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Many aerospace and civil infrastructures currently in service are at or beyond their 

design service-life limit. The ability to assess and predict their state of damage is 

critical in ensuring the structural integrity of such aging structures. The empirical 

models used for crack growth prediction suffer from various uncertainties; these 

models are often based on idealized theories and simplistic assumptions and may fail 

to capture the underlying physics of the complex failure mechanisms. The other 

source of uncertainty is the scarcity of relevant material-level test data required to 

estimate the parameters of empirical models. 

To avoid in-service failure, the structures must be inspected routinely to ensure no 

damage of significant size is present in the structure. Currently, the structure has to be 

taken off line and partly disassembled to expose the critical areas for nondestructive 

inspection (NDI). This is an expensive and time-consuming process. 



  

Structural health monitoring (SHM) is an emerging research area for online 

assessment of structural integrity using appropriate NDI technology. SHM could have 

a major contribution to the structural diagnosis and prognosis. 

Empirical models, offline periodic inspections and online SHM systems can each 

provide an independent assessment of the structural integrity; in this research, a novel 

structural health management framework is proposed in which the Bayesian 

knowledge fusion technique is used to combine the information from all sources 

mentioned above in a systematic manner. 

This work focuses on monitoring fatigue crack growth in metallic structures using 

acoustic emission (AE) technology.  Fatigue crack growth tests with real-time 

acoustic emissions monitoring are conducted on CT specimens made of 7075 

aluminum. Proper filtration of the resulting AE signals reveals a log-linear 

relationship between fracture parameters (𝑑𝑎 𝑑𝑁⁄  and Δ𝐾 ) and select AE features; a 

flexible statistical model is developed to describe the relationship between these 

parameters.  

Bayesian regression technique is used to estimate the model parameters using 

experimental data. The model is then used to calculate two important quantities that 

can be used for structural health management: (a) an AE-based instantaneous damage 

severity index, and (b) an AE-based estimate of the crack size distribution at a given 

point in time, assuming a known initial crack size distribution. 

Finally, recursive Bayesian estimation is used for online integration of the structural 

health assessment information obtained from various sources mentioned above. The 

evidence used in Bayesian updating can be observed crack sizes and/or crack growth 



  

rate observations. The outcome of this approach is updated crack size distribution as 

well as updated model parameters. The model with updated parameters is then used 

for prognosis given an assumed future usage profile. 
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Chapter 1: Introduction 
 

1.1. A Hybrid Approach to Structural Health Management 

The presence of cracks can significantly reduce the strength of a structure. Large 

cracks usually form from small flaws that are initially present in the material and 

eventually grow, first as small cracks and then as large ones. Many aerospace and 

civil infrastructures currently in service are at or beyond their design fatigue service-

life limit (Wang et al. 2009); it is also expected that these structures will remain in 

service for an extended period.  

The current approaches to ensure the structural integrity of aerospace and ground 

structures as well as civil infrastructure have been successful in minimizing the risk 

of catastrophic structural failure. The mounting costs associated with such 

approaches, however, have become an ongoing concern. 

The ability to assess and predict the state of damage (i.e. crack size) is critical in 

ensuring the structural integrity of aging structures. Nondestructive inspection (NDI) 

techniques are used to inspect safety-critical structures, at scheduled intervals, to 

ensure that there are no “large” cracks in the structure. The size of the critical crack 

that endangers the safety of the structure depends on the type of structure and its 

application. 

NDI inspections, as currently performed, have some important shortcomings, some of 

which are listed below: 
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• In the way inspections are currently performed, the structure has to be taken 

off line and partly disassembled to expose the critical areas for inspection. 

This is an expensive and time-consuming process. 

• The disassembly and reassembly of the structure may itself induce new 

damages to the structure. 

• Inspection of a large number of critical locations is labor-intensive; for 

example, the lower wing in some large aircrafts can have as many as 22000 

critical fastener holes that should be inspected (Rich 1977). This process is 

subject to human error due to boredom and loss of focus. Missing even one 

hole with a large crack—undetected large cracks are often referred to as 

“rogue” cracks—can cause a catastrophic failure (Wang et al. 2008). 

• The inspection intervals must be selected such that an undetected flaw will not 

grow to critical size before the next inspection. Empirical crack growth 

models are used to predict the size of the crack based on estimated future 

usage profiles until the next inspection time. These intervals are often chosen 

very conservatively because of the uncertainties associated with the 

predictions of the empirical model as well as the sensitivity and reliability of 

the NDI technology being used. 

Structural health monitoring (SHM) is an emerging research area for online 

assessment of structural integrity using appropriate NDI technology (Giurgiutiu 

2008). Structural health monitoring systems installed on the aging infrastructures 

could insure increased safety and reliability by replacing scheduled maintenance with 

condition-based maintenance (CBM) based on the feedback from the SHM system. 
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SHM could also result in cost savings by avoiding unnecessary maintenance, on one 

hand, and preventing unscheduled maintenance on the other hand. 

Structural health monitoring could make a major contribution to structural diagnosis 

and prognosis: when SHM is performed in coordination with existing offline NDI 

practices, the structural health monitoring data collected in between current 

inspection intervals would provide supplementary information that would help 

alleviate some the problems associated with conventional offline inspection practices. 

Online SHM and offline NDI inspections can complement each other; the information 

provided by SHM in between the scheduled intervals can be used to reassess the state 

of structural health in real-time. For instance, if a rogue crack is missed during a 

routine inspection, the SHM system may be able to detect the crack (either directly or 

by detecting higher-than-expected crack growth rates) before it reaches a critical 

length. The structure can then be taken offline for more in-depth inspection.  

The empirical models used for crack growth prediction suffer from various 

uncertainties; these models are often based on idealized theories and simplistic 

assumptions and may fail to capture the underlying physics of the complex failure 

mechanisms. For example, if a damage mechanism that was not modeled, such as 

corrosion, appears in a component, then the model developed for cracks would 

incorrectly quantify the damage. 

The other source of uncertainty is the scarcity of relevant material-level test data 

required to estimate the parameters of empirical models. Using insufficient data in the 

parameter estimation process will result in wide uncertainty bounds over the 

parameters that will directly affect the model predictions. 
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The information provided by the SHM system could potentially be used to update the 

model parameters in real-time based on the feedback from the structure. For instance, 

if corrosion is present in a structure but has been ignored in modeling, the model 

parameters could be updated to reflect the higher crack growth rate due to corrosion-

fatigue cracking. The SHM system could also improve the model prediction by 

providing more accurate inputs to the model. Empirical models are highly sensitive to 

the initial crack size; at any given time, if the current damage state of the structure 

were updated via SHM information, the input to the empirical model would be 

updated, and, therefore, the predicted crack size based on estimated future usage 

profile would be more accurate as well. 

1.2. Research Objectives and Methodology 

The primary objective of this research is to provide a hybrid framework for structural 

health management that takes advantage of all available sources of information, 

including offline periodic inspections, online structural health monitoring 

information, and empirical damage progression models. 

In this research, focus will be solely on fatigue crack growth in metallic structures. 

Acoustic emission (AE) monitoring will also be used as the online NDI technique to 

monitor the crack growth. Most of the outcomes of this research and the developed 

methodology, however, are general and can be applied to other failure mechanisms 

and NDI monitoring techniques as well. 

The objectives of this research are as follows: 

1- Investigate the AE technique for fatigue crack growth monitoring: The first 

objective is to use laboratory experiments to assess the capability of this 
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technique to detect and quantify fatigue cracks in metallic structures. The next 

objective is to develop a quantitative approach to describe important fatigue 

crack growth parameters by monitoring the corresponding AE parameters.  

2- Develop a probabilistic risk measure that indicates the severity of structural 

damage due to existence of fatigue cracks, based on information from the AE 

monitoring system. 

3- Develop a probabilistic approach to estimate the crack size distribution at a 

given time, based on structural health monitoring information provided by the 

AE technique. 

4- Develop a hybrid structural health management framework based on the 

following sources of information: 

a. Empirical crack growth model 

b. Structural health monitoring 

c. Periodic NDI inspections 

This framework should include a prognosis module to predict the remaining 

useful life (RUL) and the risk associated with further use of the structure. 

In the first part of this research, the problem of monitoring fatigue crack growth using 

AE technique is investigated. The outcome of this part is a statistical model that 

correlates important crack growth parameters, i.e., crack growth rate, 𝑑𝑎 𝑑𝑁⁄ , and 

stress intensity factor range, Δ𝐾, with select AE features. 

In the second part of this research, this model will be used to calculate two important 

quantities that can be used for structural health management: (a) an AE-based 
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instantaneous damage severity index, and (b) an AE-based estimate of the crack size 

distribution at a given point in time, assuming a known initial crack size distribution.  

Finally, the outcome of the statistical model described above will be used as direct 

“evidence” in a recursive Bayesian estimation framework to update the model 

parameters as well as the estimated crack size distribution (Figure  1.1). 

 
Figure  1.1 – Overview of the proposed methodology 

1.3. Scope of this Research 

Although NDI methods and practices have advanced remarkably in recent years, there 

are still key limitations that should be addressed. When NDI is used on actual 

structures, its sensitivity and reliability is determined in part by practical issues. Field 

inspection conditions may be quite different from standard laboratory tests; for 

instance, using AE monitoring in real-life applications (e.g. onboard an aircraft) is 

more challenging than in a laboratory due to significantly lower signal to noise ratios 

(SNR) and geometric complications. 

This study recognizes the practical challenges that currently limit the application of 

AE monitoring in real-life field applications. The research objective, however, is 

twofold: (a) to propose practical ways to use AE technology in crack growth 

monitoring in a quantitative manner, and (b) to adopt the current state-of-the-art in 

AE 
Monitoring

Periodic 
Inspection

Recursive 
Bayesian 

Estimation

Updated Crack Size PDF
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AE technology and demonstrate how it can play a role as an integrated part of a 

hybrid structural health management solution.  

AE is rapidly emerging as a popular and powerful technique for structural health 

monitoring (Holford et al. 2009). As this technique becomes more mature and ready 

for fielded applications, advanced integration solutions, such as those developed in 

this dissertation, will become increasingly important. 

1.4. Outline of this Dissertation 

The remainder of this dissertation is organized into five chapters. In Chapter 2, a brief 

overview of the history and the theory of AE monitoring is first presented. Next, the 

application of AE technology for fatigue crack growth monitoring is investigated 

through laboratory experiments. 

Chapter 3 details the statistical model development and Bayesian regression 

technique. The experimental data obtained in Chapter 2 is used in this chapter to 

estimate the model parameters. 

Chapter 4 presents two practical ways for using AE monitoring in structural health 

management. 

In Chapter 5, different pieces of the hybrid structural health management framework 

developed in previous chapters are fused together in a systematic way. First, details of 

recursive Bayesian estimation are covered in this chapter. Next, the fusion problem at 

hand is formulated as a state estimation problem where AE monitoring information 

and the periodic inspection findings are treated as noisy observations and are used to 

update the crack size estimates as well as the crack growth rate estimates.    
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Chapter 6 presents suggested future research and lists the key contributions of this 

work. 
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Chapter 2: Crack Growth Monitoring using 

Acoustic Emission 
 

2.1. Overview 

This chapter will first review the history and the theory of AE monitoring. It will then 

focus on the application of the AE technique in crack growth monitoring. It will be 

shown that fatigue crack growth can be detected and characterized by monitoring the 

AE signals generated during crack growth. The experimental setup and procedure 

used to investigate the relationship between crack growth parameters and the AE 

parameters will be explained.  

This chapter provides the foundation for the remainder of this dissertation. The results 

obtained here will be used in the following chapters to develop a statistical model to 

describe the average relationship between certain crack growth parameters and AE 

features. The experimental data generated in this chapter will then be used to infer the 

parameters of such model. Once the model is fully developed, it will be used to 

calculate a number of SHM-related quantities (e.g. the probability of transitioning 

from stable crack growth to unstable crack growth as a function of applied fatigue 

cycles) solely based on AE signals captured in real-time monitoring of the structure. 

2.2. History of Acoustic Emission 

Acoustic emission as a technology started in the early 1950s with the work of Joseph 

Kaiser (Kaiser 1950). Kaiser monitored the emissions of audible sound from 

materials subjected to external loads and used electronic instrumentation to detect the 
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acoustic waves produced by metals during deformation. He and his coworkers found 

out that many metals, such as zinc, steel, aluminum, lead and copper, produce elastic 

waves under applied stress. They also discovered that acoustic emission activity was 

irreversible:  under static loading, the acoustic emissions were not generated during 

reloading until the previous stress level was exceeded. This phenomenon is now 

known as the Kaiser effect. 

In the 1960s, researchers made great improvements in the instrumentation of the 

acoustic emission technique. They tried to overcome the excessive background noise 

problem by focusing on the signals with frequencies well above the audible range. 

With this improvement, acoustic emission found its way into studies related to 

materials research, structural evaluation and nondestructive testing. 

 In the 1970s and 1980s—the decades in which most papers on AE were published—

efforts increased to understand the fundamental physics of acoustic emission. Topics 

of interest were the nature of the source event, the ways elastic waves propagate in 

metal and the ways the signals are detected using transducers. Scientists first tried to 

use the techniques from earthquake engineering to model acoustic emission sources. 

The problem was that those techniques were mainly applicable to semi-infinite 

geometries. In the case of a metal plate, the problem turned out to be much more 

complicated due to the reflections and interference of the signals. These difficulties 

discouraged scientists to some extent, but AE remained a popular qualitative NDI 

technique for industrial applications. 

The acoustic emission technique is unique among other NDI methods; AE is a 

passive technique which detects the energy generated inside the material due to 
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deformation or damage propagation. Other NDI methods, such as ultrasonic testing 

and eddy-current testing (i.e., active techniques), first supply the energy to the 

structure and then capture the material’s response.  

In recent years, breakthroughs in electronics and computer technology have created 

new possibilities for AE as a promising NDI technique. New AE measurement 

systems and analysis tools have been developed that enable us to significantly 

improve the signal to noise ratio and also extract more useful information from the 

AE signals. Nevertheless, interpreting the AE signals and establishing a correlation 

between them and the source event remains a challenge and a topic for active 

research. 

2.3. Theory of Acoustic Emission 

Over the past 30 years, acoustic emission technology has been a promising and 

effective NDI technique capable of detecting, locating and monitoring fatigue cracks 

in a variety of composite and metal structures such as airframes (Boller 2001). 

Acoustic emissions are elastic stress waves generated by a rapid release of energy 

from localized sources within a material under stress (Mix 2005). Acoustic emissions 

often originate from defect-related sources such as permanent microscopic 

deformation within the material and fatigue crack extension.  

When a load is applied to a solid structure (e.g. by internal pressure or by external 

mechanical means), it begins to deform elastically. Associated with this elastic 

deformation are changes in the structure's stress distribution and storage of elastic 

strain energy. As the load increases, some permanent microscopic deformation may 

occur, which is accompanied by a release of stored energy, partly in the form of 
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propagating elastic waves, termed acoustic emissions (Mix 2005). Such emissions can 

be detected and recorded with proper instrumentation. The recorded signals can then 

be processed to reveal information about the properties of the source event that 

generated them. This makes the AE technology an excellent candidate for 

nondestructive monitoring of structures with active damage—i.e., damage that 

continues to grow under applied stress. 

A typical AE monitoring system consists of an active emission source (e.g. defect) 

inside the material and proper AE instrumentation for signal detection and 

conditioning. The required hardware typically includes sensors, pre-amplifiers, and 

data acquisition and signal processing equipment (Figure  2.1). 

 

Figure  2.1 – A typical AE system (Huang et al. 1998)  
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Figure  2.2 – Left: Schematic view of a typical AE sensor (Huang et al. 1998), Right: 
Wideband AE sensor from Physical Acoustics Corp2

The event at the source causes a release of energy which propagates in the form of a 

transient stress wave. This wave travels through the material until it reaches the 

sensor. The small surface displacements are captured by the sensor and converted into 

electric signals. The electric signal is transmitted to the pre-amplifier and 

subsequently to the signal processing unit. Based on the analysis techniques to be 

used, certain features of the signals and/or the complete waveforms are recorded. 

. 

 
Figure  2.3 – AE burst travelling from source to sensor3

Considering the nature of the generating event, the acoustic emission waveform is 

generally considered to be a simple pulse at the source (

 

Figure  2.3) and therefore 

contains a broad spectrum of frequencies.  The frequency of the waves may range 

from tens of kHz up to tens of MHz, depending on the source (Pollock 1988; Miller 

                                                 
2 Source: http://www.pacndt.com/index.aspx?go=products&focus=/sensors/wideband.htm 
3 Source: http://www.netcomposites.com/ikb/Topics/Defects/AE Defects Acoustic Emission/AE 
Brunel Modal Schematic_small.png 
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& McIntire 1987). In general, an AE signal detected by the sensor has a complex 

waveform (Figure  2.4). The shape of the waveform depends on both the 

characteristics of the AE source event and the wave propagation path (e.g. generated 

wave modes, wave velocity, attenuation, reflections, and signal interference).  In 

addition to the wave propagation behavior, the waveform is also affected by the 

sensor response.  When a sensor receives a broadband transient pulse, it is excited at 

its own natural frequencies of oscillation, which depend on the type of sensor used in 

an application. These two effects, i.e., the material response and sensor response, can 

cause the signals received by the sensor to be significantly different from the original 

pulses emitted by the source.  

In recent years, AE research has focused on two main areas. The first area has to do 

with characterizing the wave propagation through complex geometries; due to all the 

complications described above, plus the fact that the AE source is not controlled by 

the operator, this has proved to be an extremely difficult problem. The second area of 

research is concerned with processing the AE waveforms in an intelligent way 

(depending on the application) in order to extract useful information that can be 

traced back to the source event (Holford et al. 2009). The approach in this chapter is 

in line with the second area; we first detect and isolate crack growth-related AE 

events and then attempt to establish a correlation between extracted AE features and 

fracture parameters. Figure  2.4 shows some important features that are typically 

extracted from AE signals. 
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Figure  2.4 – Important features typically extracted from AE signals4

2.4. AE Monitoring for Fatigue Crack Growth 

 

Fatigue crack growth is a well-known source of acoustic emission inside materials. If 

the crack-related AE signals (i.e. those that are directly attributed to gradual 

propagation of the crack tip) can be isolated from all other spurious sources of AE 

(e.g. friction between crack surfaces), it will be possible to use the information 

extracted from such signals to characterize the crack growth phenomenon. 

Several researchers have studied the connection between fatigue crack growth 

behavior and the resulting acoustic emissions (Hamel et al. 1981; Bassim et al. 1994). 

Certain features of acoustic emission signals are stochastically correlated with key 

fatigue parameters, such as stress intensity factor range, Δ𝐾, and crack growth rate, 

𝑑𝑎 𝑑𝑁⁄ . Two of the most commonly used AE parameters in fatigue are the AE count 

𝑐 and its derivative, count rate 𝑑𝑐 𝑑𝑁⁄ . For a given AE signal, 𝑐 is defined as the 

number of times that the signal amplitude exceeds a predefined threshold value. 

                                                 
4 Source: http://www.ndt-ed.org/EducationResources/CommunityCollege/OtherMethods/AE 
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Accordingly, 𝑑𝑐 𝑑𝑁⁄  is defined as the derivative of 𝑐 with respect to time (measured 

as elapsed fatigue cycles). 

The following form has been proposed by (Bassim et al. 1994) for the relationship 

between 𝑑𝑐 𝑑𝑁⁄  and Δ𝐾: 

𝑑𝑐
𝑑𝑁

= 𝐴1(Δ𝐾)𝐴2 (  2.1 ) 

where 𝐴1  and 𝐴2  are the model parameters, which mainly depend on material 

properties and should be determined experimentally. 

Our goal is to use the AE parameter as the predictor to estimate the fatigue parameter; 

therefore, (  2.1 ) is solved for Δ𝐾 as follows (Rabiei et al. 2009): 

Δ𝐾 = 𝐴1
−1 𝐴2⁄ �

𝑑𝑐
𝑑𝑁�

1 𝐴2⁄

 (  2.2 ) 

Taking log from both sides of (  2.2 ) yield a linear relationship: 

logΔ𝐾 = 𝛼1 log �
𝑑𝑐
𝑑𝑁�

+ 𝛼2 (  2.3 ) 

where 𝛼1 = 𝐴1
−1 𝐴2⁄  and 𝛼2 = 1 𝐴2⁄  are the new model constants to be estimated 

from data. 

The significance of (  2.3 ) is that once the model parameters are determined 

experimentally, this equation can be used to estimate Δ𝐾 by monitoring the acoustic 

emissions and extracting the 𝑑𝑐 𝑑𝑁⁄  parameter from the observed signals—thus 

obviating the need for complex modeling and calculations used in fracture mechanics 

to calculate Δ𝐾.  

Stress intensity factor is a parameter that can be considered an aggregate driving force 

for fatigue crack growth. The fracture toughness, 𝐾𝐼𝑐 , on the other hand, can be 

thought of as a measure of a material’s resistance to stable crack propagation under 
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cyclic loading (T. L. Anderson 1994). The value of Δ𝐾 depends on the geometry, 

stress amplitude and the instantaneous size of the crack. For a given geometry, a large 

Δ𝐾 represents either a large crack size and/or a high stress amplitude range applied to 

the structure. The crack growth is stable as long as 𝐾𝑚𝑎𝑥 is less than the fracture 

toughness of the material 𝐾𝐼𝑐 (Figure  2.5).  

 
Figure  2.5 – Schematic of crack growth sigmoid curve showing both stable and unstable 

crack growth regions. 

This fact will be used to define an AE-based measure of risk for transitioning from 

the stable to unstable crack growth regime and ultimately to failure. 

The second parameter that will be estimated via AE monitoring is the crack growth 

rate, 𝑑𝑎 𝑑𝑁⁄ . Based on the well-known Paris equation (Paris & Erdogan 1963) in 

fracture mechanics, 𝑑𝑎 𝑑𝑁⁄  is expected to have a log-linear relationship with Δ𝐾 

while the crack growth is in the stable region. According to (  2.3 ), Δ𝐾 itself has a 

Unstable 
Crack Growth 

Region 

Stable (linear) 
Crack Growth 

Region 
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log-linear relationship with AE parameter 𝑑𝑐 𝑑𝑁⁄ ,  which results in the following 

equation: 

log �
𝑑𝑎
𝑑𝑁�

= 𝛽1 log �
𝑑𝑐
𝑑𝑁�

+ 𝛽2 (  2.4 ) 

where 𝛽1 and 𝛽2 are the model parameters that describe the log-linear relationship 

between 𝑑𝑎 𝑑𝑁⁄  and 𝑑𝑐 𝑑𝑁⁄ . From a structural monitoring perspective, this 

relationship means that on average, the rate of crack growth can be estimated solely 

based on features extracted from AE signals. This is a significant outcome because by 

knowing the rate of the crack growth and the initial crack size, the size of the crack 

can be estimated at any given time without knowing the applied load history or 

complex Δ𝐾 calculations. This fact will be used to develop an AE-based crack growth 

model that can predict the crack size as a function of observed AE signals. The 

outcome of this model will be used as evidence in a Bayesian updating process to 

obtain improved prognosis results. 

To study the relationship between fatigue crack growth and the resulting acoustic 

emissions, a series of experiments were designed and performed in a controlled 

laboratory environment. In the next section, the experimental procedures, including 

fatigue testing, crack length measurement, AE monitoring and the required signal 

processing will be presented.  

2.5. Experimental Setup and Procedure 

In the previous section, the relationship between fatigue crack growth and the 

resulting acoustic emission signals was presented. Here we describe the experimental 

setup that was developed as part of this research to validate other findings in the 

literature (especially the proposed relationship in (  2.1 )) and also to generate the 



 

 19 
 

experimental data that was required for fitting the statistical model that will be 

introduced in the next section. 

The experimental procedure in this study consists of two parts: The first part is a 

standard fatigue crack growth test in which a notched aluminum specimen undergoes 

cyclic loading, which causes a crack to initiate from the notch and grow until fracture; 

the second part is real-time AE monitoring—on the same specimen and while the 

crack is growing—to capture the AE signals resulting from the propagation of the 

crack inside the material. 

The two parts of the experiment should run in parallel, and the results need to be 

synchronized to allow for further analysis of the correlation between the events. In the 

following section, the details of fatigue testing and the employed crack measurement 

technique are given, and next, the hardware and the techniques used for AE 

monitoring are described. 

2.5.1. Fatigue Testing  

Fatigue tests were carried out on standard compact tension (CT) specimens (ASTM 

E647-08 2008) made of 7075 aluminum alloy with dimensions W=2.5 inch and 

B=0.125 inch (see Figure  2.6 for all dimensions). The test setup is shown in 

Figure  2.7. 

Using a 5 kip MTS machine, the specimen was first fatigue pre-cracked using 

sinusoidal loading with amplitude Δ𝑃 = 270 𝑙𝑏𝑓, a min-max loading ratio 𝑅 = 0.1 

and loading frequency 𝑓 = 30 Hz. Loading cycles were applied until a fatigue crack 

of adequate length and straightness (in accordance with ASTM E647) was detected. 
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In the main crack growth test, the pre-cracked specimen was subjected to cyclic 

loading with similar settings as above with the exception of loading frequency, which 

was reduced to 10 Hz. The lower loading frequency made it easier to distinguish and 

process the AE events in post-processing of the collected data. Also, the error 

between the load command sent from the controller to the MTS machine and the 

actual load applied to the specimen (measured using the load cell on the MTS) is 

significantly bigger for higher loading frequencies. It is therefore advisable to run the 

test at lower frequencies when time allows. 

 
 

 
Figure  2.6 – Technical drawing of the CT specimen used in fatigue testing. 
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Figure  2.7 – Test setup: CT specimen instrumented with AE sensor and mounted on MTS 

machine. 

The other important consideration in crack growth testing is to make sure that the 

specimen is perfectly aligned and the applied loading is symmetric so that the 

resulting crack will grow straight.  

Crack Measurement using Digital Imaging 

Throughout the experiment, macro digital photography was used for crack size 

measurement. In this approach, high resolution pictures of the specimen (with a 

scribed ruler attached to it) were automatically taken using a Digital Single-Lens 



 

 22 
 

Reflex (DSLR) camera controlled by a computer (time-lapse photography technique). 

The complete setup is shown in Figure  2.8. 

 
Figure  2.8 – Test setup for crack measurement using digital photography. 

The time delay between taking pictures was set manually based on the rate of the 

crack growth; at the beginning of the test, pictures were taken every hundred cycles, 

whereas by the end of the test (as the crack growth rate increases) picture were taken 

every few cycles.  

All the images are named based on the timestamp of when they were taken and stored 

on the computer for further processing. At the end of the experiment, all stored 
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images were post-processed in order to extract the length of the crack visible in each 

image. 

As can be seen in Figure  2.9 (top), it was not very easy to pinpoint the tip of the crack 

in the resulting images. Therefore as the first step, all images were enhanced using the 

Image Processing Toolbox in MATLAB to make the crack tip in the images easier to 

distinguish. Using the Image Processing Toolbox, all images were first cropped such 

that only the crack and the ruler are visible in the image. Next, a combination of 

sharpening and edge detection filters were applied to the images. In the resulting 

image (Figure  2.9 (bottom)) the crack trajectory stands out from the background, and 

therefore it is much easier to pinpoint its tip and measure the length of the crack. 

Once the tip of the crack was identified, the pixels in image were calibrated with 

respect to the ruler attached to the specimen. Taking advantage of the calibrated high-

resolution images, the crack length could be measured with an accuracy of 0.01 inch. 

To perform the calibration and measure the size of the crack, we used a public 

domain Java-based image processing program called ImageJ5

Table  2.1

. ImageJ was developed 

at the National Institute of Health and is routinely used in biological image processing 

research applications. Using the software, the length and the angle at which the crack 

grew was easily recorded for each image.  shows an example of the crack 

measurement output from ImageJ. 

                                                 
5 ImageJ can be downloaded at no charge from http://rsb.info.nih.gov/ij/  
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Figure  2.9 – Enhancing images via proper filtration for better detection of crack tip (Top: 

original, Bottom: filtered) 
 

Table  2.1 – Example of crack measurement output from ImageJ 

Measurement 
# 

Label (time 
stamp) Angle Length 

(inch) 
1 13-27-24.jpg 172.6 0.08 
2 13-29-25.jpg 171.8 0.08 
3 13-31-25.jpg 173.2 0.09 
4 13-33-25.jpg 173.5 0.10 
5 13-35-26.jpg 174.3 0.10 
6 13-37-26.jpg 174.8 0.11 
7 13-39-26.jpg 174.9 0.11 
8 13-41-26.jpg 175.2 0.12 
9 13-43-27.jpg 175.6 0.13 
10 13-45-27.jpg 176.2 0.14 

 

One advantage of this approach over other crack measurement techniques such as 

DCPD is that by taking pictures, the whole process of crack growth is captured in 

images and can be reviewed later if needed. For instance, a sudden change in AE 

activity may be attributed to a big jump in crack length or a sudden change in growth 

direction of the crack; it will be captured in images but lost in most other crack 

Crack Tip 
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measurement techniques. The approach also makes it possible to monitor the 

orientation of crack growth and make any necessary corrections to the crack size if 

the crack grows at an angle. 

2.5.2. Acoustic Emission Monitoring 

As mentioned before, the goal of the experiment was to record the AE signals 

generated by fatigue crack growth. To do so, we used a PCI-2 AE monitoring system 

supplied by Physical Acoustic Corporations6

The AE monitoring system consists of three main parts: Sensors and amplifiers to 

collect and amplify the signals, a data acquisition module to perform front-end 

filtration and record the signals, and a software module to visualize the data and to 

perform the required analysis such as feature extraction and source location. In this 

experiment the crack location was assumed to be known, and no triangulation was 

necessary to locate the source of the signals; therefore, one sensor was enough to 

capture the signals.  

 to monitor the CT specimen during the 

crack growth test described previously. 

The selection of the proper sensor for an application is the most important step 

towards successful AE monitoring. A large variety of sensors is available that can be 

used for AE monitoring in different applications. These sensors come in various sizes, 

shapes, frequency and temperature ranges, and packaging styles to meet the 

requirements of different applications and environments. For these experiments, we 

selected a high fidelity wide-band sensor manufactured by Physical Acoustics (model 

                                                 
6 http://www.pacndt.com  



 

 26 
 

WD). Table  2.2 shows the specifications of the available wideband sensors, including 

the selected WD model. 

Table  2.2 – Specifications of wide-band sensor supplied by Physical Acoustics7

Model 

 

Dimensions  
(dia x ht) mm 

Weight 
(grams) 

Operating 
Temperature 

(ºC) 

Peak 
Sensitivity 

V/(m/s)  
[V/µbar] (dB) 

Operating 
Frequency 

Range 
(kHz) 

D9202B 18 x 17  ** -65 to 125 55+ [-53]* 400 - 700 

D9203B 18 x 17  ** -65 to 125 65+ [-60]* 150 - 900 

S9208 25 x 25  90 -54 to 121 45+ [-85]* 200 - 1000 

UT-1000 18 x 17  20 -65 to 177 64+ [-73]* 100 - 950 

WD 18 x 17  ** -65 to 177 55+ [-62.5]* 100 - 900 

WDI 29 x 30  70 -35 to 75 96+ [-25]* 200 - 900 

WSa 19 x 21  32 -65 to 175 55+ [-62]* 100 - 1000 

Notes: 
+ Denotes response to surface waves (angle of incidence transverse or parallel to face of 
sensor). 
* Denotes response to plane waves (angle of incidence normal to face of sensor).  
** Sensor supplied with integral cable. Weight of sensor is not available. 

 
An essential requirement in mounting a sensor is sufficient acoustic coupling between 

the sensor and the surface of the structure. To increase the acoustic coupling, we used 

silicone grease as the coupling agent. It was important to make sure that the sensor's 

surface was smooth and clean, allowing for maximum couplant adhesion. The applied 

layer of couplant was also made as thin as possible while making sure that it filled the 

gaps caused by surface roughness to ensure good acoustic transmission. The sensor 

was held firmly to the testing surface at all times. To do so, custom-made C-clamps 

of the right size were used to hold the sensor firmly on the surface of the CT 

specimen during the experiment. (see Figure  2.10) 
                                                 
7 Table adopted from Physical Acoustics website at: 
http://www.pacndt.com/index.aspx?go=products&focus=sensors.htm 
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Figure  2.10 – Standard CT specimen with mounted AE sensor 

Captured AE signals were first amplified using a 40 dB amplifier. Next, a 200 kHz 

high-pass filter was used to filter out the extraneous noise mostly from the MTS 

machine. Signals with amplitudes exceeding a threshold of 45 dB were transferred to 

a computer for feature extraction. The PCI-2 hardware was controlled via AEWin 

software. Many parameters were set in the software before starting data acquisition; a 

list of key parameters and their selected values in our experiment is given in 

Table  2.3. 

Table  2.3 – AE Hardware settings 

Parameter Value 
Preamplifier 40 dB 
Peak Definition Time (PDT) 300 µs 
Hit Definition Time (HDT) 500 µs 
Hit Lock Time (HLT) 1000 µs 
Threshold 45 dB 
Sampling rate 5 MSPS 
Pre-trigger length 100 µs 
Hit length 614 µs 
Analogue Filter (high-pass) 200 kHz 
Analogue Filter (low-pass) 3 MHz 

 
AE sensor 

Fatigue crack 

 CT specimen 

Loading Grips 
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The recording of a waveform was triggered based on the selected threshold value, 

while the end point of a single AE hit was defined based on the parameters PDT, 

HDT and HLT (Figure  2.11). In other words, the end limit of each individual AE hit 

was defined by setting these parameters in a rather subjective manner. The proper 

values for these parameters are usually selected based on the specific application, 

using wave propagation formulae as well as trial and error using known sources of 

AE (such as pencil lead break). In our experiments, we consulted the experts at 

Physical Acoustics for proper values of these parameters based on their past 

experience. 

 
Figure  2.11 – A typical AE signal generated during fatigue crack growth 

The AEWin software is capable of calculating various parameters (features) from the 

recorded AE signals. These features are often used to distinguish the AE signals 

based on their source event and are also useful in establishing correlations between 

AE events and other quantities of interest such as crack growth rate. Important time 

domain AE features include: AE hit time, AE count, amplitude, duration, energy and 
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the value of applied load when the AE hit was received. In the frequency domain, 

peak frequency and frequency centroid (a measure of average frequency) of the signal 

are the recorded features. In addition to the extracted features, the system also records 

full waveforms of the AE signals, which can be used for further offline processing. 

2.5.3. Noise Filtration 

Signals recorded during AE monitoring are often buried in noise from numerous 

sources. The source of the noise can be both internal (e.g., surface rubbing at loading 

pins, internal rubbing of crack surfaces) and external (e.g., noise from the hydraulic 

loading actuators).  

The most crucial step in AE monitoring is to distinguish the AE signals originating 

from the source event of interest (e.g. crack tip) from extraneous noises. Researchers 

have proposed various de-noising techniques for AE signals due to crack growth 

(Fang & Berkovits 1993; Berkovits & Fang 1995). In these techniques, certain 

incoming signals are labeled as noise based on the value of some of their features. It 

is suggested in literature (Roberts & Talebzadeh 2003; Morton et al. 1973) that in 

fatigue crack growth, only events occurring near the maximum load in a cycle are 

associated directly with crack extension. This can be justified by the fact that the 

crack is much more likely to grow while the applied load is close to its maximum, 

and therefore the AE signals in that region are more likely to have been generated due 

to crack growth. In this study, the AE events occurring within the top 30% of the peak 

load were chosen as potential crack growth-related AE events.  

The other filtration technique that was used to distinguish crack growth-related AE 

signals was based on the assumption that events occurring during the loading portion 
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of a cycle are more likely to be crack-related than those occurring during the 

unloading portion of the cycle.  

AE features in frequency domain are also useful for blocking out unwanted signals. 

For instance, the hydraulic system of the MTS machine generates AE-like signals that 

can be filtered out based on their low frequency content. A typical crack-related AE 

signal is usually in the range above 200 kHz, whereas the MTS noise has lower 

frequency content. In our tests a 200 kHz high-pass filter was used to filter out the 

MTS noise. The optimal filtration threshold was determined experimentally by trial 

and error.  

In order to make the filtration process easier and to make it possible to try other filters 

based on other AE features, a MATLAB GUI named AE-Discovery was developed 

(Figure  2.12). 

 
Figure  2.12 – AE Discovery GUI screenshot 

(1) 

(2) 

(3) 

(4) 
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The AE Discovery GUI consists of four sections: In section 1, a filter is defined by 

setting threshold values for different AE features and also selecting the type of the 

filter (i.e. high-pass or low-pass). There is also an option to filter out signals if they 

have been generated in the unloading portion of a cycle. 

The result of applying the selected filter to the recorded AE signals is then plotted. In 

section 2, the load value and the cycle at which the AE hits are received are plotted. 

In sections 3 and 4, the correlation between AE feature, log𝑑𝑐 𝑑𝑁⁄ , and crack growth 

features logΔ𝐾 and log𝑑𝑎 𝑑𝑁⁄  are plotted. 

As mentioned previously, the AE feature log𝑑𝑐 𝑑𝑁⁄  is expected to have a linear 

correlation with both fatigue parameters logΔ𝐾  and log𝑑𝑎 𝑑𝑁⁄ . This correlation 

cannot be seen unless the data is properly filtered so that we have reasonable 

confidence that the calculated features are in fact based on crack-induced AE signals. 

In this study, using the AE Discovery GUI, we selected a filter that resulted in high 

linear correlation between the aforementioned parameters.  The selected thresholds 

and the type of the applied filters were consistent with recommendations previously 

cited from the literature.  

2.5.4. Results and Discussion 

The results from the experiment are presented in this section. In Figure  2.13, a short, 

two-second snapshot of the test is given showing the applied load for 20 cycles (blue 

line). The figure also shows the AE hits received in that short interval (red star). The 

AE hits can be categorized in three groups based on their corresponding load values. 

The AE hits in the first group have a load value close to the maximum, and as 

discussed before, are more likely to be from a crack growth-related event. The AE 
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hits in group 2 are more likely to have been caused by crack closure events because 

their load values show that these events occurred in the middle of the cycle and 

during the unloading portion of it (when the crack surfaces touch each other to close). 

The AE events in group 3 are most likely due to the noise generated by the crack 

surfaces rubbing on each other at the end of each cycle (Talebzadeh & Roberts 2001). 

 
Figure  2.13 – Snapshot of 20 loading cycles along with corresponding AE hits 

In Figure  2.14, the AE hits received during a complete crack growth test are 

presented. The red crosses are the hits during the loading portion of the cycle, 

whereas the blue dots represent the hits during the unloading portion of the cycle. It is 

obvious from this figure that in fact the majority of the AE hits happened during 

unloading and therefore can be considered as noise. The red points in this plot seem 

to belong to two distinct groups based on their load values: the ones with higher load 

(1) 

(2) 

(3) 
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values are consistent with the conclusion from Figure  2.13 and are most likely related 

to crack growth; the hits with load values close to the minimum are harder to 

categorize as loading or unloading hits and are most likely from noise. 

 
Figure  2.14 – AE hits from fatigue testing filtered based on hit type (loading / unloading) 

Figure  2.15 shows the AE hits captured during the same experiment but this time 

filtered based on their peak frequency values; AE hits with peak frequency value less 

than 250 kHz are shown here. A comparison of Figure  2.15 with Figure  2.14 shows 

that the AE hits categorized as noise according to Figure  2.14 are in fact the ones with 

the lowest peak frequency values. This is consistent with the fact that crack growth-

related AE hits are often very high-frequency signals. 
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Figure  2.15 – AE hits from fatigue testing filtered based on peak frequency 

Once proper filtration has been applied to the signals, the correlation between AE and 

crack growth parameters can be seen. In Figure  2.16, both the crack size and the 

cumulative AE count rate are plotted against elapsed cycles on the left-hand side. The 

graph on the right-hand side shows that the increasing trend in crack size has a linear 

relationship with the cumulative AE count rate (on a log scale) for cracks larger than 

0.6 inches. This means that in theory, the crack size can be measured by monitoring 

the cumulative AE count rate, if the relationship between the two is fully 

characterized and modeled. 
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Figure  2.16 – Cumulative AE count rate versus crack size 

Another way to explore the correlation between AE and crack growth parameters is 

by considering their derivatives. Figure  2.17 shows the correlation between the AE 

parameter, 𝑑𝑐 𝑑𝑁⁄ , and the fatigue parameter, 𝑑𝑎 𝑑𝑁⁄ , on a log-log scale. These are 

the same data shown in Figure  2.16 but presented here in terms of derivatives. It is 

evident from this figure that these two parameters are (on average) linearly correlated 

with each other.  

Since the physical interpretation of the AE parameter 𝑑𝑐 𝑑𝑁⁄  has minimal 

significance, the values of log𝑑𝑐 𝑑𝑁⁄  were normalized (between 0 and 100) before 

plotting throughout this dissertation. 
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Figure  2.17 – The linear correlation observed between crack growth rate and AE count rate 

resulting from fatigue crack growth. 

As discussed before, a similar correlation is expected between the AE count rate and 

the stress intensity factor range, Δ𝐾. Using the same experimental data as above, the 

relation between these two parameters is depicted in Figure  2.18. 

 
Figure  2.18 – The linear correlation observed between Δ𝐾 and AE count rate resulting from 

fatigue crack growth. 



 

 37 
 

Figure  2.19 shows that there is no evident correlation between these parameters 

before appropriate filtration, since the calculated AE parameters in that case are 

contaminated with noise and do not represent actual crack growth-related events. 

 
Figure  2.19 – Scatter plot of Δ𝐾 versus AE count rate data points before filtration. 

The dataset collected using the experimental procedure described in this section will 

be used in the remainder of this dissertation to build a statistical model that can be 

used for AE-based structural health management. 

2.6. Summary 

In this chapter, the application of the AE technique in crack growth monitoring was 

presented. It was shown through experiment that fatigue crack growth can be detected 

and characterized by monitoring the AE signals generated during crack growth.  

Details of the experimental setup and procedure were explained; specifically, the 

processes for identifying extraneous AE noise as well as effective filtration 

techniques were presented. The results obtained in this chapter suggest that features 
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extracted from properly filtered AE signals can be correlated with fracture parameters 

and can therefore be used to develop an AE-based SHM solution for crack growth 

monitoring. 
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Chapter 3: Statistical Model Development 
 

3.1. Overview 

It was shown previously that on average, a log-linear relationship can be assumed 

between fracture parameters (𝑑𝑎 𝑑𝑁⁄ or Δ𝐾) and AE parameter (𝑑𝑐 𝑑𝑁⁄ ). In this 

chapter, a statistical model is developed to describe the relationship between these 

parameters. Next, the Bayesian parameter estimation technique is used to infer the 

unknown model parameters based on the experimental data obtained in previous 

chapter. 

3.2. Model development 

In statistics, regression analysis is used for modeling and analyzing random variables 

when the focus is on the relationship between a dependent variable 𝑌 and one or more 

independent variables 𝑋. Here 𝑋 represents 𝑑𝑐 𝑑𝑁⁄  as the independent variable, and 𝑌 

represents either 𝑑𝑎 𝑑𝑁⁄ or Δ𝐾 as the dependent variable that we are interested in 

estimating. 

Regression analysis estimates the conditional expectation of the dependent variable 

given the independent variable — that is, the average value of the dependent variable 

when the independent variable is fixed. This is usually formalized as  

𝐸(𝑌|𝑋) = 𝜙(𝑋;Θ) (  3.1 ) 

where 𝜙(∙)  is known as the regression function parameterized by vector of 

parameters Θ. 
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Another way of looking at this problem is to partition the dependent variable 𝑌 into a 

deterministic component given by function 𝜙(∙) of the independent variable 𝑋, plus a 

random component, 𝜖, that follows a particular probability distribution. That is, 

𝑌 = 𝜙(𝑋;Θ) + 𝜖 (  3.2 ) 

The addition of the random term makes the above relationship a statistical model, 

meaning that the functional relationship between the response variable 𝑌  and the 

predictor variable 𝑋 holds only in an average sense, not for every data point.  

The random error is the difference between the observed data and the prediction of 

the mathematical function at a given 𝑋, conditioned on the set of parameters Θ. The 

error is an unobserved random variable that is assumed to follow a particular 

probability distribution which describes its aggregate behavior. The probability 

distribution of an (un-biased) error term has a mean of zero and an unknown standard 

deviation 𝜎 that should be estimated (along with the rest of model parameters) based 

on observed data.  

To carry out regression analysis, the form of the function 𝜙 must be specified. The 

general form of the regression function is either known ahead of time (e.g., based on 

the underlying physics of the phenomenon being modeled) or should be identified and 

verified using available data.  

Based on the findings from previous sections (our experimental results along with 

findings of other researchers as cited), it seems reasonable to assume a linear form for 

the regression function 𝜙(∙)  where Θ = (𝛼1,𝛼2)  when 𝑌 represents Δ𝐾  and 

Θ = (𝛽1,𝛽2) when 𝑌 represents 𝑑𝑎 𝑑𝑁⁄ . 
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To complete the model, the error term 𝜖 must be fully specified as well. Here we 

adopt the classic regression assumption that the errors are independent and 

identically-distributed (i.i.d.) random variables and follow a normal probability 

distribution: 

𝜖 ~ 𝑁(0,σ) (  3.3 ) 

The mean of the error distribution is zero, and its standard deviation is the unknown 

quantity parameter 𝜎. 

Another classic assumption in regression analysis is that the error has a constant 

variance for all observations regardless of the value of independent variable 𝑋.  

This assumption, however, does not hold in all cases8

One way to account for this effect is to release the constant variance assumption and 

allow 𝜎 to change as a function of the independent variable 𝑋. This will result in a 

flexible model that can capture any change in the error distribution based on the 

available data. Here, we choose a flexible two-parameter exponential relationship to 

capture the potential trend in 𝜎, 

; it is reasonable to assume that 

a small crack is harder to measure, and as the crack becomes larger, the measurement 

of its length becomes more accurate. Accordingly, the 𝑑𝑎 𝑑𝑁⁄  and Δ𝐾  values 

associated with data points coming from smaller cracks could be less accurate than 

those from larger cracks. 

𝜎 = 𝛾1exp (𝛾2𝑋) (  3.4 ) 

                                                 
8  A classic example where the assumption of constant variance does not hold is income versus 
expenditure on meals. A poorer person tends to spend a small and rather constant amount of money on 
food, whereas a wealthier person may occasionally buy inexpensive food and at other times eat 
expensive meals. 
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This function can capture both increasing and decreasing trends of 𝜎 for positive and 

negative values of 𝛾2, respectively. It also reduces to the standard constant variance 

case if 𝛾2 is equal to zero. It is important to note that it is not necessary to have any 

prior knowledge about the trend of 𝜎 ; 𝛾1 and 𝛾2  are in fact treated as additional 

unknown parameters and will be estimated using the observed data. 

Once the model is developed, the next step is to use experimental data to estimate its 

unknown parameters. This will be presented in the following section. 

3.3. Bayesian Parameter Estimation 

In this section the experimental data obtained in the previous section will be used to 

find the unknown parameters of the statistical model. Numerous procedures have 

been developed for parameter estimation and inference in linear regression. These 

methods differ in computational simplicity of algorithms, presence of a closed-form 

solution, robustness and theoretical assumptions. In this dissertation, we adopt a 

Bayesian approach to parameter estimation often referred to as Bayesian regression.  

Rather than relying solely on the best estimate of the parameters and the 

corresponding confidence intervals, as is the common practice when using Maximum 

Likelihood Estimation (MLE) and traditional regression techniques, in Bayesian 

estimation the model parameters are treated as unknown random variables and their 

uncertainty is characterized by calculating their joint probability distribution. By 

doing so, the available information in the scatter of the data is preserved in the 

resulting posterior probability distribution over the model parameters.  

In addition, the Bayesian inference technique provides a framework for incorporating 

any additional sources of knowledge that may be available about the parameters 
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(Figure  3.1). Possible sources of such information include past experiments, 

handbook data and expert judgment (Azarkhail and Modarres, 2007).  

 
Figure  3.1 – Bayesian Inference Framework 

In Bayesian inference, the initial belief about the distribution of the parameters (a 

priori distribution) is systematically updated according to Bayes' theorem (  3.5 ), 

based on some kind of evidence or available observations. 

𝑝(Θ|𝐷) =
𝑝(𝐷|Θ)𝑝(Θ)

𝑝(𝐷)
 (  3.5 ) 

The terms in Bayes' theorem are defined as follows: 

• Θ is the vector of model parameters to be estimated. In the current problem, 

Θ = {𝛼1,𝛼2, 𝛾1, 𝛾2}. 

• 𝑝(Θ) is the a priori distribution of model parameters. 

• 𝐷 denotes the set observations to be used in the updating process. Here our 

observations consist of 𝑛 data points obtained from experiments such that 

𝐷 = {(𝑥𝑖 ,𝑦𝑖)| 𝑥𝑖 = log(𝑑𝑐 𝑑𝑁⁄ )𝑖 ,𝑦𝑖 = logΔ𝐾𝑖}𝑖=1𝑛  

• 𝑝(𝐷) is the marginal probability of 𝐷, and acts as a normalizing constant. 

• 𝑝(𝐷|Θ) is referred to as the likelihood function, as it describes the conditional 

probability (likelihood) of observed data given the model parameters. 

• 𝑝(Θ|𝐷) is the a posteriori probability of the model parameters given the 

observations.  

Model

Data

Likelihood
P (Data | Θ)

Prior
P (Θ)

Bayesian 
Inference

Posterior
P (Θ | Data)
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To obtain the posterior distribution, 𝑝(Θ|𝐷), the initial belief about the distribution of 

model parameters, 𝑝(Θ), is updated according to the likelihood of the new observed 

data, 𝑝(𝐷|Θ), and then normalized based on the marginal distribution of data, 𝑝(𝐷). 

3.3.1. The Likelihood Function 

The likelihood function is defined based on the model that was developed in the 

previous section. This model is a linear regression function with flexible variance that 

is defined in the following form: 

𝑌 = 𝛼1𝑋 + 𝛼2 + 𝜖 

where 

𝜖 ~𝑁(0,σ), 

𝜎 = 𝛾1exp (𝛾2𝑋) 

(  3.6 ) 

All variables are defined as in (  3.2 ) - (  3.4 ). The results presented here are for the 

case where 𝑌 represents Δ𝐾 and 𝑋 represents 𝑑𝑐 𝑑𝑁⁄ . A similar estimation process 

can be used for the 𝑑𝑎 𝑑𝑁⁄  versus 𝑑𝑐 𝑑𝑁⁄  data as well. 

In the Bayesian approach to regression, the degree of fitness of the model to the data 

is represented in terms of the probability of occurrence or likelihood of the data given 

the model parameters – a larger value of the likelihood function shows a better fit of 

the model to the data.  

To define the likelihood function, a mathematical relationship is needed that defines 

the probability of observing every observed data point assuming a model structure 

according to (  3.6 ) and based on the set of parameters Θ = {𝛼1,𝛼2, 𝛾1, 𝛾2}.  

The likelihood can be defined based on the distribution of the error term, 𝜖. To do so, 

the error 𝜖𝑖 = 𝑦𝑖 − (𝛼1𝑥𝑖 + 𝛼2) for every data point (𝑥𝑖 ,𝑦𝑖) is calculated. Next, the 

likelihood of each data point can be defined according to 𝜖𝑖 ~ 𝑁(0, 𝛾1exp (𝛾2𝑥𝑖)). 
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An equivalent way of defining the likelihood function is to assume that the dependent 

variable has a normal distribution where both its mean and standard deviation are 

defined as functions of the dependent variable, 𝑋. That is, for every data point (𝑥𝑖 , 𝑦𝑖) 

we have, 

𝑦𝑖 ~ 𝑁(μi,σi) 

𝜇𝑖 = 𝛼1𝑥𝑖 + 𝛼2 

𝜎𝑖 = 𝛾1exp (𝛾2𝑥𝑖) 

(  3.7 ) 

This can be written explicitly as, 

𝑝(𝐷|𝛼1,𝛼2, 𝛾1, 𝛾2) = �
1

√2𝜋𝜎
exp�−1

2 �
𝑦𝑖 − (𝛼1𝑥𝑖 + 𝛼2)
𝛾1exp (𝛾2𝑥𝑖)

��
𝑛

𝑖=1

 (  3.8 ) 

The likelihood (  3.8 ) is based on the assumption that the data points are independent 

and therefore the likelihood for dataset 𝐷  is simply the multiplication of the 

likelihood function for every data point (𝑥𝑖 , 𝑦𝑖). 

3.3.2. Defining the a priori Distribution 

The next term in (  3.5 ) that needs to be defined is the prior distribution over the 

parameters, 𝑝(Θ). This study began with no past experience, and therefore no prior 

information about the distribution of parameters was available. Therefore non-

informative (uniform) prior distributions for all parameters 𝛼1,𝛼2, 𝛾1 and 𝛾2  were 

chosen. 

An informative prior distribution can be used instead if additional information such as 

similar test results or prior estimates of the model parameters become available; this 

will affect the posterior distribution of parameters accordingly. When uniform priors 

are used for the parameters, both Bayesian and MLE approaches will result in the 

same best estimate for the parameters, but the coverage of the uncertainty over the 
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parameters could be different. The uncertainty bounds in MLE are estimated using 

the Fisher information matrix with the underlying assumption of normal distribution 

for the parameters, whereas in the Bayesian approach the uncertainty bounds are 

derived from the posterior joint distribution of the parameters. 

3.3.3. Calculation of the a posteriori Distribution 

So far the likelihood function and the prior distribution of the parameters have been 

defined; the only other term in (  3.5 ) that remains to be defined is 𝑝(𝐷). As stated 

before, the denominator in Bayes' theorem is the marginal distribution of data, which 

acts as a normalization factor to make sure that the posterior function is in fact a 

probability density function and its integral is equal to 1. Therefore 𝑝(𝐷) can be 

written as, 

𝑝(𝐷) = �𝑝(𝐷|Θ)𝑝(Θ)𝑑Θ (  3.9 ) 

The integration in (  3.9 ) is in fact a four-dimensional integral since 

Θ = {𝛼1,𝛼2, 𝛾1, 𝛾2}. 

For complex likelihood functions with a large number of parameters it may be very 

difficult and sometimes impossible to calculate such integrals analytically. Therefore 

in practice, numerical approaches such as Monte Carlo-based methods are used to 

calculate these multidimensional integrals. 

For this dissertation, WinBUGS software (Cowles 2004) was used to obtain the 

posterior distribution. WinBUGS is a software package for Bayesian analysis of 

complex statistical models using Markov chain Monte Carlo (MCMC) methods.   

Monte Carlo methods are a class of computational algorithms that rely on repeated 

random sampling to compute their results. One of the typical applications of Monte 
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Carlo methods is numerical calculation of multi-dimensional integrals. MCMC 

methods are a class of algorithms for sampling from probability distributions based 

on constructing a Markov chain that has the desired distribution as its equilibrium 

distribution. The state of the chain after a large number of steps is used as a sample 

from the desired distribution. 

To use WinBUGS for parameter estimation, the user should provide a model file as 

well as a data file. The model file contains the definition of the likelihood function as 

well as the prior distribution over the parameters. Other than defining the model using 

text statements, the user can also use the internal graphical interface called 

DoodleBUGS to define the model graphically via Directed Acyclic Graphs (DAG). In 

a DAG, stochastic nodes (representing a random variable) are shown as ellipses, and 

constant and logical nodes are shown as squares. The arrows that connect the 

different nodes together define the structure of the model. Figure  3.2 shows the DAG 

of the model in (  3.7 ) created in WinBUGS.  

for(i IN 1 : Nsample) gamma2

gamma1

alpha2

sigma[i]

X[i]

alpha1

Y[i]

mu[i]

 
Figure  3.2 – Directed Acyclic Graphs (DAG) of the model in (  3.7 ) created via 

DoodleBUGS. 
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After defining the model, the user must also provide a data file that contains all the 

data points used to fit the model and estimate the unknown parameters. The next step 

is to identify and select the unknown parameters to be estimated through the MCMC 

simulation. Once the model and data are specified, WinBUGS automatically selects 

and implements the appropriate sampling algorithms for the selected unknown model 

parameters. 

The latest version of WinBUGS is version 1.4.3, released in August 2007. Further 

development is now focused on OpenBUGS, an open source version of the package. 

Interested readers can refer to (Ntzoufras 2009) for a good reference on Bayesian 

modeling using WinBUGS. For further reading on MCMC methods in general, see 

(Hastings 1970; Gilks et al. 1996; Gelman et al. 2003; Gamerman & Lopes 2006).  

3.3.4. Posterior Predictive Distribution 

Once the posterior distribution 𝑝(Θ|𝐷)  is calculated, the inference process is 

complete. The next step is to use the developed model (with known joint distribution 

of model parameters) for prediction purposes using unobserved data. In other words, 

the model (with posterior parameters) will be used to calculate the distribution of 

dependent variable 𝑌 for a given input 𝑋. 

The posterior predictive distribution is the distribution of unobserved observations 

(prediction) conditional on the observed data. Let 𝐷 be the observed data, Θ be the 

vector of parameters, and 𝐷𝑝𝑟𝑒𝑑  be the unobserved data; the posterior predictive 

distribution is defined as follows, 

 



 

 49 
 

𝑝�𝐷𝑝𝑟𝑒𝑑|𝐷� = �𝑝�𝐷𝑝𝑟𝑒𝑑 ,Θ�𝐷�𝑑Θ 

= �𝑝�𝐷𝑝𝑟𝑒𝑑�Θ,𝐷�𝑝(Θ|𝐷)𝑑Θ 
(  3.10 ) 

Assuming that given Θ  the observed and unobserved data are conditionally 

independent, (  3.10 ) can be further simplified as, 

𝑝�𝐷𝑝𝑟𝑒𝑑|𝐷� = �𝑝�𝐷𝑝𝑟𝑒𝑑�Θ�𝑝(Θ|𝐷)𝑑Θ (  3.11 ) 

So based on (  3.11 ), the posterior predictive distribution is an integral of the 

likelihood function 𝑝�𝐷𝑝𝑟𝑒𝑑�Θ�  with respect to the posterior distribution 𝑝(Θ|𝐷) . 

Note that again, we are dealing with a multi-dimensional integral that should be 

calculated numerically. The same MCMC procedure described above can be used to 

generate samples from the posterior predictive distribution based on draws from the 

posterior distribution of Θ. 

3.3.5.  Results and Discussion 

In this section, the parameter estimation results are presented as well as the calculated 

predictive distribution that will later be used for prediction. 

The results presented here are calculated via the MCMC procedure described above 

using WinBUGS. To facilitate the calculations, the problem was set up such that the 

data preprocessing was done in MATLAB first, after which WinBUGS was called as 

a standalone engine to perform the MCMC simulation. The simulation result was then 

passed into MATLAB for further processing and plotting. The model file was 

manually created as separate text file, whereas the data file was generated 

automatically using MATLAB for a given dataset. Both files were passed to 
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WinBUGS before running. The interface between MATLAB and WinBUGS was 

facilitated by MATBUGS9

The first dataset used for parameter estimation was the Δ𝐾  versus 𝑑𝑐 𝑑𝑁⁄  data 

obtained from the experiment, i.e., 𝐷 = {(𝑥𝑖 , 𝑦𝑖)| 𝑥𝑖 = log(𝑑𝑐 𝑑𝑁⁄ )𝑖 , 𝑦𝑖 =

logΔ𝐾𝑖}𝑖=1𝑛 . (𝑥𝑖 values are normalized as described in 

.  

 Chapter 2: 2.5.4) 

The output of the MCMC procedure is samples from the posterior joint distribution of  

Θ = {𝛼1,𝛼2, 𝛾1, 𝛾2} , which is a four-dimensional distribution. To plot this 

distribution, the variables that are correlated with each other are grouped, and their 

2D joint PDF is plotted. 

Figure  3.3 shows the posterior distribution of parameters 𝛼1 and 𝛼2. The contour plot 

of the joint PDF (bottom) shows that these two parameters are highly correlated 

(Correlation coefficient10 Figure  3.4 𝜌 = −0.88). Similar results are presented in  for 

the parameters 𝛾1  and 𝛾2 . These variables are also highly correlated (𝜌 = −0.89), 

which highlights the importance of considering their joint PDF (rather than marginal 

PDFs) when using them for prediction. In Figure  3.5 the contour plot for joint PDF of 

𝛼1 and 𝛾1 is presented, which shows that these variables are uncorrelated with each 

other (𝜌 = 0.06). 

                                                 
9 MATBUGS is a free MATLAB script that can be downloaded from: 
http://code.google.com/p/matbugs/. 
10  Correlation coefficient is a measure of correlation (linear dependence) between two random 
variables and is defined as 𝜌𝑋,𝑌 = 𝑐𝑜𝑣(𝑋,𝑌) 𝜎𝑋𝜎𝑌⁄ . It is easily shown that  −1 ≤ 𝜌 ≤ +1 with values 
closer to +1 and -1 indicating higher positive and negative correlations, respectively. 
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Figure  3.3 – Posterior distribution of parameters 𝛼1 and 𝛼2. Marginal PDF plots (top) and 

contour plot of the joint PDF (bottom). 
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Figure  3.4 – Posterior distribution of parameters 𝛾1 and 𝛾2. Marginal PDF plots (top) and 

contour plot of the joint PDF (bottom).  

 
Figure  3.5 – Contour plot of the joint PDF of 𝛼1 and 𝛾1 showing the lack of correlation 

between these random variables. 
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The PDFs plotted in the above figures are not smooth because they are in fact 

generated using the samples of the posterior distribution obtained via the MCMC 

process. 

It was previously described that the flexible model in (  3.4 ) was used to define the 

standard deviation of the dependent variable 𝑌 . For any given input 𝑋 , one can 

calculate the corresponding distribution of 𝜎 by knowing the joint distribution of 𝛾1 

and 𝛾2 . The joint distribution 𝛾1  and 𝛾2was one of the outcomes of the parameter 

estimation process (see Figure  3.4). To estimate the distribution of 𝜎, it was defined 

as an additional unknown stochastic node (random variable) in WinBUGS. Through 

the MCMC process—as samples from the posterior densities of unknown parameters 

are being generated—WinBUGS also generates samples from the distribution of 𝜎 for 

different values of independent variable 𝑋. The result is shown in Figure  3.6. Note 

that for this particular dataset, the median value of 𝜎 is relatively constant (it has a 

slight decreasing trend) over the range of values of log𝑑𝑐 𝑑𝑁⁄ . This is consistent with 

the fact that the estimated value of 𝛾2 is close to zero (see Figure  3.4), which means 

that the relationship in (  3.4 ) reduces to a constant variance case where 𝜎Δ𝐾 ≈ 𝛾1. 

Notice the change in the calculated bounds of 𝜎 over the range of log𝑑𝑐 𝑑𝑁⁄ . The 

tighter bounds in the middle of the range are due to a higher density of data points in 

this region, which results in a more confident estimate in this range.  
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Figure  3.6 – Distribution of 𝜎Δ𝐾 as a function of the independent variable log𝑑𝑐 𝑑𝑁⁄  

Once all the model parameters are estimated (i.e. the joint distribution 𝑝(Θ|𝐷) is 

known), equation (  3.11 ) can be used to calculate the posterior predictive distribution 

for the dependent variable logΔ𝐾  as a function of the independent variable 

log𝑑𝑐 𝑑𝑁⁄ , given past observations, 𝐷. The integral in (  3.11 ) should be calculated 

numerically, as it is defined over a four-dimensional space of parameters. Once again, 

WinBUGS was used to calculate this integral using Monte Carlo simulation. 

The result is presented in Figure  3.7 where the posterior distribution is shown by its 

median and the 5% and 95% prediction bounds. The data 𝐷 used to fit the model is 

also plotted in this figure. Notice that the distribution of logΔ𝐾  has a relatively 

constant variance, which is consistent with the estimated posterior distribution of 

parameters 𝛾1and 𝛾2 (where 𝛾2 ≈ 0) and the resulting variance function plotted in 

Figure  3.6. 
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Figure  3.7 – Posterior predictive distribution of logΔ𝐾 as a function of log𝑑𝑐 𝑑𝑁⁄ . 

The procedure described above can be repeated to fit the model (  3.7 ) to  the 

log𝑑𝑎 𝑑𝑁⁄  versus log𝑑𝑐 𝑑𝑁⁄  dataset as well. Figure  3.8 shows the posterior 

distribution for two of the model parameters 𝛽1 and 𝛽2, while the posterior predictive 

distribution for log𝑑𝑎 𝑑𝑁⁄  as a function of log𝑑𝑐 𝑑𝑁⁄  is plotted in Figure  3.9. 

The models developed in this section provide a quantitative means for relating the 

crack growth parameters to the AE parameters. In the remainder of this dissertation, 

this concept will be used to develop a complete SHM solution based on AE 

monitoring. 
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Figure  3.8 – Posterior distribution of parameters 𝛽1 and 𝛽2. Marginal PDF plots (top) and 

contour plot of the joint PDF (bottom). 
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Figure  3.9 – Posterior predictive distribution of log𝑑𝑎 𝑑𝑁⁄  as a function of log𝑑𝑐 𝑑𝑁⁄ . 

3.4. Summary 

In this chapter, a flexible model was developed to describe the relationship between 

fracture parameters and AE features. Bayesian estimation was used to infer unknown 

model parameters based on experimental data. In this approach, the uncertainty in the 

data is preserved in the distribution of model parameters and will directly influence 

the outcome of the model, which results in a more realistic prediction of fracture 

parameters. 

Once the model is calibrated for an application—i.e. its parameters are estimated 

based on experimental data—it can be used to calculate the distribution of fracture 

parameters 𝑑𝑎 𝑑𝑁⁄  and Δ𝐾  as a function of AE features obtained from real-time 

monitoring. 
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Chapter 4: Methods for Structural Health 

Management using AE monitoring 
 

4.1. Overview 

In this chapter, two novel approaches are proposed for structural health management 

using AE monitoring. In both of these approaches, the statistical model developed in 

the previous chapter will be utilized to calculate system health parameters (such as 

probability of structural failure and crack size distribution) solely based on AE 

monitoring data. 

4.2. AE-based Risk Factor 

In this section, we will calculate the probability of structural failure (as defined here) 

due to crack growth using AE monitoring data. 

As a crack grows larger in a structure, the value of the stress intensity factor Δ𝐾 

associated with it increases as well. For a standard CT specimen, this relationship is 

defined as follows (ASTM E647-08 2008):  

Δ𝐾 = 𝑓(𝑎) 

=
Δ𝑃
𝐵√𝑊

2𝛼
(1 − 𝛼)3 2⁄ (0.886 + 4.64𝛼 − 13.32𝛼2 + 14.72𝛼3

− 5.6𝛼4) 

(  4.1 ) 

where Δ𝑃  is the range of the applied force cycles, 𝑊  and 𝐵  are the width and 

thickness of the CT specimen, respectively, and 𝛼 is the dimensionless crack size 

defined as 𝑎 𝑊⁄ . 
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Equation (  4.1 ) shows that Δ𝐾, in general, depends on the geometry of the structure, 

amplitude of the applied load cycles and the instantaneous size of the crack. For a 

given structure, assuming that the geometry is fixed, a large Δ𝐾 represents either a 

large crack size and/or high load amplitude applied to the structure. Δ𝐾 can therefore 

be considered a criticality parameter that describes the potential of the crack for 

further growth at any given point in time. 

On the other hand, the resistance of a material to stable crack propagation under 

cyclic loading is characterized by its fracture toughness, 𝐾𝐼𝑐 (T. L. Anderson 1994). 

At any point during the crack growth, if the stress intensity exceeds the fracture 

toughness of the material, the crack growth transitions from stable to non-stable/rapid 

growth regime where failure is imminent (see Figure  2.5). In other words, the crack 

growth is stable as long as 𝐾𝑚𝑎𝑥 is less than the fracture toughness of the material, 

𝐾𝐼𝑐. This fact is used to define an AE-based measure of risk, 𝑅𝐴𝐸, as follows, 

𝑅𝐴𝐸 = 𝑝(𝐾𝑚𝑎𝑥 > 𝐾𝐼𝑐) (  4.2 ) 

where 𝐾𝑚𝑎𝑥 is defined according to (  4.1 ) for Δ𝑃 = 𝑃𝑚𝑎𝑥. 

As stated before, the objective is to assess the health of the structure based only on 

AE monitoring. To do so, the statistical model developed in the previous chapter is 

used in the following way:  

Step 1: Estimate the model parameters (Θ) using experimental data for a given 

structure, 

Step 2: Monitor the structure using the AE technique and extract the 𝑑𝑐 𝑑𝑁⁄  

parameter from the observed signals, 
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Step 3:  At any given time, use equation (  3.11 ) to calculate the posterior predictive 

distribution of Δ𝐾 as a function of instantaneous AE parameter, 𝑑𝑐 𝑑𝑁⁄ . 

Step 4: Use equation (  4.2 ) to calculate 𝑅𝐴𝐸  (noting that 𝐾𝑚𝑎𝑥 = Δ𝐾 (1 − R)⁄  for 

constant amplitude loading with loading ratio 𝑅). 

Figure  4.1 shows the outcome of the above procedure for steps 1-3.  

 
Figure  4.1 – Probability distribution of 𝐾𝑚𝑎𝑥 as a function of applied fatigue cycles, 𝑁. 

Here the calibrated model presented in Figure  3.7 is used to calculate the posterior 

predictive distribution of 𝐾𝑚𝑎𝑥 from the beginning to the end of a crack growth test. 

To do so, the structure is monitored using the AE technique, and the 𝑑𝑐 𝑑𝑁⁄  feature is 

extracted from the signals at different values of elapsed cycles, 𝑁 (in practice, Δ𝑐 Δ𝑁⁄  

is calculated for consecutive intervals). Therefore, at a given cycle 𝑁, equation (  3.11 

) can be used to calculate the posterior predictive distribution as a function of the 

instantaneous AE feature, 𝑑𝑐 𝑑𝑁⁄ . 

𝐾𝐼𝑐 
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As the number of cycles increases, the crack continues to grow, and therefore, the 

distribution of 𝐾𝑚𝑎𝑥 gradually shifts towards larger values. The dashed red line in 

Figure  4.1 shows a threshold value based on fracture toughness of the material where 

the crack growth is expected to transition to the unstable regime. Here, a nominal 

value of 𝐾𝐼𝑐 = 22 𝑘𝑠𝑖 for 7075 aluminum11

Following step 4 in the procedure described above,  𝑅𝐴𝐸 can be calculated for any 

given cycle 𝑁 according to 

 was used.  

(  4.2 ). The result is shown in Figure  4.2. 

 
Figure  4.2 – AE-based risk factor, 𝑅𝐴𝐸, calculated as a function of applied fatigue cycles, 𝑁. 

As shown in Figure  4.2, 𝑅𝐴𝐸 increases (non-monotonically) throughout the 

experiment. The fluctuations in this figure are in fact a direct result of the fluctuations 

in the input AE feature, 𝑑𝑐 𝑑𝑁⁄ , which also matches the trend in Figure  4.1. The AE-

                                                 
11 In reality, material properties such as KIc should not be treated as fixed values and are best describes 
as random variables. This is due to various sources of aleatory and epistemic uncertainty (Modarres et 
al. 1999) involved in the process of measuring such material properties. 
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based risk factor defined here is an instantaneous exceedance probability calculated 

based on the average value of 𝑑𝑐 𝑑𝑁⁄  for any given interval. The AE feature has an 

overall increasing trend that may fluctuate due to instantaneous dynamics of the crack 

growth. So the best way to interpret the result in Figure  4.2 is to treat it as a red/green 

warning mechanism to alert the decision-maker in real-time about the increased risk 

factor at a given cycle based on the current AE readings. 

4.3. AE-based Crack Growth Model 

In this section, a new approach is proposed for estimating the crack size distribution 

as a function of applied fatigue cycles using AE monitoring. 

To use an NDI technique for crack size estimation some features (specific to each 

NDI method) are needed that can be correlated with either the crack size or the crack 

growth rate. 

For a given initial crack size, if the rate of crack growth can be estimated, then the 

crack size itself can be easily calculated by a summation over crack size increments 

starting from the known initial size. This is in fact the logic behind most crack growth 

models. In these models, however, the rate of crack growth is usually calculated 

based on its empirical relationship with the Δ𝐾 parameter, which itself has a complex 

derivation even for simple geometries.  

The idea here is to estimate the rate of crack growth directly from AE monitoring 

using the statistical model that was developed earlier in this dissertation. This process 

is depicted in Figure  4.3. In this dissertation, this approach is called an AE-based 

crack growth model. 
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Figure  4.3 – Flowchart of the AE-based crack growth model (Rabiei et al. 2010) 

The process starts by finding the parameters of the model (  3.7 ), where 𝑌 =

log𝑑𝑎 𝑑𝑁⁄   and 𝑋 = log𝑑𝑐 𝑑𝑁⁄ , based on relevant experimental data. The resulting 

posterior predictive distribution for the crack growth test on a CT specimen was 

presented in Figure  3.9. Once the model is calibrated (i.e. its parameters are 

estimated), it can be used to estimate the distribution of 𝑑𝑎 𝑑𝑁⁄  for any given input 

𝑑𝑐 𝑑𝑁⁄ . 

Consider a crack growth experiment where crack growth-related AE signals are 

recorded throughout the test. For any given interval of elapsed cycles,  Δ𝑁𝑖 , the 

corresponding average AE feature (Δ𝑐 ΔN⁄ )i can be calculated. Figure  4.4 shows the 

feature extracted from such data during crack growth in a CT specimen.  The 

probability distribution of the crack extension Δ𝑎𝑖 corresponding to the interval Δ𝑁𝑖 

can be calculated using equation (  3.11 ). This is shown in Figure  4.5 using the input 

AE data shown in Figure  4.4 and the calibrated model shown in Figure  3.9.   
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Figure  4.4 – The AE count rate feature extracted from signals obtained during crack growth 

in a CT specimen 

 
 

 
Figure  4.5 – Crack growth rate as a function of applied fatigue cycles predicted via AE 

monitoring 
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If the crack size is known at the beginning of the interval, a probability distribution 

for the crack size at the end of the interval can be easily obtained. By repeating this 

process for consecutive intervals, multiple crack growth trajectories can be generated, 

as shown in Figure  4.6. 

 
Figure  4.6 – Crack growth trajectories obtained via AE-based crack growth model 

The main feature of the AE-based crack growth model presented above is that the rate 

of crack growth is determined experimentally, and therefore, there is no need to have 

any information about the amplitude of the applied loading cycles to the structure. 

This approach, however, relies heavily on a calibrated statistical model that should 

describe the relationship between an NDI feature of interest (log𝑑𝑐 𝑑𝑁⁄  in this case) 

and the crack growth rate. Developing a robust model that can capture this 

relationship with minimum uncertainty is a difficult task that is still a topic of 

continued research. 

The performance of the proposed approach in one experiment is shown in Figure  4.7, 

in which the model prediction is compared against the actual crack growth trajectory 
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as measured in the test. This figure shows a rather poor performance of the model in 

this particular case, as the crack size is consistently over-estimated throughout the 

test. 

 
Figure  4.7 – Comparison of the outcome of AE-based crack growth model with actual crack 

measurements 

 
The difference between the measured crack size and the output of the AE-based crack 

growth model is due to several sources of uncertainty that affect the model.  

The first source of uncertainty is due to the statistical nature of the model being used 

in this approach; the linear relationship between the AE and fatigue parameters being 

used here only holds in an average sense: i.e., it is not valid for every single data 

point. In other words, the wider the distribution of Θ and the larger the value of 𝜎 is in 

(  3.7 ) , the less accurate the outcome of the crack growth model will be. 

The second source of uncertainty in the prediction results is the fact that when the 

model is being used, the input AE feature is calculated in an average sense over 

(typically) large intervals of elapsed cycles, Δ𝑁. This will result in a coarser (and 
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therefore more uncertain) estimate from the model. The cumulative effect of these 

uncertainties could result in a mismatch between the true crack size and the model 

estimate. Reducing any of these sources of uncertainty will improve the model 

prediction. 

4.4. Probabilistic Empirical Crack Growth Model 

In this section, a probabilistic crack growth model is developed based on 

conventional fracture mechanics calculations. The model’s performance will be tested 

based on the data from the crack growth tests described in Chapter 2. The primary 

objective of this chapter is to present a procedure to characterize the different sources 

of uncertainty present in a crack growth process and to develop a probabilistic model 

for fatigue crack growth. As will be shown here, despite all efforts to capture various 

sources of uncertainty, the final outcome of the model could still be far from reality. 

The outcome of this section, along with what was presented in section  4.3, will be 

used as inputs to the Bayesian fusion process that will be presented in the next 

chapter. 

Fatigue crack growth, which is the main failure mechanism in structures experiencing 

dynamic loading, has been extensively researched for almost 170 years (Schütz 

1996). Since the early 1960's when Paris (Paris & Erdogan 1963) initially proposed 

the relationship between fatigue crack growth rate and the stress intensity factor 

range, several researchers (including Forman (Forman et al. 1997) and Walker 

(Walker 1970), among others) have proposed different models of varying complexity 

to describe the crack growth phenomenon. A more comprehensive list of such models 

is presented in Table  4.1. 
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All these models are fundamentally similar in that they all use Δ𝐾  to calculate 

𝑑𝑎 𝑑𝑁⁄ ; their differences are in the way that each model accounts for other important 

parameters such as applied loading ratio, 𝑅. 

Table  4.1 – Partial list of proposed fatigue crack growth models in literature (Shantz 2010) 

 

To demonstrate the process of constructing a probabilistic crack growth model, the 

Paris equation in its original form12 (  4.3 ) will be used as shown in . The process 

presented here, however, is applicable to any of the more sophisticated models as 

well. 

                                                 
12 It should be noted that the goal of this section is not to develop a sophisticated crack growth model 
but rather to present the practical steps required to characterize the uncertainties involved in the 
modeling process and to show that despite every effort made at the time of modeling, the outcome of 
the empirical models could differ from reality because of various unknown/unpredicted factors that 
could affect the performance of any individual structure in real-life application. 
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For a given material and set of test conditions, the crack growth behavior can be 

described by the relationship between cyclic crack growth rate 𝑑𝑎 𝑑𝑁⁄  and stress 

intensity range Δ𝐾 as follows, 

𝑑𝑎
𝑑𝑁

= 𝐶(Δ𝐾)𝑚 (  4.3 ) 

where 𝐶 and 𝑚 are both constants that depend only on material properties and a set of 

test conditions, such as loading ratio, frequency and environment (Dowling 1998). 

The fact that these constants do not depend on the specific geometry of a component 

enables us to use the results obtained from standard fatigue tests on simple specimens 

to predict the crack growth behavior in more complex structures. 

A crack growth model predicts the instantaneous size of a crack by simulating its 

growth trajectory starting from a known or assumed initial crack size. The required 

inputs to a crack growth model are the following: 

• Initial crack size, 𝑎0 

• Applied load amplitude, Δ𝑃 

• Stress intensity factor range, Δ𝐾 (this is a function of instantaneous crack size, 

load amplitude and the specific geometry of the component) 

• Model parameters 𝐶 , 𝑚(obtained from fatigue tests performed on standard 

components with similar material and in the same testing condition) 

Probabilistic Fracture Mechanics (PFM) is gaining popularity as a method for 

realistic evaluation of fracture response and reliability of cracked structures (Rahman 

& Rao 2002). Fracture mechanics and probability theory are implemented within the 

PFM framework to account for both mechanistic and stochastic aspects of the fracture 
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problem by considering the input variables as random rather than having 

deterministic values. 

All the inputs to the fatigue problem suffer from some level of uncertainty, which if 

ignored, could lead to inaccurate predictions. Early work in PFM mainly focused on 

capturing the inherent random nature of the applied loads in structural components 

(Yang & Trapp 1974; Shinozuka & Yang 1969). In more recent works, various 

fracture mechanics inputs (such as initial crack size, material properties, and service 

conditions) are treated as random variables (Besuner 1987; Provan 1987). 

The initial crack size, for instance, is often not known in advance and should be 

assumed based on past experience and best engineering judgment. 𝑎0  is usually 

modeled as a lognormal random variable.  

The applied load amplitude is also subject to uncertainty. In real-world applications 

where we deal with random amplitude loading, this uncertainty becomes much more 

problematic. The uncertainty over applied loading amplitudes exists even in a 

controlled laboratory environment and for simple constant amplitude loading 

conditions.  

In the experiments conducted as part of this research, the main source of uncertainty 

in input loading was improper sensor calibration on the test frame. For higher loading 

frequencies, there may also be a mismatch between the force command signal sent to 

the test frame from the controller and the actual force applied to the specimen. 

Figure  4.8 shows the histogram of the applied load cycles in a constant amplitude test 

where the command signals for the minimum and the maximum loads were set to 
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30 𝑙𝑏𝑓 and 300 𝑙𝑏𝑓, respectively. Δ𝑃 can be represented as a normal random variable 

with its mean and variance calculated from the following equations: 

𝜇Δ𝑃 = 𝜇𝑃𝑚𝑎𝑥 − 𝜇𝑃𝑚𝑖𝑛 

𝜎2Δ𝑃 = 𝜎2𝑃𝑚𝑎𝑥 + 𝜎2𝑃𝑚𝑖𝑛 
(  4.4 ) 

Mean and variance of the minimum and maximum load can be easily calculated using 

the recorded loading history. 

 
Figure  4.8 – The scatter in the minimum and maximum applied load in a constant amplitude 

fatigue test using the MTS machine. 

Several researchers have introduced using stochastic parameters in empirical crack 

growth models (N. R. Moore et al. 1992; Yang et al. 1983; Provan 1987). By using 

experimental data to fit model parameters to distribution functions, the uncertainties 

in model parameters can be quantified. 

So far this dissertation has discussed quantities such as 𝑎0  and Δ𝑃  that can be 

modeled as independent random variables. When it comes to model parameters, 𝐶 

and 𝑚, the independence assumption of random variables no longer holds; 𝐶 and 𝑚 

are in fact the intercept and slope of a line calculated in a curve fitting process and are 
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highly correlated. To capture this effect, the joint distribution of these parameters 

should be characterized and used in PFM. 

To establish the joint distribution of parameters 𝐶 and 𝑚, multiple tests should be 

carried out on standard specimens made of the same material and under the same test 

conditions (e.g., similar loading ratios and loading frequencies). The resulting data 

are scattered due to the uncertainties associated with each of the tests and 

specimens—the specimens may seem to be identical at the macro scale, while their 

microstructure could be significantly different. As proposed by Paris (Paris & 

Erdogan 1963), 𝑑𝑎 𝑑𝑁⁄  and Δ𝐾 have a (partial) linear relationship when plotted on 

log-log scale. 𝐶 and 𝑚 are the parameters of the line fitted to this data.  

To develop a probabilistic crack growth model for this research, we obtained raw 

crack growth data from tests previously performed by NAVAIR on CT specimens 

with similar material (7075 aluminum) and under a comparable test condition 

(R=0.1). These data are shown in Figure  4.9. 

Next, Bayesian regression (as described in section  3.3) will be used to find the model 

parameters. The advantage of using Bayesian estimation as opposed to conventional 

linear regression is that in the Bayesian approach, the information in the scattered test 

data (Figure  4.9) is captured via the distribution of model parameters. In other words, 

instead of suppressing the uncertainty in the test data (by using point estimates for the 

parameters), it will be retained in the model parameters and will affect the uncertainty 

of the outcome of the crack growth model. This is an important step towards 

constructing a more realistic crack growth model.  
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Figure  4.9 – Fatigue crack growth results for multiple CT specimens made of 7075 aluminum 

and tested at R=0.1 

Figure  4.10 (top) shows the estimated marginal distributions of the model parameters. 

The distributions shown in this figure are not smooth, as they have been estimated 

using MCMC. Here, similar to the results in previous chapters, we have used 

WinBUGS to perform the Bayesian estimation. The contour plot of the joint 

distribution of parameters is presented in Figure  4.10 (bottom).  
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Figure  4.10 – Bayesian estimation results for parameters 𝐶 and 𝑚 of Paris equation based on 

experimental data  

It is evident from the figure above that 𝐶 and 𝑚 are strongly correlated. Figure  4.11 

shows the regression result along with 5% and 95% bounds for cases where 𝐶 and 𝑚 

are treated as dependent and independent random variables. When the variables are 

considered dependent, the bivariate distribution shown in Figure  4.10 (bottom) will 

be used as 𝑝(Θ|𝐷) in (  3.11 ), whereas if the dependence between the variables is 

ignored, the product of the marginal distributions (Figure  4.10 (top)) will be used as 

𝑝(Θ|𝐷) in (  3.11 ). 
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The resulting bounds on 𝑑𝑎 𝑑𝑁⁄  are wider when 𝐶 and 𝑚 are treated as independent 

random variables; under this assumption, the additional uncertainty will propagate 

through the crack growth model and will affect the resulting crack size distributions. 

 
Figure  4.11 – Bayesian regression results with and without consideration for dependence 

between parameters 

Once the uncertainties of all the inputs to the crack growth model are characterized, 

Monte Carlo simulation can be used to simulate the crack growth trajectories. To 

generate each crack growth trajectory, first a sample from the distribution of 𝑎0 is 

drawn as the initial crack size. Next, a sample from the joint distribution of (𝐶,𝑚) is 

drawn and is set as the model parameters. At every iteration of the simulation, 

multiple samples are drawn from the distribution of Δ𝑃 to represent the uncertainty in 

the applied loading cycles. For every Δ𝑃 sample, a sample of Δ𝐾 corresponding to 
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that iteration is calculated. Finally, Paris equation (  4.3 ) (with parameters chosen as 

described above) is used to calculate the corresponding samples of 𝑑𝑎 𝑑𝑁⁄  at that 

iteration. The crack growth trajectories can be obtained by summing over the amount 

of crack extension (Δ𝑎 = (𝑑𝑎 𝑑𝑁)⁄ .Δ𝑁) at each iteration. The above process is then 

repeated for multiple initial crack sizes drawn from 𝑎0 distribution. 

The simulation result for crack growth in a CT specimen is shown in Figure  4.12 

(left).  

  
Figure  4.12 – Probabilistic crack growth simulation result: simulated trajectories (left), 

comparison with measured crack (right) 

The comparison between simulation result and the actual measured crack size is 

shown in Figure  4.12 (right). The model in this case consistently underestimates the 

true crack size, and the difference grows towards the end of life of the component. 

This shows that the actual crack growth rate in the experiment was higher than what 

was predicted by the model. Several factors could contribute to the poor performance 

of the empirical model:  

• Model uncertainty (structure): The simplest empirical crack growth model 

(Paris equation) was used to obtain the results presented here. Equation (  4.3 ) 
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shows that this simplified model does not take into account other contributing 

factors that could affect the rate of crack growth. Other, more sophisticated 

models that account for factors such as applied loading ratio (the Walker 

model (Walker 1970) and the Forman model (Forman et al. 1997)) or the 

crack closure effect (the Closure model (Newman Jr 1981)) could  be used to 

reduce the uncertainty due to model structure.  

• Model uncertainty (parameters): The estimated crack size is very sensitive to 

the parameters of the empirical model. Any error in the estimation process of 

such parameters (e.g., using data from tests performed in a significantly 

different environment) could result in poor performance of the crack growth 

model.  

• Effect of the “rogue” flaw: Empirical life models are developed based on 

average behavior of materials and fail to capture the contributing factors that 

are specific to an individual structure. The result presented here is from a test 

performed on one specific specimen that could have suffered from material 

flaws (e.g., a large undetected internal flaw) and therefore had a faster-than-

average growth rate. Many more tests are required to reliably assess the 

performance of an empirical model.  

The result presented here clearly shows that despite every effort made at the time of 

modeling, the outcome of the empirical models could be far from reality because of 

unpredicted factors that could affect the performance of any individual structure in a 

real-life application.  
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The model developed in this section will be used in the next chapter as a typical 

example of an empirical model that fails to predict the reality due to multiple sources 

of uncertainty that are not taken into account at the time of modeling. The chapter 

will then discuss how the additional feedback provided by structural health 

monitoring techniques could be used to update the model estimates in a systematic 

fashion. 

4.5. Summary 

Two new approaches were proposed for structural health management using AE 

monitoring: In the first approach, an AE-based risk measure, 𝑅𝐴𝐸, is defined as the 

probability that the crack growth will transition from the stable to non-stable/rapid 

growth regime. The transition probability is equal to the probability that 𝐾𝑚𝑎𝑥 

exceeds the fracture toughness of the material, 𝐾𝐼𝑐. In the proposed approach, 𝐾𝑚𝑎𝑥 is 

calculated as a function of real-time AE monitoring data using the calibrated model 

obtained in the previous chapter. 

In the second approach, AE monitoring data is used to calculate the instantaneous 

distribution of crack growth rate, 𝑑𝑎 𝑑𝑁⁄ . For a given initial crack size and with crack 

growth rates obtained from AE monitoring, the crack size distribution is estimated as 

a function of elapsed fatigue cycles. 

In this chapter, the process for developing an empirical probabilistic crack growth 

model was also presented. In the next chapter, the outcome of this model as well as its 

parameters will be updated using additional feedback provided by an AE-based 

structural health monitoring system.  
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Chapter 5: Multi-Source Bayesian Knowledge 

Fusion 
 

5.1. Introduction 

The ultimate goal in structural health management is to assess the integrity of a 

structure at the current time and to predict the long-term evolution of the damage 

based on the anticipated future usage profile.  

The necessary information for developing a structural health diagnostic and 

prognostic solution is often obtained from various sources; this is similar to having a 

group of experts (with different credibility) that can each provide relevant 

information about certain aspects of the problem at hand. It is critical to be able to 

formally combine all these independent sources of information to achieve a more 

accurate assessment of the health of a structure. 

Fusion of data and information can happen at different levels in an automated health 

management system, as shown in Figure  5.1. At each level, the outcomes of the 

previous layer are fused together with the objective to improve the overall 

performance of the SHM solution. 
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Figure  5.1 – Fusion architecture 

At the lowest level, data coming from an array of sensors can be combined to validate 

the signals or to create possible new features. At level 2, feature extraction is 

performed on signals from individual sensors, and then the extracted features are 

combined to obtain better diagnostic and prognostic information. For instance, in AE 

monitoring, the AE count rate feature is calculated by first extracting the AE count 

feature directly from the raw signals and then calculating its rate of change with 

respect to elapsed fatigue cycles. Knowledge fusion could also be performed at a 

higher level (level 3) where fusion techniques are used to combine diagnostic and 

prognostic information obtained from various sources such as sensor readings and 

experimental approaches, empirical models, and statistical methods applied to 

historical data. Fusion could also be performed at level 4, where different measures of 

risk calculated at the previous layer (using different approaches) are combined to 

obtain a hybrid (unified) risk prediction. 

The main goal in fusion is to obtain results that are superior to all the individual 

inputs that contribute to it. However, there is always the danger that the fusion 

process produces results that are worse than what was attainable from the best 

individual approach used in the fusion process. This can happen because poor 
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estimates can drag better ones if weights to each approach are not properly assigned. 

The only solution to this concern is a priori assessment of the credibility and 

performance of individual building blocks of a fusion model and weighing each block 

accordingly. Therefore, the ideal knowledge fusion process for a given application 

should be based on historical performance of individual models. 

Various techniques are available for performing data, feature and knowledge fusion at 

different levels. Some of the most common fusion approaches include (Vachtsevanos 

et al. 2006): 

• Bayesian Fusion 

• Dempster-Shafer Fusion 

• Fuzzy-Logic Inference Fusion 

• Neural-Network Fusion 

There is no hard rule for selecting the appropriate fusion technique for an application, 

and discovering the tool that best suits an application could be a daunting task. Each 

case should be individually assessed based on the level at which fusion is performed 

and the amount and type of available information. Of all these techniques, the focus 

in this dissertation will be on the Bayesian approach to fusion. 

The approach presented here enables us to predict the posterior probability 

distribution function of the damage state using a dynamic state transition model and a 

measurement model. This methodology—which is based on recursive Bayesian 

estimation technique—allows for fusion of information from multiple sources in a 

principled manner. This is a robust framework for long-term prognosis, as it 

effectively accounts for uncertainties. 
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Recursive Bayesian estimation, also known as Bayes filter, is a probabilistic approach 

for estimating an unknown probability density function recursively over time using 

incoming uncertain observation (noisy measurements) and a mathematical process 

model that describes the evolution of the state variables over time. 

The key state variable that we are interested in estimating in this study is the crack 

size in the structure. More specifically, we are interested in estimating the probability 

density of crack size at any point in time based on all available sources of 

information. 

Prediction of future state of damage (i.e. prognosis) is an inherently uncertain process 

that relies on accurate estimation of the current state of damage as well as reliable 

modeling to describe the fault progression.  

The damage progression model (process model) that will be used in this chapter is the 

probabilistic empirical crack growth model that was previously developed in 

Section  4.4. As was discussed before, the overall performance of the SHM solution 

can potentially be improved by fusing the outcome of this model with real-time NDI 

observations. Here, the crack size estimates predicted by this model will be updated 

recursively using two types of observations: 

1. Observations of the crack size: these are direct observations of the damage 

state that may become available by periodic inspection of the structure. Like 

any other observation, these suffer from measurement error and other 

uncertainties that should be taken into account. 
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2. Observations of the crack growth rate: these observations are obtained from 

the online AE-based NDI technique developed in this dissertation. This type 

of evidence is indirectly used to update the estimate of the crack size. 

The goal is to use the recursive Bayesian estimation technique to fuse the outcome of 

the empirical crack growth model with the crack size and the crack growth rate 

observations. 

The sections below start with a high-level discussion of recursive Bayesian estimation 

and then continue with a more detailed discussion of Kalman filter and its extensions 

and how they can be implemented to address the fusion problem at hand. 

5.2. Recursive Bayesian Estimation 

Recursive (sequential) Bayesian estimation is a probabilistic inference process in 

which the hidden (unobserved) variables (states or parameters) of a dynamic system 

are estimated based on noisy and uncertain observations (Figure  5.2). 

 
Figure  5.2 – Schematic diagram of probabilistic inference: Given a vector of noisy 

observations 𝑧, what can we infer about unknown system state 𝑥?  

The focus here will be on discrete-time dynamic systems that can be described by a 

dynamic state-space model. A state-space model is a mathematical representation to 

describe the evolution of a dynamic system over time. The following set of equations 

describe a discrete-time, non-linear, state-space model, 

z

x

Observed

Unobserved
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𝑥𝑘 = 𝑓(𝑥𝑘−1,𝑢𝑘,𝑤𝑘) 

𝑧𝑘 = ℎ(𝑥𝑘, 𝑣𝑘) 
(  5.1 ) 

(  5.2 ) 

where 𝑓(∙) is the nonlinear state transition function that describes the evolution of 

system state 𝑥  from time step 𝑘 − 1 to 𝑘 . This is a non-deterministic transition in 

which the uncertainty is represented by the process noise, 𝑤𝑘 . The term 𝑢𝑘  is a 

known exogenous input to the system at time step 𝑘 which may or may not exist. The 

function ℎ(∙) in (  5.2 ) is the observation function that, at any time step 𝑘, relates the 

observation 𝑧𝑘  to the true state 𝑥𝑘 . 𝑣𝑘  is the corresponding observation noise that 

corrupts the observation of the hidden state, 𝑥𝑘 , through the observation function  

ℎ(∙). 

Let 𝑋𝑘 = {𝑥1, 𝑥2, … , 𝑥𝑘} represent a time-series of the state variable of interest where 

𝑥𝑘 is a random variable at the 𝑘-th time step. Similarly, 𝑍𝑘 = {𝑧1, 𝑧2, … , 𝑧𝑘} is a time-

series of the observations on the same time horizon. Both the state and the 

observations are described by random variables due to the uncertainties involved. Our 

goal is to estimate the unobserved state 𝑥𝑘 based on all observations 𝑧1, 𝑧2, … , 𝑧𝑘 as 

well as the process model that describes the evolution of 𝑥  through time. In 

mathematical form, we are interested in calculating 𝑝(𝑥𝑘|𝑧𝑘, 𝑧𝑘−1, … , 𝑧1) which is the 

posterior density of 𝑥𝑘 conditioned on all observations available up to time step 𝑘. In 

general, the complexity of computing this posterior density grows exponentially as 

the number of incoming observations increases over time. A number of assumptions 

are typically made to make such computations tractable; Bayes filters assume that the 

dynamic system that describes the state evolution is a Markov process. Because of the 

Markov assumption, the probability of the current true state given the immediately 

previous one is conditionally independent of the other earlier states. 
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𝑝(𝑥𝑘|𝑥𝑘−1, 𝑥𝑘−2, … , 𝑥1) = 𝑝(𝑥𝑘|𝑥𝑘−1) (  5.3 ) 

The Markov assumption also implies that the measurement at the 𝑘-th time step is 

dependent only on the current state 𝑥𝑘 and is conditionally independent of all other 

past states given the current state. 

𝑝(𝑧𝑘|𝑥𝑘 , 𝑥𝑘−1, … , 𝑥1) = 𝑝(𝑧𝑘|𝑥𝑘) (  5.4 ) 

Equations (  5.3 ) and (  5.4 ) are the two key components of Bayes filters; equation 

(  5.3 ) is known as the process model where 𝑝(𝑥𝑘|𝑥𝑘−1)  describes the system 

dynamics—that is, how the system states change over time. The information about the 

system dynamics is usually available from the physics of the process that is being 

modeled. For a dynamic state-space model, the process model 𝑝(𝑥𝑘|𝑥𝑘−1) is fully 

defined by the state transition function 𝑓(∙), the process noise density 𝑝(𝑣𝑘) and the 

initial distribution of the state variable 𝑝(𝑥0). In the damage prognosis problem, a 

process model is needed that describes how one can obtain the damage state at current 

time step, 𝑥𝑘 , given the state of damage at previous time step, 𝑥𝑘−1 . The process 

model, in general, could be defined either explicitly or implicitly as a black-box 

model. In this dissertation, the nonlinear empirical crack growth model that was 

developed earlier will be used as the process model in defining the state-space model. 

 
Figure  5.3 – Graphical representation of a dynamic state-space model.  
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Equation (  5.4 ) is commonly referred to as the observation model or the perceptual 

model. The observation likelihood, 𝑝(𝑧𝑘|𝑥𝑘) , describes the likelihood of making 

observation 𝑧𝑘 given the current state variable 𝑥𝑘 (see Figure  5.3). The observation 

model is fully defined by the observation function ℎ(∙) and the observation noise, 𝑣𝑘 

(see (  5.2 )). The definition of the observation function is typically based on the 

properties of the sensor technology being used and should capture the error 

characteristics of the measurement system. Roughly speaking, the observation model 

answers the question: "What do the sensors observe if the true state of the system is 

𝑥𝑘?" Both the accuracy (the proximity of the observations to the true value) and the 

precision (the repeatability of the observations) of the measurements play a role in 

defining the observation model (Figure  5.4). For instance, if based on previous 

experience, we know that our measurement system suffers from a systematic bias, 

that bias should be included in the definition of the measurement model. In this 

dissertation, we will assume that our measurements are accurate but not precise; the 

lack of precision is represented by the observation noise, 𝑣𝑘. 

  
Figure  5.4 – The accuracy and the precision of measurements 

True Value

High Accuracy Low Accuracy

True Value

High Precision

Low Precision
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Once the process model and the observation model are characterized, the next step is 

to derive the equations that allow the posterior density of the state variable to be 

recursively updated as new observations arrive. By making use of Bayes' rule and 

taking advantage of the conditional independence assumption, the posterior density 

can be derived as follows: 

𝑝(𝑥𝑘|𝑍𝑘) =
𝑝(𝑍𝑘|𝑥𝑘)𝑝(𝑥𝑘)

𝑝(𝑍𝑘)
 

=
𝑝(𝑧𝑘,𝑍𝑘−1|𝑥𝑘)𝑝(𝑥𝑘)

𝑝(𝑧𝑘,𝑍𝑘−1)
 

=
𝑝(𝑧𝑘|𝑍𝑘−1, 𝑥𝑘)𝑝(𝑍𝑘−1|𝑥𝑘)𝑝(𝑥𝑘)

𝑝(𝑧𝑘|𝑍𝑘−1)𝑝(𝑍𝑘−1)
 

=
𝑝(𝑧𝑘|𝑍𝑘−1, 𝑥𝑘)𝑝(𝑥𝑘|𝑍𝑘−1)𝑝(𝑍𝑘−1)𝑝(𝑥𝑘)

𝑝(𝑧𝑘|𝑍𝑘−1)𝑝(𝑍𝑘−1)𝑝(𝑥𝑘)
 

=
𝑝(𝑧𝑘|𝑍𝑘−1, 𝑥𝑘)𝑝(𝑥𝑘|𝑍𝑘−1)

𝑝(𝑧𝑘|𝑍𝑘−1)  

=
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑍𝑘−1)

𝑝(𝑧𝑘|𝑍𝑘−1)  

(  5.5 ) 

(  5.6 ) 

(  5.7 ) 

(  5.8 ) 

(  5.9 ) 

(  5.10 ) 

where 𝑍𝑘 is the set of all the observations up to time step 𝑘. Notice that in going from 

(  5.7 ) to (  5.8 ), Bayes' rule was used again on 𝑝(𝑍𝑘−1|𝑥𝑘). We also used the 

conditional independence of observations given the state in going from (  5.9 )  to 

(  5.10 ). 

To gain more insight into the Bayesian estimation process, each term in (  5.10 ) will 

be examined more closely; the term 𝑝(𝑧𝑘|𝑥𝑘)  is the observation likelihood as 

described by the observation model at time step 𝑘. This will be discussed in greater 

detail in the next section. The term 𝑝(𝑥𝑘|𝑍𝑘−1) is the prior estimate for the state 

variable at time step 𝑘—that is, the predicted state value at time step 𝑘 given all the 
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measurements up to the previous time step, 𝑘 − 1. This term can be expanded using 

the chain rule as follows, 

𝑝(𝑥𝑘|𝑍𝑘−1) = �𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑍𝑘−1)𝑑𝑥𝑘−1 (  5.11 ) 

where 𝑝(𝑥𝑘|𝑥𝑘−1) is the process model as described before and 𝑝(𝑥𝑘−1|𝑍𝑘−1) the 

posterior estimate of the state variable from previous time step, 𝑘 − 1. The posterior 

from each time step is projected forward in time, using the process model, to obtain 

the prior estimate of the state for the next time step. 

The denominator in (  5.10 ) is the normalizing constant that—through the law of total 

probability—is given by 

𝑝(𝑧𝑘|𝑍𝑘−1) = �𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑍𝑘−1)𝑑𝑥𝑘 (  5.12 ) 

The posterior 𝑝(𝑥𝑘|𝑍𝑘)  is just a conceptual solution to the recursive estimation 

problem. In general, the multi-dimensional integrals (  5.11 ) and (  5.12 ) have no 

explicit analytical solution. This means, from a practical point of view, that one needs 

to resort to an approximate description of the posterior density of the state variables. 

There is one case, however, where a closed-form recursive solution for the posterior 

density exists.  This occurs when the state-space equations 𝑓(∙) and ℎ(∙) are linear 

and all the random variables are Gaussian. The solution in this case is given by the 

well-known Kalman filter (KF) (Kalman 1960). For most general real-world systems, 

however, the multi-dimensional integrals are intractable, and approximate solutions 

must be used.  

Several approximate solutions to the recursive Bayesian estimation problem have 

been proposed in a variety of fields. These approximate methods are based on 

simplifying assumptions regarding either the form of the probability densities to be 
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estimated or the structure of the underlying system dynamics. These assumptions are 

made to allow for tractable and implementable estimation algorithms. The extended 

Kalman filter (EKF) (Jazwinski 1970) method is an example of an approximation of 

the underlying dynamics of the system; the EKF extends the application of the 

Kalman filter framework to nonlinear Gaussian systems by first linearizing the state 

transition and the observation equations using a first-order Taylor series 

approximation around the current estimate.  

In the following sections, the KF equations and their interpretations are first 

described; next, a brief overview of recursive Bayesian estimation methods for 

nonlinear and non-Gaussian problems will be presented. 

5.3. The Kalman Filter 

The celebrated Kalman filter is the optimal closed-form solution to the recursive 

Bayesian estimation problem for a linear system with Gaussian random variables. 

Since its original development (Kalman 1960; Kalman & Bucy 1961) the Kalman 

filter has been the subject of extensive research and has been applied successfully in 

numerous real-world applications. Owing mostly to its simple implementation and 

computational efficiency, the Kalman filter is established as a fundamental tool for 

analyzing and solving a broad class of estimation problems (McGee et al. 1985). 

Apart from being a Bayesian solution to a certain class of models, the Kalman filter 

has several other  interpretations; see (West & Harrison 1997) and (B. D. O. 

Anderson & J. B. Moore 2005) for historical perspectives and a complete presentation 

of linear estimation theory. 
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In this section, the equations for the KF solution to recursive Bayesian estimation will 

be presented without proof. More details about the derivations of these solutions can 

be found in (Simon 2006; Welch & Bishop 1995; Crassidis & Junkins 2004). 

The Kalman filter addresses the general problem of estimating the state variable, 

𝑥𝑘 ∈ ℝ𝑛, of a system described by a discrete-time linear state-space model based on 

observations 𝑧𝑘 ∈ ℝ𝑚 , at time step k. Such system is governed by the following 

equations: 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 
(  5.13 ) 

(  5.14 ) 

which are the same Equations as (  5.1 ) and (  5.2 ), respectively, for the case of linear 

systems.  

Here the noise processes 𝑤𝑘 and 𝑣𝑘 are both defined as white Gaussian noise—i.e., 

zero-mean, uncorrelated Gaussian random variables with known covariance matrices 

𝑄𝑘 and 𝑅𝐾, respectively.  

𝑤𝑘~𝑁(0,𝑄𝑘) 

𝑣𝑘~𝑁(0,𝑅𝑘) 
(  5.15 ) 

(  5.16 ) 

The matrix 𝐴𝑛×𝑛 in (  5.13 ) relates the state at the previous time step 𝑘 − 1 to the 

state at the current time step 𝑘. The matrix 𝐵𝑛×𝑙 relates the exogenous input 𝑢𝑘 ∈ ℝ𝑙 

to the state 𝑥𝑘. The matrix 𝐻𝑚×𝑛 in (  5.14 ) relates the measurement 𝑧𝑘 to the state 𝑥𝑘 

at the current time step. In practice, 𝐴,𝐵 and 𝐻 could all be functions of time and 

change with every time step, but in this dissertation they are assumed constant. 

According to KF assumptions, the state variable is Gaussian; therefore, the posterior 

density 𝑝(𝑥𝑘|𝑍𝑘) can be fully specified by calculating its first and second moments.  
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Let 𝑥�𝑘 and 𝑃𝑘 denote the first and second moments of the posterior state distribution 

(i.e., posterior mean and posterior covariance) at time step 𝑘: 

𝑥�𝑘 = 𝐸[𝑥𝑘] 

𝑃𝑘 = 𝐸[(𝑥𝑘 − 𝑥�𝑘)(𝑥𝑘 − 𝑥�𝑘)𝑇] 

and, 

𝑝(𝑥𝑘|𝑍𝑘) = 𝑁(𝑥�𝑘,𝑃𝑘)  (  5.17 ) 

It can be shown (Simon 2006; B. D. O. Anderson & J. B. Moore 2005; West & 

Harrison 1997) that the posterior mean 𝑥�𝑘  and the posterior covariance 𝑃𝑘  can be 

calculated as follows: 

𝑥�𝑘 = 𝑥�𝑘− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥�𝑘−)  (  5.18 ) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘−  (  5.19 ) 

where, 

𝐾𝑘 = 𝑃𝑘−𝐻𝑇(𝐻𝑃𝑘−𝐻𝑇 + 𝑅)−1 

𝑥�𝑘− = 𝐴𝑥𝑘−1− + 𝐵𝑢𝑘 

𝑃𝑘− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 

(  5.20 ) 

(  5.21 ) 

(  5.22 ) 

Descriptions of all these terms are given in Table  5.1. 
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Table  5.1 – Description of key terms in Kalman filter equations 

Term Name Description 

𝑥�𝑘 a posteriori state estimate 
Mean of the posterior state density at 
time 𝑘. This is a posteriori because it 
has been updated with observation 𝑧𝑘. 

𝑥�𝑘− a priori state estimate 

This is the state estimate at time 𝑘 , 
solely based on the process model 
(  5.13 ) as described by (  5.21 ). The 
minus superscript denotes that this is 
an a priori estimate of the state based 
only on system dynamics and before 
updating with observation 𝑧𝑘. 

𝑃𝑘 
a posteriori error covariance 
matrix 

Covariance matrix of the posterior 
state density at time 𝑘 . This is a 
posteriori because it has been updated 
with observation 𝑧𝑘. 
𝑃𝑘  is a measure of accuracy for the 
estimated state. 

𝑃𝑘− 
a priori error covariance 
matrix 

Covariance matrix of the state density 
at time 𝑘, solely based on the process 
model as described by (  5.22 ). The 
minus superscript denotes that this is 
an a priori estimate based only on 
system dynamics and before updating 
with observation 𝑧𝑘. 

𝐾𝑘 Kalman Gain 

The Kalman gain is a blending factor 
used in Equations (  5.18 ) and (  5.19 ) 
to update (or adjust) the prior state 
estimate 𝑥�𝑘−  and covariance estimate 
𝑃𝑘− based on new observation.  

𝐴,𝐵,𝐻,𝑄,𝑅 N/A 
Known matrices which define the 
state-space equations. 
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The term (𝑧𝑘 − 𝐻𝑥�𝑘−) in (  5.18 ) is known as observation innovation; the innovation 

reflects the discrepancy between the actual measurement 𝑧𝑘  and the predicted 

measurement 𝐻𝑥�𝑘− . If the two are in complete agreement, the innovation 

corresponding to the observation at that time step will be zero, and therefore, no 

updating will take place. This happens if the observation 𝑧𝑘 does not contain any new 

information about the system that is not already captured in the process model. 

The easiest way to interpret the Kalman filter equations is to think of them as a two-

step updating process (Welch & Bishop 1995): 

1. Step 1 is the time update in which the process model (  5.13 ) is used to project 

forward (in time) the state estimate 𝑥𝑘−1−  and the error covariance estimate 

𝑃𝑘−1 at the previous time step 𝑘 − 1 to obtain the a priori estimates 𝑥�𝑘− and 

𝑃𝑘− at the current time step 𝑘. 

2. Step 2 is the measurement update in which the most recent observation 𝑧𝑘 is 

used to update the a priori estimates 𝑥�𝑘− and 𝑃𝑘− to obtain the a posterior 

estimates 𝑥�𝑘 and 𝑃𝑘. The goal in this step is to use the additional information 

in the observation to improve the a priori estimates that were solely based on 

the process model. 

The time and measurement update pair are repeated recursively for prediction at 

future time steps; the a posteriori estimate at the current time step will be projected 

forward to predict a new a priori estimate for the next time step, which will in turn be 

updated by the new measurements at that time step.  
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5.3.1. Extensions to the Kalman Filter 

As discussed earlier in this chapter, the Kalman filter formulation is based on two 

limiting assumptions: (a) the process and observation models should be linear, and (b) 

the uncertainty of the state variables should be represented by Gaussian distributions. 

In this section, two extensions of the Kalman filter will be discussed: the extended 

Kalman filter (EKF) and the particle filter. 

In the extended Kalman filter, the state transition and observation models need not be 

linear functions of the state; EKF is the nonlinear version of the Kalman filter that 

linearizes the system using a first-order Taylor series approximation around its 

current state. The idea of the EKF was originally proposed by Stanley Schmidt so that 

the Kalman filter could be applied to nonlinear spacecraft navigation problems 

(Bellantoni & Dodge 1967). This filter has undoubtedly been the most widely used 

nonlinear state estimation technique in the past few decades (Simon 2006). 

Some higher-order approximation techniques have been proposed (e.g., the unscented 

Kalman filter (Julier & Uhlmann 1997)) to reduce the linearization errors that are 

inherent in the EKF. These techniques typically provide better estimation 

performance for highly nonlinear systems, but they do so at the price of higher 

complexity and computational expense (Simon 2006). 

Unlike EKF and its higher-order extensions that are all approximate nonlinear filters, 

the particle filter is a completely nonlinear state estimator. The particle filter, also 

known as the Sequential Monte Carlo method (SMC), is a statistical, brute-force 

approach to estimation that works well for problems beyond the scope of the 

conventional Kalman filter (i.e., highly nonlinear systems and/or systems with non-
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Gaussian state variables). There is, of course, a price to be paid for the higher 

performance of particle filters, and that is increased computational cost. 

Particle filter is a simulation-based estimation technique that models the PDF of state 

variables using a set of discrete points called particles. The main idea of particle 

filtering is intuitive and straightforward: randomly generate samples from the PDF of 

the initial state, which is assumed to be known—the number of samples is chosen as a 

trade-off between computational effort and estimation accuracy. Next, use the process 

model of the system and a known distribution of the process noise to propagate each 

particle in time to obtain an a posteriori set of particles at the next time step. The next 

step is to compute the relative likelihood of each particle conditioned on the 

measurement at the current time step. The final step is to generate a set of a posteriori 

particles based on the calculated relative likelihoods. Any desired statistical measure 

of the posterior distribution of the state can be calculated from these a posteriori 

particles. For a detailed overview of the particle filter technique and its various 

applications, see (Doucet et al. 2001; Doucet & Johansen 2010). Particle filter 

algorithms and practical implementation issues are presented in (Simon 2006; Van 

Der Merwe 2004). 

The particle filter is an alternative to EKF with the advantage that with sufficient 

samples, it can be made more accurate than the EKF (or any of the other approximate 

nonlinear techniques). However, when the simulated sample is not sufficiently large, 

the particle filter might suffer from sample impoverishment. 

In this dissertation, EKF is used as the practical solution to the recursive estimation 

problem mainly because the process model used here (i.e., the empirical crack growth 
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model) is not considered highly nonlinear and also because the Gaussian assumption 

for the state variable was sufficient for the purpose of this dissertation. Details of the 

EKF equations and algorithms can be found in various references, including (Welch 

& Bishop 1995; Diard et al. 2003). 

5.4. State-Space Formulation for Crack Growth Problem with AE 

Observations 

In this section, the theory of recursive Bayesian estimation is applied to the specific 

knowledge fusion problem at hand. To do so, we set up a Bayesian inference problem 

in which all the pieces of knowledge available about the crack growth phenomenon 

are systematically fused together to produce an updated crack size distribution. 

The available information about the crack growth phenomenon consists of the 

following: 

1. An empirical crack growth model: our knowledge is embodied in the structure 

of the model as well as the model parameters.  

2. Sparse crack size observations: these typically come from scheduled and non-

scheduled maintenance events in which the structure is rigorously inspected 

for possible cracks. 

3. Real-time crack growth rate measurement: the AE-based methodology 

developed in this dissertation is used to get an (indirect) continuous 

measurement of crack growth rate.  

The model alone (Source 1) could be used to predict the crack size as a function of 

geometry and input stresses. But as discussed earlier, these models are often based on 

various simplifying assumptions and/or are based on limited empirical data, and as a 
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result, suffer from inaccuracy and imprecision. To account for such inaccuracies and 

to make the system robust to rogue cracks (unexpected large cracks that the model 

does not account for), it is of great interest to use other sources of information 

(Sources 2, 3) that directly originate from monitoring the particular target system. The 

feedback provided from the real system, when combined with the model estimate, 

will result in less uncertain condition assessment and more accurate prognosis. 

In the context of the recursive Bayesian estimation framework described above, each 

of these pieces of information could be used to define and characterize a part of the 

state-space model or the observations used in the updating process. The first step in 

posing the fusion problem in the Bayesian estimation context is to define the state-

space model. To do so the following must be defined: 

• The state variable(s) to be estimated. 

• A function that defines the evolution of state variables over time. (process 

model) 

• A function that defines how various observations over time are related to the 

state variables. (observation model) 

• The noise (uncertainty) in both the process model and the observation model. 

Equation (  5.23 ) describes the general form of the process model where 𝑋 is the 

vector of state variables to be estimated. 

𝑥𝑘 = 𝑓(𝑥𝑘−1,𝑢𝑘,𝑤𝑘) (  5.23 ) 

In a typical crack growth problem the state variable of interest is the crack size at time 

step k, denoted by 𝑎𝑘. In addition to 𝑎𝑘, the crack growth rate, �̇�𝑘, was chosen as the 

second state variable to be estimated, i.e. the state vector 𝑥𝑘 = �𝑎𝑘�̇�𝑘�. 
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We use the exogenous input 𝑢𝑘 to map the time steps in our state-space model to the 

actual elapsed loading cycles, Δ𝑁𝑘. The process noise is defined by 𝑤𝑘~𝑁(0,𝑄𝑘) the 

same as before. Note that here 𝑄𝑘 is a 2 × 2 covariance matrix, as we are estimating 

two state variables. We can now rewrite (  5.23 ) as follows: 

�
𝑎𝑘
�̇�𝑘
� = �

𝑎𝑘−1 + �̇�𝑘−1Δ𝑁𝑘
𝐶(Δ𝐾𝑘)𝑚 � + 𝑤𝑘 (  5.24 ) 

Equation (  5.24 ) consists of two equations that each describe the evolution of one of 

the state variables over time. The first equation is simply based on the difference 

relationship �̇�𝑘−1 = (𝑎𝑘 − 𝑎𝑘−1) Δ𝑁𝑘⁄  that defines the crack growth rate at time step 

𝑘 − 1. Based on this relationship, the crack size 𝑎𝑘 can be calculated based on the 

crack size at the previous time step, the crack growth rate at the previous time step, 

and the number of actual cycles elapsed since the last time step. 

The second equation in (  5.24 ) describes how the crack growth rate can be calculated 

at every time step 𝑘. Here the Paris equation is used to relate the crack growth rate �̇�𝑘 

to the stress intensity factor range Δ𝐾𝑘  at every time step; that is, �̇�𝑘 = 𝐶(Δ𝐾𝑘)𝑚 

where 𝐶 and 𝑚 are the parameters of the Paris equation—any other empirical crack 

growth model could be used here as well. 

As discussed in previous chapters, the stress intensity factor range at every time step 

𝑘 , Δ𝐾𝑘 , could be defined as a function of the geometry of the structure, applied 

loading cycle Δ𝑃𝑘 and the crack size 𝑎𝑘 . For instance, Δ𝐾𝑘  for a standard CT 

specimen (ASTM E647-08 2008) is defined as follows: 

Δ𝐾𝑘 = 𝑔(𝑎𝑘) 

=
Δ𝑃𝑘
𝐵√𝑊

2𝛼
(1 − 𝛼𝑘)3 2⁄ (0.886 + 4.64𝛼𝑘 − 13.32𝛼𝑘2 + 14.72𝛼𝑘3

− 5.6𝛼𝑘4) 

(  5.25 ) 
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where 𝛼𝑘  is the dimensionless crack size 𝑎𝑘 𝑊⁄ , 𝐵 and 𝑊  are the width and the 

thickness of the specimen, respectively, and Δ𝑃𝑘  is the amplitude range of applied 

load at time step 𝑘. 

Note that for a given geometry, the Δ𝐾  (and therefore, �̇�) can be calculated as a 

function of applied loading and the instantaneous crack size 𝑎. This completes the 

definition of the recursive relationship of the system states in (  5.24 ).  

The next step is to fully define the observation model (  5.26 ): 

𝑧𝑘 = ℎ(𝑥𝑘, 𝑣𝑘) (  5.26 ) 

As mentioned before, here there are two types of observations; an observation vector 

𝑧𝑘 = �
𝑧1𝑘
𝑧2𝑘�  is defined where 𝑧1𝑘  is the observation of crack size, and 𝑧2𝑘  is the 

observation of crack growth rate at time step 𝑘. 

�
𝑧1𝑘
𝑧2𝑘

� = �1 0
0 1� �

𝑎𝑘
�̇�𝑘
� + 𝑣𝑘 (  5.27 ) 

where 𝑣𝑘~𝑁(0,𝑅𝑘)  and 𝑅𝑘  is a 2 × 2  covariance matrix. Here a linear form is 

assumed for the observation function ℎ(∙). It is also assumed that our observations are 

accurate (note the diagonal identity matrix in (  5.27 )) but imprecise (represented by 

the white Gaussian noise 𝑣𝑘). 

These measurements are independent from each other and may take place at different 

frequencies. In practice, 𝑧1𝑘 's are sparse crack size observations that are measured 

less frequently whenever the structure is thoroughly inspected. At other times, when 

only one observation is available, the observation equation is reduced to 

𝑧2𝑘 = (0 1) �
𝑎𝑘
�̇�𝑘
� + 𝑣𝑘 (  5.28 ) 
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where 𝑣𝑘~𝑁(0,𝑅𝑘)  and 𝑅𝑘  is a scalar representing the standard deviation of the 

observation noise. 

5.5. Results and Discussion 

In this section, the results of applying the aforementioned techniques to the 

experimental data are presented. First, the recursive estimation results are presented; 

next, we describe how parameters 𝐶 and 𝑚 can be estimated from experimental data. 

Finally, we describe the prognosis process is described and its results are presented. 

An overview of the estimation and prognosis process is shown in Figure  5.5.  

Figure  5.6 shows the recursive estimation result for both state variables of interest. In 

the top figure, the estimated crack size trajectory is shown (in red) along with the true 

crack trajectory (in purple) measured in this case. The black markers show the 

specific points on the purple line that were used as sparse observations of the crack 

size in the estimation process. The blue line is the crack growth trajectory based 

solely on the process model developed in the previous section (fracture mechanics-

based crack growth model). The green line represents the crack growth trajectory 

based solely on the AE-based crack growth model (i.e., using the AE model 

developed in previous sections gives an estimate of the crack growth rate, 𝑑𝑎 𝑑𝑁⁄ , as 

a function of AE count rate, 𝑑𝑐 𝑑𝑁⁄ ). The blue and green lines represent two extreme 

cases; in one case (blue line) no AE NDI information is used to calculate the crack 

size, and the estimation suffers from all potential model uncertainties (both in terms 

of model parameter and the model structure). In the second case (green line), the 

estimation is completely based on observed crack growth rate information obtained 

from AE monitoring and disregards the fracture mechanics-based model. This 
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approach suffers from the inaccuracies in all steps of the NDI process (e.g., data 

collection noise, modeling uncertainties and parameter estimation). By comparing 

these lines with the purple line (true crack trajectory), it is evident that in this specific 

experiment, the blue line consistently underestimates the crack size, whereas the 

green line consistently overestimates the crack size. The red line, which is the 

estimated crack size by taking into account both sources of information, is much 

closer to the true crack trajectory (purple line). It is important to note that this 

observation is based on results from limited experimentation and cannot be 

generalized. The fusion outcome is dependent on the performance of the individual 

techniques fused together. Obviously, if both the model and the AE observations 

overestimate the crack size in one application, the fused result will also be an 

overestimation of the true crack trajectory—i.e., new information is not created in the 

fusion process.  

Figure  5.6 (bottom) shows the estimated values (in red) for the second state variable, 

𝑑𝑎 𝑑𝑁⁄ , along with the sequential rate observations used in the estimation process. 

The dashed lines in Figure  5.6 are the 5% and 95% confidence bounds of the 

predicted state values. As we saw before in equation (  5.24 ), at every time step, a 

noise term 𝑤𝑘 is added to the state estimate.  
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Figure  5.5 – Overview of the recursive estimation and prognosis process 
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Figure  5.6 – Recursive Bayesian estimation of crack size (top) and crack growth rate (bottom) 

using sparse crack observations and AE rate observations 
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Figure  5.7 – Estimated standard deviation of crack size (top) Estimated standard deviation of 

crack size (bottom). The uncertainty is reduced every time a new crack size observation is 
received. 
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In the absence of any observations, i.e., projecting forward the state variables using 

only the process model with no updating steps, the added process noise at every step 

accumulates over time, which results in diverging confidence bounds (see Figure  5.6 

(top)) for the estimated state variables between observations. In Figure  5.7, the 

estimated standard deviation of the state variables is presented. This figure shows that 

the crack size observations (which directly correspond to the first state variable, 𝑎𝑘) 

affect the standard deviation of both states.  

In section  5.3, it was discussed that the posterior mean 𝑥�𝑘  and the posterior 

covariance 𝑃𝑘 can be calculated using equations (  5.18 ) and (  5.19 ). Notice in (  5.22 

) that the a priori error covariance matrix at time step 𝑘, 𝑃𝑘−, is calculated using the a 

posteriori error covariance matrix from the previous time step, 𝑃𝑘−1, plus 𝑄 which is 

the covariance matrix of the process noise. In the absence of the measurement 

updating step (  5.19 ), 𝑃𝑘 will continue to grow over time. When a new observation is 

received, first the appropriate Kalman gain for that observation is calculated 

according to (  5.20 ). Next, the a posteriori error covariance matrix 𝑃𝑘 is calculated 

according to (  5.19 ) by updating the a priori error covariance matrix 𝑃𝑘− based on the 

Kalman gain associated with the observations at current time step, 𝑘. In this step, 

because of the minus sign in (  5.19 ) , the error covariance matrix shrinks. This can be 

clearly seen in Figure  5.7 for both the crack size (top) and the crack growth rate 

(bottom). Figure  5.7 (bottom) shows that the standard deviation of the crack growth 

rate is also reduced as a result of updating 𝑃𝑘 using crack size observations. The root 

of this coupling effect between the states can be seen in the way the Kalman gain is 

defined in (  5.20 ). The Kalman gain, 𝐾, is a 𝑚 × 𝑛 matrix where 𝑚 is the dimension 
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of the state space and 𝑛 is the dimension of the observation space. Each element 𝑘𝑖𝑗 

in 𝐾 can be thought of as a measure of influence that each observation 𝑧𝑗 will have on 

the mean estimate of state 𝑥𝑖  and the state error covariance matrix. In the crack 

growth problem presented here, the Kalman gain associated with the effect of the 

observations of the first state (𝑎) on the second state (𝑑𝑎 𝑑𝑁⁄ ) is such that it is clearly 

influenced in the measurement update state, which results in the reduced confidence 

bounds in Figure  5.7 (bottom).  

Figure  5.8 shows the crack size estimation result in a case with fewer crack 

observations. In real-life fleet management applications, this could correspond to less 

frequent ground inspections, which are of course desirable if the onboard NDI 

technologies reach the maturity level needed to support such non-conservative 

management decisions. As explained above, the uncertainty of the estimation 

accumulates over time in the absence of new observations but is reduced whenever 

new observations are received and used in the measurement update step. In Figure  5.8 

(bottom) the increase in the estimated standard deviation of the crack size is shown 

for two cases with 3 and 6 observations. This figure clearly shows that more frequent 

(accurate and precise) observations would result in a more confident state estimation 

by not allowing the standard deviation to grow too large and by “anchoring” the mean 

state estimate using crack size observations. 
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Figure  5.8 – Estimation of crack size using only 3 observations (top). Comparison of the 

estimated standard deviation of crack size using 3 and 6 crack observations (bottom). 
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Based on what has been presented so far, it is evident that the estimated states are in 

fact the result of a tradeoff between three competing sources of information: the crack 

growth model, the AE-based crack growth rate observations and the periodic crack 

size observations. What dictates the dominance of one over the other is the amount of 

uncertainty associated with each source of information. In the Kalman filter 

formulations, the uncertainties for all states and all observations are embodied in 

𝑄𝑘 and 𝑅𝑘 , which are the covariance matrices of the process noise 𝑤𝑘  and the 

observation noise 𝑣𝑘, respectively. In general, the covariance matrix can change over 

time (denoted by subscript 𝑘), but in our problem we assume that their values are 

constant over time.  

The values of 𝑄 and 𝑅 are both inputs to the state estimation problem and should 

either be obtained from data or assumed based on engineering judgment. The 

covariance matrix of the measurement noise can be directly determined based on the 

precision of the measurement techniques used. For the crack size observations, the 

standard deviation of the error is selected based on errors in the digital imaging 

technique used for crack measurement. For simplicity, we assumed a constant 

measurement noise, whereas in reality, there is more uncertainty associated with 

measuring smaller cracks; as the cracks grow larger, they can be measured more 

accurately and with higher confidence. To account for this, a decreasing standard 

deviation term for the crack measurements could be assumed. 

The observations of the second variable, �̇� , are not direct measurements: �̇� 

observations are obtained by first measuring AE count rate and then using the model 

developed in previous chapter to correlate the AE count rate with crack growth rate. 
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There are two main sources of uncertainty in this process: first, the uncertainties 

involved in fitting a model to 𝑑𝑎 𝑑𝑁⁄  versus 𝑑𝑐 𝑑𝑁⁄  data; and second, the 

uncertainty associated with the measurement, filtration, feature extraction and the 

processing of AE signals. Characterizing all these sources of uncertainty is itself a 

separate research problem that requires further experimentation under more 

controlled conditions. Here it was assumed that the scatter in the 

𝑑𝑎 𝑑𝑁⁄  versus 𝑑𝑐 𝑑𝑁⁄  data, as captured by parameter 𝜎 in the regression analysis, 

reflects all the uncertainties in the crack growth rate measurement. It was further 

assumed that this noise term is constant throughout the process. The covariance of the 

measurement noise was selected as 𝑅 = �9𝑒
−3 0

0 5𝑒−6
�
2
 based on what was discussed 

above. 

The process noise can be characterized based on the uncertainties associated with the 

model structure as well as the model parameters. In section  4.4 we showed how the 

uncertainty over model parameters 𝐶 and 𝑚 can be determined based on test data. 

Here it was assumed that the uncertainty over model parameters was the only factor 

that contributed to the process noise and therefore, the covariance of the process noise 

was selected as 𝑄 = �0 0
0 2𝑒−6�

2
 accordingly. Note that the first element (𝑞11) that 

corresponds to the standard deviation of the process noise for 𝑎 was selected as zero; 

in this formulation, the uncertainty over 𝐶  and 𝑚  will first affect the estimated �̇� 

directly and then, propagate to the estimation of 𝑎  due to the coupling of state 

variables as defined in (  5.24 ).  
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The relative contribution of the process model and the observations to the final 

estimated states is determined based on the values in the Kalman gain matrix (see 

equation (  5.20 )). For instance, for a given state variable, a combination of noisy 

observations and a clean (less noisy) process model results in an estimated state that 

is mainly influenced by the process model. On the other hand, if the process model is 

too noisy and the observations are clean, the Kalman gain associated with those 

observations will have a large value, and therefore, the final estimated state would be 

highly influenced by these observations.  

To demonstrate this, assume that 𝑄 = �0 0
0 2𝑒−6�

2
 and 𝑅 = �9𝑒

−1 0
0 5𝑒−5

�
2

 which 

means that the observations are noisier than what was first assumed (i.e., larger 

standard deviation for both 𝑎 and �̇� measurements), while the process noise is kept as 

before. 

Noisier observations will play a weaker role in the updating process, since their 

corresponding Kalman gain value is negligible. This is clearly shown Figure  5.9 

(top), where the red line, which is the estimated crack size, falls on top of the blue 

line, which is the crack growth trajectory solely based on the process model. Both the 

crack size observations and the crack growth rate observations have practically no 

influence on the estimated state. This is also clear from Figure  5.9 (bottom), where 

the estimated crack growth rate state (red line) is not influenced by the observed rate 

(green line). The red line in this figure shows the estimated rate as calculated 

according to the process model (equations (  5.24 ) and (  5.25 )) without being updated 

by any AE-based observations. The estimated rate in this figure has an increasing 
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trend as the test progresses in time, which is expected because under constant loading 

condition the crack growth rate increases as the crack becomes larger in the specimen. 

Now we look at the other end of the noise spectrum, where the observations play a 

very strong role in the estimation process. To demonstrate this, consider the same 

estimation problem as before but with noise covariance matrices equal to 𝑄 =

�0 0
0 2𝑒−5�

2
 and 𝑅 = �9𝑒

−1 0
0 2𝑒−6

�
2
. Similar to the previous example, the crack size 

observations have a large standard deviation and therefore weak influence on the 

estimated state. For the second state variable, a large process noise combined with 

small observation noise significantly increases the effect of crack growth rate 

observations on both the second and first state variables. The result for this 

combination of the process and the observation noise is given in Figure  5.10. In 

Figure  5.10 (top) the red line, which is the estimated crack size, falls on top of the 

green line, which is the AE-based crack growth trajectory. In other words, the 

estimated crack size here is based only on the observed (through AE) crack growth 

rates and not the empirical process model (Paris crack growth equation). Figure  5.10 

(bottom) shows the estimated crack growth rate (red line), which closely matches the 

rate observations (green line) obtained through the previously developed AE method. 
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Figure  5.9 – The effect of excessive observation noise on the crack size estimation (top) and 

the crack growth rate estimation (bottom). 
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Figure  5.10 – Results of estimation problem for the case where the estimated states are highly 

influenced by the AE-based crack growth rate observations. 
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In both examples above, the crack size observations were assumed to be highly 

uncertain and therefore did not influence the estimated states. Figure  5.11 shows the 

crack size estimation results for the above examples but this time with reduced 

uncertainty for the periodical crack size observations. The result in Figure  5.11 (top) 

is based on 𝑄 = �0 0
0 2𝑒−6�

2
 and 𝑅 = �9𝑒

−3 0
0 5𝑒−5

�
2
, while the result in Figure  5.11 

(bottom) is based on 𝑄 = �0 0
0 2𝑒−5�

2
 and 𝑅 = �9𝑒

−3 0
0 2𝑒−6

�
2
. The only difference 

with previous examples is that the standard deviation for the crack size observations 

is reduced from 9𝑒−1 to 9𝑒−3, thereby increasing its effect in the estimation process. 

In Figure  5.11 (top), the rate of the crack growth follows that of the fracture 

mechanics-based process model between crack size observations (depicted by black 

stars). Whenever a new crack size observation is received, because of its low noise 

and therefore large Kalman gain value, the crack size estimate is updated to reflect 

the effect of these observations. A similar effect is shown in Figure  5.11 (bottom), but 

here the rate of the crack growth follows that of the AE-based crack growth model 

(i.e., based on rate observations) between crack size observations. 

The examples above were presented to show the flexibility of the proposed fusion 

approach and how it performs in extreme cases. The last example also highlights the 

importance of periodic crack size inspections. The benefit of using crack growth rate 

observations in the fusion process is that the confidence in the crack size estimation 

between the periodic inspections is increased, and therefore, the frequency of such 

expensive inspections can be safely reduced. 
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Figure  5.11 – Effect of periodic crack size observations on the estimated crack size for cases 
where the crack growth rate observations have negligible (top) and strong (bottom) influence. 
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5.5.1. Prognosis approach 

So far a formal approach has been presented for utilizing multiple sources of 

information (including theoretical and empirical models as well as periodic 

inspections and real-time health monitoring data) produce the best estimate for the 

state variables of interest: crack size and crack growth rate. The next logical step 

would be to predict how these states evolve in time (prognosis) and then extract 

useful features from such predictions that can be used for high-level decision support 

(e.g. fleet management). 

The most straightforward method for prognosis is to use the process model and 

project forward in time the estimated values of the state variables. To do so, the same 

Kalman filter formulation as before can be used, but this time with no observations 

and therefore no updating steps. The Monte Carlo simulation method can also be used 

to predict future values of state variables given the current estimates of states and 

model parameters.  

Here the Monte Carlo approach will be used because of its versatility; in Monte Carlo 

simulation, the normality assumption of state variables can be released, and the 

uncertainty in model parameters can also be accounted for via sampling. It is also 

easier to account for random amplitude loading scenarios in crack growth simulation. 

Of interest here is simulating the crack growth trajectory as a function of applied 

loading cycles.  A schematic representation of this process is presented in 

Figure  5.12.  

In order to predict the value of state variables at a future time, the crack size 

distribution at current time is needed (to be used as the initial crack size distribution 

in the simulation) as well as an updated (based on all past observations, 𝑍𝑘) set of 
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model parameters. In other words, the effect of all past observations from the 

beginning until when the prognosis starts is manifested in the crack size distribution 

𝑎𝑘 and the updated model parameters that are passed on to the prognosis algorithm. 

  
Figure  5.12 – Schematic representation of the state estimation plus prognosis process 

 

Estimating model parameters C and m based on observations of 𝒂𝒌 and �̇�𝒌 

In this section we describe how one can recursively use the history of the estimated 

state variable, 𝑎𝑘 and �̇�𝑘, to find the parameters 𝐶 and 𝑚 via regression. 

For any crack growth trajectory that follows the Paris equation, the model parameters 

𝐶 and 𝑚  are the intercept and slope of the regression line in the 

log𝑑𝑎 𝑑𝑁⁄ versus logΔ𝐾 plot. Therefore, at any given time, the history of estimated 

state variables 𝑎𝑘 and �̇�𝑘 can be used to calculate the model parameters that, if used, 

would have resulted in the observed crack growth trajectory. We first use 𝑎𝑘  to 

calculate the corresponding Δ𝐾𝑘  value and then use regression analysis to find the 

intercept 𝐶 and the slope 𝑚 of the log �̇�𝑘 versus logΔ𝐾𝑘 line. Both 𝑎𝑘 and �̇�𝑘 are the 

outcome of the Bayesian updating process and therefore have been influenced by both 

the process model and past observations. 
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At the beginning of the test there are few data points, and therefore the outcome of 

regression is not reliable13

Figure  5.13

. As the crack grows and more data points populate the 

log �̇�𝑘 versus  logΔ𝐾𝑘 plot, the calculated 𝐶 and 𝑚 would be more accurate. This is 

depicted in . 

 
Figure  5.13 – log �̇� versus logΔ𝐾 plotted at different elapsed cycles 

The estimated model parameters as a function of elapsed cycles are plotted in 

Figure  5.14. It is evident that as the number of elapsed cycles increases, both 

parameters start to converge; the final parameter values represent a crack growth 

model that takes into account all sources of available information until that time step. 

The value of these parameters evolves through the updating process; the final 

                                                 
13 Bayesian regression technique can be used here as well; in that case, the estimated uncertainty 
bounds of the parameters will be wide at the beginning and will shrink as more data is used in the 
regression process. 
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estimated values in this case were 𝐶 = 4.88𝑒−8  and 𝑚 = 2.39,  while the initial 

values used in the process model (not influenced by any observations) were 𝐶 =

3.2𝑒−8  and 𝑚 = 2.53 . In this particular case, the evidence (both 𝑎 and �̇� 

observations) indicated a higher growth rate than what was suggested by the initial 

model parameters (see Figure  5.6 (top)). 

 

 
Figure  5.14 – Parameters C (top) and m (bottom) estimated as a function of elapsed cycles 
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Prediction of crack size distribution at future time steps 

So far this dissertation has discussed how a combination of process model and 

various observations can be used to obtain an updated estimate of the crack size 

distribution. To use this information as a management decision tool (e.g., to optimize 

a maintenance policy based on the condition of the structure rather than on fixed 

conservative maintenance intervals), it is necessary to predict the future crack size 

distribution as a function of elapsed cycles. 

At a given time step 𝑘, the process model can be used to simulate future crack growth 

trajectories (Monte Carlo simulation) starting from the updated crack size 

distribution, 𝑎𝑘 , and using the updated model parameters. This process is 

demonstrated in Figure  5.15, in which the predicted future crack growth trajectory is 

shown by the cyan line. Results from Figure  5.6 and Figure  5.14 are used to define 

the initial crack size distribution and the updated model parameters used in this case. 

Here the critical crack size—the size beyond which the crack growth becomes highly 

accelerated and non-stable and the structure could fail quickly afterwards—is selected 

as 2" and is shown with a horizontal red line. 

Once the crack growth trajectory is predicted, it can be used in multiple ways to 

provide management decision support. The first piece of information that can be 

extracted from this result is the estimated RUL of the structure based on the current 

predicted growth trajectory and the selected critical crack size. This information is 

obtained by “slicing” the predicted crack growth trajectory (and its confidence 

bounds) horizontally at the selected critical crack size value. This results in a 
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probability distribution function representing the RUL at the selected critical crack 

size, as shown in blue in Figure  5.15. 

The other piece of information often useful in decision making is the estimated 

probability of failure—i.e. the probability that the predicted crack size exceeds the 

critical limit—as a function of elapsed cycles (or any other measure of time or 

structural usage). This can be obtained by slicing the predicted crack growth 

trajectory (and its confidence bounds) in the vertical direction to obtain the crack size 

distribution as a function of elapsed cycles and then calculating the probability of 

exceedance (PoE) corresponding to the critical crack size. This probability is then 

compared with the maximum tolerable probability of failure to decide when the 

structure should be removed from service. Figure  5.17 shows the calculated PoE as a 

function of loading cycles based on the result in Figure  5.15. Note that in this case, 

the PoE goes from negligible values to very high values in a very short period of time 

(few thousand cycles); this is due to the high growth rate predicted by the prognosis 

module and the critical crack size as depicted in Figure  5.15.  

The prognosis result strongly depends on the state of the system at the start of 

prediction. In Figure  5.16, the predicted RUL distribution is compared for two cases: 

case I where prognosis is started at around 35,000 cycles, and case II, where it starts 

later at around 60,000 cycles. 
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Figure  5.15 – Prognosis result: the estimation of crack size is projected forward and the remaining useful life distribution is obtained 

based on the assumed critical crack size. 
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Figure  5.16 – Comparison of the prognosis results for early (Case I) and late (Case II) starting points. 
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Figure  5.17 –  Probability of Exceedance as a function of loading cycles 
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estimated crack size distribution and the model parameters are updated with a 

significant portion of field and AE observations, which results in a higher predicted 

rate of crack growth. It is also clear from this figure that the RUL in case II has a 
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distribution at the beginning of the Monte Carlo simulation. 
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the observations. For example, if the observations suffer from systematic bias (e.g. 

always over-estimated by 20%) then the more the estimated states are updated, the 

farther the final prediction results will get from the true life of the structure. 

5.6. Summary 

This chapter started with a high-level discussion of recursive Bayesian estimation and 

then continued with a more detailed discussion of Kalman filter and its application in 

knowledge fusion.  

In this chapter, recursive Bayesian estimation technique was used to fuse the outcome 

of the empirical crack growth model with crack size observations as well as the online 

crack growth rate observations. 

A state-space formulation of the crack growth model was proposed with crack size, 𝑎, 

and crack growth rate, �̇� , defined as state variables. The state variables were 

recursively updated based on available observations from periodic NDI inspections 

and the AE-based SHM system. The approach was implemented and estimation 

results based on data from previous chapters of this dissertation were presented. 

In the proposed framework, the model parameters were also updated to match the 

updated crack growth trajectory. The model with updated parameters was then used 

for prognosis; the RUL of the structure and PoE with respect to a critical crack size 

were calculated assuming a known future usage profile. 
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Chapter 6: Summary, Contributions and 

Suggested Future Research 
 

6.1. Summary 

Many aerospace and civil infrastructures currently in service are at or beyond their 

design fatigue-life limit. The ability to assess and predict the state of damage is 

critical in ensuring the structural integrity of such aging structures. 

Structural health monitoring (SHM) is an emerging research area for online 

assessment of structural integrity using appropriate NDI technology. SHM could have 

a major contribution to the structural diagnosis and prognosis: when SHM is 

performed in coordination with existing offline NDI practices, the structural health 

monitoring information collected in between current inspection intervals would 

provide supplementary data that would help alleviate some the problems associated 

with conventional inspection practices. 

This research focused on fatigue crack growth monitoring in metallic structures using 

AE technology. In the first part of the dissertation, crack growth experiments were 

performed on standard CT specimens in a laboratory environment; the AE signals 

generated during the crack growth process were collected using the sensors installed 

on the specimen. Various filtrations were applied to the AE data to distinguish crack 

growth-related signals from extraneous noise. The resulting data suggests a log-linear 

relationship between fracture parameters, da dN⁄  and ΔK, with the AE feature dc dN⁄ , 

which is consistent with the findings of other researchers in the field. 
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In order to use AE information for quantitative crack growth monitoring, a flexible 

statistical model was proposed to describe the relationship between the AE features 

and fracture parameters. The Bayesian regression technique was used to estimate the 

model parameters (and characterize their corresponding uncertainties) using the 

experimental data obtained in the first part. 

The developed model was then used to calculate two important quantities that can be 

used for structural health management:  

• An AE-based instantaneous damage severity index: the index was defined as 

the probability that a growing crack will transition from stable growth regime 

to rapid crack growth and ultimately failure. 

• An AE-based estimate of the crack size distribution at a given point in time, 

assuming a known initial crack size distribution: in this approach, the rate of 

crack growth, da dN⁄ , was directly estimated based on input AE data. The 

crack growth trajectory was calculated starting from a known initial crack size 

and using the estimated growth rate. 

As the final step of this research, a formal Bayesian framework was proposed for 

knowledge fusion; in this framework the crack size distribution predicted by an 

empirical model was recursively updated using SHM monitoring information as well 

as periodic inspection results. The model parameters will also adapt to the data which 

will result in enhanced prognosis results. 
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6.2. Contributions of this Work 

The main contributions of this work can be summarized as follows: 

• The feasibility of crack growth monitoring using AE technique is 

demonstrated. A flexible statistical model is proposed to represent the 

relationship between select AE features and key fracture parameters. Model 

parameters, along with their associated uncertainties, are estimated using 

experimental data obtained as part of this research. 

• A quantitative approach is developed for assessing the severity of structural 

damage due to existence of fatigue cracks, based on information from the AE 

monitoring system. 

• A probabilistic approach is proposed to estimate the crack size distribution as 

a given time, based on structural health monitoring information provided by 

the AE technique (assuming an initial crack size distribution). 

• A hybrid structural health management framework is proposed; in this 

framework, the probability distribution of crack size and the probability 

distribution of crack growth rate are estimated based on the information from 

the following sources: (a) empirical crack growth model, (b) structural health 

monitoring, and, (c) periodic NDI inspections. 

o The approach presented here can handle noisy observations received at 

arbitrary frequencies. It can also readily handle additional sources of 

information. 

o As part of this approach, the parameters of the empirical model are 

updated to reflect the new information; the updated model is then used 
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for prognosis, i.e., the remaining useful life (RUL) and the risk 

associated with further utilization of the structure is calculated as a 

function of applied loading cycles. 

6.3. Suggestions for Future Research 

At the beginning of this dissertation, it was mentioned that the scope of this research 

does not include addressing the challenges of implementing the approaches presented 

here in fielded applications. In this section some ideas for extending this work to 

more realistic structures and use cases are presented: 

• An extensive set of experiments is required to confirm that the approach 

proposed here for using AE technique for crack growth monitoring is valid 

for: (a) smaller crack sizes, (b) more complex geometries, and, (c) random 

amplitude loading profiles. 

The main challenge, as always, will be to filter out the extraneous signals to 

distinguish crack-related AE signals—this becomes considerably more 

difficult in complex geometries. 

• The correlation between fracture parameters and other non-conventional AE 

parameters (besides count rate) should be investigated. New features can be 

extracted from AE waveforms that could potentially be less sensitive to the 

change in the environment, and therefore, perform better in field applications. 

• An optimization problem can be set up to find the optimum thresholds for 

filtering AE signals based on their feature values; the threshold values can be 

selected such that features extracted from the filtered signals will have the 
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maximum correlation with the fracture parameters of interest. Genetic 

Algorithm (GA) is a good candidate for solving this problem.  

• The outcome of this research could be used directly to optimize the periodic 

inspection intervals. The optimum inspection intervals can be determined by 

solving a multi-objective optimization problem to minimize the risk while 

maximizing the time between inspections. 

• One technique suggested in the literature to estimate the size of a crack using 

AE is to use triangulation to locate the AE source (i.e. the tip of the crack) 

using multiple sensors. If implemented, the crack size information obtained 

from this method could be used as an additional source of information in the 

proposed Bayesian fusion framework. 
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