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Different information technology concepts are related in complex ways. How can 

the relationships among multiple IT concepts be described and analyzed in a scalable way? 

It is a challenging research question, not only because of the complex relationships 

among IT concepts, but also due to lack of reliable methods. Seeking to meet the 

challenge, this dissertation offers a computational approach for analyzing, visualizing, 

and understanding the relationships among IT concepts. 

The dissertation contains five empirical studies. The first study employs 

Kullback-Leibler (KL) divergence to compare the semantic similarity of forty-seven IT 

concepts discussed in a trade magazine over a ten-year period. Results show that the 

similarity of IT concepts can be mapped in a hierarchy and similar technologies 

demonstrated similar discourses. The second study employs co-occurrence analysis to 

explore the relationships among fifty IT concepts in six magazines over ten years. Results 

show general patterns similar to those found in the first study, but with interesting 

nuances. Together, findings from the first two studies imply reasonable validity of this 

 



computational approach. The third study validates and evaluates the approach, making 

use of an existing thesaurus as ground truth. Results show that the co-occurrence-based 

IT classification outperforms the KL divergence-based IT classification in agreeing with 

the ground truth. The fourth study is a survey of information professionals who help 

evaluate this computational approach. Results are generally consistent with the findings 

in the previous study. The fifth study explores the co-occurrence analysis further and has 

generated IT classifications very much similar to the ground truth. 

The computational approach developed in this dissertation is expected to help IT 

practitioners and researchers make sense of the numerous concepts in the IT field. 

Overall, the dissertation establishes a good foundation for studying the relationships of IT 

concepts in a representative, dynamic, and scalable way. 
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Chapter 1: Introduction and Literature Review 

 

Because of their complication and varieties, different IT concepts are related in 

complex ways (Wang, 2009). How can the relationships among multiple IT concepts be 

described and analyzed? It is a difficult question, not only because of the complex 

relationships among IT concepts, but also due to the lack of reliable methods to describe 

and analyze the relationships in a scalable way. In the current status of the IT concept 

literature, most studies employ single-concept research designs, leaving the relationships 

among IT concepts underexplored (Fichman, 2004). On the other hand, the few multi-

concept studies have had to rely on domain experts to evaluate IT concept relationships 

(Ein-Dor & Segev, 1993; Wang, 2009). Such expert evaluations are difficult to replicate, 

to generalize to other IT concepts, or to scale up to examine the relationships among a 

large number of IT concepts. In this dissertation, a computational approach is offered to 

examine the relationships among multiple IT concepts. 

1.1 Limitations in Current IT Concept Studies 

Methodologically, most IT concept studies were designed to examine only one or 

a few concepts, owing to the difficulty in analyzing large-scale data on multiple concepts 

(Strang & Soule, 1998). On the other hand, in a few multi-concept study, Ein-Dor and 

Segev (1993) surveyed 17 IT concepts in the Information Systems literature. They 

identified the concepts’ definition according to 31 attributes and 27 functions, and then 

described the concepts by two bit-vectors: a vector of attributes and a vector of functions. 

Further they performed multidimensional scaling (MDS) to visualize the relationships 
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among the concepts in terms of their relative similarity/dissimilarity. Based on the MDS 

plot, the 17 concepts were classified and their relationships explored. However, their 

study faces two challenges. First, the choice of attributes or functions is usually a 

common problem. According to Mayr (1942), there are three potential problems in the 

choice of attributes: (a) including irrelevant attributes, (b) omitting important attributes, 

and (c) redundancy or collinearity of chosen attributes. Besides, when the number of IT 

concepts increases or when more diversified concepts are included so that more attributes 

or functions are required to differentiate concepts, the effort drawn from human experts 

increases substantially. 

In view of the classification task of Ein-Dor and Segev’s study, I first review the 

definition of a proximity matrix, an input for visualization such as MDS and hierarchical 

clustering. After that, a computational approach using either KL-divergence or co-

occurrence analysis as a proximity measure is proposed to study multiple IT concepts.  

1.2 Proximity Matrix as an Input to Visualization 

A proximity matrix is a matrix of similarity or dissimilarity measures between a 

pair of entities. Generally, a proximity matrix can be generated in two ways (Carroll, 

Arabie, Chaturvedi, & Hubert, 2004). One is by derived measures which are from raw 

data coded in a matrix of entities by attributes (variables), then converted into a proximity 

matrix of entities by entities. Ein-Dor and Segev’s (1993) study falls into this category 

and its limitations are already mentioned above. The other is by “direct measures” of 

similarity or dissimilarity which can be judgments of pairwise similarities for pairs of 

entities. For example, Sireci and Geisinger (1992) had three content domain experts rate 

the similarity of 30 items. The task for each expert was to judge how similar the 30 items 
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are to each other in a 5-point Likert-type scale ranging from 1, “not at all similar”, to 5, 

“extremely similar.” The experts were not given any criteria on which to rate the 

similarity of the items. They rated the similarity of every pair and entered their ratings 

into a matrix. Since reciprocal comparisons were not necessary, each expert provided a 

30 x 30 lower-triangular matrix. Similarly, this way to construct a proximity matrix 

suffers from the scalability problem regarding the effort drawn from experts. A 30-item 

already requires 465 ( ) pairwise comparisons from each expert. The number of item-

item comparisons required will increase exponentially as the number of items increases. 

Besides, the quality of experts employed is important. For a proximity matrix to be 

representative, it is crucial that experts have knowledge of a certain content domain. 

30
2C

Contrary to the above limitations in constructing a regular proximity matrix, KL 

divergence and co-occurrence analysis can be calculated computationally for each pair of 

entities so that a proximity matrix of “direct measures” of similarity or dissimilarity can 

be formed. As described in more detail in the following chapters, KL divergence is a 

semantic similarity measure. Like the name “divergence” suggests, it can be a 

dissimilarity measure for a pair of entities. I did not find any literature using KL 

divergence to construct a proximity matrix for visualization. However, mutual 

information, a derivative of KL divergence, was used as a similarity measure for 

clustering (Kojadinovic, 2004; Kraskov, Stogbauer, Andrzejak, & Grassberger, 2005). 

On the other hand, a co-occurrence matrix can be considered as a proximity 

matrix of similarity measures (Burgess, Livesay, & Lund, 1998; Burgess & Lund, 2000; 

K. Lund, Burgess, & Atchley, 1995). It contains categorical information in that not only 

concrete nominal concepts but also grammatical concepts and abstract concepts can be 
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categorized (Burgess, et al., 1998; Kevin Lund & Burgess, 1996). Co-word analysis is of 

the similar concept used in social science. For example, Ding and her colleagues (2001) 

visualized the intellectual structure of the field of Information Retrieval during the period 

of 1987–1997. Co-word analysis was employed in their study to reveal patterns and 

trends in the IR field. Interestingly, they did not use a co-occurrence matrix directly as a 

proximity matrix. Instead, a proximity matrix was created based on that two words are 

rated similar if they have similar co-occurrence profile with all the other words within the 

co-occurrence matrix.  

1.3 Visualization of a Proximity Matrix 

With the help of either KL divergence or co-occurrence analysis, a proximity 

matrix can be calculated computationally. After that, the matrix can be visualized for 

classification. Multidimensional scaling and hierarchical clustering are techniques used to 

visualize proximities in a low dimensional space and a tree representation respectively. 

As the two techniques will be described in more detail in the following chapters, the 

benefits of the techniques are described below.  

In his introduction to the multidimensional scaling, Shepard (1972) argued that 

the value of spatial scaling techniques like MDS lies in their capability “(a) to uncover 

the hidden pattern or structure of perceptions, and (b) to represent this structure in a form 

that is much more accessible to the human eye - as a picture or map”. On the other hand, 

clustering is considered a way of learning (Manning & Schütze, 1999). In clustering, 

similar objects are grouped together in a cluster. Therefore, we can generalize from what 

we know about some members of the cluster to other members we are not sure about.  
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1.4 Classification and Relationships of IT Concepts 

According to Sokal (1974), classification is defined as “the ordering or 

arrangement of objects into groups or sets on the basis of their relationships” (p. 1116). 

The relationships can be based on “observable or inferred properties” (Sokal, 1974, p. 

1116). In addition, Sokal (1974) stated about the purpose of a classification:  

The paramount purpose of a classification is to describe the structure and 

relationship of the constituent objects to each other and to similar objects, and to 

simplify these relationships in such a way that general statements can be made 

about classes of objects. (p. 1116)  

As for classification techniques, they include cluster analysis and ordination 

(Sokal, 1974, p. 1123). As a result, the visualization techniques are classification 

techniques as well; hierarchical clustering belongs to cluster analysis and 

multidimensional scaling is an ordination technique. In the study, the techniques are 

applied to a proximity matrix constructed by either KL divergence or co-occurrence 

analysis to study the relationships of IT concepts. As a result, relationships here are not 

meant to be those between a pair of IT concepts, such as competition, complement, and 

substitution, etc. Instead, relationships in the study are about general statements made 

about classes of objects in classification. For example, the relationships in a list of IT 

concepts may include enterprise IT-related class and Web2.0-related class.  

1.5 Summary 

According to the literature review about IT concept studies, most studies 

examined only one or a few concepts due to the difficulty in analyzing large-scale data. 
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Besides, others studying multiple concepts constantly faced the limitations in scalability 

due to expert effort. As a result, the dissertation aims to make a contribution in applying 

KL divergence or co-occurrence analysis in a computational approach to study multiple 

IT concepts in terms of their similarity and relationships.  

The following chapters contain five empirical studies, unified under one overall 

research question: How can the relationships among multiple IT concepts be described 

and analyzed in a representative, dynamic, and scalable way? The first study employs 

Kullback-Leibler (KL) divergence to compare the semantic similarity of forty-seven IT 

concepts discussed in a trade magazine over a ten-year period. Using hierarchical 

clustering, I have found that the similarity of the concepts can be mapped in a hierarchy 

and similar technologies demonstrated similar discourses. The second study employs co-

occurrence analysis to explore relationships among fifty IT concepts discussed in six 

magazines over ten years. Results from hierarchical clustering and multidimensional 

scaling show general patterns similar to those found in the first study, but with interesting 

nuances. Together, findings from the first two studies imply reasonable validity of this 

scalable computational approach. The third study makes use of an existing thesaurus as 

ground truth to rigorously validate and evaluate this approach. Results show that the co-

occurrence-based classification outperforms the KL divergence-based classification in 

agreeing with the ground truth classification. The fourth study conducts a survey to 

compare the three classifications: two automatic classifications and the ground truth. 

Results from the survey correspond to those in the third study. The fifth study further 

explores the co-occurrence analysis and makes an improvement to the co-occurrence-

based classification.  
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Chapter 2: Exploring the Relationships among IT concepts: a Scalable 

Computational Approach Using KL Divergence and Hierarchical 

Clustering 

 

This chapter is based on computational analysis of discourse to examine the 

relationships among IT concepts. Specifically, Kullback-Leibler (KL) divergence is 

employed to compare the semantic similarity of forty-seven IT concepts in a trade 

magazine InformationWeek over a decade. Using hierarchical clustering, the similarities 

of the technologies can be depicted in hierarchies, and that similar technologies can be 

clustered into meaningful groups. The results establish the validity of the approach and 

demonstrate its scalability and richness. 

2.1 Introduction 

Practitioners who consider adopting and using new IT concepts and scholars who 

study the diffusion of IT concepts face a constant challenge: At any one time, we 

confront numerous seemingly promising IT concepts. Some of them become widely 

adopted and used, making significant contributions to economic prosperity and social 

welfare; whereas others fade away, leaving little trace behind. While it has been argued 

that various IT concepts are related to varying degrees and so are their diffusion 

trajectories (Wang, 2009), it is difficult to make sense of the relationships among IT 

concepts. 

For example, here is a partial list of contemporary IT concepts: Service-oriented 

architecture (SOA), web services, open source software (OSS), web 2.0, YouTube, 
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iPhone, blogs, and utility computing. How are they related? How are their diffusion 

trajectories related? These are difficult questions. Indeed, IT concepts are related in 

complex ways. First, a broader concept may be comprised of narrower, more specific 

concepts. Second, different concepts may represent the same core idea. Third, concepts 

may compete with each other as alternative solutions to similar problems or for the 

attention from the same group of people or organizations. Finally, concepts may 

complement each other to accomplish common tasks. Over time, these relationships may 

change, making it even harder to interpret. 

Researchers of IT concept are not well equipped to describe and analyze the 

complex and evolving relationships among IT concepts. On the one hand, most studies 

employ single-concept research designs, leaving the relationships among IT concepts 

underexplored (Fichman, 2004). On the other hand, the few multi-concept studies have 

had to explicitly or implicitly rely on domain experts to evaluate IT concept relationships 

(Ein-Dor & Segev, 1993; Wang, 2009). Such expert evaluations are difficult to replicate, 

to generalize to other IT concepts, or to scale up to examine the relationships among a 

large number of IT concepts. Therefore, considering the current status of the IT concept 

literature, this research question is raised: How can the relationships among a large 

number of IT concepts be described and analyzed in a scalable way? 

2.2 Data Collection 

This chapter focuses on a particular IT trade magazine, InformationWeek, as the 

data source. All of the articles were downloaded during a ten-year period (1998-2007) in 

InformationWeek using the Lexis/Nexis online database. Meanwhile, a list of 47 IT 

concepts was compiled (Table 2.1), ranging from enterprise software (e.g., CRM) to 
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personal gadgets (e.g., iPod), from abstract concepts (e.g., artificial intelligence) to 

concrete products/services (e.g., YouTube), and from highly popular (e.g., e-business) to 

less well-known concepts (e.g., digital subscriber line – DSL). Admittedly, this list is ad 

hoc, but it serves the illustration purpose well because the list covers a broad range of IT 

concepts in the examination period. Then, all paragraphs that contain any of the IT 

concepts on the list were extracted from the InformationWeek articles. In doing so, 

possible labels for each concept, plural forms, and acronyms unique to the concept were 

considered. In total, 71,113 paragraphs were extracted, with about 1,500 paragraphs on 

average for each concept.  

Table 2.1: List of IT Concepts 

AI Artificial Intelligence MP3 MP3 player 
ASP Application Service Provider MySpace MySpace 
ATM Automated Teller Machine OLAP Online Analytical Processing 
BI Business Intelligence OSS Open Source Software 
Blog Blog Outsource Outsourcing 
Bluetooth Bluetooth PDA Personal Digital Assistant 
CAD Computer Aided Design RFID Radio Frequency Identification
CRM Customer Relationship Management SmartCard Smart Card 
DigiCam Digital Camera SCM Supply Chain Management 
DLearn Distance Learning SFA Sales Force Automation 
DSL Digital Subscriber Line SocNet Social Networking 
DW Data Warehouse SOA Service-Oriented Architecture 
eBiz eBusiness Telecommute Telecommuting 
eCom eCommerce TabletPC Tablet PC 
EDI Electronic Data Interchange UtiComp Utility Computing 
ERP Enterprise Resource Planning Virtualization Virtualization 
GPS Global Positioning System VPN Virtual Private Network 
Grpware Groupware Web2.0  Web 2.0 
IM Instant Messaging WebServ Web Services 
iPhone iPhone WiFi Wi-Fi 
iPod iPod Wiki Wiki 
KM Knowledge Management Wikipedia Wikipedia 
Linux Linux YouTube YouTube 
Multimedia Multimedia   
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2.3 Data Analysis 

To make sense of the relationships among the IT concepts, this chapter explores 

the similarity of the concepts. The approach is to infer concept similarity from the 

semantic similarity of the discourses about the concepts. Specifically, Kullback-Leibler 

(KL) divergence, a probabilistic measure for differences in the pattern of word choices, is 

employed as a proxy for comparison of the semantic similarity of any two collections of 

paragraphs extracted from InformationWeek. Based on KL divergence results, 

hierarchical clustering analysis is used to aggregate the concepts in a hierarchical 

structure.  

2.3.1 KL Divergence 

Originally introduced in 1951 (Kullback & Leibler, 1951) and considered a 

foundation of information theory (Cover & Thomas, 1991), KL divergence is a statistic 

that quantifies in bits how close a probability distribution P is to another distribution Q. 

For probability distributions of discrete random variables, the KL divergence of Q from P 

is defined as: . ( || ) ( ) log( ( ) / ( ))D P Q P i P i Q iKL i
∑=

In the dataset, each IT concept is represented by concatenating all of the 

paragraphs mentioning the concept. The use of language in the paragraphs constitutes a 

probability distribution of normalized unigram word counts and the KL divergence for 

each pair of IT concepts was calculated. The calculation generated an asymmetric 47x47 

matrix with each column and row representing one of the 47 IT concepts. After 

symmetrization (by averaging the KL divergence in each direction, i.e., ( || ) ( || )
2

KL KLD P Q D Q P+ ), 

the value in each cell of the matrix defines a distance between a pair of IT concepts. In 
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order to group the concepts and visualize their relationships, hierarchical clustering 

analysis was performed on the symmetrized KL divergence matrix. 

2.3.2 Hierarchical Clustering 

Cluster analysis is the process of grouping objects into unknown clusters such that 

the within-group variation is minimized and the between-group variation maximized 

(Everitt, Landau, & Leese, 2001). The agglomerative hierarchical clustering method 

groups objects on a series of levels, from the finest partition, in which each individual 

object forms its own cluster, and successively combines smaller clusters into larger ones 

until all objects are in one cluster. Agglomerative hierarchical clustering employs an 

aggregation criterion, or “linkage rule,” to determine how the distance between two 

clusters should be calculated based on the distance scores of pairs of objects. The most 

well known aggregation criteria are single link, complete link, and average link (Hansen 

& Jaumard, 1997). The distance between two clusters is represented by the minimum, 

maximum, or average distance between any pair of objects, one object from each cluster. 

In single link clustering, two clusters with the smallest minimum pairwise distance are 

merged in each step. In complete link clustering, two clusters with the smallest maximum 

pairwise distance are merged in each step. And average link clustering is a compromise 

between the other two methods. The complete link was used in this study because it 

produces small and tight clusters (Manning & Schütze, 1999; van Rijsbergen, 1979). 

2.4 Results 

The clustering analysis generated a hierarchy of clusters in a dendrogram (Figure 

2.1), where vertical lines show joined clusters and the position of the lines on the 
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horizontal scale from 1 to 25 indicates the distance at which clusters are merged. By 

inspecting the dendrogram, five natural clusters are identified, all of which merged 

between 15 and 20 in the scale. These clusters are indicated by the five intersection points 

between the dendrogram and the vertical dotted line in Figure 2.1. 

Take Cluster 1 in the dendrogram as an example. It includes 26 IT concepts. Most 

of them are enterprise IT applications. The hierarchical structure of this large cluster is 

shown in the dendrogram. For example, at the next granular level (around 15 in the 

horizontal scale), there exist two sub-clusters: one consisting of service-oriented IT 

concepts such as OSS and web services and the other representing more traditional IT 

concepts, which may be further differentiated at lower levels. Within the latter sub-cluster, 

for example, the discourse on e-business is very similar to that on e-commerce. Similar 

relationships seem to exist in concept pairs such as CRM and ERP, and knowledge 

management (KM) and groupware. 

Then, the number of paragraphs mentioning each IT concept was counted every 

year. The number of paragraphs about a concept indicates the prevalence or popularity of 

the concept in the discourse. For example, Figure 2.2 shows that the popularity curves of 

the pair of very similar concepts (e-business and e-commerce) followed very similar 

patterns: both concepts enjoyed peak popularity around 2000 and then have lost much 

momentum since the dot-com crash. In contrast, the popularity curves of other very 

similar concepts followed very different patterns. Consider Figure 2.3, which shows the 

evolutionary trajectories of web services and SOA. The negatively correlated curves in 

the figure seem to suggest that the newer SOA replaced the older web services. 
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Cluster 2 includes five IT concepts: DSL and virtual private network (VPN) are 

telecommunication technologies which can be applied to the other three concepts in the 

cluster. As Figure 2.4 shows, DSL and VPN had very similar popularity trajectories.  

Only three concepts form Cluster 3 and four concepts form Cluster 5. These two 

clusters correspond to the so-called web 2.0 technologies that have become highly 

popular in recent years. Concepts in Cluster 3 share social network as a common feature. 

Cluster 5 represents text-based web 2.0 applications with user generated contents. The 

popularity curves in Figures 2.5 and 2.6 show that the concepts in these two clusters have 

generally experienced dramatic upswings circa 2004. Despite the similarity, the patterns 

of term use in the two clusters (as measured by symmetrized KL divergence) do not 

converge at the next level of aggregation. This interesting finding seems to suggest the 

substantial diversity of web 2.0 technologies.  

Lastly, Cluster 4 has nine concepts all related to mobile or wireless technologies. 

Some, such as bluetooth and Wi-Fi, are the underlying mobile technologies. Others, such 

as TabletPC and iPod, are the devices enabled by the wireless/mobile technologies. 

Figure 2.7 shows that the rising popularity of iPhone coincided with the dwindling 

popularity of iPod, suggesting, once again, that the new replaces the old.  

2.5 Summary 

The results show that similar IT concepts can be identified in the analysis. Also, 

the popularity curves of a pair of similar IT concepts seem to suggest a certain 

relationship among the pair, which can further be investigated. In addition, the results 

from the KL-divergence and clustering analysis are consistent with our a priori 

knowledge about the relationship among these IT concepts. Such consistency provides 
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reasonable confidence in the validity of the study’s computational approach to 

understanding IT concept relationships.  
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Figure 2.1: Hierarchical Clustering Result on the KL Divergence Matrix 
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Chapter 3: Building an IT Taxonomy with Co-occurrence Analysis, 

Hierarchical Clustering, and Multidimensional Scaling 

 

This chapter makes use of co-occurrence analysis as a substitute for KL 

divergence in Chapter 2. According to the literature, a co-occurrence matrix carries 

categorical information. Therefore, it would be interesting to compare the results from the 

co-occurrence matrix with those from KL divergence. Co-occurrence of terms (or co-

word analysis) has also been used in various fields such as computational linguistics and 

information retrieval to study the relationships among terms. Instead of one trade 

magazine in Chapter 2, six magazines are used for better representation. The results are 

interesting in that many groups identified are very similar to those found in Chapter 2. 

The results also suggest that the method could help build an IT taxonomy.  

3.1 Introduction 

The proliferation of information technologies (ITs) has been accompanied by the 

proliferation of information in recent decades. Opportunities emerge from such 

proliferation of information and technologies, making the iField an increasingly 

prominent and vibrant area for research and practice. At the same time, just as the 

explosion of information presents serious challenges in information management, the 

seemingly everlasting propagation of numerous ITs poses challenges in IT management. 

The bewildering amount of IT confronting IT practitioners and researchers renders it a 

challenging task to make sense of the technologies, in order to effectively manage or 

productively study them. In practice, IT management has been traditionally undertaken 
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along functional lines such as hardware, software, networking, and services. Streams in 

IT management research, on the other hand, have mapped well onto traditional categories 

in practice, drawing insights from various reference disciplines such as computer science, 

psychology, economics, and sociology. However, recent technological and managerial 

advances have blurred the boundaries of traditional categories. For example, software and 

service have converged under the rubric of “software as a service” (SaaS). Moreover, 

because different types of IT may entail different cost structures, work processes, and 

potential returns, different ITs may require different management practices and different 

research methodologies. Hence, contemporary IT management practices (such as IT 

portfolio management) and the increasing emphasis on interdisciplinary research call for 

rigorous and up-to-date classifications, or taxonomies, of IT. 

3.1.1 Taxonomy for Information Management 

Taxonomy is a classification scheme (often hierarchical) of information 

components (for example, terms, concepts, graphics, sounds) and their interrelationships 

(Harris, Caldwell, Linden, Knox, & Logan, 2003). Taxonomy creation is usually a “top-

down process” by which domain experts provide an overview of the domain, list 

categories and features of each category, and finally classify categories into broader 

classes according to how similar the features of the categories are (Logan, 2009). 

Categories that do not match current classes are put aside until enough categories with 

sufficiently similar features appear to justify the creation of new classes (Lambe, 2007). 

It has been recommended that analysts use and customize pre-populated taxonomies 

whenever available (Jagerman, 2006). 
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3.1.2 Limitations of Extant Approaches 

To varying degrees, extant methods for creating taxonomies in general and 

specifically for IT rely on experts. While expert opinions are valuable in grounding the 

taxonomy in specific domains and detecting subtleties in the relationships among 

categories, current approaches have several limitations. 

First, the structures of extant taxonomies represent a relatively narrow set of 

views from only a few experts. For instance, the choice of features (such as attributes and 

functions of IT) for classification depends on the specific opinions or background 

knowledge of the experts who participate in the study. Second, taxonomies built by this 

approach seem static, fixed at the time when experts created them. Efforts to update 

existing taxonomies are few and far in between. For example, the ACM Computing 

Classification System currently being used was created in 1998. As another example, the 

official Keyword Classification Scheme for Information System Research was last 

updated in 1993 (Barki, Rivard, & Talbot, 1993). Finally, such scant efforts to update 

existing taxonomies may be due to another limitation – methods relying on experts are 

not scalable, lending themselves poorly to automation. As the number of ITs increases, 

the effort by human experts to describe each technology according to its attributes and 

functions increases, and the reliability of that classification work may decrease. 

Addressing these limitations of the extant approaches to IT taxonomy creation, the 

dissertation tries to develop a methodology that allows wider representations of opinions, 

dynamic updating at multiple points of times, and large-scale automated analysis of a 

large number of technologies.  
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3.2 Data Collection 

This chapter focused on two IT trade magazines (InformationWeek and 

Computerworld), two business magazines (BusinessWeek and The Economist), and two 

news magazines (Newsweek and US News & World Report). All articles published 

during a ten-year period (1998-2007) in the six magazines were downloaded from the 

Lexis/Nexis online database. In total, there are about 220,000 articles in the data (Table 

3.1). The scale of the data collected from the six magazines is large enough to 

demonstrate the scalability of the approach. In addition to the scale, the data is also 

diverse, representing a wide range of views on IT and broader topics.  

Table 3.1: Number of Articles for the Six Magazines from 1998 to 2007 

Magazine Number of Articles
InformationWeek 30,432
Computerworld 28,535
BusinessWeek 52,033
The Economist 45,597
Newsweek 41,152
US News & World Report 21,419

Total 219,168
 

Meanwhile, a list of 50 IT concepts similar to but not exactly the same as those in 

the previous chapter were compiled (Table 3.2). Admittedly, this list is ad hoc, but it 

serves the illustration purpose because the list covers a broad range of technologies in the 

examination period. Then, all paragraphs that contain any of the technologies on the list 

were extracted from the articles. In doing so, plural forms and acronyms unique to the 

technology were considered for each technology. For example, in extracting paragraphs 

containing “digital subscriber line,” paragraphs mentioning “digital subscriber lines” and 

“DSL” were also included. In total, 105,400 paragraphs containing at least one 
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technology on the list were extracted from the full text of the articles published in the six 

magazines.  

3.3 Data Analysis 

The approach in the chapter is to infer similarity of technologies from their co-

occurrences in a paragraph. Both hierarchical clustering analysis and multidimensional 

scaling are used for classifying.  

Table 3.2: IT Concepts Examined in the Chapter 

AI Artificial intelligence Multimedia Multimedia 
ASP Application service provider MP3 MP3 player 
BI Business intelligence MySpace MySpace 
Blog Blog NeuralNet Neural net 
Bluetooth Bluetooth OLAP Online analytical processing 
BizProReen Business process reengineering OSS Open source software 
CloudCom Cloud computing Outsource Outsourcing 
CRM Customer relationship management PDA Personal digital assistant 
DigiCam Digital camera RFID Radio frequency identification
DLearn Distance learning SmartCard Smart card 
DSL Digital subscriber line SCM Supply chain management 
DecisionSS Decision support system SFA Salesforce automation 
DW Data warehouse SocNet Social networking 
eBiz Electronic business SOA Service oriented architecture 
eCom Electronic commerce Telecommute Telecommuting 
EDI Electronic data interchange TabletPC Tablet PC 
ERP Enterprise resource planning UtiComp Utility computing 
ExpertSys Expert system Virtualization Virtualization 
GPS Global positioning system VPN Virtual private network 
Grpware Groupware Web2 Web 2.0 
IM Instant messaging WebServ Web services 
iPhone iPhone WiFi Wi-Fi 
iPod iPod Wiki Wiki 
KM Knowledge management Wikipedia Wikipedia 
Linux Linux YouTube YouTube 
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3.3.1 Co-occurrence Analysis 

Co-occurrence of terms has been used in various fields such as computational 

linguistics (Burgess & Lund, 1997a, 1997b) and information retrieval (Smadja, 1993) to 

study the relationships among terms. For example, Spence and Owens (1990) used co-

occurrence to evaluate the strength of word association. They found that related pairs of 

nouns co-occur considerably more often than unrelated pairs. Their finding suggests that 

co-occurrence frequency indicate the strength of word association. 

Analysis of co-occurrence should define a proper size of the window where terms 

co-occur. A window size can be a certain number of words or characters (Spence & 

Owens, 1990) or a logical division of an input text (Schvaneveldt, 1990). The paragraph 

was chosen as the window size in the study because it sufficiently captures the context 

for describing related technologies. 

To measure co-occurrence at the paragraph level, from the 105,400 paragraphs 

initially extracted, paragraphs containing two or more IT concepts in the list were further 

selected. This filtering process returned approximately 12,000 paragraphs. Then a co-

occurrence matrix of 50 by 50 was created with each row or column representing an IT 

concept on the list. Each cell in the matrix displays the frequency of one IT concept co-

occurring with another concept in paragraphs. The co-occurrence matrix can be 

considered as a similarity matrix. The matrix was transformed to a dissimilarity matrix 

with the formula: 1/(x+0.1).  

3.3.2 Hierarchical Clustering 

As described in Chapter 2. 
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3.3.3 Multidimensional Scaling 

Previous research has found that applying multidimensional scaling (MDS) and 

clustering separately to the same proximity data results in greater insight into the 

structure underlying the data and can detect more subtle and complex relationships than 

either method used alone (Kruskal, 1977; Napior, 1972; Shepard & Arabie, 1979). Both 

clustering and MDS are visualization techniques. The key difference between the two 

techniques is that MDS provides a spatial representation of the data, while clustering 

provides a tree representation (Kruskal, 1977). 

Based upon a matrix of item-item similarities or dissimilarities, an MDS 

algorithm assigns a location to each item in a multidimensional space such that the 

distances between the items correspond as closely as possible to the measured 

dissimilarities between the items. In other words, the proximity of items to each other in 

the space indicates how similar they are. The MDS procedure based on the ALSCAL or 

alternating least squares scaling (Takane, Young, & de Leeuw, 1977), a popular MDS 

algorithm, was used. For easy interpretation of the result, the MDS solutions in a two-

dimensional scatter plot were presented. 

3.4 Results 

The clustering analysis of the transformed co-occurrence matrix generated a 

hierarchical structure of 50 technologies in a dendrogram (Figure 3.1), where vertical 

lines show joined clusters and the position of the lines on the scale from 1 to 25 indicates 

the distance at which clusters are merged. By inspecting the dendrogram, eight clusters 

can be identified. These eight clusters are indicated by the intersections between the 

dendrogram and the vertical dotted line in Figure 3.1. Table 3.3 summarizes the 
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membership of each cluster. In Figure 3.2, the 50 ITs were depicted in a two-dimensional 

MDS plot. Following Shepard and Arabie’s (1979) suggestion, different colors were used 

to represent the eight clusters in the plot. Generally, most of the technologies in the same 

cluster are located close to each other in the MDS plot. Several clusters are described in 

more details below.  

Cluster 1 includes twelve IT concepts. All of them are enterprise IT applications 

except outsourcing, which is a strategy for managing enterprise IT. Business process 

reengineering (BPR) was the last to join the cluster, suggesting that it is the least similar 

to the others in the cluster. This may explain why BPR looks like an outlier in the cluster 

in the MDS plot (Figure 3.2). Cluster 5 includes four IT concepts. Among them, digital 

subscriber line and virtual private network are both telecommunication technologies, 

which may be employed in the other two IT applications (telecommuting and distance 

learning). Cluster 6 has ten IT concepts, all related to mobile or wireless technologies. 

Some, such as bluetooth and Wi-Fi, are the underlying mobile technologies. Others, such 

as TabletPC and PDA, are the devices enabled by the wireless/mobile technologies. 

Cluster 7 has eight IT concepts. They are the so-called Web 2.0 technologies that have 

become highly popular in recent years. Lastly, Cluster 8 includes seven IT concepts of 

similar type such as utility computing, Web service, and cloud computing.  

 

 24



 

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 7

Cluster 6

Cluster 8

Figure 3.1: Hierarchical Clustering Result on the Co-occurrence Matrix 
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Table 3.3: Membership of the Clusters 

Cluster Labels of Information Technologies 

1 eBiz, eCom, CRM, ERP, Outsource, ASP, SCM, SFA, EDI, 
Grpware, KM, BizProReen 

2 RFID, SmartCard 

3 BI, DW, OLAP, DecisionSS 

4 AI, NeuralNet, ExpertSys 

5 DSL, VPN, Telecommute, DLearn 

6 Bluetooth, WiFi, PDA, GPS, iPod, MP3, DigiCam, Multimedia, 
iPhone, TabletPC 

7 Wiki, Wikipedia, MySpace, SocNet, Blog, YouTube, Web2.0, IM 

8 UtiComp, Virtualization, Linux, OSS, SOA, WebServ, CloudCom 

 

 

Figure 3.2: Multidimensional Scaling Result on the Co-occurrence Matrix 

 

According to the agglomeration schedule, a series of steps during clustering, 

twelve pairs of IT concepts can be identified as most similar to each other in the list (see 

Table 3.4). The pairs include, for example, e-business and e-commerce, iPod and MP3, 
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and artificial intelligence and neural net. These pairs are compatible with even 

rudimentary understanding of these technologies.  

Table 3.4: Pairs of Most Similar IT Concepts 

Pair IT Concepts Pair IT concepts 
1 eBiz, eCom 7 Bluetooth, WiFi

2 CRM, ERP 8 iPod, MP3 

3 Linux, OSS 9 DSL, VPN 

4 BI, DW 10 Grpware, KM 

5 SOA, WebServ 11 AI, NeuralNet 

6 MySpace, SocNet 12 Wiki, Wikipedia

 

3.5 Summary 

The results illustrate that co-occurrence analysis can be utilized for IT 

classification. Co-occurrence analysis, supplemented by the two classification techniques, 

has yielded results that can be interpreted fairly easily, even without the presence of 

sophisticated expert knowledge of the various domains that the list of IT concepts covers. 

The face validity in this illustration study provides reasonable confidence in applying the 

methodology to other circumstances where a priori knowledge is unavailable, such as the 

cases of new or unknown technologies.  
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Chapter 4: Evaluating the Two Methods of Classifying IT Concepts 

with Help from an Existing Thesaurus 

 

In this chapter, I compare co-occurrence analysis and KL divergence to a ground 

truth thesaurus. The F-measure is used as a systematic way to assess the similarity 

between each of the two automatic classifications and the ground truth thesaurus. The 

results indicate that co-occurrence analysis outperforms KL divergence in agreeing with 

the ground truth thesaurus.  

4.1 Introduction 

The previous work in Chapter 2 and Chapter 3 has demonstrated automatic IT 

classification without human experts by employing either KL divergence or co-

occurrence analysis. However, the results from the work lack the presence of ground 

truth for comparison. In this chapter, I use the ProQuest classification as the ground truth 

and compare results from the two classification methods with the ground truth. I illustrate 

the approach with an empirical study of 35 IT concepts in six magazines over ten years.  

4.2 Data Collection 

My institution subscribes to the Lexis/Nexis Academic database. The database 

indexes full-text articles of a wide variety of publications in a format that is easy to 

convert to machine-readable. Therefore we downloaded from Lexis/Nexis Academic all 

articles published during a ten-year period (1998-2007) in six magazines, including IT 

trade magazines (InformationWeek and Computerworld), business magazines 
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(BusinessWeek and The Economist), and news magazines (Newsweek and US News & 

World Report). 

To select the IT concepts to study, we reviewed the indexes of textbooks on 

Information Systems or IT management published during the same ten-year period 

(1998-2007). Then we selected IT concepts that appeared in the indexes of more than two 

textbooks. From this pool, we furthered selected 18 IT concepts that appeared as main 

entries in the ProQuest Controlled Vocabulary of Subject Terms (ProQuest classification 

hereafter). The 18 IT concepts were used as seeds for subsequent analysis. They are 

artificial intelligence, blog, business process reengineering, customer relationship 

management, data warehouse, electronic commerce, enterprise resource planning, global 

positioning system, instant messaging, mp3 player, object oriented programming, open 

source software, personal digital assistant, radio frequency identification, service oriented 

architecture, supply chain management, utility computing, and virtualization. 

The ProQuest classification is chosen as the ground truth because it is a high-

quality thesaurus that ProQuest content analysts manually produce (Wang, 2009). Then, 

each of the 18 seed IT concepts was joined by its “related terms” according to the 

ProQuest classification to form a group. As a result, 120 IT concepts in 18 groups were 

identified.  

Next, the paragraph was chosen as the unit of analysis in the study since a 

paragraph sufficiently captures the context for describing related IT concepts. I then 

counted the number of paragraphs that mention each of the 120 IT concepts identified 

above. The frequency of each concept ranges from zero (e.g., intelligent vehicle highway 

system) to over eighty-five thousand (e.g., software). Figure 4.1 shows the number of 
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paragraphs in log scale for the 120 IT concepts. To avoid data sparseness in later analysis, 

I focused on IT concepts with frequencies above the median (251.50), leaving 60 IT 

concepts.  

 

Figure 4.1: Number of Paragraphs in Log Scale for the 120 IT Concepts 

 

As the list is too diversified, I further refined it with the following three steps. 

First, I deleted five non-IT terms. Second, I deleted sixteen terms which are too general 

or abstract in meaning. At last, four singletons were removed. Table 4.1 lists the terms I 

removed during the refinement. As a result, 35 IT concepts are left (Table 4.2). Table 4.3 

shows the 35 IT concepts in 14 groups according to the ProQuest classification. For 

definitions of the 35 IT concepts, please refer to Appendix A.  
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Table 4.1: Terms Removed during the Refinement 

Non-IT terms benchmark, customer satisfaction, diary, logistics, real time 

General/abstract terms data processing, distribution channel, internet access, information 

management, internet, information system, information technology, 

operating system, server, software, software service, supply chain, systems 

management, systems development, user interface, web site 

Singletons java, personal digital assistant, radio frequency identification, utility 

computing 

 

 

Table 4.2: The 35 IT Concepts and their Labels 

AI artificial intelligence OLAP online analytical processing
ASP application service provider OLAdvertising online advertising 
ATC air traffic control OLSales online sales 
Aviation aviation OSS open source software 
BIS business intelligence software PKI public key infrastructure 
Blog blog QualityCtrl quality control 
ChatRoom chat room Robot robot 
CRM customer relationship management RSS rss technology 
DataMining data mining SCM supply chain management 
DigitalMusic digital music SFA salesforce automation 
DW data warehouse 6Sigma six sigma 
eCom electronic commerce SocNet social networking 
ERP enterprise resource planning SOA service oriented architecture
GPS global positioning system Virtualization virtualization 
IM instant messaging VPN virtual private network 
InvenManage inventory management WebServ web service 
Linux linux WWW world wide web 
MP3 mp3 player   
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Table 4.3: IT Concepts in the ProQuest Classification 

No. IT concepts 

1 air traffic control, aviation, global positioning system 

2 application service provider, enterprise resource planning 

3 artificial intelligence, robot 

4 blog, rss technology, social networking 

5 business intelligence software, customer relationship management, data mining, salesforce 

automation 

6 chat room, instant messaging 

7 data warehouse, online analytical processing 

8 digital music, mp3 player 

9 electronic commerce, online advertising, online sales, public key infrastructure, world wide web 

10 inventory management, supply chain management 

11 linux, open source software 

12 quality control, six sigma 

13 service oriented architecture, web service 

14 virtual private network, virtualization 

 

4.3 Data Analysis 

I first used co-occurrence analysis and KL divergence in parallel to automatically 

construct two separate proximity matrices of the 35 IT concepts. The co-occurrence 

matrix can be considered as a matrix of similarity while the KL divergence matrix is 

considered as a matrix of dissimilarity. In order to have the same comparison basis for the 

two methods, I transformed the co-occurrence matrix into a dissimilarity matrix with the 

formula: 1/(x+0.1). Then I applied hierarchical clustering to the two matrices to classify 

the IT concepts. The complete link standard was used as an aggregation criterion in 

hierarchical clustering because it produces small and tight clusters (Manning & Schütze, 

1999; van Rijsbergen, 1979). Hierarchical clustering can generate specific numbers of 

clusters. I obtained 14 clusters as there are 14 groups in the ground truth thesaurus. In 
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addition to hierarchical clustering, I applied multidimensional scaling to the two matrices. 

Finally, I used the F-measure to compare between each automatic classification with the 

ProQuest classification. Figure 4.2 shows the flow chart of the data analysis. 

treat as 

transform 

KL Divergence 
matrix 

KL Divergence 
classification

Co-occurrence 
classification

Dissimilarity 
matrix 

F-measure:  
compare each 

w/ the ProQuest 
classification

 

Hierarchical 
clustering 

(14 clusters) 

Co-occurrence 
matrix 

 
Figure 4.2: Flow Chart of the Data Analysis 

 

Below, I describe the F-measure in detail. For other components of the data 

analysis such as hierarchical clustering and multidimensional scaling, please refer to the 

previous chapters.  

4.3.1 F-measure 

Using the ProQuest classification as the ground truth, Precision, Recall, and F-

measure were computed. In the context of classification, the terms true positive (tp), true 

negative (tn), false positive (fp), and false negative (fn) are used to compare the obtained 

classification of an object (the class assigned by a classifier) with the correct 

classification (the class to which an object truly belongs). The four terms are illustrated in 

Table 4.4. In the study, the classification in the ground truth thesaurus is treated as correct 

while the clustering result from co-occurrence analysis or KL divergence is treated as 
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obtained. Besides, the result is positive if a pair of IT concepts is in the same group while 

the result is negative if a pair is not in the same group. Depending on correct and obtained 

results for a pair of concepts, the count for one of the four terms will be added one. For 

example, if both correct and obtained results are positive, the count for true positive will 

be added one. As a result, with all pairs of IT concepts and their correct and obtained 

results, tp, tn, fp, and fn are available and Precision and Recall can be computed 

accordingly (Precision tp
tp fp

=
+

; Recall tp
tp fn

=
+

). F-measure (van Rijsbergen, 1979) is a 

measure that considers both Precision and Recall. It can be calculated as a harmonic 

mean of Precision and Recall (F-measure 2 precision recall
precision recall
× ×

=
+

). F-measure is a similarity 

measure between two classifications. It equals one when the two classifications are in fact 

identical. The F-measure is used in the study as a systematic way to assess the similarity 

between the ProQuest classification and one of the two automatic classifications.  

Table 4.4: Illustration of the Terms tp, tn, fp, and fn 

  Correct result or classification 

  Positive Negative 

Positive true positive (tp) false positive (fp) Obtained result 

or classification Negative false negative (fn) true negative (tn) 

 

4.4 Results 

The results of hierarchical clustering and multidimensional scaling on the co-

occurrence matrix are in Figure 4.3 and Figure 4.4 respectively. The multidimensional 

scaling result is shown only for complement as the classification (see Table 4.5) is 

generated by obtaining 14 clusters in hierarchical clustering. Comparing this 
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classification with the ProQuest classification (Table 4.3) results in an F-measure of 

0.729. Besides, 6 out of 14 groups are identical to those in the ProQuest classification.  

 

 

Figure 4.3: Hierarchical Clustering Result on the Co-occurrence Matrix 
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Figure 4.4: Multidimensional Scaling Result on the Co-occurrence Matrix 

 

On the other hand, the results of hierarchical clustering and multidimensional 

scaling on the KL divergence matrix are in Figure 4.5 and Figure 4.6 respectively. The 

multidimensional scaling result was shown only for complement as the classification (see 

Table 4.6) is generated by obtaining 14 clusters in hierarchical clustering. Comparing this 

classification with the ProQuest classification (Table 4.3) results in an F-measure of 

0.615. Besides, 3 out of 14 groups are identical to those in the ProQuest classification.  
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Figure 4.5: Hierarchical Clustering Result on the KL Divergence Matrix 
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Figure 4.6: Multidimensional Scaling Result on the KL Divergence Matrix 
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Table 4.3: IT Concepts in the ProQuest 
Classification  

(Repeated for Comparison) 
No. IT concepts 
1 air traffic control, aviation, global 

positioning system 
2 application service provider, enterprise 

resource planning 
3 artificial intelligence, robot 
4 blog, rss technology, social networking 
5 business intelligence software, customer 

relationship management, data mining, 
salesforce automation 

6 chat room, instant messaging 
7 data warehouse, online analytical 

processing 
8 digital music, mp3 player 
9 electronic commerce, online advertising, 

online sales, public key infrastructure, 
world wide web 

10 inventory management, supply chain 
management 

11 linux, open source software 
12 quality control, six sigma 
13 service oriented architecture, web service
14 virtual private network, virtualization 

 

Table 4.5: Automatic Classification by 
Co-occurrence Analysis 

 
No. IT concepts 
1 air traffic control, aviation, global 

positioning system 
2 application service provider 
3 artificial intelligence, robot, world wide 

web 
4 blog, rss technology, social networking 
5 business intelligence software, data 

mining, data warehouse, online analytical 
processing 

6 chat room, instant messaging 
7 customer relationship management, 

electronic commerce, enterprise resource 
planning, inventory management, 
salesforce automation, supply chain 
management 

8 digital music, mp3 player 
9 linux, open source software, 

virtualization 
10 online advertising 
11 online sales 
12 public key infrastructure, virtual private 

network 
13 quality control, six sigma 
14 service oriented architecture, web service 

Note: 6 out of 14 groups are identical (F=.729) 

Table 4.6: Automatic Classification by 
KL Divergence 

 
No. IT concepts 
1 air traffic control, aviation 
2 application service provider, customer 

relationship management, electronic 
commerce, enterprise resource planning, 
inventory management, salesforce 
automation, supply chain management, 
web service, world wide web 

3 artificial intelligence, global positioning 
system, robot 

4 blog, chat room, instant messaging, 
social networking 

5 business intelligence software 
6 data mining, data warehouse, online 

analytical processing 
7 digital music, mp3 player 
8 linux, open source software 
9 online advertising, online sales 

10 public key infrastructure, virtual private 
network 

11 quality control, six sigma 
12 rss technology 
13 service oriented architecture 
14 virtualization 
Note: 3 out of 14 groups are identical (F=.615) 
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4.5 Discussion 

The comparison of the three classifications leads to interesting findings. First, co-

occurrence analysis has a better F-measure (0.729) than KL divergence does (0.615). 

This difference suggests that the co-occurrence analysis provides a classification more 

similar to the ProQuest classification than KL divergence does. While there is no rule of 

thumb for F-measure, an F-measure of 0.729 should be considered high similarity. In 

addition, there seems to be a mix of strengths and weaknesses in all three classifications, 

although the ProQuest and co-occurrence-based classifications appear to have sounder 

groupings than the KL divergence-based classification.  

Second, when comparing the 35 IT concepts across the three classifications, I 

found some IT concepts consistently appear in the same group in the three classifications. 

Table 4.7 lists 9 pairs of these overlapping concepts. This observation suggests that there 

is commonality across the three classification methods. Furthermore, these 9 pairs can be 

easily observed in the two MDS plots and each concept is placed close to the other from 

the same pair (Figure 4.7 and Figure 4.8). Interestingly, the 9 pairs are in the same 

quadrant when comparing the two figures, except for only one pair (Linux and OSS).  

Table 4.7: IT Concepts Grouped Together in the Three Classifications 

1 air traffic control, aviation 

2 artificial intelligence, robot 

3 blog, social networking 

4 chat room, instant messaging 

5 data warehouse, online analytical processing 

6 digital music, mp3 player 

7 inventory management, supply chain management 

8 linux, open source software 

9 quality control, six sigma 
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Figure 4.7: The 9 pairs of IT Concepts on the Co-occurrence-based MDS Plot 

 

 
Figure 4.8: The 9 pairs of IT Concepts on the KL Divergence-based MDS Plot 
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Third, I found that some IT concepts are grouped together consistently in the 

automatic classifications but not in the ground truth. These IT concepts belong to two sets: 

public key infrastructure and virtual private network; data mining, data warehouse, and 

online analytical processing. In the ProQuest classification, public key infrastructure is 

grouped with electronic commerce, online advertising, online sales, and World Wide 

Web. According to definitions of the IT concepts in Appendix A, public key 

infrastructure is an important online security infrastructure for electronic commerce. 

Therefore, this group in the ProQuest classification is more of electronic commerce-

related. However, in both co-occurrence-based and KL divergence-based classifications, 

public key infrastructure is together with virtual private network to form a group which is 

more of online security measure. As for the other set, data mining is grouped with 

business intelligence software, customer relationship management, and salesforce 

automation in the ProQuest classification. This group in the ProQuest classification is 

about enterprise ITs which may provide data-mining facilities. On the other hand, in both 

automatic classifications, data mining is with data warehouse and online analytical 

processing to form a group which is more of online data processing. In these cases, both 

automatic classifications, in my opinion, seem to have produced more relevant results 

than those in the ground truth. This finding suggests that the automatic approach can help 

update existing classifications in some way.  

Fourth, I found that both of the automatic classifications tend to put general 

enterprise ITs in one large group. In the co-occurrence-based classification, group 

number 7 includes customer relationship management, electronic commerce, enterprise 

resource planning, inventory management, salesforce automation, and supply chain 
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management. However, the six IT concepts are from four different groups in the 

ProQuest classification. On the other hand, group number 2 in the KL divergence-based 

classification consists of application service provider, customer relationship management, 

electronic commerce, enterprise resource planning, inventory management, salesforce 

automation, supply chain management, web service, and world wide web. However, the 9 

IT concepts are from five different groups in the ProQuest classification. In these cases, 

both automatic classifications seem to be able to identify “general” enterprise ITs and put 

them in a large group but fail to further distinguish subtle difference among them.  

Fifth, both of the automatic classifications seem to have problems classifying 

certain IT concepts which include online advertising, online sales, virtualization, and 

world wide web. Take world wide web as an example, it is grouped with electronic 

commerce, online advertising, online sales, and public key infrastructure in the ProQuest 

classification. However, world wide web is grouped with artificial intelligence and robot 

in the co-occurrence-based classification, which looks odd. In addition, there are some 

singletons in both automatic classifications. In the co-occurrence-based classification, 

there are three singletons. On the other hand, there are four singletons in the KL 

divergence-based classification. The singletons in the automatic classifications suggest 

that they are so unique that they cannot be grouped with others when considering 14 

clusters.  

4.6 Summary 

The empirical study of 35 IT concepts over ten years illustrates that both co-

occurrence analysis and KL divergence can be utilized for classifying IT concepts. 

According to the F-measures, the automatic classification based on co-occurrence 
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analysis outperforms the classification based on KL divergence. In the next chapter, I 

further evaluate the effectiveness of the automatic classifications and conduct an online 

survey to determine which classification information professionals prefer. The long-term 

goal is to discover and develop effective new ways (that complement existing methods) 

to make sense of the dynamic, complex relationships among IT concepts.  
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Chapter 5: Evaluating the Two Automatic Classifications of IT 

Concepts with a Survey 

 

In this chapter, I conduct a survey to have information professionals evaluate the 

three classifications of the same 35 IT concepts. One classification is based on the 

ProQuest Controlled Vocabulary of Subject Terms, which is considered as ground truth 

in the study. The other two are the automatic classifications based on co-occurrence 

analysis and KL divergence respectively. As the survey involves human subjects, an IRB 

application was submitted and approved. See Appendix B for the IRB protocol approval.  

5.1 Introduction 

The targeted research subjects of the survey are the subscribers to the AIS World 

mailing list. AIS stands for Association for Information Systems, which aims to create 

and maintain a professional identity for educators, researchers, and professionals in the 

Information Systems. As a result, the prospective subjects could be IS researchers, or 

professionals, including faculty and (likely doctoral) students as well as practitioners in 

industry, non-profit organizations, and government. I sent a request email to the list and 

invited the subscribers to participate voluntarily in the survey. The email (see Appendix 

C) includes a link to the informed consent form which explains the study to potential 

subjects, tells them what they are expected to do, and informs them that they can 

withdraw from the survey at any time without penalty. The email also includes a link to 

the online survey, which begins with the essence of the informed consent form.  
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In the request email as well as the survey, the subjects were asked to evaluate 

three IT classifications. However, they were not notified that one of the three 

classifications is the ProQuest classification, which is considered as the ground truth in 

the study; only the other two classifications are automatically generated based on either 

co-occurrence analysis or KL divergence. When taking the survey, the subjects should 

assume they were evaluating three classifications. We did this because we were also 

evaluating the ProQuest classification’s role as the ground truth.  

5.2 Pilot Study 

Before disseminating the survey to the AIS World mailing list, I did a pilot study 

with my fellow iSchool doctoral students. The pilot study was conducted in the end of 

July 2010. The pilot study helped me redesign the survey and present the three 

classifications for comparison more effectively. Originally in the pilot study, I presented 

the three classifications all together on one screen and asked subjects to pick the best and 

the worst one in a single question. This caused various difficulties in evaluating the three 

classifications especially when the survey was conducted on the Internet via a subject’s 

computer. Below are three responses I received regarding the presentation of the three 

classifications in the pilot study: “The way the three classifications were displayed made 

it hard to keep track of my thinking as I compared the three columns. I found myself 

really wanting to print these out and make notes…”, “Impossible to assess. It is VERY 

hard to tell from the presentation, however, since the categories are not lined up for 

readability so it is difficult to compare across the classification groups…”, and “The 

classification comparison required more cognitive effort than most people are willing to 

spend in a survey. As a researcher I would worry about the quality of the responses. I 
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would search other formats to simplify the task to the participant, i.e. partition of the 

classifications in several pages, comparison of groups in pairs.”  

According to the pilot study, I redesigned the survey and compared the three 

classifications in pairwise so that the evaluation can be done in three steps: A versus B, B 

versus C, and A versus C. As a result, instead of picking the best and the worst among the 

three classifications in a single step, subjects were asked to pick a better one in each of 

the three pairwise comparisons. Because only two classifications appeared in each 

comparison, I was able to remove groups with exactly the same IT concepts from both 

classifications. This made each comparison easier. From the results of three pairwise 

comparisons, I was also able to identify which classification was the best and which was 

the worst from subjects’ perspective. See Appendix D for the final version of the survey.  

5.3 Survey Results 

The survey was distributed to the AIS World mailing list in the end of January, 

2011. It lasted for about one week until the last response was received. In the end, 

twenty-two responses were collected while twenty-one were considered as complete.  

5.3.1 Time Spent on the Survey 

For the 21 completed responses, the time spent by the subjects on the survey was 

calculated. There is one subject who spent extremely long time (over 58 hours) on the 

survey. It seems that the subject started the survey at some point but didn’t finish, and 

came back several days later to submit it. As a result, such long time is not included in 

the following descriptive statistics. Table 5.1 indicates the statistics of the time spent on 

the survey from the 20 responses. In average, a subject spent 12.5 minutes on the survey 
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with a standard deviation of 7.5 minutes. Overall, the respondents spent enough time on 

the survey for quality responses.  

Table 5.1: Statistics of the Time Spent on the Survey 

Statistics Time 

Average 12:33

Standard deviation 7:38

Minimum 2:41

Maximum 30:41

 

5.3.2 Survey Respondents 

In a section of the survey, the subjects were asked for their demographic 

information. Although the section was optional, nine subjects had provided their 

information. According to their responses, most respondents were professors. As for their 

area, most were in Information System. Table 5.2 and Table 5.3 show demographics of 

the respondents about their current position and area of degree respectively. In general, 

the respondents have adequate knowledge about the IT concepts in the survey.  

5.3.3 Evaluation of the Three Classifications 

The survey compares the classifications in pairwise. As a result, the evaluation 

among the three classifications was done in three steps: A versus B, B versus C, and A 

versus C. In each pairwise comparison, subjects were asked to not only pick a better one 

but explain the logic behind the choice. Below, I first summarize pros and cons for each 

classification from the responses. Then I apply nonparametric statistics to the data to 

identify which classification is the most or least preferred overall in the survey.  
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Table 5.2: Demographics of Respondents – Current Position 

Current position Number of people

Professor 6

Doctoral student 2

Research fellow 1

 

Table 5.3: Demographics of Respondents – Area of Degree 

Area of Degree Number of people 

Information System 4 

Management Information System 2 

Computer Science 1 

Internet 1 

Business & IT 1 

 

The ProQuest classification is treated as the ground truth in the study. However, it 

has its pros and cons according to the survey. For the cons, some respondents do not like 

the combination of application service provider and enterprise resource planning in 

ground number 2 of the classification. One states that: “ASP and ERP are two very 

distinct topics”. Another one thinks ERP should belong to the other enterprise 

applications such as CRM, salesforce automation, and SCM, as it appears in the co-

occurrence-based classification. As for the pros, some respondents like the group number 

9 which includes electronic commerce, online advertising, online sales, public key 

infrastructure, and world wide web. However, in the other two automatic classifications, 

electronic commerce, online advertising, online sales, and world wide web do not appear 

together.  

The most obvious con in the co-occurrence-based classification is probably in 

group number 3 in which world wide web is put together with artificial intelligence and 
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robot. Almost half of the respondents note this as a disadvantage of the classification. 

Another widely perceived con is in group number 9 where virtualization is placed 

together with linux and open source software. Many respondents do not understand the 

relationship between virtualization and the other two concepts in that group. As for the 

pros, some respondents like group number 5 and group number 7 in view of the other 

classifications. In the group number 5, business intelligence software and data mining are 

together with data warehouse and online analytical processing while in the ProQuest 

classification business intelligence software and data mining are with other enterprise 

applications such as customer relationship management and salesforce automation. As for 

the group number 7, it is mainly about enterprise IT applications including customer 

relationship management, enterprise resource planning, and supply chain management, 

etc. One respondent states that the group is good as “it has a clearer theme”.  

The most obvious con in the KL divergence-based classification is in group 

number 3 in which global positioning system is put together with artificial intelligence 

and robot. Four respondents note this as a disadvantage of the classification. The other 

con is in group number 4 where social networking is placed together with instant 

messaging and other concepts. One respondent states that “social networking has nothing 

to do with IM, really”. Another con is in group number 2 where many unrelated IT 

concepts form a large conglomerate. For example, respondents state “why is web service 

and www in that group?” and “web service doesn’t belong with inventory management”. 

On the other hand, there is no obvious pro for the KL divergence-based classification 

except that one respondent prefers the concept virtualization to be on its own in the 

classification.  
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According to the summary above, it seems that the respondents prefer the 

ProQuest classification the most and the KL divergence-based classification the least. 

However, this conclusion is better supported with a statistics test. Given the nature of the 

data, I first applied a coding schema to the three classifications according to each 

respondent’s evaluation in the three-step pairwise comparisons. If a classification is 

ranked the best, “1” is assigned to the classification. For the second place and the worst, 

“2” and “3” are assigned accordingly. If there is a tie, say between the second and the 

third place, “2.5” is assigned for both classifications. Therefore, the total of the three 

numbers assigned to the three classifications remains “6” for each response. After coding, 

I ran Friedman’s test to identify the order of preference for the three classifications and to 

see if the difference of preference among the three is statistically significant. The test 

results are shown in Table 5.4 and Table 5.5 below.  

Table 5.4: Mean Rank of the Three Classifications 

IT Classification Mean Rank

ProQuest classification 1.55

Co-occurrence-based classification 2.00

KL divergence-based classification 2.45

 

Table 5.5: Friedman’s Test of the Evaluation of the Three Classifications 

Friedman Test Statistics 

N 21

Chi-Square 11.108

df 2

Asymp. Sig. 0.004

 

According to the mean rank (Table 5.4), the ProQuest classification (1.55) is the 

most preferred while the KL divergence-based classification (2.45) is the least preferred 

 51



by the respondents. The Chi-square of 11.108 with a p-value of .004 (Table 5.5) indicates 

that the mean rank difference among the three classifications is statistically significant. In 

other words, in a statistically significant way, the ProQuest classification is the best while 

the KL divergence-based classification is the worst among the three classifications. A 

post-hoc analysis for the Friedman’s test of mean ranks (Conover, 1980) shows a critical 

rank difference of 0.48, which suggests that the mean rank difference between the 

ProQuest classification (the best) and the KL divergence-based classification (the worst) 

mainly contributes to the significance in the Friedman’s test.  

5.4 Discussion 

An open-ended question was asked in the survey to share thoughts on how IT 

concepts may be usefully classified. Some respondents state that there could be more than 

one classification system that is appropriate. They think that a good classification 

depends on the purpose or context. For example, one respondent wrote: “cannot be stated 

without knowing the context that the classification will be used in. A useful classification 

always depends on who is supposed to use this classification. There are several ‘correct’ 

ways to classify”. In addition, there is one respondent who prefers a tagging system to a 

classification system as “classification pigeon-holes items into a hierarchy when in fact, 

they related in a multi-dimensional matrix fashion”.  

Based on their input, I have the following comments. First, given the nature of the 

two automatic classification methods, I could only state that our automatic classifications 

are generic. In the co-occurrence-based classification, relatedness between a pair of IT 

concepts is inferred from the frequency of co-occurrence in paragraphs. If a pair of IT 

concepts co-occurs more often in paragraphs, they tend to be grouped together in the 
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classification. As for the KL divergence-based classification, each IT concept is first 

represented by concatenating all of the paragraphs mentioning the concept. Then, 

divergence between a pair of IT concepts is calculated based on the different use of 

language between two sets of paragraphs, each set representing one of the two IT 

concepts. If a pair of IT concepts shares similar use of language between their own sets of 

paragraphs, they tend to be put together in the classification. As a result, the two 

automatic classifications of IT concepts are generic by their nature. They were not 

designed to be used in any particular context in the first place. However, they both 

provide a quick and easy way to help make sense of a given list of IT concepts by 

classifying so that “related” terms can be grouped together. When the two automatic 

classifications were evaluated together with the ProQuest classification, the ground truth, 

in the survey, all three classifications have their own pros and cons, suggesting that they 

can help improve the ground truth. Although the automatic classifications are generic, 

they can further be tweaked for a particular context given the objects in the list are 

representative.  

Second, regarding the comment about a tagging system, while hierarchical 

clustering is mainly used in forming the automatic classifications, multidimensional 

scaling is provided as a complement throughout the study. Multidimensional scaling 

displays a map, usually in two dimensions, where relatedness of the objects can be 

inferred from their proximity on the map. Although the multidimensional scaling map is 

not truly in multi-dimensional matrix fashion and there is usually some distortion on the 

map as the dimensions are reduced to only two on the map, it provides a spatial 

representation of the data where objects are not related in hierarchy.  
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5.5 Summary 

According to the Friedman’s test of mean ranks, the ProQuest classification is the 

best among the three classifications in a statistically significant way. This justifies the use 

of the ProQuest classification as the ground truth in the study. In addition, the mean ranks 

of the three classifications correspond to the F-measures calculated in the previous 

chapter. Table 5.6 shows both mean rank and F-measure for the three classifications. A 

Pearson correlation coefficient calculated between mean rank and F-measure is -.973. 

This highly negative correlation coefficient indicates that the more similar to the 

ProQuest classification (the higher the F-measure), the better the classification (the less 

the mean rank). In this aspect, the co-occurrence-based classification which comes with a 

higher F-measure than the KL divergence-based classification is also a better 

classification according to the survey. Besides, the results also indicate that F-measure is 

a reliable and sensible measure to assess the similarity between the ground truth and an 

automatic classification.  

Table 5.6: Mean Rank and F-measure of the Three Classifications 

IT Classification Mean Rank a F-measure b 

ProQuest classification 1.55 1.000 

Co-occurrence-based classification 2.00 .729 

KL divergence-based classification 2.45 .615 

a. Rank ranges from 1 to 3 where 1 indicates the best among the three.  

b. F-measure assesses the similarity between the ProQuest classification and  

one of the other two classifications. It equals 1 when two classifications are identical.  
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Chapter 6: Further Exploration of the Co-occurrence Analysis 

 

In the previous chapters, the co-occurrence-based classification is better than the 

KL divergence-based classification according to either F-measure or the survey. In this 

chapter, I further explore the co-occurrence analysis and try a different treatment for the 

co-occurrence matrix before classifying. Following a procedure in ACA literature, I first 

generate a matrix of Pearson correlations from the co-occurrence matrix. Applying 

hierarchical clustering and factor analysis in parallel to the matrix of Pearson correlations, 

I create two co-occurrence-based classifications. The F-measure indicates that both the 

new co-occurrence-based classifications are better in agreeing with the ProQuest 

classification than the original co-occurrence-based classification in Chapter 4. Besides, 

the factor analysis shows some interesting results compared to the hierarchical clustering 

in classifying.  

6.1 Introduction 

According to McCain (1990), “Author cocitation analysis (ACA) is a set of data 

gathering, analytical, and graphic display techniques that can be used to produce 

empirical maps of prominent authors in various areas of scholarship” (p. 443). Its purpose 

is to recognize influential authors and show their interrelationships from the citation 

record (White & McCain, 1998).  

ACA applies a series of techniques that are quite similar to those in the study. 

These are co-occurrence matrix, followed by multivariate analysis. For multivariate 

analysis, in addition to multidimensional scaling and hierarchical clustering, ACA 
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includes factor analysis. Between the two different applications with similar techniques, 

ACA observes co-occurrence of first authors in reference of a paper in field publication 

while the study examines co-occurrence of IT concepts in a paragraph of articles from the 

six magazines. Both applications employ multivariate analysis for classification purpose. 

However, this study aims to classify IT concepts within a list while ACA classifies 

authors to identify specialties within a discipline. For example, McCain (1990) identifies 

specialties in macroeconomics; White and McCain (1998) identifies specialties in 

information science.  

Another difference between the two applications is treatment of a co-occurrence 

matrix. In ACA, second-order co-occurrence is always considered while the previous 

chapters use first-order co-occurrence. In the first-order co-occurrence, two terms are 

considered similar if they co-occur frequently directly with each other. However, in the 

second-order co-occurrence, two terms are considered similar if they have similar co-

occurrence pattern with all other terms in the list. For example, in the second-order co-

occurrence, A and B are considered similar when they both co-occur with C but seldom 

co-occur with others in the matrix regardless of how often they co-occur with each other.  

In practice, many ACA researchers convert a co-occurrence matrix into a matrix 

of Pearson correlations when considering the second-order co-occurrence (McCain, 

1990). According to McCain (1990), the creation of a correlation matrix has an advantage 

that the correlation coefficient removes differences in “scale” between objects which 

occur more frequently and those which have similar profiles but occur less frequently.  
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6.2 Method 

Figure 6.1 shows the flow chart of the data analysis. In Chapter 4, the co-

occurrence matrix is processed directly as a proximity matrix (first-order co-occurrence). 

In this chapter, it is treated as raw data and converted into a matrix of Pearson 

correlations (second-order co-occurrence). Then, I apply hierarchical clustering and 

factor analysis in parallel to the matrix of Pearson correlations to create two 

classifications. At last, I use F-measure to assess the similarity between each of the two 

automatic co-occurrence-based classifications and the ProQuest classification.  

Co-occurrence 
classification 1 

Co-occurrence 
classification 2 

Proximity 
matrix 

(Pearson 
correlation)

Factor analysis
 

Hierarchical 
clustering 

 

F-measure:  
compare each  

w/ the ProQuest 
classification 

Raw data 
 

Co-occurrence 
matrix 

 
Figure 6.1: Flow Chart of the Data Analysis 

 

Like hierarchical clustering and multidimensional scaling, factor analysis is a 

classification technique (Sokal, 1974). It attempts to describe interrelationships among 

observed variables through the creation of a lower number of derived variables or factors. 

In the study, factors are extracted by principal components analysis with varimax rotation 

as this produces factors that are uncorrelated, with most objects having high loadings on 

only one factor.  
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6.3 Results 

The hierarchical clustering result on the matrix of Pearson correlations is in 

Figure 6.2. The classification of IT concepts is generated by obtaining 14 clusters from 

the result (Table 6.2). Comparing this classification with the ProQuest classification 

(Table 6.1) results in an F-measure of 0.830. Besides, 7 out of 14 groups are identical to 

those in the ProQuest classification.  

 

Figure 6.2: Hierarchical Clustering Result on the Matrix of Pearson Correlations 

 58



The multidimensional scaling result on the matrix of Pearson correlations is in 

Figure 6.3. It is shown only as a complement as there is no clear demarcation of groups 

for classification. The R2 goodness-of-fit value for two dimensions is very high (0.990). 

However, the plot is not considered good as many related IT concepts are not close to 

each other. For example, the 9 pairs in Table 4.7 can be easily located on both the co-

occurrence-based and KL divergence-based MDS plots (see Figure 4.7 and Figure 4.8). 

However, most of the pairs cannot be easily found on the plot.  

 

Figure 6.3: Multidimensional Scaling Result on the Matrix of Pearson Correlations 

 

As for the factor analysis, Figure 6.4 shows the scree plot. For the number of 

factors to extract, I used Cattell scree test to determine 11 factors. Varimax rotation was 

used after extraction.  

Table 6.3 shows the factor analysis result. The conventional reporting threshold of 

loading is 0.40. However, for classification purpose here, when loadings of an IT concept 
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across the factors are below the threshold, the highest loading of the IT concept is 

reported (in gray). If this is done, the factors in Table 6.3 show “simple structure”, in 

which each IT concept loads on only one factor. “Simple structure” is ideal for 

classification (non-overlapping) as the relationship between objects and factors is 

unambiguous.  

 

Figure 6.4: Scree Plot 

 

Among the eleven factors, there is one factor with which some IT concepts load 

positively while others load negatively. As a result, 12 groups are identified from the 

analysis. Table 6.4 shows the resulting classification in 12 classes. In the classification, 

loadings are displayed next to IT concepts. Unlike other classifications in which IT 

concepts are sorted alphabetically, the IT concepts in the classification are sorted by their 
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loadings in descending order. In addition, those IT concepts with loadings below the 

threshold are marked gray.  

Comparing this classification with the ProQuest classification (Table 6.1) results 

in an F-measure of 0.797. Besides, 7 out of 12 groups are identical to those in the 

ProQuest classification.  

 

 



Table 6.1: IT Concepts in the ProQuest 
Classification 

 
 

No. IT concepts 

1 AI, Robot 

2 ASP, ERP 

3 ATC, Aviation, GPS 

4 BIS, CRM, DataMining, SFA 

5 Blog, RSS, SocNet 

6 ChatRoom, IM 

7 DigitalMusic, MP3 

8 DW, OLAP 

9 eCom, OLAdvertising, OLSales, PKI, 

WWW 

10 InvenManage, SCM 

11 Linux, OSS 

12 QualityCtrl, SixSigma 

13 SOA, WebServ 

14 Virtualization, VPN 
 

Table 6.2: The Second-order Co-
occurrence-based Classification by 

Clustering 
 
No. IT concepts 

1 AI, Robot 

2 ASP 

3 ATC, Aviation, GPS 

4 BIS, DataMining, DW, OLAP 

5 Blog, RSS, SocNet 

6 ChatRoom, IM 

7 CRM, ERP, SCM, SFA 

8 DigitalMusic, MP3 

9 eCom, OLAdvertising, OLSales, WWW 

10 InvenManage 

11 Linux, OSS, Virtualization 

12 PKI, VPN 

13 QualityCtrl, SixSigma 

14 SOA, WebServ 
Note: 7 out of 14 groups are identical (F=.830) 

Table 6.4: The Second-order Co-
occurrence-based Classification by 

Factor Analysis 
 
No. IT concepts (loading) 

1 AI (-0.715), Robot (-0.679) 

2 ATC (-0.742), Aviation (-0.718), GPS (-

0.111) 

3 OLAP (0.708), DW (0.656), DataMining 

(0.598), BIS (0.241) 

4 Blog (0.745), RSS (0.677), SocNet (0.466)

5 ChatRoom (-0.675), IM (-0.651) 

6 CRM (0.644), ERP (0.627), SCM (0.496), 

SFA (0.475), InvenManage (0.121) 

7 MP3 (0.283), DigitalMusic (0.263) 

8 OLSales (0.715), eCom (0.712), WWW 

(0.266), OLAdvertising (0.191), ASP 

(0.167) 

9 Linux (0.785), OSS (0.782), 

Virtualization (0.252) 

10 VPN (0.717), PKI (0.669) 

11 SixSigma (-0.666), QualityCtrl (-0.661) 

12 SOA (0.763), WebServ (0.735) 
Note: 7 out of 12 groups are identical (F=.797) 
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Table 6.3: Factor Analysis of the 35 IT Concepts 

 Component 
IT Concept 1 2 3 4 5 6 7 8 9 10 11 

CRM .644    

ERP .627    

SCM .496    

SFA .475    

InvenManage .121    

OLAP  .708   

DW  .656   

DataMining  .598   

BIS  .241   

Linux   .785   

OSS   .782   

Virtualization   .252   

Blog   .745   

RSS   .677   

SocNet   .466   

OLSales   .715   

eCom   .712   

WWW   .266   

OLAdvertising   .191   

ASP   .167   

ATC   -.742   

Aviation   -.718   

GPS   -.111   

SOA   .763   

WebServ   .735   

AI   -.715  

Robot   -.679  

VPN    .717 
PKI    .667 
SixSigma     -.666
QualityCtrl     -.661
DigitalMusic     .263
MP3     .283
ChatRoom     -.675
IM     -.651

Eigenvalues 1.51  1.50  1.41 1.39 1.31 1.26 1.25 1.16  1.14  1.13 1.11 
% Variance 4.32  4.29  4.02 3.97 3.75 3.60 3.58 3.31  3.26  3.22 3.17 
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Table 6.5: The First-order Co-
occurrence-based Classification 

 
 
 

No. IT concepts 

1 AI, Robot, WWW 

2 ASP 

3 ATC, Aviation, GPS 

4 BIS, DataMining, DW, OLAP 

5 Blog, RSS, SocNet 

6 ChatRoom, IM 

7 CRM, eCom, ERP, InvenManage, SCM, 

SFA 

8 DigitalMusic, MP3 

9 Linux, OSS, Virtualization 

10 OLAdvertising 

11 OLSales 

12 PKI, VPN 

13 QualityCtrl, SixSigma 

14 SOA, WebServ 
Note: 6 out of 14 groups are identical (F=.729) 

Table 6.2: The Second-order Co-
occurrence-based Classification by 

Clustering  
(Repeated for Comparison) 

 
No. IT concepts 

1 AI, Robot 

2 ASP 

3 ATC, Aviation, GPS 

4 BIS, DataMining, DW, OLAP 

5 Blog, RSS, SocNet 

6 ChatRoom, IM 

7 CRM, ERP, SCM, SFA 

8 DigitalMusic, MP3 

9 eCom, OLAdvertising, OLSales, WWW 

10 InvenManage 

11 Linux, OSS, Virtualization 

12 PKI, VPN 

13 QualityCtrl, SixSigma 

14 SOA, WebServ 
Note: 7 out of 14 groups are identical (F=.830) 

Table 6.4: The Second-order Co-
occurrence-based Classification by 

Factor Analysis  
(Repeated for Comparison) 

 
No. IT concepts (loading) 

1 AI (-0.715), Robot (-0.679) 

2 ATC (-0.742), Aviation (-0.718), GPS (-

0.111) 

3 OLAP (0.708), DW (0.656), DataMining 

(0.598), BIS (0.241) 

4 Blog (0.745), RSS (0.677), SocNet (0.466)

5 ChatRoom (-0.675), IM (-0.651) 

6 CRM (0.644), ERP (0.627), SCM (0.496), 

SFA (0.475), InvenManage (0.121) 

7 MP3 (0.283), DigitalMusic (0.263) 

8 OLSales (0.715), eCom (0.712), WWW 

(0.266), OLAdvertising (0.191), ASP 

(0.167) 

9 Linux (0.785), OSS (0.782), 

Virtualization (0.252) 

10 VPN (0.717), PKI (0.669) 

11 SixSigma (-0.666), QualityCtrl (-0.661) 

12 SOA (0.763), WebServ (0.735) 
Note: 7 out of 12 groups are identical (F=.797) 
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6.4 Discussion 

First, when comparing the two second-order co-occurrence-based classifications 

with the ProQuest classification (see Table 6.1, 6.2, and 6.4), both automatic 

classifications have the same 7 groups which are identical to those in the ProQuest 

classification. The second-order co-occurrence-based classification by clustering has a 

better F-measure (0.830) than the other classification by factor analysis (0.797).  

Second, when comparing the two second-order co-occurrence-based 

classifications with the first-order co-occurrence-based classification in chapter 4 (see 

Table 6.2, 6.4, and 6.5), both the second-order co-occurrence-based classifications have a 

better F-measure than the first-order co-occurrence-based classification (0.729). When 

comparing the first-order co-occurrence-based classification (Table 6.5) and the second-

order co-occurrence-based classification by clustering (Table 6.2), the difference is the 

five IT concepts: world wide web, electronic commerce, inventory management, online 

advertising, and online sales. The second-order co-occurrence-based classification by 

clustering places world wide web, electronic commerce, online advertising, and online 

sales together in a group, and inventory management alone in another group. When 

comparing the second-order co-occurrence-based classification by clustering (Table 6.2) 

and the second-order co-occurrence-based classification by factor analysis (Table 6.4), 

the difference is only the two IT concepts: inventory management and application service 

provider. The second-order co-occurrence-based classification by factor analysis groups 

inventory management with the CRM group, and application service provider with the 

eCom group. On the other hand, the two IT concepts are singletons in the second-order 

co-occurrence-based classification by clustering.  
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Interestingly, compared to the first-order co-occurrence-based classification, both 

the two second-order co-occurrence-based classifications put the four IT concepts 

together: world wide web, electronic commerce, online advertising, and online sales. This 

is why the two second-order co-occurrence-based classifications have a higher F-measure 

than the first-order co-occurrence-based classification as the four IT concepts are in fact 

in the same group in the ProQuest classification. Table 6.6 shows the co-occurrence 

matrix of the four IT concepts. The co-occurrence counts among online advertising, 

online sales, and world wide web are low. The co-occurrence counts between electronic 

commerce and the three concepts are high but the number of occurrence of electronic 

commerce is extremely high (12,311). As a result, it explains why the first-order co-

occurrence-based classification fails to group the four concepts together. On the other 

hand, with information of each IT concept’s co-occurrence “pattern” with other concepts 

in the list, the second-order co-occurrence-based classifications are able to group them 

together.  

Table 6.6: Co-occurrence Matrix of the eCom Group 

  eCom OLAdvertising OLSales WWW 

eCom 12311 28 191 141 

OLAdvertising 28 473 3 5 

OLSales 191 3 742 6 

WWW 141 5 6 1411 

 

Factor analysis, like multidimensional scaling, is an ordination technique (Sokal, 

1974). Although the factors in Table 6.3 display “simple structure”, in which each IT 

concept loads on only one factor. It is not usually the case in factor analysis; some objects 

could load on more than one factor while others with loadings below the threshold are not 
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reported. Generally, factor analysis is to interpret extracted factors with those objects 

loading on them. However, like other multivariate analysis in the study, factor analysis is 

used as a classification technique to classify objects. It provides a middle ground between 

hierarchical clustering and multidimensional scaling that one gives a hierarchic 

classification and the other offers a spatial representation of objects without a clear 

demarcation of groups.  

In the factor analysis of the 35 IT concepts (Table 6.3), none of them loads on 

more than one factor. On the other hand, there are 9 IT concepts with loadings below the 

threshold. They are still reported for classification but marked gray in the analysis (Table 

6.3) as well as in the resulting classification (Table 6.4). These 9 IT concepts and their 

loadings are: GPS (-0.111), BIS (0.241), InvenManage (0.121), MP3 (0.283), 

DigitalMusic (0.263), WWW (0.266), OLAdvertising (0.191), ASP (0.167), and 

Virtualization (0.252). The membership of the concepts is in gray area and it is very 

likely that in other classifications they are put in a different group. For example, 

application service provider is in the group of electronic commerce in the factor analysis 

but it is a singleton both in the first-order co-occurrence-based classification (Table 6.5) 

and in the second-order co-occurrence-based classification by clustering (Table 6.2). 

Another example is virtualization, which is grouped with linux and open source software 

across the three co-occurrence-based classifications (Table 6.2, 6.4, and 6.5). However, in 

the survey (Chapter 5), virtualization’s membership with linux and open source software 

is considered as a major disadvantage.  

Finally, factor analysis complements with other multivariate analysis including 

hierarchical clustering and multidimensional scaling. Comparing factor analysis and 
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hierarchical clustering, the loadings of objects in factor analysis correspond to the 

agglomeration schedule in hierarchical clustering. Take the group of electronic commerce 

(Group number 8 in Table 6.4) as an example. The loadings and dendrogram section for 

the group are in Table 6.7 and Figure 6.5 respectively. In Figure 6.5, online sales and 

electronic commerce, with the highest two loadings in the group, are first joined. World 

wide web, with the third highest loading, is later joined followed by online advertising 

with the fourth highest loading. As for application service provider with the lowest 

loading, it is not in the dendrogram section. In the classification based on the dendrogram 

(see Table 6.2), it is a singleton.  

Table 6.7: The Loadings for the eCom Group 

8 OLSales (0.715), eCom (0.712), WWW (0.266), OLAdvertising (0.191), ASP (0.167)
 

 

 

Figure 6.5: The Dendrogram Section for the eCom Group 

 

Comparing factor analysis and multidimensional scaling, the loadings of IT 

concepts in factor analysis also correspond to their location on the plot. As noted in the 

multidimensional scaling result of this chapter, the plot based on second-order co-

occurrence is not good because many related IT concepts are not close to each other on 

the plot. Therefore, I use the plot based on first-order co-occurrence (see Figure 4.4) to 

compare with factor analysis. Interestingly, the 9 IT concepts with loadings below the 

threshold in factor analysis appear as an outlier on the plot except that world wide web 
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(0.266) is located close to the center of the plot. This demonstrates that the three 

multivariate analysis techniques correspond to each other in some ways and they should 

complement with each other in exploring the relationships of IT concepts.  

6.5 Summary 

In the chapter, I apply second-order co-occurrence by converting the co-

occurrence matrix into a matrix of Pearson correlations. Then, I use hierarchical 

clustering and factor analysis in parallel to create the two second-order co-occurrence-

based classifications. Compared to the first-order co-occurrence-based classification in 

Chapter 4, both the classifications are able to group electronic commerce, online 

advertising, online sales, and world wide web together, the way the ProQuest 

classification does. As a result, both have a higher F-measure than the first-order co-

occurrence-based classification. Besides, factor analysis has shown some advantages in 

classifying. The loadings in factor analysis are related to not only the agglomeration 

schedule in hierarchical clustering but also the location of IT concepts on the 

multidimensional scaling plot. The results show that the three multivariate analysis 

techniques should complement with each other in classifying IT concepts. Lastly, 

classifications based on a matrix of Pearson correlations may not always be better. For 

example, the multidimensional scaling plot in Figure 6.3 is not as good as that based on 

first-order co-occurrence (see Figure 4.4).  
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Chapter 7: Conclusions 

 

7.1 Introduction 

In the current status of the IT concept literature, most studies employ single-

concept research designs, leaving the relationships among IT concepts underexplored. On 

the other hand, the few multi-concept studies have had to rely on domain experts to 

evaluate IT concept relationships. Such expert evaluations are difficult to replicate, to 

generalize to other IT concepts, or to scale up to examine the relationships among a large 

number of IT concepts.  

In the dissertation, classification is used to study the relationships of IT concepts. 

The first step in classification is to construct a proximity matrix which consists of 

similarity or dissimilarity measures between a pair of objects. Generally, a proximity 

matrix can be generated in two ways. One is by derived measures which can be inferred 

from raw data coded in a matrix of objects by attributes. The other is by direct measures 

which can be pairwise comparisons of objects in terms of similarity or dissimilarity by 

human judges. Both ways are not scalable because they have to rely on domain experts. 

Therefore, the dissertation applies either KL divergence or co-occurrence analysis as a 

computational approach to construct a proximity matrix automatically for classification.  

Classification techniques include hierarchical clustering and multidimensional 

scaling. The two techniques are used regularly throughout the study to analyze a 

proximity matrix and to classify IT concepts. Through a series of empirical studies, the 
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dissertation aims to provide a computational approach to study multiple IT concepts in 

terms of their similarity and relationships.  

7.2 Summary of the Empirical Studies and Findings 

The dissertation contains five empirical studies, unified under one overall 

research question: How can the relationships among multiple IT concepts be described 

and analyzed in a representative, dynamic, and scalable way?  

In the first empirical study, I employ KL divergence to compare the semantic 

similarity of forty-seven IT concepts discussed in a trade magazine during a ten-year 

period. Using hierarchical clustering, I found that the similarity of the concepts can be 

mapped in a hierarchy and similar IT concepts demonstrate similar discourses. The 

results show that KL divergence can be utilized to construct a proximity matrix of IT 

concepts for classification.  

In the second study, I employ co-occurrence analysis to explore the relationships 

among fifty IT concepts discussed in six magazines over the same ten-year period. Using 

hierarchical clustering and multidimensional scaling, I am able to identify general 

patterns similar to those found in the first study, but with interesting nuances. The results 

show that co-occurrence analysis can also be used to construct a proximity matrix of IT 

concepts for classification.  

The findings from the two studies imply reasonable validity of the computational 

approach. In the third study, to validate and evaluate the effectiveness between KL 

divergence and co-occurrence analysis in classifying IT concepts I make use of the 

ProQuest classification as the ground truth and compare the two automatic IT 

classifications against it. In practice, I use an F-measure to assess the similarity between 
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two classifications of the same IT concepts. The F-measures show that the co-occurrence-

based classification (F=.729) outperforms the KL divergence-based classification 

(F=.615) in agreeing with the ground truth.  

In the fourth study, I conduct a survey to compare the three classifications: the 

two automatic classifications and the ground truth. The results show that the difference 

among the three classifications is statistically significant. The ProQuest classification is 

the best, and the co-occurrence-based classification is better than the KL divergence-

based classification. The results correspond to those in the third study. They also justify 

the use of the ProQuest classification as the ground truth, and the use of F-measure as a 

similarity measure between two classifications (the higher the F-measure is, the better the 

classification is).  

In the fifth study, I further explore the co-occurrence analysis with second-order 

co-occurrence. In practice, I construct a matrix of Pearson correlations from the co-

occurrence matrix and use it as a proximity matrix for IT classification. Both hierarchical 

clustering and factor analysis produce an IT classification with a better F-measure than 

the first-order co-occurrence-based classification generated in Chapter 4. However, a 

classification based on second-order co-occurrence may not always show improvement. 

For example, the multidimensional scaling plot based on second-order co-occurrence is 

not as good as that based on first-order co-occurrence.  

7.3 Enriched Research Method 

After a series of empirical studies, an enriched research method can be shown in 

Figure 7.1. The enriched research method aims to provide a solid and sound approach in 

studying the relationships of IT concepts in the future. It is described in detail below.  
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Figure 7.1: Enriched Research Method 

 

First, it starts with a list of IT concepts and data collection. For a better 

representation, the data should be IT-related discourse, over a long period of time, and 

involving different aspects of topics. For example, the data collection in the dissertation 

includes two IT trade magazines, two business magazines, and two news magazines from 

1998 to 2007. As the results indicate, the data collection should be representative enough 

in studying the relationships of IT concepts.  

Second, either KL divergence or co-occurrence can be applied as a proximity 

measure for a pair of IT concepts. KL divergence compares the use of language between 

two sets of paragraphs while co-occurrence is about the frequency of paragraphs where 

two IT concepts co-occur. According to the results, the co-occurrence-based 

classification seems to be better than the KL divergence-based classification when 

considering first-order matrix construction (see next step).  

Third, as either KL divergence or co-occurrence can serve as a proximity measure 

of IT concepts, there are two ways to construct a proximity matrix: first-order and 
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second-order. When considering the first-order matrix construction, the matrix of KL 

divergence or co-occurrence is treated as a proximity matrix. The similarity or 

dissimilarity between a pair of IT concepts is directly inferred from either proximity 

measure. However, in the second-order matrix construction, the proximity matrix is 

created based on a matrix of either proximity measure. The similarity or dissimilarity 

between a pair of IT concepts is inferred from respective proximity-measure profiles, 

each with all other concepts. In Chapter 6, Pearson correlation is applied as a second-

order matrix construction while there are many other ways. According to the results, the 

second-order co-occurrence-based classifications in Chapter 6 are better than the first-

order co-occurrence-based classification developed in Chapter 4.  

Fourth, multivariate analysis is used to analyze the proximity matrix from the last 

step. Factor analysis, multidimensional scaling, and hierarchical clustering are 

multivariate analysis, and they are also classification techniques. Each technique has its 

own specifications. With a different specification, a technique generates similar 

classification results, but with some nuances. For example, complete link and average 

link are the commonly used aggregation criteria in hierarchical clustering. IT concepts 

placed differently by these two criteria may in fact have both strong links to two different 

clusters. According to the results, the three techniques complement with each other and 

can all be applied to a same proximity matrix. Among the three, factor analysis seems to 

show some advantages with loadings of IT concepts. The loading information in factor 

analysis mainly helps identify ambiguous relationship between IT concepts and factors. 

There are two types of ambiguous relationship factor analysis can identify. The first type 

is when IT concepts load (above the threshold) on more than one factor. On a 
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multidimensional scaling plot, these concepts tend to be placed near the center of the plot 

in order to relate to more than one factor. The second type is when concepts do not load 

on any factor. This is the type of ambiguous relationship that is observed for some 

concepts in Chapter 6. As noted, these concepts are more likely to be placed near the 

boundary on a multidimensional scaling plot. In addition, these concepts tend to be joined 

in later phases of agglomeration schedule in hierarchical clustering. They are also the 

main cause of nuances between different aggregation criteria in hierarchical clustering. 

This demonstrates that factor analysis plays a crucial role among the three classification 

techniques in studying the relationships of IT concepts.  

Finally, as there are two proximity measures, two matrix construction methods, 

and three classification techniques in the enriched research method and each component 

has more than one specification, various classification results can be created. In one 

aspect, some are better than others. For example, Chapter 4 and Chapter 5 show that the 

co-occurrence-based classification is better than the KL divergence-based classification, 

and Chapter 6 shows that the second-order co-occurrence-based classifications are better 

than the first-order co-occurrence-based classification. In another aspect, they are usually 

meaningful in some ways and can be complement with each other. For example, Chapter 

6 demonstrates that the multidimensional scaling plot based on first-order co-occurrence 

(Figure 4.4) can complement with the factor analysis based on second-order co-

occurrence (Table 6.4) in identifying ambiguous relationship between IT concepts and 

factors. Therefore, the final step in the enriched research method focuses on exploration 

and evaluation of various classification results. The goal is to explore the relationships of 
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IT concepts and to evaluate and find a classification that best represents their 

relationships.  

7.4 Contributions 

The scalable computational approach demonstrated in the empirical studies is 

useful to help expand IT research along three dimensions: concepts, data sources, and 

time. First, the approach can help IT researchers overcome the limitation of single-

concept designs by concurrently exploring multiple concepts. By facilitating the study of 

multiple concepts and their relationships over time, the approach enables researchers to 

develop theories of IT research on a more realistic footing.  

Second, the approach is not limited to a specific source. Any source may be 

biased by its own specifics and thus it would be useful to collect data from multiple 

sources and apply the approach. On one hand, a study may discover a more objective 

representation of the concept relationships by pooling the data from multiple sources in 

proportions that may represent key constituencies of concept communities. On the other 

hand, researchers may analyze the data collected from each source and compare the 

results, revealing similarities and differences among various segments of the concept 

communities that different sources represent. For example, a previous study (Tsui, Wang, 

Fleischmann, Oard, & Sayeed, 2009) found that the IT concept relationships discovered 

in InformationWeek are very similar to those found in ComputerWorld. Comparing the 

results using the same approach across different sources will enrich understanding of IT 

concepts as well as the communities underlying these sources.  

Third, due to the dynamic nature of concept relationships, it would be useful to 

conduct the approach at multiple times. The evolving hierarchical structure of IT 
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concepts would reveal what is going on, as concepts with changing meanings might 

cluster at different times with different concepts. To illustrate the utility of the 

methodology in multi-period analysis, I sliced the data by year and performed the same 

analysis on each year’s data. The result shows that the hierarchical structure of concepts 

did change over time. However, some concepts such as e-business and e-commerce are 

clustered together throughout the years.  

In sum, this scalable computational methodology enables multi-concept, multi-

source, and multi-period studies, potentially advancing knowledge about the dynamic 

relationships of IT concepts.  

7.5 Limitations of the Study 

As the computational approach for IT classification is based on data, different 

data would result in a different classification under the same approach. Therefore, the 

data should be representative for the IT concepts under study. For example, the data in 

the study includes multiple discourses in which various IT concepts are discussed, 

described, and related to each other from various aspects. Besides, the scale of the data 

should be large enough to avoid data sparseness problem. In the empirical studies in 

which either KL divergence or co-occurrence analysis is applied, data sparseness could 

be an issue. For example, in the co-occurrence analysis, to fully recognize an IT concept 

and relate it with other concepts for their relationships, enough occurrences of the 

concept should be observed to have a valid co-occurrence profile with other concepts. 

The occurrence of an IT concept is measured by the number of paragraphs mentioning 

the concept. In Chapter 4, I try to avoid data sparseness by excluding those IT concepts 

with too few occurrences in paragraphs. Out of 120 IT concepts, I use their media 
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(251.50) as a threshold and pick the upper 60 IT concepts. The threshold is used in the 

study. However, it could be generalized to other similar studies to avoid data sparseness. 

Finally, to avoid data sparseness regardless of the threshold, a common way for this is 

always to collect more data. With more relevant data, it would be more possible that a 

proximity-measure profile of an IT concept with other concepts is meaningful.  

7.6 Avenues for Future Study 

The dissertation offers some insights to future studies that aim to develop a more 

robust way in studying the relationships of IT concepts. First, as discussed in the enriched 

research method, there are multiple paths in the procedure of classifying IT concepts. 

Each component in the method has more than one specification. A future study may try 

different paths or different specifications that haven’t been used in the study. For example, 

one can try second-order KL divergence-based classification and see if it makes any 

improvement in terms of F-measure as in the co-occurrence analysis.  

Second, in light of the limitations stated above regarding data sparseness, a future 

study could include additional trade magazines and other sources such as popular press, 

newspapers, academic journals, and informal media. With more data, the list of IT 

concepts can be expanded as well, to make the list more diversified and more 

representative in terms of the IT field. The three classification techniques together should 

be able to identify not only obvious but subtle relationships among such list of IT 

concepts.  
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7.7 Concluding Remarks 

Due to their complication and varieties, IT concepts are related in complex ways. 

This dissertation provides a computational approach to study the relationships of IT 

concepts. It includes a series of empirical studies to explore IT relationships from 

different aspects such as on a plot or in a hierarchy, and to evaluate various IT 

classifications generated in the approach. The results have shown that the approach is 

capable of producing an automatic IT classification which is very much similar to the 

ground truth. Different methods are also compared with each other to gain insights 

regarding the relationships of IT concepts. However, the computational approach in the 

study does not aim to get rid of experts. Expert input is not scalable, but the approach can 

never replace experts. The values of the approach lie in the possibilities that the results 

from the approach may help experts in useful ways: saving time, finding patterns more 

easily, and seeing other alternatives, etc. The ultimate goal is to combine experts and 

computers in the IT-concept classification work so that manual and computational 

analyses complement each other to produce the best results more efficiently and 

effectively. Overall, the dissertation establishes a good foundation for studying the 

relationships of IT concepts in a representative, dynamic, and scalable way.  

 

 

 



Appendix A: Definition of the 35 IT concepts 

 
 
All definitions below are retrieved from Dictionary.com with various sources. 
 

IT concept Definition Source 

artificial 

intelligence 

the capacity of a computer to perform operations analogous to learning and decision making in humans, 

as by an expert system, a program for CAD or CAM, or a program for the perception and recognition of 

shapes in computer vision systems. Abbreviation: AI, A.I. 

Origin: 1965–70 

Dictionary.com Unabridged

application 

service provider 

(ASP) A service (usually a business) that provides remote access to an application program across a 

network protocol, typically HTTP. A common example is a website that other websites use for accepting 

payment by credit card as part of their online ordering systems. 

As this term is complex-sounding but vague, it is widely used by marketroids who want to avoid being 

specific and clear at all costs. 

The Free On-line Dictionary 

of Computing 

air traffic control a government service that facilitates the safe and orderly movement of aircraft within and between 

airports by receiving and processing data from radar and devices that monitor local weather conditions 

and by maintaining radio contact with pilots. 

Origin: 1930–35 

Dictionary.com Unabridged

aviation the design, development, production, operation, and use of aircraft, esp. heavier-than-air aircraft. 

Origin: 1865–70 

Dictionary.com Unabridged

business 

intelligence 

the process of gathering information about a business or industry matter; a broad range of applications 

and technologies for gathering, storing, analyzing, and providing access to data to help make business 

Dictionary.com’s 21st 

Century Lexicon 
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software decisions; abbr. BI 

blog Full name: weblog  a journal written on-line and accessible to users of the internet Collins English Dictionary - 

Complete & Unabridged 

10th Edition 

chat room a branch of a computer network in which participants can engage in real-time discussions with one 

another. 

Dictionary.com Unabridged

customer 

relationship 

management 

(CRM, CIS, Customer Information Systems, Customer Interaction Software, TERM, Technology 

Enabled Relationship Manager) Enterprise-wide software applications that allow companies to manage 

every aspect of their relationship with a customer. The aim of these systems is to assist in building 

lasting customer relationships - to turn customer satisfaction into customer loyalty. 

Customer information acquired from sales, marketing, customer service, and support is captured and 

stored in a centralised database. The system may provide data-mining facilities that support an 

opportunity management system. It may also be integrated with other systems such as accounting and 

manufacturing for a truly enterprise-wide system with thousands of users. 

The Free On-line Dictionary 

of Computing 

data mining Analysis of data in a database using tools which look for trends or anomalies without knowledge of the 

meaning of the data. Data mining was invented by IBM who hold some related patents. 

Data mining may well be done on a data warehouse. 

The Free On-line Dictionary 

of Computing 

digital music Not available  

data warehouse (Or corporate data warehouse, CDW) Any system for storing, retrieving and managing large amounts of 

data. Data warehouse software often includes sophisticated compression and hashing techniques for fast 

searches, as well as advanced filtering. A data warehouse is often a relational database containing a 

recent snapshot of corporate data and optimised for searching. Planners and researchers can use this 

database without worrying about slowing down day-to-day operations of the production database. The 

latter can be optimised for transaction processing (inserts and updates). 

The Free On-line Dictionary 

of Computing 
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electronic 

commerce 

(EC) The conducting of business communication and transactions over networks and through computers. 

As most restrictively defined, electronic commerce is the buying and selling of goods and services, and 

the transfer of funds, through digital communications. However EC also includes all inter-company and 

intra-company functions (such as marketing, finance, manufacturing, selling, and negotiation) that enable 

commerce and use electronic mail, EDI, file transfer, fax, video conferencing, workflow, or interaction 

with a remote computer. 

Electronic commerce also includes buying and selling over the World-Wide Web and the Internet, 

electronic funds transfer, smart cards, digital cash (e.g. Mondex), and all other ways of doing business 

over digital networks. 

The Free On-line Dictionary 

of Computing 

enterprise 

resource planning 

(ERP) Any software system designed to support and automate the business processes of medium and 

large businesses. This may include manufacturing, distribution, personnel, project management, payroll, 

and financials. 

ERP systems are accounting-oriented information systems for identifying and planning the enterprise-

wide resources needed to take, make, distribute, and account for customer orders. ERP systems were 

originally extensions of MRP II systems, but have since widened their scope. An ERP system also differs 

from the typical MRP II system in technical requirements such as relational database, use of object 

oriented programming language, computer aided software engineering tools in development, 

client/server architecture, and open system portability. 

The Free On-line Dictionary 

of Computing 

global positioning 

system 

(GPS) A system for determining postion on the Earth's surface by comparing radio signals from several 

satellites. When completed the system will consist of 24 satellites equipped with radio transmitters and 

atomic clocks. 

Depending on your geographic location, the GPS receiver samples data from up to six satellites, it then 

calculates the time taken for each satellite signal to reach the GPS receiver, and from the difference in 

time of reception, determines your location. 

The Free On-line Dictionary 

of Computing 
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instant messaging IM  the online facility that allows the instant exchange of written messages between two or more people 

using different computers or mobile phones 

Collins English Dictionary - 

Complete & Unabridged 

10th Edition 

inventory 

management 

Not available  

linux a nonproprietary computer operating system suitable for use on personal computers Collins English Dictionary - 

Complete & Unabridged 

10th Edition 

mp3 player a small portable digital audio player capable of storing MP3 files downloaded from the internet or 

transferred from a CD 

Collins English Dictionary - 

Complete & Unabridged 

10th Edition 

online analytical 

processing 

(OLAP) A category of database software which provides an interface such that users can transform or 

limit raw data according to user-defined or pre-defined functions, and quickly and interactively examine 

the results in various dimensions of the data. 

OLAP primarily involves aggregating large amounts of diverse data. OLAP can involve millions of data 

items with complex relationships. Its objective is to analyze these relationships and look for patterns, 

trends, and exceptions. 

The Free On-line Dictionary 

of Computing 

online advertising Not available  

online sales Not available  

open source 

software 

A method and philosophy for software licensing and distribution designed to encourage use and 

improvement of software written by volunteers by ensuring that anyone can copy the source code and 

modify it freely. 

The Free On-line Dictionary 

of Computing 

public key 

infrastructure 

(PKI) A system of public key encryption using digital certificates from Certificate Authorities and other 

registration authorities that verify and authenticate the validity of each party involved in an electronic 

The Free On-line Dictionary 
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transaction. 

PKIs are currently evolving and there is no single PKI nor even a single agreed-upon standard for setting 

up a PKI. However, nearly everyone agrees that reliable PKIs are necessary before electronic commerce 

can become widespread. 

quality control a system for verifying and maintaining a desired level of quality in a product or process by careful 

planning, use of proper equipment, continued inspection, and corrective action as required. 

Origin: 1930–35 

Dictionary.com Unabridged

robot A machine designed to replace human beings in performing a variety of tasks, either on command or by 

being programmed in advance. 

The American Heritage® 

Science Dictionary 

rss technology Really Simple Syndication: a way of allowing web users to receive syndicated newsletters and email 

alerts 

Collins English Dictionary - 

Complete & Unabridged 

10th Edition 

supply chain 

management 

Not available  

salesforce 

automation 

(Sales Automation, SFA, SFFA, Sales & Field Force Automation) Software to support sales reps. The 

software gives sales representatives access to contacts, appointments and e-mail. It is likely to be 

integrated with Customer Relationship Management systems and Opportunity Management Systems. 

The Free On-line Dictionary 

of Computing 

six sigma trademark  a business management strategy that uses statistical methods to identify defects and improve 

performance 

Collins English Dictionary - 

Complete & Unabridged 

10th Edition 

social networking the use of a website to connect with people who share personal or professional interests, place of origin, 

education at a particular school, etc. 

Dictionary.com's 21st 

Century Lexicon 

service oriented 

architecture 

(SOA) Systems built from loosely-coupled software modules deployed as services, typically 

communicating via a network. This allows different modules to be implemented and deployed in 

The Free On-line Dictionary 
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different ways, e.g. owned by different organisations, developed by different teams, written in different 

programming languages, running on different hardware and operating systems. The key to making it 

work is interoperability and standards so that modules can exchange data. 

SOAs often support service discovery, allowing a service to be changed without having to explicitly 

reconnect all its clients. 

Many different frameworks have been developed for SOA, including SOAP, REST, RPC, DCOM, 

CORBA, web services and WCF. 

virtualization Not available  

virtual private 

network 

(VPN) The use of encryption in the lower protocol layers to provide a secure connection through an 

otherwise insecure network, typically the Internet. VPNs are generally cheaper than real private networks 

using private lines but rely on having the same encryption system at both ends. The encryption may be 

performed by firewall software or possibly by routers. 

The Free On-line Dictionary 

of Computing 

web service A family of standards promoted by the W3C for working with other business, developers and programs 

through open protocols, languages and APIs, including XML, Simple Object Access Protocol, WSDL 

and UDDI. 

The Free On-line Dictionary 

of Computing 

world wide web The complete set of electronic documents stored on computers that are connected over the Internet and 

are made available by the protocol known as HTTP. The World Wide Web makes up a large part of the 

Internet. 

The American Heritage® 

Science Dictionary 

 
 



Appendix B: IRB Protocol Approval 

 
 

 

Initial Application Approval Notification 

 
To: Principal Investigator, Ping Wang, College of Information Studies 

Student, Chia-jung Tsui, College of Information Studies  
From: James M. Hagberg 

IRB Co-Chair 
University of Maryland College Park 

Re: IRB Protocol: 10-0391 - Scalable Computational Analysis of the 
Diffusion of Technological Concepts 

Approval Date: July 16, 2010 
Expiration Date: July 16, 2013 

Application: Initial 
Review Path: Exempt 

 

The University of Maryland, College Park Institutional Review Board (IRB) Office 
approved your Initial IRB Application. This transaction was approved in accordance with 
the University's IRB policies and procedures and 45 CFR 46, the Federal Policy for the 
Protection of Human Subjects. Please reference the above-cited IRB Protocol number in 
any future communications with our office regarding this research.  

Recruitment/Consent: For research requiring written informed consent, the IRB-
approved and stamped informed consent document will be sent via mail. The IRB 
approval expiration date has been stamped on the informed consent document. Please 
note that research participants must sign a stamped version of the informed consent form 
and receive a copy.  

Continuing Review: If you intend to continue to collect data from human subjects or to 
analyze private, identifiable data collected from human subjects, beyond the expiration 
date of this protocol, you must submit a Renewal Application to the IRB Office 45 days 
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prior to the expiration date. If IRB Approval of your protocol expires, all human subject 
research activities including enrollment of new subjects, data collection and analysis of 
identifiable, private information must cease until the Renewal Application is approved. If 
work on the human subject portion of your project is complete and you wish to close the 
protocol, please submit a Closure Report to irb@umd.edu.  

Modifications: Any changes to the approved protocol must be approved by the IRB 
before the change is implemented, except when a change is necessary to eliminate an 
apparent immediate hazard to the subjects. If you would like to modify an approved 
protocol, please submit an Addendum request to the IRB Office.  

Unanticipated Problems Involving Risks: You must promptly report any unanticipated 
problems involving risks to subjects or others to the IRB Manager at 301-405-0678 or 
jsmith@umresearch.umd.edu  

Additional Information: Please contact the IRB Office at 301-405-4212 if you have any 
IRB-related questions or concerns. Email: irb@umd.edu  

The UMCP IRB is organized and operated according to guidelines of the United States 
Office for Human Research Protections and the United States Code of Federal 
Regulations and operates under Federal Wide Assurance No. FWA00005856.  

0101 Lee Building 
College Park, MD 20742-5125 
TEL 301.405.4212 
FAX 301.314.1475 
irb@umd.edu 
http://www.umresearch.umd.edu/IRB 
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Appendix C: Survey Request Email 

 
 
To: AISWorld mailing list <aisworld@lists.aisnet.org> 
Subject: Help Needed for IT Classification Study 
 
Dear Colleague, 
 
At the University of Maryland, we are developing automatic methods for classifying IT 
concepts and we invite you to take a short online survey to help us evaluate our methods. 
Our goal is to improve our ability to classify IT concepts automatically. If you are 
familiar with a broad range of IT concepts, please help us by completing this short survey 
here: 
http://www.surveymonkey.com/s/XSHHZWX 
 
Your response will be kept confidential and only aggregated results will be reported. For 
more information about the study, please refer to the Consent Form at this URL: 
http://terpconnect.umd.edu/~ctsui/ConsentForm.html 
 
Thank you very much for your time and we hope you might be able to help us by 
participating in this study. 
 
Sincerely, 
 
Chia-jung Tsui 
The PopIT Research Team 
College of Information Studies 
University of Maryland 
http://terpconnect.umd.edu/~pwang/PopIT/ 
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Appendix D: Survey 

 
 
Page 1 
 
Welcome to this survey to study IT classification! 
 
You must be 18 years of age or older to participate and your participation is voluntary. 
Your response will be confidential. You will NOT be identified under any circumstance 
and only aggregated results will be reported. By clicking “Next”, you agree to participate 
in this study. 
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Page 2 
 
Our goal of this research is to classify various information technology (IT) concepts into 
meaningful categories. Classification is the arrangement of objects into groups based on 
their relationships. The purpose of a classification is to simplify these relationships so 
that general statements can be made about groups of objects. Current manual 
classification methods are labor-intensive and time-consuming. We are trying to develop 
automatic ways to classify IT concepts. We invite you to help us evaluate the outcomes 
of our automatic classification. 
 
Below are three different classifications (A, B, and C) of the same 35 IT concepts. Each 
classification has 14 groups. The 14 groups in each classification and the IT concepts 
within each group are in alphabetical order. 
 
Please review and compare the three classifications in pairwise and answer the following 
questions. 
(Note that in the following pairwise comparisons, groups with exactly the same IT 
concepts are removed from both classifications.) 
 
The first comparison: A and B 

Classification A 
application service provider 
artificial intelligence, robot, world wide web 

business intelligence software, data mining, 
data warehouse, online analytical 
processing 

customer relationship management, 
electronic commerce, enterprise resource 
planning, inventory management, salesforce 
automation, supply chain management 

linux, open source software, virtualization 
online advertising 
online sales 
public key infrastructure, virtual private 
network 

 

Classification B 

application service provider, enterprise 
resource planning 

artificial intelligence, robot 

business intelligence software, customer 
relationship management, data mining, 
salesforce automation 

data warehouse, online analytical 
processing 

electronic commerce, online advertising, 
online sales, public key infrastructure, world 
wide web 

inventory management, supply chain 
management 

linux, open source software 

virtual private network, virtualization 

1. In your opinion, which classification, A or B, is a better one? Please explain. 



Page 3 
 
The second comparison: B and C 
 

Classification B 
air traffic control, aviation, global positioning 
system 

application service provider, enterprise 
resource planning 

artificial intelligence, robot 

blog, rss technology, social networking 

business intelligence software, customer 
relationship management, data mining, 
salesforce automation 

chat room, instant messaging 

data warehouse, online analytical 
processing 

electronic commerce, online advertising, 
online sales, public key infrastructure, world 
wide web 

inventory management, supply chain 
management 

service oriented architecture, web service 

virtual private network, virtualization 
 

 

Classification C 
air traffic control, aviation 

application service provider, customer 
relationship management, electronic 
commerce, enterprise resource planning, 
inventory management, salesforce 
automation, supply chain management, web 
service, world wide web 

artificial intelligence, global positioning 
system, robot 

blog, chat room, instant messaging, social 
networking 

business intelligence software 

data mining, data warehouse, online 
analytical processing 

online advertising, online sales 

public key infrastructure, virtual private 
network 

rss technology 

service oriented architecture 

virtualization 
 

2. In your opinion, which classification, B or C, is a better one? Please explain. 
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Page 4 
 
The last comparison: A and C 
 

Classification A 
air traffic control, aviation, global positioning 
system 
application service provider 
artificial intelligence, robot, world wide web 

blog, rss technology, social networking 

business intelligence software, data mining, 
data warehouse, online analytical 
processing 

chat room, instant messaging 

customer relationship management, 
electronic commerce, enterprise resource 
planning, inventory management, salesforce 
automation, supply chain management 

linux, open source software, virtualization 
online advertising 
online sales 
public key infrastructure, virtual private 
network 

service oriented architecture, web service 
 

Classification C 
air traffic control, aviation 

application service provider, customer 
relationship management, electronic 
commerce, enterprise resource planning, 
inventory management, salesforce 
automation, supply chain management, web 
service, world wide web 

artificial intelligence, global positioning 
system, robot 

blog, chat room, instant messaging, social 
networking 

business intelligence software 

data mining, data warehouse, online 
analytical processing 

linux, open source software 

online advertising, online sales 

public key infrastructure, virtual private 
network 

rss technology 

service oriented architecture 

virtualization 
 

3. In your opinion, which classification, A or C, is a better one? Please explain. 
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Page 5 
 
In the space below, please share with us your thoughts on how IT concepts may be 
usefully classified or categorized. For example, what kinds of categories/classes would be 
useful or meaningful, for what purposes? And how to identify those categories/classes 
efficiently? 
 
 
 
 
 
 
 
 
Page 6 
 
Please let us know who you are to help us better understand your response. Although the 
questions below are optional, please be sure to click “Done” in the end of this page to 
submit the survey. 
 

Name:  
 
Email address:  
 
Current Position:  
 
Current Organization: 
 
Highest Degree Obtained:  
 
Area of Degree:  
 

 
This is the end of the survey. Please click “Done” below to submit it. 
Thank you very much for your participation! :-) 
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