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In-water testing is frequently used to simulate reduced gravity for quasi-static tasks. 

For dynamic motions, however, the assumption has been that drag effects invalidate 

any data, and in-water testing has been dismissed in favor of complex and restrictive 

techniques such as counterweight suspension and parabolic flight. In this study, 

motion-capture was used to estimate treadmill gait metrics for three environments: 

underwater and ballasted to 1 g and to 1/6th g, and on dry land at 1 g. Ballast was 

distributed anthropometrically. Motion-capture results were compared with those for 

a simulated dynamic walker/runner, and used to assess the effect of the in-water 

environment on simulation fidelity. For each test case, the model was tuned to the 

subject’s anthropometry, and stride length, pendulum frequency, and hip 

displacement were computed. In-water environmental effects were found to be 

sufficiently quantifiable to justify using in-water testing, under certain conditions, to 

study partial-gravity gait dynamics. 
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Chapter 1: Thesis Objectives and Contributions 
 

The overarching goal for this study was to improve understanding of environmental 

effects on human gait metrics, with an eye toward applicability in the planning and 

execution of planetary surface EVA. In particular, this study sought to better quantify, 

using various kinematic metrics of gait, the suitability of in-water partial-gravity 

ballasting and treadmill walking/running as a tool for predicting and studying gait 

dynamics in a true reduced-gravity environment, such as the lunar surface. 

 

This objective was approached by means of a kinematic study, using motion-capture, 

of adult human gait in three environments: in the first, subjects walked on a treadmill 

on dry land, at normal Earth weight; in the second, the subjects walked/ran on an 

underwater treadmill while ballasted to 1/6
th

 of their normal weight, simulating the 

gravity of the lunar surface; finally, the subjects walked/ran on the underwater 

treadmill while ballasted to their full Earth weight. In each environment, subjects 

walked/ran at three progressively higher speeds, in order to examine the relationship 

between the non-dimensional Froude number and walk-run transition speed in these 

environments. 

 

In addition to the comparisons performed between gait metrics measured in physical 

testing by means of motion capture, a pair of dynamic gait models were created to 

assess the ability of simple dynamic models to capture the behavior of corresponding 
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physical environments. These models attempted to replicate various gait metrics of 

the real, recorded gaits. 

 

The first-of-its-kind physical testing undertaken in this study provides a unique 

contribution to the field of space human factors; this study represents the first use of 

underwater motion capture to assess human gait dynamics in the ballasted underwater 

environment, with prior work relying on force measurements to estimate gait 

metrics.
[14] 

Additionally, this is the first known gait study in which subjects were 

ballasted underwater to a full one g, with prior work limited to approximately  

g.
[14] 

Given the close anthropometric distribution of the ballast, this allows, for the 

first time, a direct comparison of gait dynamics in the underwater and out-of-water 

environments, with proper gravitational force (although not inertial mass) on all 

relevant body segments. 

 

The gait metrics assessed in this study allow for preliminary insights into gait 

energetics in reduced-gravity environments. Gait energetics in turn affect crew 

endurance and rates of consumables usage, key factors in EVA planning.
[6] 

The gait 

dynamics assessments conducted in this study may support future research 

incorporating additional measurement techniques, such as respiration measurement, 

to correlate gait dynamics and energetics with metabolic workload.
[14][6][7]
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Chapter 2: Background 
 

Over the history of human spaceflight, a variety of techniques have been explored for 

use in simulating one or more aspects of a reduced- or zero gravity environment. 

Simulated reduced gravity may find use in training for spaceflight, or in studying 

human biomechanics or physiological response to offloading of muscles and joints. 

For brief periods of reduced gravity without any encumbering apparatus, parabolic 

flight is considered the standard of fidelity against which all other reduced-gravity 

simulation techniques must be compared.
[14]

 

 

In addition to parabolic flight, suspension techniques are often employed, with 

upright, side, and supine suspension systems all having been tried.
[15] 

The primary 

limitation of suspension techniques is the inherent trade-off between mechanical 

complexity and simulation fidelity; simpler suspension systems apply a gravitational 

offset to the body mass center only, leaving the legs free to swing at their normal 1 g 

frequency. More complex suspension rigs with individual limb suspension tend to 

increase mechanical complexity and reduce freedom of motion to an undesirable 

degree.
[14]

 

 

Underwater ballasting represents the third major regime in simulating reduced 

gravities. Use of underwater ballasting of human subjects has traditionally been 

limited to the study of quasi-static tasks, such as those performed by astronauts on 

EVA in Earth orbit. The assumption has been that drag and virtual mass effects 
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induced by moving quickly though water would preempt the use of underwater 

ballasting for the serious study of dynamic human motions, such as gaits. However, 

Newman, Alexander and Webber demonstrated the use of a submerged treadmill as 

part of a kinetic-kinematic analysis of reduced-gravity gaits, ballasting subjects across 

a range of weights from lunar to nearly Earth-normal.
[14] 

 This project incorporates a 

fully kinematic analysis of underwater gaits, using motion-capture to record body-

segment positions in lieu of the split force-plate approach utilized by Newman et. al. 

Previous reduced-gravity gait studies 

A majority of the reduced-gravity gait studies described in the literature use some 

form of counterbalance rig as the means of simulating reduced gravity. Chang et al. 

suspended subjects in a modified climbing harness from a rolling trolley over a 

treadmill on a force measuring platform, with near-linear weight offset provided by a 

series of rubber-tubing springs.
[2]

 Donelan and Kram similarly used a spring-based 

suspension rig, opting to measure force in the suspending cable, rather than in the gait 

surface, and used a bicycle-seat-and-plastic-pipe assembly, straddled by the subject, 

to transfer the weight offset force to the subject’s body.
[3][8]

 Perusek et al. describe a 

series of reduced-gravity simulators, used primarily for research into zero-g exercise 

countermeasures.
[15]

 

 

Citing the advantages of freedom of motion and unlimited simulation time, Newman, 

Alexander, and Webbon chose water immersion for reduced-gravity simulation. Their 

treadmill was powered by an electric motor outside the water, with power transferred 

via a flexible shaft. Subjects were outfitted with an adjustable ballast distributed 
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across the chest, back, upper and lower legs, which enabled simulation of  g 

(lunar),  g (Martian),  g, and  g (nearly Earth-normal). Subjects traveled at 0.5 

m/s, 1.5 m/s, and 2.3 m/s. A split force plate beneath the treadmill and measurements 

of oxygen and carbon dioxide in subject’s respired gases were used to assess the 

biomechanics and energetics of the gaits. 
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Chapter 3: Test Hardware and Equipment 
 

 

To create an underwater reduced-gravity environment in which one can safely and 

effectively assess human gait kinematics, hardware development and construction 

necessarily demand significant time and effort. The key hardware elements required 

for this study included a treadmill modified for underwater use, a 17-foot truss 

structure to serve as a test platform, and a ballast garment able to accommodate a 

wide range of subject sizes and weight requirements. 

 

Treadmill 

The treadmill used in this study was a heavily-modified COTS exercise treadmill, the 

ProForm XP model 580S. All electronics, including the original drive motor, incline 

motor, motor controller board, and control console were removed. The 1.75-hp drive 

motor was replaced with a pair of 0.5-hp trolling motors, designed for propelling 

small watercraft. The motors each contributed a portion of the torque demanded, and 

transferred power to the tread via a tensioned rubber drive belt. The motor drive 

wheels and drive belt tensioner mechanism were machined and assembled in-house. 

 

Two readily-available trolling motors were used to drive the treadmill, due to the cost 

of obtaining a single, sufficiently powerful motor designed for underwater operation. 

Although the two-motor system ultimately performed as desired, its implementation 

created a challenge. Due to age, wear, and manufacturing variability, the two motors 
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were not identical in performance, and spun at different speeds when the same 

voltage was applied across them. However, by wiring the motors in series, and 

tensioning the drive belt sufficiently so as to minimize slippage, the motors were 

forced to spin at the same speed, by drawing slightly different voltages. Wiring the 

motors in series had the secondary advantage of minimizing the amount of current 

which would be sent into the tank, a key safety consideration. 

 

An Agilent model 6032 DC power supply provided 30 volts across the motors, at a 

maximum current of 25 amps. The power supply maintained a constant voltage, and 

allowed current to vary in response to the demand placed on the motors. Thus, 

although the torque applied to the motors varied with subject mass and across 

different phases of each stride, the treadmill was able to spin at a constant speed 

throughout the stride and across subjects for each test condition. For safety and 

convenience, a simple relay circuit was installed which allowed the test director or the 

subject to turn the treadmill on or off using a switch mounted to the treadmill 

handlebar. A COTS transformer converted grid AC to 12 volt DC to operate the relay 

circuit. 

 

To prevent water from leaking in and shorting the motors, a positive pressure system 

was constructed. Whenever the treadmill was to be immersed in water, the motors 

housings were connected via a shop air hose to an air compressor at the SSL facility. 

An adjustable regulator mounted on the treadmill maintained a pressure in the motor 

casings of 3-5 psi above ambient. 
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To accommodate test subjects, the treadmill handlebar was padded for safety, and 

nylon straps were attached at the side of the treadmill to secure the subject’s air tank. 

 

 

Figure 1: Detail of modified treadmill, showing motors, drive belt and tensioner, and positive-

pressure system 

 

Platform 

In order for the treadmill and subject to be within the field of view of the motion-

capture cameras, the treadmill had to be located in the upper half of the tank, roughly 

centered relative to the walls of the tank. This required the construction of a 

stationary platform to support the treadmill and subject at this location. A 16-foot, 7-

inch tall by 6-foot by 6-foot truss was constructed from fiberglass I-beams, with 



 

 9 

 

nylon rope and ratcheting die-down straps serving as additional tensional members to 

increase the rigidity of the structure. The truss was secured to four hard points around 

the perimeter of the base of the tank using rope and ratchet straps. A ¼”-inch thick 

aluminum plate, secured with C-clamps to the top of the truss structure, served as the 

deck for the treadmill. 

 

 

Figure 2: Treadmill platform in position for testing 

Motion-capture markers 

A total of twelve 33-mm-diameter motion-capture markers were used during data 

collection: four markers were mounted rigidly to the corners of the treadmill, to track 
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undesirable motion of the platform; one marker was mounted on each hip at the 

protrusion of the greater trochanter
[4]

; one marker was mounted on each thigh just 

above the knee; one marker was mounted on each calf just below the knee, and one 

marker was mounted on each ankle. All six markers worn on the subjects’ legs were 

located along the outside of the leg, in the coronal plane. The eight body markers 

were mounted to adjustable fabric straps that were used to hold and position the 

markers on each subject’s body. Several subjects opted to wear a loose-fitting 

coverall for comfort, as the marker straps on bare skin were found to have a tendency 

to pull at leg hairs. 

 

 

Figure 3: Approximate body positioning of motion-capture markers (Modified image from 

NASA STD-3000)
[11]
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Figure 4: Detail of subject’s leg, markers visible below and above the knee 

 

 

Figure 5: Detail of treadmill, showing a reflective marker 
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Ballast 

The design of the ballasting system was driven by the extreme case of high subject 

mass and high simulated gravitational load. A maximum body mass of 200 lbs. was 

set as a requirement for test subjects, to allow the ballasting hardware to remain 

reasonably easy to assemble, disassemble, don, and doff. The ballast system was 

designed such that weight could easily be added or removed to alternate between the 

1/6
th
 g and 1 g test cases. 

 

A distributed ballast system was selected over a torso-only system to more accurately 

represent the distribution of gravitational forces over the walking body, with ballast 

located on the front of the torso, the back of the torso, the thighs, and the calves. An 

appropriate ballast distribution was calculated using body segment mass data for 50
th
 

percentile American males.
[11] 

This resulted in placing 62% of the ballast in a given 

case on the torso (split evenly into 31% on the chest and 31% on the back), 13% on 

each thigh, and 6% on each calf. For the heaviest subject in the 1g test case, this 

corresponded to 62 lbs. of ballast on the front of the torso, 62 lbs. on the back of the 

torso, 26 lbs. on each thigh, and 12 lbs. on each ankle. 

 

The ballast system was assembled entirely from COTS components, primarily 

modular elements of a military tactical gear system which assembled with 

interweaving straps and snaps. The torso unit consisted of a vest, with a large pack on 

the back and several smaller ammunition pouches on the chest and sides. Two “drop 
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leg” pouches strapped around the thighs and attached to a waist belt. A pair of COTS 

ankle weight belts completed the ballast system. 

 

 

Figure 6: The author walking on the treadmill while wearing the full ballast system 

 

For safety, test subjects wore a standard climbing harness, attached via a slack rope to 

an overhead crane. In the event a subject were to fall off the treadmill and platform 

while ballasted, this would ensure that they did not sink to the bottom of the tank. 

 

Air supply 

During in-water testing, subjects breathed from a standard scuba bottle mounted to 

the treadmill, via a “hookah” rig, a regulator with an extra-long hose to allow the 

subject freedom of motion. 
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Chapter 4: Test Protocols and Procedures 
 

Subjects in this study participated in two test sessions, one in the water and one out of 

the water. In-water testing took place at the University of Maryland Space Systems 

Laboratory’s Neutral Buoyancy Research Facility, using the Underwater Motion 

Capture Facility (UMCF) owned and operated by the Collective Dynamics and 

Control Laboratory (CDCL). Dry-land testing took place in the Manufacturing 

Building on the UMd campus, using a second motion-capture system also belonging 

to the CDCL. 

 

Subjects 

Five subjects, four male and one female, participated in the testing. All subjects were 

between the ages of 24 and 30. The mean subject body weight was 74.8±14 kg. The 

mean leg length, as measured from the floor to the greater trochanter of the femur
[4]

 

while standing with shoes off, was 90.7±5 cm. 

 

All subjects were PADI- or NAUI- certified scuba divers previously approved to 

participate in dive operations at the NBRF. All subjects had normal (unimpeded) 

gaits, and reported no medical conditions which would preclude participation or 

invalidate the collected data. Each subject was briefed on the test procedures and 

completed a University-approved informed consent agreement prior to testing. 
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Test procedures 

During the in-water session, subjects walked/ran on an underwater treadmill at three 

progressively greater speeds, first while ballasted to 1/6
th

 of their normal weight, and 

again while ballasted to their full normal weight, while the array of motion-capture 

cameras recorded the position of markers on their hips and legs at 20 Hz. Each run 

lasted approximately 45 seconds, so that roughly 30 gait cycles (60 steps) were 

captured. In addition to the motion-capture data, still photographs and video were 

recorded during each dive. 

 

While on the treadmill underwater, subjects breathed using a long “hookah” rig 

connected to a scuba tank mounted to the treadmill. Subjects were not permitted to 

wear a wetsuit during the in-water testing, as the buoyancy and range-of-motion 

restriction of a wetsuit could potentially alter the test results. 

 

Procedures for the in-water sessions are as follows. Before getting in the water, 

subjects were weighed and key anthropometric dimensions (knee height, hip height) 

were measured. The subjects’ weight was used to compute ballast loads for the torso, 

thighs, and calves for the 1 g and 1/6
th

 g test segments. The subjects then changed 

into the empty ballast garment and climbing harness, assisted by the student 

investigator as necessary, and donned the reflective markers used by the motion-

capture system. 

 



 

 16 

 

In addition to the test subject and the student investigator, a third diver participated in 

each session as a safety diver, with the sole responsibility of watching, and, if 

necessary, assisting the test subject. This diver was equipped with a full facemask to 

allow communication with the surface. Before each subject entered the tank, the 

treadmill was lowered by crane onto its platform, and the student investigator and 

secondary diver prepared it for use. 

 

Upon entering the water, subjects swam to the treadmill platform, removed their fins, 

and switched from their personal scuba tank to the one on the treadmill.  They were 

then secured via their harness to a slack rope mounted to an overhead crane, which 

served as a safety measure in case a subject were to fall off of the platform while 

ballasted. 

 

Based on the ballast loads computed earlier, the student investigator then strapped the 

adjusted ankle ballasts onto the subject, and proceeded to load the remaining pockets 

of the ballast garment with lead weights, working from thighs to chest and sides to 

back. During the ballasting process, the investigator periodically directed the subject 

to stand on a spring scale so that the ballast could be checked and adjusted 

accordingly. This process took approximately 5-10 minutes.  
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Figure 7: Adding ballast to the back 

 

Once a subject was fully ballasted, the investigator would direct the deck chief to turn 

on the treadmill power supply and set it to output up to 25 amps at 15 volts, and direct 

the data collection assistant to prepare for a motion-capture run. The subject wound 

then flip on the treadmill kill switch when ready, and began walking/running. After a 

45 second motion-capture run, the investigator would direct the subject to stop the 

treadmill and wait for the next run. The intestigator would then direct the deck chief 

to adjust the power supply to 25 amps and 20 volts. A second run would be 

performed at 20 volts and a third at 25 volts. 

 

After the three runs at 1/6
th
 g, the investigator would add additional ballast to all 

pockets, again working from ankles to thighs to thighs to torso and checking 
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periodically with the spring scale, until the subject was ballasted to their full normal 

weight with mass distributed anthropometrically. With the subject ready, data 

collection runs were again performed at 15, 20, and 25 volts. 

 

At the conclusion of the last run, the investigator would direct the deck chief to cut all 

power to the treadmill, and would begin removing weight from the subject’s ballast 

garment, in the opposite order of how it was put in. The unburdened subject would 

then switch back to their personal scuba tank, don their fins, swim to the diving 

platform, and exit the tank. The investigator and secondary diver would then clean up 

the test platform, re-attaching the treadmill to the crane for removal from the tank, 

and returning the spring scale and fabric ballast bags to the surface so as to forestall 

corrosion and disintegration. 
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Figure 8: The treadmill being removed from the tank 

 

The dry-land test sessions were far simpler and quicker than the in-water sessions, 

requiring no more than about 10 minutes of each subject’s time, compared with the 

hour to an hour and a half required for the in-water sessions, even neglecting prep 

work. The subjects simply donned the reflectors, got on the treadmill, and performed 

runs at 15, 20, and 25 volts. 

 

At the end of testing, subjects were asked to complete a short post-questionnaire 

about their experiences. The results of these questionnaires are discussed below. 
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Qualitative assessment of testing process 

A total of five subjects participated in testing, with all five subjects completing all test 

sessions. Feedback from the subjects primarily concerned the in-water sessions. 

 

In the post-questionnaire, subjects were asked what, if any, difficulties they 

encountered during testing. Several commented that, while moving at 1/6
th
 g was not 

exhausting, it was difficult to retain one’s balance. Multiple subjects commented that 

moving at 1 g was more difficult than 1/6
th

 g, but disagreed on whether slower or 

faster runs at 1 g were harder.  

 

Subjects were also asked what, if any, discomfort they experienced during testing. 

Most subjects reported some discomfort in the back and shoulders associated with 

carrying the ballast for the 1 g runs, and one subject commented that the duration of 

the 1 g portion was an important factor in discomfort level. One subject reported a 

weight digging into their lower back. In addition, three subjects reported some 

discomfort or exhaustion due to movement of the thigh ballasts during gait. 

 

Additional comments made by subjects included that tight straps were important to 

preventing shifting of the thigh ballasts; that the movement of the treadmill support 

structure could be perceived at 1 g; that it took some time to adjust to new gaits, but 

that gait became more natural towards the ends of runs; that a flag mounted to the 

front of the treadmill served as a useful visual reference point for maintaining 

balance, and that the strobe-light effect created by the motion-capture cameras while 
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operating was a distraction but that one got used to it. Two subjects commented that 

the 1/6
th
 g portion was “really fun”. 

 

From the perspective of the student investigator, the testing process carried a sharp 

learning curve, with unanticipated issues plaguing an early test run, but with each 

subsequent session becoming easier and taking less time. In particular, the ballasting 

process became significantly more efficient over the series of sessions. With the same 

individuals assisting as safety diver, deck chief, and data collection assistant for 

multiple sessions, communicating the steps of the test procedure became easier with 

familiarity. 

 

One key logistic concern for this sort of testing is manpower. Each in-water session 

involved a subject, an investigator, a safety diver, a deck chief, and a data collection 

assistant, with each role requiring specialized knowledge and/or status. For safety 

reasons, each of the above personnel (with the exception of the data collection 

assistant) had to be certified scuba divers specifically approved to dive at the NBRF, 

with CPR/AED/first aid certifications up to date. Given the limited number of people 

meeting these criteria, and the hectic schedules of graduate students, it should be 

noted that determining manpower requirements early is a crucial step in the design of 

any human subject research project involving scuba diving. 
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Sources of measurement error 

There are several potential sources of error in the physical measurements obtained 

during testing. Error in measured subject weight due to miscalibration of the spring 

scale and parallax induced by the viewing angle of the scale is estimated to be 

approximately ±1 kg. Error in measured body-segment lengths is estimated to be 

±3%. Imprecise placement and shifting of markers on the body is estimated to 

contribute an error of ±3 cm in each axis to the measured marker positions throughout 

each run. Position drift over each run due to motion of the treadmill platform is 

estimated to be ±2 cm in the front-back axis and ±1 cm in the left-right axis, affecting 

all the body markers equally. 

 

The motion-capture system itself introduced several sources of error which are 

difficult to quantify, but which are assumed to be relatively minor contributors to 

overall measurement error. Calibration of the system may introduce position drift of 

approximately ±0.03 cm in each axis over the course of a run, affecting all markers 

equally. This error is estimated from the variation in the recorded position of the fixed 

treadmill markers over the course of each run using the dry-land motion-capture 

system, and is much smaller than the error introduced in the underwater data by 

motion of the treadmill platform. Slight position errors may be introduced by the gap-

filling algorithm used by the Qualisys software, though this source of error is much 

smaller than the other sources of error in recorded marker position, and is present for 

only a small percentage of each recorded marker trajectory. 
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Finally, position errors may be introduced into in the data-processing stage by 

mislabeling of marker trajectory segments and inclusion of false positive trajectory 

segments, such as those introduced by bubbles and reflections. In processing the 

underwater data, trajectory segments were labeled and false positives pruned by 

visual inspection. For the dry-land data, the process of trajectory identification was 

automated in MATLAB, and visual inspection was used to confirm correct labeling and 

absence of false positives. For both the underwater and dry-land data, it is believed 

that all trajectory segments were correctly labeled and all false positives removed. 
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Chapter 5:  Motion-Capture Data Processing 

 

Body-segment position data for the in-water and out-of-water sessions were obtained 

using two different motion-capture systems, each with its own proprietary software 

package, and thus required different methods and levels of processing to yield useful 

gait metrics. First, the cloud of points generated by the motion capture systems had to 

be turned into continuous marker trajectories, and false positives eliminated. The 

Qualisys system in use at the UMCF automatically stitches together many broken 

trajectories, and includes an intuitive GUI for manual data cleanup. Bubbles from the 

divers’ regulators and the air hose feeding the motors were a source of many false 

positives, but these were easily visually distinguished from the marker trajectories. 

 

The OptiTrack system in use in the Manufacturing building is designed primarily for 

tracking definable rigid bodies, and is ill-equipped to track isolated markers. It 

outputs a tab-separated-values file with rows containing the positions of markers 

visible at each frame. Markers which disappear, even for a single frame, reappear at 

the end of the list, with the intervening markers shifting up one space. In order to pull 

out continuous marker trajectories from this data, the markers in each frame were 

sorted and identified by their relative positions, with the highest two markers 

representing the hips and so forth (see MATLAB code in Appendix 5a). All data 

processing was performed on an HP Pavilion
®

 dv5 notebook PC with an Intel
®

 

Core™ 2 Duo CPU running at 2.4 GHz and 3.0 Gb of RAM, on Windows Vista™ 

Home Premium. 
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Once the raw data from each motion-capture system was sorted into continuous 

marker trajectories, virtual markers were created for each run from the recorded 

marker trajectories and known subject anthropometry. A virtual torso marker was 

created at the center of the two hip markers, so that vertical motion of the trunk 

during gait could be assessed without being affected by rotation of the pelvis in the 

coronal plane. Virtual heels were created along the line defined by the below-knee 

and ankle markers, at a distance from the ankle marker such that at its lowest point in 

the stride, the height of each heel is precisely at the height of the walking surface, as 

determined from the four stationary markers mounted to the corners of the treadmill. 

Virtual knee markers were created along the same line, at a distance from the heels 

determined by the measured standing knee height of each subject. Creating virtual 

heel and knee markers from known geometry obviated the need for precise placement 

of markers along the length of the calf and at the knee itself. 

 

With virtual markers in hand, gait metrics were computed for each step, as defined by 

the intervals between cross-over of the heels. Step duration, speed, step length, 

vertical displacement of the torso, maximum horizontal distance between the heels, 

and maximum angle between the legs in the sagittal plane were computed from 

marker positions, and averages were taken over the length of each run (See MATLAB 

code in Appendix 5b). 

 



 

 26 

 

In addition, a metric “isrun” was created to assess whether each individual step 

seemed to qualify as a run, based on the height both feet come off the ground. 

Averaged over each run and across all subjects, this metric essentially reveals the 

percentage of a run that resembled running rather than walking. Looking across the 

test cases, it shows an abrupt transition: for 1 g runs on dry land and at low speed in 

water, “isrun” is near zero; for 1/6
th
 g runs and 1 g runs in water at high speed, 

“isrun” is greater than 0.85. For medium speed, 1 g runs in water, isrun = 0.493, 

indicating that this case was approached with a walking-type gait and a running-type 

gait in nearly equal proportions. 

 

The full set of gait metric data obtained through physical testing can be found in 

Appendix 1. 

 

Stroboscopic images 

Using the virtual markers created during processing of the motion capture data, a 

series of “stroboscopic” images may be created, showing the joint positions and 

angles at various points in time over a gait cycle. These images may be useful for 

getting an intuitive sense of the dynamics of a gait. Stroboscopic images for the three 

motion-capture test environments are presented and briefly discussed below. 
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Figure 9: Stroboscopic image showing one step of a leg in the 1 g, dry land test case 

 

The first stroboscopic image presents a typical gait cycle, for one leg, in the dry, 1 g 

environment. Note that vertical displacement of the hip is small, that the leg does not 

extend very far beyond vertical, and that the knee bend is small. 



 

 28 

 

 

 

 

Figure 10: “Stroboscopic” image showing step of a leg in the 1 g, in-water test case 

 

The second stroboscopic image presents a gait cycle in the underwater, 1 g 

environment. Note that, compared with the dry environment, the vertical hip 

displacement, hip angle, and knee bend angle are more pronounced. These differences 

likely reflect the natural tendency of human subjects to try to minimize their drag 

profile when moving through water – raising the knee and foot higher during the 

forward swing have the effect of reducing the frontal area presented to the water by 

the leg as it moves forward. 
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Figure 11: Stroboscopic image showing one step of a leg in the 1/6
th

 g, in-water test case 

 

The final stroboscopic image shows a typical stride in the underwater, lunar gravity-

ballasted environment. Knee bend in particular is even more exaggerated in this 

example than in the underwater 1 g environment. 
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Chapter 6:  Motion-Capture Data Analysis 

 

Equations for non-dimensionalized quantities 

In order to allow for meaningful comparisons between the different test subjects and 

gravitational environments, gait metrics were non-dimensionalized. By the dynamic 

similarity hypothesis, gaits for the same leg length, gravitational environment, and 

body mass should exhibit the same dynamic behavior. Thus, the basis for non-

dimensionalization used throughout this thesis is the subject leg length l, the subject 

body mass M+2m, and the gravitational acceleration (actual or simulated with 

ballast), g. The following table lists equations for the non-dimensionalization of basic 

physical quantities used in the analyses below. 

 

Quantity Equation 

Length 
 

Time 
 

Speed 
 

Frequency 
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In addition to these quantities, two more non-dimensional quantities are defined for 

use in the analyses below: 

 

Quantity Equation 

Froude number 
 

Velocity exponent β 

 

    

 

The significance of the velocity exponent β is its value in predicting the walk-run 

transition from the relationship of step length to gait speed. In dry, 1 g environments, 

walk-run transition occurs at a particular value of β, cited to be between 0.42 and 0.5, 

regardless of subject anthropometry.
[9][10]

 

 

Identifying gait transition speed 

By observation of the video data recorded for each motion-capture trial, it is possible 

to subjectively categorize each gait as a walking or running gait. However, in order to 

generate a justifiable estimate of walk-run transition speed, it was necessary to create 

an objective measure of gait type based on the recorded data. 
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Simplified model gaits may be strictly classified into walking, hybrid or transitional 

gaits, and “ideal” running gaits, with the latter characterized by instantaneous, 

impulsive ground contact.
[17][8] 

In real, physical running gaits, however, there is 

always some finite period of ground contact during the stride, which may or may not 

be ignored in modeling the gait.
[17] 

For the purpose of this analysis, “running gait” 

will refer to all such hybrid walk-run gaits, in which there is are finite periods of both 

single support and no support during each stride. The gait transition speed of interest, 

and the speed which is addressed below, is the speed at which the “no support” phase, 

in which both feet leave the ground, becomes non-negligible, rather than necessarily 

dominant. 

 

In order to generate an estimate for the walk-run gait transition speed, a metric 

“isrun” was constructed to quantify the extent to which each recorded gait typified a 

walking or running gait. Such a metric would ideally be based directly on the physical 

definition of the gait transition, rather than rely on any prior expectation for the value 

of a dynamical gait metric, such as stride frequency or length, at the transition speed. 

 

In order to achieve this goal, the “isrun” metric considered the height above the 

treadmill reached by the bottoms of the feet during each stride. In a purely walking 

gait, at least one foot is in contact with the tread surface at all times, and thus the 

height of the lower foot above the tread surface is expected to be zero at all times. 

Theoretically, any gait for which this is found to be true can be confidently identified 
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as a walking gait, and any gait for which the lower foot achieves a positive height 

above the treadmill at some point in the stride may be identified as a running gait. 

 

Practically, however, noise and measurement error in the experimental setup create a 

need for a more robust metric. The height of the lower foot occasionally shows a 

small positive value even in purely walking gaits as identified by observation. 

Therefore, a margin of error must be applied. A cutoff height of 3 cm (rather than 0 

cm) was found, through trial and error, to result in gait categorizations which closely 

matched subjective observation. 

 

Secondly, because of variation over the course of each run, gait type was determined 

for each individual stride in a binary fashion (0 = indicative of a walking gait, 1 = 

indicative of a running gait). These values were then averaged over the course of each 

trial, generating a value “meanisrun” which is the percentage of strides in a given trial 

which indicate a running gait. Because transitional gaits tend to involve less 

separation from the running surface than faster running gaits, “meanisrun” gives some 

indication of the extent to which a gait may be considered a walking or a running gait, 

though this is largely a qualitative indication. 

 

The walk-run transition speed is expected to vary across subjects and environments 

due to different anthropometries and gravitational accelerations.
[4][8]

 Therefore, the 

non-dimensional Froude number is used to allow analysis incorporating runs from 

different subjects and environments.
[4][13] 

The Froude number, abbreviated Fr, is equal 
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to the square of velocity divided by gl, gravitational acceleration multiplied by 

subject leg length. It is also identical to the square of the non-dimensional velocity, 

also used in this study. Use of the Froude number as the independent variable rests on 

the idea of dynamic similarity of gaits; that is, that gaits at different velocities and 

gravities will have similar characteristics at the same Froude number. The Froude 

number is equivalent to the ratio of inertial to gravitational forces acting on the 

object.
[13][3]

 Research by Alexander and Jayes suggests that the Froude number is a 

valuable means of assessing dynamic similarity of gaits, though there is some 

evidence that is its not ideal.
[1][4][3]

 

 

Gait transition speed analysis and results 

The following table includes Froude number and “meanisrun” data for all motion-

capture trials: 

 

Running gait percentage and Froude number for each motion-capture trial 

  
Dry 1 g Wet 1 g Wet lunar 

Subject 

# 

Tread 

speed 
Run % Fr Run % Fr Run % Fr 

2 low 1.7% 0.038 30.0% 0.036 100.0% 0.252 

3 low 0.0% 0.037 0.0% 0.033 100.0% 0.261 

4 low 0.0% 0.032 0.0% 0.031 100.0% 0.163 

5 low 0.0% 0.041 0.0% 0.038 100.0% 0.303 

6 low 0.0% 0.044 3.5% 0.042 94.0% 0.246 

2 medium 0.0% 0.082 34.7% 0.076 100.0% 0.536 

3 medium 0.0% 0.081 49.2% 0.064 100.0% 0.535 

4 medium 0.0% 0.075 95.9% 0.061 100.0% 0.376 

5 medium 0.0% 0.087 19.7% 0.077 100.0% 0.561 

6 medium 0.0% 0.095 46.9% 0.091 96.4% 0.530 

2 high 0.0% 0.142 66.0% 0.126 100.0% 0.772 

3 high 0.0% 0.138 100.0% 0.117 100.0% 1.042 
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4 high 0.0% 0.127 96.0% 0.095 100.0% 0.688 

5 high 0.0% 0.150 75.0% 0.148 100.0% 0.961 

6 high 0.0% 0.160 92.0% 0.084 100.0% 0.914 

 

 

The following plot shows the relationship between Froude number (plotted 

logarithmically) and the percentage of strides in a given trial indicating a running gait. 

Each individual trial is marked by an “x”. 

 

 
Figure 12: Gait Transition Speed 

 

Observing the table above, the three test environments combined show the expected 

trend from walking gaits at lower Froude numbers to running gaits at higher Froude 

numbers.
[8] 

Looking at each environment in turn, it is apparent that all of the dry, 1 g 
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trials show a walking gait. It would be necessary to extend the collected data to higher 

tread speeds in order to see the beginning of a walk-run transition in the dry 1 g 

environment. 

 

In contrast, the underwater, lunar gravity trials overwhelmingly indicate running 

gaits. It would be necessary to extend the collected data to lower tread speeds in order 

to find walking gaits in this environment. 

 

The data for the underwater, 1 g environment, finally, show a spectrum of gait types, 

ranging from walking at lower Froude numbers to running at higher Froude numbers. 

From these data, two approaches are taken to address the walk-run transition. The 

first approach is a linear regression fit to the data for the underwater, 1 g 

environment, producing an expression for the expected percentage of strides 

identified as running, as a function of Froude number: 

. Taking  and 

, the linear relationship indicates that the walk-run transition 

occurs over a range of Froude numbers, between  and . 

 

The second approach assumes that gait type undergoes a step transition from walking 

to running at some particular Froude number. By switching the x- and y-coordinates 

and taking a least-squares regression of the underwater lunar gravity data while 

constraining the slope to be zero, a value of  is found. This indicates that 
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all gaits at Froude numbers lower than 0.094 should be expected to be walking gaits, 

and all gaits at higher Froude numbers should be expected to be running gaits. 

 

Note that, for either approach, there is some discrepancy between the data from the 

underwater environments and the dry, 1 g data with regard to the walk-run transition 

speed. In each case, the dry, 1 g data indicate walking gaits at Froude numbers higher 

than those at which the underwater, 1 g data indicate a transition to a running gait. 

This discrepancy hints at an effect of the underwater environment on gait transition 

speed, presumably due to drag and/or virtual mass effects. The indication is that, even 

when gravitational acceleration is corrected for with ballast, walk-run transition 

occurs at lower speeds in the underwater environment. However, without an extended 

dry 1 g data set including higher tread speeds, it is not possible to quantify the 

magnitude of this effect. 

 

Unfortunately, hardware limitations and safety considerations precluded the 

collection of data at a broader range of tread speeds for this study. At lower tread 

speeds, friction and low inertia in the treadmill resulted in “jerking”, rather than 

smooth motion, of the tread underneath a moving subject. Much higher speeds 

resulted in over-current faults in the treadmill power supply, and risked overly 

exerting subjects, leading to the potential for injury. 
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Gait comparison across test environments 

Five dynamical gait metrics – stride frequency, step length, maximum hip angle, 

vertical displacement of the torso, and the non-dimensional velocity exponent β – 

were used to compare gaits between the three physical test environments.
[10] 

Comparisons were drawn between dry land and underwater environments at 1 g, and 

between 1 g-ballasted and lunar gravity-ballasted underwater environments. For each 

of these gait metrics, an analysis of covariance was performed, using the Analysis of 

Covariance Tool (“aoctool”) and “multcompare” functions in the Matlab Statistics 

Toolbox. 

 

Because of the variation in measured gait speed across the three environments and 

between subjects, a standard analysis of variance (ANOVA) could not reliably be 

used to assess the influence of environment on variance of means between sample 

groups for the three environments. Analysis of covariance (ANCOVA) identifies the 

portion of variance between sample groups that is not accounted for by one or more 

continuous variables. In this case, each gait metric is a function of one continuous 

variable (gait speed) and one discreet “dummy” variable (environment). It is the 

variance caused by the latter variable that is of primary interest. 

 

Note that the analysis of covariance was conducted on non-dimensionalized data, in 

order to eliminate variance caused by variation in subject anthropometry. The basis 

for non-dimensionalization consisted of the subject’s leg length, the subject’s total 

body mass, and the simulated gravitational acceleration of each 
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environment.
[9][17][10][12]

 Both gait metric values and gait speed were non-

dimensionalized. 

 

The analysis of covariance produced a linear regression fit for each metric in each of 

the three environments, as a function of gait speed. In addition, a 95% confidence 

band was generated for each regression line. This confidence band defines a two-

dimensional region for which there is a 95% chance that the regression line for the 

population will lie within the region. This should not be confused with a prediction 

band, a wider region with a 95% probability of encompassing one additional 

observation. The sample data points, linear regression lines, and 95% confidence 

bands for each gait metric were plotted together. These plots are presented and 

discussed in detail below. 

 

A key goal of performing the analysis of covariance was to test for the significance of 

differences in the regression coefficients between the three environments. In order to 

perform this hypothesis testing, the “stats” output structure from aoctool was fed into 

the “multcompare” function, which provided the results of multiple comparison 

testing in order to identify significant differences in the linear fit coefficients at the 

95% threshold. The “multcompare” function uses the Tukey-Kramer “honestly 

significant diffence” method, which is based on a Studentized range distribution. 

 

The Matlab code written to perform these analyses of the motion-capture data can be 

found in Appendices 5i and 5j. 
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Gait comparison analysis 

The following table presents the coefficient values (slope and intercept) for each 

metric in each of the three environments, as well as the two comparisons of interest – 

the comparison between dry and underwater environments at 1 g, and the comparison 

between 1 g and lunar gravities in the underwater environment. Each comparison 

provides a range of possible values, within a 95% threshold, for the difference 

between the coefficient values in the two environments being compared. If this range 

does not include zero, the null hypothesis is rejected, indicating a significant 

difference between the coefficients at the 95% confidence level. 

 

Linear Regression Coefficients and ANCOVA Hypothesis Testing 

 

 

In order to discuss the various regression fits and comparisons in a physically 

meaningful way, the linear fit data above were re-dimensionalized on the basis of a 

50
th
 percentile adult anthropometry (for the general population, not the test subject 

sample group).
[11] 

These re-dimensionalized data are presented below. In addition to 

the two regression coefficients (slope and intercept), metric values and comparisons 

are presented for a gait speed of 1.5 m/s, which is approximately the average re-

dimensionalized gait speed. Note that the range provided for the two comparison 
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colums below is a standard error, rather than the 95% threshold used for hypothesis 

rejection above. These error values are equal to the l
2
 norm of the error values of the 

coefficients being compared. 

 

Re-dimensionalized Regression Coefficients and Comparisons 

 

 

The rows of the above tables are reproduced, with the corresponding plots, below. 
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Linear regression and confidence band plots 

 

Figure 13: Stride frequency vs. gait speed 
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This plot presents the linear regressions and confidence bands for non-

dimensionalized stride frequency as a function of non-dimensionalized gait speed, in 

each of the three environments: dry land at 1 g, underwater at 1 g, and underwater at 

lunar gravity. Note that, because of the use of gravitational acceleration as a basis for 

non-dimensionalization, the data points collected in the lunar gravity environment 

have significantly higher non-dimensionalized gait speeds than the data points 

collected in the 1 g environments, although the true speeds are in fact comparable 

between all three environments. 

 

These three fits show a trend of increasing step frequency with gait speed, as would 

be expected.
[9] 

The data indicate a significant difference in slope between the 1 g and 

lunar gravity underwater environments. Observation of the plot and data table show a 

clear separation between the lunar gravity environment and the two 1 g environments, 

while the two one g environments produce similar values. The 1 g fits show a steeper 

positive slope, producing higher stride frequencies in 1 g than in lunar gravity. This 

corresponds with expectations.
[14]

 

 

At a typical 1 g gait speed of 1.5 m/s for a 50
th
 percentile adult, the difference in 

stride frequency between dry and wet environments is small, at 0.19±0.19 Hz. The 

difference is much greater between 1 g and lunar environments, with 1 g gaits 

0.66±0.16 Hz faster than lunar gaits. 
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Figure 14: Step length vs. gait speed 

 

 

 

 

 

These three fits demonstrate a trend of increasing step length with gait speed, 

conforming to expectations.
[10] 

The null hypothesis is not rejected in any of the 

comparisons, and the plot and data table show a fairly close match between the three 

environments, with significant overlap of the confidence bands. 
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At 1.5 m/s, the difference in step length between dry and wet 1 g environments is 

small and within the margin of error, at -0.16±0.33 m. The difference in step length 

between 1 g and lunar gravity underwater environments is somewhat larger, with 

lunar gravity producing steps which are 0.44±0.32 m longer than in 1 g. This 

corresponds well with the expectation of a running gait in lunar gravity
[3]

, in which 

both feet leave the ground, and the subject is able to cover a significant “glide” 

distance during each step without a corresponding increase in the angle of the 

legs.
[14][13]
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Figure 15: Maximum hip angle vs. gait speed 

 

 

 

 

 

These three plots indicate a trend of increasing hip angle with gait speed. This 

matches well with the finding of increased step length with gait speed discussed 

above. However, the data indicate a significant difference in slope between 1 g and 

lunar gravity underwater environments. The lunar gravity fit has a much shallower 
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slope than the 1 g fits, producing significantly smaller hip angles at higher gait 

speeds. 

 

This is in line with expections; as indicated in the previous two plots, faster gait speed 

is achieved by a combination of longer and faster strides, regardless of the gait type 

employed. For walking gaits, as are expected in 1 g, a longer stride with a fixed leg 

length requires a greater maximum hip angle during each step, simply by the 

geometry of the gait (the fixed-length legs form a triangle with the portion of walking 

surface covered during the step, with the hip angle opposite the walking surface). 

This constraint does not apply, however, to running gaits, in which forward distance 

is gained in a series of ballistic flights, whose distance does not depend on the angle 

between the legs.
[10][17][13]

 

 

At 1.5 m/s, the difference in hip angle between dry and wet 1 g environments is small 

and within the margin of error, at -0.18±0.32 radians. The difference between 1 g and 

lunar gravity underwater environments is larger, with a hip angle 0.37±0.32 radians 

greater in 1 g than in the lunar environment. 
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Figure 16: Vertical torso displacement vs. gait speed 

 

 

 

 

 

The two 1 g fits above show a trend of increasing vertical displacement of the hip 

with gait speed, while the lunar gravity fit shows a slightly decreasing displacement 

of the hip with gait speed. These observations match well with the results for hip 

angle, discussed above. 
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As with hip angle, the constrained geometry of the walking gait requires that in order 

to increase gait speed by lengthening the stride, the hip must dip lower at toe-off/heel 

strike. 

 

In a purely running gait, on the other hand, forward distance is gained in a series of 

ballistic flights. In order to make each step both shorter in duration and longer in 

distance, the runner must “launch” each step at a greater speed and a shallower angle 

from the horizontal. This shallower trajectory results in less vertical motion of the 

hip. 

 

The data indicate a significant difference in intercept between 1 g and lunar 

underwater environments. At the typical walking speed, however, the re-

dimensionalized difference in hip motion is slight in both dry vs. wet and 1 g vs. lunar 

comparisons. 
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Figure 17: Velocity exponent vs. gait speed 

 

 

 

 

 

These three plots indicate a trend of decreasing velocity exponent with increasing gait 

speed, matching expectations.
[10] 

The null hypothesis is not rejected in any of the 

coefficient comparisons. The slope for the dry 1 g fit is shallower than those for the 
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wet environments; however, the confidence bands for the 1 g fits diverge sharply, 

indicating the large error associated with the slope estimates. 

 

At 1.5 m/s, the difference in non-dimensional β value between dry and wet 1 g 

environments is within the margin of error, with β expected to be greater in the dry 

environment by a difference of 0.25±0.32. The difference between 1 g and lunar 

gravity underwater environments is twice as large, with β expected to be greater in 

the 1 g environment by 0.52±0.32. 

 

Summary of gait comparison results 

In comparing dynamical gait metrics between dry and wet 1 g environments and 

between 1 g-ballasted and lunar gravity-ballasted underwater environments, the 

following results were established. 

 

In all environments, gait frequency increases with gait speed, although it does so at a 

significantly slower rate in lunar gravity than in 1 g. Step length also increases with 

gait speed, and is comprable for all three environments, although at a typical gait 

speed of 1.5 m/s, step lengths are somewhat longer in lunar gravity. Maximum hip 

angle increases with gait speed in all three environments, although it does so at a 

significantly slower rate in lunar gravity than in 1 g. At typical gait speed, maximum 

hip angle is approximately 0.4 radians smaller in 1 g than in lunar gravity. 
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Vertical displacement of the torso tends to increase with gait speed in 1 g 

environments over the range of gait speeds tested, while torso displacement tends to 

decrease slightly with gait speed in lunar gravity. At typical gait speed, hip 

displacement is comparable in all three environments. 

 

Velocity exponent β tends to decrease with gait speed, although it does so at a 

shallower rate in the dry environment than in the underwater environments. 

 

Observations on the trend of each metric with respect to gait speed were consistent 

with prior research. 

 

True lunar environment gait metric estimates 

 

Figure 18: Motion-capture data design matrix 

 

As a secondary analysis, the data collected via motion-capture may be used to 

generate estimates for expected gait metrics in true lunar gravity, rather than that of 

the underwater ballasted environment. Taking the assumption that a given difference 
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in gravitational acceleration will have the same effect on gait dynamics in dry and 

underwater environments – or, conversely, taking the assumption that the difference 

between dry and underwater environments is the same regardless of gravitational 

acceleration – one can easily calculate the expected value of a given metric in the true 

lunar environment, as illustrated in Figure 18: Motion-capture data design matrix 

above. This process is essentially a vector addition of the affect of one environmental 

variable – either gravitational acceleration or the underwater environment – to an 

environment in which the other variable is present. In other words, data for the dry, 1 

g environment (A) are offset by the difference (C-B) between 1 g and lunar 

environments, in order to estimate data for the true lunar environment (D). 

Equivalently, data for the underwater, lunar gravity environment (C) are offset by the 

difference (A-B) between wet and dry environments, to generate the same result for 

the true lunar environment (D). 

 

Taking A, B, and C to be metric values at a given non-dimensionalized gait speed, 

 yields an estimate for that metric in the lunar environment. 

Alternately, A, B, and C may be the coefficients of regression fits relating metric 

values to gait speeds in each tested environment. 

 

Applying this assumption to the gait metric data analyzed above, estimates are 

generated for non-dimensionalized stride frequency, step length, maximum hip angle, 

vertical torso displacement, and β as a function of non-dimensionalized gait speed in 

the true lunar environment: 
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Estimates for gait metric functions in true lunar gravity 

Metric Parameter dry 1g 
 

wet 1g 
 

wet lunar 
 

True lunar 

environment 

estimate 

swing freq. 

(ω) 

slope 0.41 ± 0.06   0.36 ± 0.07   0.08 ± 0.03 
 

0.13 ± 0.10 

intercept 0.12 ± 0.02 
 

0.09 ± 0.02 
 

0.09 ± 0.02 
 

0.12 ± 0.03 

step length 
slope 1.09 ± 0.42   1.28 ± 0.49   0.93 ± 0.17 

 
0.74 ± 0.66 

intercept 0.29 ± 0.12 
 

0.37 ± 0.13 
 

0.36 ± 0.12 
 

0.28 ± 0.22 

max. hip 

angle (φ) 

slope 0.94 ± 0.36   1.30 ± 0.42   0.17 ± 0.14 
 

-0.19 ± 0.57 

intercept 0.34 ± 0.11 
 

0.33 ± 0.11 
 

0.41 ± 0.11 
 

0.42 ± 0.19 

torso 

vertical 

displacement 

slope 0.10 ± 0.07   0.14 ± 0.08   -0.03 ± 0.03 
 

-0.07 ± 0.11 

intercept 0.00 ± 0.02 
 

0.01 ± 0.02 
 

0.10 ± 0.02 
 

0.09 ± 0.04 

velocity 

exponent (β) 

slope -0.31 ± 0.35   -0.67 ± 0.42   -0.76 ± 0.14 
 

-0.40 ± 0.56 

intercept 0.49 ± 0.11 
 

0.43 ± 0.11 
 

0.51 ± 0.10 
 

0.58 ± 0.19 

 

Looking at the table, it is apparent that the error values are close to, and in some cases 

larger than, the parameter estimates. This is due to the compounding of error from the 

three test environments; the error for the true lunar environment metric function is 

taken to be the 2-norm – or the square root of the sum of the squares – of the errors 

from the three physical test environments, as is the standard method for compounding 

experimental error in a sum or difference of independent quantities. In order to 

generate reliable gait metric functions for the true lunar gravity environment by this 

method, the experimental error must be reduced, either by increasing the sample size 

(number of subjects), working to reduce measurement error, or the like. 

 

That said, it is interesting to note the apparent negative slope of maximum hip angle 

as a function of gait speed. In each of the three test environments, this trend was 

positive; however, the slope was greatest for the 1 g, underwater test environment, 

indicating that both increased gravity and underwater affects contributed to a positive 

trend. With these effects removed, the expected trend in the true lunar environment is 

in fact a negative one, albeit well within the margin of error. 
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The expected sign of the trends for swing frequency, step length, and velocity 

exponent with gait speed all match the trends seen in the physical test data.
[9][10][13][17] 

In the case of vertical displacement of the torso, the trend in the true lunar 

environment is expected to be negative, as was seen in the lunar-gravity, underwater 

environment.  

 

The following plots show the estimated gait metric functions for the true lunar 

environment, along with 95% confidence bands, calculated using the method 

described above. Due to the compounding of error, the confidence bands for these 

estimated functions are wider than the confidence bands for the physical test 

environments. 

 

 
Figure 19: Stride frequency in the true lunar environment 
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Figure 20: Step length in the true lunar environment 

 

 
Figure 21: Maximum hip angle in the true lunar environment 
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Figure 22: Vertical displacement of the torso in the true lunar environment 

 

 
Figure 23: Velocity exponent in the true lunar environment 
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Chapter 7: Motion-Capture Testing Conclusions 

 

A clear walk-run transition regime was observed in terms of the non-dimensional 

Froude number, enabling prediction of gait type given gravitational acceleration and 

subject leg length only. 

 

In most cases, the difference in dynamical gait metrics between 1 g and lunar gravity 

environments was significantly larger than the differences between dry and 

underwater environments. The markedly different behavior of gaits in lunar gravity is 

likely attributable to a difference in gait type, with the walk-run transition occuring at 

slower absolute gait speeds in reduced-gravity environments.
[8]

 

 

Because of the similarity of results in wet and dry environments, the lunar-gravity 

underwater environment was the best analog, among the three physical test 

environments, of the true lunar environment, and is a quantitatively better predictor of 

gait metrics in true lunar gravity than a dry, 1 g environment. 

 

Given these results, it is apparent that the difference in gravitational acceleration 

between terrestrial and lunar environments has a much more significant impact on 

gait dynamics than the difference between dry and underwater environments, when 

gravitational acceleration is controlled by ballasting. This implies that ballasted 

underwater gait testing is a useful means for approximating true lunar gait dynamics. 
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Ballasted underwater partial gravity simulation presents a means of achieving a 

higher-fidelity approximation of true lunar gait dynamics than is possible in a dry, 1 g 

environment. Ballasted underwater partial gravity simulation is, and will continue to 

be, a vital tool in the study of reduced gravity gaits,  especially where alterate means 

of partial gravity simulation, i.e. suspension rigs and parabolic flight, are unavailable 

or impractical to apply. 
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Chapter 8: Extended Test Matrix: Dynamic Walker/Runner 

Models 

 

As a secondary, supplemental analysis to the comparisons performed between gait 

metrics measured in physical testing by means of motion capture, a pair of dynamic 

gait models were created to assess the ability of simple dynamic models to capture the 

behavior of corresponding physical environments. These models attempted to 

replicate various gait metrics of the real, recorded gaits.  The models analyzed below 

are extensions of the Simplest Model and Anthropomorphic Model described by Kuo 

for the walking model, and the impulsive runner described by McGeer for the running 

model.
[9][10][5][13][12]

 

 

The combination of physical motion-capture data and simulated gait models allow for 

estimation of gait metrics for real reduced-gravity environments using multiple 

approaches, which may be compared and combined. A simplified test matrix is 

visualized below. The matrix has three dimensions of comparison: physical test data 

vs. virtual models, drag-free environments vs. the underwater environment, and 1 g 

vs. 1/6
th

 g environments. The vertex labeled F represents true lunar gait, the unknown 

which we would like to describe using knowledge about gait metrics in experimental 

environments, which are represented by the other vertices. 

 

Given the multidimensionality of the test matrix, gait metrics for the lunar surface can 

be estimated by several approaches, and the context provided by these different 
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approaches allows one to quantify the fidelity or closeness of different test gaits to 

true lunar gait. For a given “face” of the test matrix that includes F, it is apparent that 

information about gaits at the other three vertices may yield information about gaits at 

F. For example, knowing the value of some gait metric for vertex E (underwater 

ballasted simulation of lunar gravity), vertex A (a computer model of gait in the same 

environment), and vertex B (a computer model of drag-free gait in lunar gravity), one 

can estimate the value of the metric at F as: (value at F) = (value at E) + (value at B) 

– (value at A). This approach assumes that the dimensions of the matrix are 

independent – that the effect had by one dimension on a gait metric is not affected by 

another dimension. This is not necessarily a valid assumption; intuitively, the 

difference in stride frequency between underwater and drag-free environments is 

likely to be larger in 1 g than in lunar gravity. However, in the absence of detailed 

knowledge of these dependencies, the assumption of independence is a necessary one. 

By comparing estimates from each cube “face”, the estimates of gait metrics in true 

gravity can be refined. 
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Figure 24: Visualization of extended test matrix 

 

In addition to estimating gait metrics in true lunar gravity, the test matrix can be used 

to generate multiple estimates of the magnitude of the effect that a given dimension 

has on the value a given metric. By taking the difference in the metric along opposite 

edges of the matrix and averaging them, a reasonable estimate for the size of the 

effect can be found. For example, the effect that gravity has on a given metric may be 

estimated as: (effect of reduced gravity on metric) = average[ (value at E) – (value at 

G) , (value at B) – (value at D) ]. This approach is a compromise between an estimate 

along the EG edge, which is based on physical data but may be skewed by the 

presence of drag, and an estimate along the BD edge, which is free from drag-induced 

distortion but may be inaccurate due to shortcomings of the design of the model. 
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Note that most directly-measured gait metrics do not have a single value for a given 

environment, but vary interdependently. For the analyses which follow, 

walking/running speed (relative to the walking/running surface) is considered the 

independent variable on which measured (and computed) gait metrics depend. 

 

Using these methods and the data collected from the physical and virtual gait 

analyses, gait in the lunar environment is characterized, and the effects of gravity, 

drag, and gait modeling limitations on gait are assessed. 

 

Simple gait models in the literature 

Kuo
[10]

 presents three simple gait models of increasing realism and computational 

complexity, each of which are presented briefly here. Each is a two-dimensional, two-

link model with rigid legs; i.e., knee and ankle joints are absent. In order to replicate 

the role of knee-bending in human gait, the swing leg is cleared to pass the stance leg 

in mid-stride. In each model, the mass of the upper body is reduced to a point mass at 

the hip. 

 

Although McGeer showed that a passive walker can recover losses by walking on a 

downward slope
[13][12]

, Kuo specifies the use of an impulsive toe-off just prior to heel 

strike as the primary energy input to the walkers. Kuo uses a torsional spring at the 

hip to tune the swing frequency of each walker, in order to minimize collision losses, 

and thus the required energy input at each toe-off. 
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Kuo’s “Idealized Simplest Model” (ISM),  based on Garcia,
[5] 

uses a small-angle 

approximation for the angle of each leg from the vertical. The model has massless 

legs, and point mass feet with mass much less than that of the upper body. These 

linearizing simplifications allow for an analytical solution to the equations of motion. 

 

The “Simplest Model” (SM) presented by Kuo does away with the small-angle 

approximation of the idealized model, and does not assume that the foot masses are 

significantly less than the torso mass. 

 

Finally, the “Anthropomorphic Model” includes evenly-distributed leg masses, rather 

than point masses at the feet, and has circularly-curved, rather than point, feet. As 

introduced by McGeer
[13]

, the curved feet mitigate collisional losses at heel strike, and 

result in gait dynamics somewhere between that of a pure inverted pendulum, and the 

“synthetic wheel” used by McGeer to introduce basic concepts of gait. 

 

The virtual gait models used in this study incorporate features from Kuo’s Simplest 

Model and Anthropomorphic Model; distributed leg masses are used, although point 

feet, rather than curved feet, are used. The primary modification of these models is 

the addition of a drag force on each leg to attempt to capture some of the affects of 

gait in the underwater environment. The derivation of the models used in this study is 

presented below. 
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Qualitative description of gait models 

Passive Dynamic Walker 

 

Figure 25: Definition of leg angles and coordinate frame (left) and free body diagram (right) for 

the walking case 

 

The passive dynamic walker model used herein consists of two rigid (knee-less) legs 

with identical length and evenly-distributed masses, attached at the hip via a torsional 

spring. The walking surface is assumed to be zero-slip, and the stance foot (the foot in 

contact with the ground) is constrained to a fixed position. This constraint is realized 

by a ground reaction force applied to the stance foot, though it is not necessary to 

calculate this force in order to solve the dynamics of the walker. McGeer notes that 

the dynamics of knee-less models do not differ appreciably from those of more 

complex models with knee articulation.
[13]

 

 

In addition to the masses of the legs, a torso mass is attached to the hip of the stance 

leg, or in the running case where both legs are off the ground, the forward leg. (The 
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choice of which leg to attach the torso mass to is arbitrary, and mathematically 

irrelevant.) The ratio of leg mass to torso mass is based on the anthropometry of 50
th

 

percentile adults.
[11]

 

 

In the walking gait, exactly one foot remains in contact with the ground at all times, 

with inelastic heel-strike and impulsive toe-off occurring at the same instant. The 

walking gait may be divided into two symmetrical phases, each with one foot planted 

and the other swinging, and may thus be described by a single set of equations, with a 

single impulsive transfer (and, in the non-conservative case, addition) of energy at 

each heel-strike/toe-off. 

 

The legs are attached at the hip via a torsional spring, which tends to pull the legs 

together. In past research into the efficiency of passive dynamic walkers, it has been 

found that including such a spring, and tuning the spring constant so as to minimize 

the energy expenditure per unit distance, provides a more accurate model of human 

biomechanics than a passive dynamic walker without such a spring. (For the purpose 

of calculating this energy expenditure, the hip spring is assumed to recover stored 

energy with perfect efficiency, and the only input of energy to the system is the 

impulsive toe-off.)
[10]

 

 

In order to model drag underwater, a drag force is applied perpendicular to each leg. 

The legs are assumed to present a uniform cross-section; i.e., a non-rotating leg 

experiences zero drag moment about its geometric center. Because the walker is 
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assumed to be on a treadmill belt which is moving backward at the same average 

speed that the walker moves forward, torso motion in the horizontal direction is 

assumed to be negligible, and drag on the torso is neglected. 

 

It is interesting to note that the passive dynamic walker is effectively a double 

pendulum, with the stance foot as the first pivot point and the hip as the second, albeit 

with the addition of hip torque and drag forces.
[5]

 

 

 

Symmetrical Impulsive Runner 

 

Figure 26: Definition of leg angles (left) and forces and free-body diagrams (right) 

 

For the running case, a symmetrical impulsive “bounce” model is used, based on 

McGeer’s passive dynamic runner, whose motion is described as “essentially 

bouncing and scissoring in synchronicity.”
[12]

 Contact with the ground is assumed to 

be an instantaneous, elastic collision at the point of cross-over of the two legs (the 

point at which the front leg becomes the rear, and vice versa).
 
Energy is added at this 

collision in the form of a vertical impulse and an impulsive hip torque, which 
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counteract the energy lost over each step due to drag. Because the model represents a 

subject on a treadmill, with the subject’s forward motion and the treadmill’s rearward 

motion exactly cancelling out, there should be no net horizontal velocity relative to 

the surrounding medium; therefore, the magnitude and the moment are of the drag 

force on each leg are assumed to be identical. The direction of the drag force is 

defined such that an increasing  or creates a positive drag. 

 

Because the angles of the legs from the vertical are equal and horizontal movement of 

the system is constrained to zero, the system comprises two degrees of freedom, 

which may be expressed as the angle each leg makes with the vertical, and the 

vertical position of the center of mass of the system. The equations of motion for the 

symmetrical impulsive runner are stated as follows. 

 

 

Newton-Euler equations 

The equations of motion for each gait are derived starting from the familiar vector 

form of the Newton-Euler equations, with masses and mass moments of inertia 

constant. For a body i, Newton’s equation takes the form: 

 

  , 

 

With ,  and  representing the mass of the body, the linear acceleration vector 

of the body, and the vector sum of the forces acting on the body, respectively. 

Likewise, Euler’s equation takes the form: 
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  , 

 

With ,  and  representing, respectively, the mass moment of inertia of the 

body with respect to a given station x, the angular acceleration vector of the body, and 

the vector sum of the moments acting on the body with respect to station x. 
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Chapter 9: Derivations of Equations of Motion for Passive 
Dynamic Walker 

 

Definition of constants and variables 

The constants and variables defined below will be substituted into the equations of 

motion, which are derived in the following section. Note the use of shorthand 

notation  and . Note also that the subscript one refers to 

either the stance leg (in the case where one foot is on the ground) or the forward leg 

(in the case where both feet are off the ground). Likewise, the subscript 2 refers to 

either the swing leg (in the case where one foot is on the ground) or the rear leg (in 

the case where both feet are off the ground). When used as left-hand superscripts, 1 

and 2 refer to the reference frame of the foot of the corresponding leg. 

 

Constants 

 acceleration of gravity in the specified environment (either terrestrial or lunar) 

 torsional spring constant of the hip 

 length of each leg 

 mass of each leg 

 mass of the torso 

 moment of inertia of the stance leg plus torso, about the stance foot: 

   

 
moment of inertia of the swing leg about its center of mass: 
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Position, velocity, and acceleration vectors for the geometric centers and centers of 

mass 

 

Because the mass of each leg is evenly distributed, its center of mass is at its 

geometric center. By geometry, the positions of the geometric centers of each leg 

with respect to the stance foot are as follows: 

 

      

 

Taking the time-derivative of each position vector yields velocity vectors relative to 

the stance foot: 

 

    

 

Finally, taking the time-derivative of each velocity vector yields acceleration vectors 

for the center of each leg: 
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Finally, two more position vectors are defined, denoting the position of the hip with 

respect to the stance foot and the geometric center of the swing leg with respect to the 

hip, respectively: 

 

     

 

Finally, the angular accelerations of the two legs, and the forces and torques acting on 

the legs, must be defined: 

 

Angular accelerations 

Vector Definition 

 
 

angular acceleration of the stance leg (leg 1) 

 
 

angular acceleration of the swing leg (leg 2) 

 

Forces 

Vector Definition 

 
 

drag force on the stance leg (leg 1), where  is 

defined later 

 
 

drag force on the swing leg (leg 2) 

 

 

force applied at the hip by the swing leg (leg 2) on 

the stance leg (leg 1) 

 
 

gravitational force on each leg 



 

 74 

 

 
 

gravitational force on the torso 

 

Torques 

 
 

Moment induced by drag on the stance leg, about 

the stance foot, where  is defined later 

 
 

Moment induced by drag on the swing leg, about 

its geometric center 

 
 

Torque applied to the swing leg at the hip 

(negative for the stance leg) 

 

 

Equations of motion for the walking gait 

Because the stance foot is geometrically constrained to a fixed position, the system 

has only two degrees of freedom, which may be expressed as the angles made by each 

leg with the horizontal. The Newton-Euler equations yield four scalar differential 

equations in terms of the unknown components of the hip reaction force. By applying 

the geometric constraint that the legs are joined at the hip, these unknown force 

components can be eliminated from the equations, and the system of equations 

reduced to the necessary two. 

 

Stance Leg (Leg 1) 

 

Euler’s equation is applied to the stance leg about the stance foot, thus eliminating the 

ground reaction force at the stance foot from the equation. Because the motion of the 
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stance leg is constrained such that the stance foot does not move, its motion can be 

described completely by applying Euler’s equation alone: 

 

 

 

Expanding the vectors: 

 

  

 

Calculating the cross products: 

 

  

 

Which reduces to the scalar equation: 
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The unknown hip force components,  and , will be solved for by applying 

the Newton-Euler equations to the swing leg (leg 2). 

 

Swing Leg (Leg 2) 

 

The Newton-Euler equations for the swing leg are as follows: 

 

   

 

  

 

Expanding the vectors in the torque equation and taking the cross product: 

 

  

 

This reduces to the scalar equation: 

 

  

 

Turning to Newton’s equations for the swing leg and expanding the vectors: 
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This yields two scalar equations, which can be solved for the unknown components of 

the reaction force at the hip: 
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These expressions can then be substituted back into the Euler equations for the stance 

leg: 

 

  

  

Distributing , , and  and dividing the equation by L: 

 

 

   

This equation can be simplified as follows. Grouping like terms: 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

11) 

12) 

13) 

14) 

Simplify by Pythagorean identity 

Sum to zero 

Simplify by product-sum rule 

Simplify by product-sum rule 

Simplify by product-sum rule 
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The equation thus becomes: 

 

  

 

Grouping the angular acceleration terms: 

 

  

 

Substituting the expression for  into the above equation and solving for , the 

equations of motion are: 
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Converting to first order 

 

This system of two second-order differential equations must be converted to a system 

of four first-order equations to allow for numerical propagation using the ode45 

function in MATLAB. Defining a state vector : 

 

   

 

The equations of motion can be expressed by the first-order system 

 

  , 

 

Where the expressions for  and  are taken from the second-order equations. The 

waker model is implemented in MATLAB in Appendices 5e and 5f. 
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Drag force, moment, and hip torque 

 

In order to solve the equations of motion, the drag force, drag moment, and hip torque 

terms must be defined: 

 

Hip torque: 

 

   

 

Drag force and moment for the stance leg: 

 

For the purpose of computing the drag on each leg, it is important to note that the 

walker is assumed to be on a treadmill which is moving backwards at the same 

average speed that the walker is moving forwards. Therefore, while the position of 

the stance foot is static relative to the walking surface, it is not, in fact, static relative 

to the surrounding medium. An assumption is made that the horizontal position of the 

hip is static relative to the water. While the hip in fact moves slightly faster than the 

treadmill in the middle of each step and slower at the beginning and end of the step, 

the assumption that it is static in the horizontal direction is a good one for small 

values of . 

 

Given the static hip assumption, the position and velocity of a point on the stance leg, 

at a distance r from the hip, are described by the vectors 
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The component of velocity relevant to determining drag force is the component 

perpendicular to the leg: 

 

  

  

 

Drag per unit length at station r is estimated as: 

 

  

 

where  ,  is the average width of the leg,  is the density of water, and 

 is the drag coefficient of the leg. To obtain the magnitude of the drag force on the 

leg,  is integrated along the length of the leg: 
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Similarly, to obtain the total moment induced by the drag force about the hip,  is 

integrated along the length of the leg: 

 

  

   

 

Drag force and moment for the swing leg: 

Turning to the swing leg, the position and velocity of a point on the swing leg, at a 

distance r from the hip, are described by the vectors 

 

     

 

The component of velocity perpendicular to the leg is 

 

  

 

By analogy with the drag on the stance leg: 
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Because the drag force and moment equations depend on the square of the rates of 

rotation of each leg, care must be taken to ensure that the drag forces and moments 

have the correct sign during all parts of the stride. Based on the sign conventions 

adhered to thus far, the drag force and moment equations must be modified before 

they can be implemented in code: 

 

   

   

   

   

 

Tuning the Passive Dynamic Walker 

Although a passive dynamic walker is a system that, by definition, will maintain a 

stable gait without external control, the characteristics of that gait require some 

degree of tuning in order to produce gait metrics that are comparable to those of a 

human subject. In addition, the presence of a drag force in the model necessitates 

additional corrective inputs to the walker in order to maintain stability. 

 

In the case of the passive dynamic walker model described above, four parameters 

were tuned in order to generate stable gaits and to target two gait metrics – walking 

speed, and the non-dimensional velocity exponent β, which relates non-
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dimensionalized step length and velocity: .
 [10]

 As the purpose of the dynamic 

model was to replicate the gait characteristics of actual test subjects, the leg and torso 

mass and leg length constants in the model were set to match those of each subject. 

In addition, the target values of speed and β were determined from the physical data, 

with the target speed being the average speed of the subject over a particular run, and 

the target β calculated as an average over all subjects for each specific test case (i.e., 

each combination of simulated gravity level, treadmill power, and whether the subject 

was in water or on dry land). Although the biomechanics literature suggests that a 

value for β of 0.42 is typical for adults
[10]

, the values calculated from the motion-

capture data varied significantly across the test cases, and it was decided that using a 

case-specific value for β to tune the walker would yield a more accurate model of the 

subject’s gait than would relying on a textbook value intended to apply to a much 

narrower range of environmental conditions than those to which the subjects of this 

study were exposed. 

 

Given target values for walking speed and the velocity exponent, the first gait 

parameter, the starting maximum angle of the legs from the vertical, was determined 

as follows. First, non-dimensionalizing the target speed using leg length and the 

acceleration of gravity: 
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From the definition of β, the non-dimensional stride length is calculated, and the 

dimensional stride length determined: 

 

 

 

 

From here, assuming a symmetrical stance in the sagittal plane, the angle of each leg 

from the vertical is calculated by geometry: 

 

 
 

The second gait parameter is k, the spring constant of the hip. By adjusting the value 

of k, the walker can be made to come arbitrarily close to the target speed, though this 

entails sacrificing some accuracy with regard to targeting β. 

 

The third gait parameter is the magnitude of the initial toe-off from a spread-legged 

stance, expressed as the rate of change of , the angle that the stance leg makes with 

the horizontal. The value of this initial toe-off is crucial for the first few steps, as an 

improperly-tuned walker will tend to either slip backwards or stumble forwards, 

falling over rather than attaining a stable gait. However, these asymmetries tend to 

damp out over a few gait cycles, provided they are below a critical threshold at the 

start. For the second and all subsequent toe-offs, the value of  immediately after 

toe-off is determined from the value of  immediately before heel-strike, such that 

the energy expended in heel-strike (modeled as a perfectly inelastic collision) is 
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recovered exactly by the impulsive toe-off. Although the effect of the initial toe-off 

on gait is transitory, it is important to note that when computing average gait metrics 

over a simulated run, it is advisable to ignore the first few gait cycles. This is 

especially true for walkers experiencing perturbations such as drag, which the author 

found to significantly extend the time it took for the walker to achieve a stable gait. 

 

For the non-zero drag case, it was determined through trial and error that impulsive 

toe-offs were insufficient to maintain a stable gait. Over time, with impulsive toe-off 

alone, step frequency increased as stride length decreased, eventually causing the 

walker to become unstable and stumble forward. This effect was countered with the 

introduction of an additional constant-valued hip torque, which acts to complement 

the inward torque of the hip torsional spring when the swing foot is behind the stance 

foot, and counteracts the effect of the hip spring when the swing foot moves in front 

of the stance foot. This imparts additional energy to the walker, and allows it to 

continue to take full strides despite the effects of drag. 

 

This effect is intuitive for anyone who has tried to walk in water; on dry land, humans 

typically expend gait energy almost entirely at toe-off, using hip flexion/extension 

almost exclusively to tune the pendulum frequency of the leg, in the same manner as 

the conservative torsional spring does in the basic passive dynamic walker.
[9]

 

However, when wading through water, this essentially-unpowered swinging action is 

not sufficient to get the swing foot to where it needs to be for the weight of the torso 

to come down on it – it becomes necessary to drive the swing leg forward at the hip. 
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As an aside, it is interesting to note that the addition of ballast mass to the leg, 

especially at a significant distance from the hip, seems to counteract this effect. 

Although this study did not specifically address the effect of varying the moment of 

inertia of the leg on in-water gait, it was qualitatively observed that ballast on the legs 

allowed subjects to swing their legs through the water in a more natural gait motion 

than can be achieved unballasted. This is again an intuitive result – the increased 

angular inertia of the ballasted leg should allow it to maintain momentum through the 

fastest (and thus the most drag-inducing) part of the swing. 

 

Returning to the tuning of the walker model, the walker was able to achieve a stable 

gait over a fairly wide range of values for the additional hip torque, although the 

presence of the additional parameter tended to result in a slight to moderate 

asymmetry between the first and second half of each step, as if the walker were 

continuously on the verge of stumbling. 

 

Finally, one additional variable was introduced in tuning the walker model, although 

it represents not so much an additional gait parameter as a fudge factor. At high 

speeds in the zero-drag case, the walker demonstrated a tendency to over-rotate about 

the stance foot and eventually trip up. This problem was addressed by multiplying 

 at each toe-off by a constant factor in the range (0.945, 1.0). It’s unclear what the 

cause of this problem is; however, the additional factor did not appear to affect the 

ability of the model to generate reasonable gait dynamics. 
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Chapter 10: Derivation of equations of motion for Symmetrical 

Impulsive Runner 

 

Constants 

 
Moment of inertia of the forward leg about the hip (used for the impulsive runner): 

   

 

Equations of motion for the impulsive running gait 

Euler’s equation for one leg, about the hip 
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Newton’s equation for the whole system 

 

   

   

  

   

   

 

Where the subscript CM refers to the center of mass of the system, which is located a 

distance  directly below the hip. Note that the system as a whole does not 

undergo any acceleration in the horizontal direction, due to the assumptions of 

symmetry made above. 

 

Converting to first order 

 

As with the walking case, the two second-order equations of motion describing the 

running case are converted into four first-order equations to allow for numerical 

integration in MATLAB. Defining a state vector  and its derivative: 
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Where the expressions for  and  are taken from the second-order equations. The 

impulsive runner model is implemented in MATLAB in Appendices 5c and 5d. 

 

Drag force, moment, and hip torque 

 

In order to solve the equations of motion, the drag force, drag moment, and hip torque 

terms must be defined: 

 

Hip torque: 

 

   

 

Drag force and moment: 

 

The position and velocity of a point on the leg, at a distance r from the hip, are 

described by the vectors 
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Taking the component of velocity perpendicular to the leg: 

 

   

 

Drag per unit length at station r is estimated as: 

   

 

where  ,  is the average width of the leg,  is the density of water, and 

 is the drag coefficient of the leg. Squaring and grouping like terms: 
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To obtain the magnitude of the drag force on the leg,  is integrated along the length 

of the leg: 

 

  

 

 

 

Similarly, to obtain the total moment induced by the drag force about the hip,  is 

integrated along the length of the leg: 
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Tuning the impulsive runner 

As with the walker model, the impulsive runner was adjusted to match the 

anthropometry of each subject and the parameters of each test case, and was tuned to 

generate desired gait metrics. 

 

Three parameters were tuned; the hip spring constant k, the vertical toe-off velocity 

dy0, and dq0, the angular velocity of the forward leg just after toe-off. As noted above, 

the impulsive runner model is symmetric front to back, and so dq0 is also the toe-off 

angular velocity of the rear leg. Contact with the ground occurs at cross-over, the 

point at which the forward and rear legs switch positions. Therefore, one of the 

targets in tuning the runner was what may be called return timing – the tendency to 

hit the ground just as the legs are crossing over. 

 

The second quantitative target for tuning the runner was step length. At a given speed, 

the step length is simply the product of speed and step duration, which, for the 

impulsive runner, is simply the length of time the runner is off the ground. The final 

quantitative metric targeted was the maximum distance between the feet during the 

stride, which is fully determined from the angle and length of the legs. 

 

Targeting step length resulted in a compromise in which another useful metric, the 

vertical displacement of the torso over the course of the stride, became less accurate 

(specifically, too large). This compromise is a direct result of the limitations on 

accuracy imposed by the assumption of impulsive, instantaneous ground contacts. In 
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real gaits, there exists a finite walk-run transition regime
[17]

 that allows for alternating 

finite periods of single-support (as in walking) and no support (as in the majority of 

the time while running). This allows the runner to cover more ground per stride 

without the need for a large vertical leap. 

 

The three tuned parameters and three targeted gait characteristics of the impulsive 

runner are highly coupled. Increasing the value of dy0 tends to increase step length, 

while simultaneously increasing step duration and affecting return timing. Increasing 

the value of dq0 tends to increase the maximum distance between the feet, and tends 

to decrease step length by increasing the downward component of drag on the legs. 

Increasing k (tightening the hip spring) tends to reduce the maximum distance 

between the feet, and also affects return timing. 

 

The full set of gait metric data for the walker and runner models can be found in 

Appendix 4. 
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Chapter 11:  Analysis of the Extended Test Matrix 
 

Once gait metric data were obtained for the physical test cases and the dynamic 

models, these data could be analyzed in order to generate estimates for true lunar 

gravity gait metrics (goal 1), and to estimate the magnitude of the effect on each gait 

metric of gravity, drag, and modeling limitations (goal 2). 

 

The four gait metrics of step length, vertical displacement of the torso, maximum 

angle between the legs, and pendulum frequency are each dependent on speed. 

Because speed varies between subjects, even for the same test case, and because 

certain model-derived datasets have fewer data points than the rest, the data points 

themselves cannot be directly added or subtracted to obtain estimates for goals 1 and 

2. Instead, regression models are fit to each dataset (see Appendices 3 and 4), and 

these equations, being defined for all speeds, may be directly added and subtracted to 

produce the desired estimates. 
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Figure 27: Visualization of the test matrix used to determine gait metric functions for true lunar 

gait 

 

To address goal 1 (see Appendix 5g for MATLAB code, and analysis and conclusions 

section for plots), for each metric, three intermediate function estimates are generated, 

one for each face of the test matrix adjacent to the true lunar gravity environment. For 

example, given functions for some gait metric at vertex E, vertex A, and vertex B, the 

intermediate function for the metric at F is estimated as: (function at F) = (function at 

E) + (function at B) – (function at A). These intermediate function estimates are then 

combined in two different ways, to generate two new function estimates for the 

metric at F.  The first combination is simply an un-weighted average of the three 

intermediate functions. The second combination is a weighted average, where weights 
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are derived from the worst R
2
 value among the three terms in each intermediate 

function. 

 

Turning to goal 2 (see Appendix 5h for MATLAB code, and analysis and conclusions 

section for plots), estimates for the magnitude of the effect of each dimension 

(gravity, drag, and model limitations) are computed by taking a weighted average of 

the estimates found by subtracting along opposite edges of the test matrix. For 

example, to estimate the magnitude of the effect of the difference in Earth and lunar 

gravity on pendulum frequency, the function for pendulum frequency at element G is 

subtracted from that at element E, and the function at element D is subtracted from 

that at element B. These two estimates are combined in a weighted average, with 

weights being derived from the worst R
2
 value in each estimate. In order to give 

meaning to the magnitide of the apparent effect of each dimension, each magnitude 

estimate is normalized by the second term of the difference. 

 

Goal 1: Estimating gait metrics for the true lunar gravity environment 

The following plots show estimates for each gait metric (step length, vertical 

displacement of the torso, maximum angle between the legs, and leg pendulum 

frequency) as a function of gait speed in the true lunar gravity environment. 

 

Estimates of the gait metrics as a function of speed were obtained in the manner 

described above for each physically tested and modeled scenario. These estimates 

take the form of linear regression fits to the data for each test case. 
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Because gait metrics were not directly obtained for true lunar gravity, but were 

instead obtained for the remaining nodes of the test matrix, estimates for gait metrics 

in true lunar gravity were obtained by a weighted average of three estimates based on 

the data obtained through physical testing and virtual modeling, as described in the 

project description and objectives section. 

 

For example, to obtain an estimate of step length in true lunar gravity as a function of 

gait speed, three intermediate estimates were obtained as follows. The first estimate 

was obtained by summing the regression functions for step length at node E 

(underwater physical test in 1/6
th

 g) and node H (drag-free physical test in 1 g) and 

subtracting the regression function at node G (underwater physical test in 1 g). This 

estimate is identified in the following plots at the “physical data estimate”, so named 

because the three nodes involved are all on the same “face” of the test matrix, and 

represent data obtained during physical testing. Similar estimates are obtained for the 

“lunar gravity” face (nodes A, B, and E) and the “drag-free” face (nodes B, D, and 

H). 

 

The sums and differences are taken between the regression functions, rather than 

between the raw data points, because the data points between nodes do not 

correspond to one another; each data point corresponds to a unique gait speed, and the 

number of data points is not the same for all nodes (in particular, the impulsive runner 
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model was not able to generate reasonable data at the lowest speeds, and these data 

points are thus absent). 

 

A weight is assigned to each estimated gait metric function, corresponding to the 

worst (lowest) R
2
 value of the three regression functions combined to generate that 

estimate. A weighted average is then obtained across the three estimates, for each gait 

metric. 

 

In addition to the weighted and un-weighted estimates, the following plots include the 

three intermediate estimates used to generate these averages. 

 

 

 

Figure 28: Step length vs. gait speed (extended test matrix) 
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This weighted average indicates that step length is expected to be roughly constant 

with speed in true lunar gravity. The unweighted average indicates that step length is 

expected to increase with speed. Note that the lunar gravity and physical data 

estimates predict an increase in step length with gait speed (the expected result), 

while the drag-free estimate indicates the opposite trend. 
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Figure 29: Vertical torso displacement vs. gait speed (extended test matrix) 

 

This plot suggests that vertical displacement of the torso is expected to decrease with 

gait speed in true lunar gravity. Note the close agreement between the weighted and 

un-weighted averages. 
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Figure 30: Maximum hip angle vs. gait speed (extended test matrix) 

 

This plot suggests that the maximum angle between the legs is expected to decrease 

with gait speed in lunar gravity. The drag free and physical data estimates show such 

a trend, while the lunar gravity estimate indicates increasing maximum leg angle with 

gait speed. Note that the weighted and un-weighted averages overlap in this plot. 
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Figure 31: Leg swing frequency vs. gait speed (extended test matrix) 

 

This plot indicates that leg swing frequency is expected to decrease as gait speed 

increases in true lunar gravity. The drag-free and physical data estimates show such a 

trend, while the lunar gravity estimate indicates an increasing pendulum frequency 

with gait speed. Note that the weighted and un-weighted averages overlap in this plot. 

Leg swing frequency 
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Goal 2: Estimating the impact of each test environment factor on each gait metric 

The following plots show the impact of each dimension of the test matrix – gravity 

level, presence of the underwater environment, and modeling limitations – on each of 

the four gait metrics considered – step length, vertical displacement of the torso, 

maximum angle between the legs, and leg pendulum frequency – as a function of 

walking/running speed. 

 

Estimates of the gait metrics as a function of speed were obtained in the manner 

described above for each physically tested and modeled scenario. These estimates 

take the form of linear regression fits to the data for each test case. 

 

In order to estimate the impact of each factor, the difference is taken between 

regression functions at adjacent nodes of the test matrix; for example, the impact of 

gravity level on step length may be assessed by taking the difference between the 

regression functions for step length at nodes B and D (drag-free models in 1/6
th
 g and 

1 g, respectively). A second estimate of the impact of gravity may be obtained from 

the two opposing nodes, E and G, which represent the underwater, physical test data 

in 1/6
th
 g and 1 g, respectively. In this manner, two estimates are obtained for the 

impact of each of the three factors on each gait metric function. 

 

The differences are taken between the regression functions, rather than between the 

raw data points, because the data points between nodes do not correspond to one 

another; each data point corresponds to a unique gait speed, and the number of data 
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points is not the same for all nodes (in particular, the impulsive runner model was not 

able to generate reasonable data at the lowest speeds, and these data points are thus 

absent). 

 

A weight is assigned to each estimate, corresponding to the worse (lower) R
2
 value of 

the two regression functions whose difference comprises the estimate. For each of the 

three factors (gravity level, underwater environment, and modeling limitations) and 

for each gait metric, a weighted average is taken of the two estimates along the 

corresponding dimension of the test matrix. In this way, all available data can be used 

to estimate the impact of each factor on each metric, but with weaker relationships 

weighted less than stronger ones. 

 

The full set of plots for the extended test matrix analyses are included in Appendices 

2 and 3. 

 

Virtual modeling conclusions 

Based on the differences in gait metric functions between physically tested and 

simulated environments, one can assess the performance of the walking and running 

models in the different environments. The following plots show the difference in gait 

metric functions for two metrics: step frequency and vertical displacement of the 

torso, which were assessed for both the physical and simulated cases. Additional plots 

on the impact of each environmental factor – gravitational acceleration, water 
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submersion, and modelling limitations – can be found in Appendix 3; the plots 

presented below are examples illustrating the impact of modelling limitations. 

 

In each plot below, the blue dashed line is the difference between the regression fits 

for the underwater, lunar gravity case in the physical and simulated data. The green 

dashed line is the difference in regression fits for the dry land, 1 g case in the physical 

and simulated data. Each difference has been normalized by the magnitude of the gait 

metric function in the physical environment. 

 

 

Figure 32: Modeling fidelity with regard to stride frequency 

 

Considering the above plot, over the range of speeds from 0.5 to 1.5 m/s, the 

difference between modeled and physical data ranges from near 100% at lower 
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speeds to near zero at higher speeds for the dry land, 1 g case. For the underwater, 

lunar gravity case, the difference between modeled and physical data is near 60% 

across the range of speeds. This indicates that, at most speeds, the dry, 1 g model was 

better able to match the corresponding physical data than the underwater, lunar 

gravity model, although both models tended to underestimate stride frequency. 

 

 

Figure 33: Modeling fidelity with regard to vertical hip displacement 
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This plot shows that, at lower speeds, the underwater, 1 g model tended to 

overestimate torso displacement, while at higher speeds, it underestimated it. The dry, 

1 g model more closely matches the corresponding physical data over the full range 

of speeds, differing by 0-10%. 

 

In general, the performance of the simulated gait models was too poor to justify 

reliance on these models for reasonable estimates of gait metrics. The two plots 

shown above illustrate the extent of the failure of the models to closely match the gait 

metric data obtained from motion-capture testing. In general, the underwater, lunar 

gravity model performed worse than the dry, 1 g model. 

 

There are several likely reasons for the poor performance of the models. First, the 

assumption of pure impulsive running in the lunar gravity case is likely somewhat 

unrealistic, as the “duty cycle” – the portion of each stride in which one foot is in 

contact with the surface – was significant in the physical testing in the underwater, 

lunar gravity environment. Secondly, the drag terms incorporated into the equations 

of motion for each model were fairly simplistic, and the drag behavior of the human 

leg underwater was not experimentally verified. 

 

Finally, the additional simplifications in both models likely resulted in model gait 

dynamics that did not closely match human gait dynamics. The lack of knees and 

ankles, the assumption of constant mass distribution along the length of the legs, and 
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the two-dimensionality of the models may have skewed the resulting gait metric 

estimates. 

 

While simple walker and runner models find great application in the theoretical study 

of gait types, transitions, and control mechanisms,
[5][13][12]

 it would seem, from the 

efforts undertaken in this study, that the complex and often non-linear behavior of 

human anatomy and physiology cannot adequately be captured by these simplified 

models for the purpose of predicting gait dynamics in untested environments. While 

more complex, more realistic models may better approach actual human gait 

dynamics, it is the author’s opinion that simplified virtual gait models cannot take the 

place of physical testing in attempting to estimatate human gait dynamics in a given 

environment. 
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Chapter 12:  Summary of Conclusions 

 
Underwater partial-gravity ballasting, treadmill gaits, and motion-capture dynamics 

analysis were used to assess gait dynamic metrics for subjects in three physical test 

environments: dry 1g, underwater 1 g, and underwater lunar gravity. Gait metrics as a 

function of gait speed, including the metrics of step length, stride frequency, vertical 

displacement of the hip, and maximum angle of the hip, were compared on a non-

dimensionalized basis between the three physical test environments, by means of an 

analysis of covariance. 

 

Based on the results of the analyses of covariance performed on th physical test data, 

it was concluded that differences in gravitational acceleration play a much more 

significant role in determining gait dynamics than the differences between dry and 

underwater environments. This result bodes well for the continued use of underwater 

partial-gravity ballasting with treadmill use as a means of simulating true reduced 

gravity environments, especially when alternate means of physical simulation, such as 

parabolic flight and suspension rigs, are unavailable or impractical. 

 

As a secondary, supplemental study objective, virtual dynamics models were 

generated and used to try to re-create the gait dynamics observed in the physical 

testing. The resulting performance of the virtual models was extremely poor, 

especially for the underwater, lunar gravity case. It was concluded that the 

simplifications and physical assumptions included in the models made them unable to 
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accurately estimate human gait dynamic metrics for the various environments. In the 

absence of an effective virtual model, it is believed that physical gait dynamics 

analysis must continue to play a role in the study of human gait in reduced gravity 

environments. 
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Appendices 

Appendix 1: Physical test data 

 

Subject anthropometric measurements: 

subject 

# 

knee height 

(m) 

hip height 

(m) 

hip-to-waist 

(m) 

weight 

(kg) 

2 0.483 0.940 0.000 72.575 

3 0.546 0.940 0.127 77.111 

4 0.559 0.953 0.095 97.522 

5 0.483 0.864 0.102 65.771 

6 0.457 0.838 0.165 61.235 

mean 0.506±0.04 0.907±0.05 0.098±0.06 74.8±14. 

 

Physical test data: 

  

1g 1g lunar g 

  

dry land underwater underwater 

Gait metric Subject number  15 V 20 V 25 V 15 V 20 V 25 V 15 V 20 V 25 V 

B
e
ta

 

2 0.368 0.333 0.318 0.313 0.276 0.289 0.550 0.492 0.476 

3 0.410 0.369 0.355 0.286 0.310 0.313 0.479 0.464 0.540 

4 0.446 0.389 0.363 0.273 0.242 0.353 0.587 0.611 0.675 

5 0.453 0.448 0.425 0.244 0.209 0.189 0.608 0.656 0.777 

6 0.465 0.479 0.398 0.337 0.291 0.312 0.726 0.832 0.972 

mean 0.428 0.404 0.372 0.291 0.266 0.291 0.590 0.611 0.688 

stdev 0.039 0.059 0.041 0.036 0.040 0.062 0.091 0.147 0.197 

F
r
o

u
d

e 
#
 

2 0.038 0.079 0.135 0.034 0.070 0.092 0.043 0.086 0.135 

3 0.038 0.082 0.139 0.033 0.060 0.080 0.098 0.163 0.186 

4 0.034 0.077 0.126 0.033 0.060 0.072 0.099 0.138 0.264 

5 0.042 0.088 0.149 0.037 0.078 0.114 0.126 0.262 0.400 

6 0.044 0.094 0.156 0.035 0.069 0.087 0.184 0.220 0.290 

mean 0.039 0.084 0.141 0.035 0.067 0.089 0.110 0.174 0.255 

stdev 0.004 0.007 0.012 0.002 0.007 0.016 0.051 0.069 0.102 

stdev/mean 0.105 0.083 0.083 0.052 0.111 0.177 0.463 0.396 0.399 

P
h

i 

(r
a

d
s)

 

2 0.617 0.565 0.712 0.592 0.822 0.788 0.434 0.516 0.725 

3 0.545 0.648 0.787 0.583 0.534 0.663 0.481 0.673 0.561 

4 0.441 0.591 0.671 0.646 0.709 0.602 0.623 0.509 0.554 

5 0.586 0.788 0.744 0.552 0.808 0.984 0.499 0.620 0.560 

6 0.370 0.467 0.578 0.489 0.550 0.747 0.333 0.397 0.466 

S
te

p
 

d
u

r
a
ti

o
n

 

(s
)  

2 0.872 0.722 0.613 0.987 0.813 0.723 1.538 1.415 1.282 

3 0.814 0.681 0.585 1.047 0.817 0.739 1.388 1.233 1.116 

4 0.797 0.683 0.602 1.077 0.905 0.729 1.229 1.121 0.947 

5 0.703 0.579 0.512 1.027 0.813 0.715 1.089 0.914 0.804 

6 0.676 0.543 0.512 0.885 0.755 0.622 0.904 0.814 0.730 

S
te

p
 

le
n

g
th

 

(m
) 

2 0.514 0.616 0.683 0.555 0.651 0.666 0.397 0.514 0.583 

3 0.480 0.593 0.662 0.577 0.608 0.633 0.540 0.618 0.597 

4 0.446 0.576 0.653 0.597 0.676 0.597 0.482 0.519 0.606 

5 0.420 0.499 0.574 0.576 0.658 0.700 0.458 0.554 0.602 

6 0.406 0.477 0.580 0.478 0.569 0.574 0.454 0.447 0.461 

T
o

r
so

 

v
e
r
t.

 

d
is

p
. 

(m
) 2 0.025 0.032 0.042 0.028 0.049 0.049 0.130 0.113 0.105 

3 0.021 0.031 0.043 0.025 0.047 0.059 0.090 0.089 0.072 

4 0.019 0.029 0.037 0.038 0.057 0.056 0.065 0.078 0.058 

5 0.028 0.036 0.042 0.029 0.045 0.052 0.059 0.048 0.042 

6 0.014 0.021 0.029 0.022 0.029 0.024 0.022 0.027 0.028 
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Physical test data (continued): 

  

1g 1g lunar g 

  

dry land underwater underwater 

Gait metric Subject number 15 V 20 V 25 V 15 V 20 V 25 V 15 V 20 V 25 V 
Is

 r
u

n
?
 

2 0.017 0.000 0.000 0.300 0.347 0.660 1.000 1.000 1.000 

3 0.000 0.000 0.000 0.000 0.492 1.000 1.000 1.000 1.000 

4 0.000 0.000 0.000 0.000 0.959 0.960 1.000 1.000 1.000 

5 0.000 0.000 0.000 0.000 0.197 0.750 1.000 1.000 1.000 

6 0.000 0.000 0.000 0.035 0.469 0.920 0.940 0.964 1.000 

mean 0.003 0.000 0.000 0.067 0.493 0.858 0.988 0.993 1.000 

stdev 0.008 0.000 0.000 0.131 0.286 0.146 0.027 0.016 0.000 

G
a
it

 s
p

ee
d

 (
m

/s
) 2 0.590 0.853 1.114 0.563 0.801 0.921 0.258 0.364 0.455 

3 0.590 0.871 1.131 0.551 0.744 0.857 0.389 0.501 0.535 

4 0.559 0.844 1.085 0.554 0.747 0.819 0.393 0.463 0.640 

5 0.598 0.861 1.121 0.560 0.810 0.979 0.420 0.607 0.750 

6 0.601 0.879 1.133 0.540 0.754 0.849 0.502 0.550 0.631 

mean 0.588 0.862 1.117 0.554 0.771 0.885 0.392 0.497 0.602 

stdev 0.017 0.014 0.019 0.009 0.031 0.064 0.088 0.092 0.112 

stdev/mean 0.028 0.016 0.017 0.016 0.041 0.073 0.224 0.185 0.186 

N
o

n
-

d
im

e
n

si
o

n
a

l 

sp
e
e
d

 

2 0.194 0.281 0.367 0.185 0.264 0.304 0.208 0.293 0.367 

3 0.195 0.287 0.373 0.182 0.245 0.282 0.314 0.404 0.432 

4 0.183 0.277 0.356 0.182 0.245 0.268 0.315 0.371 0.514 

5 0.206 0.297 0.386 0.193 0.279 0.337 0.355 0.512 0.633 

6 0.210 0.306 0.395 0.188 0.263 0.296 0.429 0.469 0.539 

N
o

n
-

d
im

e
n

si
o

n
a

l 

st
e
p

 l
e
n

g
th

 2 0.547 0.655 0.727 0.591 0.692 0.708 0.422 0.547 0.621 

3 0.511 0.631 0.704 0.614 0.647 0.673 0.574 0.657 0.635 

4 0.469 0.607 0.687 0.628 0.711 0.628 0.508 0.546 0.638 

5 0.489 0.580 0.667 0.669 0.765 0.814 0.532 0.644 0.700 

6 0.483 0.568 0.691 0.569 0.678 0.684 0.541 0.533 0.548 

P
e
n

d
u

lu
m

 

fr
e
q

u
e
n

c
y

 

(r
a

d
s/

s)
 2 0.573 0.692 0.815 0.507 0.615 0.692 0.325 0.354 0.390 

3 0.615 0.734 0.854 0.478 0.612 0.677 0.360 0.405 0.448 

4 0.628 0.733 0.831 0.464 0.552 0.686 0.407 0.446 0.528 

5 0.712 0.863 0.977 0.487 0.615 0.699 0.459 0.547 0.622 

6 0.740 0.922 0.976 0.565 0.662 0.679 0.553 0.614 0.685 

T
r
e
a

d
 s

p
e
e
d

 (
m

/s
) 2 0.589 0.868 1.145 0.575 0.835 1.078 0.622 0.907 1.089 

3 0.582 0.866 1.128 0.549 0.767 1.039 0.633 0.906 1.265 

4 0.548 0.834 1.089 0.538 0.756 0.941 0.503 0.764 1.033 

5 0.588 0.854 1.124 0.563 0.804 1.115 0.652 0.888 1.162 

6 0.601 0.884 1.148 0.589 0.865 0.834 0.581 0.853 1.120 

mean 0.581 0.861 1.127 0.563 0.805 1.001 0.598 0.864 1.134 

stdev 0.020 0.019 0.024 0.020 0.046 0.114 0.059 0.060 0.087 

stdev/mean 0.034 0.022 0.021 0.036 0.057 0.113 0.099 0.069 0.077 

M
a
x
. 

h
e
e
l 

d
is

t.
 (

m
) 2 0.642 0.727 0.775 0.615 0.693 0.737 0.496 0.568 0.622 

3 0.632 0.727 0.801 0.677 0.721 0.688 0.636 0.701 0.635 

4 0.562 0.670 0.733 0.671 0.721 0.642 0.509 0.541 0.635 

5 0.571 0.649 0.710 0.695 0.813 0.825 0.536 0.603 0.642 

6 0.525 0.587 0.685 0.536 0.610 0.587 0.480 0.484 0.504 
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Appendix 2: Extended test matrix – linear fit plots 

 

The following plots present linear regression fits for various gait metrics as a function 

of gait speed, with each plot illustrating the fits for two test environments which are 

adjacent in the extended test matrix; i.e., one environmental factor is different while 

the other two are the same. The three comparisons are: underwater vs. drag free, 1 g 

vs. lunar gravity, and physical vs. modeled. The regression fits from these plots are 

used in Appendix 3 to estimate the impact of each environmental factor on each gait 

metric, and to estimate gait metric curves for the true lunar gravity environment. 

Step length vs. gait speed 
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Vertical displacement of the torso 
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Maximum hip angle 
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Leg swing frequency 
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Appendix 3: Extended test matrix – difference plots 

 

The following plots estimate the impact of each environmental factor (gravity, water 

submersion, and modeling limitations) on the gait metric functions. The regression 

fits identified in Appendix 3 are used. The plots show the weighted and un-weighted 

averages for each factor and each gait metric. The following shorthand is used in the 

legend of each plot to identify the two estimates: 

 

s = step length 

t = vertical displacement of torso 

p = maximum angle between legs 

o = leg pendulum frequency 

 

In thi manner, the label “sEG”, for example, represents the normalized difference in 

step length between node E (underwater physical test data in 1/6
th
 g) and node G 

(underwater physical test data in 1 g) – i.e., sE minus sG. 
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Figure 34: gravity effect on step length (extended test matrix) 

 

In this first plot, note that for a gait speed of approximately 0.6 m/s, the impact of 

gravity level on step length is approximately zero. For slower speeds, step length is 

greater in lunar gravity, and for faster speeds, step length is greater in Earth gravity. 

Below speeds of 1.4 m/s, the difference in step length between the two gravity levels 

is less than about 25%. 
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Figure 35: In-water effect on step length (extended test matrix) 

 

The weighted average in this plot indicates that step length is greater in underwater 

environments than in drag-free environments, with the difference greater at lower 

speeds. Over the range of speeds considered, the difference is less than about 7%. 
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Figure 36: Modelling effect on step length (extended test matrix) 

 

This weighted average indicates that step length is greater in the models than in the 

physical data, with the difference increasing with speed. At 1.4 m/s, step length is 

approximately 38% greater in the models than in the physical data. 
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Figure 37: Gravity impact on torso displacement (extended test matrix) 

 

This weighted average indicates that for speeds around 0.9 m/s, the impact of gravity 

level on vertical displacement of the torso is approximately zero. For slower speeds, 

greater displacement is seen in lunar gravity; at faster speeds, greater displacement is 

seen in Earth gravity. 
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Figure 38: In-water affect on torso displacement (extended test matrix) 

 

This plot indicates that the impact of the in-water environment on vertical 

displacement of the torso is negligible. Note that the lunar gravity models indicate 

that faster speeds correspond to a greater displacement in a drag-free environment 

relative to an underwater environment, while the physical data in 1 g suggest the 

opposite, with faster speeds indicating a greater displacement in underwater 

environments relative to drag-free environments. 
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Figure 39: Modelling impact on torso displacement (extended test matrix) 

 

This weighted average indicates that for gait speeds around 1.1 m/s, the physical data 

and virtual model data produce similar estimates for vertical displacement of the 

torso. For slower speeds, the models predict a greater displacement than is shown in 

the physical data, and at higher speeds, the models predict a smaller displacement. 
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Figure 40: gravity impact on hip angle (extended test matrix) 

 

This weighted average indicates that for gait speeds around 0.65 m/s, the maximum 

angle between the legs during each stride is not affected by gravity level. For slower 

speeds, larger leg angles are expected in lunar gravity; at faster speeds, larger leg 

angles are expected in Earth gravity. 
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Figure 41: In-water impact on hip angle (extended test matrix) 

 

This weighted average indicates that over the considered range of gait speeds, larger 

leg angles are seen in underwater environments than in drag-free environments, with 

this difference increasing with speed. 
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Figure 42: Modelling impact on hip angle (extended test matrix) 

 

This average indicates that for most gait speeds, maximum leg angle is expected to be 

greater in physical testing than in the gait models employed, with this difference most 

pronounced at lower speeds. 
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Figure 43: gravity impact on swing frequency (extended test matrix) 

 

 

This weighted average indicates that over the range of speeds condsidered, leg 

pendulum frequency is expected to be greater in Earth gravity than in lunar gravity, 

with the effect being larger at greater speeds. This agrees with intuition that the 

frequency of an unforced pendulum is greater in higher gravity environments. 
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Figure 44: In-water impact on swing frequency (extended test matrix) 

 

This weighted average indicates that over the range of speeds considered, pendulum 

frequencies are expected to be greater in underwater environments than drag-free 

environments. 

 



 

 140 

 

 

Figure 45: Modelling impact on swing frequency (extended test matrix) 

 

This weighted average indicates that for most gait speeds, pendulum frequencies are 

expected to be greater in physical testing than in the employed gait models. 
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Appendix 4: Extended test matrix – model data 

 

Earth gravity: 

 

  

Target gait 

metrics Model parameters Resultant gait metrics 

Dry land, one-g 
subject 

# 

treadmill 

voltage 

Speed 

(m/s) 

Beta k 

(N-m) 

start 

toe-off 

(rads/s) 

start 

leg 

angle 

(rads) 

multiplier step 

duration 

(s) 

step 

length 

(m) 

torso 

vert 

disp 

(m) 

phi 

(rads) 

omega 

(s
-1

) 

2 15 0.590 0.428 0.214 0.510 0.117 0.960 0.928 0.546 0.012 0.295 1.851 

2 20 0.853 0.404 0.757 0.650 0.141 0.946 0.977 0.832 0.037 0.458 2.880 

2 25 1.114 0.372 1.070 0.780 0.163 0.947 0.981 1.101 0.068 0.626 3.933 

3 15 0.590 0.428 0.252 0.510 0.117 0.958 0.934 0.554 0.012 0.299 1.880 

3 20 0.871 0.404 0.820 0.650 0.142 0.946 0.978 0.844 0.038 0.466 2.925 

3 25 1.131 0.372 1.080 0.780 0.164 0.947 0.980 1.095 0.065 0.622 3.905 

4 15 0.559 0.428 0.214 0.510 0.115 0.965 0.918 0.531 0.011 0.283 1.778 

4 20 0.844 0.404 0.840 0.650 0.142 0.948 0.975 0.815 0.032 0.444 2.787 

4 25 1.085 0.372 1.064 0.800 0.162 0.947 0.990 1.140 0.076 0.644 4.045 

5 15 0.598 0.428 0.230 0.500 0.110 0.956 0.899 0.535 0.013 0.316 1.986 

5 20 0.861 0.404 0.745 0.690 0.132 0.945 0.940 0.796 0.040 0.481 3.024 

5 25 1.121 0.372 1.010 0.815 0.152 0.947 0.943 0.985 0.064 0.610 3.831 

6 15 0.601 0.428 0.240 0.510 0.108 0.954 0.894 0.542 0.014 0.329 2.065 

6 20 0.879 0.404 0.690 0.690 0.131 0.946 0.928 0.818 0.042 0.508 3.194 

6 25 1.133 0.372 0.980 0.800 0.149 0.947 0.932 1.064 0.076 0.686 4.309 

Underwater, one-g 
subject 

# 

treadmill 

voltage 

Speed 

(m/s) 

Beta k 

(N-m) 

start 

toe-off 

(rads/s) 

start 

leg 

angle 

(rads) 

hip torque 

(N-m) 

step 

duration 

(s) 

step 

length 

(m) 

torso 

vert 

disp 

(m) 

phi 

(rads) 

omega 

(s
-1

) 

2 15 0.563 0.291 0.448 0.550 0.146 1.000 0.851 0.478 0.010 0.257 1.617 

2 20 0.801 0.266 0.950 0.650 0.167 1.000 0.729 0.583 0.019 0.315 1.980 

2 25 0.921 0.291 1.190 0.650 0.168 1.500 0.731 0.672 0.027 0.366 2.297 

3 15 0.551 0.291 0.420 0.550 0.144 1.000 0.848 0.469 0.010 0.252 1.583 

3 20 0.744 0.266 0.800 0.650 0.162 1.000 0.759 0.569 0.017 0.307 1.931 

3 25 0.857 0.291 1.000 0.650 0.163 1.500 0.773 0.663 0.024 0.360 2.264 

4 15 0.554 0.291 0.410 0.550 0.145 1.000 0.840 0.460 0.009 0.245 1.537 

4 20 0.747 0.266 0.830 0.650 0.164 1.000 0.770 0.574 0.016 0.307 1.927 

4 25 0.819 0.291 0.960 0.650 0.163 1.500 0.793 0.652 0.020 0.350 2.201 

5 15 0.560 0.291 0.380 0.550 0.134 1.000 0.836 0.471 0.011 0.277 1.743 

5 20 0.810 0.266 0.780 0.650 0.154 1.000 0.720 0.587 0.021 0.348 2.187 

5 25 0.979 0.291 1.090 0.650 0.157 1.500 0.705 0.692 0.031 0.414 2.600 

6 15 0.540 0.291 0.350 0.550 0.130 1.000 0.850 0.457 0.011 0.275 1.730 

6 20 0.754 0.266 0.620 0.650 0.148 1.000 0.745 0.564 0.018 0.342 2.151 

6 25 0.849 0.291 0.770 0.650 0.148 1.500 0.777 0.662 0.026 0.405 2.543 
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Lunar gravity: 

 
 

 

 

Target gait metrics Model parameters Resultant gait metrics 

Dry land, lunar-g 
subject 

# 

treadmill 

voltage 

Speed 

(m/s) 

Beta Diffheel 

(m) 

k 

(N-m) 

dy0 dq0 step 

duration 

(s) 

step 

length 

(m) 

torso 

vert 

disp 

(m) 

phi 

(rads) 

omega 

(s
-1

) 

2 20 0.364 0.611 0.568 -1.900 2.000 0.390 1.225 0.442 0.591 0.304 0.102 

2 25 0.455 0.688 0.622 -0.600 1.700 0.510 1.041 0.474 0.416 0.337 0.120 

3 20 0.501 0.611 0.701 -1.000 1.770 0.550 1.084 0.543 0.447 0.378 0.115 

3 25 0.535 0.688 0.635 0.000 1.600 0.550 0.980 0.524 0.365 0.342 0.128 

4 20 0.463 0.611 0.541 -1.600 1.830 0.410 1.121 0.519 0.493 0.291 0.112 

4 25 0.640 0.688 0.635 0.600 1.540 0.570 0.943 0.604 0.336 0.343 0.133 

5 20 0.607 0.611 0.603 -0.100 1.550 0.600 0.949 0.576 0.340 0.362 0.132 

5 25 0.750 0.688 0.642 1.100 1.370 0.720 0.839 0.629 0.256 0.383 0.149 

6 20 0.550 0.611 0.484 -0.300 1.570 0.480 0.962 0.529 0.360 0.293 0.130 

6 25 0.631 0.688 0.504 0.600 1.400 0.560 0.858 0.541 0.281 0.307 0.146 

Underwater, lunar-g 
subject 

# 

treadmill 

voltage 

Speed 

(m/s) 

Beta Diffheel 

(m) 

k 

(N-m) 

dy0 dq0 step 

duration 

(s) 

step 

length 

(m) 

torso 

vert 

disp 

(m) 

phi 

(rads) 

omega 

(s
-1

) 

2 20 0.364 0.611 0.568 -0.700 2.050 2.400 1.227 0.443 0.606 0.309 0.102 

2 25 0.455 0.688 0.622 1.050 1.750 2.500 1.043 0.475 0.433 0.335 0.120 

3 20 0.501 0.611 0.701 0.650 1.830 3.200 1.077 0.540 0.461 0.382 0.116 

3 25 0.535 0.688 0.635 2.000 1.650 2.300 0.987 0.528 0.384 0.341 0.127 

4 20 0.463 0.611 0.541 0.000 1.850 1.300 1.121 0.519 0.502 0.290 0.112 

4 25 0.640 0.688 0.635 3.400 1.550 1.700 0.936 0.599 0.340 0.340 0.134 

5 20 0.607 0.611 0.603 1.500 1.580 2.600 0.942 0.572 0.349 0.356 0.133 

5 25 0.750 0.688 0.642 3.300 1.400 2.890 0.833 0.624 0.266 0.380 0.150 

6 20 0.550 0.611 0.484 1.000 1.570 1.700 0.949 0.522 0.358 0.287 0.132 

6 25 0.631 0.688 0.504 2.000 1.430 1.850 0.863 0.545 0.292 0.304 0.145 
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Appendix 5: Matlab code 

 

Appendix 5a: analyses.m 

 
function metrics = dry_analyses(datset, secs, knee_height, hip_height, plots, dry, strobe) 
%Cleans up and analyzes a run 
  
%=======================================================================

== 
%Clean up data 
n = length(datset); 
  
if dry == false 
   datset = datset./996.6;  %re-scale wet data to meters  
end 
  
%------------------------------------------------------------------------- 
%Rearrange markers to the standard order 
if dry == true 
    for j=1:n 
  
        %arrange data left to right (x) 
        %means = mean(datset); %mean x, y, and z positions of each marker 
        row = datset(j,:);  %row of the dataset 
        xrow = row(1:3:34); %x-positions (left-right) 
        [junk, xrow] = sort(-xrow);  %produces left 6, then right 6 
        clear junk; 
        dummy = zeros(1,36); 
        for i=1:12  %rearrange data by left-right sorting 
            dummy(3*i-2:3*i) = datset(j,3*xrow(i)-2:3*xrow(i)); 
        end 
        datset(j,:) = dummy; clear dummy; 
  
        %arrange data bottom to top (z) within left-right sort 
        row = datset(j,:); 
        zrow = row(2:3:35); %z-means (up-down) 
        [junk, zrowL] = sort(zrow(1:6)); %bottom to top 
        [junk, zrowR] = sort(zrow(7:12));    %bottom to top 
        clear junk; 
        dummy = zeros(1,36); 
        for i=1:6   
            dummy(3*i-2:3*i) = datset(j,3*zrowL(i)-2:3*zrowL(i)); 
            dummy(3*i-2+18:3*i+18) = datset(j,3*zrowR(i)-2+18:3*zrowR(i)+18); 
        end 
        datset(j,:) = dummy; clear dummy; 
  
        %arrange treadmill markers front to back (y) 
        row = datset(j,:); 
        yrow = row(3:3:36); 
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        [junk, yrowL] = sort(yrow(1:2)); 
        [junk, yrowR] = sort(yrow(7:8)); 
        clear junk; 
        dummy = zeros(1,36); 
        for i=1:2 
            dummy(3*i-2:3*i) = datset(j,3*yrowL(i)-2:3*yrowL(i)); 
            dummy(3*i-2+18:3*i+18) = datset(j,3*yrowR(i)-2+18:3*yrowR(i)+18); 
        end 
        datset(j,1:6) = dummy(1:6); datset(j,19:24) = dummy(19:24); clear dummy; 
  
    end 
  
    %arrange markers in standard order 
    datset = [... 
        datset(:,1:3) datset(:,19:21) ... 
        datset(:,4:6) datset(:,22:24) ... 
        datset(:,7:9) datset(:,25:27) ... 
        datset(:,10:12) datset(:,28:30) ... 
        datset(:,13:15) datset(:,31:33) ... 
        datset(:,16:18) datset(:,34:36) ]; 
    %--------------------------------------------------------------------- 
    %arrange x, y, z components so that z is up     
    dummy = zeros(size(datset)); 
    dummy(:,1:3:34) = datset(:,1:3:34); 
    dummy(:,2:3:35) = datset(:,3:3:36); 
    dummy(:,3:3:36) = datset(:,2:3:35); 
    datset = dummy; clear dummy; 
end 
     
%------------------------------------------------------------------------- 
%Separate and name columns 
  
Lfrontx = datset(:,1);  Lfronty = datset(:,2);  Lfrontz = datset(:,3); 
Rfrontx = datset(:,4);  Rfronty = datset(:,5);  Rfrontz = datset(:,6); 
Lrearx = datset(:,7);   Lreary = datset(:,8);   Lrearz = datset(:,9); 
Rrearx = datset(:,10);  Rreary = datset(:,11);  Rrearz = datset(:,12); 
Lanklex = datset(:,13); Lankley = datset(:,14); Lanklez = datset(:,15); 
Ranklex = datset(:,16); Rankley = datset(:,17); Ranklez = datset(:,18); 
Lkneex = datset(:,19);  Lkneey = datset(:,20);  Lkneez = datset(:,21); 
Rkneex = datset(:,22);  Rkneey = datset(:,23);  Rkneez = datset(:,24); 
Lthighx = datset(:,25); Lthighy = datset(:,26); Lthighz = datset(:,27); 
Rthighx = datset(:,28); Rthighy = datset(:,29); Rthighz = datset(:,30); 
Lhipx = datset(:,31);   Lhipy = datset(:,32);   Lhipz = datset(:,33); 
Rhipx = datset(:,34);   Rhipy = datset(:,35);   Rhipz = datset(:,36); 
  
%=======================================================================

== 
%Create virtual knee, heel, and torso markers from known geometry 
  
%Torso 
torsox = mean([Lhipx Rhipx],2); 
torsoy = mean([Lhipy Rhipy],2); 
torsoz = mean([Lhipz Rhipz],2); 
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%Heels and knees 
base_meanz = mean(mean([Lfrontz Rfrontz Lrearz Rrearz]));   %mean z of the treadmill markers 
zdisp = 0.01;   %hight distance, in meters, between the treadmill markers and the tread surface 
tread_meanz = base_meanz + zdisp;   %mean z of the tread 
Lheeldist = min(Lanklez) - tread_meanz; %distance between ankle and heel 
Rheeldist = min(Ranklez) - tread_meanz; 
  
for i=1:n 
    %heel 
    Lcalf = [Lanklex(i)-Lkneex(i) Lankley(i)-Lkneey(i) Lanklez(i)-Lkneez(i)]; %vector from knee to 

ankle 
    Lcalfhat = Lcalf./norm(Lcalf);  %unit vector 
    Lheelx(i) = Lanklex(i) + Lcalfhat(1)*Lheeldist; 
    Lheely(i) = Lankley(i) + Lcalfhat(2)*Lheeldist; 
    Lheelz(i) = Lanklez(i) + Lcalfhat(3)*Lheeldist; 
  
    Rcalf = [Ranklex(i)-Rkneex(i) Rankley(i)-Rkneey(i) Ranklez(i)-Rkneez(i)]; 
    Rcalfhat = Rcalf./norm(Rcalf); 
    Rheelx(i) = Ranklex(i) + Rcalfhat(1)*Rheeldist; 
    Rheely(i) = Rankley(i) + Rcalfhat(2)*Rheeldist; 
    Rheelz(i) = Ranklez(i) + Rcalfhat(3)*Rheeldist; 
    
    %anthro knee 
    Lkneex_anthro(i) = Lheelx(i) - Lcalfhat(1)*knee_height; 
    Lkneey_anthro(i) = Lheely(i) - Lcalfhat(2)*knee_height; 
    Lkneez_anthro(i) = Lheelz(i) - Lcalfhat(3)*knee_height; 
    Rkneex_anthro(i) = Rheelx(i) - Rcalfhat(1)*knee_height; 
    Rkneey_anthro(i) = Rheely(i) - Rcalfhat(2)*knee_height; 
    Rkneez_anthro(i) = Rheelz(i) - Rcalfhat(3)*knee_height; 
  
end 
%=======================================================================

== 
%Plot markers 
if plots == true 
    set(0,'Units','pixels'); scnsize = get(0,'ScreenSize'); figure('Position',scnsize); 
    figure(1); hold on; 
    plot3(Lfrontx, Lfronty, Lfrontz,'ko-'); %01 - L front 
    plot3(Rfrontx, Rfronty, Rfrontz,'ko-'); %02 - R front 
    plot3(Lrearx,  Lreary,  Lrearz, 'ko-'); %03 - L rear 
    plot3(Rrearx,  Rreary,  Rrearz, 'ko-'); %04 - R rear 
    plot3(Lanklex, Lankley, Lanklez,'c');   %05 - L ankle 
    plot3(Ranklex, Rankley, Ranklez,'c');   %06 - R ankle 
    plot3(Lkneex,  Lkneey,  Lkneez, 'c');   %07 - L knee 
    plot3(Rkneex,  Rkneey,  Rkneez, 'c');   %08 - R knee 
    plot3(Lthighx, Lthighy, Lthighz,'c');   %09 - L thigh 
    plot3(Rthighx, Rthighy, Rthighz,'c');   %10 - R thigh 
    plot3(Lhipx,   Lhipy,   Lhipz,  'b');   %11 - L hip 
    plot3(Rhipx,   Rhipy,   Rhipz,  'b');   %12 - R hip 
  
    plot3(torsox, torsoy, torsoz, 'b'); %torso 
    plot3(Lheelx, Lheely, Lheelz, 'b'); %left heel 
    plot3(Rheelx, Rheely, Rheelz, 'b'); %right heel 
    plot3(Lkneex_anthro, Lkneey_anthro, Lkneez_anthro, 'b');    %left anthro knee 
    plot3(Rkneex_anthro, Rkneey_anthro, Rkneez_anthro, 'b');    %right anthro knee 
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    grid on; axis square; axis equal; xlabel('x'); ylabel('y'); zlabel('z'); view(160,10); 
  
end 
  
%=======================================================================

== 
%Comupute gait metrics for the run 
  
%indentify heel cross-over points to demarcate steps (two steps per stride) 
heeldiffy = Lheely-Rheely;  %difference in y-positions of the heels 
stepstarts = [];    %initialize array to contain step start time indices 
for i=1:n-1 
   if heeldiffy(i)*heeldiffy(i+1) < 0 
       stepstarts = [stepstarts i+1]; 
   end 
end 
  
%Compute metrics for each step 
for i=1:length(stepstarts)-1    %for each complete step, compute: 
    %step duration 
    stepdurations(i) = secs(stepstarts(i+1))-secs(stepstarts(i)); 
     
    %step length 
    steplengths(i) = max(abs(heeldiffy(stepstarts(i):stepstarts(i+1)))); 
        
    %vertical displacement of the torso 
    torsovertdisps(i) = abs( max(torsoz(stepstarts(i):stepstarts(i+1))) -... 
        min(torsoz(stepstarts(i):stepstarts(i+1))) ); 
     
    %gait type 
    lowerheel = min(Lheelz(stepstarts(i):stepstarts(i+1)),Rheelz(stepstarts(i):stepstarts(i+1))); 
    heelmin=min(lowerheel); 
    heelmax=max(lowerheel); 
    if heelmax-heelmin > 0.05   %if both feet come up by more than 3 cm 
        isrun(i) = 1;   %set if the step indicates a running gate 
    else 
        isrun(i) = 0;   %set if the step indicates a walking gate 
    end 
     
    %maximum horizontal distance between heels 
    [maxdiffheelL,index1] = max(Lheely(stepstarts(i):stepstarts(i+1)) - 

min(Rheely(stepstarts(i):stepstarts(i+1)))); 
    [maxdiffheelR,index2] = max(Rheely(stepstarts(i):stepstarts(i+1)) - 

min(Lheely(stepstarts(i):stepstarts(i+1)))); 
    maxdiffheels(i) = max([maxdiffheelL maxdiffheelR]); 
    maxindices = [index1 index2]; 
     
    %maximum angle between legs in the sagittal plane 
    for j=1:2     
        Ly = Lheely(maxindices(j));    Lz = Lheelz(maxindices(j)); 
        Ry = Rheely(maxindices(j));    Rz = Rheelz(maxindices(j)); 
        hy = mean([Lhipy(maxindices(j)) Rhipy(maxindices(j))]); 
        hz = mean([Lhipz(maxindices(j)) Rhipz(maxindices(j))]);     
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        RL = sqrt((Ry-Ly)^2+(Rz-Lz)^2); 
        Rh = sqrt((Ry-hy)^2+(Rz-hz)^2); 
        Lh = sqrt((Ly-hy)^2+(Lz-hz)^2); 
        phi(j) = acos(-0.5*(RL^2-Rh^2-Lh^2)/(Rh*Lh)); %law of cosines 
    end     
    maxphis(i) = max(phi); 
     
end 
  
%treadmill speed 
treadspeeds = [];   %vector to store instantaneous tread speeds 
for i=1:length(secs)-1 
    dLheely(i) = abs((Lheely(i+1)-Lheely(i))/(secs(i+1)-secs(i))); 
    dRheely(i) = abs((Rheely(i+1)-Rheely(i))/(secs(i+1)-secs(i))); 
    if Lheelz(i) < min(Lheelz)+0.01     %if heel is within the bottom 1 cm of its trajectory (threshold to 

be considered on tread) 
        treadspeeds = [treadspeeds dLheely(i)]; 
    end 
    if Rheelz(i) < min(Rheelz)+0.01     %if heel is within the bottom 1 cm of its trajectory (threshold to 

be considered on tread) 
        treadspeeds = [treadspeeds dRheely(i)]; 
    end 
end 
  
%calculate metric means over the duration of the run 
meanstepduration = mean(stepdurations); 
pendfreq = (2*pi)/(2*meanstepduration); 
meansteplength = mean(steplengths); 
meanspeed = meansteplength/meanstepduration; 
meantorsovertdisp = mean(torsovertdisps); 
meanisrun = mean(isrun); 
treadspeed = mean(treadspeeds); 
maxdiffheel = mean(maxdiffheels); 
maxphi = mean(maxphis); 
  
%metrics array to return 
%metrics = [meanstepduration pendfreq meansteplength meanspeed meantorsovertdisp meanisrun 

treadspeed maxdiffheel maxphi]'; 
metrics = maxphi'; 
  
%=======================================================================

== 
  
%Generate "strobe" image 
  
if strobe == true 
    figure(2); hold on; 
    whichstep = 30; 
    hiptrajx = [];    hiptrajy = []; 
    kneetrajx = [];    kneetrajy = []; 
    heeltrajx = [];    heeltrajy = []; 
    for frame = stepstarts(whichstep):1:stepstarts(whichstep+1); 
        hiptrajx = [hiptrajx Lhipy(frame) - steplengths(whichstep)*(frame-
stepstarts(whichstep))/(stepstarts(whichstep+1)-stepstarts(whichstep))]; 
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        hiptrajy = [hiptrajy Lhipz(frame)]; 
        kneetrajx = [kneetrajx Lkneey(frame) - steplengths(whichstep)*(frame-

stepstarts(whichstep))/(stepstarts(whichstep+1)-stepstarts(whichstep))]; 
        kneetrajy = [kneetrajy Lkneez(frame)]; 
        heeltrajx = [heeltrajx Lheely(frame) - steplengths(whichstep)*(frame-

stepstarts(whichstep))/(stepstarts(whichstep+1)-stepstarts(whichstep))]; 
        heeltrajy = [heeltrajy Lheelz(frame)]; 
    end 
    for frame = stepstarts(whichstep+1):1:stepstarts(whichstep+2); 
        hiptrajx = [hiptrajx Lhipy(frame) - steplengths(whichstep) - steplengths(whichstep+1)*(frame-

stepstarts(whichstep+1))/(stepstarts(whichstep+2)-stepstarts(whichstep+1))]; 
        hiptrajy = [hiptrajy Lhipz(frame)]; 
        kneetrajx = [kneetrajx Lkneey(frame) - steplengths(whichstep) - 

steplengths(whichstep+1)*(frame-stepstarts(whichstep+1))/(stepstarts(whichstep+2)-

stepstarts(whichstep+1))]; 
        kneetrajy = [kneetrajy Lkneez(frame)]; 
        heeltrajx = [heeltrajx Lheely(frame) - steplengths(whichstep) - steplengths(whichstep+1)*(frame-

stepstarts(whichstep+1))/(stepstarts(whichstep+2)-stepstarts(whichstep+1))]; 
        heeltrajy = [heeltrajy Lheelz(frame)]; 
    end 
    minx = min(heeltrajx) 
    hiptrajx = -smooth(hiptrajx)-.2; 
    hiptrajy = smooth(hiptrajy); 
    kneetrajx = -smooth(kneetrajx)-.2; 
    kneetrajy = smooth(kneetrajy); 
    heeltrajx = -smooth(heeltrajx)-.2; 
    heeltrajy = smooth(heeltrajy); 
     
    for i = 1:length(hiptrajx) 
       plot([hiptrajx(i) kneetrajx(i) heeltrajx(i)],[hiptrajy(i) kneetrajy(i) heeltrajy(i)],'ko-

','LineWidth',1,'MarkerSize',10)  
    end    
    plot(hiptrajx,hiptrajy,'bo-','LineWidth',2,'MarkerSize',10) 
    axis square; 
    xlabel('meters') 
end 
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Appendix 5b: container.m 

 
%Get data, get it cleaned up and analyzed 
clear all; close all; clc; 
  
%subj2 (one-g dry, one-g wet, lunar wet) 
[datset secs knee_height hip_height] = dry15_subj2(); 
subj2_metrics(:,1) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry20_subj2(); 
subj2_metrics(:,2) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry25_subj2(); 
subj2_metrics(:,3) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
  
[datset secs knee_height hip_height] = oneg15_subj2(); 
subj2_metrics(:,4) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg20_subj2(); 
subj2_metrics(:,5) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg25_subj2(); 
subj2_metrics(:,6) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
[datset secs knee_height hip_height] = lunar15_subj2(); 
subj2_metrics(:,7) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar20_subj2(); 
subj2_metrics(:,8) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar25_subj2();                   
subj2_metrics(:,9) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
%subj3 (one-g dry, one-g wet, lunar wet) 
[datset secs knee_height hip_height] = dry15_subj3(); 
subj3_metrics(:,1) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry20_subj3(); 
subj3_metrics(:,2) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry25_subj3(); 
subj3_metrics(:,3) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
  
[datset secs knee_height hip_height] = oneg15_subj3(); 
subj3_metrics(:,4) = analyses(datset(:,1:36), secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg20_subj3(); 
subj3_metrics(:,5) = analyses(datset(20:1109,1:36), secs(20:1109), knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg25_subj3(); 
subj3_metrics(:,6) = analyses(datset(:,1:36), secs, knee_height, hip_height, 0, 0, 0); 
  
[datset secs knee_height hip_height] = lunar15_subj3(); 
subj3_metrics(:,7) = analyses(datset(:,1:36), secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar20_subj3(); 
subj3_metrics(:,8) = analyses(datset(:,1:36), secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar25_subj3(); 
subj3_metrics(:,9) = analyses(datset(:,1:36), secs, knee_height, hip_height, 0, 0, 0); 
  
%subj4 (one-g dry, one-g wet, lunar wet) 
[datset secs knee_height hip_height] = dry15_subj4(); 
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subj4_metrics1 = analyses(datset(1:769,:), secs(1:769), knee_height, hip_height, 0, 1, 0); 
subj4_metrics2 = analyses(datset(772:1059,:), secs(772:1059), knee_height, hip_height, 0, 1, 0); 
subj4_metrics(:,1) = (769*subj4_metrics1 + 288*subj4_metrics2)./1057; 
[datset secs knee_height hip_height] = dry20_subj4(); 
subj4_metrics3 = analyses(datset(1:449,:), secs(1:449), knee_height,hip_height, 0, 1, 0); 
subj4_metrics4 = analyses(datset(451:890,:), secs(451:890), knee_height, hip_height, 0, 1, 0); 
subj4_metrics5 = analyses(datset(892:1023,:), secs(892:1023), knee_height, hip_height, 0, 1, 0); 
subj4_metrics(:,2) = (449*subj4_metrics3 + 440*subj4_metrics4 + 132*subj4_metrics5)./1021; 
[datset secs knee_height hip_height] = dry25_subj4(); 
subj4_metrics(:,3) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
  
[datset secs knee_height hip_height] = oneg15_subj4(); 
subj4_metrics(:,4) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg20_subj4(); 
subj4_metrics(:,5) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg25_subj4(); 
subj4_metrics(:,6) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
[datset secs knee_height hip_height] = lunar15_subj4(); 
subj4_metrics(:,7) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar20_subj4(); 
subj4_metrics(:,8) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar25_subj4(); 
subj4_metrics(:,9) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
%subj5 (one-g dry, one-g wet, lunar wet) 
[datset secs knee_height hip_height] = dry15_subj5(); 
subj5_metrics(:,1) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry20_subj5(); 
subj5_metrics(:,2) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry25_subj5(); 
subj5_metrics(:,3) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
  
[datset secs knee_height hip_height] = oneg15_subj5(); 
subj5_metrics(:,4) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg20_subj5(); 
subj5_metrics(:,5) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg25_subj5(); 
subj5_metrics(:,6) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
[datset secs knee_height hip_height] = lunar15_subj5(); 
subj5_metrics(:,7) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar20_subj5(); 
subj5_metrics(:,8) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar25_subj5(); 
subj5_metrics(:,9) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
%subj6 (one-g dry, one-g wet, lunar wet) 
[datset secs knee_height hip_height] = dry15_subj6(); 
subj6_metrics(:,1) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry20_subj6(); 
subj6_metrics(:,2) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
[datset secs knee_height hip_height] = dry25_subj6(); 
subj6_metrics(:,3) = analyses(datset, secs, knee_height, hip_height, 0, 1, 0); 
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[datset secs knee_height hip_height] = oneg15_subj6(); 
subj6_metrics(:,4) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg20_subj6(); 
subj6_metrics(:,5) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = oneg25_subj6(); 
subj6_metrics1 = analyses(datset(1:229,:), secs(1:229), knee_height, hip_height, 0, 0, 0); 
subj6_metrics2 = analyses(datset(260:419,:), secs(260:419),knee_height, hip_height, 0, 0, 0); 
subj6_metrics3 = analyses(datset(430:497,:), secs(430:497), knee_height, hip_height, 0, 0, 0); 
subj6_metrics(:,6) = (229*subj6_metrics1 + 160*subj6_metrics2 + 68*subj6_metrics3)./497; 
  
[datset secs knee_height hip_height] = lunar15_subj6(); 
subj6_metrics(:,7) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar20_subj6(); 
subj6_metrics(:,8) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
[datset secs knee_height hip_height] = lunar25_subj6(); 
subj6_metrics(:,9) = analyses(datset, secs, knee_height, hip_height, 0, 0, 0); 
  
subj2_metrics 
subj3_metrics 
subj4_metrics 
subj5_metrics 
subj6_metrics 
  
[subj2_metrics;subj3_metrics;subj4_metrics;subj5_metrics;subj6_metrics] 
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Appendix 5c: simplerunnerEOM.m 

 
function dR = simplerunnerEoM(t,R) 
  
global g L k kd M m I1_hip; 
  
%Inputs 
q = R(1); dq = R(2); 
y = R(3); dy = R(4); 
  
%Abbreviations 
c1 = cos(q);    s1 = sin(q); 
  
%intermediate terms 
th = 2*k*q; 
  
A = dq^2*c1^4 + c1^2*s1^2 - 2*dq*c1^3*s1; 
B = -2*m*L*c1^2*s1^2/(M+2*m) + 2*dy*dq*c1^2*s1 + 2*m*L*dq*c1^3*s1/(M+2*m) - 

2*dy*s1^2*c1;   %***************first, third term return empty 
C = dy^2*s1^2 + (m*L*c1*s1/(M+2*m))^2 + 2*m*L*dy*s1^2*c1/(M+2*m);              

%********************second, third term returns empty 
  
d = abs(kd*( L^3/3.*A + L^2/2.*B + L.*C ))*sign(dq); 
n = -abs(kd*( L^4/4.*A + L^3/3.*B + L^2/2.*C ))*sign(dq); 
  
%equations of motion 
ddq = (-m*g*(L/2).*s1 + n - th)./I1_hip; 
ddy = (-(M+2*m)*g-2*d.*s1)/(M+2*m); 
  
%size(ddq) 
  
%Outputs (equations of motion) 
dR(1) = dq; 
dR(2) = ddq; 
dR(3) = dy; 
dR(4) = ddy; 
  
dR = dR'; 
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Appendix 5d: simplerunner_sim.m 

 
%IMPULSIVE RUNNING SIMULATION - TUNE SOME COMBO OF k, kd, dq0, dy0 SO 

BOUNCE OCCURS AT CROSSOVER 
%=======================================================================

== 
clear all; close all; clc; 
t = [0:0.001:2.5];    %s 
options = odeset('RelTol',1e-12,'AbsTol',1e-12); 
%=======================================================================

== 
global g L k kd M m I1_hip 
  
%set - Subject 2: 
g = 9.8/6;     %m/s^2 
L = 0.84;    %m 
body_mass = 61.2;   %kg 
  
kd = 0; 
%kd = 0.5*996*.15*1;    % = 0.5*rho*w*cd 
  
%targets: 
target_beta = 0.611; 
target_speed = 0.550; 
target_diffheel = 0.4835 
  
%tune: 
k = -0.3;     %Nm (hip spring constant) 
dq0 = .48; 
dy0 = 1.57; 
  
numsteps = 1; 
animate = 0; 
  
targetv = target_speed/sqrt(L*g);   %nondimensionalize 
targets = targetv^target_beta; 
target_steplength = targets*L      %redimensionalize, m 
  
[k kd dy0 dq0]' 
  
%Working values 
%M = 51.4; %kg (torso) 
%m   = 15.4;  %kg (one leg) 
  
M = 0.62*body_mass; 
m = 0.19*body_mass; 
I1_hip = m*L^2/3; 
  
%=======================================================================

= 
%GAIT PROPAGATION 
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%initialize vectors to contain time and postion data 
TIMES = []; 
XHIP = []; YHIP = []; 
X1 = [];   Y1 = []; 
X2 = [];   Y2 = []; 
  
R0 = [0 dq0 L-m*L/(M+2*m) dy0];  %initial state at start of first step ( R = [q dq y dy] ) 
  
stepnum = 1; 
forward = 1;    %re-add for impulsive running 
while stepnum <= numsteps;  
       [times states] = ode45(@simplerunnerEOM,t,R0);    %numerical propagation 
  
       %pull out angle and positional data 
       q = states(:,1); 
       dq = states(:,2); 
       y = states(:,3); 
       dy = states(:,4); 
  
       %convert to cartesian positions of hip and feet 
       xfwd = L*sin(q); 
       yfwd = y-y(1);   %for starting at bounce 
       xhip = zeros(length(q)); 
       yhip = yfwd+L*cos(q);        
        
       %truncate data at collision 
       for coll=2:length(q) 
           if yfwd(coll) < 0                
               break 
           end 
       end 
        
       %generate time and position vectors for the step 
       times = times(1:coll); 
       xfwd = xfwd(1:coll);   yfwd = yfwd(1:coll); 
       xhip = xhip(1:coll);   yhip = yhip(1:coll); 
             
       %append time and position vectors to old vectors 
       if isempty(TIMES); TIMES = times; 
       else TIMES = [TIMES;TIMES(length(TIMES))+times]; end 
       XHIP = [XHIP xhip];      YHIP = [YHIP;yhip]; 
       Y1 = [Y1;yfwd]; 
       Y2 = [Y2;yfwd]; 
       if forward == 1 
            X1 = [X1;xfwd]; 
            X2 = [X2;-xfwd]; 
            forward = 2; 
       else 
            X1 = [X1;-xfwd]; 
            X2 = [X2;xfwd]; 
            forward = 1; 
       end 
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       %set initial state for start of the next step (may just use value set outside 
       %loop if steps are truly identical!) 
  
%       R0 = [-q(coll) -dq(coll) y(coll) dy0]; 
       R0 = [-q(coll) -dq0*sign(dq(coll)) y(coll) dy0]; 
       stepnum = stepnum +1; 
        
       stepdurations(stepnum) = times(length(times)); 
       pendfreqs(stepnum) = (2*pi)/(2*stepdurations(stepnum)); 
       steplengths(stepnum) = target_speed*stepdurations(stepnum); 
       torsovertdisps(stepnum) = abs(max(yhip)-min(yhip)); 
       diffheels(stepnum) = 2*max(abs(xfwd)); 
end 
        
%=======================================================================
== 
%Animate 
if animate == true 
    upperbody = 0.84;   %m 
  
    set(0,'Units','pixels'); scnsize = get(0,'ScreenSize'); figure('Position',scnsize); 
    figure(1); hold on; 
    leg2   = plot([XHIP(1) X2(1)],[YHIP(1) Y2(1)],'ro-','EraseMode','xor'); 
    leg1   = plot([XHIP(1) X1(1)],[YHIP(1) Y1(1)],'bo-','EraseMode','xor'); 
    torso  = plot([XHIP(1) XHIP(1)],[YHIP(1) YHIP(1)+upperbody],'ko-','EraseMode','xor'); 
    axis equal; axis([-1.5 19.5 -0.5 2.5]); grid on; 
    for TIME = 2:15:length(TIMES) 
        set(leg2, 'XData',[XHIP(TIME) X2(TIME)],  'YData',[YHIP(TIME) Y2(TIME)]); 
        set(leg1, 'XData',[XHIP(TIME) X1(TIME)],  'YData',[YHIP(TIME) Y1(TIME)]); 
        set(torso,'XData',[XHIP(TIME) XHIP(TIME)],'YData',[YHIP(TIME) 

YHIP(TIME)+upperbody]); 
        drawnow; pause(0.01); %0.00001 
    end 
end 
  
%=======================================================================

== 
  
%plot of foot location (should show symmetry during each step) 
figure(2); hold on; 
plot(X1,Y1,'b') 
%plot(TIMES,Y2,'r') 
grid on 
  
%=======================================================================

== 
%Metrics 
  
stepduration = mean(stepdurations); 
pendfreq = mean(pendfreqs); 
steplength = mean(steplengths); 
torsovertdisp = mean(torsovertdisps);   %SET dy0 to match torsovertdisp to data 
diffheel = 2*mean(diffheels); 
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[stepduration pendfreq steplength torsovertdisp diffheel]' 
  
diffheel 
steplength 
  

  
%------------------------------------------------------------------------- 
  
%END OF CODE
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Appendix 5e: gaitEOMnew.m 

 
function dR = gaitEoM(t,R) 
  
global g L k kd M m I1_1 I2_hip hipinput 
  
%Inputs 
q1 = R(1); 
dq1 = R(2); 
q2 = R(3); 
dq2 = R(4); 
  
%Abbreviations 
c1 = cos(q1); s1 = sin(q1); 
c2 = cos(q2); s2 = sin(q2); 
c1_2 = cos(q1-q2); 
s1_2 = sin(q1-q2); 
  
%Intermediate functions used in equations of motion below 
th = k*(q1-q2+pi);  %hip torsion moment 
  
d1 = sign(dq1)*(1/3)*kd*dq1^2*L^3; 
n1 = sign(dq1)*(1/4)*kd*dq1^2*L^4;     
d2 = -sign(dq2)*(1/3)*kd*dq2^2*L^3; 
n2 = -sign(dq2)*(1/4)*kd*dq2^2*L^4; 
%d2 = kd*L^3*(       dq1^2*c1_2^2 +       dq1*dq2*c1_2 + (1/3)*dq2^2 );  %CHECKED 
%n2 = kd*L^4*( (1/2)*dq1^2*c1_2^2 + (2/3)*dq1*dq2*c1_2 + (1/4)*dq2^2 );  %CHECKED 
  
ddq2 = ( -(L/2)*c2*m*g+n2+(th+hipinput) )/I2_hip; 
ddq1 = (-m*(L/2)*c1_2*ddq2 - m*(L/2)*dq2^2*s1_2 + d2*c1_2 -  c1*((3/2)*m+M)*g + (n1-(th-

hipinput))/L ) / (I1_1/L + m*L); 
  
%Outputs (equations of motion) 
dR(1) = dq1; 
dR(2) = ddq1; 
dR(3) = dq2; 
dR(4) = ddq2; 
  
dR = dR'; 
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Appendix 5f: gait_sim.m 

 
%GAIT SIMULATION 
    % distributed leg masses and point torso mass 
    % kneeless 
    % quadratic drag 
    % linear torsional spring hip 
    % purely inelastic heel strike 
    % impulsive toe-off 
%------------------------------------------------------------------------- 
clear all; close all; clc; 
t = [0:0.001:1.5];    %s 
options = odeset('RelTol',1e-12,'AbsTol',1e-12); 
%------------------------------------------------------------------------- 
global g L k kd M m I1_1 I2_hip hipinput 
g = 9.8;     %m/s^2 
  
kd = 0.5*996*.15*1;    % = 0.5*rho*w*cd 
  
%Enter for each subject - Subject 2: 
L = 0.84;           %m 
body_mass = 61.2;   %kg 
targetbeta = 0.291; 
targetspeed = 0.849; %m/s 
  
%Tune for each subject 
k = .77;     %Nm (hip spring constant - tune) 
start_toeoff = 0.65;   %1.9315  %angular speed of stance leg about stance foot at toe-off (tune to get 

symmetrical first step) 
multiplier = 1; 
hipinput = 1.5; 
  
animate = 0; 
numsteps = 50; 
pausetime = 0.00001; 
  
%determine start_leg_angle from desired velocity exponent 
targetv = targetspeed/sqrt(L*g);    %non-dimensionalize 
targets = targetv^targetbeta; 
targetsteplength = targets*L;       %re-dimensionalize, m 
start_leg_angle = asin(targetsteplength/4); 
  
setttings = [k hipinput 0 start_toeoff start_leg_angle multiplier]' 
  
%working values 
%k = 0;     %Nm (hip spring constant) 
%L = 0.96;    %m 
%kd = 0; 
  
%M = 51.4; %kg 
%m = 15.4;  %kg 
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%start_leg_angle = 0.11*pi;   %initial maximum angle of legs from vertical 
  
M = 0.62*body_mass; 
m = 0.19*body_mass; 
I1_1 = m*L^2/3 + M*L^2; %moment of inertia of leg 1 about foot 1 
I2_hip = m*L^2/3; 
  
upperbody = 0.84;   %m 
  
%------------------------------------------------------------------------- 
%GAIT PROPAGATION 
  
%initialize vectors to contain time and postion data 
TIMES = [0]; 
XHIP = [0]; YHIP = [0]; 
X1 = [0];   Y1 = [0]; 
X2 = [0];   Y2 = [0]; 
  
%R0 = [pi/2+start_leg_angle -start_toeoff -pi/2-start_leg_angle -start_toeoff];  %initial state at start of 

first step ( R = [q1 dq1 q2 dq2] ) 
R0 = [pi/2+start_leg_angle -start_toeoff -pi/2-start_leg_angle 0];  %initial state at start of first step ( R 

= [q1 dq1 q2 dq2] ) 
swinger = 1;    %leg 1 swings first 
stepnum = 1; 
xtraversed = 0; 
while stepnum <= numsteps;   %propagate for 20 stepnums 
    [times states] = ode45(@gaitEOMnew,t,R0);    %numerical propagation 
  
    %pull out positional data 
    xhip = L*cos(states(:,1)); 
    yhip = L*sin(states(:,1)); 
    xswing = xhip + L*cos(states(:,3)); 
    yswing = yhip + L*sin(states(:,3)); 
  
    %truncate data to actual swing portion 
    for strikeindex = 1:length(yswing)-1 
       %if at the next timestep swing foot will be below floor and will be 
       %more than L/100 past stance foot 
       if ( (yswing(strikeindex+1)< 0 && xswing(strikeindex+1)>0.08*L) ) %|| 

(strikeindex+1>length(yswing)-3) ) 
          strike(stepnum) = strikeindex+1; 
          break 
       end 
       strike(stepnum) = strikeindex+1; 
    end 
  
    %generate time and position vectors for the current swing 
    times = times(1:strike(stepnum)); 
    xhip = xhip(1:strike(stepnum)) + xtraversed; 
    yhip = yhip(1:strike(stepnum)); 
    xstance = zeros(strike(stepnum),1) + xtraversed; 
    ystance = zeros(strike(stepnum),1); 
    xswing = xswing(1:strike(stepnum)) + xtraversed; 
    yswing = yswing(1:strike(stepnum)); 
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    %append new time and position vectors to old vectors, and switch which leg will swing next 
    TIMES = [TIMES;TIMES(length(TIMES))+times]; 
    XHIP =    [XHIP;xhip];           
    YHIP =    [YHIP;yhip]; 
    if swinger == 1 
        X1 = [X1;xswing];        Y1 = [Y1;yswing]; 
        X2 = [X2;xstance];       Y2 = [Y2;ystance]; 
        swinger = 2; 
    else 
        X1 = [X1;xstance];       Y1 = [Y1;ystance]; 
        X2 = [X2;xswing];        Y2 = [Y2;yswing]; 
        swinger = 1; 
    end 
     
    %set initial state, step number, and total distance traversed for the start of the next step 
    q1 = states(strike(stepnum),3) - pi;   %q1_new = q2_old - pi 
    q2 = states(strike(stepnum),1) - pi;   %q2_new = q1_old - pi 
    dq1 = states(strike(stepnum),4);       %dq1_new = dq2_old 
    dq2 = states(strike(stepnum),2);       %dq2_new = dq1_old 
    new_dq1 = dq2; %toe-off 
    new_dq2 = 0;    %inelastic heel strike 
    R0 = [q1 new_dq1*multiplier q2 new_dq2];   %new initial state (after inelastic heel strike and 

impulsive toe-off) 
    phi(stepnum) = q1-q2+pi; 
    xtraversed = xswing(strike(stepnum)); 
    stepnum = stepnum+1; 
     
    %metrics 
    stepdurations(stepnum) = times(length(times)); 
    steplengths(stepnum) = (max(xswing)-min(xswing)) + (max(xstance)-min(xstance)); 
    speeds(stepnum) = steplengths(stepnum)/stepdurations(stepnum); 
    torsovertdisps(stepnum) = max(yhip) - min(yhip); 
  
    %non-dimensionalized units, velocity exponent 
    s(stepnum) = steplengths(stepnum)/L; 
    v(stepnum) = speeds(stepnum)/sqrt(L*g); 
    betas(stepnum) = log(s(stepnum))/log(v(stepnum)); 
end 
     
meanstepduration = mean(stepdurations(15:numsteps)) 
pendfreq = (2*pi)/(2*meanstepduration) 
meansteplength = mean(steplengths(15:numsteps)) 
meantorsovertdisp = mean(torsovertdisps(15:numsteps)) 
meanspeed = mean(speeds(15:numsteps)) 
meanbeta = mean(betas(15:numsteps)) 
meanphi = mean(phi(15:numsteps)) 
  
    %% 
    %beta alt 3 
    %non-dimensionalized units, velocity exponent 
    s = 2*steplengths/L; 
    v = speeds/sqrt(L*g); 
    beta = log(s)/log(v);}% 
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[meanstepduration pendfreq meansteplength meantorsovertdisp meanspeed meanbeta meanphi]' 
  
%------------------------------------------------------------------------- 
%Animate 
if animate == true     
    set(0,'Units','pixels'); scnsize = get(0,'ScreenSize'); figure('Position',scnsize); 
    figure(1); hold on; 
    leg2   = plot([XHIP(1) X2(1)],[YHIP(1) Y2(1)],'ro-','EraseMode','xor'); 
    leg1   = plot([XHIP(1) X1(1)],[YHIP(1) Y1(1)],'bo-','EraseMode','xor'); 
    torso  = plot([XHIP(1) XHIP(1)],[YHIP(1) YHIP(1)+upperbody],'ko-','EraseMode','xor'); 
    axis equal; axis([-1.5 19.5 -0.5 2.5]); grid on; 
    for TIME = 2:15:length(TIMES) 
        set(leg2, 'XData',[XHIP(TIME) X2(TIME)],  'YData',[YHIP(TIME) Y2(TIME)]); 
        set(leg1, 'XData',[XHIP(TIME) X1(TIME)],  'YData',[YHIP(TIME) Y1(TIME)]); 
        set(torso,'XData',[XHIP(TIME) XHIP(TIME)],'YData',[YHIP(TIME) 

YHIP(TIME)+upperbody]); 
        drawnow; pause(pausetime); %0.00001 
    end 
end 
  
%------------------------------------------------------------------------- 
  
%plot of swing foot height over TIME (should show symmetry during each step) 
figure(2); hold on; 
plot(TIMES,Y1,'b') 
plot(TIMES,Y2,'r') 
grid on 
  
%------------------------------------------------------------------------- 
  
%END OF CODE 
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Appendix 5g: goal1.m 

 

clear all; close all; clc; 
%Estimate gait metrics as a function of speed for true lunar gravity 
  
x = (0:0.01:3); %speed, m/s 
  
%Metric-estimating functions 
%Step length vs. gait speed              
    sH =    0.3275.*x + 0.2651; RsH =   0.6782; 
    sG =    0.2826.*x + 0.3995; RsG =   0.5285; 
    sE =    0.2766.*x + 0.3846; RsE =   0.2503;      
    sD =    1.0149.*x - 0.0566; RsD =   0.9918; 
    sB =    0.4647.*x + 0.2828; RsB =   0.8675; 
    sA =    0.4514.*x + 0.2886; RsA =   0.8796;  
%Vertical torso displacement vs. gait speed          
    tH =     0.0319.*x + 0.0026; RtH =  0.6509; 
    tG =     0.0590.*x - 0.0031; RtG =  0.4326; 
    tE =    -0.1858.*x + 0.1606; RtE =  0.5213;      
    tD =     0.1092.*x - 0.0537; RtD =  0.9877; 
    tB =    -0.8430.*x + 0.8515; RtB =  0.8760; 
    tA =    -0.8641.*x + 0.8736; RtA =  0.8836; 
%Maximum leg angle vs. gait speed                
    pH =    0.3509.*x + 0.3071; RpH =   0.4101; 
    pG =    0.6842.*x + 0.1673; RpG =   0.5452; 
    pE =    0.0942.*x + 0.4832; RpE =   0.0132;  
    pD =    0.6310.*x - 0.0697; RpD =   0.9870; 
    pB =    0.1283.*x + 0.2619; RpB =   0.1754; 
    pA =    0.0644.*x + 0.2980; RpA =   0.0264;  
%Leg pendulum frequency vs. gait speed               
    oH =    2.2048.*x + 1.9294; RoH =   0.4101; 
    oG =    4.2990.*x + 1.0510; RoG =   0.5452; 
    oE =    0.5919.*x + 3.0362; RoE =   0.0132; 
    oD =    3.9645.*x - 0.4381; RoD =   0.9870; 
    oB =    0.7773.*x + 0.3684; RoB =   0.8899; 
    oA =    0.4046.*x + 1.8724; RoA =   0.0264; 
  
%function estimates for vertex F 
sF1 = sB + sE - sA;    %using lunar gravity sims and tests 
sF2 = sB + sH - sD;    %using drag-dree sims and tests 
sF3 = sE + sH - sG;    %using physical sims and tests 
tF1 = tB + tE - tA; 
tF2 = tB + tH - tD; 
tF3 = tE + tH - tG; 
pF1 = pB + pE - pA; 
pF2 = pB + pH - pD; 
pF3 = pE + pH - pG; 
oF1 = oB + oE - oA; 
oF2 = oB + oH - oD; 
oF3 = oE + oH - oG; 
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%weight for each estimate (worst R^2 value of its component terms) 
ws1 = min([RsB RsE RsA]); 
ws2 = min([RsB RsH RsD]); 
ws3 = min([RsE RsH RsG]); 
wt1 = min([RtB RtE RtA]); 
wt2 = min([RtE RtH RtG]); 
wt3 = min([RtE RtH RtG]); 
wp1 = min([RpB RpE RpA]); 
wp2 = min([RpE RpH RpG]); 
wp3 = min([RpE RpH RpG]); 
wo1 = min([RoB RoE RoA]); 
wo2 = min([RoE RoH RoG]); 
wo3 = min([RoE RoH RoG]); 
  
%Unweighted averages 
sFu = ( sF1 + sF2 + sF3 )./3; 
tFu = ( tF1 + tF2 + tF3 )./3; 
pFu = ( pF1 + pF2 + pF3 )./3; 
oFu = ( oF1 + oF2 + oF3 )./3; 
     
%Weighted averages 
sFw = ( sF1.*ws1 + sF2.*ws2 + sF3.*ws3)./sum([ws1 ws2 ws3]); 
tFw = ( tF1.*wt1 + tF2.*wt2 + tF3.*wt3)./sum([wt1 wt2 wt3]); 
pFw = ( pF1.*wp1 + pF2.*wp2 + pF3.*wp3)./sum([wp1 wp2 wp3]); 
oFw = ( oF1.*wo1 + oF2.*wo2 + oF3.*wo3)./sum([wo1 wo2 wo3]); 
  
figure(1); hold on; 
plot(x,sFw,'k','LineWidth',2); 
plot(x,sFu,'r','LineWidth',2); 
plot(x,sF1,'b--'); 
plot(x,sF2,'r--'); 
plot(x,sF3,'g--'); 
title('Step length (distance between subsequent heel strikes)'); grid on; 
xlabel('Gait speed (m/s)'); ylabel('Step length (m)'); 
legend('weighted average','unweighted average','lunar gravity estimate','drag-free estimate','physical 

data estimate','Location','SouthWest'); 
  
figure(2); hold on; 
plot(x,tFw,'k','LineWidth',2); 
plot(x,tFu,'r','LineWidth',2); 
plot(x,tF1,'b--'); 
plot(x,tF2,'r--'); 
plot(x,tF3,'g--'); 
title('Vertical displacement of the torso'); 
xlabel('Gait speed (m/s)'); ylabel('Torso displacement (m)'); grid on; 
legend('weighted average','unweighted average','lunar gravity estimate','drag-free estimate','physical 

data estimate','Location','SouthWest'); 
  
figure(3); hold on; 
plot(x,pFw,'k','LineWidth',2); 
plot(x,pFu,'r','LineWidth',2); 
plot(x,pF1,'b--'); 
plot(x,pF2,'r--'); 
plot(x,pF3,'g--'); 
title('Maximum angle between legs (in the sagittal plane)'); grid on; 
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xlabel('Gait speed (m/s)'); ylabel('Leg angle (radians)'); 
legend('weighted average','unweighted average','lunar gravity estimate','drag-free estimate','physical 

data estimate','Location','SouthWest'); 
  
figure(4); hold on; 
plot(x,oFw,'k','LineWidth',2); 
plot(x,oFu,'r','LineWidth',2); 
plot(x,oF1,'b--'); 
plot(x,oF2,'r--'); 
plot(x,oF3,'g--'); 
title('Leg pendulum frequency'); grid on; 
xlabel('Gait speed (m/s)'); ylabel('Pendulum frequency (s^{-1})'); 
legend('weighted average','unweighted average','lunar gravity estimate','drag-free estimate','physical 
data estimate','Location','SouthWest'); 
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Appendix 5h: goal2.m 

 
%Determine the impact of each factor (gravity, drag, and modelling 
%assumptions) on each metric. Take difference of metric functions between 
%adjacent elements of the test matrix, such that one of the elements is 
%adjacent to the true lunar gravity element. 
  
clear all; close all; clc; 
  
x = (0.5:0.01:1.5); %speed, m/s 
  
%Metric-estimating functions for each element of the text matrix 
%Step length vs. gait speed              
    sH =    0.3275.*x + 0.2651; RsH =   0.6782; 
    sG =    0.2826.*x + 0.3995; RsG =   0.5285; 
    sE =    0.2766.*x + 0.3846; RsE =   0.2503;      
    sD =    1.0149.*x - 0.0566; RsD =   0.9918; 
    sB =    0.4647.*x + 0.2828; RsB =   0.8675; 
    sA =    0.4514.*x + 0.2886; RsA =   0.8796;  
%Vertical torso displacement vs. gait speed          
    tH =     0.0319.*x + 0.0026; RtH =  0.6509; 
    tG =     0.0590.*x - 0.0031; RtG =  0.4326; 
    tE =    -0.1858.*x + 0.1606; RtE =  0.5213;      
    tD =     0.1092.*x - 0.0537; RtD =  0.9877; 
    tB =    -0.8430.*x + 0.8515; RtB =  0.8760; 
    tA =    -0.8641.*x + 0.8736; RtA =  0.8836; 
%Maximum leg angle vs. gait speed                
    pH =    0.3509.*x + 0.3071; RpH =   0.4101; 
    pG =    0.6842.*x + 0.1673; RpG =   0.5452; 
    pE =    0.0942.*x + 0.4832; RpE =   0.0132;  
    pD =    0.6310.*x - 0.0697; RpD =   0.9870; 
    pB =    0.1283.*x + 0.2619; RpB =   0.1754; 
    pA =    0.0644.*x + 0.2980; RpA =   0.0264;  
%Leg pendulum frequency vs. gait speed               
    oH =    2.2048.*x + 1.9294; RoH =   0.4101; 
    oG =    4.2990.*x + 1.0510; RoG =   0.5452; 
    oE =    0.5919.*x + 3.0362; RoE =   0.0132; 
    oD =    3.9645.*x - 0.4381; RoD =   0.9870; 
    oB =    0.7773.*x + 0.3684; RoB =   0.8899; 
    oA =    0.4046.*x + 1.8724; RoA =   0.0264; 
  
%Normalized differences and worst R^2 values of each pair of adjacent vertices 
sEG = (sE - sG)./sG; RsEG = min([RsE RsG]); 
sBD = (sB - sD)./sD; RsBD = min([RsB RsD]); 
sBA = (sB - sA)./sA; RsBA = min([RsB RsA]); 
sHG = (sH - sG)./sG; RsHG = min([RsH RsG]); 
sEA = (sE - sA)./sA; RsEA = min([RsE RsA]); 
sHD = (sH - sD)./sD; RsHD = min([RsH RsD]); 
  
pEG = (pE - pG)./pG; RpEG = min([RpE RpG]); 
pBD = (pB - pD)./pD; RpBD = min([RpB RpD]); 
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pBA = (pB - pA)./pA; RpBA = min([RpB RpA]); 
pHG = (pH - pG)./pG; RpHG = min([RpH RpG]); 
pEA = (pE - pA)./pA; RpEA = min([RpE RpA]); 
pHD = (pH - pD)./pD; RpHD = min([RpH RpD]); 
  
oEG = (oE - oG)./oG; RoEG = min([RoE RoG]); 
oBD = (oB - oD)./oD; RoBD = min([RoB RoD]); 
oBA = (oB - oA)./oA; RoBA = min([RoB RoA]); 
oHG = (oH - oG)./oG; RoHG = min([RoH RoG]); 
oEA = (oE - oA)./oA; RoEA = min([RoE RoA]); 
oHD = (oH - oD)./oD; RoHD = min([RoH RoD]); 
  
%Non-normalized due to values crossing zero 
tEG = (tE - tG); RtEG = min([RtE RtG]); 
tBD = (tB - tD); RtBD = min([RtB RtD]); 
tBA = (tB - tA); RtBA = min([RtB RtA]); 
tHG = (tH - tG); RtHG = min([RtH RtG]); 
tEA = (tE - tA); RtEA = min([RtE RtA]); 
tHD = (tH - tD); RtHD = min([RtH RtD]); 
  
%Unweighted averages 
s_grav_u = ( sEG + sBD )./2; 
s_drag_u = ( sBA + sHG )./2; 
s_phys_u = ( sEA + sHD )./2; 
  
t_grav_u = ( tEG + tBD )./2; 
t_drag_u = ( tBA + tHG )./2; 
t_phys_u = ( tEA + tHD )./2; 
  
p_grav_u = ( pEG + pBD )./2; 
p_drag_u = ( pBA + pHG )./2; 
p_phys_u = ( pEA + pHD )./2; 
  
o_grav_u = ( oEG + oBD )./2; 
o_drag_u = ( oBA + oHG )./2; 
o_phys_u = ( oEA + oHD )./2; 
  
%Weighted averages 
s_grav_w = ( sEG.*RsEG + sBD.*RsBD )./(RsEG+RsBD); 
s_drag_w = ( sBA.*RsBA + sHG.*RsHG )./(RsBA+RsHG); 
s_phys_w = ( sEA.*RsEA + sHD.*RsHD )./(RsEA+RsHD); 
  
t_grav_w = ( tEG.*RtEG + tBD.*RtBD )./(RtEG+RtBD); 
t_drag_w = ( tBA.*RtBA + tHG.*RtHG )./(RtBA+RtHG); 
t_phys_w = ( tEA.*RtEA + tHD.*RtHD )./(RtEA+RtHD); 
  
p_grav_w = ( pEG.*RpEG + pBD.*RpBD )./(RpEG+RpBD); 
p_drag_w = ( pBA.*RpBA + pHG.*RpHG )./(RpBA+RpHG); 
p_phys_w = ( pEA.*RpEA + pHD.*RpHD )./(RpEA+RpHD); 
  
o_grav_w = ( oEG.*RoEG + oBD.*RoBD )./(RoEG+RoBD); 
o_drag_w = ( oBA.*RoBA + oHG.*RoHG )./(RoBA+RoHG); 
o_phys_w = ( oEA.*RoEA + oHD.*RoHD )./(RoEA+RoHD); 
  



 

 167 

 

  
%=======================================================================

== 
%Plots (12 total) 
  
%Step length 
  
figure(1); hold on; 
plot(x,s_grav_w,'k','LineWidth',2); grid on; 
plot(x,s_grav_u,'r:','LineWidth',2);  
plot(x,sEG,'b--'); 
plot(x,sBD,'g--'); 
title('Impact of Earth vs. lunar gravity on step length'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in step length'); 
legend('weighted average','unweighted average','sEG','sBD'); 
  
figure(2); hold on; 
plot(x,s_drag_w,'k','LineWidth',2); grid on; 
plot(x,s_drag_u,'r:','LineWidth',2);  
plot(x,sBA,'b--'); 
plot(x,sHG,'g--'); 
title('Impact of In-water environment on step length'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in step length'); 
legend('weighted average','unweighted average','sBA','sHG'); 
  
figure(3); hold on; 
plot(x,s_phys_w,'k','LineWidth',2); grid on; 
plot(x,s_phys_u,'r:','LineWidth',2);  
plot(x,sEA,'b--'); 
plot(x,sHD,'g--'); 
title('Impact of physical testing vs. modelling on step length'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in step length'); 
legend('weighted average','unweighted average','sEA','sHD'); 
  
%------------------------------------------------------------------------- 
%Torso vertical displacement 
  
figure(4); hold on; 
plot(x,t_grav_w,'k','LineWidth',2); grid on; 
plot(x,t_grav_u,'r:','LineWidth',2);  
plot(x,tEG,'b--'); 
plot(x,tBD,'g--'); 
title('Impact of Earth vs. lunar gravity on vertical displacement of torso'); 
xlabel('Gait speed (m/s)'); ylabel('Difference in vertical displacement of torso (m)'); 
legend('weighted average','unweighted average','tEG','tBD'); 
  
figure(5); hold on; 
plot(x,t_drag_w,'k','LineWidth',2); grid on; 
plot(x,t_drag_u,'r:','LineWidth',2);  
plot(x,tBA,'b--'); 
plot(x,tHG,'g--'); 
title('Impact of In-water environment on vertical displacement of torso'); 
xlabel('Gait speed (m/s)'); ylabel('Difference in vertical displacement of torso (m)'); 
legend('weighted average','unweighted average','tBA','tHG'); 
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figure(6); hold on; 
plot(x,t_phys_w,'k','LineWidth',2); grid on; 
plot(x,t_phys_u,'r:','LineWidth',2);  
plot(x,tEA,'b--'); 
plot(x,tHD,'g--'); 
title('Impact of physical testing vs. modelling on vertical displacement of torso'); 
xlabel('Gait speed (m/s)'); ylabel('Difference in vertical displacement of torso (m)'); 
legend('weighted average','unweighted average','tEA','tHD'); 
  
%------------------------------------------------------------------------- 
  
%Maximum leg angle 
  
figure(7); hold on; 
plot(x,p_grav_w,'k','LineWidth',2); grid on; 
plot(x,p_grav_u,'r:','LineWidth',2);  
plot(x,pEG,'b--'); 
plot(x,pBD,'g--'); 
title('Impact of Earth vs. lunar gravity on maximum angle between legs'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in maximum angle between legs'); 
legend('weighted average','unweighted average','pEG','pBD'); 
  
figure(8); hold on; 
plot(x,p_drag_w,'k','LineWidth',2); grid on; 
plot(x,p_drag_u,'r:','LineWidth',2);  
plot(x,pBA,'b--'); 
plot(x,pHG,'g--'); 
title('Impact of In-water environment on maximum angle between legs'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in maximum angle between legs'); 
legend('weighted average','unweighted average','pBA','pHG'); 
  
figure(9); hold on; 
plot(x,p_phys_w,'k','LineWidth',2); grid on; 
plot(x,p_phys_u,'r:','LineWidth',2);  
plot(x,pEA,'b--'); 
plot(x,pHD,'g--'); 
title('Impact of physical testing vs. modelling on maximum angle between legs'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in maximum angle between legs'); 
legend('weighted average','unweighted average','pEA','pHD'); 
  
%------------------------------------------------------------------------- 
  
%Leg pendulum frequency 
  
figure(10); hold on; 
plot(x,o_grav_w,'k','LineWidth',2); grid on; 
plot(x,o_grav_u,'r:','LineWidth',2);  
plot(x,oEG,'b--'); 
plot(x,oBD,'g--'); 
title('Impact of Earth vs. lunar gravity on leg pendulum frequency'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in leg pendulum frequency'); 
legend('weighted average','unweighted average','oEG','oBD'); 
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figure(11); hold on; 
plot(x,o_drag_w,'k','LineWidth',2); grid on; 
plot(x,o_drag_u,'r:','LineWidth',2);  
plot(x,oBA,'b--'); 
plot(x,oHG,'g--'); 
title('Impact of In-water environment on leg pendulum frequency'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in leg pendulum frequency'); 
legend('weighted average','unweighted average','oBA','oHG'); 
  
figure(12); hold on; 
plot(x,o_phys_w,'k','LineWidth',2); grid on; 
plot(x,o_phys_u,'r:','LineWidth',2);  
plot(x,oEA,'b--'); 
plot(x,oHD,'g--'); 
title('Impact of physical testing vs. modelling on leg pendulum frequency'); 
xlabel('Gait speed (m/s)'); ylabel('Normalized difference in leg pendulum frequency'); 
legend('weighted average','unweighted average','oEA','oHD'); 
  
%------------------------------------------------------------------------- 
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Appendix 5i: tripleimport.m 

 

clear all; close all; clc; 

%=======================================================================

== 

%  Auto-generated by MATLAB on 13-Dec-2010 20:54:46 
% Import the file 

newData1 = importdata('data_for_mancova2.csv'); 

  

% Create new variables in the base workspace from those fields. 

vars = fieldnames(newData1); 

for i = 1:length(vars), 

    assignin('base', vars{i}, newData1.(vars{i})); end 

%=======================================================================

== 

  

%independent variable column vectors 
speed = [data(1:15,4) ; data(1:15,7) ; data(1:15,10)];  %speed (m/s) 

NDspd = [data(1:15,5) ; data(1:15,8) ; data(1:15,11)];  %ND speed 

speedvecs = [speed NDspd]; 

  

%gait metrics, etc. column vectors 

duration    = [data(  1: 15,3) ; data(  1: 15,6) ; data(  1: 15,9)];    %1  - duration 

NDduration  = [data( 16: 30,3) ; data( 16: 30,6) ; data( 16: 30,9)];    %2  - NDduration 

steplength  = [data( 31: 45,3) ; data( 31: 45,6) ; data( 31: 45,9)];    %3  - steplength 

NDlength    = [data( 46: 60,3) ; data( 46: 60,6) ; data( 46: 60,9)];    %4  - NDlength 

torsovd     = [data( 61: 75,3) ; data( 61: 75,6) ; data( 61: 75,9)];    %5  - torsovd 

NDtorso     = [data( 76: 90,3) ; data( 76: 90,6) ; data( 76: 90,9)];    %6  - NDtorso 

heeldist    = [data( 91:105,3) ; data( 91:105,6) ; data( 91:105,9)];    %7  - heeldist 
NDheel      = [data(106:120,3) ; data(106:120,6) ; data(106:120,9)];    %8  - NDheel 

omega       = [data(121:135,3) ; data(121:135,6) ; data(121:135,9)];    %9  - omega 

NDomega     = [data(136:150,3) ; data(136:150,6) ; data(136:150,9)];    %10 - NDomega 

phi         = [data(151:165,3) ; data(151:165,6) ; data(151:165,9)];    %11 - phi 

beta        = [data(166:180,3) ; data(166:180,6) ; data(166:180,9)];    %12 - beta 

metrics = [duration NDduration steplength NDlength torsovd NDtorso... 

    heeldist NDheel omega NDomega phi beta]; 

  

groups = {... 

'dryoneg';'dryoneg';'dryoneg';'dryoneg';'dryoneg';... 

'dryoneg';'dryoneg';'dryoneg';'dryoneg';'dryoneg';... 
'dryoneg';'dryoneg';'dryoneg';'dryoneg';'dryoneg';... 

'wetoneg';'wetoneg';'wetoneg';'wetoneg';'wetoneg';... 

'wetoneg';'wetoneg';'wetoneg';'wetoneg';'wetoneg';... 

'wetoneg';'wetoneg';'wetoneg';'wetoneg';'wetoneg';... 

'wetlunar';'wetlunar';'wetlunar';'wetlunar';'wetlunar';... 

'wetlunar';'wetlunar';'wetlunar';'wetlunar';'wetlunar';... 

'wetlunar';'wetlunar';'wetlunar';'wetlunar';'wetlunar'}; 

  

%Run tests - for each metric, compare each pair of environments, with each time vector 

  

metricnum = 2;        %metric number 
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%testpair = 2;    %1 = dry vs wet (1g); 2 = 1g vs lunar (wet) 

speedvector = 2; %1 = m/s; 2 = non-dimensionalized 

  

indepvals = speedvecs(1:45,speedvector); 

depvals = metrics(1:45,metricnum); 

groupvals = groups(1:45); 
[h,atab,ctab,stats] = aoctool(... 

    indepvals,...  %independent values 

    depvals,... %dependent values 

    groupvals,...                %groups 

    0.05,'Gait speed (m/s)','metric','Environment'); 

  

figure(1) 

[slopecompare,slopemeans,slopeh,slopegnames]=multcompare(stats,'estimate','slope'); 

  

figure(2) 

[intcompare,intmeans,inth,intgnames]=multcompare(stats,'estimate','intercept'); 

  
figure(3) 

[pmmcompare,pmmmeans,pmmh,pmmgnames]=multcompare(stats,'estimate','pmm'); 

  

%Print to workspace 

disp('case') 

disp([metricnum]) 

  

atab; 

disp('atab') 

disp(cell2mat(atab(4,2:6))) 

ctab 
disp('ctab') 

disp(cell2mat(ctab(2:9,2:5))) 

  

disp('slopes') 

disp(stats.slopes) 

disp('intercepts') 

disp(stats.intercepts) 

disp('pop. marginal means') 

disp(stats.pmm) 

disp('slope covariance') 

disp(stats.slopecov) 

disp('intercept covariance') 
disp(stats.intercov) 

disp('pmm covariance') 

disp(stats.pmmcov) 

  

disp('slope compare') 

disp(slopecompare) 

disp('intercept compare') 

disp(intcompare) 

disp('pmm compare') 

disp(pmmcompare) 

disp('slope means') 
disp(slopemeans) 

disp('intercept means') 

disp(intmeans) 

disp('pmm means') 
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disp(pmmmeans) 
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Appendix 5j: triplebands.m 

 

%Plot data and fits with confidence bands 

  

%close 4; 
figure(4); grid on; hold on; 

  

pd = [Adamdata Adamdata1(:,2:4) Adamdata2(:,2:4)];   %where 

%pd = [ x fit1 upper1 lower1 fit2 upper2 lower2 fit3 upper3 lower3 

%       :   :    :      :      :     :     :      :     :     :   ]; 

%plot data points 

plot(indepvals( 1:15),depvals( 1:15),'rx','LineWidth',2,'MarkerSize',12); 

plot(indepvals(16:30),depvals(16:30),'gx','LineWidth',2,'MarkerSize',12); 

plot(indepvals(31:45),depvals(31:45),'bx','LineWidth',2,'MarkerSize',12); 

  

%plot fits and confidence band limits 

plot(pd(:,1),pd(:,2),'r','LineWidth',2); 
plot(pd(:,1),pd(:,5),'g','LineWidth',2); 

plot(pd(:,1),pd(:,8),'b','Linewidth',2); 

plot(pd(:,1),pd(:,3),'r--','LineWidth',1); 

plot(pd(:,1),pd(:,4),'r--','LineWidth',1); 

plot(pd(:,1),pd(:,6),'g--','LineWidth',1); 

plot(pd(:,1),pd(:,7),'g--','LineWidth',1); 

plot(pd(:,1),pd(:,9),'b--','LineWidth',1); 

plot(pd(:,1),pd(:,10),'b--','LineWidth',1); 

  

%plot confidence band regions 

area1 = [pd(:,1) pd(:,3); flipud(pd(:,1)) flipud(pd(:,4))]; 
area2 = [pd(:,1) pd(:,6); flipud(pd(:,1)) flipud(pd(:,7))]; 

area3 = [pd(:,1) pd(:,9); flipud(pd(:,1)) flipud(pd(:,10))]; 

fill(area1(:,1),area1(:,2),[1 0 0],'EdgeAlpha',0); 

fill(area2(:,1),area2(:,2),[0 1 0],'EdgeAlpha',0); 

fill(area3(:,1),area3(:,2),[0 0 1],'EdgeAlpha',0); 

alpha(0.15); 

  

%formatting 

axis([min(pd(:,1)) ...  %xmin 

      max(pd(:,1)) ...  %xmax 

      max( min([min(pd(:,4))-0.1 min(pd(:,7))-0.1 min(pd(:,10))-0.1]), 0) ...   %ymin 
      max([max(pd(:,3)) max(pd(:,6)) max(pd(:,9))])+0.1])             %ymax 

set(gcf,'Color',[1 1 1]); 

set(gcf,'Position',[150 150 1200 800]); 

set(gca,'Box','off'); 

set(gca,'FontSize',18); 

  

%labels 

label1 = 'dry 1g'; label2 = 'wet 1g'; label3 = 'wet lunar'; 

metricnames = {'duration' 'N.D. duration' 'step length' 'N.D. step length' ... 

    'torso vertical displacement' 'N.D. torso vertical displacement' ... 

    'maximum heel distance' 'N.D. maximum heel distance' 'swing frequency'... 

    'N.D. swing frequency' 'maximum hip angle' 'velocity exponent \beta'}; 
metricname = cell2mat(metricnames(metricnum)); 
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metriclabs = {'Duration (s)' 'N.D. duration' 'Step length (m)' ... 

    'N.D. step length' 'Torso vertical displacement (m)' ... 

    'N.D. torso vertical displacement' 'Maximum heel distance (m)' ... 

    'N.D. maximum heel distance' 'Swing frequency (Hz)' ... 

    'N.D. swing frequency' 'Maximum hip angle (radians)' ... 

    'Velocity exponent \beta'}; 
indeplabel = cell2mat(metriclabs(metricnum)); 

xlabel('Non-dimensionalized gait speed: 

speed/sqrt(\fontname{Times}{\it\bflg}\fontname{Arial})','FontWeight','bold','FontSize',20) 

ylabel(indeplabel,'FontWeight','bold','FontSize',20) 

title({'Linear fits and 95% confidence bands for \bf' [metricname ' \rmvs. N.D. gait 

speed']},'FontSize',24) 

legend([label1 ' data'],[label2 ' data'],[label3 ' data'],[label1 ': lin. fit'],[label2 ': lin. fit'],[label3 ': lin. 

fit'],'Location','EastOutside') 

legend('boxoff') 
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Glossary 
 

Cross-over: 

The point in a stride at which the feet exchange positions, i.e., the rear foot becomes 

the forward foot 

 

Heel-strike: 

The collision between foot and ground, treated in simplified passive dynamic walker 

models as perfectly inelastic 

 

Impulsive runner: 

A dynamic model of running in which contact with the ground is assumed to be an 

instantaneous, impulsive change in momentum 

 

Passive dynamic walker: 

A dynamic model of walking which achieves stable gaits without requiring active 

control 

 

Single-support: 

A portion of a gait cycle in which exactly one foot is in contact with, and transferring 

force to, the ground. In simplified passive dynamic walker models, the entire gait 

cycle is single support with the exception of two instantaneous transitions. Real 

walking gaits exhibit a period of dual support which makes up a small but finite 

portion of each stride.
[18] 

 

Stance leg: 

A leg whose foot is in contact with the ground at a given moment 

 

Swing leg: 

A leg whose foot is not in contact with the ground at a given moment 

 

Toe-off: 

The instantaneous impulse applied to a foot at the moment it leaves contact with the 

ground. This impulse imparts the amount of energy lost due to inelastic heel-strike, 

plus any energy lost to non-conservative forces over the duration of the step. 
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