

friction resistance compared to well-treaded tires (Henry, 1983). Moreover, deflated tires 

exhibit lower friction resistance on wet pavements, especially at higher speeds, because 

of the longer residence time of the water film between the rubber and the pavement 

interface (Henry, 1983; Kulakowski, 1990). 

 

There are two basic components that make up a pavement surface: aggregates (coarse and 

fine aggregates graded and blended as required) and a binding agent (Asphalt or Portland 

Cement) that are mixed together to form a durable matrix. Depending on the type, size 

and proportion of aggregates used in the pavement mixture, the pavement surface will 

have certain texture characteristics that determine the pavement‘s skid resistance. 

Pavement texture influences both parameters of friction – hysteresis and adhesion. 

Pavement surface texture refers to the irregularities on the pavement as well as the 

various irregularities on each aggregate particle used on the pavement surface. The 

surface irregularity of individual particles is referred to as ―Microtexture‖. Microtexture 
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ranges in size from 0.0004 in. to 0.02 in. The larger irregularities formed by the spaces 

between individual particles on the pavement surface are called ―Macrotexture‖. 

Macrotexture can range in size from 0.02 in. to 2 in. Microtexture and adhesion are the 

prevailing factors influencing skid resistance at speeds less than 30 mph (AASHTO 

Guide, 2008). Other surface irregularities that are larger in size than 2 inches and less 

than 20 inches are called Megatexture. (PIARC, 1987). Irregularities that are larger than 

20 inches are considered as roughness and have minimum bearing in pavement skid 

resistance (Henry 2000). 

Table 2-1. Factors affecting pavement friction 

Material Related Loading/Age Related Environmental/Site 

Related 

Testing/Vehicle  

Related 

Tire Rubber 

 

Pavement Surface 

Materials 

 Micro-texture 

 Macro-texture 

 Megatexture/Un

evenness 

 Binder Type and 

Content 

 Mix Properties 

o Mix 

Type 

o Mix 

Charact

eristics 

 Aggregate 

Properties 

o Gradati

on/Parti

Traffic Volume (AADT) 

 

Traffic Composition/truck 

percentage 

 

Pavement Construction 

year/Pavement Age 

 

 

 

Urban/Rural 

 

Road Geometry 

 Vertical 

Alignment 

 Horizontal 

Alignment 

 Cross Slope 

 

Temperature (Pavement 

and Air) 

 

Rainfall 

 

Pavement Surface 

cleanliness 

Vehicle 

Speed/Slip Speed 

 

Tire Tread 

(Design, smooth 

vs ribbed) 
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cle Size 

o Angular

ity/Asp

erity 

o Toughn

ess 

o Carbon

ate/non-

carbona

te 

o Silica 

content 

 

 

 

Figure 2-3. Texture wavelength influence on pavement–tire interactions (AASHTO Guide, 2008) 
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Figure 2-4. Representation and examples of surface textures (FHWA, 2006) 

Several literature indicate that microtexture and macrotexture ultimately determine wet-

pavement friction. This is because the adhesion force component depends on the 

microtexture and the hysteresis force component on the macrotexture (Henry, 2000). 

Also, surface drainage depends on the separation between individual particles which is 

represented by the macrotexture. A pavement with high roughness does not necessarily 

have large surface friction. On the other hand, an attempt to enhance pavement friction by 

making surface too coarse or too smooth may result in high noise, splash, or spray 

problems. The design of surface texture therefore requires a balance and compromise 

among skid resistance, internal/external noise, tire wear, and splash/spray. 
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Aggregate and mix characteristics, surface treatments such as tinning and other surface 

finishes influence both microtexture and macrotexture. Individual and grouped aggregate 

resistance to polishing and abrasion has direct contribution to friction resistance of the 

pavement surface while the type and amount of binder used in a particular mixture 

determines the coating on each aggregate, thereby affecting both macrotexture and 

microtexture . The type and composition of pavement mixture (type and grade of binder 

and gradation of aggregate blend) has been found to be significantly correlated to of the 

effect of polishing using the British Pendulum Number (BPN) (Bazlamit, 2005). The 

following aggregate properties have correlations with the friction performance of a 

pavement: 

 Presence of Carbonates: Skeritt discussed the various impacts of the three 

different types of aggregates – homogenous, sandy and blend - classified based on 

their polishing characteristics; one significant element of aggregates that has been 

found to have an impact on polishing resistance is the presence of carbonates in 

the mineralogical composition of the aggregates. The lower the percentage of 

carbonates available in an aggregate blend, the higher the resistance of the 

aggregate blend to polishing. (Skeritt, 1993) 

 Presence of Silica: Skeritt found out that, generally sandy rocks have a higher 

resistance to polishing irrespective of the traffic level.  One way of quantifying 

this quality is by using the Acid Insoluble Residue (AIR) test. This test measures 

the percentage of acid insoluble residue that withstood degradation from a 

chemical action. NYSDOT specifies that good polishing resistant aggregates 

should have an AIR of 15% or more. (Skeritt, 1993). 
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 Toughness: Toughness, as measured by the Los Angeles Abrasion or the Micro-

Deval Test, is another method of quantifying how a bulk of aggregates is able to 

resist abrasion and degradation from mechanical and physical impacts. It is 

important to note that, though toughness might not directly relate to polishing 

resistance of aggregates on the actual pavement, it can be correlated to other more 

directly applicable tests such as the British Wheel (reported as the British 

Pendulum Number, BPN).  (SHA Phase I study 2008; Massad, 2008)  

 Gradation and Angularity – Luce et al (2007) have investigated the impact of 

aggregate gradation using samples obtained from various sources and used in 

three different mixes. In this study, it was observed that aggregate gradation, 

represented using certain model coefficients, can be used to predict skid resistance 

of pavements.  

 Chemical Reactivity /Inertness – Good aggregates are those that are inert, i.e. do 

not chemically interact with other compounds unless needed. One test that 

measures durability of aggregates against chemical action is called ―Magnesium 

Sulphate Soundness Test‖, which measures the percent loss of aggregates due to 

chemical weathering. Since the pavement surface is exposed to various pollutants 

and chemicals, it is important that aggregates used on pavement surfaces be 

highly resistant to weathering by chemical action.   

 Clay Content/Friable Particles – It has been found that excessive clay lumps and 

friable particles in aggregate intended for use on pavements may interfere with the 

bonding between the aggregate and the binding material. This will result in 

spalling, raveling, or stripping and create weak points and pop-outs out of the 
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pavement structure hence compromising its skid resistance and other qualities. 

(Kandhal, 1998). One standard test to measure this phenomenon is AASHTO T 

112 (Clay Lumps and Friable Particles in Aggregates).  

 Resistance to Polishing as measured by the Accelerated Polishing Test (Using 

British Wheel) and the British Pendulum Test (BPT) – The resistance to polishing 

and abrasion is not dependent on one particular aggregate property. As a result, it 

is important to measure the actual performance of the resistance of an aggregate 

blend or mixture to continued physical and mechanical abrasion using the above 

tests (FHWA, 2006). 

 

In addition to individual and group aggregate properties, the type and composition of the 

pavement surface mixture also plays a significant role in determining the friction 

performance. Studies have shown the impact of texture and aggregate surface 

characteristics on the outcome of pavement friction for various Hot Mix Asphalt mixtures 

that were made up of aggregates obtained from various sources and with varying 

mineralogical compositions (Masad 2007, 2008; Luce et al 2007; Li et al 2007). Li et al 

investigated friction performance of various mixes in Open Graded Friction Courses 

(OGFC), Stone Matrix Asphalt (SMA) and Superpave mixes that were made of steel slag, 

crushed gravel or naturally obtained aggregates. Luce et al also investigated quartzite, 

sandstone, and siliceous gravel, combined in three different mix types referred to as 

Superpave, CMHB-C, and Type C (Texas Specific Mixes). The type and performance of 

the binder used in mixes also plays a role in the friction performance as investigated by 

Luce et al. In addition, aggregate spacing together with gradation determines the type and 
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size of Macrotexture of an aggregate blend. Fwa et al (2003) have shown that aggregate 

spacing (within a blend) and mineralogy have an impact on skid resistance of pavements. 

Cafiso et al demonstrated using aggregate imaging and photographic techniques that the 

British Polish Number has a significant correlation with surface smoothness/roughness of 

aggregate particles, by using various descriptors of the aggregate surface (Cafiso et al 

2006). Moreover, petrography and rock composition of aggregates used in the 

preparation of a pavement mixture play a significant role in the friction performance of 

the pavement (Masad, 2008; SHA Phase I study, 2008).   

 

2.3.2. Loading/Age Related 

Pavement friction performance can be attributed to factors pertaining to the age of the 

pavement surface and the amount and type of traffic applications on the particular 

pavement section. The rate of polishing of a given pavement surface is a direct result of 

the number and type of traffic applications on the pavement. Studies have shown that 

friction performance increases gradually for the first year or two after construction – 

attributed to binder flushing – and decreases thereafter with an increasing traffic loading 

(Li et al, 2007). It has also been shown that pavements constructed with different 

aggregate types exhibit varying rate of decline in friction performance (Skerritt, 1993; 

Crouch et al, 1998). Rate of friction performance as a result of repeated traffic loading is 

also dependent on the homogeneity of the aggregate blend.  

 

Pavement Construction year/Pavement Age – The number of years a pavement surface 

has been in service determines how the surface would perform in terms of skid resistance. 
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Studies have shown that the skid resistance of pavements decreases from an initially 

higher value to a somewhat constant value in a matter of a few years (Masad 2008; Li et 

al 2007). 

 

Traffic Volume (AADT) and Traffic Composition (ESAL) – Pavement aging can be 

enhanced by the amount and type of traffic using the road on a continuous basis. It has 

been found out that the decline of skid resistance can be attributed to the Average Annual 

Daily Traffic (AADT) (Skeritt, 1993) and the traffic mix as expressed in terms of 

Equivalent Standard Axle Loading (ESAL) (Li et al, 2007).  

 

2.3.3. Environmental/Site Related 

The main environmental or site related factors that have an impact on pavement friction 

are road geometry as represented by general location of route (urban versus rural) 

horizontal and vertical geometry (grade, curvature, cross slope), pavement and air 

temperature, rainfall (frequency and severity), pavement wetness, presence of snow/ice 

and general pavement surface cleanliness.  

 

Temperature - Because tires are made up of rubber which is a visco-elastic material, their 

characteristics are affected by higher temperature (caused by repeated and sudden 

braking) which causes hydroplaning as a result of melting of the rubber material. This 

condition causes a reduction in the hysteresis component of the friction resistance. The 

hysteresis component is found to comprise a larger portion of the total friction force than 

the adhesion component as measured with the British pendulum tester. The hysteresis 
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component of friction decreases with increased temperature regardless of surface texture 

state. The adhesion component of friction decreases with increased temperature for a 

polished pavement surface. (Bazalmit et al, 2005) 

 

Smith, Chen, Song and Hedfi have found by studying the climate and friction records of 

the pavement network in Maryland that One degree ( 
0
F ) increase in temperature leads to 

one unit decrease in FN (Chen et al, 2005). It has been found that skid resistance 

decreases with increased temperature, and an approximately linear relationship exists 

between skid resistance and temperature with resulting models relating British Pendulum 

Number (BPN) and skid number obtained at any arbitrary temperature to a reference 

temperature of 293.15 K ~68°F (Bazlamit et al, 2005) 

 

Pavement wetness - The two mechanisms by which energy is dissipated and friction force 

is developed through transfer of energy are hysteresis (loss of heat from the rubber) and 

adhesion (transfer of energy by contact). Generally adhesion is related to Microtexture 

while hysteresis is related to Macrotexture. When the pavement is wet, a water film is 

created between the two materials causing a drop in the adhesion component. The 

presence of water film between tire and pavement creates a condition called 

hydroplaning, which results in an almost zero friction resistance of the pavement. It has 

been discovered that the effect of water film is not significant at speeds less than 25 mph 

while it has been found that it has a negative impact on the friction performance of the 

pavement at speeds higher than 40mph (AASHTO Guide, 2008). 
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Snow/Ice- Related to pavement wetness, snow and ice also create a film between the tire 

and the pavement which reduces the skid resistance of the pavement.  

 

2.3.4. Testing/Vehicle Related 

Many states use tractor-trailer assembly to measure the skid resistance of a pavement 

surface as prescribed in the ASTM E 274 testing procedures. In this test a tractor trailer 

combination consisting of a mid-size truck and a two-wheel trailer are driven over the 

pavement to record the skid resistance of the pavement surface by using a two-axis force 

transducer(s) mounted on the axle assembly. As a result the quality of the friction 

readings recorded using this equipment are dependent on the following factors: 

    

Slip Speed - the speed at which the vehicle is traveling has a direct relationship with the 

slip speed. It has also been discovered that the coefficient of friction between a tire and 

the pavement changes with varying slip (Henry, 2000). Skid Resistance increases sharply 

with increasing slip to a peak value that usually occurs between 10 to 20 percent slip. The 

friction then decreases to a value known as the coefficient of sliding which stabilizes to a 

100 % slip and a constant value of coefficient of friction which occurs at 100 percent slip. 

Speed also impacts the side friction resistance. The following figure shows the 

relationship between percentage of tire slip and coefficient of friction. 
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Figure 2-5. Pavement Longitudinal Friction versus Tire Slip (Henry, 2000) 

 

Research has also shown that Friction Number (FN) varies with changes in test speed, 

and that there is a strong linear correlation between readings done using the ribbed tire 

for the ASTM E-274 test at 25 mph and 40 mph with the best relationship between these 

two parameters found to be to be polynomial (Jackson, 2008; Li et al, 2007). It has also 

been shown using actual friction readings in Maryland that FN values decrease at a rate 

of approximately 9 FN units per an increase of 5 mph in test speeds (Goulias et al, 2007). 

At speeds less than 40 mph, the microtextue (adhesion) component contributes greatly to 

the skid resistance, while macrotexture governs at higher speeds the (Dewey et al, 2001). 
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Chapter 3. SHA Materials database and Pavement Friction Records 

In order to study the relationships between pavement friction and aggregate properties the 

following databases and records were used. 

3.1. Pavement Friction Records 

The pavement friction records considered in this study included 5 years friction data, 

from 2004 to 2008 with approximately 160,000 records. Overall the data are 

organized by Year and Route. The fields included in the database are shown in Table 

3-1, while a screen shot of the Friction Database in Microsoft Access is shown in 

Figure 3-1. Most of the data were collected from early spring to late Fall. However 

there was variability in the timing of surveys at the same location from year to year. 

For example the data collected in 2004 were collected from March to September, 

while for 2006, the friction surveys were run from April to November, and so on. 

About 72% of the friction surveys represent sections with FN (Friction Number) 

values between 36 and 55. The data include sections that have been surveyed for the 5 

consecutive years, and thus include the historical change of FN over time. Any 

missing values and/or values outside the expected range of FN were identified and 

flagged in the database.  About 50% of the sections were surveyed at the specified 

slip speed of 40mph, and about 84% of the sections surveyed between 2004 and 2008 

were evaluated at speeds between 38 and 42 mph.  The reported AADT (Annual 

Average Daily Traffic) values reflect the local conditions (Rural vs Urban). About 

95,000 of the surveyed sections were collected on rural conditions. Inconsistencies in 

AADT counts between consecutive years for the same sections were examined. In 

some cases there were missing AADT entries and/or very low values. These data 
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were further examined. The contract numbers were cross referenced from the friction 

database to the construction database in order to include information regarding the 

year of rehabilitation/maintenance (―ACTION_YEAR‖) related to the specific 

sections that the friction surveys were conducted, and for identifying the type of 

material used (―Material_Type‖). For a certain number of sections, no rehabilitation 

information was available, and as a result the age of the existing roadway surface is 

unknown. In the data, there are also sections that have not received any rehabilitation 

in the last 40 to 50 years. These data were further examined.  In terms of materials, 

the majority of the roadway surfaces in the database represent HMA (Hot Mix 

Asphalt) mixtures. Therefore, HMA was primarily targeted for the analysis of this 

study. 
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Table 2-2. Name, Type and description of fields in the “Friction” Database 

Field Name Data Type Description 

YEAR Number 

 CODE Number County Code 

MUN Number 

 ROUTE Text 

 RNUM Number RouteNumber 

RSUFF Text 

 Mile Number 

 DIRECTION Text 

 SPEED Number 

 FN Number 

 DATE Date/Time Date of Survey 

AADT Number 

 UorR Text Urban vs Rural 

ACTION_YEAR Number from construction history 

CONTRACT Text This is from Construction History 

Material_Type Text This is type of material used 

DayCompleted Date/Time This is maintenance date 

MonthCOmpleted Text This is maintenance month 

YearCOmpleted Number This is maintenance year 

MaintenanceContract Text This is contract number in maintenance history 

ProjectType Text Maintenance Type 

Truck Number 5: International Cybernetics; 6: Dynatest 

 

 



 

 

 

 

 

 

Figure 3-1. Screen Shot of Pavement friction Data in Access 

 

 



 

 

3.2. Materials / Mix Design Database. 

The SHA Mix design database provides infrormation regarding the materials and 

mixtures used in pavement construction, including aggregate and binder information, 

source of materials and proportioning (Table 3-3). Specifically for the aggregate source, 

the aggregate gradation is often composed of a blend of aggregates from different 

sources, providing a blend of different aggregate types for each mixture (Figure 3-3). 

This has been a limitation in the research study in terms of identifying the effects of a 

single aggregate type/source on pavement friction performnace.  

 

3.3. Merged Material and Friction Database. 

In order to relate pavement friction to aggregates, the pavement friction records and the 

mixture databases were merged by using the ―Contract‖ Column form the Friction 

Database with the ―Project ID‖ column from the Mix Design Database. This resulted in 

about 52,000 records. The merged database (master database) was used to extract 

material and pavement friction related information for detailed data analysis. 

 

3.4. Aggregate Bulletin Database 

The Aggregate Bulletin database contains a list of tests that are performed annually by 

the Maryland State Highway Administration (except Polish Value, Soundness and Alkali-

Silica Reactivity tests which are done every three years), on samples obtained from 

producers. Figure 3.3 provides an example of the data in the Aggregate Bulletin.  In 

addition to the Aggregate Bulletin data, any information related to petrographic/ texture 
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aggregate characteristics in the SHA records were used, when found appropriate. These 

included among others: 

 General Information 

o Supplier (Source Location), Date, sample information, SHA Track Series 

 General Classification (Carbonate or Non-Carbonate) 

 Insoluble Residue Analysis 

 Textural Description 

 General Aggregate Testing Results: 

o Specific Gravity 

o Absorption 

o Los Angeles Abrasion 

o Sodium Sulphate Soundness 

o Polish Value 

o British Pendulum Number (BPN) 
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Table 3-1. Name, type and description of Fields in the “Mix Design” database 

Column Format 

ID Number 

Mix Design Text 

Mix Size Text 

Date Approved Text 

Date Verified Text 

Current Yes/No 

Final Yes/No 

Date rescinded Text 

Traffic Level Text 

Plant Text 

Gmm Number 

Gmb Number 

Binder% Number 

Binder Source Text 

Binder Grade Text 

Gb Number 

MixTemp Text 

MoldTemp Text 

Gsb Number 

D/B Number 

50 Number 

37.5 Number 

25 Number 

19 Number 

12.5 Number 

9.5 Number 

4.75 Number 

2.36 Number 

1.18 Number 

0.6 Number 

0.3 Number 

0.15 Number 

0.075 Number 
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Table 3-1: Name, type and description of Fields in the “Mix Design” database (Continued) 

AS1 Text 

AS1 Old Text 

AS1% Number 

PV1 Text 

AS2 Text 

AS2Old Text 

AS2% Number 

PV2 Text 

AS3 Text 

As3Old Text 

AS3% Number 

PV3 Text 

AS4 Text 

AS4Old Text 

AS4% Number 

PV4 Text 

AS5 Text 

AS5Old Text 

AS5% Number 

PV5 Text 

AS6 Text 

AS6Old Text 

AS6% Number 

PV6 Text 

AS7 Text 

AS7Old Text 

AS7% Number 

PV7 Text 

RAPCA% Number 

RAP Binder% Number 

MixPV Number 

Mineral Filler Source Text 

TSR Number 

Log Number Number 

Comments Text 

 



 

 

 

 

 

Figure 3-2. Screen Shot of Mix Design database 
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Figure 3-2: Screen Shot of Mix Design database (continued) 
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Figure 3-2: Screen Shot of Mixture database (continued) 
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Figure 3-3. Example of data in the 2005 SHA Aggregate Bulletin (Coarse Aggregates)
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3.5. Equipment Repeatability Data 

SHA is conducts repeatability pavement Friction tests annually on test sections along the 

I-795 corridor. The records shown in Table 3-4 were provided for the analysis of this 

research study. These included equipment repeatability runs on both flexible and rigid 

pavements in 2006 and 2007 using SHA‘s Locked Wheel pavement friction trucks, Truck 

#5 - International Cybernetics Corporation, and Truck #6 - Dynatest. 

Table 3-2. Summary of Equipment Variability Tests 

 

Test Date Equipment Flexible/Rigid 

01/27/2006 Truck 5 Both 

09/06/2006 Truck 5 Both 

03/20/2007 Truck 5 Both 

03/20/2007 Truck 6 Both 

06/21/2006 Truck 5 & 6 Flexible 
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Chapter 4. Equipment Variability Study 

The Maryland State Highway Administration uses Locked-Wheel Skid Testers (LWST), 

for its annual pavement friction surveys. The friction database used in this research 

project contains Friction readings collected using equipment designated as Truck 5 and 

Truck 6 in the database. The friction surveys are conducted per ASTM-E274. Equipment 

Assembly (Truck) 5 is an older, standard Dynatest 1295 model vehicle with the following 

specifications: 

 

 Computer controlled Pavement friction tester developed to operate between 20 

and 70 mph while computing the dynamic skid number (Dynatest Operating 

Manual, 2003) 

 The tractor trailer combination consists of a mid-size truck (e.g. GMC Sierra) and 

a two-wheel trailer which uses one or two model 1270 two-axis force 

transducer(s) mounted on the axle assembly. 

 The truck is equipped with portable computer and printer with Windows 

Operating System 

 

Equipment Assembly 6 uses an identical trailer but with a larger truck (a ―Custom 

International Truck Chassis with utility body‖ – Dynatest Website). 

 

In both equipment the on-board computer calculates the dynamic Skid Number FN (t) 

from the two-axis force transducer(s) in real time, and displays the friction and speed 

traces on the portable test screen. The test headers, skid numbers and other 

http://www.astm.org/cgi-bin/SoftCart.exe/DATABASE.CART/REDLINE_PAGES/E274.htm?L+mystore+oslo9582
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information can be stored to a hard disk or sent directly to  printer. 

 

This research involved reviewing friction readings collected using both equipment 

along the I-795 corridor in Baltimore County and investigating the repeatability of 

data within and between the two equipment. 

 

As mentioned above, SHA (State Highway Administration) uses two locked wheel 

friction devices, Truck #5 - International Cybernetics Corporation model, and Truck #6 

the Dynatest model, to conduct annual pavement friction surveys. As listed in Table 3-4, 

the friction devices were used to collect repeatability and side by side comparison data on 

both flexible and rigid pavement sections of I-795 at different times. These readings were 

analyzed as part of the research study and the results are presented next. 

 

4.1.  Individual Equipment Repeatability. 

4.1.1. Truck #5 - International Cybernetics Corporation model 

A series of repeatability testing records collected on the same mile post and same day 

were examined. This included repeated testing conducted on both flexible and rigid 

pavement sections on the following dates:  

01/27/06 (at 9:43am, and 10:07 am);  

09/06/06 (at 11:41am, 11:59am, 12:54pm, and 1:14pm); and, 

 03/20/07 (8:47am, 9:11am, 9:43am, and 12:03pm).   
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The milepost numbers of the surveyed sections were matched so as to compare the FN 

(Friction Number) values for the same sites. An example of such data is shown in Tables 

4-1 and 4-2 along with the summary statistics, and based on the four repeatability records 

of 09/06/06. As it can be seen in the tables and figures, the average value of the 

coefficient of variation (CV) for this devise ranges from 2% to 3% with individual values 

all the way up to 7%. Figures 4-1 and 4-2 show the FN measurements in the flexible and 

rigid sections of I-795 in relation to the milepost. Examining the repeatability data 

collected on other testing dates for this device, it was concluded that for flexible 

pavements, the average CV ranged from 1% to 2%, while for rigid pavements, the 

average CV ranged from 1% to 3%. Considering the level of FN values (average FN of 

60 for the flexible and FN of 50 for the rigid pavement sections) the equipment 

repeatability introduce into the friction measurements, on the average, a variability of +/- 

1.2FN and 1.5FN units for flexible and rigid pavements respectively.  

In addition to the variability analysis, ANOVA (Analysis of Variance) was conducted on 

the repeated runs for assessing whether the measurements collected from the repeated 

runs can be statistically considered from the same population. The analysis are presented 

in Tables 4-3 and 4-4 for the FN measurements in the flexible and rigid sections of I-795 

that were collected on 09/06/2006. As it can be concluded from the statistical analysis, 

the null hypothesis (i.e., there is not significant variability among the means of the four 

different runs) is accepted since the F-calculated/Observed < F critical at an alpha value 

of 0.05. The same conclusions were obtained with the data collected on other dates.   
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4.1.2. Truck #6 - Dynatest model  

For this device the repeated runs collected on 03/20/07 (11:49am, 12:11am, and 12:32pm 

for flexible pavements, and 11:49am, and 12:32pm for rigid pavements) were used. The 

milepost numbers of the surveyed sections were matched and compared so as to evaluate 

the corresponding FN values. This data is shown in Tables 4-5 and 4-6 along with the 

summary statistics. As it can be seen the average value of the coefficient of variation 

(CV) for this device is ranging from 5% to 6%, with individual values all the way up to 

20%. Figures 4-3 and 4-4 show the FN measurements in the flexible and rigid sections of 

I-795 in relation to the milepost. Considering this magnitude of variability along with the  

level of FN values (average FN of 60 for the flexible and FN of 55 for the rigid pavement 

sections) the equipment  repeatability introduce into the friction measurements, on the 

average, a variability of +/- 3.0 FN and 3.3FN units for flexible and rigid pavements 

respectively.  

In addition to the variability analysis, t-test and ANOVA was conducted on the repeated 

runs for assessing whether the measurements collected from the repeated runs can be 

considered – statistically- to be from the same population. While the ANOVA showed 

that the null hypothesis was rejected (i.e., there is significant variability among the means 

of the different runs), the t-test showed that the records collected from the repeated runs, 

when compared two at a time, can be considered to be from the same population. These 

results are further examined from the research group along with the individual values 

reported. 
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4.2.  Equipment Side by Side Comparison. 

For the comparison of the friction measurements between these two devices, the data 

collected on 06/21/06 were used. The milepost numbers of the surveyed sections were 

cross linked, specifically for the flexible test sections, so as to compare and analyze the 

FN values representing the same sections. For the rigid pavement sections, the reported 

mileposts between the two devices did not match, thus the analysis where not included. 

The comparison for the flexible sections is shown in Table 4-7 along with the summary 

statistics. As it can be seen, the average difference (CV) between the values produced by 

these two devices is of the order of 7%, and with individual values all the way up to 13%. 

Truck #6 always provided higher values than Truck #5. Figure 4-5 shows the FN 

measurements reported for the two friction trucks in relation to mileposts. Considering 

the level of FN values where these measurements were taken (average FN of 55), it is 

expected to observe a higher FN value of about  + 6.5 FN units when truck # 6 is used in 

relation to #5.  This is often reflected in the friction database when different devices are 

used, year after year, for surveying the same sections. In addition to the variability 

analysis, t-test and ANOVA was conducted on the data collected from the two trucks. As 

expected, both the t-test and ANOVA showed that neither the set of individual values (t-

test) nor their averages (F-test) can be considered - statistically speaking - to represent 

samples from the same population. These results are shown in Table. 4-8.  
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Table 4-1. Repeatability of Truck #5 International Cybernetics Corporation on 

Flexible Pavement Sections of I-795 (09/05/06) 

11:41:29 

AM 

 

11:59:21 

AM 

 

11:54:22 

AM 

 

1:14:11 

PM 

 

MP 

FN 

Reading MP 

FN 

Reading MP 

FN 

Reading MP 

FN 

Reading 

0.183 62.4 0.189 64.2 0.191 63.9 0.192 62.8 

0.281 60.6 0.286 59.6 0.29 61.4 0.292 58.9 

0.381 60.5 0.388 62 0.39 61.7 0.391 62.6 

0.482 58.7 0.486 58.7 0.49 59.4 0.491 61.3 

0.581 53.2 0.587 55.6 0.589 54.2 0.591 54.6 

0.682 60.3 0.686 59.3 0.69 61.3 0.69 59.6 

0.782 63.5 0.787 59.6 0.791 64.2 0.791 62.3 

0.882 63.6 0.887 62 0.889 63.2 0.891 61.2 

0.983 63.5 0.986 62.4 0.99 64.8 0.991 61.8 

 

 

Average SD Variance COV 

63.3 0.9 0.7 1% 

60.1 1.1 1.2 2% 

61.7 0.9 0.8 1% 

59.5 1.2 1.5 2% 

54.4 1.0 1.0 2% 

60.1 0.9 0.8 1% 

62.4 2.0 4.1 3% 

62.5 1.1 1.2 2% 

63.1 1.3 1.7 2% 

 

Average CV 2% 
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Table 4-2. Repeatability of Truck #5 International Cybernetics Corporation on 

Rigid Pavement Sections of I-795 (09/05/06) 

11:41:29 

AM 

 

11:59:21 

AM   

11:54:22 

AM   

1:14:11 

PM   

MP 

FN 

Reading MP 

FN 

Reading MP 

FN 

Reading MP 

FN 

Reading 

4.381 49.8 4.382 51.9 4.386 46.2 4.384 50.2 

4.481 50.9 4.481 49 4.486 47 4.484 47.9 

4.581 50.6 4.581 50.8 4.586 46.8 4.583 48.4 

4.681 48.8 4.681 50.6 4.686 49.1 4.683 56 

4.781 52.1 4.782 51.9 4.786 52.2 4.784 51 

4.881 49.5 4.881 50.3 4.885 49.2 4.883 50.7 

4.98 47.3 4.981 51.4 4.986 46.3 4.983 48.9 

5.081 49.4 5.082 50.5 5.086 53.2 5.084 47.1 

5.25 47.9 5.243 49.9 5.24 47.8 5.237 46.5 

5.372 50.2 5.343 49.3 5.34 48.8 5.338 49.6 

 

Average SD Variance COV 

49.5 2.4 5.7 5% 

48.7 1.7 2.8 3% 

49.2 1.9 3.6 4% 

51.1 3.3 11.2 7% 

51.8 0.5 0.3 1% 

49.9 0.7 0.5 1% 

48.5 2.2 4.9 5% 

50.1 2.5 6.4 5% 

48.0 1.4 2.0 3% 

49.5 0.6 0.3 1% 

 

Average CV 3% 
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Figure 4-1. Repeatability of Truck #5 International Cybernetics Corporation on 

Flexible Pavement Sections of I-795 (09/05/06) 

 

Figure 4-2. Repeatability of Truck #5 International Cybernetics Corporation on 

Rigid Pavement Sections of I-795 (09/05/06) 
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Table 4-3. ANOVA for Repeatability of Truck #5 International Cybernetics 

Corporation on Flexible Pavement Sections of I-795 (09/05/06) 

SUMMARY 

       Groups Count Sum Average Variance 

   Column 1 9 546.3 60.7 10.93 

   Column 2 9 543.4 60.38 6.49 

   Column 3 9 554.1 61.56 10.5725 

   Column 4 9 545.1 60.56 6.7375 

   

        ANOVA 

       Source of 

Variation SS df MS F P-value F crit 

Between Groups 7.4741 3 2.491 0.286 0.834 2.90 

Within Groups 277.895 32 8.684 

   

       Total 285.369 35         
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Table 4-4. ANOVA for Repeatability of Truck #5 International Cybernetics 

Corporation on Rigid Pavement Sections of I-795 (09/05/06) 

SUMMARY 

     Groups Count Sum Average Variance 

  Column 1 8 398.4 49.8 2.091 

  Column 2 8 406.4 50.8 0.91 

  Column 3 8 390 48.75 7.34 

  Column 4 8 400.2 50.025 7.730 

  

       ANOVA 

      Source of 

Variation SS df MS F P-value F crit 

Between Groups 17.16 3 5.72 1.26 0.30 2.94 

Within Groups 126.555 28 4.51 

   

       Total 143.718 31         
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Table 4-5. Repeatability of Truck #6 Dynatest on Flexible Pavement Sections of  

I-795 (03/20/07) 

 

11:49:00 

AM   

12:11:00 

PM   

12:32:00 

PM   

MP 

FN 

Reading MP FN Reading MP FN Reading 

1.11 62.1 1.152 59.2 1.109 56.8 

1.21 58.5 1.252 65.6 1.205 61.6 

1.31 52.1 1.352 59.2 1.307 61.3 

1.409 50.9 1.452 61 1.407 63.6 

1.507 56.4 1.552 58.4 1.507 58 

1.602 57.9 1.652 59.4 1.611 61.8 

1.71 57.8 1.752 59.9 1.71 63 

1.811 60.3 1.852 62.1 1.804 61.8 

1.912 49 1.952 58.2 1.907 61.2 

2.009 57.8 2.052 53.4 2.008 62.9 

 

Average SD Variance COV 

59.4 2.7 7.0 4% 

61.9 3.6 12.7 6% 

57.5 4.8 23.2 8% 

58.5 6.7 45.0 11% 

57.6 1.1 1.1 2% 

59.7 2.0 3.9 3% 

60.2 2.6 6.8 4% 

61.4 1.0 0.9 2% 

56.1 6.4 40.4 11% 

58.0 4.8 22.6 8% 

 

Average CV 6% 
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Table 4-6. Repeatability of Truck #6 Dynatest on Rigid Pavement Sections of I-795 

(03/20/07) 

11:49:00 

AM   

12:32:00 

PM   

MP 

FN 

Reading MP 

FN 

Reading 

5.082 54.2 5.077 51.7 

5.18 54.1 5.185 54.7 

5.27 56.1 5.275 56.7 

5.38 56.5 5.378 58.7 

5.475 54.6 5.479 45.9 

5.579 54.5 5.581 57.3 

5.682 53.3 5.677 55.6 

5.781 57.1 5.778 43.1 

5.901 55.9 5.9 56.4 

5.999 54.6 6.003 53.2 

 

Average SD Variance COV 

53.0 1.8 3.1 3% 

54.4 0.4 0.2 1% 

56.4 0.4 0.2 1% 

57.6 1.6 2.4 3% 

50.3 6.2 37.8 12% 

55.9 2.0 3.9 4% 

54.5 1.6 2.6 3% 

50.1 9.9 98.0 20% 

56.2 0.4 0.1 1% 

53.9 1.0 1.0 2% 

 

Average CV 5% 
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Figure 4-3. Repeatability of Truck #6 Dynatest on Flexible Pavement Sections of  

I-795 (03/20/07) 

 

Figure 4-4. Repeatability of Truck #6 Dynatest on Rigid Pavement Sections of 

 I-795 (03/20/07) 
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Table 4-7.  Side by Side Comparison for Truck #5 and #6 on Flexible Pavement 

Sections of I-795 (06/21/06) 

  

   Truck #5   Truck #6   

MP 

FN 

Reading MP 

FN 

Reading 

1.144 52.9 1.155 60.9 

1.243 51.9 1.255 62.2 

1.342 52.1 1.355 54.5 

1.443 52 1.455 60.9 

1.542 49.4 1.555 53.9 

1.643 52.8 1.655 56.4 

1.743 53.5 1.755 60.1 

1.842 53.4 1.855 57.6 

1.942 54.6 1.955 57.2 

2.042 53.1 2.055 58.4 

 

Average SD Variance COV 

56.9 5.7 32.0 10% 

57.1 7.3 53.0 13% 

53.3 1.7 2.9 3% 

56.5 6.3 39.6 11% 

51.7 3.2 10.1 6% 

54.6 2.5 6.5 5% 

56.8 4.7 21.8 8% 

55.5 3.0 8.8 5% 

55.9 1.8 3.4 3% 

55.8 3.7 14.0 7% 

  Average CV   7% 
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Figure 4-5 . Side by Side Comparison for Truck #5 and #6 on Flexible Pavement 

Sections of I-795 (06/21/06) 
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Table 4-8. Statistical Analysis for Side by Side Comparison of Truck #5 and #6 on 

Flexible Pavement Sections of I-795 (06/21/06) 

T-test 

  Variable 1 Variable 2 

Mean 52.57 58.21 

Variance 1.906 7.889 

Observations 10 10 

Hypothesized Mean 

Difference 0 

 df 13 

 t Stat -5.698 

 P(T<=t) one-tail 3.6573E-05 

 t Critical one-tail 1.770 

 P(T<=t) two-tail 7.31E-05 

 t Critical two-tail 2.160   

 

Analysis of Variance 

SUMMARY 

      Groups Count Sum Average Variance 

  Column 1 10 525.7 52.57 1.90 

  Column 2 10 582.1 58.21 7.88 

  

       

       ANOVA 

      Source of 

Variation SS df MS F P-value F crit 

Between Groups 159.048 1 159.048 32.46 2.1E-05 4.413 

Within Groups 88.17 18 4.898 

   

       Total 247.218 19         
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Chapter 5.  Initial Analysis on Evaluation of Factors Affecting Pavement Friction 

 

An initial set of analyses were conducted using all the friction records between 2004 and 

2008. The friction records were analyzed by grouping either by individual or by group of 

counties, rural versus urban, or by specific route. At the onset, it was decided to eliminate 

any potential friction records related to potential data entry errors (i.e., FN<15 and 

FN>70), and analyze the records from Interstates separately from local (US and MD) 

roads. Some of the results are shown in Figures 5-1 through 5-12 (all figures and tables 

are located at the end of the chapter).  As it can be seen from the analysis, the scatter/ 

variability in relating Friction Number (FN) to Annual Average Daily Traffic (AADT) 

and/or years-since-last-rehabilitation is considerable thus providing insignificant 

relationships (poor R
2
). This is true whether the data are analyzed by group of counties, 

by county or by roadway type (Interstates, US and MD roads). Even in the case of 

analyzing the data by specific roadway and using the actual AADT values, such 

relationships are still insignificant. (Figures 5-11 and 5-12 provide the analysis for I-68 as 

an example). The reasons for such effects are related to the impact of several additional 

variables on friction performance including: 

- Equipment and repeatability 

- Seasonal effects on friction testing 

- Local conditions 

- Surface characteristics during testing 

- Aggregate type and abrasion resistance quality 

- Surveying speed 

- other 
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The effect of survey speed on FN has been extensively studied in the past with SHA data 

(Goulias et. al. 2007). Those analyses conducted with approximately 1000 records per 

county, have reinforced the hypothesis that there is an inverse relationship between test 

speed and friction values. Furthermore, the analyses have shown that an increase in 

testing speed of 5 mph reduces friction number by about 9.1 FN units. An example of 

such a relationship, with data from Charles County, is shown in Figure 5- 13. The data 

selected for those analyses included friction readings taken in Charles County (CH), on 

the same day, on sections that have similar AADT and have received the same level of 

maintenance for the analysis period.  

 

5.1. Systematic Evaluation of Variables Affecting FN 

Since the objective of this research study was to identify the effects of aggregate on 

pavement friction, there was a need to systematically examine the contribution of various 

other parameters on FN. It is expected that different aggregates will have different effects 

on FN, and their role might be related to the type of mixtures in which they are used. At 

the same time, traffic level and pavement age will affect the degree of FN change. Since 

all remaining parameters (such as survey speed, equipment repeatability, seasonal effects, 

and so on) affect FN measurements, their impact has to be considered as well. Thus, it 

was the objective of this research project to isolate the effects of some of these variables. 

Exploratory analysis were conducted by considering subgroups of the data such as similar 

mixture type, a specific AADT level, constant survey speed and so on. According to the 

SHA friction data records, the HMA 12.5mm mixture represents the most popular 

material used in Maryland. As a result, mixture specific data were used for the analysis.  
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5.1.1. Friction Analysis for HMA 12.5 mm PG 70-22 – all types 

Similar to the previous analysis, the HMA 12.5mm PG 70-22 friction data were used in 

examining the effects of survey speed, CumAADT (Cumulative AADT) and years-since-

last-rehabilitation (pavement age) on FN. As it can be seen from Figures 5-14 through 5-

16, dealing with friction surveys on MD and US routes, no acceptable relationships can 

be established due to the effects of the remaining parameters on FN which causes 

significant level of variance. The same is observed when the data from Interstate 

highways are examined as shown in Figures 5-17 through 5-19. 

 

5.1.2. Friction Analysis for HMA 12.5 mm PG 70-22 & Uniform AADT~ 10,571 

In the next step, sections with the same contract number and same AADT level were 

included in the analysis.  The AADT in the friction surveys for this and the following 

analysis was replaced with the actual AADT values reported in the Traffic Monitoring 

System web site of SHA. The selected sections are shown in Table 5-1.  The effects of 

speed (using data from 2004), years-since-last-rehabilitation and CumAADT are shown 

in Figures 5-20 to5-22.  Overall, the relationships between these variables and FN has 

improved, however there is still a significant variability in the data due to the additional 

parameters affecting FN. Multiple linear regression analysis was also performed on these 

data. The results are shown in Table 5-2.  Based on the analysis, the model below was 

obtained (F theoretical << F observed) relating FN with CumAADT, survey speed and 

age. However these parameters have t-observed close to the t-theoretical value at 95% 

confidence level (significant when t-observed - absolute value - is larger than t 

theoretical).  
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   FN = 1.18 Speed + 21.85 Age – 0.0023 CumAADT + 109.62  (Eq. 5.1) 

 

As expected pavement age (years-since-last-rehabilitation) was also insignificant since 

this variable is correlated to the CumAADT (Cumulative AADT = Age *AADT).  

 

5.1.3. Friction Analysis for HMA 12.5 mm PG 70-22 with Uniform AADT= 9000 & 

Survey Speed of 40mph 

 

In the next step, sections with the same contract number and AADT level were included 

along with a constant survey speed of 40 mph.  The selected sections are shown in Table 

5-3.  The effects of year since last rehabilitation and CumAADT are shown in Figures 5-

14 to 5-15. The relationships between these variables and FN are relatively poor due to a 

significant variability in the data introduced from additional parameters affecting FN 

which will be discussed in detail in the next chapters.  
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5.2. Tables and Figures 

 

 

Figure 5-1. Speed vs FN for Selected Counties (MD and US Roads, n=28,216) 

 

Figure 5-2. Age vs FN for Selected Counties (MD and US Roads, n=28,216) 
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Figure 5-3. CumAADT vs FN for Selected Counties (MD and US Roads, n=28,216) 

 

 

 

Figure 5-4. Speed vs FN for all Interstates – Statewide (n=10,828) 
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Figure 5-5. Age vs FN for all Interstates – Statewide (n=10,828) 

   

 

 

 

Figure 5-6. CumAADT vs FN for all Interstates – Statewide (n=10,828) 
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Figure 5-7. Speed vs FN for Interstates in Allegany, Anne Arundel, Baltimore, 

Calvert, and Charles Counties (n=3,602) 

 

 

Figure 5-8. Age vs FN for Interstates in Allegany, Anne Arundel, Baltimore, 

Calvert, and Charles Counties (n=3,602) 
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Figure 5-9. CumAADT vs FN for Interstates in Allegany, Anne Arundel, Baltimore, 

Calvert, and Charles Counties (n=3,602) 

 

 

Figure 5-10. Years since Last Rehab vs. FN for MD and US routes in Montgomery 

County (n=7,904) 
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Figure 5-11. Actual CumAADT vs FN for IS 68 Eastbound (n=170) 

 

 

Figure 5-12. Years since Last Rehab vs FN for IS 68 Eastbound (n=170). 
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Figure 5-13. Survey Speed versus FN based on Average Values (Charles County) 

 

 

Figure 5-14. Survey Speed vs FN for HMA 12.5mm PG 70-22 in MD & US Routes 

(n=22,338) 
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Figure 5-15. Age vs FN for HMA 12.5mm PG 70-22 in MD & US Routes (n=22,338) 

 

 

Figure 5-16. CumAADT vs FN for HMA 12.5mm PG 70-22 in MD & US Routes 

(n=22,338) 
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Figure 5-17. Survey Speed vs FN for HMA 12.5mm PG 70-22 in Interstates 

(n=2,031) 

 

 

Figure 5-18. Age vs FN for HMA 12.5mm PG 70-22 in Interstates (n=2,031) 
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Figure 5-19. CumAADT vs FN for HMA 12.5mm PG 70-22 in Interstates (n=2,031) 

 

Table 5-1.  Selected Sections with Same AADT level and Contract Number/Mixture 

 (12.5mm PG70-22), and Variable Speed 

 

 

 

 

 

 

YEAR ROUTE RNUM Mile DIR SPEED 
Pav.  

Age 

Cum 

AADT 
FN AADT 

Actual 

AADT 

ACTION_ 

YEAR 
CONTRACT 

2004 MD 4 0.34 S 41 3 33675 50 10571 11225 2001 SM793B5D 

2004 MD 4 0.65 S 41 3 33675 52 10571 11225 2001 SM793B5D 

2004 MD 4 0.95 S 38 3 33675 54 10571 11225 2001 SM793B5D 

2004 MD 4 1.24 S 42 3 33675 51 10571 11225 2001 SM793B5D 

2004 MD 4 1.54 S 41 3 33675 52 10571 11225 2001 SM793B5D 

2004 MD 4 1.84 S 40 3 33675 51 10571 11225 2001 SM793B5D 

2004 MD 4 2.15 S 39 3 33675 52 10571 11225 2001 SM793B5D 

2005 MD 4 0.19 S 40 4 42700 49 10571 10675 2001 SM793B5D 



 

66 

 

Table 5-1. Selected Sections with Same AADT level and Contract Number/Mixture 

YEAR ROUTE RNUM Mile DIR SPEED 
Pav.  

Age 

Cum 

AADT 
FN AADT 

Actual 

AADT 

ACTION_ 

YEAR 
CONTRACT 

2005 MD 4 0.57 S 40 4 42700 51 10571 10675 2001 SM793B5D 

2005 MD 4 0.87 S 40 4 42700 49 10571 10675 2001 SM793B5D 

2005 MD 4 1.17 S 41 4 42700 49 10571 10675 2001 SM793B5D 

2005 MD 4 1.47 S 39 4 42700 50 10571 10675 2001 SM793B5D 

2005 MD 4 1.77 S 40 4 42700 51 10571 10675 2001 SM793B5D 

2005 MD 4 2.07 S 40 4 42700 51 10571 10675 2001 SM793B5D 

2006 MD 4 1.16 S 39 5 52855 57 10571 10571 2001 SM793B5D 

2006 MD 4 1.46 S 38 5 52855 58 10571 10571 2001 SM793B5D 

2006 MD 4 1.76 S 39 5 52855 56 10571 10571 2001 SM793B5D 

2006 MD 4 2.06 S 38 5 52855 55 10571 10571 2001 SM793B5D 

2007 MD 4 0.20 S 43 6 62832 49 10571 10472 2001 SM793B5D 

2007 MD 4 0.50 S 39 6 62832 52 10571 10472 2001 SM793B5D 

2007 MD 4 0.80 S 41 6 62832 51 10571 10472 2001 SM793B5D 

2007 MD 4 1.10 S 38 6 62832 56 10571 10472 2001 SM793B5D 

2007 MD 4 1.40 S 41 6 62832 49 10571 10472 2001 SM793B5D 

2007 MD 4 1.70 S 39 6 62832 48 10571 10472 2001 SM793B5D 

2007 MD 4 2.00 S 39 6 62832 51 10571 10472 2001 SM793B5D 

2007 MD 4 2.30 S 39 6 62832 49 10571 10472 2001 SM793B5D 

2008 MD 4 0.30 S 40 7 75110 46 10571 10730 2001 SM793B5D 

2008 MD 4 0.60 S 40 7 75110 43 10571 10730 2001 SM793B5D 

2008 MD 4 0.90 S 41 7 75110 43 10571 10730 2001 SM793B5D 

2008 MD 4 1.20 S 40 7 75110 42 10571 10730 2001 SM793B5D 

2008 MD 4 1.50 S 40 7 75110 40 10571 10730 2001 SM793B5D 

2008 MD 4 1.80 S 41 7 75110 46 10571 10730 2001 SM793B5D 

2008 MD 4 2.10 S 40 7 75110 44 10571 10730 2001 SM793B5D 

 

 

(12.5mm PG70-22), and Variable Speed (Continued) 
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Figure 5-20. Speed vs FN for Sections with Same AADT level (~10,571) and 

Contract Number/ Mixture (12.5mm PG 70-22), at Variable Speed 

 

Figure 5-21. Age vs FN for Sections with Same AADT level (~10,571) and Contract 

Number/ Mixture (12.5mm PG 70-22), at Variable Speed 
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Figure 5-22. CumAADT vs FN for Sections with Same AADT level (~10,571) and 

Contract Number/ Mixture (12.5mm PG 70-22), at Variable Speed 

 

Table 5-2. Multiple Linear Regression Analysis for Sections with Same AADT level 

and Contract Number/Mixture (12.5mm PG 70-22), at Variable Speed. 

Coefficients 

  AADT Age  Speed b 

Coeff. -0.00228 21.85137 -1.18182 109.6226 

Std Errors 0.000568 5.85265 0.40014 15.81381 

  0.671672 2.581737 

    19.77544 29 

    395.4316 193.2956 
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Table 5-3. Multiple Linear Regression Analysis for Sections with Same AADT level 

and Contract Number/Mixture (12.5mm PG 70-22), at Variable Speed (Continued) 

Model F Test Results 

 

R
2
 0.67 

df 29 

n 33 

v1 1 

v2 29 

Fdist. 0.42 

Fobs. 19.78 

 

T- test Results 

 

Variable t-observed Value Abs Value of t 

Speed -2.95 2.95 

Age 3.734 3.73 

AADT -4.010 4.01 

T-critical (at 95% confidence)   2.045229611 
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Table 5-4. Selected Sections with Same AADT level and Contract Number/Mixture 

(12.5mm PG70-22), at Constant Speed of 40 mph. 

YEAR ROUTE 
R 

NUM 
Mile DIR SPEED Age 

Cum 

 ADT 
FN AADT 

ACTUAL 

AADT  

ACT 

_YR 
CONTRCT 

2004 MD 5 14.87 S 40 5 32250 48 9000 6450 1999 SM793B53 

2004 MD 5 15.17 S 40 5 32250 46 9000 6450 1999 SM793B53 

2004 MD 5 15.47 S 40 5 32250 46 9000 6450 1999 SM793B53 

2004 MD 5 15.77 S 40 5 32250 46 9000 6450 1999 SM793B53 

2004 MD 5 16.67 S 40 5 42750 43 9000 8550 1999 SM793B53 

2004 MD 5 16.97 S 40 5 42750 45 9000 8550 1999 SM793B53 

2005 MD 5 14.86 S 40 6 40350 42 9000 6725 1999 SM793B53 

2005 MD 5 15.17 S 40 6 40350 48 9000 6725 1999 SM793B53 

2005 MD 5 16.06 S 40 6 40350 45 9000 6725 1999 SM793B53 

2005 MD 5 16.36 S 40 6 53550 48 9000 8925 1999 SM793B53 

2005 MD 5 16.67 S 40 6 53550 48 9000 8925 1999 SM793B53 

2006 MD 5 15.69 S 40 7 49420 44 9000 7060 1999 SM793B53 

2006 MD 5 16.59 S 40 7 63000 44 9000 9000 1999 SM793B53 

2006 MD 5 16.89 S 40 7 63000 47 9000 9000 1999 SM793B53 

2007 MD 5 14.81 S 40 8 55928 42 9000 6991 1999 SM793B53 

2007 MD 5 15.11 S 40 8 55928 43 9000 6991 1999 SM793B53 

2007 MD 5 16.31 S 40 8 71288 45 9000 8911 1999 SM793B53 

2008 MD 5 15.48 S 40 9 59778 42 9000 6642 1999 SM793B53 

2008 MD 5 15.78 S 40 9 59778 43 9000 6642 1999 SM793B53 

2008 MD 5 16.38 S 40 9 76248 43 9000 8472 1999 SM793B53 

2008 MD 5 16.68 S 40 9 76248 39 9000 8472 1999 SM793B53 
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Figure 5-23. Pavement Age (Years Since last Rehab) vs FN for Sections with Same AADT level 

(~9000) & Contract Number/Mixture (12.5mm PG 70-22), at Constant Speed of 40mph. 

 

Figure 5-24. Cumulative AADT vs FN for Sections with Same AADT level (~9000) and Contract 

Number/Mixture (12.5mm PG 70-22), at Constant Speed of 40mph. 
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Chapter 6. Methodology for Predicting Pavement Friction Life & Relating 

Aggregates to Pavement Friction 

 

Once the mixture/aggregate data and friction survey records from 2004-2008 were related 

using the contract/project IDs, the analysis were directed towards identifying a 

methodology for predicting pavement friction life using these five years of friction 

records for each pavement section, and then relate such friction life to the aggregates 

used in each mixture. The merging of the friction data and the mixture design database 

provided about 51,000 records consisting of friction and material data for the years 2004 

through 2008. Projects constructed in 2004 represent cases where 4 to 5 years of 

historical friction data are available. Therefore, the records of these projects have been 

targeted as the first group to examine.  As mentioned previously, the direction to follow 

for the analysis was to consider mixture specific data and with a significant number of 

records. Thus, the analysis focused first on the 12.5 mm, PG 64-22, HMA mixture that 

has a total of 11,131 friction records. Table 6-1 shows the contract numbers for the 

projects constructed with this mixture in 2004 and the aggregate sources (AS1, AS2 etc) 

used in the mixture. Similarly Table 6-2 and 6-3 show the records for the projects 

constructed in 2005 and 2006.  As it can be seen from these tables, there are 385, 760 and 

1,243 records in each one of these years where the project ID between friction data and 

mixture data matched. Furthermore it can be observed that, in many cases, different 

aggregate stockpiles/sources (AS1, AS2, etc…) were used for producing the desired 

aggregate gradation for the mix.  
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Table 6-1. Paving Projects Constructed with HMA 12.5mm, PG 64-22 in 2004 with Friction Records and Aggregate Sources. 

Construction Year 2004 (385 records). 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

Contracts Count 

 BA440B5B 77 

CL821B5T 59 

CL821B5Y 23 

FR349B5V 74 

HA250B55 22 

HA250B57 111 

HA250B5A 19 

  Grand Total 385 

AS1 Count  

Lafarge Frederick 74 

Martin Marietta 

Woodsboro 159 

Vulcan Materials 

Havre De Grace 152 

  Grand Total 385 

As2 Count 

Lafarge Frederick 74 

Martin Marietta Woodsboro 159 

York Building Products 

Belvedere Plant 152 

  Grand Total 385 

AS5 Count  

------ 385 

  Grand Total 385 

AS4 Count  

------- 74 

Arundel - Havre De 

Grace 152 

Barricks - 

Woodsboro 77 

LaFarge - Medford - 

Limestone 82 

  Grand Total 385 

AS3 Count 

-------- 74 

Lafarge Medford 82 

Martin Marietta 

Woodsboro 77 

Vulcan Materials Havre 

De Grace 152 

  Grand Total 385 

AS7 Count 

------- 156 

Finksburg 77 

ICM 152 

  Grand Total 385 

AS6 Count  

------- 385 

  Grand Total 385 
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Table 6-2. Paving Projects Constructed with HMA 12.5mm, PG 64-22 in 2005 with Friction Records and Aggregate Sources. 

Construction Year 2005 (760 records). 

 

 

 

 

  

Contracts Count 

AL877B5Q 19 

AL877B5S 190 

BA440B5K 150 

CL821A5W 86 

CL821B5Z 25 

WA992B5Y 38 

XX6215177 252 

  Grand Total 760 

AS1 Count 

------ 440 

Allegany Aggregates 

Short Gap 209 

Martin Marietta 

Woodsboro 111 

  Grand Total 760 

AS2 Count  

-------- 440 

Allegany Aggregates 

Short Gap 209 

Martin Marietta 

Woodsboro 111 

  Grand Total 760 

AS4 Count 

----- 649 

LaFarge - Medford - 

Limestone 111 

  Grand Total 760 

AS3 Count 

------ 440 

Keystone Lime 

Company, Inc. Springs 209 

Lafarge Medford 111 

  Grand Total 760 

AS5 Count 

------ 760 

  Grand Total 760 

AS6 Count  

------ 735 

Miller 25 

  Grand Total 760 

AS7 Count 

------ 760 

  Grand Total 760 
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Table 4. Paving Projects Constructed with HMA 12.5mm, PG 64-22 in 2006 with Friction Records and Aggregate Sources. 

Construction Year 2006 (1243 records) 

  

 

  

  

 

 

 

 

  

 

 

 

 

AS2 Count 

------- 196 

Allegany Aggregates Short Gap 297 

Lafarge Churchville 272 

Lafarge Frederick 254 

Martin Marietta Woodsboro 118 

York Building Products Belvedere 

Plant 106 

  Grand Total 1243 

AS1 Count 

------- 196 

Allegany Aggregates Short 

Gap 297 

Lafarge Churchville 272 

Lafarge Frederick 73 

Lafarge Texas 181 

Martin Marietta Woodsboro 118 

Vulcan Materials Havre De 

Grace 106 

  Grand Total 1243 

Contracts Count  

AL3195130 1 

AL6155177 168 

BA508A5X 118 

BA508A5Z 24 

BA508B5J 182 

FR3735176 11 

HA250B5S 69 

HA250B5T 21 

HA250B5W 95 

HA250B5X 93 

HA250B5Y 64 

HA309B51 11 

XX6015177 50 

XX8015177 243 

XX8135177 93 

  Grand 

Total 1243 

AS3 Count 

--------- 207 

Allegany Aggregates Short Gap 81 

Keystone Lime Company, Inc. Springs 216 

Lafarge Frederick 62 

Lafarge Texas 299 

Vulcan Materials Havre De Grace 106 

York Building Products Belvedere Plant 272 

  Grand Total 1243 
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Table 6-4. Paving Projects Constructed with HMA 12.5mm, PG 64-22 in 2006 with Friction Records and Aggregate Sources (continued). 

Construction Year 2006 (1243 records) 

 

 

  

 

 

 

  

 

  

As4 Count  

------ 685 

Arundel - Havre De Grace 106 

Barricks - Woodsboro 118 

Kline 31 

LaFarge - Frederick 31 

York Build Prods - Belvedere 272 

  Grand Total 1243 

AS5 Count 

------ 1125 

LaFarge - Texas 118 

  Grand Total 1243 

AS7 Count  

------ 678 

finksburg 118 

ICM 106 

LaFarge - Texas 181 

MD Paving 160 

  Grand Total 1243 

AS6 Count  

------ 1243 

  Grand Total 1243 
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 The 4-5 year friction records for each project were then examined to generate the data 

needed to study changes in FN (Friction Number) for a specific aggregate (or aggregate 

blend).  In order to compare the friction number of a section year after year – taking into 

account increase in traffic - the milepost values were used. This was necessary since 

Annual Average Daily Traffic (AADT) may change at different mileposts.  The friction 

readings were compared and contrasted by milepoint for the 4-5 year friction surveys 

which were collected on the pavement section under consideration. 

 

Another consideration on grouping the data was related to the use of different friction 

equipment. Maryland SHA owns and operates two pavement friction survey equipment 

(designated as ―Truck 5‖ and ―Truck 6‖) for collecting friction readings once a year 

throughout the state. In some cases Truck 5 was used for readings in some years, while in 

the remaining years Truck 6 was used and vice versa. The side by side repeatability 

analysis included in this dissertation (Chapter 4) indicated that, for flexible sections, 

Truck 5 shows on the average a lower value of FN, by 6.5 FN units. Thus, the FN data 

recorded using different equipment on the same section of roadway needed to be adjusted 

in order to account for equipment variability.  

 

Furthermore, studies have shown that friction survey speed affects FN readings, i.e. 

survey speed is indirectly proportional to friction readings (Henry 2000; Goulias et. al.  

2007). As a result, during the grouping of the data, Friction Number (FN) records that 

were collected at a speed of 38-41 mph were used so as to minimize the effect of 

variability due to survey speed. Finally, the grouped FN values were examined for 
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potential outlier values. In this case the Chauvenet‘s criterion was used. In statistical 

terms, this requires to first calculate the mean and standard deviation of the observed  

data, then use the normal distribution function to determine the probability that a given 

data point is an outlier, and then multiply such probability by the number of data points 

considered. If that value is below 0.5, then the value may be flagged as an outlier (i.e., a 

data point may be rejected if the probability of obtaining the particular deviation from the 

mean is less than 1/(2n) where ‗n‘ is the number of data points).  

 

In summary, the procedure/methodology followed in the analyses includes the following 

steps: 

STEP 1:  Identify mixtures with the higher number of friction records and available 

aggregate information; 

STEP 2:  Merge friction records with mixture and aggregate data using Contract IDs; 

STEP 3:  Identify the construction year and group friction data for the following 

years using milepost information; 

STEP 4:  Update AADT for each milepost with the actual records from the Traffic 

Monitoring System web site; 

STEP 5:  Include the truck type (truck # 5 or #6) used in the friction surveys; 

STEP 6:  Run outlier analysis for subgroups of data representing uniform conditions; 

STEP 7:  Calculate the average FN values for subgroups of data representing 

uniform conditions; 

STEP 8:  Adjust FN values for considering the use of different friction equipment; 
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STEP 9:  Use average FN values and AADT records to obtain the relationship 

between FN and traffic for a specific aggregate/ aggregate blend; 

STEP 10: Use an interpolation/extrapolation function to calculate: i) the ―friction 

drop rate‖ (FN drop/ 10k AADT) for each aggregate/aggregate blend, and 

ii) estimate ―useful aggregate friction design life‖ (i.e., at what cumulative 

AADT a terminal FN of 32 is reached). 

 

The terminal friction value (FN=32) chosen corresponds to the threshold value for the 

coefficient of friction (µ or f=0.32) as set by the Stopping Sight Distance criteria for a 

design speed of 40 mph in the AASHTO Geometric Design Guidelines (also known as 

the Green Book). Based on the results of a number of studies that measured the locked-

wheel skid resistance on poor wet pavements, the 1994 Green Book calls for an f=0.32 

for V=40 mph .  This design value also corresponds to a comfortable deceleration rate of 

6 to 8 mph/second, depending on initial speed. The 2001 AASHTO Green Book uses a 

ratio of the average deceleration rate to the acceleration due to gravity, g (32.2 ft/sec
2
) to 

determine the coefficient of friction which yields comparable values. 

 

In addition to the 10-step methodology for relating aggregate properties to pavement 

friction, the research was expanded to include the following: 

 

1) Simple Regression models using 

Raw data – all data, both directions combined 

Combined data - Filtered for speed, adjusted for equipment; 
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Directional Data - grouped by year of survey; 

 

2) Multiple Regression models 

With adjusted data for friction equipment and considering the following 

Variables: CumAADT, Speed and FN; 

With no adjustment for equipment and considering the following variables: 

CumAADT, Speed, Equipment and FN; 

 

3) Considering data with friction survey speed of 40 mph and models relating 

CumAADT and FN; 

 

4) Using data from combined contracts (all directions and speed ranges): Simple and 

Multiple Regression analysis as indicated above. 

 

(The concept and methods of multivariate regression analysis are presented in detail in 

the next chapter.) 

 

6.1. Example Analysis for a Specific Aggregate Source (Lafarge Frederick Quarry) 

 

This section provides in summary an example of the analysis used for each pavement 

section/contract in the database using aggregate from a specific source, and for which 

sufficient friction data were available. The results of the analysis from this specific 

supplier were selected to be included herein since: i) the aggregate gradation was 
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designed primarily with material from a single quarry (see table 6-4), and ii) there were 

sufficient number of friction records on which the analysis could be developed. The 

database provided records from two different contracts, FR349B5T on route MD 31, and 

MO4335177 on route MD 121, that met the above listed criteria. The following four 

approaches were used for analyzing the data and the outcome of the analysis are shown in 

table 6-5:   

 

1. Analysis on UNFILTERED data (any speed, equipment, etc) combining N/S or 

E/W RAW DATA (Modeling and Graphs included) 

2. Analysis on UNFILTERED data for each direction (Modeling and Graphs 

included) 

3. Analysis on filtered (for speed) and adjusted (for equipment) data for both 

directions combined (Modeling and Graphs included) 

4. Analysis on filtered (for speed) and adjusted (for equipment) data for each 

directions (Modeling and Graphs included) 

As it can be seen from the models and analysis of Table 6.5 the friction records from a 

single contract and in the direction of MD 31E provided the model with the higher R
2
. 

Overall it was observed that combining friction records from different route directions or 

different contracts increased the data variability, and thus reduced the coefficient of 

correlation for the model. Furthermore, the multiple regression models often provided 

lower R
2
,  and / or the model was reduced down to a simple linear regression form since 

most of the variables like survey speed, cumAADT and/or survey track equipment were 

statistically insignificant.  
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Table 6-5. Aggregate Supplier Data 

FR349B5T on MD 31 

Route RNUM Action Yr AS1 AS1% AS2 AS2% Data Count 

MD 31 2004 Lafarge Frederick 50 Lafarge Frederick 50 84 

 

Supplier 

Source 

Year 

Sampled 

Carbonate? Rock 

Analysis 

Textural 

Description 

Rock 

Category 

BPN PV SG LAA 

(% 

Loss) 

Soundness 

 ( % Loss) 

Lafarge 

Frederick 

2004 Yes No Very-fine 

grained 

Limestone 28 6 2.72 23 0.2 

 

MO4335177 on MD 121 

Route RNUM Action Yr AS1 AS1% AS2 AS2% Data Count 

MD 121 2006 Lafarge Frederick 50 Lafarge Frederick 50 52 

 

Supplier 

Source 

Year 

Sampled 

Carbonate? Rock 

Analysis 

Textural 

Description 

Rock 

Category 

BPN PV SG LAA 

(% 

Loss) 

Soundness 

( % Loss) 

Lafarge 

Frederick 

2005 Yes No Medium Gray fine 

to Medium 

grained 

Carbonate-

Limestone 

24 6 2.70 22 0.4 
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Table 6-6. Summary of Analysis for Friction Records related to a Specific Aggregate Source 

(Lafarge Frederick Quarry) 

Contract Route 
Analysis Type/ Data used 

for analysis 

Model Type 

(Viable) 
Equation R

2
 N 

Terminal 

CumAADT at 

FN=32 

FR349B5T 

 

 

 

MD 31 

(E+W) 

Combined Directional Data 

(Filtered for Speed and 

Adjusted for Equipment) 

SLR FN = -0.0006 (CumAADT) + 52.66 0.41 78 34,000 

All Combined Directional 

Data (Un-Filtered and Un-

adjusted) 

MER 

(CumAADT, 

Speed and 

Equipment) 

FN= 22.03* 

((0.9999^CumAADT)*(1.001^Speed)*(1.

186^DumTrk)) 

0.5 44 

6,000(Using Truck 5) 

8,000 (Using Truck 

6) 

 

 

 

 

 

 

MD 31E 

Directional Data (Filtered for 

Speed and Adjusted for 

Equipment)-Averages 

SLR FN = -0.0006 (CumAADT)  + 52.473 0.76 40 34,200 

All Directional Data (Un-

Filtered and Un-adjusted) 

MLR 

(CumAADT 

and 

Equipment) 

FN= -0.00089 (CumAADT) + 9.237 

(DumTrk) + 7.75 

 

0.49 44 

24,000(Using Truck 

5) 

36,000 (Using Truck 

6) 

MER 

CumAADT, 

Speed 

&Equipment) 

FN= 26.102 

((0.9999^CumAADT)*(0.996^Speed)*(1.

195^DumTrk)) 

 

0.52 44 
6,000 (Truck 5) 

8,000 (Truck 6) 
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Table 6-6. Summary of Analysis for Friction Records related to a Specific Aggregate Source 

(Lafarge Frederick Quarry) (Continued) 

Contract Route 
Analysis Type/ Data used 

for analysis 

Model Type 

(Viable) 
Equation R

2
 N 

Terminal 

CumAADT 

at FN=32 

FR349B5T 
MD 

31W 

Directional Data (Filtered 

for Speed and Adjusted for 

Equipment)-All data 

SLR FN = -0.0003 (CumAADT) + 52.907 0.08 38 81,000 

Directional Data (Filtered 

for Speed and Adjusted for 

Equipment)-Averages 

SLR FN = -0.0006 (CumAADT) + 52.966 0.73 38 35,000 

All Directional Data 

(Adjusted for Equipment) 

MLR (CumAADT 

and Speed) 

FN= -0.000568 (CumAADT) + 0.622 

(Speed) + 27.61 

 

0.52 40 36,000 

All Directional Data 

MER (CumAADT 

, Speed and 

Equipment) 

FN= 

14.5*(0.9999^CumAADT)*(1.0126^Speed)

*(1.1742^DumTrk)) 

 

0.45 40 

5,000 

(Truck. 5) 

7,000 

(Truck. 6) 

MO4335177 

 

MD 121 

(N+S) 

All Combined Directional 

Data (Un-Filtered and Un-

adjusted) 

MER(CumAADT 

, Speed and 

Equipment) 

FN= 231.75*(0.9999^CumAADT) * 

(0.9962^Speed)* (0.8222^Dum-Trk) 

 

0.29 52 
6,500 (Truck 

5) 

MD 121 

N 

All Directional Data (Un-

Filtered and Un-adjusted) 
SLR FN= -0.0002 (CumAADT)  + 55.23 0.006 26 13,000 

All Directional Data (Un-

Filtered and Un-adjusted) 

MER (CumAADT 

, Speed and 

Equipment) 

FN= 1052.64*(0.9999^CumAADT)* 

(0.9920^Speed)*(0.6823^DumTrk) 

 

0.56 26 

12,000(Truc

k 5) 

16,000(Truc

k 6) 
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Table 6-6. Summary of Analysis for Friction Records related to a Specific Aggregate Source 

(Lafarge Frederick Quarry) (Continued) 

Contract Route 

Analysis Type/ 

Data used for 

analysis 

Model Type 

(Viable) 
Equation R

2
 N 

Terminal 

CumAA

DT at 

FN=32 

FR349B5T 

and 

MO4335177 

 

MD 31 

(E+W) 

and MD 

121 

(N+S) 

All 

Combined/merged 

Data (Un-Filtered 

and Un-adjusted) 

SLR FN= -1E-04 (CumAADT) + 53.871 0.004 136 184,000 

Combined/merged 

Data (Filtered and 

adjusted) 

SLR FN = -0.0004 (CumAADT)  + 53.328 0.06 128 48,000 

All 

Combined/merged 

Data (Adjusted for 

Equipment) 

MER (CumAADT 

and Speed) 

FN= 67.559* (0.9999^CumAADT)* (0.9940^Speed) 

 
0.11 136 5,000 

All 

Combined/merged 

Data 

MER (CumAADT 

, Speed and 

Equipment) 

FN= 69.560* (0.9999^CumAADT)* 

(0.9921^Speed)*(1.0094^DumTrk) 

 

0.08 136 

5,000 

(Truck 5 

and 6) 

Note:  

SLR= Simple Linear Regression   MER = Multiple Exponential Regression  

SER= Simple Exponential Regression  CumAADT= Cumulative Annual Average Daily Traffic 

MLR= Multiple Linear Regression    

DumTrk = Dummy Variable used for Equipment (Dumtrk=5 for truck 5; Dumtrk=6 for truck 6) 
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6.2. Analysis for Relating Friction to Pavement Traffic in terms of Cumulative 

AADT and ESAL. 

 

The analyses outlined in the previous sections were conducted on all projects with valid 

and sufficient mixture and aggregate source data. Table 6-6 identifies the list of quarries/ 

suppliers considered in the study.  

 

Table 6-7. Aggregate Quarries Considered in the Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AIR Aggregate Industries Rockville 

AASG 

Allegany Aggregates Short gap 

KLC 

Keystone Lime Company Inc. 

Springs 

LCH Lafarge Churchville 

LF Lafarge Frederick 

LW Lafarge Warfordsburg 

MMI Maryland Materials Incorporated 

MMW Martin Marietta Woodsboro 

VMH Vulcan Materials Hanover 

VMHDG Vulcan Materials Havre De Grace 

VMW Vulcan Materials Warrenton 

YBPBv York Building Products Belvedere 
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While the merged SHA friction records and mixture material database provided records 

for the 12 quarries shown in Table 6-6, aggregate petrographic/polishing properties for  

only a subset of these were available. Furthermore, for one quarry only limited FN/ 

milepost records were available (AASG), while for another (KLC) the aggregate 

properties were significantly different than the rest of the aggregates.  

 

The result of the regression models between friction life and traffic are shown in Table 6-

7. As can be seen from this table, the simple linear regression analysis provided the best 

relationships between Friction Number (FN) and CumAADT (Cumulative Annual 

Average Daily Traffic). For the multiple regression analysis relating FN to CumAADT, 

speed and equipment type, either the models had a lower R
2
 or the variables turn out to be 

insignificant. The details of the best models are shown in Table 6-7. Based on these 

models and scatter plots, the CumAADT corresponding to a terminal FN of 32 (µ or 

f=0.32) were calculated and reported. Furthermore the CumAADT over the average 

AADT throughout the years was used to calculate the expected friction life in years. The 

Friction Number drop per 10,000 CumAADT value (FN drop/10kCumAADT) is also 

reported in this table. Examples of the relationships between FN and CumAADT are 

shown in Figures 6-1 to 6-4. As shown in Table 6-7 and in Figures 6-1 to 6-4, the models 

obtained from the 2004 to 2008 friction data were used to estimate the friction pavement 

life for each case, in terms of years (i.e., CumAADT over the average AADT throughout 

the years) and terminal cumulative AADT at a final value of FN 32. This FN value 

represents the minimum acceptable design value used by SHA and many other states. 

Furthermore the drop in FN for every 10,000 CumAADT is also reported.  
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From the comparison of the CumAADT at a terminal FN value of 32, it can be observed 

that there is a big difference in the order of magnitude of these values. This reflects the 

different traffic mix characteristics that each roadway experiences during its service life. 

Since the AADT does not reflect the diverse truck loading conditions on each roadway, 

there was a need to convert AADT to Equivalent Standard Axle Load (ESAL), 

considering the truck distribution factors on the projects and the mileposts considered in 

the analysis.  

 

The AADT conversion into Equivalent Standard Axle Loading (ESAL) can be achieved 

by either: i) directly converting the Cumulative AADT obtained at the FN 32 value for 

each case, or ii) by converting AADT data to ESAL at each milepoint. In either case, the 

AADT data and truck percentage factor obtained from the traffic monitoring web site of 

SHA were used to calculate ESAL using the equivalency load factors analysis. These two 

methods were used in a couple of projects for assessing whether there is a difference in 

the approach used. Table 6-8 and 6-9 and Figures 6-5 to 6-8- present the results from 

these analysis for a couple of cases (AIR and AASG). As it can be seen in these results, 

whether the AADT to ESAL conversion is performed at the milepost level or on the 

CumAADT values, the calculated values are similar. Thus the latter method was used for 

converting AADT to ESAL for all cases. The details of these calculations and analysis 

are also included in Table 6-7.  
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Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties 

(AIR, AASG, KLC, LCH, LF) 

Material Source AIR AASG KLC LCH LF 

Aggregate type (If known) Serpentine Carbonate 

Dolomitic 

Limestone (2005 

Petrography) 

Carbonate-Siliceous 

limestone(2005 

Petrography) 

Hornlende Gnesiss 

(2005 

Petrography) 

Limestone 

Supplier Aggregate 

industries 

Allegany 

Aggregates 

Keystone Lime 

Company, Inc.  

Lafarge  Lafarge  

 

Quarry Aggregate 

Industries 

Rockville 

Allegany 

Aggregates Short 

Gap 

Keystone Lime 

Company, Inc. 

Springs 

Lafarge 

Churchville 

 

Lafarge Frederick 

 

Contract  No MO3285177 AL6165177 GA6455177 BA508B5J FR349B5T 

BPN/PV 22/5 (2004) 26/5 (2005)  34/10 (2005) 22/6 (2005) 24/6 (2005) 

LAA/ Soundness 18% /4.5% (2004 

tests) 

15% / 2.8% (2005 

tests) 

18% / 1% (2005 

tests) 

22/0.4 (2005 tests) 22% / 0.2% (2005 

tests) 

Carbonate (yes/No/N/A) N/A Yes N/A No Yes 

Mix Type 

HMA 12.5 70-22 

8 PV 

HMA 12.5mm, 64-

22, Surface, L 4 

HMA 12.5mm, 70-

22, Surface, L 3 

HMA 12.5mm, 

64-22, Surface, L 

2 

HMA 12.5mm, 64-

22, Surface, L 2 

Supplier 1/% Composition AIR/75% AASG/100% KLC/100% LCH/65% LF/100% 

Supplier 2/% Composition 

Plant 128 

Stockpile/25% N/A N/A 

YBPBv/25%; MD 

Pavng/10% N/A 

County Montgomery Allegany Garrett Baltimore Frederick 

Route MD 190 (E+W) US 220 (N+S) US 219 (N+S) MD 43 (E+W) MD31(E+W) 

MP 0-6.5 3.3-6.6 33.2-37.2 0-3.5 0-3.2 

Action Year 2004 2006 2005 2006 2005 

No of Lanes 

 2 2 3 4 2 

Direction used in Analysis 

(Resulted in better models) MD 190E US 220S US219S MD 43E MD 31E 
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Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties (Continued) 

(AIR, AASG, KLC, LCH, LF) 

Material Source AIR AASG KLC LCH LF 

AADT (Averaged over Mile points and over 

survey years) 
3,573 7,201 4,762 36,320 3,435 

Truck Percentage(2005-7 Data) 
     

Single 11.2 7.7 8.2 3.4 8.5 

Combination 2.6 4 4.6 0.8 3 

Passenger/Other 86.2 88.3 87.2 95.8 88.5 

Truck Percentage(2008 Data) 
     

Single 10.6 7.6 8.2 3.4 9.6 

Combination 2.1 2.2 4.6 0.8 3 

Passenger/Other 87.3 90.2 87.2 95.8 87.4 

Average Percentages 
     

Single 10.9 7.65 8.2 3.4 9.05 

Combination 2.35 3.1 4.6 0.8 3 

Passenger/Other 86.75 89.25 87.2 95.8 87.95 

Load Equivalency Factors, LEF (SN=5, Pt=2.5) 
     

Single 1.857 1.857 1.857 1.857 1.857 

Combination 2.714 2.714 2.714 2.714 2.714 

Passenger/Other 0.0002 0.0002 0.0002 0.0002 0.0002 

Directional Distribution Factor 0.5 0.5 0.5 0.5 0.5 

Lane Distribution Factor 1 1 0.7 0.7 1 

Terminal CumAADT [ CumAADT where 

FN=32] 
66,000 57,200 30,000 195,000 40,000 

Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties (Continued) 
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(AIR, AASG, KLC, LCH, LF) 

Material Source AIR AASG KLC LCH LF 

ESAL= Terminal 

CumAADT*T*Df*Lf*LEF*36

5 

     Single 2,438,065 1,482,970 583,590 1,572,847 1,048,937 

Combination 768,218 878,275 478,465 540,873 508,183 

Passenger/Other 2,090 1,863 668 4,773 1,098 

Terminal ESAL 3,208,372 2,363,108 1,062,723 2,118,493 1,558,218 

Most Significant 

model/[Equation] SLR/[FN = -0.0002* 

CumAADT + 47.75] 

SLR/[FN = -

0.0003*CumAADT 

+ 49.157] 

SLR/[FN= -

0.0013*CumAADT 

+ 71.011] 

SLR/[FN= -1E-

04*CumAADT + 

51.64] 

SLR/[FN= -0.0005* 

CumAADT+ + 52.165] 

R2/n 0.17/85 0.12/20 0.65/39 0.72/18 0.75/40 

FN Drop/10k AADT (in FN 

units) -2 -3 -13 -1 -5 

Other Models/ [R2/n/Terminal 

CumAADT based on SA] 

MLR/[0.11/174/ 

5,500] 

MER/[0.78/20/ 

20,000] 

MER/[0.88/42 

/14,000] 

MER/[0.42/21/ 

170,000] 

MER/[0.52/44/ 

14,000] 

Expected Life in Years (Based 

on Terminal CumAADT)= 

CumAADT/Average AADT 18.47 7.94 6.30 5.37 9.96 

 

Note:  

SLR= Simple Linear Regression MER= Multiple Exponential Regression 

SER = Simple Exponential Regression SA= Sensitivity Analysis 

MLR= Multiple Linear Regression  
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Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties (continued) 

(LW, MMI, MMW, VMH, VMHDG, VMW, YBPBv) 

Material Source LW MMI MMW VMH VMHDG VMW YBPBv 

Aggregate type (If 

known) 

Limestone   Limestone 

 

Diabase 

(2004)  

Supplier Lafarge Maryland 

Material Inc 

Martin Marietta Vulcan 

Materials 

 

Vulcan Materials 

 

Vulcan Materials York 

Building 

Products 

Quarry Lafarge 

Warfordsburg 

Maryland 

Material Inc NE 

Martin Marietta 

Woodsboro 

 

Vulcan 

Materials 

Hanover 

Vulcan Materials 

Havre De Grace 

Vulcan Materials 

Warrenton 

 

York 

Building 

Products 

Belvedere 

Plant 

Contract  No WA1005177 CE785A5N BA440B5B AA3285177 WO750B5O MO9005171 CE785B5H 

BPN/PV 35/6(2008) 32/HPV(2009)  21/4 (2005) 

31/HPV (2008) 

26/- (2005) 

  

LAA/ Soundness 20%/0.6% 

(2008 tests) 

21%/0.9%(2009 

tests) 

 25% / 0/7% 

(2005 tests) 

14%/0.1% 

(2008 tests) 

11/0.3 (2005 

tests)  

Carbonate 

(yes/No/N/A) N/A N/A N/A Yes N/A N/A N/A 

Mix Type 

HMA 12.5mm, 

64-22, Surface, 

L 4 

HMA 9.5mm, 

64-22, Surface, 

L 2 

HMA 12.5mm, 

64-22, Surface, 

L 2 

HMA 9.5mm, 

70-22, 

Surface, L 3 

HMA 9.5mm, 70-

22, Surface, L 3 

HMA 12.5mm, 

76-22, Surface, 8 

PV, L 4 

HMA 9.5mm, 

70-22, 

Surface, L 2 

Supplier 1/% 

Composition LW/100% MMI/78% MMW/75% VMH/85% VMHDG/68% VMW/75% YBPBv=72% 

Supplier 2/% 

Composition N/A 

YBPBv/7&;  

Edgemoor/15% 

BW/15% 

Finksburg/10% Flanigan/15% JML GT/32% 

AGI-S/10%; ½ 

RAP=15% 

SDM&S 

EM=18%; 

ICM=10% 

County Washington Cecil Baltimore Anne Arundel Worcester Montgomery Cecil 

Route US 40 (E+W) MD342 (N+S) MD 30 (N+S) MD100W US 113 (E+W) MD 650 (N+S) MD 276 (N+W) 
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Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties (continued) 

(LW, MMI, MMW, VMH, VMHDG, VMW, YBPBv) 

Material Source LW MMI MMW VMH VMHDG VMW YBPBv 

MP 28-32 0-2.5 5-7.5 11.0-15.0 26 - 30 3.6 -- 5.3 3.5-6.5 

Action Year 2005 2006 2004 2005 2005 2005 2004 

No of Lanes 

 2 2 2 

4 (in one 

direction-

WB) 4 6  

Direction used in Analysis (Resulted in 

better models) 

US 

40W MD 342N MD 30S MD 100W US 113S MD 650 N MD 276 N 

AADT (Averaged over Mile points and 

over survey years) 4,390 498 8,780 60,260 11,490 51,320 8,520 

Truck Percentage(2005-7 Data)        

Single 6.4 0 7.5 2.2 9.8 2.9 8.3 

Combination 1.9 0 4.1 0.5 8 1.5 5.7 

Passenger/Other 91.7 100 88.4 97.3 82.2 95.6 86 

Truck Percentage(2008 Data)        

Single 6.4 0 7.5 2.2 9.8 2.9 8.3 

Combination 1.9 0 4.1 0.5 8 1.5 5.7 

Passenger/Other 91.7 100 88.4 97.3 82.2 95.6 86 

Average Percentages        

Single 6.4 0 7.5 2.2 9.8 2.9 8.3 

Combination 1.9 0 4.1 0.5 8 1.5 5.7 

Passenger/Other 91.7 100 88.4 97.3 82.2 95.6 86 

Load Equivalency Factors, LEF (SN=5, Pt=2.5)       
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Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties (continued) 

(LW, MMI, MMW, VMH, VMHDG, VMW, YBPBv) 

Material Source LW MMI MMW VMH VMHDG VMW YBPBv 

Single 1.857 1.857 1.857 1.857 1.857 1.857 1.857 

Combination 2.714 2.714 2.714 2.714 2.714 2.714 2.714 

Passenger/Other 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

Directional Distribution Factor 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Lane Distribution Factor 1 1 1 0.7 0.7 0.7 1 

Terminal CumAADT [CumAADT 

where FN=32] 14,100 4,500 76,000 510,000 72,000 480,000 54,000 

ESAL= Terminal 

CumAADT*T*Df*Lf*LEF*365        

Single 305,826 0 1,931,744 2,661,740 1,673,907 3,302,266 1,518,961 

Combination 132,692 0 1,543,370 884,119 1,997,070 2,496,337 1,524,549 

Passenger/Other 472 164 2,452 12,679 1,512 11,724 1,695 

Terminal ESAL 438,990 164 3,477,567 3,558,538 3,672,489 5,810,328 3,045,205 

Most Significant 

model/[Equation] 

SLR/[FN = 

-0.0018* 

CumAADT 

+ 57.363] 

SLR/[FN = 

-0.0085* 

CumAADT 

+ 66.25] 

SLR/[FN = -

0.0085*CumAADT 

+ 66.25] 

SLR/[FN= -

2E-

05*CumAADT 

+ 40.042] 

SLR/[FN=-

0.0003* 

CumAADT+ 

53.192] 

SLR/[FN= -

3E-05* 

CumAADT 

+ 47.497] 

SLR/[FN=-

0.0004* 

CumAADT 

+ 56.283] 

 

Table 6-8. Regression Analysis Relating Friction Life to CumAADT and Aggregate Properties (continued) 
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(LW, MMI, MMW, VMH, VMHDG, VMW, YBPBv) 

Material Source LW MMI MMW VMH VMHDG VMW YBPBv 

R2/n 0.97/28 0.58/11 0.56/27 0.14/34 0.38/23 0.29/12 0.92/36 

FN Drop/10k AADT (in FN 

units) -18 -8.5 -2 -0.5 -0.3 -0.3 -5 

Other Models/ [R2/n/Terminal 

CumAADT based on SA] 

MER/[0.54/30/ 

12,000] 

MER/[0.69/21/ 

4000] 

MER/[0.09/31/ 

14000] 

MER/[0.2/39/ 

28,000] 

MER/[0.27/27/ 

6000] 

MER/[0.25/20/ 

4000] 

MLR/[0.8

1/37/ 

56000] 

Expected Life in Years (Based on 

Terminal 

CumAADT)=CumAADT/Average 

AADT 3.21 9.04 8.66 8.46 6.27 9.35 6.34 

Remark 

Note: Material 

from both LW 

and LF was 

used in this 

contract   

Note: This 

contract was 

used to 

construct MD 

100 WB only    
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Figure 6-1. Cum AADT vs FN (filtered and adjusted Data – Averages) 

N= 40, R
2
= 0.76 

Lafarge Frederick 
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Figure 6-2. Cum AADT vs FN (filtered and adjusted Data – Averages) 

N= 18, R
2
= 0.73 

Lafarge  Churchville (Aggregate Blend) 
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Figure 6-3. Cum AADT vs FN (filtered and adjusted Data – Averages) 

N= 23,R
2
= 0.38 

Vulcan Materials Havre De Grace (Aggregate Blend) 
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Figure 6-4. Cum AADT vs FN (filtered and adjusted Data – Averages) 

N=36,R
2
= 0.92 

 York Building Products Belvedere Plant (Aggregate Blend) 

 

 



 

 

Table 6-9. Comparison of CumAADT converted to CumESAL and ESAL computed at Milepoint level  

Supplier = AIR, Route= MD 190 E 

a. Conversion of CumAADT to CumESAL  

Material Source AIR 

Contract  No MO3285177 

Mix Type 

HMA 12.5 70-22 8 

PV 

County Montgomery 

Route MD 190 (E+W) 

MP 0-6.5 

No of Lanes 2 

AADT (Averaged over Milepoints and 

over survey years) 3,573 

Direction used in Analysis MD 190E 

Truck Percentage(2005-7 Data) 

 Single 11.2 

Combination 2.6 

Passenger/Other 86.2 

  Truck Percentage(2008 Data) 

 Single 10.6 

Combination 2.1 

Passenger/Other 87.3 

  Average Percentages 

 Single 10.9 

Combination 2.35 

Passenger/Other 86.75 
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Table 6-9. Comparison of CumAADT converted to CumESAL and ESAL computed at Milepoint level  (Continued) 

Supplier = AIR, Route= MD 190 E 

a. Conversion of CumAADT to CumESAL (Continued from above) 

Load Equivalency Factors, LEF (SN=5, Pt=2.5) 

 Single 1.857 

Combination 2.714 

Passenger/Other 0.0002 

  Directional Distribution Factor 0.5 

Lane Distribution Factor 1 

  Terminal CumAADT 66,000 

[ CumAADT where FN=32] 

 
  ESAL=Terminal CumAADT*T*Df*Lf*LEF*365 

 Single 2,438,065 

Combination 768,218 

Passenger/Other 2,090 

Total 3,208,372 

  



 

 

 

Figure 6-5. CumAADT vs FN (MD 190E 
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Figure 6-6. CumESAL vs FN (MD 190E) 

 

  



 

 

Table 6-10. Comparison of CumAADT converted to CumESAL and ESAL computed at Milepoint level 

Supplier = AASG, Route= US 220 S 

a. Conversion of CumAADT to CumESAL 

  
Material Source AASG 

Contract  No AL6165177 

Mix Type 

HMA 12.5mm, 64-

22, Surface, L 4 

County Allegany 

Route US 220 (N+S) 

MP 3.3-6.6 

No of Lanes 2 

AADT (Averaged over 

Milepoints and over survey 

years) 7,201 

Direction used in Analysis US 220S 

  Truck Percentage(2005-7 

Data)   

Single 7.7 

Combination 4 

Passenger/Other 88.3 

  Truck Percentage(2008 

Data)   

Single 7.6 

Combination 2.2 

Passenger/Other 90.2 

    

b. Computation of ESAL at milepoint to obtain 

 CUMESAL 

Material Source AASG 

Contract  No AL6165177 

Mix Type 

HMA 12.5mm, 64-22, 

Surface, L 4 

County Allegany 

Route US 220 (N+S) 

MP 3.3-6.6 

No of Lanes 2 

AADT (Averaged over 

Milepoints and over years) 7201 

Direction used in Analysis US 220N 

Truck Percentage(2008 Data)   

Single 7.7 

Combination 4 

Load Equivalency Factors, 

LEF (SN=5, Pt=2.5)   

Single 1.857 

Combination 1.857 

Directional Distribution 

Factor 0.5 

Lane Distribution Factor 1 

Terminal CumESAL 

2,500,000 

[ CumESAL where FN=32] –

From Fig 6-8 
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Table 6-10. Comparison of CumAADT converted to CumESAL and ESAL computed at Milepoint level (Continued) 

Supplier = AASG, Route= US 220 S 

a. Conversion of CumAADT to CumESAL (Continued from above) 

Average Percentages   

Single 7.65 

Combination 3.1 

Passenger/Other 89.25 
    

Load Equivalency Factors, LEF (SN=5, Pt=2.5) 

Single 1.857 

Combination 2.714 

Passenger/Other 0.0002 

    

Directional Distribution Factor 0.5 

Lane Distribution Factor 1 

    

Terminal CumAADT 57,200 

[ CumAADT where FN=32]   

    

ESAL= Terminal 

CumAADT*T*Df*Lf*LEF*365   

Single 1,482,970 

Combination 878,275 

Passenger/Other 1,863 

Total 2,363,108 
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Figure 6-7. CumAADT vs FN (US 200S) 
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Figure 6-8. CumESAL vs FN (US 220S) 
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6.3 Aggregate Properties and Pavement Friction  

 

The relationships between aggregate properties, such as Los Angeles Abrasion (LAA), 

British Pendulum Number (BPN), Polish Value (PV) and Magnesium Sulphate 

Soundness, and the expected pavement friction life (in terms of total cumulative AADT, 

expected pavement friction life in years, FN Drop/10k AADT) were then examined even 

though a limited number of aggregate quality data were available as reported in section 

6.2 and Table 6-6. Table 6-10 summarizes these values and Figures 6-9 and 6-10 present 

example plots for BPN and PV. As it can be seen from these plots these relationships 

were not meaningful. Similar effects were observed for the FN drop/10k AADT, Table 6-

11 and Figure 6-11, recognizing once more, the limited aggregate quality data available 

for these analyses, and the fact that AADT does not reflect the diverse truck loading 

conditions on each roadway. Similarly, the relationships between aggregate properties 

and total cumulative ESAL were examined. Table 6-12 summarizes these values and 

Figures 6-12 and 6-13 present example plots for BPN and LAA. As it can be seen from 

these plots while the excepted trends may be present for some of these aggregate 

properties, the BPN versus the total ESAL relationship is not meaningful, while the 

relationship between LAA and total ESAL has an R
2
 of 0.36.  

Table 6-11. Expected Life versus Aggregate Properties 

Supplier Exp Life (Years) BPN PV 

LAA 

(%) Soundness (%) 

AASG 7.94 26 5 15 2.8 

LCH 5.37 22 6 22 0.4 

LF 11.64 24 6 22 0.2 

AIR-70-22 18.47 22 5 18 4.5 

VMH 8.46 21 4 25 0.7 

VMW 9.35 26 

 

11 0.3 
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Figure 6-9. Expected FN Life vs BPN 

 

Figure 6-10. Expected FN Life vs PV 

 

Table 6-12. FN Drop/ 10k AADT versus Aggregate Properties 

y = -0.0766x + 24.282
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Supplier 

FN Drop/10k AADT 

(in FN units) BPN PV LAA (%) Soundness(%) 

AASG 2 26 5 15 2.8 

LCH 1 22 6 22 0.4 

LF 5 24 6 22 0.2 

AIR-70-22 2 22 5 18 4.5 

VMH 1 21 4 25 0.7 

VMW 0.30 26 

 

11 0.3 

 

 

 

 

Figure 6-11. FN Drop/ 10k AADT versus BPN 

 

Table 6-13. Terminal ESAL versus Aggregate Properties 

y = 0.0905x + 23.33
R² = 0.0048
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Supplier Terminal ESAL BPN  PV LAA (%) Soundness (%) 

AASG                    2,363,108  26 5 15 2.8 

LCH                    2,118,493  22 6 22 0.4 

LF                    1,822,477  24 6 22 0.2 

AIR-70-22                    3,208,372  22 5 18 4.5 

VMH                    3,558,538  21 4 25 0.7 

VMW                    5,810,328  26   11 0.3 

 

 

 

Figure 6-12. Terminal ESAL versus BPN 
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Figure 6-13. Terminal ESAL versus LAA 
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Chapter 7. Detailed Analysis and Research Modeling 

7.1. Introduction 

The purpose of the detailed analysis and modeling step in this research is to find 

meaningful and significant relationships between the predictor (independent) variables 

and the response (dependent) variable using the dataset obtained from work in the 

preceding chapters. The variables used in the modeling process are derived from three 

major data sources categorized as follows: 

1. Pavement friction performance indicators: These variables are not directly 

measured/observed in the database. However, they are indirectly computed from 

statistical analysis using actual recorded values as discussed in the preceding 

chapters. The variables that fall in this category are ―Terminal CumAADT‖ and 

―FN Drop/10,000 CumAADT ―(computed from the Cumulative Annual Average 

Daily Traffic (CumAADT) versus Friction Number (FN) plots for various routes 

and suppliers; the terminal Cumulative AADT is read from this curve for an FN 

value of 32 (µ=0.32)), ―Expected Pavement Life‖ (calculated by dividing 

―CumAADT‖ with the AADT of the route averaged over the years of survey and 

milepoint), and ―Terminal ESAL‖ (terminal Equivalent Standard Axle Load 

Computed from CumAADT by using factors specific to the type and class of 

roadway). 

  

2. Route descriptors: These are actual characteristics of the roadway that are 

specific to the pavement under consideration; they include pavement age 

(obtained from construction history database), Annual Average Daily Traffic 
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(obtained from SHA‘s traffic database) as well as Average Daily Equivalent 

Standard Axle Loading, AESAL, (computed from AADT by applying factors 

specific to the roadway such as truck percentage, lane and directional distribution 

factors, and load equivalency factors.) 

 

3. Aggregate/Mix property descriptors: These are physically recorded, measured or 

observed values for specific materials/performance indicators and they are 

primarily obtained from the material and mix database, lab and field test results 

and supplier/contractor submittals.  The variables in this category include 

material source information, source blend proportion information, aggregate 

gradation values (aggregate material pass sieve numbers), aggregate quality test 

results (British Pendulum Number –BPN, Polish Value –PV, Los Angeles 

Abrasion- LAA, Magnesium Sulphate Soundness, Binder Grade, Asphalt Content 

etc.)   

Terminal Equivalent Standard Axle Loading (Terminal ESAL also referred to in this 

dissertation as TESAL) was selected to represent the friction performance of a pavement 

given that it is a more commonly used measure of pavement performance, and that this 

variable is well correlated to the other three descriptors in its group (see table 2). The 

models developed using the selected response variable and all (or a combination of ) 

significant predictor variables can be used to estimate pavement friction performance in 

terms of Terminal (expected) ESAL. The model can also be used to estimate values of 

predictor variables that will yield higher friction performance. The various analysis 
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techniques considered and the research modeling process followed are discussed in the 

next sections. 

Table 7-1. Pavement Friction Performance Indicators by Supplier 

Supplier  

Terminal 

ESAL CumAADT 

FN  

Drop/10,000 

CumAADT 

Expected 

Pavement Life in 

Years 

AASG 2,363,108 57,200 3 7.9 

AIR 3,208,372 66,000 2 18.5 

KLC 1,062,723 30,000 13 6.3 

LCH 2,118,493 195,000 1 5.4 

LF 1,558,218 40,000 5 11.6 

LW 438,990 14,100 18 3.2 

MMW 3,477,567 76,000 2 8.7 

VMH 3,558,538 510,000 0.5 8.5 

VMHDG 3,672,489 72,000 0.3 6.3 

VMW 5,810,328 480,000 0.3 9.4 

YBPBV 3,045,205 54,000 5 6.3 

 

Table 7-2. Correlation Coefficients between Terminal ESAL and other Pavement 

Friction Performance indicators 

  Terminal ESAL 

Terminal ESAL 1 

Terminal CumAADT 0.665266 

FN Drop/10,000 CumAADT -0.77491 

Expected Life 0.318088 

 

7.2. Dataset for Preliminary Investigation 

As discussed above, several variables were obtained from the preliminary and detailed 

data analysis and investigation in chapters 5 and 6. The final output from the data 

analysis in the preceding chapters can be summarized as shown in the following tables: 
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Table 7-3. List of Variables and their descriptions 

 

 

Response, 

(Dependent) 

Variable 

Variable Description 

Terminal ESAL 
Equivalent Standard Axle Load (ESAL) at FN=32, 

for specific material and route 

Predictor 

(Explanatory, 

Independent) 

Variables 

Blend % Proportion of major aggregate source 

BPN British Pendulum Number 

PV Polish Value 

LAA Los Angeles Abrasion 

Soundness Magnesium Sulphate Soundness 

Binder Grade Binder Grade used in HMA mix 

Binder % (AC) Asphalt Content in HMA Mix 

AESAL 
Average Daily Equivalent Standard Axle Load 

(Computed from AADT) 

NMAS (Mix 

Size) 
Nominal Maximum Aggregate Size (12.5mm etc.) 

12.5 Sieve Size = 12.5 mm (1/2 Inch) 

9.5 Sieve Size = 9.5 mm (3/8 Inch) 

4.75 Sieve Size = 4.75.5 mm (No. 4) 

2.36 Sieve Size = 2.36 mm (No. 8) 

1.18 Sieve Size = 1.18 mm (No. 16) 

0.6 Sieve Size = 0.6 mm (No. 30) 

0.3 Sieve Size = 0.3 mm (No. 50) 

0.15 Sieve Size = 0.15 mm (No. 100) 

0.075 Sieve Size = 0.075 mm (No. 200) 

Pan Sieve Size = 0 mm 
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Table 7-4. Summary of dataset from detailed analysis in previous chapters 

 

Note: 

* 
Carbonate Information: 0= No information available on carbonates, 1= Carbonate Rock, 2= Non-Carbonate Rock 

+ 
AADT values were converted to Daily Average Equivalent Standard Axle Load (AESAL) to account for variability in traffic 

()  Table was completed using data from additional sources such as supplier website, Maryland Geological Survey maps and 

SHA aggregate bulletin from other years 

 

Source 
Rock 

Type 

Carb 

onate* 
Surface Material 

Actio

n 

Year 

Mix  

Size 

(mm) 

Blen

d 

% 

B 

P 

N 

PV 

L 

A 

A 

Soun 

dness 

Binder 

Grade 

Binder 

% (AC) 
AADT 

AASG 
Dolomitic 

Limestone  
1 

HMA 12.5mm, 64-

22, Surface, L 4 2006 12.5 100 26 5 15 2.8 64-22 5.7 7201 

AIR Serpentine 0 
HMA 12.5mm, 70-

22, 8 PV, L 3 2004 12.5 75 22 5 18 4.5 70-22 4.8 3573 

KLC 
Siliceous 

limestone 
0 

HMA 12.5mm, 70-

22, Surface, L 3 
2005 12.5 100 34 10 18 1 70-22 5.30 4762 

LCH Gnesiss  2 
HMA 12.5mm, 64-

22, Surface, L 2 
2006 12.5 65 22 6 22 0.4 64-22 4.3 36320 

LF Limestone 1 
HMA 12.5mm, 64-

22, Surface, L 2 2005 12.5 100 24 6 22 0.2 64-22 5.30 3435 

LW Limestone 0 
HMA 12.5mm, 64-

22, Surface, L 4 
2005 12.5 100 35 6 20 0.6 64-22 5.3 4390 

MMW Limestone() 0 
HMA 12.5mm, 64-

22, Surface, L 2 
2004 12.5 75 27 6 18 1.2 64-22 4.8 8780 

VMH Limestone 1 
HMA 9.5mm, 70-

22, Surface, L 3 
2005 9.5 85 21 4 25 0.7 70-22 5.4 60260 

VMHDG Gabbro () 0 
HMA 9.5mm, 64-

22, 8 PV, L 2 
2005 9.5 68 31 8 14 0.1 64-22 5.4 11490 

VMW Diabase 0 

HMA 12.5mm, 76-

22, Surface, 8 PV, L 

4 

2005 12.5 75 26 8 11 0.3 76-22 4.8 51320 

YBPBV Limestone() 0 
HMA 9.5mm, 70-

22, Surface, L 2 
2004 9.5 72 27 6 18 1.2 70-22 5.3 8520 
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Table 7-4. Summary of dataset from detailed analysis in previous chapters (continued) 

Source AESAL+ 

Term 

inal 

Cum 

AADT 

Exp 

 Life 

(yrs) 

Terminal 

ESAL 

FN Drop/10K  

CumAADT 

Number  

of records (n) 

AASG 815 57200 7.9 2,363,108 -3 
85 

AIR 362 66000 18.5 3,208,372 -2 
20 

KLC 462 30000 6.3 1,062,723 -13 
39 

LCH 1081 195000 5.4 2,118,493 -1 
18 

LF 429 40000 11.6 1,558,218 -5 
40 

LW 980 14100 3.2 438,990 -18 
28 

MMW 1101 76000 8.7 3,477,567 -2 
27 

VMH 862 510000 8.5 3,558,538 -0.5 
34 

VMHDG 732 72000 6.3 3,672,489 -0.3 
23 

VMW 967 480000 9.4 5,810,328 -0.3 
12 

YBPBV 657 54000 6.3 3,045,205 -5 
36 

Note: 

* 
Carbonate Information: 0= No information available on carbonates, 1= Carbonate Rock, 2= Non-Carbonate Rock 

+ 
AADT values were converted to Daily Average Equivalent Standard Axle Load (AESAL) to account for variability in traffic 

()  Table was completed using data from additional sources such as supplier website, Maryland Geological Survey maps and 

SHA aggregate bulletin from other years 
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Table 7-5. Aggregate Gradation (Percent Passing Sieve) by Supplier 

Supplier Mix Material 

Mix 

Size 

Percent Passing Sieve Size (mm) 

50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

AASG 

HMA 12.5mm, 64-22, 

Surface, L 4 
12.5 100 100 100 100 97 86 53 35 22 14 10 7 5.8 

AIR 

HMA 12.5mm, 70-22, 8 

PV, L 3 
12.5 100 100 100 100 97 83 52 36 23 17 10 6 4.7 

KLC 

HMA 12.5mm, 70-22, 

Surface, L 3 
12.5 100 100 100 100 91 77 52 33 21 14 10 8 6.1 

LCH 

HMA 12.5mm, 64-22, 

Surface, L 2 
12.5 100 100 100 100 98 83 44 30 23 17 11 7 4.1 

LF 

HMA 12.5mm, 64-22, 

Surface, L 2 
12.5 

100 100 100 100 95 87 66 40 25 15 9 7 6 

LW 

HMA 12.5mm, 64-22, 

Surface, L 4 
12.5 100 100 100 100 95 85 54 35 22 15 10 8 6.5 

MMW 

HMA 12.5mm, 64-22, 

Surface, L 2 
12.5 100 100 100 100 97 83 44 26 21 17 12 8 5 

VMH 

HMA 9.5mm, 70-22, 

Surface, L 3 
9.5 100 100 100 100 100 97 70 48 30 22 16 11 6.3 

VMHDG 

HMA 9.5mm, 64-22, 8 PV, 

L 2 
9.5 100 100 100 100 100 99 66 41 29 20 12 9 6.9 

VMW 

HMA 12.5mm, 76-22, 

Surface, 8 PV, L 4 
12.5 100 100 100 100 99 90 52 37 26 16 10 6 4.9 

YBPBV 

HMA 9.5mm, 70-22, 

Surface, L 2 
9.5 100 100 100 100 100 95 58 32 24 18 12 8 5.6 
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7.3. Selection of Analysis and Modeling Dataset 

The final dataset for detailed analysis and modeling was selected based on the 

significance of the variables identified in the previous sections. In addition, some of the 

variables had to be converted into a differnet form to bee able to be included in the 

statistical analysis. . For example, ―Binder Grade‖ which is a categorical variable had to 

be converted into dummy variables (numerical values) such that the contribution of this 

parameter can be accounted for in the resulting model. Moreover, the Annual Average 

Daily Traffic (AADT) values were converted to Daily Average Equivalent Standard Axle 

Load (AESAL) based on the actual traffic and roadway characteristics of the route under 

consideration.  Furthermore, it was possible to combine the data from two separate mix 

sizes (12.5 mm and 9.5 mm Nominal Maximum Aggregate sizes) given that all surface 

mixes essentially follow the same mix design methodology (Superpave). Tables 7-6 and 

7-7 contain the ―master‖ dataset that was used in the model development process. .  

The model development process first starts by attempting to fit a multivariate linear 

regression model to the data, assessing the outcome, and then moving into alternative 

curve/model fitting methods that may yield better results, depending on the data structure 

as well as the significance and correlation of the variables in the dataset.  The following 

flowchart demonstrates the research modeling methodology: 
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Figure 7-1. Flowchart of the model development process  

  

Multivariate Linear 
Regression (Ordinary 

Least Squares)

Stepwise Multivariate 
Linear  Regression 

(Manual)

Stepwise Multivariate 
Linear  Regression 

(Automated)

NonlinearMultivariate  
Regression (Multiple 

Exponential 
Regression)

Structural Equation 
Modeling (SEM) 

Partial Least Squares 
(PLS) Regression



 

122 

Table 7-6. Final dataset used for subsequent model development (Percent Passing Sieve)  

 

 

Supplier 
Total 

ESAL 

Blend 

% 
BPN PV LAA 

Sound 

ness 

Binder 

Grade* 

Binder 

% 
AESAL 

AASG 2,363,108 100 26 5 15 2.8 1 5.7 815 

AIR 3,208,372 75 22 5 18 4.5 2 4.8 362 

KLC 1,062,723 100 34 10 18 1 2 5.30 462 

LCH 2,118,493 65 22 6 22 0.4 1 4.3 1081 

LF 1,558,218 100 24 6 22 0.2 1 5.30 429 

LW 438,990 100 35 6 20 0.6 1 5.3 980 

MMW 3,477,567 75 27 6 18 1.2 1 4.8 1101 

VMH 3,558,538 85 21 4 25 0.7 2 5.4 862 

VMHDG 3,672,489 68 31 8 14 0.1 1 5.4 732 

VMW 5,810,328 75 26 8 11 0.3 3 4.8 967 

YBPBV 3,045,205 72 27 6 18 1.2 1 5.3 657 

 

 * 1= PG 64-22, 2= PG 70-22, 3= PG 76-22 
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Table 7-6. Final dataset used for subsequent model development (Percent Passing Sieve) (Continued) 

 

Supplier 
Percent Pass Sieve Size (mm) 

50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

AASG 100 100 100 100 97 86 53 35 22 14 10 7 5.8 

AIR 100 100 100 100 97 83 52 36 23 17 10 6 4.7 

KLC 100 100 100 100 91 77 52 33 21 14 10 8 6.1 

LCH 100 100 100 100 98 83 44 30 23 17 11 7 4.1 

LF 100 100 100 100 95 87 66 40 25 15 9 7 6 

LW 100 100 100 100 95 85 54 35 22 15 10 8 6.5 

MMW 100 100 100 100 97 83 44 26 21 17 12 8 5 

VMH 100 100 100 100 100 97 70 48 30 22 16 11 6.3 

VMHDG 100 100 100 100 100 99 66 41 29 20 12 9 6.9 

VMW 100 100 100 100 99 90 52 37 26 16 10 6 4.9 

YBPBV 100 100 100 100 100 95 58 32 24 18 12 8 5.6 
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Table 7-7. Final dataset used for subsequent model development (Percent Retained Sieve) 

 

Supplier 
Total 

ESAL 

Blend 

% 
BPN PV LAA 

Sound 

ness 

Binder  

Grade* 

Binder 

 % 

AASG 2,363,108 100 26 5 15 2.8 1 5.7 

AIR 3,208,372 75 22 5 18 4.5 2 4.8 

KLC 1,062,723 100 34 10 18 1 2 5.30 

LCH 2,118,493 65 22 6 22 0.4 1 4.3 

LF 1,558,218 100 24 6 22 0.2 1 5.30 

LW 438,990 100 35 6 20 0.6 1 5.3 

MMW 3,477,567 75 27 6 18 1.2 1 4.8 

VMH 3,558,538 85 21 4 25 0.7 2 5.4 

VMHDG 3,672,489 68 31 8 14 0.1 1 5.4 

VMW 5,810,328 75 26 8 11 0.3 3 4.8 

YBPBV 3,045,205 72 27 6 18 1.2 1 5.3 
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Table 7-7. Final dataset used for subsequent model development (Percent Retained Sieve)(Continued) 

 

Supplier AESAL 
Percent Retained Sieve Size (mm)

++
 

50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Pan  (0) 

AASG 815 0 0 0 0 3 11 33 18 13 8 4 3 1.2 5.8 

AIR 362 0 0 0 0 3 14 31 16 13 6 7 4 1.3 4.7 

KLC 462 0 0 0 0 9 14 25 19 12 7 4 2 1.9 6.1 

LCH 1081 0 0 0 0 2 15 39 14 7 6 6 4 2.9 4.1 

LF 429 0 0 0 0 5 8 21 26 15 10 6 2 1 6 

LW 980 0 0 0 0 5 10 31 19 13 7 5 2 1.5 6.5 

MMW 1101 0 0 0 0 3 14 39 18 5 4 5 4 3 5 

VMH 862 0 0 0 0 0 3 27 22 18 8 6 5 4.7 6.3 

VMHDG 732 0 0 0 0 0 1 33 25 12 9 8 3 2.1 6.9 

VMW 967 0 0 0 0 1 9 38 15 11 10 6 4 1.1 4.9 

YBPBV 657 0 0 0 0 0 5 37 26 8 6 6 4 2.4 5.6 

 

++ 
Percent retained values computed from actual percent pass values  
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7.4. Multivariate Linear Regression Analysis 

The number of predictor variables is between seventeen to eighteen, as can be seen from 

tables 7-6 and 7-7 respectively. On the other hand, there are several observations within 

each one of the eleven merged friction and mixture combinations shown in these tables 

The reduced amount of observations in relation to the variables considered in the 

modeling, as well as the correlation between these variables limit the validity of any 

traditional regression analysis. It was therefore important to find alternative methods of 

analysis. One of the alternatives in this regard was to reduce the number of predictor 

variables, for example  by reducing the number of sieves in the dataset. This was possible 

by eventually considering variables that can represent the aggregate gradation as follows: 

1. Use a measure of particle size distribution  such as Coefficient of Uniformity (Cu) 

and Coefficient of Curvature (Cc) for the percent passing (cumulative) aggregate 

fractions; 

2. Find alternative gradation curvature parameters that represent the best fit equation 

for the percent retained gradation (cumulative) and use these parameters in 

multivariate regression; 

3. Select specific sieve sizes that represent the breakdown between coarse  and fine 

aggregates (example the #4 sieve percent passing) and thus exmaine their 

contribution to friction;Select specific sieves (percent  retained) to examine 

dominant sizes within the  gradation in regards to friction. 
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Figure 7-2. Flowchart of variable reduction options 

 

The following tables summarize as an example the relationship between the response 

variable ―Terminal ESAL‖ and selected sieve size (Sieve No. 4) distribution, percent pass 

gradation curve parameters (Cu and Cc), and percent retained curve fit parameters (‗a‘ 

and ‗b‘):  



 

128 

 

Table 7-8. Relations between Terminal ESAL and gradation parameters 

Supplier 
Terminal 

ESAL 

% pass 

#4 

%  

retained 

#4 

Cu Cc a b 

AASG 2363108 53 33 19.19 2.104 107.22 0.252 

AIR 3208372 52 31 19.92 1.838 106.45 0.245 

KLC 1062723 52 25 20.90 2.267 98.296 0.175 

LCH 2118493 44 39 25.52 3.167 112.32 0.266 

LF 1558218 66 21 9.05 1.946 98.645 0.229 

LW 438990 54 31 18.90 2.136 102.23 0.222 

MMW 3477567 44 39 29.77 7.243 109.5 0.244 

VMH 3558538 70 27 24.92 3.880 110.32 0.227 

VMHDG 3672489 66 33 19.43 2.102 126.18 0.285 

VMW 5810328 52 38 19.17 1.501 116 0.323 

YBPBV 3045205 58 37 22.25 3.785 112.1 0.188 

 

Table 7-9. Correlation matrix for gradation parameters 

  

Terminal 

ESAL 

%pass 

#4 

% 

retained 

t#4 Cu Cc a b 

Terminal 

ESAL 
1.000 0.051 0.495 0.253 0.116 0.700 0.680 

%pass 

 #4 
0.051 1.000 -0.619 -0.481 -0.289 0.131 -0.109 

%retained 

#4 
0.495 -0.619 1.000 0.645 0.393 0.607 0.465 

Cu 0.253 -0.481 0.645 1.000 0.746 0.320 -0.016 

Cc 0.116 -0.289 0.393 0.746 1.000 0.073 -0.199 

a 0.700 0.131 0.607 0.320 0.073 1.000 0.648 

b 0.680 -0.109 0.465 -0.016 -0.199 0.648 1.000 

 

The approach and computations used to investigate alternative means of representing 

gradation, so as to reduce the number of predictor variables in the dataset, are presented 

in detail in Appendix B. 
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The attempt to identify alternative gradation representation parameters yielded several 

parameters which can be used in multivariate regression analysis with reduced number of 

variables.  As a result, the number of independent (predictor) variables was reduced from 

17 to 10 for the percent passing gradation cases, and from 18 to 10 for the percent 

retained gradation alternatives. The results of such analyses, shown in Table 7-10, did not 

produce a significant model.  

 

Table 7-10. Output from Multivariate Regression Analysis with 10 predictors 
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The next step of the analysis was to reduce the number of predictor varaibles  to nine 

recognizing the small size of the observations. Consequently, Sieve No. 4 (4.75 mm) was 

selected to represent gradation for the following reasons: 

- It is the sieve that, on average, nearly 50% of the aggregate material 

passes for all suppliers; 

- This sieve exhibits high variability as demonstrated in Table 7-11 (in 

the case of percent passing gradation); 

- This sieve represents the peak value in the sieve size versus percent 

retained graph as shown in Figure  7-4 (in the case of percent retained 

gradation); 

- This sieve represents the ‗fraction between coarse and fine aggregate 

particles in the material. 

Table 7-11. Descriptive Statistics for aggregate passing gradation parameters 

Parameter 

12.5 

mm 

9.5 

mm 

4.75 

 mm 

2.36 

 mm 

1.18 

 mm 

0.6  

mm 

0.3 

 mm 

0.15 

mm 

0.075 

 mm 

          Mean 97.18 87.73 55.55 35.73 24.18 16.82 11.09 7.73 5.63 

Standard Error 0.83 2.05 2.61 1.78 0.92 0.75 0.58 0.43 0.26 

Median 97.00 86.00 53.00 35.00 23.00 17.00 10.00 8.00 5.80 

Mode 97.00 83.00 52.00 35.00 22.00 17.00 10.00 8.00 #N/A 

Standard 

Deviation 2.75 6.81 8.64 5.90 3.06 2.48 1.92 1.42 0.86 

Sample Variance 7.56 46.42 74.67 34.82 9.36 6.16 3.69 2.02 0.73 

Kurtosis 1.30 -0.66 -0.76 0.99 -0.09 0.53 4.03 1.96 -0.73 

Skewness -1.08 0.41 0.40 0.53 0.97 0.92 1.81 1.10 -0.35 

Range 9.00 22.00 26.00 22.00 9.00 8.00 7.00 5.00 2.80 

Minimum 91.00 77.00 44.00 26.00 21.00 14.00 9.00 6.00 4.10 

Maximum 100.00 99.00 70.00 48.00 30.00 22.00 16.00 11.00 6.90 

Sum 1069.0 965.0 611.0 393.0 266.0 185.0 122.0 85.0 61.9 

Count 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 

          COV (Coeff. Of 

variation) 

=SD/Mean 0.028 0.078 0.156 0.165 0.127 0.148 0.173 0.184 0.152 
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Figure 7-3. Aggregate Percent passing versus sieve size 

 

 

Figure 7-4. Aggregate Percent Retained versus sieve size 
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Based on the above selection, the dataset was revised to include nine independent 

(predictor) variables, one response variable, and inlcuding eleven distcinct cases of 

observations with multiple, datapoints n, as shown below: 

Table 7-12. Reduced dataset for multivariate regression analysis  

(Percent Passing on Sieve No. 4) 

Source 
Terminal 

ESAL 

%pass #4 

(4.75mm) 

Blend 

% 

B 

P 

N 

P 

V 

L 

A 

A 

Sound 

ness 
BG* 

Binder 

% (AC) 
AESAL 

AASG 2,363,108 53 100 26 5 15 2.8 1 5.7 815 

AIR 3,208,372 52 75 22 5 18 4.5 2 4.8 362 

KLC 1,062,723 52 100 34 10 18 1 2 5.30 462 

LCH 2,118,493 44 65 22 6 22 0.4 1 4.3 1081 

LF 1,558,218 66 100 24 6 22 0.2 1 5.30 429 

LW 438,990 54 100 35 6 20 0.6 1 5.3 980 

MMW 3,477,567 44 75 27 6 18 1.2 1 4.8 1101 

VMH 3,558,538 70 85 21 4 25 0.7 2 5.4 862 

VMHDG 3,672,489 66 68 31 8 14 0.1 1 5.4 732 

VMW 5,810,328 52 75 26 8 11 0.3 3 4.8 967 

YBPBV 3,045,205 58 72 27 6 18 1.2 1 5.3 657 

 

Table 7-13. Reduced dataset for multivariate regression analysis  

(Percent Retained on Sieve No. 4) 

Source 
Terminal 

ESAL 

%Retained 

#4 

(4.75mm) 

Blend 

% 

B 

P 

N 

P 

V 

L 

A 

A 

Sound 

ness 
BG* 

Binder 

% 
AESAL 

AASG 2,363,108 33 100 26 5 15 2.8 1 5.7 815 

AIR 3,208,372 31 75 22 5 18 4.5 2 4.8 362 

KLC 1,062,723 25 100 34 10 18 1 2 5.30 462 

LCH 2,118,493 39 65 22 6 22 0.4 1 4.3 1081 

LF 1,558,218 21 100 24 6 22 0.2 1 5.30 429 

LW 438,990 31 100 35 6 20 0.6 1 5.3 980 

MMW 3,477,567 39 75 27 6 18 1.2 1 4.8 1101 

VMH 3,558,538 27 85 21 4 25 0.7 2 5.4 862 

VMHDG 3,672,489 33 68 31 8 14 0.1 1 5.4 732 

VMW 5,810,328 38 75 26 8 11 0.3 3 4.8 967 

YBPBV 3,045,205 37 72 27 6 18 1.2 1 5.3 657 

 

* BG= Binder Grade: 1= PG 64-22, 2= PG 70-22, 3= PG 76-22 
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7.4.1. Multivariate Linear (Ordinary Least Squares) Regression  

A multiple (multivariate) linear regression model was assessed to fit all nine predictor 

variables listed in table 7-12. The multiple linear regression model has the following 

form: 

kk xxxy ....22110                  (Eq. 7.1)
 

Where: 

 y = the response variable 

 i = regression coefficients, and 

 xi = predictor variables 

  = error term 

The multiple linear regression method stipulates a linear relationship between a 

dependent (response) variable and a set of independent (predictor) variables. The 

algorithm for a multivariate linear regression has the objective of finding a vector of 

regression coefficients that will result in the least sum of squares (errors). This approach 

to multivariate linear regression is also referred as the Ordinary Least Squares (OLS) 

method. In matrix notation, the multivariate linear regression can be expressed as: 

y= Xβ + ε  
(Eq. 7.2)

 

   Where: 

y = a vector (column matrix) of responses (an Nx1 matrix) 

X = a matrix of exploratory variables (an NxK matrix where N is the number of 

rows –observations- and K is the number of columns -predictor variables) 

Β = a vector of regression coefficients (a Kx1 matrix) 

  = error term (an Nx1 matrix) 
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In its basic form, OLS is a data fitting mechanism based on minimizing the sum of 

squared residuals or residual sum of squares (RSS). The error (residual) from a regression 

equation can be defined as: 

e = y- ŷ                                         
(Eq. 7.3)

 

Where: 

 y = actual response values 

 ŷ = predicted response values 

The regression coefficient vector (column matrix), β, can be computed using the 

following matrix operation (Johnson et al 2007):   

 

 (Eq. 7.4) 

 

In addition to finding a set of regression coefficients that yield the least sum of squared 

residuals, the linear regression method also tests for the validity of the components of the 

resulting model. This is done using the following tests (Allen, 1997; Johnson et al 2007): 

 Significance of independent coefficients: This is a test used to evaluate whether 

an exploratory variable contributes significantly to the model. This test 

investigates the null hypothesis which states that the regression coefficient for a 

certain variable is equal to zero (meaning that the particular predictor variable has 

little or no effect on the response). This corresponds to a t-test statistic which can 

be computed as the ratio of the estimated coefficient over its standard error. This 

test statistic follows a Student‘s ‗t‘ distribution with N-K degrees of freedom. If, 

according to this reference distribution, the probability that a value equal to or 
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larger than the t-value - for a one-sided test - occurs (also referred to as ‗P‘ value) 

is very small, the null hypothesis will be rejected and the coefficient may be taken 

to be significant, which also means that the contribution of the corresponding 

variable to the model is significant. Typically a probability test value (‗alpha‘) of 

0.05 is used as a measure of significance.  

 

 Significance of the model:  The second model validity test involves 

proving/disproving the null hypothesis that the regression model as whole is 

insignificant (that is all regression coefficients are equal to zero). This test, known 

as the Fisher‘s Statistic test (F-test), is constructed by comparing the residual sum 

of squares (RSS) obtained from the model with the sum of squares (RSSc) 

computed from the actual response values (computed as the average of the sum of 

the differences between each value of ‗y‘ –i.e. yi -  and the mean of ‗y‘ –i.e. ȳ). 

The ‗F‘ statistic is given as: 

(Eq. 7.5)
 

The ‗F‘ value obtained from above is compared to a published ‗F‘ value for the given 

degrees of freedom of the model and the selected maximum probability (‗alpha‘) value. 

For this research, an alpha value of 0.05 will be used as a measure of significance for the 

whole model as well as for the individual regression coefficients.  The results of the 

multivariate regression performed on the dataset in table 7-12 are presented in the 

following table: 
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Table 7-14. Output of multivariate regression analysis (for dataset in table 7-12) 

 

  

SUMMARY OUTPUT 
       

         Regression Statistics 
       Multiple R 0.973988 
       R Square 0.948652 
       Adjusted R 

Square 0.486522 
       Standard Error 1059295 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F tcritical 
  Regression 9 2.07E+13 2.3E+12 2.052783 0.497164 2.262157 
  Residual 1 1.12E+12 1.12E+12 

     Total 10 2.19E+13       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 8073682 12721874 0.63463 0.639995 -1.5E+08 1.7E+08 -1.5E+08 1.7E+08 
%pass #4 -11865.9 173701 -0.06831 0.956579 -2218947 2195215 -2218947 2195215 
Blend % -56788.4 56329.46 -1.00815 0.497417 -772522 658945.3 -772522 658945.3 
BPN -110772 156288.5 -0.70877 0.607469 -2096606 1875062 -2096606 1875062 
PV -225631 837387.1 -0.26945 0.832444 -1.1E+07 10414381 -1.1E+07 10414381 
LAA -187633 147845.1 -1.26912 0.424848 -2066183 1690917 -2066183 1690917 
Soundness -311281 1010998 -0.30789 0.809852 -1.3E+07 12534668 -1.3E+07 12534668 
Binder Grade 1044310 943807.2 1.106486 0.467845 -1.1E+07 13036517 -1.1E+07 13036517 
Binder % 1284143 2986348 0.430004 0.741468 -3.7E+07 39229286 -3.7E+07 39229286 
AESAL 214.6552 4572.041 0.04695 0.970133 -57878.6 58307.94 -57878.6 58307.94 
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Table 7-15. Output of multivariate regression analysis (for dataset in table 7-13) 

 

As can be seen in the above tables, the model as a whole is valid as demonstrated by the 

higher ‗F‘ statistic values compared to the corresponding ―significance F‖ values, per the 

chosen ‗alpha‘ value of 0.05. However, none of the regression coefficients yielded t-test 

values greater than the critical value of 2.262 (for an alpha value of 0.05) which makes all 

coefficients, including the constant term (intercept) insignificant. This is further 

confirmed by the high ‗P‘ values (a ‗P‘ value of less than 0.05 is needed for significance). 

 

  

SUMMARY OUTPUT 
       

         Regression Statistics 
       Multiple R 0.974871 
       R Square 0.950373 
       Adjusted R 

Square 0.503733 
       Standard Error 1041391 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 9 2.08E+13 2.31E+12 2.127827 0.489725 2.262157 
  Residual 1 1.08E+12 1.08E+12 

     Total 10 2.19E+13       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 9878230 15689649 0.629602 0.642282 -1.9E+08 2.09E+08 -1.9E+08 2.09E+08 
%Retained#4 -41936.7 210983.8 -0.19877 0.875089 -2722740 2638866 -2722740 2638866 
Blend % -61603 52878.42 -1.16499 0.451577 -733487 610281 -733487 610281 
BPN -110826 149588.3 -0.74087 0.59407 -2011525 1789874 -2011525 1789874 
PV -180240 557919.3 -0.32306 0.801073 -7269276 6908797 -7269276 6908797 
LAA -208245 175723.2 -1.18508 0.446206 -2441020 2024529 -2441020 2024529 
Soundness -195766 529134 -0.36997 0.774409 -6919051 6527519 -6919051 6527519 
Binder Grade 943088.6 666620 1.414732 0.391717 -7527122 9413299 -7527122 9413299 
Binder % 1038018 1574304 0.659351 0.628901 -1.9E+07 21041446 -1.9E+07 21041446 
AESAL 1058.955 3705.411 0.285786 0.822787 -46022.8 48140.67 -46022.8 48140.67 
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7.4.2. Stepwise Multivariate Linear Regression 

The next approach that was employed to improve the outcome of the multivariate linear 

regression analysis was stepwise regression method. Stepwise regression analysis is a 

systematic method of adding and/or removing variables from a multivariate model based 

on their statistical significance (Matlab Handbook). The method starts with an initial 

model and then incrementally compares the explanatory power of larger or smaller 

models by adding or removing variables. At each step, the model significance is assessed 

as a whole using the ‗p‘ value of an ‗F‘-statistic with and without a potential term.  

 

In stepwise regression, if a variable is currently not in the model, the null hypothesis is 

that that particular predictor variable would have a zero coefficient if added to the model, 

and therefore will be considered insignificant to the model. However, if there is sufficient 

evidence (per the ‗F‘ statistic results) to reject the null hypothesis, the variable is added 

into the model. On the other hand, if a predictor variable is currently in the model, the 

null hypothesis is that the variable has a zero coefficient. If there is insufficient evidence 

to reject the null hypothesis, the term will be removed from the model.  

 

In this research, both manual and automated stepwise regression methods were 

considered. In the manual method, variables are removed from the model one (or more 

than one if they have relatively high ‗p‘ values) at a time and multiple linear regression 

analysis is performed using the remaining variables until the model is found to be 

significant, and enough predictor variables prove to be significant for the formation of the 

model.  In the automated method, a built-in computer program is used to automatically 
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add/remove variables interchangeably until enough predictor variables are found to 

produce a significant model as well as significant regression coefficients. The detailed 

procedure and outputs for the manual stepwise regression are included in Appendix C. 

 

The following tables show the final outputs from both manual and automated stepwise 

regression analysis on the dataset contained in tables 7-12 and 7-13 above: 

 

Table 7-16. Output of “manual” stepwise multivariate regression analysis  

(for Table 7-12 dataset) 

 

 

 

 

SUMMARY 
OUTPUT 

        
         Regression Statistics 

       Multiple R 0.81473 
       R Square 0.66378 
       Adjusted R 

Square 0.57973 
       Standard 

Error 958341 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
t-

critical 
  Regression 2 1.45E+13 7.25E+12 7.897120262 0.012778 2.306 
  Residual 8 7.35E+12 9.18E+11 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1.3E+07 2715162 4.927417 0.001153185 7117559 2E+07 7E+06 19639908 

BPN -208838 67734.22 -3.0832 0.015043718 -365034 
-

52643 
-

4E+05 -52642.9 

LAA -274849 80897.37 -3.39751 0.009395025 -461399 
-

88300 
-

5E+05 -88299.8 
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Table 7-17.  Output of “automated” stepwise multivariate regression analysis  

(for Table 7-12 dataset) 

 

Table 7-18. Output of “manual” stepwise multivariate regression analysis 

(for Table 7-13 dataset)

 

Regression Statistics 
     Multiple R 0.819068 
     R Square 0.670872 
     Adjusted R Square 0.58859 
     Standard Error 948186.5 
     Observations 11 
     

       ANOVA 
      

  df SS MS F 
Significance 

F t-critical 

Regression 2 1.47E+13 7.33E+12 8.153315 0.011734 2.306004 

Residual 8 7.19E+12 8.99E+11 
   Total 10 2.19E+13         

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 6319581 1925870 3.281416 0.011164 1878516 10760646 

Blend % -62455.8 21126.96 -2.95621 0.018252 -111175 -13736.9 

Binder Grade 1121604 436901.2 2.567179 0.033273 114107.8 2129100 

 

SUMMARY 
OUTPUT 

                 Regression Statistics 
       Multiple R 0.81907 
       R Square 0.67087 
       Adjusted R 

Square 0.58859 
       Standard 

Error 948187 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
t-

critical 
  Regression 2 1.47E+13 7.33E+12 8.153314627 0.011734 2.306 
  Residual 8 7.19E+12 8.99E+11 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 6319581 1925870 3.281416 0.011164182 1878516 1E+07 1878516 1.1E+07 

Blend % -62456 21126.96 -2.95621 0.018251582 -111175 
-

13737 
-

111174.6 
-

13736.9 
Binder Grade 1121604 436901.2 2.567179 0.033273239 114107.8 2E+06 114107.8 2129100 
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Table 7-19. Output of “automated” stepwise multivariate regression analysis 

 (for Table 7-13 dataset) 

 

 

  

Regression Statistics 
     Multiple R 0.819068 
     R Square 0.670872 
     Adjusted R 

Square 0.58859 
     Standard Error 948186.5 
     Observations 11 
     

       ANOVA 
      

  df SS MS F 
Significance 

F t-critical 

Regression 2 1.47E+13 7.33E+12 8.153315 0.011734 2.306004 

Residual 8 7.19E+12 8.99E+11 
   Total 10 2.19E+13         

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 6319581 1925870 3.281416 0.011164 1878516 10760646 

Blend % -62455.8 21126.96 -2.95621 0.018252 -111175 -13736.9 

Binder Grade 1121604 436901.2 2.567179 0.033273 114107.8 2129100 
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7.4.3. Multivariate Linear Regression “by-parts” 

As can be inferred from the outputs of both the standard and stepwise multivariate linear 

regression analysis presented above, there has been limited success in finding a model 

that is significant, when evaluating for all variables as a whole or for independent 

variables individually. The next approach considered for improving the regression model 

was to break the dataset into two groups of variables that share at least one common 

variable, and then perform regression analysis separately. This approach will result in less 

number of variables than there are observations, which is likely to improve the 

significance of the contribution of the predictor variables.  Consequently, the dataset from 

table 7-12 was divided into the following groups: 

 

Table 7-20. Divided dataset for “by-parts” Multivariate Linear Regression (Group 1) 

 

Terminal 

ESAL 

%pass 

#4 

Blend 

% 
BPN LAA AESAL 

2,363,108 53 100 26 15 815 

3,208,372 52 75 22 18 362 

1,062,723 52 100 34 18 462 

2,118,493 44 65 22 22 1081 

1,558,218 66 100 24 22 429 

438,990 54 100 35 20 980 

3,477,567 44 75 27 18 1101 

3,558,538 70 85 21 25 862 

3,672,489 66 68 31 14 732 

5,810,328 52 75 26 11 967 

3,045,205 58 72 27 18 657 

 

 

 

Table 7-21. Divided dataset for “by-parts” Multivariate Linear Regression (Group 2) 
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Terminal 

ESAL 

%pass 

#4 
PV Soundness 

Binder 

Grade 

Binder 

% 
AESAL 

2,363,108 53 5 2.8 1 5.7 815 

3,208,372 52 5 4.5 2 4.8 362 

1,062,723 52 10 1 2 5.30 462 

2,118,493 44 6 0.4 1 4.3 1081 

1,558,218 66 6 0.2 1 5.30 429 

438,990 54 6 0.6 1 5.3 980 

3,477,567 44 6 1.2 1 4.8 1101 

3,558,538 70 4 0.7 2 5.4 862 

3,672,489 66 8 0.1 1 5.4 732 

5,810,328 52 8 0.3 3 4.8 967 

3,045,205 58 6 1.2 1 5.3 657 

 

Table 7-22.  Output for “by-parts” Multivariate Linear Regression (First group) 

 

 

Table 7-23. Output for “by-parts” Multivariate Linear Regression (Second group) 

SUMMARY 
OUTPUT 

                 Regression Statistics 
       Multiple R 0.92021 
       R Square 0.84679 
       Adjusted R 

Square 0.69358 
       Standard 

Error 818300 
       Observations 11 
                ANOVA 

        

  df SS MS F Significance F 
t-

critical 
  Regression 5 1.85E+13 3.7E+12 5.527054934 0.041968 2.5706 
  Residual 5 3.35E+12 6.7E+11 

     Total 10 2.19E+13         
           

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1E+07 3158493 3.216147 0.023566634 2039012 2E+07 2039012 1.8E+07 
%pass #4 58574.4 33690.93 1.738581 0.142605596 -28030.9 145180 -28030.89 145180 
Blend %  -30518 22419.68 -1.36121 0.231581814 -88149.4 27114 -88149.44 27113.8 
BPN -163584 66638.89 -2.45478 0.057596893 -334885 7716.9 -334884.6 7716.9 
LAA -263306 76016.12 -3.46382 0.017968414 -458711 -67900 -458711.5 -67900 
AESAL 1407.7 1120.684 1.256109 0.264571922 -1473.11 4288.5 -1473.108 4288.51 
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It can be seen from the above two tables that this approach resulted in some improvement 

of the ‗p‘ values for some variables, especially from the first group. However, this 

improvement is not any more significant than the results obtained by the stepwise 

regression analysis that yielded only a couple of variables as significant. Over the years, 

past studies have concluded that specific  polishing related variables – such as British 

Pendulum Number and Los Angeles Abrasion - are related to friction performance of 

pavements, Similar results were obtained for the dataset in table 7-13 (for the case where 

percent retained on sieve No. 4 was used instead of percent passing)  

 

 

 

7.5. Non-Linear Multivariate Regression (Exponential model) 

SUMMARY 
OUTPUT 

        
         Regression Statistics 

       Multiple R 0.7764 
       R Square 0.60279 
       Adjusted R 

Square 0.00698 
       Standard 

Error 1473111 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
t-

critical 
  Regression 6 1.32E+13 2.2E+12 1.01171316 0.519971 2.7764 
  Residual 4 8.68E+12 2.17E+12 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -7E+06 10478679 -0.63903 0.5575636 -3.6E+07 2E+07 -3.6E+07 22397318 
%pass #4 199551 147739.7 1.350691 0.2481483 -210640 609742 -210640 609741.7 
PV 505985 583694.9 0.866866 0.4349209 -1114612 2E+06 -1114612 2126582 
Soundness 1023825 888355.5 1.152494 0.3133070 -1442646 3E+06 -1442646 3490295 
Binder Grade 663765 892298.1 0.743883 0.4982696 -1813651 3E+06 -1813651 3141182 
Binder % -2E+06 1999752 -1.10441 0.3313796 -7760748 3E+06 -7760748 3343657 
AESAL 5594.92 3806.193 1.469951 0.2155194 -4972.77 16163 -4972.77 16162.6 
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Another method of regression analysis considered to establish a relationship between the 

response variable and the predictor variables is non-linear multivariate regression 

analysis, in this case  exponential multiple regression. Exponential multiple variable 

regression has the form: 

(Eq. 7.6) 

Where: 

 y: response variable 

 b: regression constant 

 x1…xn: predictor variables 

 m1…mn: exponential regression coefficients 

It is important to note that the exponential regression  can be converted to a linear form 

by simply taking the logarithm (natural logarithm) of both sides of the equation. In 

addition, the model and variable significance is measured in the same way as the 

multivariate linear regression. The built-in Microsoft excel function, LOGEST, was used 

to compute the multivariate exponential regression function for the dataset discussed in 

the previous sections.  The results of the analysis for the dataset in table 7-12 are shown 

in the next tables.  
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Table 7-24. Output for Multivariate Exponential Regression for dataset in table 7-12 

(Coefficients) 

 
AESAL 

Binder 

% 

Binder 

Grade 

Sound 

ness 
LAA PV BPN 

Blend 

% 

%pass 

#4 
b 

Coefficients 1.00033 3.306 1.216 0.985 0.954 1.134 0.8758 0.96791 1 3E+06 

Standard 

Errors 0.00241 1.577 0.498 0.534 0.078 0.4422 0.0825 0.02975 0.1 6.719 

R2 and Sev 0.93894 0.559 

        F and df 1.7087 1 

        Ssreg and 

Ssresid 4.81388 0.313 

         

Table 7-24: Output for Multivariate Exponential Regression for dataset in table 7-

12 (Model Parameters) (Continued) 

Model Parameter Value 

 r
2
 0.938944 

 df 1 

 n 11 

 v1 (degree of freedom 1) 9 

 v2(degree of freedom 2) 1 

 Fdist (F-critical) 0.536147 

 Fobs 1.708702 Model Acceptable 

 

Table 7-24: Output for Multivariate Exponential Regression for dataset in table 7-

12 (Coefficient significance) (Continued) 

 Variable 

t-observed  

Value 

 (Absolute) 

Variable  

significance Check 

T-critical value (alpha=0.05) = 12.706 

AESAL 414.244 Significant 

Binder % 2.09621 Not Significant 

Binder Grade 2.43988 Not Significant 

Soundness 1.84545 Not Significant 

LAA 12.2186 Not Significant 

PV 2.56474 Not Significant 

BPN 10.6104 Not Significant 

Blend % 32.5329 Significant 

%pass #4 10.7732 Not Significant 

b 472005 Significant 

 

 

7.5.1. Multivariate Exponential regression with Select variables 
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In addition of initially using all variables in the multivariate exponential regression, 

further attempts considered reducing the number of variables to five based on their level 

of significance (variables with t-value of less than 10 were removed). . The removed 

variables were ―Blend percentage‖, ―Polish Value‖, Binder Grade‖ and ―Soundness‖. The 

resulting dataset and the output of the regression analysis is presented in the Table 7-25.  

Table 7-25. Output for Multivariate Exponential Regression for reduced dataset  

(5-variables) 

 

AESAL LAA BPN Blend % %pass #4 b 

Coefficients 1.0002 0.900267448 0.907484 0.982370327 1.022665 229870545 

Standard Errors 0.0005 0.034014764 0.029819 0.010032083 0.015076 1.4133239 

R2 and Sev 0.86924 0.366162831 

   

 

F and df 6.64781 5 

   

 

Ssreg and Ssresid 4.45653 0.670376095 

   

 

   

 

Model 

Parameter Value 

 

 

r2 0.869244 

 

 

df 5 

 

 

n 11 

 

 

v1 5 

 

 

v2 5 

 

 

Fdist 0.029002 

 

 

Fobs 6.647807 Model Acceptable  

   

 

 Variable 

t-observed  

Value 

 (Absolute) 

Variable  

significance Check 

T-critical value (alpha=0.05) = 2.57 

 

AESAL 1994.53 Significant  

LAA 26.467 Significant  

BPN 30.4333 Significant  

Blend % 97.9229 Significant  

%pass #4 67.8358 Significant  

b 1.6E+08 Significant  

 

 

The above output was tested for validity by removing one observation from the dataset, 

running the multivariate regression again and plugging the omitted values back into the 
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model, and thus comparing the predicted value to the actual observed value. To 

accomplish this, the median observation corresponding to Terminal ESAL value of 

3,045,205 was removed from the dataset and the following results were obtained, see 

Table 7-26.  

 

Table 7-26. Output for Multivariate Exponential Regression for reduced dataset 

 (5-variables, 10-observations) 

 

AESAL LAA BPN Blend %  %pass #4 b 

Coefficients 1.00021 0.899871649 0.906801 0.982861421 1.022514 225133204 

Standard Errors 0.00057 0.038183807 0.033989 0.012091315 0.016883 1.5891624 

R2 and Sev 0.86737 0.408768571 

   

 

F and df 5.23194 4 

   

 

Ssreg and Ssresid 4.37107 0.668366978 

   

 

   

 

Model 

Parameter Value 

 

 

r2 0.867373 

 

 

df 4 

 

 

n 10 

 

 

v1 5 

 

 

v2 4 

 

 

Fdist 0.067008 

 

 

Fobs 5.231936 Model Acceptable  

   

 

 Variable 

t-observed  

Value 

 (Absolute) 

Variable  

significance Check 

T-critical value (alpha=0.05) = 2.77 

 

AESAL 1740 Significant  

LAA 23.5668 Significant  

BPN 26.6796 Significant  

Blend % 81.2866 Significant  

%pass #4 60.5634 Significant  

PV 1.4E+08 Significant  

 

 

 

The resulting model was: 



 

149 

 (Eq. 7.7) 

Where: 

TESAL = Terminal ESAL 

X1 = %Pass#4 

X2 = Blend % 

X3 = BPN 

X4 = LAA 

X5 = AESAL 

Plugging in the values of the removed observation: 

 = 1.68*10^17 ESALs 

It can be seen from the output of Table 7-26 that the prediction is signifcantly large, 

which indicates that the model ‗over fits‘ the data to the actual observations.  
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7.6. Variable Transformation 

It is evident from the results of the multivariate linear and exponential regression 

analyses that the reduced dataset (nine predictor variables) did not produce a model that 

is significant both in temrs  overall model validity as well as significance of predictor 

variables. As a result, a variable transformation/modification technique was considered, 

which can potentially help improve the correlation of the response variable (Terminal 

ESAL) with the individual predictor variables. To accomplish this, the correlation 

coefficient between each variable and the response variable was assessed and several 

options were investigated. The coefficient of correlation (r) measures the linear 

dependence between two variables, with values ranging between -1 and +1 inclusive. The  

correlation matrix for the variables is shown in Table 7-27.   

Table 7-27. Correlation matrix for analysis dataset  

(original variables - before transformations) 

  

Term. 

 ESAL 

%pass  

#4 

%Ret‟d 

#4 

Blend 

% BPN PV LAA 

Sound 

ness 

Binder 

Grade 

Binder 

% 

AE 

SAL 

Terminal 

ESAL 
1.000 0.051 0.495 

-

0.632 
-0.423 -0.020 -0.514 0.007 0.558 -0.247 0.229 

%pass 

 #4 
0.051 1.000 -0.619 0.203 -0.078 -0.159 0.245 -0.268 0.005 0.646 

-

0.393 

%Retained 

#4 
0.495 -0.619 1.000 

-

0.715 
-0.094 -0.047 -0.431 0.022 -0.046 -0.529 0.685 

Blend % 
-0.632 0.203 -0.715 1.000 0.375 0.034 0.192 0.039 -0.060 0.630 

-

0.301 

BPN -0.423 -0.078 -0.094 0.375 1.000 0.657 -0.336 -0.282 -0.156 0.371 0.007 

PV 
-0.020 -0.159 -0.047 0.034 0.657 1.000 -0.507 -0.383 0.274 -0.031 

-

0.163 

LAA 
-0.514 0.245 -0.431 0.192 -0.336 -0.507 1.000 -0.112 -0.306 -0.055 

-

0.040 

Soundness 
0.007 -0.268 0.022 0.039 -0.282 -0.383 -0.112 1.000 0.097 0.009 

-

0.408 

Binder 

Grade 
0.558 0.005 -0.046 

-

0.060 
-0.156 0.274 -0.306 0.097 1.000 -0.195 

-

0.121 

Binder  

% 
-0.247 0.646 -0.529 0.630 0.371 -0.031 -0.055 0.009 -0.195 1.000 

-

0.334 

AESAL 
0.229 -0.393 0.685 

-

0.301 
0.007 -0.163 -0.040 -0.408 -0.121 -0.334 1.000 
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Table 7-28. Correlation matrix for analysis dataset  

 (Modified variables - after transformations) 

  
Term. 

 ESAL 

%Ret 

#4 

Blend 

% 

 -EXP 

(0.6* 

BPN) 

 -

Exp 

(PV) LAA 

Ln 

(Sound 

ness) 

Binder 

 

Grade 

Exp 

(Binder 

%) 

(AESAL) 

^-0.4 

Terminal 

ESAL 
1.000 0.495 

-

0.632 
0.638 0.278 

-

0.514 
-0.116 0.558 -0.270 -0.239 

%Ret 

#4 
0.495 1.000 

-

0.715 
0.205 0.352 

-

0.431 
0.097 -0.046 -0.466 -0.655 

Blend 

 % 
-0.632 

-

0.715 
1.000 -0.516 

-

0.326 
0.192 0.168 -0.060 0.618 0.267 

 -EXP 

(0.6*BPN) 
0.638 0.205 

-

0.516 
1.000 0.236 

-

0.126 
0.014 0.123 -0.144 0.118 

 -Exp(PV) 
0.278 0.352 

-

0.326 
0.236 1.000 0.144 0.002 -0.323 -0.088 -0.334 

LAA 
-0.514 

-

0.431 
0.192 -0.126 0.144 1.000 0.045 -0.306 -0.050 0.080 

ln(Sound 

ness) 
-0.116 0.097 0.168 0.014 0.002 0.045 1.000 0.073 0.060 0.244 

Binder  

Grade 
0.558 

-

0.046 

-

0.060 
0.123 

-

0.323 

-

0.306 
0.073 1.000 -0.260 0.145 

Exp 

 (Binder 

%) 

-0.270 
-

0.466 
0.618 -0.144 

-

0.088 

-

0.050 
0.060 -0.260 1.000 0.106 

(AESAL)^-

0.4 
-0.239 

-

0.655 
0.267 0.118 

-

0.334 
0.080 0.244 0.145 0.106 1.000 

 

It can be seen from the above analysis that the variable transformation approach resulted 

in better correlation between the response variable (Terminal ESAL) and some of the 

predictor variables. The variable ―percent passing sieve no.4‖ (%pass#4) was not 

trasnformed since as it can be observed from the correlation matrix in table 7-27 this 

variable showed a high correlation with the response variable.    
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7.6.1. Multivariate Regression with transformed variables 

Multivariate linear regression, stepwise regression and non-linear (exponential) 

regression were performed on the dataset using the  transformed variables. The results are 

shown in Tables 7-29 through 7-33.  

 

Table 7-29. Output of Multivariate linear regression (for transformed variables) 

 

 

 

 

 

 

SUMMARY 
OUTPUT 

        
         Regression Statistics 

       Multiple R 0.98157 
       R Square 0.96347 
       Adjusted R 

Square 0.63474 
       Standard Error 893426 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 9 2.11E+13 2.34E+12 2.93085 0.426514 12.706205 
  Residual 1 7.98E+11 7.98E+11 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept 1.9E+07 28240819 0.681061 0.619364 -3.4E+08 378067336 -3.4E+08 378067336 
%Ret#4 -147803 331512.7 -0.44584 0.733007 -4360071 4064465.9 -4360071 4064465.9 
Blend %  -62788 67984.49 -0.92356 0.525285 -926613 801037.08 -926612.7 801037.08 
 -EXP(0.6*BPN) 0.0012 0.000915 1.308096 0.415520 -0.01043 0.0128229 -0.010429 0.0128229 
 -Exp(PV) 49.2743 56.44498 0.872962 0.543114 -667.927 766.47579 -667.9272 766.47579 
LAA -179586 215829.3 -0.83208 0.558189 -2921958 2562785.4 -2921958 2562785.4 
ln(Soundness) 179748 667860.7 0.26914 0.832626 -8306227 8665723 -8306227 8665723 
Binder Grade 977788 764720.7 1.278621 0.422541 -8738910 10694486 -8738910 10694486 
Exp(Binder %) 915.587 10025.23 0.091328 0.942019 -126467 128298.23 -126467.1 128298.23 
(AESAL)^-0.4 -6E+07 93964450 -0.63833 0.638320 -1.3E+09 1.134E+09 -1.25E+09 1.134E+09 
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Table 7-30. Output of Stepwise Multivariate linear regression (for transformed variables) 

 

 

 

 

 

 

 

 

 

 

 

 

Regression Statistics 
     Multiple R 0.824384 
     R Square 0.679609 
     Adjusted R 

Square 0.599511 
     Standard Error 935516.2 
     Observations 11 
     

       ANOVA 
      

  df SS MS F 
Significance 

F t-critical 

Regression 2 1.49E+13 7.43E+12 8.484743 0.010537 2.306004 

Residual 8 7E+12 8.75E+11 
   Total 10 2.19E+13         

       

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept 1600842 713520.4 2.243583 0.055116 -44538.9 3246223 

 -EXP(0.6*BPN) 0.002101 0.000693 3.032437 0.016249 0.000503 0.003698 

Binder Grade 1082783 431998.1 2.506454 0.036572 86593.85 2078973 
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Table 7-31. Output of Multivariate Exponential regression (using transformed variables) 

 

 

(AESAL)^-0.4 

Exp 

(Binder 

%) 

Binder  

Grade 

Ln 

(Sound) LAA 

 -Exp 

(PV) 

 -EXP 

(0.6* 

BPN) 

Blend 

% 

%Ret 

#4 

b 

Coefficients 2.45151E-13 1.001 1.221 1.185 0.929 1.000 1.000 0.966 0.918 

1.87 

E+10 

Standard 

Errors 31.1116 0.0033 0.2532 0.2211 0.0715 0.0000 0.0000 0.0225 0.109 
9.3505 

R2 and Sev 0.982932204 0.295 

       

 

F and df 6.398874684 1 

       

 

Ssreg and 

Ssresid 5.039401834 0.087 

       

 

 

Model 

Parameter Value 

 r2 0.982932 

 df 1 

 n 11 

 v1 9 

 v2 1 

 Fdist 0.298186 

 

Fobs 6.398875 
Model 

Acceptable 

   

Variable 

t-observed  

Value 

 (Absolute) 

Variable  

significance Check 

T-critical value 

(alpha=0.05) = 12.77 

(AESAL)^-0.4 7.87973E-15 Not Significant 

Exp (Binder %) 301.4404839 Significant 

Binder Grade 4.823893536 Not Significant 

ln(Soundness) 5.359856035 Not Significant 

LAA 13.00636834 Significant 

 -Exp(PV) 53507.88861 Significant 

 -EXP(0.6*BPN) 3300852808 Significant 

Blend %  42.90268635 Significant 

%Ret#4 8.360999024 Not Significant 

b 1996852565 Significant 
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Table 7-32. Output of Multivariate Exponential regression (using reduced number 

of transformed variables) 

 

 

Exp 

(Binder 

%) LAA  -Exp(PV) 

 -

EXP(0.6*BPN) Blend % 

b 

Coefficients 1.0009 0.958371 0.999994159 1.000000001 0.984299 19820980 

Standard Errors 0.00227 0.028914 1.86996E-05 3.10383E-10 0.012224 0.8096871 

R2 and Sev 0.89004 0.335784 

    F and df 8.09419 5 

    Ssreg and Ssresid 4.56315 0.563756 

    

   Model 

Parameter Value 

 r2 0.867373 

 df 4 

 n 11 

 v1 5 

 v2 4 

 Fdist 0.067008 

 Fobs 5.231936 Model Acceptable 

   

Variable 

t-observed  

Value 

 (Absolute) 

Variable  

significance Check 

T-critical value (alpha=0.05) = 2.57 
Exp (Binder %) 1740 Significant 

LAA 23.5668 Significant 

 -Exp(PV) 26.6796 Significant 

 -EXP(0.6*BPN) 81.2866 Significant 

Blend % 60.5634 Significant 

b 1.4E+08 Significant 
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Table 7-33. Output of Multivariate Exponential regression (using reduced number 

of transformed variables with only 10 observations) 

 

Exp 

(Binder 

%) LAA  -Exp(PV)  -EXP(0.6*BPN) 

Blend 

% 

b 

Coefficients 1.00167 0.956334 0.999992801 1.000000001 0.979804 26394751 

Standard Errors 0.00326 0.032309 2.08864E-05 3.62985E-10 0.01829 1.1811124 

R2 and Sev 0.88839 0.369187 

    F and df 6.36752 4 

    Ssreg and Ssresid 4.33945 0.545197 

    

   Model 

Parameter Value 

 r2 0.888385435 

 df 4 

 n 10 

 v1 5 

 v2 4 

 Fdist 0.048548878 

 Fobs 6.367523315 Model Acceptable 

   

Variable 

t-observed  

Value 

 (Absolute) 

Variable  

significance Check 

T-critical value (alpha=0.05) = 2.77 
Exp (Binder %) 307.202 Significant 

LAA 29.5996 Significant 

 -Exp(PV) 47877.8 Significant 

 -EXP(0.6*BPN) 2.8E+09 Significant 

Blend % 53.5691 Significant 

b 2.2E+07 Significant 

 

The resulting model from such analysis using the reduced-variables, reduced-

observations multivariatethe  transformed variables was:  

 
 

Where: 

 TESAL = Terminal ESAL 

X1 = Blend % 

X2 = BPN 

X3 = PV 

X4 = LAA 

X5 = Binder Grade 
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Plugging in the values from the removed median observation corresponding to Terminal 

ESAL value of 3,045,205  yields: 

 

 Terminal ESAL = 1.63*10^24 ESALs 

 

So far, numerous variable reduction and transformations were considered in order to use 

multivariate linear, stepwise and non-linear regression modeling and come up with a 

valid and significant relationship between the response variable (Terminal ESAL) and the 

various predictor variables. As can be concluded from the outputs of these analyses, none 

of the modeling approaches was  able to produce acceptable models. . This could be 

attributed to many factors, the most important of which is that there is 

correlation/collinearity (multi-collinaearity) among one or more independent variables. In 

other words, there is a high interdependency between the independent variables 

themselves which makes the model fitting  inadequate. In addition, the reduced number 

of observations in relation to the high number of predictor variables lead to the need of 

Structural Equation modeling (SEM).   
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7.7. Structural Equation Modeling 

As it was conlcuded previously, the Ordinary Least Square (OLS) analysis as well as 

non-linear multivariate regression analyses did not provide acceptable models even if the 

predictor variables were  transformed.  In addition to the multicollinearity and data over- 

fitting problem observed in the preceding modeling, the level of correlation among the 

predictor variables also signifies that there is more than one ‗layer‘ of causation between 

predictor and dependent variables that needs to be investigated. Structural Equation 

modeling (SEM) is one of the primary methods often employed to deal with complicated 

data structure such as the one obtained from this research.  

 

Structural Equation Modeling is a general method of analysis for testing and estimating 

causal relations among variables (dependent and independent), using a combination of 

statistical data and qualitative causal assumptions (Kline, 2005; Silva et al, 

2008). Through SEM, relationships among predictor/ exploratory and response variables 

can be established and/or confirmed, and these relationships can be modeled to predict 

possible outcomes. SEM allows for complicated variable relationships to be expressed 

through hierarchical or non-hierarchical, recursive or non-recursive structural equations, 

to present a more complete picture of the entire model (Gefen et al, 2000; Garson, 2010). 

 

One of the strength of SEM is the ability to construct latent variables - variables which 

are not directly measured, but are estimated in the model from several measured 

variables. Latent Variables/constructs can be used to represent ‗unobservable‘ variables 

in a structural model. Unobservable variables are generally categorized into three groups: 



 

159 

(a) variables that are unobservable in principle (e.g., theoretical terms); (b) variables that 

are unobservable in principle but either imply empirical concepts or can be inferred from 

observations; and (c) unobservable variables that are defined in terms of observables 

(Haenlein et al 2004). The representation of unobserved/unobservable variables in the 

model through latent variables allows for capturing any unreliability of measured values 

as well as not-readily known/observed causalities among the various potentially 

contributory variables within the model. (Kline, 2005; Garson, 2010; Gefen et al, 2000). 

The SEM model generally contains two inter-related models - the measurement model 

and the structural model. The measurement model defines the constructs (latent variables) 

that the model will use, and assigns observed variables to each. The structural model 

defines the causal relationship among these latent variables (Gefen et al, 2000). 

 

The following figure shows the concept and formulation of the Structural Equation 

Modeling approach: 



 

160 

 

Figure 7-5. Illustration of the SEM approach (Gefen et al, 2000) 

 

The variables, arrows and relationships shown in the above figure help define the overall 

structure of the model. The structural part of the model consists of the following (Gefen 

et al, 2000; Haenlein et al, 2004): 

 

 Latent Variables – constructs (variables) that are not measured directly, but are 

measured indirectly through observable variables that reflect or form the 

construct: 

o Exogenous latent variables  – variables that act only as a predictor or 

"cause" other constructs in the model. They have only causal arrows 

leading out of them and are not predicted by any other variables in the 

model.  
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o Endogenous latent variables  - variables that depend on or are caused 

by at least one causal relationship. There are one or more arrows leading 

into an endogenous variable. 

 Several Paths connecting the various variables considered in the model as 

follows: 

o Paths connecting exogenous and endogenous variables with coefficients 

indicating the strength of the relationship  

o Paths connecting endogenous variables with coefficients indicating the 

strength of the relationship . 

 Shared correlation matrix among exogenous variables . 

 Error terms (―errors in assumed equations/path relationships‖)  

 Shared correlation matrix among the error terms of the endogenous variables 

. 

The measurement model contains the following: 

 Measured Observations or actual data collected, designated as X and Y. X is a 

measure of exogenous constructs while Y represents endogenous constructs. 

 The path between an observed variable X and its exogenous counterpart is 

designated as  while the path between an observed Y variable and its 

endogenous counterpart is designated as . The term (lambda) represents the 

loading of a given observed item on the latent variable formed from it or reflected 

by it (Gefen et al, 2000.) 
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As in any analysis that is based on linear equations, Structural Equation methods utilize 

matrix operations that step by step formulate the model structure. Using observed and 

latent variables, an SEM system can be expressed as follows (Haenlein et al, 2004; Silva 

et al, 2008): 

 

    (Eq. 7.9) 

 

Where: 

- is the vector of p endogenous variables; 

- X  is a vector of q exogenous variables; 

-   is a vector of p disturbances (errors)  

- Β is (pxp) matrix containing the coefficients for the equations relating the 

endogenous variables; 

- Γ is a (pxq) matrix containing the regression coefficients for the equations 

relating endogenous and exogenous variables. 

The measured (observed) variables x and y can be decomposed into the latent variables as 

follows (Haenlein et al, 2004; Johnson et al, 2007): 

 

x = xζ δ      (Eq. 7.10) 

 

y = yη ε     (Eq. 7.11) 

 

Where: 

 

- x and y are the scores of x and y respectively (to be discussed in depth later) 

 

- δ and  ε are error terms 
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- ζ  and η are latent variables (constructs) 

 

7.7.1. Methods of SEM Analysis 

 

There are two distinct techniques by which the rigorous SEM analysis can be performed 

(W. Chin 1998; Kline, 2005; Haenlein et al, 2004): 

1. Covariance based analysis and 

2. variance based (component based, also known as Partial Least Squares) analysis 

These techniques differ in the statistical assumptions they are based on and on the nature 

of the goodness-of-fit statistics they produce with which the model validity is assessed. 

 

In covariance-based modeling, the relationship between exogenous and endogenous 

variables is assessed so as to fit the covariance structure of the proposed model to a best 

possible fit covariance structure. This means, the covariance based SEM tests a 

previously assessed (a priori) relationship/model against population estimates derived 

from the sample. The modeling process examines whether the data is statistically 

congruous with an assumed multivariate distribution. This requires the proposed model to 

have a sound theoretical base. The objective of covariance based SEM is to show that the 

complete set of paths as specified in the proposed model being analyzed is valid (Gefen 

et al, 2000; Kline, 2005). 

 

On the other hand, the objective of Partial Least Squares (PLS) based (variance 

based) SEM - as in other linear regression methods - is to reject the null hypothesis 

which states that the coefficients of the independent variables for a proposed model are 



 

164 

invalid (Allen 1997; Gefen et al, 2000).   To achieve this, PLS based SEM computes 

statistics such as R
2
 and t-values to measure the goodness of fit of the model. The PLS 

algorithm was first introduced by H. Wold in 1975. The algorithm focuses on 

maximizing the variance of the dependent variables - explained by the independent 

variables – as opposed to reproducing the empirical covariance matrix as in the 

covariance-based approach. Like any SEM, a PLS model consists of a structural part, 

which reflects the relationships between the latent variables, and a measurement 

component, which shows how the latent variables and their indicators are related; PLS 

also has a third component known as weight relations, which are used to estimate case 

values for the latent variables (Haenlein et al, 2004; Gefen et al, 2000; Maitra et al 2008).  

PLS is designed to explain variance using Ordinary Least Squares (OLS) as an estimation 

technique which allows performing an iterative set of factor and path analyses until the 

difference in the average R
2
 of the constructs (components) becomes insignificant (Gefen 

et al, 2000).  

 

Through the Ordinary Least Squares iteration, PLS investigates components that will 

minimize the residual variance of all the dependent variables in the model, analyzing one 

construct at a time. Because of the iterative nature of the process, PLS algorithm is not 

impacted by deviations of variables from multivariate normal distribution which also 

makes it less susceptible to smaller sample sizes.  

 

In Partial Least Squares (PLS) - also known as Projection to Latent Structures - the X 

variables (the predictors) are reduced to principal components, as are the Y variables (the 

dependents). The components of X are used to predict the scores on the Y components, 
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and the predicted Y component scores are used to predict the actual values of the Y 

variables. In constructing the principal components of X, the PLS algorithm iteratively 

maximizes the strength of the relation of successive pairs of X and Y component scores 

by maximizing the covariance of each X-score with the Y variables. This strategy means 

that while the original X variables may be multicollinear, the ‗new‘ X components used 

to predict Y will be orthogonal (uncorrelated.) (Garson, 2010; Haenlein et al, 2004) 

 

Figure 7-6. Illustration of the projection to components (X-data) 

 

Figure 7-7. Illustration of the projection to components (Y-data) 
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In PLS, the main purpose of the model development process is to find uncorrelated 

components of the predictor set of variables so as to regress these components against the 

dependent variables and come up with a valid model. ―Consider a data set with response 

variables Y (in matrix form) and a large number of predictor variables X (in matrix 

form), some of which are highly correlated (multicollinearity). A PLS algorithm 

computes the factor score matrix T=XW for an appropriate weight matrix W, and then 

considers the linear regression model Y=TQ+E, where Q is a matrix of regression 

coefficients (loadings) for T, and E is an error (noise) term. Once the loadings Q are 

computed, the above regression model is equivalent to Y=XB+E, where B=WQ, which 

can then be used as a linear predictive model.‖ (Statsoft Handbook; SAS/STAT User‘s 

Guide) 

 

In the context of this research project, the Partial Least Squares (PLS) based SEM 

approach will be used to assess the relationship between the predictor (building blocks of 

the exogenous constructs) variables and the response (building blocks of the endogenous 

constructs) variables. The reasons for choosing this method for modeling are: 

 

1. Prediction rather than confirmation – The research project presented in this 

dissertation is based on prior determination of the relationship among the 

response variable (Pavement friction) and select independent variables (e.g. 

British Polish Number). There is currently no empirical model that can be used to 

simultaneously formulate and evaluate the impact of a combination of the various 

variables identified in this dissertation to the expected friction performance of a 
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pavement. Consequently PLS - being well suited for prediction modeling - was 

chosen as analysis tool to build and verify an empirical model.   

 

2. Sample size – Among the SEM methods available, Partial Least Squares method 

works well with small sample sizes (Gefen et al, 2000). Given the limited number 

of observations that resulted from work in the preceding chapters, this method 

was found to be more appropriate. 

 

 

3. Variance in response variables – Being a variance based SEM method, PLS is 

better suited to explain the variance in Y (the response variable matrix) and make 

use of this variance in component analysis. 

 

4. Easier to validate – The process of model validation is more straightforward in 

PLS since it is possible to do jackknifing or bootstrapping for cross-validation of 

the resulting model. 

 

 

5. Availability of application – There are readily available applications that perform 

PLS regression with cross validation including SYSTAT®, The Unscrambler®, 

Matlab®, and Excel Add-in programs such as XLSTAT.  
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7.7.2. Component Extraction 

 

To demonstrate how PLS works, assume X (a set of predictor variables) is a n×p matrix 

and Y (a set of response variables) is a n×q matrix. The PLS technique works by 

successively extracting factors from both X and Y such that covariance between the 

extracted factors is maximized (Abdi, 2003; Maitra et al 2008; Statsoft Handbook). Even 

though PLS method can work with multivariate response variables (i.e., when Y is an 

n×q vector with q>1), it will be assumed in this case that there is a single response 

(target) variable (Y is n×1 and X is n×p matrix.) 

 

 

The purpose of the PLS algorithm will then be to find a linear decomposition of X and Y 

such that (Maitra et al 2008): 

 X =TP
T 

+ E and    (Eq. 7.12)   

 Y =UQ
T
 + F,     (Eq. 7.13) 

Where: 

T n×r = X-scores      ; U n×r = Y-scores 

P p×r= X-loadings  ; P
T 

= Denotes the Transpose of P  

Q 1×r = Y-loadings ; Q
T 

= Denotes the Transpose of Q  

E n×p = X-residuals  ; F n×1 = Y-residuals 

 

The decomposition of the X and Y variables into their respective scores is progressed so 

as to eventually maximize covariance between T (the X-scores) and U (the Y-scores). In 

this manner, there will be no (or very insignificant) correlation among the resulting 

scores, thereby eliminating the problem of multicollinearity in the model. Though there 

are many ways (algorithms) available to solve the PLS problem, all algorithms follow an 

iterative process to extract the X-scores and Y-scores. 
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In PLS Regression, the factors/scores for X and Y are extracted successively. The 

number of factors extracted (r) depends on the rank of X and Y. Rank of a matrix is 

defined as the maximum number of linearly independent rows or columns of a matrix. In 

this case, Y is a vector (an nx1 matrix), so only all possible X factors will be extracted. 

Depending on the number of variables (independent) that are correlated with one another, 

the rank of Xn×p , will be less than or equal to p.  

 

Each extracted set of x-scores is some linear combination of X. For example, the first 

extracted x-score t of X is of the form t = Xw, where w is the eigen vector corresponding 

to the first eigen value of X
T
YY

T
X. Similarly the first y-score is u=Yc, where c is the 

eigen vector corresponding to the first eigen value of Y
T
XX

T
Y (Maitra et al 2008). 

 

[Eigen Vector is defined as a non-zero vector which, after being multiplied by a 

matrix, remains proportional to the original vector – it changes only in magnitude 

and not direction. The factor by which each eigenvector is multiplied is called 

Eigen value (Johnson et al, 2007.) For instance, if A is a square matrix, a non-zero 

vector v is an eigenvector of A if there is a scalar λ (lambda) such that: Av = λ v] 

 

Where: 

X
T
 = the transpose of Matrix X 

X
T
Y = the covariance of Matrices X and Y. 
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Once the first factors have been extracted, the original values of X and Y will be 

diminished/deflated to: 

 

X1=X – tt
T
X, and       (Eq. 7.14) 

Y1=Y – tt
T
Y       (Eq. 7.15) 

 

The above process is now repeated to extract the second PLS factors. This process 

continues until all possible latent factors t and u are extracted, i.e., until X is reduced to a 

null matrix. The rank of the matrix X determines the number of latent factors extracted. 

In most cases, a good fit is obtained after the first two or three components are extracted 

(Matlab Handbook.)  

 

Comparable to the Ordinary Least Squares model significance tests, the validity and 

significance of a PLS Regression model is assessed using the following measures: 

 

 Proportion of variance explained by scores: This value measures the proporiton of 

variance explained (both for the predictor and repsonse varibles) by the kth factor 

and is computed as follows: 

 

 (Eq. 7.16) 
Where: 

 (Eq. 7.18) 
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The "cumulative X variance" is the percent of variance in the X variable(s) 

accounted for by the latent factors. The "cumulative Y variance" is the percent of 

variance in the Y variable(s) accounted for by the latent factors. These measures, 

calcualted as cumulative R-square (CumR
2
X and CumR

2
Y) in regression, are 

computed as follows: 

 

 

 

 Variable Importance in Projection (VIP) (for individual predictor variables).The 

Variable Importance in Projection (VIP) coefficients measure the relative 

importance of each predictor  (Xi) variable for each X factor (ti) in the prediction 

model. As a result, VIP coefficients represent the importance of each X variable 

in fitting both the X- and Y-scores as the Y-scores are predicted from the X-

scores. The rule rule of thumb for the threshold value of VIP is 0.8 (Wold, 1994). 

Any independent variable with a VIP value of less than 0.8 and/or very small 

regression coefficient may be considered insignifcnat and can therefiore be 

removed from the model.  

 

 Distance to the Model: This measure evaluates the ‗distance‘ of each variable to 

the model and is computed as follows: 

 
 

Where ei and fi are errors of prediction. 
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 The PRESS (Predictive Error Sum of Squares) statistic: This measure, computed 

as the sums of squares of the prediction residuals for observations not used in 

model development, is  used as another measure of model validity as a whole. 

 

 The Q²cum index : This index measures the global contribution of the h first 

components to the predictive quality of the model. This index is computed as : 

 

 

Where: 

 PRESS = the Predictive Sum of Squares 

 SSE = the Sum of Squares of Error 

 

 The coefficient of determination (R
2
) between the actual and predicted variables 

is also a useful measure of goodness of fit. 

 

The complete PLS algorithm and discussion of model significance measures is included 

in Appendix D. 

 

 

  



 

173 

 

7.8. Partial Least Squares (PLS) Regression modeling 

7.8.1. Preliminary PLS Modeling 

In the preliminary modeling analysis, 12 various modeling approaches were considered 

using datasets created as follows: 

 All original (untransformed) predictor variables with all nine sieves  

representing ―Percent Passing‖ (Dataset used in Model number M1) 

 All original (untransformed) predictor variables with all nine sieves  

representing ‖ Percent Retained” (Dataset used in Model number M2) 

 All predictor variables (including some that are transformed) with all ten sieves  

representing ―Percent Passing‖ (Dataset used in Model number M3) 

 All predictor variables (including some that are transformed) with all ten sieves  

representing ‖ Percent Retained‖ (Dataset used in Model number M4) 

The models numbered 5 through 12 are mere variations of the datasets discussed above. 

The following table shows the types and description of the various variables used in the 

model development: 

 

 

 

 

 

 

 



 

174 

Table 7-34. List of Variables and their descriptions 

 

Response, 

(Dependent) 

Variable 

Original 

Modified  

(Transformed) 

Description 

Terminal ESAL Terminal  

ESAL 

Equivalent Standard Axle Load 

(ESAL) at FN=32, for specific 

material and route 

Predictor 

(Explanatory, 

Independent) 

Variables 

Blend % Blend % Proportion of major aggregate 

source 

BPN -EXP(0.6*BPN) British Pendulum Number 

PV -Exp(PV) Polish Value  

LAA LAA Los Angeles Abrasion 

Soundness Ln (Soundness) Magnesium Sulphate Soundness 

Binder Grade Binder Grade Binder Grade used in HMA mix 

Binder % (AC) Exp (Binder %) Asphalt Content in HMA Mix 

AESAL (AESAL)^-0.4 Average Daily Equivalent 

Standard Axle Load (Computed 

from AADT) 

12.5 12.5 Sieve Size = 12.5 mm (1/2 Inch) 

9.5 9.5 Sieve Size = 9.5 mm (3/8 Inch) 

4.75 4.75 Sieve Size = 4.75.5 mm (No. 4) 

2.36 2.36 Sieve Size = 2.36 mm (No. 8) 

1.18 1.18 Sieve Size = 1.18 mm (No. 16) 

0.6 0.6 Sieve Size = 0.6 mm (No. 30) 

0.3 0.3 Sieve Size = 0.3 mm (No. 50) 

0.15 0.15 Sieve Size = 0.15 mm (No. 100) 

0.075 0.075 Sieve Size = 0.075 mm (No. 200) 

Pan Pan Sieve Size = 0 mm 

 

Description of the 12 preliminary PLS modeling approaches is presented below: 

M1 : In this first approach, all eight independent variables (Blend Percentage, BPN, PV, 

LAA, Soundness, Binder Grade, Asphalt content (Binder %) , Average Daily Equivalent 

Standard Axle Load (AESAL)) in their original form  as well as all nine sieves that 

represent Percent Pass gradation – 12.5mm, 9.5mm, 4.75mm , 2.36mm, 1.18mm, 0.6m, 

0.3mm, 0.15mm, 0.075mm - were used in the Partial Least Square Regression Modeling . 

M2: In this approach, all eight independent variables (Aggregate Blend Percentage, BPN, 

PV, LAA, Soundness, Binder Grade, Asphalt Content, Average Daily Equivalent 
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Standard Axle Load) in their original form as well as all ten sieves that represent Percent 

Retained gradation – 12.5mm, 9.5mm, 4.75mm, 2.36mm, 1.18mm, 0.6m, 0.3mm, 

0.15mm, 0.075mm, 0 mm (Pan) - were used in the Partial Least Square Regression 

Modeling. 

M3: In this approach, all eight independent variables, some of which are transformed for 

better correlation with the dependent variable, were used. The transformed variables are 

(-Exp (0.6*BPN), -Exp (PV), Ln (Soundness), Exp (Binder %), AESAL^-0.4). The 

untransformed variables that were used in their original form are (Blend Percentage, 

LAA and Binder Grade). Also, all nine sieves that represent Percent Pass gradation – 

12.5mm, 9.5mm, 4.75mm, 2.36mm, 1.18mm, 0.6m, 0.3mm, 0.15mm, 0.075mm - were 

used in the Partial Least Square Regression Modeling. 

M4: In this approach, all eight independent variables, some of which are transformed for 

better correlation, were used. The transformed variables are (-Exp (0.6*BPN), -Exp 

(PV), Ln (Soundness), Exp (Binder %), AESAL^-0.4). The untransformed variables are 

(Blend Percentage, LAA and Binder Grade). Also, all ten sieves that represent Percent 

Retained gradation – 12.5mm, 9.5mm, 4.75mm, 2.36mm, 1.18mm, 0.6m, 0.3mm, 

0.15mm, 0.075mm, 0 mm (Pan) - were used in the Partial Least Square Regression 

Modeling . 

M5: In this approach, all eight independent variables (Blend Percentage, BPN, PV, LAA, 

Soundness, Binder Grade, Asphalt content (Binder %), Average Daily Equivalent 

Standard Axle Load (AESAL)) in their original form as well as five sieves that represent 

Percent Pass gradation and that yielded a VIP (Variable Importance in the Projection) 
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value of greater than 0.8 were used (Russolillo, 2009; Wold 1994). The selected sieves 

based on VIP values are – 12.5mm, 9.5mm, 1.18mm, 0.6m, 0.3mm. 

M6: In this approach, all eight independent variables (Blend Percentage, BPN, PV, LAA, 

Soundness, Binder Grade, Asphalt content (Binder %) , Average Daily Equivalent 

Standard Axle Load(AESAL)) in their original form  as well as four sieves that represent 

Percent Retained gradation and that yielded a VIP (Variable Importance in the 

Projection) value of greater than 0.8 were used. The selected sieves based on VIP values 

are – 12.5mm, 4.75mm, 0.3mm and 0.15mm. 

M7: In this approach, all eight independent variables, some of which are transformed for 

better correlation, were used. The transformed variables are (-Exp (0.6*BPN), -Exp 

(PV), Ln (Soundness), Exp (Binder %), AESAL^-0.4). The untransformed variables are 

(Blend Percentage, LAA and Binder Grade). Also, five sieves that represent Percent Pass 

gradation and that yielded a VIP (Variable Importance in the Projection) value of greater 

than 0.8 were used. The selected sieves based on VIP values are – 12.5mm, 9.5mm, 

1.18mm, 0.6m, 0.3mm. 

M8: In this approach, all eight independent variables, some of which are transformed for 

better correlation, were used. The transformed variables are (-Exp(0.6*BPN), -Exp(PV), 

Ln(Soundness), Exp (Binder%), AESAL^-0.4). The untransformed variables are (Blend 

Percentage, LAA and Binder Grade).Also four sieves that represent Percent Retained 

gradation and that yielded a VIP (Variable Importance in the Projection) value of greater 

than 0.8 were used. The selected sieves based on VIP values are – 12.5mm, 4.75mm, 

0.3mm and 0.15mm. 
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M9: In this approach, all eight independent variables (Blend Percentage, BPN, PV, LAA, 

Soundness, Binder Grade, Asphalt content (Binder %), Average Daily Equivalent 

Standard Axle Load(AESAL)) in their original form as well as one sieve (4.75mm) that 

represents Percent Pass gradation was used. This sieve was selected because it is the 

sieve that, on average, passes nearly 50% of the material and it exhibits significant 

variability amongst the various suppliers as shown table 10 above. 

 M10: In this approach, all eight independent variables (Blend Percentage, BPN, PV, 

LAA, Soundness, Binder Grade, Asphalt content (Binder %), Average Daily Equivalent 

Standard Axle Load(AESAL)) in their original form as well as one sieve (4.75mm) that 

represents Percent Retained gradation was used. This sieve was selected because it is the 

sieve that represents the peak values of the gradation distribution curve as shown in 

figure 5 above.  

M11: In this approach, all eight independent variables, some of which are transformed 

for better correlation, were used. The transformed variables are (-Exp (0.6*BPN), -Exp 

(PV), Ln (Soundness), Exp (Binder %), AESAL^-0.4). The untransformed variables are 

(Blend Percentage, LAA and Binder Grade).Also, one sieve (4.75mm) that represents 

Percent Pass gradation was used.  

M12: In this approach, all eight independent variables, some of which transformed for 

better correlation, were used. The transformed variables are (-Exp(0.6*BPN), -Exp(PV), 

Ln(Soundness), Exp (Binder%), AESAL^-0.4). Also, one sieve (4.75mm) that represents 

Percent Retained gradation was used. 
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Table 7-35. Complete Dataset of “original” predictor variables with all “Percent Pass” sieves (dataset for M1) 

Dependent 

Variable Predictor Variables (other than sieves) Sieve Size (mm): Percent Pass 

Terminal 

ESAL 

Blend 

% BPN PV LAA Soundness 

Binder 

Grade 

Binder % 

(AC) AESAL 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

438,990 100 35 6 20 0.6 1 5.3 980 95 85 54 35 22 15 10 8 6.5 

1,062,723 100 34 10 18 1 2 5.3 462 91 77 52 33 21 14 10 8 6.1 

1,558,218 100 24 6 22 0.2 1 5.3 429 95 87 66 40 25 15 9 7 6 

2,118,493 65 22 6 22 0.4 1 4.3 1081 98 83 44 30 23 17 11 7 4.1 

2,363,108 100 26 5 15 2.8 1 5.7 815 97 86 53 35 22 14 10 7 5.8 

3,045,205 72 27 6 18 1.2 1 5.3 657 100 95 58 32 24 18 12 8 5.6 

3,208,372 75 22 5 18 4.5 2 4.8 362 97 83 52 36 23 17 10 6 4.7 

3,477,567 75 27 6 18 1.2 1 4.8 1101 97 83 44 26 21 17 12 8 5 

3,558,538 85 21 4 25 0.7 2 5.4 862 100 97 70 48 30 22 16 11 6.3 

3,672,489 68 31 8 14 0.1 1 5.4 732 100 99 66 41 29 20 12 9 6.9 

5,810,328 75 26 8 11 0.3 3 4.8 967 99 90 52 37 26 16 10 6 4.9 
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Table 7-36. Complete Dataset of “original” predictor variables with all “Percent Retained” sieves (dataset for M2) 

Dependent 

Variable 

Predictor Variables (other than sieves) Sieve size (mm) :Percent Retained 

Terminal 

ESAL 

Blend 

% 

BPN PV LAA Soundness Binder 

Grade 

Binder % AESAL 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Pan 

438,990 100 35 6 20 0.6 1 5.3 980 5 10 31 19 13 7 5 2 1.5 6.5 

1,062,723 100 34 10 18 1 2 5.3 462 9 14 25 19 12 7 4 2 1.9 6.1 

1,558,218 100 24 6 22 0.2 1 5.3 429 5 8 21 26 15 10 6 2 1 6 

2,118,493 65 22 6 22 0.4 1 4.3 1081 2 15 39 14 7 6 6 4 2.9 4.1 

2,363,108 100 26 5 15 2.8 1 5.7 815 3 11 33 18 13 8 4 3 1.2 5.8 

3,045,205 72 27 6 18 1.2 1 5.3 657 0 5 37 26 8 6 6 4 2.4 5.6 

3,208,372 75 22 5 18 4.5 2 4.8 362 3 14 31 16 13 6 7 4 1.3 4.7 

3,477,567 75 27 6 18 1.2 1 4.8 1101 3 14 39 18 5 4 5 4 3 5 

3,558,538 85 21 4 25 0.7 2 5.4 862 0 3 27 22 18 8 6 5 4.7 6.3 

3,672,489 68 31 8 14 0.1 1 5.4 732 0 1 33 25 12 9 8 3 2.1 6.9 

5,810,328 75 26 8 11 0.3 3 4.8 967 1 9 38 15 11 10 6 4 1.1 4.9 
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Table 7-37. Complete dataset of “modified (transformed)” predictor variables with all “Percent Pass” sieves (dataset for M3) 

Dependent 

Variable Predictor Variables (other than sieves): transformed as needed Sieve size (mm) :Percent Pass 

Terminal 

ESAL 

Blend 

% 

-EXP 

(0.6*BPN) 

-Exp 

(PV) LAA 

Ln 

(Soundness) 

Binder 

Grade 

Exp 

(Binder %) 

(AESAL)^-

0.4 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

438990 100 -1.30E+09 -403.429 20 -0.51083 1 200.3368 0.063606 95 85 54 35 22 15 10 8 6.5 

1062723 100 -7.20E+08 -22026.5 18 0 2 200.3368 0.085918 91 77 52 33 21 14 10 8 6.1 

1558218 100 -1.80E+06 -403.429 22 -1.60944 1 200.3368 0.088533 95 87 66 40 25 15 9 7 6 

2118493 65 -5.40E+05 -403.429 22 -0.91629 1 73.69979 0.061159 98 83 44 30 23 17 11 7 4.1 

2363108 100 -6.00E+06 -148.413 15 1.029619 1 298.8674 0.068474 97 86 53 35 22 14 10 7 5.8 

3045205 72 -1.10E+07 -403.429 18 0.182322 1 200.3368 0.074659 100 95 58 32 24 18 12 8 5.6 

3208372 75 -5.40E+05 -148.413 18 1.504077 2 121.5104 0.094777 97 83 52 36 23 17 10 6 4.7 

3477567 75 -1.10E+07 -403.429 18 0.182322 1 121.5104 0.06072 97 83 44 26 21 17 12 8 5 

3558538 85 -3.00E+05 -54.5982 25 -0.35667 2 221.4064 0.066968 100 97 70 48 30 22 16 11 6.3 

3672489 68 -1.20E+08 -2980.96 14 -2.30259 1 221.4064 0.071487 100 99 66 41 29 20 12 9 6.9 

5810328 75 -6.00E+06 -2980.96 11 -1.20397 3 121.5104 0.06394 99 90 52 37 26 16 10 6 4.9 
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Table 7-38. Complete dataset of “modified (transformed)” predictor variables with all “Percent Retained” sieves (dataset for M4) 

Dependent 

Variable Predictor Variables (other than sieves): transformed as needed Sieve size (mm) :Percent Retained 

Terminal 

ESAL 

Blend 

% 

-EXP 

(0.6*BPN) 

-Exp 

(PV) LAA 

Ln 

(Sound.) BG 

Exp 

(Binder %) (AESAL)^-0.4 
12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Pan 

438990 100 -1.30E+09 -403.429 20 -0.51083 1 200.3368 0.063606 5 10 31 19 13 7 5 2 1.5 6.5 

1062723 100 -7.20E+08 -22026.5 18 0 2 200.3368 0.085918 9 14 25 19 12 7 4 2 1.9 6.1 

1558218 100 -1.80E+06 -403.429 22 -1.60944 1 200.3368 0.088533 5 8 21 26 15 10 6 2 1 6 

2118493 65 -5.40E+05 -403.429 22 -0.91629 1 73.69979 0.061159 2 15 39 14 7 6 6 4 2.9 4.1 

2363108 100 -6.00E+06 -148.413 15 1.029619 1 298.8674 0.068474 3 11 33 18 13 8 4 3 1.2 5.8 

3045205 72 -1.10E+07 -403.429 18 0.182322 1 200.3368 0.074659 0 5 37 26 8 6 6 4 2.4 5.6 

3208372 75 -5.40E+05 -148.413 18 1.504077 2 121.5104 0.094777 3 14 31 16 13 6 7 4 1.3 4.7 

3477567 75 -1.10E+07 -403.429 18 0.182322 1 121.5104 0.06072 3 14 39 18 5 4 5 4 3 5 

3558538 85 -3.00E+05 -54.5982 25 -0.35667 2 221.4064 0.066968 0 3 27 22 18 8 6 5 4.7 6.3 

3672489 68 -1.20E+08 -2980.96 14 -2.30259 1 221.4064 0.071487 0 1 33 25 12 9 8 3 2.1 6.9 

5810328 75 -6.00E+06 -2980.96 11 -1.20397 3 121.5104 0.06394 1 9 38 15 11 10 6 4 1.1 4.9 

The following table summarizes the output from the 12 modeling approaches: 
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Table 7-39. Summary of outputs from the Preliminary PLS Model Development Process* 

 
 

Metho

d No/ 

Model 

No 

Descrip. 

Total 

Indep- 

endent 

Variable

s 

No of 

Comp

- 

onents 

No  

of 

sieve

s 

Cum 

Q
2
 

Indx 

R
2
 

Cum

Y 

R
2
 

Cum

X 

No of 

var. 

with 

VIP>0.

8 

No 

Sieves 

With 

VIP>0.

8 

R
2
 

Q
2
/R

2
 

VIP 

>0.8/Tota

l 

Sieves 

VIP> 

0.8/Tota

l 

Abs 

(1-

R
2
Pass 

/R
2
Ret‟d

) 

M1 

Original 

Variables - 

all sieves 

(Pass) 

17 2 9 0.474 0.868 0.511 
9(t1); 

9(t2) 
5 0.87 0.546 0.529 0.556 0.176 

M2 

Original 

Variables - 

all sieves 

(Retained) 

18 1 10 0.369 0.742 0.256 8(t1) 4 0.74 0.498 0.471 0.400 
 

M3 

Modified 

Variables - 

all sieves 

(Pass) 

17 2 9 0.580 0.891 0.532 
8(t1); 

9(t2) 

4(t1); 

5(t2) 
0.89 0.651 0.529 0.556 0.161 

M4 

Modified 

Variables - 

all sieves 

(Retained) 

18 1 10 0.451 0.768 0.269 8(t1) 4 0.77 0.587 0.471 0.400 
 

M5 

Original 

Variables - 

selected 

sieves 

(Pass) 

13 2 5 0.597 0.898 0.507 
7(t1); 

9(t2) 

4(t1); 

5(t2) 
0.90 0.665 0.692 1.000 0.007 

M6 

Original 

Variables - 

selected 

sieves 

(Retained) 

12 2 4 0.538 0.904 0.486 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.90 0.595 0.667 1.000 

 

*
See Appendix F for detailed PLS regression outputs.  
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Table 7-39: Summary of outputs from the preliminary PLS model development process
*
 (continued) 

 

Metho

d No/ 

Model 

No 

Descripti 

Total 

Indep- 

endent 

Variable

s 

No of 

Comp

- 

onents 

No of 

sieve

s 

Cum 

Q
2
 

Indx 

R
2
 

Cum

Y 

R
2
 

Cum

X 

No of 

var. 

with 

VIP>0.

8 

No 

Sieves 

With 

VIP>0.8 

R
2
 

Q
2
/R

2
 

No.(VIP> 

0.8)/Total

# 

No. 

Sieves 

(VIP>0.8)

/ 

Total 

Abs 

(1-

R2Pass 

/R2Ret‟d

) 

M7 

Modified 

Variables 

- selected 

sieves 

(Pass) 

13 2 5 
0.74

4 
0.941 0.520 

8(t1); 

8(t2) 

4(t1);4(t2

) 
0.94 0.790 

0.615 

0.800 0.000 

M8 

Modified 

Variables 

- selected 

sieves 

(Retained) 

12 2 4 
0.72

1 
0.941 0.493 

8(t1); 

8(t2) 

4(t1);4(t2

) 
0.94 0.766 

0.667 

1.000 
 

M9 

Original 

Variables 

- Sieve#4 

(Pass) 

9 1 1 
0.17

3 
0.766 0.216 4(t1) 0.000 0.77 0.226 

0.444 

0.000 0.126 

M10 

Original 

Variables 

- Sieve#4 

(Retained) 

9 1 1 
0.18

2 
0.680 0.280 5(t1) 1 (#4) 0.68 0.268 

0.556 

1.000 
 

M11 

Modified 

Variables 

-  sieve #4 

(Pass) 

9 2 1 
0.52

3 
0.953 0.395 

4(t1); 

5(t2) 
0.000 0.95 0.549 

0.556 

0.000 0.036 

M12 

Modified 

Variables 

- sieve #4 

(Retained) 

9 2 1 
0.54

0 
0.920 0.459 

5(t1); 

6(t2) 

1(t1);1(t2

) -- #4 
0.92 0.587 

0.667 

1.000 
 

*
See Appendix F for detailed PLS regression outputs.  
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Definition of terms and expressions used in the above table are presented below:  

CumQ
2
Indx = A model quality index that measures the cumulated contribution of 

the components; It measures the global contribution of the h first components to 

the predictive quality of the model (and of the sub-models if there are several 

dependent variables).  

 

R
2
CumY = A model quality index which is the sum of the coefficients of 

determination between the dependent variables and the h first components. It is 

therefore a measure of the explanatory power of the h first components for the 

dependent variables of the model. Since there is only one dependent variable in 

this case, this value is the same as the coefficient of determination (R
2
) for the 

model.  

 

R
2
CumX = another model quality index which is the sum of the coefficients of 

determination between the explanatory variables and the h first components. It is 

therefore a measure of the explanatory power of the h first components for the 

explanatory variables of the model. 

 

R
2
 = Overall Predictive measure of the model (the coefficient of determination 

between the predicted and actual dependent variable values). 
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Based on the output shown in the above table, six models were selected for further 

analysis using the following criteria: 

i. Coefficient of determination (R
2
) value: this index is one of the most important 

indicators of the goodness of fit for the research model. 

ii. Model quality index (Q
2
) value: this index is also important because it measures 

how well the extracted factors (components) ‗replace‘ the observed variables. 

iii. The ratio between the coefficient of determination (R
2
) and the model quality 

index (Q
2
) =(Q

2
/R

2
) :   

iv. Ratio between the coefficients of determination (R
2
) for the case where Percent 

Pass gradation was used versus where the Percent Retained gradation was used 

(R
2
Pass/R

2
Retained): The closest this ratio is to a value of one, the better the 

model validity as it indicates that the model is not sensitive to the type of 

gradation representation considered. 

v. Total number of variables with Variable Importance in the Projection (VIP) value 

greater than 0.8: Commonly used threshold value for VIP=0.8 (Wold, 1994; 

Russolillo, 2009). 

vi. Total Number of sieves with VIP >0.8 

The following models satisfied all or most of the above criteria and were selected for 

further analysis: 

 M5, M6, M7, M8, M11, M12 
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7.8.2. PLS Model Validation/Verification 

7.8.2.1. Model Validation Phase 1 

In the preliminary modeling process, 12 different methods/approaches were 

considered to assess the relationship between the predictor variables (independent) 

and the response (dependent) variable (Terminal ESAL). Based on the preliminary 

model selection criteria, six models were identified for further analysis. These models 

were evaluated for model verification by varying the number/type of observations 

and/or predictor variables and assessing the resulting models for validity. The first 

phase of model verification involved removing one observation from the dataset at a 

time and running Partial Least Square (PLS) regression on the remaining 10 

observations. The predictor variables from the omitted observation are then plugged 

into the produced model and the resulting output (predicted Terminal ESAL) is 

compared with the actual (observed) Terminal ESAL. This process is repeated until 

enough observations have been analyzed. This model verification phase resulted in 36 

sub models that were compared with one another for predictive qualities. Table 8 

shows the models and sub models resulting from the model identification and 

preliminary verification/validation process.   
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Table 7-40. Summary of outputs from the first PLS model validation/verification phase 

 

Model 

No Description 

Total 

 Ind.  

Vars. 

No of 

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No.Var. 

with 

VIP>0.8 

No.  

Sieves 

VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error Remark 

M5 Modified Variables 

-  sieve #4 (Pass) 

13 2 5 0.597 0.898 0.507 
7(t1); 

9(t2) 

4(t1); 

5(t2) 
0.898 N/A N/A N/A N/A 

All 

Observations 

Used 

M5.1 

M5Data with 10 

observations; 

Removed Obs 1: 
TESAL=438990) 

13 2 5 0.420 0.894 0.504 
8(t1); 

9(t2) 

4(t1); 

5(t2) 
0.894 1597433 438990 

-

1158444 
263.9 

10 out of 11 

observations 

used 

M5.2 

M5Data with 10 

observations; 

Removed Obs 5: 
TESAL=2363108) 

13 2 5 0.587 0.896 0.527 
8(t1); 

9(t2) 

4(t1); 

5(t2) 
0.896 1819405 2363108 543702.2 23.0 

10 out of 11 

observations 

used 

M5.3 

M5Data with 10 

observations; 

Removed Obs 8: 
TESAL= 3477567 ) 

13 2 5 0.747 0.959 0.521 
8(t1); 

9(t2) 

4(t1); 

5(t2) 
0.959 2151264. 3477567 1326302 38.1 

10 out of 11 

observations 

used 

M5.4 

M5Data with 10 

observations; 

Removed Obs 9: 
TESAL= 3558538 ) 

13 2 5 0.538 0.912 0.492 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.912 3353054 3558538 205483.7 5.8 

10 out of 11 

observations 

used 

M5.5 

M5Data with 10 

observations; 

Removed Obs 10: 
TESAL= 3672489 ) 

13 2 5 0.617 0.904 0.548 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.904 4217799 3672489 -545310 14.8 

10 out of 11 

observations 

used 

M5.6 

M5Data with 10 

observations; 

Removed Obs 11: 
TESAL= 5810328 ) 

13 1 5 0.558 0.709 0.372 7(t1) 5(t1) 0.709 2785924 5810328 3024403 52.1 

10 out of 11 

observations 

used 
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Table 7-40: Summary of outputs from the first PLS model validation/verification phase (Continued) 

 

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No Sieves 

VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M6 Modified Variables - 

sieve #4 (Retained) 

12 2 4 0.538 0.904 0.486 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.904 N/A N/A N/A N/A 

All 

Observations 

Used 

M6.1 

M6Data with 10 

observations; 

Removed Obs 1: 
TESAL=438990) 

12 2 4 0.399 0.895 0.494 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.895 1603209 438990 -1164219 265.2 

10 out of 11 

observations 

used 

M6.2 

M6Data with 10 

observations; 

Removed Obs 5: 
TESAL=2363108) 

12 2 4 0.524 0.903 0.511 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.903 2013423 2363108 349684.8 14.8 

10 out of 11 

observations 

used 

M6.3 

M6Data with 10 

observations; 

Removed Obs 8: 
TESAL= 3477567 ) 

12 3 4 0.688 0.985 0.616 

8(t1); 

8(t2); 

9(t3) 

4(t1); 

4(t2);  

4(t3) 

0.985 2039165 3477567 1438402 41.4 

10 out of 11 

observations 

used 

M6.4 

M6Data with 10 

observations; 

Removed Obs 9: 
TESAL= 3558538 ) 

12 2 4 0.601 0.908 0.547 
7(t1); 

7(t2) 

4(t1); 

4(t2) 
0.908 2512964 3558538 1045574 29.4 

10 out of 11 

observations 

used 

M6.5 

M6Data with 10 

observations; 

Removed Obs 10: 
TESAL= 3672489 ) 

12 2 4 0.493 0.901 0.532 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.901 3502956 3672489 169532.9 4.6 

10 out of 11 

observations 

used 

M6.6 

M6Data with 10 

observations; 

Removed Obs 11: 
TESAL= 5810328 ) 

12 1 4 0.462 0.696 0.347 6(t1); 4(t1) 0.696 3188598 5810328 2621729 45.1 

10 out of 11 

observations 

used 
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Table 7-40: Summary of outputs from the first PLS model validation/verification phase (Continued) 

 

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No 

Sieves 

VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M7 

Modified 

Variables - 

selected sieves 

(Pass) 

13 2 5 0.744 0.941 0.520 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.941 N/A N/A N/A N/A 

All 

Observations 

Used 

M7.1 

M7Data with 10 

observations; 

Removed Obs 1: 
TESAL=438990) 

13 2 5 0.680 0.931 0.526 
10(t1); 

10(t2) 

4(t1); 

4(t2) 
0.931 

923265 
438990 -484276 110.3 

10 out of 11 

observations 

used 

M7.2 

M7Data with 10 

observations; 

Removed Obs 5: 
TESAL=2363108) 

13 2 5 0.713 0.933 0.547 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.933 

1872520 
2363108 490587.2 20.8 

10 out of 11 

observations 

used 

M7.3 

M7Data with 10 

observations; 

Removed Obs 8: 
TESAL= 3477567 ) 

13 3 5 0.884 0.995 0.637 

8(t1); 

8(t2); 

8(t3) 

4(t1); 

4(t2); 

4(t3) 

0.995 
2233785 

3477567 1243782 35.8 

10 out of 11 

observations 

used 

M7.4 

M7Data with 10 

observations; 

Removed Obs 9: 
TESAL= 3558538 ) 

13 2 5 0.749 0.952 0.535 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.952 

3070205 
3558538 488332.7 13.7 

10 out of 11 

observations 

used 

M7.5 

M7Data with 10 

observations; 

Removed Obs 10: 
TESAL= 3672489 ) 

13 2 5 0.733 0.944 0.525 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.944 4110491 3672489 -438002 11.9 

10 out of 11 

observations 

used 

M7.6 

M7Data with 10 

observations; 

Removed Obs 11: 
TESAL= 5810328 ) 

13 2 5 0.708 0.924 0.515 
7(t1); 

8(t2) 

5(t1); 

5(t2) 
0.924 3658971 5810328 2151356 37.0 

10 out of 11 

observations 

used 
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Table 7-40: Summary of outputs from the first PLS model validation/verification phase (Continued) 

 

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No 

Sieves 

VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M8 

Modified Variables 

- selected sieves 

(Retained) 

12 2 4 0.721 0.941 0.493 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.941 N/A N/A N/A 

 

All 

Observations 

Used 

M8.1 

M8Data with 10 

observations; 

Removed Obs 1: 

TESAL=438990) 

12 2 4 0.653 0.923 0.522 
10(t1); 

9(t2) 

4(t1); 

3(t2) 
0.923 1089919 438990 -650929 148.3 

10 out of 11 

observations 

used 

M8.2 

M8Data with 10 

observations; 

Removed Obs 5: 

TESAL=2363108) 

12 2 4 0.690 0.939 0.518 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.939 2291640 2363108 71467.09 3.0 

10 out of 11 

observations 

used 

M8.3 

M8Data with 10 

observations; 

Removed Obs 8: 
TESAL= 3477567 ) 

12 3 4 0.868 0.996 0.598 

8(t1); 

8(t2); 

8(t3) 

4(t1); 

4(t2); 

4(t3) 

0.996 2303290 3477567 1174276 33.8 

10 out of 11 

observations 

used 

M8.4 

M8Data with 10 

observations; 

Removed Obs 9: 
TESAL= 3558538 ) 

12 2 4 0.770 0.949 0.546 
8(t1); 

7(t2) 

4(t1); 

3(t2) 
0.949 2604860 3558538 953677.5 26.8 

10 out of 11 

observations 

used 

M8.5 

M8Data with 10 

observations; 

Removed Obs 10: 
TESAL= 3672489 ) 

12 2 4 0.670 0.939 0.518 
8(t1); 

8(t2) 

4(t1); 

4(t2) 
0.939 3525228 3672489 147260.9 4.0 

10 out of 11 

observations 

used 

M8.6 

M8Data with 10 

observations; 

Removed Obs 11: 
TESAL= 5810328 ) 

12 1 4 0.522 0.752 0.355 5(t1) 3(t1) 0.752 3381123 5810328 2429204 41.8 

10 out of 11 

observations 

used 
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Table 7-40: Summary of outputs from the first PLS model validation/verification phase (Continued) 

 

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No 

Sieves 

VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M11 

Modified 

Variables -  sieve 

#4 (Pass) 

9 2 1 0.523 0.953 0.395 
4(t1); 

5(t2) 
0 0.953 N/A N/A N/A N/A 

All 

Observations 

Used 

M11.1 

M11Data with 10 

observations; 

Removed Obs 1: 
TESAL=438990) 

9 2 1 0.306 0.937 0.429 
6(t1); 

6(t2) 
0 0.937 485388 438990 -46399 10.6 

10 out of 11 

observations 

used 

M11.2 

M11Data with 10 

observations; 

Removed Obs 5: 
TESAL=2363108) 

9 3 1 0.596 0.977 0.532 

4(t1); 

5(t2); 

5(t3); 

0 0.977 3120503 2363108 -757396 32.1 

10 out of 11 

observations 

used 

M11.3 

M11Data with 10 

observations; 

Removed Obs 8: 
TESAL= 3477567 ) 

9 2 1 0.675 0.988 0.372 
4(t1); 

4(t2) 
0 0.988 2393993 3477567 1083574 31.2 

10 out of 11 

observations 

used 

M11.4 

M11Data with 10 

observations; 

Removed Obs 9: 
TESAL= 3558538 ) 

9 1 1 0.601 0.924 0.242 4t1) 0 0.924 1914169 3558538 1644368 46.2 

10 out of 11 

observations 

used 

M11.5 

M11Data with 10 

observations; 

Removed Obs 10: 
TESAL= 3672489 ) 

9 2 1 0.440 0.955 0.415 
4(t1); 

5(t2) 
0 0.955 3645051 3672489 27437.76 0.7 

10 out of 11 

observations 

used 

M11.6 

M11Data with 10 

observations; 

Removed Obs 11: 
TESAL= 5810328 ) 

9 1 1 0.227 0.768 0.216 3(t1) 0 0.768 3461747 5810328 2348580 40.4 

10 out of 11 

observations 

used 
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Table 7-40: Summary of outputs from the first PLS model validation/verification phase (Continued) 

 

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No Sieves 

 VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M12 

Modified 

Variables - sieve 

#4 (Retained) 

9 2 1 0.540 0.920 0.459 
5(t1); 

6(t2) 

1(t1); 

1(t2) –  

Sieve #4 

0.920 N/A N/A N/A   

All 

Observations 

Used 

M12.1 

M12Data with 10 

observations; 

Removed Obs 1: 

TESAL=438990) 

9 2 1 0.328 0.890 0.502 
7(t1); 

7(t2) 

1(t1); 

1(t2)  
0.890 

709974 
438990 -270985 61.7 

10 out of 11 

observations 

used 

M12.2 

M12Data with 10 

observations; 

Removed Obs 5: 

TESAL=2363108) 

9 4 1 0.747 0.983 0.718 

5(t1); 

6(t2); 

6(t3); 

6(t4) 

1(t1); 

1(t2);  

1(t3); 

1(t4)  

0.983 
3909674 

2363108 -1546567 65.4 

10 out of 11 

observations 

used 

M12.3 

M12Data with 10 

observations; 

Removed Obs 8: 
TESAL= 3477567 ) 

9 2 1 0.541 0.944 0.437 
5(t1); 

6(t2) 

1(t1); 

1(t2) 
0.944 

2682958 
3477567 794608.1 22.8 

10 out of 11 

observations 

used 

M12.4 

M12Data with 10 

observations; 

Removed Obs 9: 
TESAL= 3558538 ) 

9 2 1 0.704 0.959 0.506 
5(t1); 

5(t2) 

1(t1); 

1(t2)  
0.959 

1656488 
3558538 1902050 53.5 

10 out of 11 

observations 

used 

M12.5 

M12Data with 10 

observations; 

Removed Obs 10: 
TESAL= 3672489 ) 

9 2 1 0.445 0.921 0.472 
5(t1); 

6(t2) 

1(t1); 

1(t2)  
0.921 

3180434 
3672489 492054.8 13.4 

10 out of 11 

observations 

used 

M12.6 

M12Data with 10 

observations; 

Removed Obs 11: 
TESAL= 5810328 ) 

9 1 1 0.171 0.653 0.288 4t1) 1(t1);  0.653 3502881 5810328 2307446 39.7 

10 out of 11 

observations 

used 
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7.8.2.2. Model Validation Phase 2 

The second phase of model verification involved using reduced number of predictor 

variables (other than the sieves) and running a Partial Least Squares (PLS) regression 

using these variables as predictors.  Following the first model verification phase, two sub 

models (M8.2 and M8.5) that had very good predictive qualities - as measured by the 

predicted values that were obtained by plugging in the omitted values into the model, as 

well as the coefficient of determination (R
2
) and the model quality index (Q

2
) – were 

identified for the second phase of model verification. The dataset for these models were 

obtained by eliminating variables that did not meet the VIP (Variable Importance in the 

Projection) threshold of 0.8 in Model M8 (Wold, 1994; Russolillo, 2009). It can be 

inferred from the above tables that the outputs from Model M8 and its sub models had the 

highest number of predictor variables meeting the VIP threshold requirement of 0.8. 

Consequently, the following variables were selected to build the dataset:  

Table 7-41. List of Variables and their descriptions 

 Variable Description 

Response Variable Terminal  

ESAL 

Equivalent Standard Axle Load (ESAL) 

at FN=32, for specific material and route 

Predictor 

Variables 

 

Blend % Proportion of major aggregate source 

-EXP(0.6*BPN) British Pendulum Number 

LAA Los Angeles Abrasion 

Binder Grade Binder Grade used in HMA mix 

Percent 

Retained 
on Sieve 

12.5 Sieve Size = 12.5 mm (1/2 Inch) 

4.75 Sieve Size = 4.75.5 mm (No. 4) 

0.3 Sieve Size = 0.3 mm (No. 50) 

0.15 Sieve Size = 0.15 mm (No. 100) 

 

 

This dataset was used together with all eleven observations in PLS regression. The model 

from this analysis is designated as M13.0. The analysis was further expanded by 
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eliminating the fifth and tenth observations interchangeably and running additional PLS 

regression analysis to ensure validity of this model. The models created by this analysis 

are designated as M13.1 and M13.2. The results of this model verification process are 

shown in Table 7-42. 
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Table 7-42. Summary of outputs from the second PLS model validation/verification phase 

 

Note: Detailed output of the PLS regression for the final model dataset is included in Appendix E. 

  

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No Sieves 

 VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M13.0 

Selected Modified 

Variables - selected 

sieves (Reduced 

M8 data) 

8 2 4 0.783 0.932 0.628 
7(t1); 

7(t2) 

3(t1); 

3(t2) 
0.932 N/A N/A N/A 

 

All 

Observations 

Used 

M13.1 

M13Data with 10 

observations; 

Removed Obs 5: 

TESAL=2363108) 

8 2 4 0.770 0.931 0.660 
7(t1); 

7(t2) 

3(t1); 

3(t2) 
0.931 

2467299 
2363108 -104192 4.4 

10 out of 11 

observations 

used 

M13.2 

M13Data with 10 

observations; 

Removed Obs 10: 

TESAL= 3672489 ) 

8 2 4 0.770 0.930 0.661 
7(t1); 

7(t2) 

3(t1); 

3(t2) 
0.930 3450591 3672489 221897 6.0 

10 out of 11 

observations 

used 
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7.8.3. Final Model Selection 

As can be seen in the output from the second model verification phase, all three modeling 

approaches yielded very close model quality indices. It is also evident that in this phase, 

all but one variable met the VIP threshold value of 0.8. The one variable that did not meet 

this threshold – in all three cases – was the sieve size 0.3mm; In fact, the VIP values for 

this variable are just short of 0.8, specifically 0.76, 0.77 and 0.72 on average for models 

13.0, 13.1 and 13.2 respectively. Even though Model 13.1(model created using M13.0 

data with only 10 observations, by removing the fifth observation from the dataset) 

yielded the lowest error value in terms of prediction of omitted observations, M13.2 

(model created using M13.0 data with only 10 observations, by removing the tenth 

observation from the dataset) was selected to represent the relationship between the 

significant predictor variables and the response variable. The reasons this model was 

adopted as the ultimate model are the following: 

 This model has practically the same  R
2
 (0.93) as Model 13.1 

 This model resulted in comparably low prediction error (4.4% for M13.1 versus 

6% for M13.2) 

 In four out of the six models retained for further analysis (Models M6,M7, M11 

and M12), the sub models that were created by removing the tenth observation 

yielded the least prediction error while in the remaining two they yielded the 

second least prediction error   (see table 7-40) 

 

Consequently, the final model relating the response variable (Terminal ESAL) to the 

various predictor variables identified in the previous sections is listed below: 
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Y: Terminal ESAL at FN=32  

X1: Percentage of Material from Primary Source [Blend Percentage] 

X2: British Pendulum Number [BPN] 

X3: Los Angeles Abrasion Value [LAA] 

X4: Binder Grade Code [1= PG 64-22, 2=PG 70-22, 3=PG 76-22] 

X5: Percent of Aggregate Retained on 12.5mm Sieve  

X6: Percent of Aggregate Retained on 4.75mm Sieve 

X7: Percent of Aggregate Retained on 0.3mm Sieve 

X8: Percent of Aggregate Retained on 0.15mm Sieve 

Note: The PLS regression was carried out using the Microsoft Excel Add-in program 

XLSTAT® (Addinsoft). The outputs from XLSTAT were analyzed with outputs from 

other statistical and Mathematical applications, namely SYSTAT and Matlab, and they 

proved to be comparable.   
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7.8.4. Discussion of Modeling Output/Results 

As can be seen in the resultant model, out of 17 (in the case of percent aggregate pass 

sieve sizes) or 18 (in the case of percent aggregate retained sieve sizes) possible 

predictor variables, 8 were identified to have good projection onto latent structures 

(factors, components) and proved to have sound prediction capabilities, using the Partial 

Least Squares Regression method. It is evident from the final model that the amount of 

Equivalent Standard Axle Load (Terminal ESAL) that a given pavement can sustain 

before reaching a predetermined pavement skid resistance value at a Friction Number 

(FN) of 32 (µ=0.32) is largely dictated by the proportion of blend, gradation and physical 

characteristics of the aggregates used as well as the binder grade used in the Hot Mix 

Asphalt (HMA) mixture. 

 

It is also evident from the regression coefficients that the model is most sensitive to the 

Binder Grade and Los Angeles Abrasion (LAA) values and less affected by the British 

Pendulum Number (BPN) value and the percentage of material passing the 12.5mm 

sieve. The percentage of material from the primary source (Blend %) shows a negative 

contribution to the response variable. In cases where there is more than one aggregate 

supplier, information was not readily available regarding the material from the second or 

third supplier. As a result, not much can be inferred about this variable from this model 

alone. This problem can be easily mitigated in the future when enough data can be 

assembled for observations in which a single supplier provided the aggregate material, or 

when/if enough information about all suppliers becomes available.  
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In addition, computing the average values of the model forming variables, for all 

observations, and plugging these values into the model, it is possible to see that the 

contribution of the British Pendulum Number (BPN) is only about 0.2% of the predicted 

Terminal ESAL value. The linear product of the regression coefficient for and the 

transformed value for the average BPN value of 27 yields only about 7,400 ESALs, 

which is really not significant in terms of the typically large Terminal ESAL values. This 

is also made clear by the very small coefficient for this variable.  

 

Moreover, gradation plays a major role as demonstrated by the types of sieves that are 

found to be significant in the model; the 12.5mm and 4.75mm sieves represent the 

coarser aggregate material which is mainly associated with the macrotexture component 

of the pavement surface.  The 0.3mm and 0.15mm sieve sizes, which represent the fine 

aggregate and typically associated with microtexture, are also well represented in the 

model. The 0.15mm (No. 50) sieve proved to have a higher contribution among the four 

sieves followed by the 4.75mm (No. 4) sieve, which supports the hypothesis that both 

microtexture and macrotexture have significant contribution to the skid resistance of 

pavements. Generally, based on the final model, the material retained on the 4.75mm, 

0.3mm and 0.15mm sieve contribute positively to the friction performance of the 

pavement while material retained on the 12.5mm showed a negative contribution. Still, 

the negative contribution of the 12.5mm aggregate material is half of that of the 4.75mm 

and one-third of the 0.15mm material. In addition,  it is important to note that there are 

some ―0‖ entries for the 12.5mm variable in the dataset for observations that contain a 

9.5mm nominal mix size aggregate. This problem can be avoided by separating the 
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12.5mm and 9.5mm nominal mix size materials and performing Partial Least Square 

Regression independently. This could not be done in this research due to the limited 

number of observations available and the fact that observations from the two different 

mix sizes were combined. However, the model can be further qualified in the future by 

using a controlled dataset, in terms of the nominal mix aggregate size.  

 

It is also interesting to note that, out of the variables that were transformed to alternative 

forms, in order to achieve better correlation with the response variable, only one, namely 

British Pendulum Number (BPN), was found to be significant all the way into the final 

model. In addition, the predictor variables that were not found to be significant for the 

formation of this particular model can be incorporated into the model since most of them 

are correlated to one or more of the other predictor variables, in a two-stepped procedure. 

For example, it has been observed that Polish Value (PV) is highly correlated with British 

Pendulum Number (BPN). Therefore, this model can still be used to predict the friction 

performance of a pavement – in terms of terminal ESAL - using PV values even when/if 

BPN data is unavailable. Finally, this model can be amended/updated as more material 

and friction data become available in the future.  
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Chapter 8.  Research Summary,Conclusions & Recommendations 

8.1. Research Summary 

This dissertation presented the methodology, data analysis and modeling, and the results 

of a research project that investigated the major factors affecting pavement friction, 

including material, traffic, age and environment related factors, and a systematic 

approach that can be used to estimate the friction performance of Hot Mix Asphalt 

(HMA) Pavements. The literature review provided an overview and background 

information on the mechanism of pavement-tire friction and discussed in-depth the 

primary factors that affect/contribute to pavement friction. 

 

For the purpose of this research, more than 160,000 material and pavement friction 

records were assembled, categorized, filtered and analyzed to produce sufficient and 

dependable datasets that were eventually used in detailed analysis and modeling. The 

data sources included pavement friction records, material/mix design data, aggregate lab 

test information, equipment repeatability test data, construction history, and route AADT 

/truck percentage data. As part of the study, statistical analyses were performed on 

equipment repeatability/variability test data to account and correct for any discrepancies 

arising from the use of different equipment in the annual pavement friction surveys. In 

addition, preliminary scatter plots and simple and is it multiple linear regression or 

multivariate? multiple linear regression analysis were performed on combined data that 

were grouped under major categories, such as region (counties), route characteristics 

(Interstate vs Local), traffic level and testing speed, to identify the main variables that are 

related to pavement friction and to also assess the quality and validity of the data as a 

whole. 
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Following the preliminary analysis, the large database was broken down into various 

components so as to identify and categorize the pavement friction and material data into a 

more readily usable form.  In this case, a 10-step methodology was adopted to organize 

and analyze the pavement friction and material data based on material supplier and route 

information. Route direction, survey location by milepoint, test speed, action year, actual 

AADT and survey equipment were the most important variables from the friction data, 

while the aggregate supplier and aggregate/mix properties were the main sources of data 

from the material database that were employed for detailed analysis. The main outputs 

from the detailed analysis were supplier and route specific pavement friction performance 

indicators such as cumulative AADT, cumulative ESAL or expected pavement life in 

years of service. 

 

The last chapter of the dissertation discussed the methodology followed in assembling the 

output from the detailed analysis phase for further analysis and modeling of the pavement 

friction performance indicators. The detailed analysis and research modeling phase 

investigated numerous alternatives to relate the selected response variable (Terminal 

ESAL) to the various predictor variables identified in the preceding chapters using 

multivariate regression methods. In addition, the analysis introduced the concept of 

Structural Equation Modeling (SEM) and the method of Partial Least Squares (PLS) 

Regression that was used to investigate, develop and validate several models for relating 

the friction performance of pavements to aggregate properties and route characteristics. 

The conclusions from this research are presented below.  
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8.2. Research Conclusions 

 

This research investigated the primary factors affecting pavement friction with emphasis 

on the effect of aggregate properties and route characteristics. The following conclusions 

were obtained from this research: 

 

1) A step-by-step methodology was developed for isolating and analyzing data to 

predict pavement friction life for any mixture and aggregate. The various analyses 

produced pavement friction performance indicators, namely Cumulative AADT 

and Cumulative ESAL at terminal FN value, FN drop/10,000 Cumulative AADT 

or Cumulative ESAL, or expected/useful friction life in years, all of which can be 

used to compare and select pavement materials based on these performance 

measures. 

 

2) Since different pavement sections are exposed to different traffic loading, the 

analysis considered converting Annual Average Daily Traffic (AADT) values to 

Equivalent Standard Axle Load (ESAL) values, either at the milepoint level in the 

actual database or after the terminal cumulative AADT has been computed from 

the regression analysis. Conversting AADT to ESAL at the milepoint level and 

evaluating the terminal ESALproved to have similar results to converting the 

terminal cumulative AADT into terminal ESAL after the regression analysis has 

been completed.  
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3) In the detailed analysis phase in which pavement friction data were analyzed for 

specific routes and suppliers, it was discovered that the simple linear regression 

analysis between Cumulative AADT (CumAADT) and Friction Number (FN) 

yielded the best possible relationships, while multivariate regression among 

cumulative AADT, Speed and equipment produced lower R
2
 values, statistically 

insignificant regression coefficients or comparatively low terminal cumulative 

AADT values when evaluated using sensitivity analysis.  

 

4) The results from the detailed data analysis helped develop a dataset that consisted 

of supplier and material information, pavement friction performance indicators, 

and traffic and route characteristics for various construction contracts that were in 

turn used to produce and test various research models.  

 

5) In the research model development phase, several modeling methods were 

considered to formulate and test the relationship between the selected pavement 

friction performance indicator variable (Terminal ESAL) and the predictor 

variables that were obtained from detailed analysis in preceding chapters.  Several 

multivariate regression models as well as Partial Least Square regression were 

tried and tested for model development. After numerous reductions, variations 

and iterations, a final model was obtained that proved to be valid in terms of 

model significance and  predictive  ability as measured by cross validation tests . 

The final model derived identified the most ctitical factors affecting pavement 

friction based on the datasets used in this study.  Based on this  model it is 

possible to estimate the friction performance of pavements in terms of terminal 
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ESAL (the maximum number of Equivalent Standard Axle Loads the pavement 

will ‗sustain‘ before reaching a friction value of FN=32) given certain aggregate 

and mix properties such as gradation, binder grade used in the HMA mixture, Los 

Angeles Abrasion (LAA) and British Pendulum Number (BPN) values.  

 

 

6) Based on the correlation analysis on the various aggregate properties, some of the 

predictor variables included in the model can  estimated from other highly 

correlated aggregate properties that eventually were not part of the model. For 

example, it has been observed that Polish Value (PV) is highly correlated with 

British Pendulum Number (BPN). Therefore, this model can still be used to 

predict the friction performance of a pavement – in terms of terminal ESAL - 

using PV values even when/if BPN data is unavailable This can be significantly 

helpfull since SHA agencies do not always run all aggregate tests from every 

single aggregate quarry on a regular basis.  
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8.3 Recomendations 

From the analysis and modeling of this study, it was evident that there is a need to control 

and reduce variability in friction measurements due to the various parameters affecting 

pavement friction.  Thus, it is suggested to eventually complement the analysis and 

modeling by developing controlled experiments with the following considerations: 

 

 identify projects that use a single aggregate source in the gradation of the 

mixtures (i.e.,  AS1, AS2, AS3 etc)  for each pavement section; 

 

 consider pavement sections that use aggregates from different sources and one 

type of asphalt mixture, at a time, so as to eliminate asphalt mixture design effects 

(i.e., effects of binder content and other mix design volumetric parameters that 

may affect binder film thickness around the aggregate, and thus pavement friction 

values); 

  

 conduct repeated FN friction measurements at the same test sections and at 

specific times of the year to measure and isolate seasonal effects; 

 

 collect FN measurements for at least 5-7 years on the same sections in order to 

better capture potential microtexture renewal effects; 

 

 consider more accurate traffic measurements (AADT, truck distribution factors ) 

and traffic lane distribution. 

 

 use a single friction equipment, or side by side measurements of track #5 and#6, 

on a wider variety of pavement friction levels; 

 

 control survey speed at 40 mph during the above testing. 
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 The detailed analysis included adjusting the data for equipment and survey speed, 

for reducing testing variability  in the model development stage. A follow up 

analysis and modeling using many years of continuous data (5-7 years) for 

pavement sections surveyed at the specified testing speed, and using the same 

equipment, or well calibrated equipment, can increase the quality of the final 

model. Any follow up analysis should also include material (mix and aggregate) 

data that are up to date and accurate in terms of the construction contract they are 

used in so as to increase the quality of the input data.   

 

 Finally, the selected model can further be amended/updated as more material and 

friction data become available in the future. 
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Appendix A 

Table A- 1. Mineral Composition by Supplier: 

Supplier Year 

Sampled 

Mineralogical Composition (%) Per Whole Rock 

Analysis 

Remark 

AIR N/A      

AASG 

2004 Calcite 

(95%) 

Quartz 

(5%) 

   

ICM 

2004 Dolomite 

(90%) 

Siliceous 

Silt (10%) 

   

KLC 

2006 Calcite 

(48%) 

Quartz 

(50.4%) 

Pyrite (+-

1%) 

  

LCH 

2005 Feldspar 

(35-40%) 

Pyroboles 

(55-60%) 

Opaques 

(<=5%) 

  

LF 

2006 Calcite 

(78%) 

Quartz 

(22%) 

   

LM 

2006 Calcite 

(98%) 

Pyrite 

(<1%) 

  Lafarge Medford 

(North Westminster 

MD) 

LW N/A      

LT 

2005 Quartz 

(70-90%) 

Muscovite 

(10-30%) 

Pyrite 

(1%) 

 Lafarge Texas 

(Texas, MD) 

MMI N/A      

MMW 

2004 Calcite 

(85-90%) 

Quartz (3-

5%) 

Clays (5-

8%) 

Pyrite 

(<1%) 

 

VMH 

2004 Carbonates 

(99%) 

Clay (1%)    

VMHDG 

2005 Quartz (+-

25%) 

Feldspar 

(30-35%) 

Pyroboles 

(35-40%) 

Opaques 

(<=5%) 

Based on Arundel 

Corp Havre De Grace 

Quarry results 

VMW N/A      

YBPBv N/A      

YBPRv 

2004 Calcite, 

Dolomite 

(95%) 

Silts, Clay 

(5%) 

  York Building 

Products (Roosevelt 

Avenue #1M) 
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Appendix B 

Representation of Gradation using alternate parameters 

The gradation of the aggregate material for the various suppliers (in terms of percent 

passing and percent retained on sieves) is presented below: 

Table B- 1. Aggregate Gradation (Percent Passing Sieve) by Supplier 

Supplier 

Mix 

 Size 

Percent Passing Sieve Size (mm) 

50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

AASG 12.5 100 100 100 100 97 86 53 35 22 14 10 7 5.8 

AIR 12.5 100 100 100 100 97 83 52 36 23 17 10 6 4.7 

KLC 12.5 100 100 100 100 91 77 52 33 21 14 10 8 6.1 

LCH 12.5 100 100 100 100 98 83 44 30 23 17 11 7 4.1 

LF 12.5 100 100 100 100 95 87 66 40 25 15 9 7 6 

LW 12.5 100 100 100 100 95 85 54 35 22 15 10 8 6.5 

MMW 12.5 100 100 100 100 97 83 44 26 21 17 12 8 5 

VMH 9.5 100 100 100 100 100 97 70 48 30 22 16 11 6.3 

VMHDG 9.5 100 100 100 100 100 99 66 41 29 20 12 9 6.9 

VMW 12.5 100 100 100 100 99 90 52 37 26 16 10 6 4.9 

YBPBV 9.5 100 100 100 100 100 95 58 32 24 18 12 8 5.6 

 

Table B- 2. Aggregate Gradation (Percent Retained on Sieve) by Supplier 

Supplier 

Mix 

Size 

Percent Retained Sieve Size (mm) 

50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 
0.0 

75 

Pan 

 (0) 

AASG 12.5 0 0 0 0 3 11 33 18 13 8 4 3 1.2 5.8 

AIR 12.5 0 0 0 0 3 14 31 16 13 6 7 4 1.3 4.7 

KLC 12.5 0 0 0 0 9 14 25 19 12 7 4 2 1.9 6.1 

LCH 12.5 0 0 0 0 2 15 39 14 7 6 6 4 2.9 4.1 

LF 12.5 0 0 0 0 5 8 21 26 15 10 6 2 1 6 

LW 12.5 0 0 0 0 5 10 31 19 13 7 5 2 1.5 6.5 

MMW 12.5 0 0 0 0 3 14 39 18 5 4 5 4 3 5 

VMH 9.5 0 0 0 0 0 3 27 22 18 8 6 5 4.7 6.3 

VMHDG 9.5 0 0 0 0 0 1 33 25 12 9 8 3 2.1 6.9 

VMW 12.5 0 0 0 0 1 9 38 15 11 10 6 4 1.1 4.9 

YBPBV 9.5 0 0 0 0 0 5 37 26 8 6 6 4 2.4 5.6 
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B.1. Coefficient of Uniformity (Cu) and Coefficient of Curvature (Cc) computations 

 

Coefficient of Uniformity, designated as Cu, is computed as a ratio of the grain size 

(diameter) corresponding to the material at 60% passing (D60) and grain size at 10% 

passing (D10), and is calculated as follows: 

 

Coefficient of Curvature, designated as Cc, is computed as a ratio of the square of the 

grain size (diameter) corresponding to the material at 30% passing (D30) and the product 

of the grain size for the material at 60% passing (D60) and grain size at 10% passing 

(D10), and is calculated as follows: 

 

The resuls for each supplier are as shown below: 

Table B- 3. Aggregate Gradation Parameters by Supplier (Percent Passing) 

Supplier D10 D30 D60 Cu Cc 

AASG 0.300 1.906 5.758 19.19 2.104 

AIR 0.300 1.815 5.976 19.92 1.838 

KLC 0.300 2.065 6.270 20.90 2.267 

LCH 0.263 2.360 6.699 25.52 3.167 

LF 0.375 1.573 3.393 9.05 1.946 

LW 0.300 1.906 5.669 18.90 2.136 

MMW 0.225 3.304 6.699 29.77 7.243 

VMH 0.120 1.180 2.991 24.92 3.880 

VMHDG 0.200 1.278 3.886 19.43 2.102 

VMW 0.300 1.609 5.750 19.17 1.501 

YBPBV 0.225 2.065 5.007 22.25 3.785 
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B.2. “Percent Retained” gradation parameters („a‟ and ‟b‟) computations 

The percent retained and cumulative percent retained relationships were plotted as shown 

in the figures below. It can be seen from the graphs that relationships between the sieve 

sizes and cumulative percentage retained can be approximated using an exponential 

relationship and the best fit curve can be described using the following equation: 

 (Eq. B-3) 

Where: 

 y = Cumulative percent retained 

 a,b = equation (model) parameters 

 x = Sieve Size 

 

Table B- 4. Percent Retained and Cumulative Percent retained (4 suppliers) 

 Sieve 

Sizes 

(mm) 

12.5NMAS(AASG) 9.5NMAS(YBPBV) 12.5NMAS(LCH) 9.5NMAS(VMH) 

 

%Ret CumRet %Ret CumRet %Ret CumRet %Ret CumRet 

12.5 3 3 0 NA 2 2 0 NA 

9.5 11 14 5 5 15 17 3 3 

4.75 33 47 37 42 39 56 27 30 

2.36 18 65 26 68 14 70 22 52 

1.18 13 78 8 76 7 77 18 70 

0.6 8 86 6 82 6 83 8 78 

0.3 4 90 6 88 6 89 6 84 

0.15 3 93 4 92 4 93 5 89 

0.075 1.2 94.2 2.4 94.4 2.9 95.9 4.7 93.7 

         Equations y = 107.22e
-0.252x

 y = 112.1e
-0.188x

 y = 112.32e
-0.266x

 y = 110.32e
-0.227x

 

R2 0.96 

 

0.7903 

 

0.898 

 

0.84 
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Figure B- 1. Percent Retained and Cumulative Percent retained (AASG and YBPBV) 

 

Figure B- 2. Percent Retained and Cumulative Percent retained (LCH and VMH) 
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Table B- 5. Percent Retained and Cumulative Percent retained (4 suppliers) 

 

 Sieve 

Sizes 

(mm) 

12.5NMAS(AIR) 12.5NMAS(KLC) 12.5NMAS(LF) 12.5NMAS(LW) 

 

%Ret CumRet %Ret CumRet %Ret CumRet %Ret CumRet 

12.5 3 3 9 9 5 5 5 5 

9.5 14 17 14 23 8 13 10 15 

4.75 31 48 25 48 21 34 31 46 

2.36 16 64 19 67 26 60 19 65 

1.18 13 77 12 79 15 75 13 78 

0.6 6 83 7 86 10 85 7 85 

0.3 7 90 4 90 6 91 5 90 

0.15 4 94 2 92 2 93 2 92 

0.075 1.3 95.3 1.9 93.9 1 94 1.5 93.5 

         Equations y = 106.45e
-0.245x

 y = 98.296e
-0.175x

 y = 98.645e
-0.229x

 y = 102.23e
-0.222x

 

R2 0.94 

 

0.98 

 

0.99 

 

0.98 

  

 

Figure B- 3. Percent Retained and Cumulative Percent retained (AIR and KLC) 
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Figure B- 4. Percent Retained and Cumulative Percent retained (LF and LW) 

 

Table B- 6. Percent Retained and Cumulative Percent retained (3 suppliers) 

 Sieve 

Sizes 

(mm) 

12.5NMAS(MMW) 9.5NMAS(VMHDG) 12.5NMAS(VMW) 

 

%Ret CumRet %Ret CumRet %Ret CumRet 

12.5 3 3 0 NA 1 1 

9.5 14 17 1 1 9 10 

4.75 39 56 33 34 38 48 

2.36 18 74 25 59 15 63 

1.18 5 79 12 71 11 74 

0.6 4 83 9 80 10 84 

0.3 5 88 8 88 6 90 

0.15 4 92 3 91 4 94 

0.075 3 95 2.1 93.1 1.1 95.1 

       Equations y = 109.5e
-0.244x

 y = 126.18e
-0.285x

 y = 116e
-0.323x

 

R2 0.92 

 

0.75 

 

0.92 
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Figure B- 5. Percent Retained and Cumulative Percent retained (MMW,VMHDG and VMW) 

Table B- 7. Summary of curve fit parameters 

Chapter 9.  

Source 

 

NMAS 

 

%Retained 

 On  Sieve 

No.4 

Curve Equation 

Parameters 

Coefficient of 

determination 

a b R
2
 

AASG 12.5 33 107.22 0.252 0.96 

AIR 12.5 31 106.45 0.245 0.94 

KLC 12.5 25 98.296 0.175 0.98 

LCH 12.5 39 112.32 0.266 0.90 
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MMW 12.5 39 109.5 0.244 0.92 

VMH 9.5 27 110.32 0.227 0.84 

VMHDG 9.5 33 126.18 0.285 0.75 

VMW 12.5 38 116 0.323 0.92 

YBPBV 9.5 37 112.1 0.188 0.79 

y = 109.5e-0.244x

R² = 0.9208

y = 126.18e-0.285x

R² = 0.7521

y = 116e-0.323x

R² = 0.9232

-20

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

%
R

e
ti

an
e

d

Sieve Size (mm)

%ret12.5

Cum%Ret12.5

%ret9.5

Cum%Ret9.5

%ret12.5(2)

Cum%Ret12.5(2)

Expon. 
(Cum%Ret12.5)
Expon. 
(Cum%Ret9.5)
Expon. 
(Cum%Ret9.5)



 

216 

Appendix C 

Outputs from the Stepwise Multivariate Linear Regression 

C.1. Using Original Variables and Percent Pass #4 Sieve data 

 

Table C- 1. Multivariate Regression output using all original variables 

 

 

 

 

 

 

 

SUMMARY OUTPUT 
         

          Regression Statistics 
        Multiple R 0.97399 
        R Square 0.94865 
        Adjusted R Square 0.48652 
        Standard Error 1059295 
        Observations 11 
        

          ANOVA 
         

  df SS MS F 
Significance 

F T-critical 
   Regression 9 2.07E+13 2.3E+12 2.05278325 0.497164 2.2622 
   Residual 1 1.12E+12 1.12E+12 

      Total 10 2.19E+13       
    

          

  Coefficients 
Standard 

Error t Stat ttest P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 8073682 12721874 0.63463 4.9885E-08 0.639995 -2E+08 1.7E+08 -1.5E+08 169720414 

%pass #4 -11866 173701 -0.06831 -3.9327E-07 0.956579 -2E+06 2195215 -2218947 2195214.9 

Blend%age -56788 56329.46 -1.00815 -1.7897E-05 0.497417 -772522 658945.3 -772522 658945.26 

BPN -110772 156288.5 -0.70877 -4.535E-06 0.607469 -2E+06 1875062 -2096606 1875061.9 

PV -225631 837387.1 -0.26945 -3.2177E-07 0.832444 -1E+07 10414381 -1.1E+07 10414381 

LAA -187633 147845.1 -1.26912 -8.5841E-06 0.424848 -2E+06 1690917 -2066183 1690917.2 

Soundness -311281 1010998 -0.30789 -3.0455E-07 0.809852 -1E+07 12534668 -1.3E+07 12534668 

Binder Grade 1044310 943807.2 1.106486 1.1724E-06 0.467845 -1E+07 13036517 -1.1E+07 13036517 

Binder % 1284143 2986348 0.430004 1.4399E-07 0.741468 -4E+07 39229286 -3.7E+07 39229286 

AESAL 214.655 4572.041 0.04695 1.0269E-05 0.970133 -57879 58307.94 -57878.6 58307.944 
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Table C- 2. Output of Stepwise (Manual) Multivariate Regression using 7 original variables 

 

 

  

SUMMARY 
OUTPUT 

        

         Regression Statistics 
       Multiple R 0.97275 
       R Square 0.94624 
       Adjusted R 

Square 0.8208 
       Standard Error 625778 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 7 2.07E+13 2.95E+12 7.543537787 0.062409 
   Residual 3 1.17E+12 3.92E+11 

     Total 10 2.19E+13       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 9511776 4051943 2.347461 0.100537428 -3383314 22406866 -3E+06 22406866 

Blend%age -53525 21419.4 -2.49892 0.08779052 -121691 14640.81 -1E+05 14640.81 

BPN -96765 75805.75 -1.27649 0.291632277 -338013 144482.6 -3E+05 144482.6 

PV -270973 221875.5 -1.22129 0.309200139 -977080 435133.3 -1E+06 435133.3 

LAA -205059 72834.66 -2.8154 0.066992652 -436851 26733.65 -4E+05 26733.65 

Soundness -320480 182194.4 -1.759 0.176813208 -900304 259343.4 -9E+05 259343.4 

Binder Grade 1011883 364578 2.77549 0.069250535 -148367 2172133 -1E+05 2172133 

Binder % 910761 720741.4 1.263644 0.295625239 -1382960 3204482 -1E+06 3204482 

 



 

218 

Table C- 3. Output of Stepwise (Manual) Multivariate Regression using 5 original variables 

 

 

  

SUMMARY OUTPUT 
        

         Regression Statistics 
       Multiple R 0.93049 
       R Square 0.86582 
       Adjusted R 

Square 0.73163 
       Standard 

Error 765812 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 5 1.89E+13 3.78E+12 6.452430943 0.030816 
   Residual 5 2.93E+12 5.86E+11 

     Total 10 2.19E+13       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1.3E+07 2853370 4.449628 0.006704646 5361614 20031256 5E+06 2E+07 

Blend%age -32247 20822 -1.54871 0.182133987 -85771.9 21277.41 -85772 21277 

BPN -156746 71903.14 -2.17996 0.08111719 -341579 28087.01 -3E+05 28087 

LAA -205259 80376.37 -2.55372 0.051034446 -411873 1355.025 -4E+05 1355 

Soundness -238566 202842 -1.17612 0.292490516 -759988 282855.7 -8E+05 3E+05 
Binder 
Grade 672371 392798.6 1.711745 0.147624538 -337350 1682092 -3E+05 2E+06 

 



 

219 

Table C- 4. Output of Stepwise (Manual) Multivariate Regression using 4 original variables 

 

  

SUMMARY 
OUTPUT 

        

         Regression Statistics 
       Multiple R 0.91033 
       R Square 0.82869 
       Adjusted R 

Square 0.71449 
       Standard 

Error 789892 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 4 1.81E+13 4.53E+12 7.256228462 0.017525 
   Residual 6 3.74E+12 6.24E+11 

     Total 10 2.19E+13       
   

         

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1.1E+07 2720776 4.1962 0.005709827 4759421 18074420 5E+06 2E+07 

Blend%age -39116 20614.67 -1.89747 0.106542216 -89558.1 11326.47 -89558 11326 

BPN -120841 67147.65 -1.79963 0.122014179 -285146 43463.16 -3E+05 43463 

LAA -175150 78586.12 -2.22876 0.067380379 -367443 17143.38 -4E+05 17143 
Binder 
Grade 710761 403748.2 1.760407 0.128822582 -277175 1698698 -3E+05 2E+06 
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Table C- 5. Output of Stepwise (Manual) Multivariate Regression using 3 original variables 

 

 

 

 

 

 

 

 

  

SUMMARY OUTPUT 
        

         Regression Statistics 
       Multiple R 0.86036 
       R Square 0.74021 
       Adjusted R 

Square 0.62888 
       Standard 

Error 900567 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 3 1.62E+13 5.39E+12 6.648366976 0.018578 
   Residual 7 5.68E+12 8.11E+11 

     Total 10 2.19E+13       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% Upper 95.0% 

Intercept 1.4E+07 2593366 5.415714 0.00099165 7912593 20177266 8E+06 2E+07 

Blend%age -33291 23198.35 -1.43505 0.194405249 -88146.2 21564.59 -88146 21565 

BPN -159468 72353.39 -2.20401 0.063354516 -330556 11620.69 -3E+05 11621 

LAA -232219 81618.49 -2.84518 0.02485943 -425216 -39222.26 -4E+05 -39222.262 
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Table C- 6. Output of Stepwise (Manual) Multivariate Regression using 2 original variables 

 

 

 

 

  

SUMMARY 
OUTPUT 

        

         Regression Statistics 
       Multiple R 0.81473 
       R Square 0.66378 
       Adjusted R 

Square 0.57973 
       Standard Error 958341 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
t-

critical 
  Regression 2 1.45E+13 7.25E+12 7.897120262 0.012778 2.306 
  Residual 8 7.35E+12 9.18E+11 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 1.3E+07 2715162 4.927417 0.001153185 7117559 2E+07 7E+06 19639908 

BPN -208838 67734.22 -3.0832 0.015043718 -365034 
-

52643 -4E+05 -52642.9 

LAA -274849 80897.37 -3.39751 0.009395025 -461399 
-

88300 -5E+05 -88299.8 
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C.2. Using Transformed Variables and Percent Retained on #4 Sieve data 

 

Table C- 7. Multivariate Regression output using all transformed variables 

 

  

SUMMARY OUTPUT 
        

         Regression Statistics 
       Multiple R 0.97487 
       R Square 0.95037 
       Adjusted R 

Square 0.50373 
       Standard 

Error 1041391 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
T-

critical 
  Regression 9 2.08E+13 2.31E+12 2.127827446 0.489725 2.2622 
  Residual 1 1.08E+12 1.08E+12 

     Total 10 2.19E+13       
   

         

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 9878230 15689649 0.629602 0.642282341 -1.9E+08 2E+08 -1.89E+08 2.1E+08 

%Ret#4 -41937 210983.8 -0.19877 0.875088688 -2722740 3E+06 -2722740 2638866 

Blend%age -61603 52878.42 -1.16499 0.451576891 -733487 610281 -733487 610281 

BPN -110826 149588.3 -0.74087 0.594070494 -2011525 2E+06 -2011525 1789874 

PV -180240 557919.3 -0.32306 0.801073283 -7269276 7E+06 -7269276 6908797 

LAA -208245 175723.2 -1.18508 0.446206467 -2441020 2E+06 -2441020 2024529 

Soundness -195766 529134 -0.36997 0.774409316 -6919051 7E+06 -6919051 6527519 
Binder 
Grade 943089 666620 1.414732 0.391716572 -7527122 9E+06 -7527122 9413299 

Binder % 1038018 1574304 0.659351 0.628901263 -1.9E+07 2E+07 
-

18965409 2.1E+07 

AESAL 1058.96 3705.411 0.285786 0.822786646 -46022.8 48141 
-

46022.76 48140.7 
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Table C- 8. Output of Stepwise (Manual) Multivariate Regression using 7 transformed variables 

 

 

  

SUMMARY OUTPUT 
        

         Regression Statistics 
       Multiple R 0.97275 
       R Square 0.94624 
       Adjusted R 

Square 0.8208 
       Standard Error 625778 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 7 2.07E+13 2.95E+12 7.543537787 0.062409 3.1824 
  Residual 3 1.17E+12 3.92E+11 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 9511776 4051943 2.347461 0.100537428 -3383314 2E+07 -3383314 2.2E+07 

Blend%age -53525 21419.4 -2.49892 0.08779052 -121691 14641 -121691.4 14640.8 

BPN -96765 75805.75 -1.27649 0.291632277 -338013 144483 -338012.8 144483 

PV -270973 221875.5 -1.22129 0.309200139 -977080 435133 -977080.2 435133 

LAA -205059 72834.66 -2.8154 0.066992652 -436851 26734 -436851.1 26733.6 

Soundness -320480 182194.4 -1.759 0.176813208 -900304 259343 -900304.3 259343 

Binder Grade 1011883 364578 2.77549 0.069250535 -148367 2E+06 -148367.3 2172133 

Binder % 910761 720741.4 1.263644 0.295625239 -1382960 3E+06 -1382960 3204482 
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Table C- 9. Output of Stepwise (Manual) Multivariate Regression using 5 transformed variables 

 

 

  

SUMMARY 
OUTPUT 

        

         Regression Statistics 
       Multiple R 0.8913 
       R Square 0.79442 
       Adjusted R 

Square 0.58884 
       Standard Error 947896 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 5 1.74E+13 3.47E+12 3.864310559 0.082114 2.5706 
  Residual 5 4.49E+12 8.99E+11 

     Total 10 2.19E+13         
  

         

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% Lower 95.0% 

Upper 
95.0% 

Intercept 2931020 4994700 0.586826 0.582815051 -9908267 2E+07 -9908267 1.6E+07 

Blend%age -79940 29004.79 -2.75608 0.040020363 -154499 -5380.3 -154498.7 -5380.32 

LAA -71992 85201.46 -0.84496 0.43668439 -291010 147025 -291009.6 147025 

Soundness -42240 227436.6 -0.18572 0.859961248 -626885 542404 -626884.8 542404 

Binder Grade 1117844 479618.5 2.330693 0.067153294 -115055 2E+06 -115055 2350742 

Binder % 1211907 1037138 1.168511 0.29527804 -1454141 4E+06 -1454141 3877955 
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Table C- 10. Output of Stepwise (Manual) Multivariate Regression using 4 transformed variables 

 

 

  

SUMMARY OUTPUT 
        

         Regression Statistics 
       Multiple R 0.89051 
       R Square 0.793 
       Adjusted R 

Square 0.655 
       Standard 

Error 868286 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 4 1.73E+13 4.33E+12 5.74647518 0.02997 2.4469 
  Residual 6 4.52E+12 7.54E+11 

     Total 10 2.19E+13         
  

         

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% Lower 95.0% 

Upper 
95.0% 

Intercept 2857046 4560647 0.626456 0.554086285 -8302454 1E+07 -8302454 1.4E+07 

Blend%age -80304 26507.92 -3.02943 0.023114741 -145167 -15441 -145166.5 -15441.5 

LAA -70377 77637.85 -0.90647 0.39962443 -260349 119596 -260349.5 119596 
Binder 
Grade 1112992 438685.3 2.537108 0.044253189 39567.82 2E+06 39567.82 2186416 

Binder % 1218129 949537.3 1.282866 0.246863799 -1105305 4E+06 -1105305 3541563 
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Table C- 11. Output of Stepwise (Manual) Multivariate Regression using 3 transformed variables 

 

 

 

  

SUMMARY OUTPUT 
        

         Regression Statistics 
       Multiple R 0.87445 
       R Square 0.76465 
       Adjusted R 

Square 0.66379 
       Standard Error 857156 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 3 1.67E+13 5.57E+12 7.581182803 0.013303 2.3646 
  Residual 7 5.14E+12 7.35E+11 

     Total 10 2.19E+13         
  

         

  Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% Lower 95.0% 

Upper 
95.0% 

Intercept 656663 3811486 0.172285 0.868088572 -8356071 1E+07 -8356071 9669396 

Blend%age -88426 24628.04 -3.59045 0.008851866 -146662 -30190 -146661.7 -30189.6 

Binder Grade 1257874 403296 3.118984 0.016867681 304230.2 2E+06 304230.2 2211517 

Binder % 1487132 890411.4 1.670163 0.138814115 -618356 4E+06 -618356.3 3592620 
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Table C- 12. Output of Stepwise (Manual) Multivariate Regression using 2 transformed variables 

 

 

  

SUMMARY 
OUTPUT 

        

         Regression Statistics 
       Multiple R 0.81907 
       R Square 0.67087 
       Adjusted R 

Square 0.58859 
       Standard 

Error 948187 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F t-critical 
  Regression 2 1.47E+13 7.33E+12 8.153314627 0.011734 2.306 
  Residual 8 7.19E+12 8.99E+11 

     Total 10 2.19E+13         
  

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 6319581 1925870 3.281416 0.011164182 1878516 1E+07 1878516 1.1E+07 

Blend%age -62456 21126.96 -2.95621 0.018251582 -111175 -13737 
-

111174.6 
-

13736.9 

Binder Grade 1121604 436901.2 2.567179 0.033273239 114107.8 2E+06 114107.8 2129100 
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Appendix D 

Partial Least Squares (PLS) Regression Algorithm 

D.1. Description of method 

The Partial Least Squares (PLS) regression is a method of fitting a model for one or more 

dependent (response) variables based on one or more independent (predictor) variables. It 

is typically very useful when the following conditions exist: 

i. There is more number of predictors compared to the number of observations 

ii. There is multicollinearity among the predictor variables (i.e. two or more 

predictors are linearly correlated) 

The main purpose of the PLS regression methodology is to find few components/factors 

that can replace the predictor variables and at the same time can explain the variance in 

the response variable, thereby fitting a valid model to the data by eliminating the 

multicollinearity problem.  

The goal of the PLS regression is to find components and loadings to the predictor matrix 

(X) and response matrix (Y) as follows: 

X = TP' + E                          (Eq. D.1) 

Y = UQ' + F                       (Eq. D.2) 

And eventually obtain the relationship: Y = XB + F               (Eq. D.3) 

 

The PLS regression algorithm and methodology can be summarized as shown in the 

following figure: 
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Figure D- 1. PLS regression Methodology (The Unscrambler® Handbook – PLS Theory) 

 

The approach, notations and step by step methodology/algorithm will be presented in the 

following sections. 
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Table D- 1. Notations used in the PLS algorithm (adopted from SPSS Handbook): 

Notation Description 

X 

 

N × n design matrix of independent variables, centered and perhaps standardized. Note 

that there is no intercept term. 

Y 

 

N × m matrix of dependent variables, centered and perhaps 

standardized 

c m × 1 column vector of weights 

u N × 1 column vector of Y scores 

w n × 1 column vector of weights 

t N × 1 column vector of X scores 

d (or h) number of PLS factors to extract 

p n × 1 loading vector 

q m × 1 loading vector 

P n × d loading matrix 

Q m × d loading matrix 

T N × d score matrix, T= XW* 

U N × d score matrix 

W n × d matrix of X-weights 

W* 

 

n × d matrix of X-weights in original coordinates; these weights can be directly applied 

to X, W* = W(P´W)
−1 

C m × d matrix of Y-weights; these weights can be directly applied to Y. 

B n × m matrix of regression parameters, B= W* C´ 

E N × n matrix of residuals, E = X – TP' 

F N × m matrix of residuals, F = Y – UQ' = Y – XB 

DModX N × 1 vector of distances of X variables to the model 

DModY N × 1 vector of distances of Y variables to the model 

VIP n × d matrix of Variable Importance in the Projection 
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D.2. the step-by-step algorithm (Adopted from SPSS Handbook) 

1. Given a matrix of predictor variables ‗X‟ and response variables ‗Y‟, compute the 

mean and standard deviation of each variable (i.e. and Sxi)  and replace X with the 

centered and standardized variables. Do the same for the Y matrix. 

X: = (X− μX) ΣX
−1

     

 

Where ―ΣX‖ is a diagonal matrix of standard deviations and ―μ X‖ is the vector of means; 
 

Y: = (Y− μY) ΣY
− 1

 

 

 

2. There are various algorithms that can be used based on the number of dependent 

variables.  For the case of one dependent (response) variable, the NIPALS (Non-linear 

Iterative Partial Least Squares) algorithm is used. NIPALS algorithm is useful when there 

are missing values in the data and when only the first few factors of a data set – often 

between 2 to 5 factors yield good results - need to be calculated. 

 

NIPALS (Non-linear Iterative Partial Least Squares) Algorithm: 

 

The NIPALS algorithm explicitly takes ‗c‟ and ‗w‟ to have unit norm. If there is only one 

response variable, then ‗c‘ will be a 1×1 unit vector ( c = 1), and this will be the start of 

the analysis: initialize u = Y; when c = 1, the NIPALS converges in only one iteration. 

 

Begin the loop with m =1, c = 1, begin at step 1 with u = Y: 

Repeat until convergence: 

1. w = X'u/(u'u) = X‘u(u‘u)
-1 

     compute the first weight vectors (for X) 

2. w := w/||w|| ……………… reduce ‗w‟ using determinant (absolute value) 

3. t = Xw … ………………….. compute the first ‗t‘ component (score) 

4. c = Y't/(t't)= Y't(t't)
-1

 ……… compute the next ‗c‘ weight (score) (for Y) 
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5. c: = c/||c|| …………….. deflate/reduce  ‗c‘  using determinant  

6. u = Yc … ……………… compute the first ‗u‘ component (score) 

Repeat the above until convergence and until all factors/components are extracted.  

3. Computation of loadings to be used in the deflation of the X and Y matrices 

 

3.1. Regress X on t and Y on u: 

 

1. p = X't/ (t't) = X't (t't)
-1

    ….. Compare with OLS‘s  coefficients 

2. q = Y'u/(u'u) = Y'u (u'u)
-1

 

 

3.2. Deflate X and Y matrices: 

 

1. X: = X – tp' 

2. Y: = Y – tc' (use c from step 4, not step 5, above) 

 

At this stage, the deflated matrices are the errors E, F at that stage (see Equations D.1, 

D.2 and D.3). 

 

The vector of regression coefficients, B, to be used for predicting Y from X is given by:  

B= W
* 
C´ 

B= W( P´W) 
−1

 C´ 

B= X´U(T´XX´U)
−1

T´Y 

 

W and C are obtained by assembling the w and c vectors into n× d and m× d matrices to 

solve the PLS Regression equation (Eq. D.3): 
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Y = XB + F 

 

Up to this point, the X and Y matrices have been assumed to be centered (reduced by 

subtracting the mean for each X vector), and (optionally) standardized (by dividing into 

the standard deviation).  

 

In order to express the relationship between the response variable (Y) and the predictor 

variables (X), the parameters B and residuals E and F must be restored to the original 

coordinates as follows: 

 

B* = (ΣX
-1

) B (ΣY) , 

E* = E (ΣX) ,  

ŷ= XB
*
 + (μY − μXB*)  

 

F * = F (ΣY)      

Where : 

F = Y-XB 
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D.3. Output Statistics 

The following are the main outputs from the PLS algorithm (discussed in Chapter 7): 

 

1. Proportion of variance explained by scores: This value measures the proporiton of 

variance explained (both for the predictor and repsonse varibles) by the kth factor 

and is computed as follows: 

 

 

2. Variable Importance in Projection (VIP) (for individual predictor variables).The 

Variable Importance in Projection (VIP) coefficients measure the relative 

importance of each predictor  (Xi) variable for each X factor (ti) in the prediction 

model: 

 

1≤ j ≤ n and 1 ≤ k ≤ d; w
*
jk is the jth element of w

*
(k), where w

*
(k) is the kth column of W. 

 

 



 

235 

3. Distance to the Model: This measure evaluates the ‗distance‘ of each variable to 

the model and is computed as follows: 

 
 

Where ei and fi are errors of prediction. 

For each row ei of E and fi of F, the distance to the model may be normalized as: 

 

 

4. The PRESS (Predictive Error Sum of Squares) statistic: This measure, computed 

as the sums of squares of the prediction residuals for observations not used in 

model development, is  used as another measure of model validity as a whole. 

This index is computed as follows: 

or, 

 

 

5. The Q²cum index : This index measures the global contribution of the h first 

components to the predictive quality of the model. This index is computed as : 
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Where: 

 PRESS = the Predictive Sum of Squares 

 SSE = the Sum of Squares of Error 

 

6. The coefficient of determination (R
2
): computed as a simple linear regression 

output between the actual response variables (as independent) and the predicted 

response variables (as dependent). 
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Appendix E 

Partial Least Squares (PLS) Regression Modeling Detailed Outputs (Using 

XLSTAT® Application) 

E.1. Preliminary Modeling Results 

In the preliminary modeling analysis, 12 various modeling approaches were considered 

using datasets developed in the detailed data analysis phase. Out of the 12 modeling 

approaches considered, the model for Model 8 was found to produce more sound and 

valid models. In this modeling approach, all eight independent variables, some of which 

are transformed for better correlation, were used. The transformed variables were (-Exp 

(0.6*BPN), -Exp(PV), Ln(Soundness), Exp(Binder %), AESAL^-0.4. The 

untransformed variables are (Blend Percentage, LAA and Binder Grade). Also four 

sieves that represent Percent Retained gradation and that yielded a VIP (Variable 

Importance in the Projection) value of greater than 0.8 were used. The selected sieves 

based on VIP values are – 12.5mm, 4.75mm, 0.3mm and 0.15mm. The dataset is shown 

below: 
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Table E- 1. Dataset of modified (transformed) independent variables with selected “Percent Retained” sieves (dataset for M13) 

No Terminal ESAL Blend %  -EXP (0.6*BPN) LAA Binder Grade 12.5 4.75 0.3 0.15 

1 438990 100 -1.30E+09 20 1 5 31 5 2 

2 1062723 100 -7.20E+08 18 2 9 25 4 2 

3 1558218 100 -1.80E+06 22 1 5 21 6 2 

4 2118493 65 -5.40E+05 22 1 2 39 6 4 

5 2363108 100 -6.00E+06 15 1 3 33 4 3 

6 3045205 72 -1.10E+07 18 1 0 37 6 4 

7 3208372 75 -5.40E+05 18 2 3 31 7 4 

8 3477567 75 -1.10E+07 18 1 3 39 5 4 

9 3558538 85 -3.00E+05 25 2 0 27 6 5 

10 3672489 68 -1.20E+08 14 1 0 33 8 3 

11 5810328 75 -6.00E+06 11 3 1 38 6 4 

 

Table E- 2. Dataset of modified (transformed) independent variables with selected “Percent Retained” sieves (dataset for M13.1) 

No Total ESAL Blend %  -EXP(0.6*BPN) LAA Binder Grade 12.5 4.75 0.3 0.15 

1 438990 100 -1.30E+09 20 1 5 31 5 2 

2 1062723 100 -7.20E+08 18 2 9 25 4 2 

3 1558218 100 -1.80E+06 22 1 5 21 6 2 

4 2118493 65 -5.40E+05 22 1 2 39 6 4 

6 3045205 72 -1.10E+07 18 1 0 37 6 4 

7 3208372 75 -5.40E+05 18 2 3 31 7 4 

8 3477567 75 -1.10E+07 18 1 3 39 5 4 

9 3558538 85 -3.00E+05 25 2 0 27 6 5 

10 3672489 68 -1.20E+08 14 1 0 33 8 3 

11 5810328 75 -6.00E+06 11 3 1 38 6 4 
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Table E- 3. Dataset of modified (transformed) independent variables with selected “Percent Retained” sieves (dataset for M13.2) 

No Total ESAL Blend %  -EXP(0.6*BPN) LAA Binder Grade 12.5 4.75 0.3 0.15 

1 438990 100 -1.30E+09 20 1 5 31 5 2 

2 1062723 100 -7.20E+08 18 2 9 25 4 2 

3 1558218 100 -1.80E+06 22 1 5 21 6 2 

4 2118493 65 -5.40E+05 22 1 2 39 6 4 

5 2363108 100 -6.00E+06 15 1 3 33 4 3 

6 3045205 72 -1.10E+07 18 1 0 37 6 4 

7 3208372 75 -5.40E+05 18 2 3 31 7 4 

8 3477567 75 -1.10E+07 18 1 3 39 5 4 

9 3558538 85 -3.00E+05 25 2 0 27 6 5 

11 5810328 75 -6.00E+06 11 3 1 38 6 4 

 

Table E- 4. Summary of outputs from the second PLS model validation/verification phase 

Model 

No Description 

Total 

 Ind.  

Vars. 

No  

comp. 

No of 

sieves 

Cum 

Q
2
 

Indx 

R
2
 

CumY 

R
2
 

CumX 

No. var. 

with 

VIP>0.8 

No Sieves 

 VIP>0.8 R
2
 Predicted Actual 

Residual 

(Error) 

% 

Error 
Remark 

M13.0 

Selected Modified 

Variables - selected 

sieves (Reduced 

M8 data) 

8 2 4 0.783 0.932 0.628 
7(t1); 

7(t2) 

3(t1); 

3(t2) 
0.932 N/A N/A N/A 

 

All 

Observations 

Used 

M13.1 

M13Data with 10 

observations; 

Removed Obs 5: 

TESAL=2363108) 

8 2 4 0.770 0.931 0.660 
7(t1); 

7(t2) 

3(t1); 

3(t2) 
0.931 

2467299 
2363108 -104192 4.4 

10 out of 11 

observations 

used 

M13.2 

M13Data with 10 

observations; 

Removed Obs 10: 

TESAL= 3672489 ) 

8 2 4 0.770 0.930 0.661 
7(t1); 

7(t2) 

3(t1); 

3(t2) 
0.930 3450591 3672489 221897 6.0 

10 out of 11 

observations 

used 
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E.2. Model Validation Results 

The outputs from the model development and validations steps (for the final model 

selected) are presented in the next sections.  

 

Table E- 5. Summary of outputs from the first PLS model validation/verification phase  

Model quality Indexes 

Index Comp1 Comp2 

Q² cum 0.608 0.770 

R²Y cum 0.806 0.930 

R²X cum 0.478 0.661 

 

 

 

Figure E-1: Model quality by number of components  
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Table E- 6.Components (T matrix)  

for X variables (predictors)   

Variable t1 t2 

Blend % -0.862 0.329 

-EXP(0.6*BPN) 0.716 -0.088 

LAA -0.286 -0.744 

Binder Grade 0.420 0.739 

12.5 -0.836 0.289 

4.75 0.659 -0.141 

0.3 0.615 -0.319 

0.15 0.894 -0.212 

 

Table E- 9.Weights (W*) matrix for 

original coordinates for X 

variables (predictors) 

Variable w*1 w*2 

Blend %  -0.358 0.305 

-EXP(0.6*BPN) 0.385 0.129 

LAA -0.283 -0.613 

Binder Grade 0.370 0.704 

12.5 -0.405 0.046 

4.75 0.291 -0.157 

0.3 0.253 -0.227 

0.15 0.440 -0.021 

  

Table E- 7.Weights (W) matrix for 

X variables (predictors) 

Variable 

w1 w2 

Blend % -0.358 0.392 

-EXP(0.6*BPN) 0.385 0.035 

LAA -0.283 -0.544 

Binder Grade 0.370 0.614 

12.5 -0.405 0.144 

4.75 0.291 -0.228 

0.3 0.253 -0.289 

0.15 0.440 -0.128 

 

Table E- 8.Loadings (P) matrix for 

X variables (predictors) 

Variable 

p1 p2 

Blend % -0.454 0.280 

-EXP(0.6*BPN) 0.377 -0.074 

LAA -0.150 -0.632 

Binder Grade 0.221 0.628 

12.5 -0.440 0.245 

4.75 0.347 -0.119 

0.3 0.324 -0.271 

0.15 0.471 -0.180 
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Table E- 10. Weights (C matrix) for Y variable (response) 

Variable c1 c2 

Terminal ESAL 

0.472 0.299 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table E- 12.Components (T) matrix for, for 

Y Vector (response)   

Observation t1 t2 

438990 -2.729 -0.482 

1062723 -2.692 1.445 

1558218 -1.953 -0.403 

2118493 1.039 -1.702 

2363108 -0.711 0.806 

3045205 1.344 -0.911 

3208372 1.338 0.119 

3477567 0.654 -0.611 

3558538 0.986 -0.494 

5810328 2.722 2.234 

 

Table E- 11.Components (U) matrix for, 

for Y Vector (response)   

Observation u1 u2 

438990 -3.089 -0.568 

1062723 -2.223 0.739 

1558218 -1.535 0.658 

2118493 -0.758 -2.835 

2363108 -0.418 0.463 

3045205 0.529 -1.287 

3208372 0.756 -0.919 

3477567 1.129 0.750 

3558538 1.242 0.403 

5810328 4.368 2.597 
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Table E- 13. Q
2 
values 

Q² quality index: 

 

   Component Total ESAL Total 

Comp1 
0.608 0.608 

Comp2 
0.412 0.412 

Comp3 
-0.495 -0.495 

   Cumulative Q² quality index: 

   Component Total ESAL Total 

Comp1 

0.608 0.608 

Comp2 

0.770 0.770 

Comp3 

0.656 0.656 

 

Table E- 14.Variable Importance in projection (VIP) values 

 

Variable 

VIP 

(t1) 

VIP 

(t2) 

0.15 1.243 1.165 

Binder Grade 1.047 1.163 

12.5 1.145 1.076 

Blend % 1.014 1.027 

-EXP(0.6*BPN) 1.090 1.015 

LAA 0.799 0.933 

4.75 0.824 0.802 

0.3 0.716 0.731 
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Figure E- 1.Variable Importance in projection (VIP) plots by variable (t1) 
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Figure E- 2.Variable Importance in projection (VIP) plots by variable (t2) 

 

Table E- 16. Model Parameters  

(Coefficients) 
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Variable Terminal ESAL 

Intercept 2786940.049 

Blend % -8497.057 

-EXP(0.6*BPN) 0.001 

LAA -123371.616 

Binder Grade 831645.296 

12.5 -99337.952 

4.75 21920.225 

0.3 80937.506 

0.15 285585.366 

Table E- 15.Goodness of fit statistics 

Observations 10.000 

Sum of weights 10.000 

DF 7.000 

R² 0.930 

Std. deviation 457903.548 

MSE 146772961462.001 

RMSE 383109.595 
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Table E- 17.Distance to the Model Indexes 

Observation DModX DModY 

438990 0.853 0.031 

1062723 0.505 0.253 

1558218 0.990 0.380 

2118493 0.457 0.406 

2363108 0.982 0.123 

3045205 0.421 0.135 

3208372 0.709 0.371 

3477567 0.710 0.487 

3558538 1.173 0.321 

5810328 0.328 0.130 

 

 

Figure E- 3.Predicted vs. Actual Terminal ESAL values for model (R
2
=0.93) 
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Appendix F 

Partial Least Squares (PLS) Regression Modeling Detailed Outputs (Using 

Alternative Applications) 

F.1. PLS Modeling Results using SYSTAT 13® 

Table F- 1. Dataset used in SYSTAT 

Y X1 X2 X3 X4 X5 X6 X7 X8 

438,990.00 100 -1.30E+09 20 1 5 31 5 2 

1,062,723.00 100 -720,000,000.00 18 2 9 25 4 2 

1,558,218.00 100 -1,800,000.00 22 1 5 21 6 2 

2,118,493.00 65 -540,000.00 22 1 2 39 6 4 

2,363,108.00 100 -6,000,000.00 15 1 3 33 4 3 

3,045,205.00 72 -11,000,000.00 18 1 0 37 6 4 

3,208,372.00 75 -540,000.00 18 2 3 31 7 4 

3,477,567.00 75 -11,000,000.00 18 1 3 39 5 4 

3,558,538.00 85 -300,000.00 25 2 0 27 6 5 

5,810,328.00 75 -6,000,000.00 11 3 1 38 6 4 

 

Y: Terminal ESAL at FN=32  

X1: Percentage of Material from Primary Source [Blend %] 

X2: British Pendulum Number [-exp(0.6*BPN)] 

X3: Los Angeles Abrasion Value [LAA] 

X4: Binder Grade Code [1= PG 64-22, 2=PG 70-22, 3=PG 76-22] 

X5: Percent of Aggregate Retained on 12.5mm Sieve  

X6: Percent of Aggregate Retained on 4.75mm Sieve 

X7: Percent of Aggregate Retained on 0.3mm Sieve 

X8: Percent of Aggregate Retained on 0.15mm Sieve 
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Summary of Output 

 

Dependent Variable(s):  Y  

 

Independent Variable(s): X1 X2 X3 X4 X5 X6 X7 X8  

 

Number of Observations : 10 

Number of Factors Extracted : 2 

 

The NIPALS algorithm has been used to estimate the model. 

 

Estimates of Regression Coefficients 

 ESTIMATE Standard Error 

Constant 2,786,940.049 1,178,157.533 

X1 -8,497.057 11,237.231 

X2 0.001 0.000 

X3 -123,371.616 70,512.070 

X4 831,645.296 307,966.084 

X5 -99,337.952 46,225.745 

X6 21,920.225 26,150.820 

X7 80,937.506 133,035.845 

X8 285,585.366 104,071.875 

 

Analysis of Variance for Y 

Source SS df Mean Squares F-Ratio p-Value 

Regression 1.946E+013 2 9.731E+012 46.407 0.000 

Error 1.468E+012 7 2.097E+011   
 

 

Percent Variation Explained by Factors for Predictors and Responses 

Factors  Variation Explained for 

Predictor(s) 

Variation Explained for 

Response(s) 

Percentage Cum. Percentage Percentage Cum. Percentage 

1 47.814 47.814 80.561 80.561 

2 18.331 66.145 12.426 92.987 

 

 



 

249 

 

 

Figure F- 1.Plot of scores (Components for X and Y matrices) 
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Figure F- 2.Plot of Predicted values versus residuals (errors of estimate) 
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