
  

 

 

 

 

ABSTRACT 

 

Title of Document: PROGNOSTICS OF INSULATED GATE 

BIPOLAR TRANSISTORS.   

  

 Nishad Patil, Doctor of Philosophy, 2011 

  

Directed By: Professor Michael Pecht 

Department of Mechanical Engineering 

 

Insulated gate bipolar transistors (IGBTs) are the devices of choice for 

medium and high power, low frequency applications. IGBTs have been reported to 

fail under excessive electrical and thermal stresses in variable speed drives and are 

considered as reliability problems in wind turbines, inverters in hybrid electric 

vehicles and railway traction motors.  There is a need to develop methods to detect 

anomalous behavior and predict the remaining useful life (RUL) of IGBTs to prevent 

system downtime and costly failures.  

In this study, a framework for prognostics of IGBTs was developed to provide 

early warnings of failure and predict the remaining useful life. The prognostic 

framework was implemented on non punch through (NPT) IGBTs. Power cycling of 

IGBTs was performed and the gate-emitter voltage, collector-emitter voltage, 

collector-emitter current and case temperature was monitored in-situ during aging. 

The on-state collector-emitter current (ICE(ON)) and collector-emitter voltage (VCE(ON)) 

were identified as precursors to IGBT failure. Electrical characterization and X-ray 



  

 

analysis was performed before and after aging to map degradation in the devices to 

observed trends in the precursor parameters. 

A Mahalanobis distance based approach was used for anomaly detection. The 

initial ICE(ON) and VCE(ON) parameters were used to compute the healthy MD distance. 

This healthy MD distance was transformed and the mean and standard deviation of 

the transformed MD data was obtained. The µ+3σ upper bound obtained from the 

transformed healthy MD was then used as a threshold for anomaly detection. This 

approach was able to detect anomalous behavior in IGBTs before failure. 

Upon anomaly detection, a particle filter approach was used for predicting the 

remaining useful life of the IGBTs. A system model was developed using the 

degradation trend of the VCE(ON) parameter. This model was obtained by a least 

squares regression of the IGBT degradation curve. The tracking and prediction 

performance of the model with the particle filter was demonstrated.   
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Chapter 1. Introduction 

 

Insulated gate bipolar transistors (IGBTs) are the power semiconductor switch 

of choice for sources that operate at voltages above 200V [1]. Due to their low on-

state losses and simple gate drive requirements, IGBTs are extensively used in 

medium and high power motor drives and power supplies. IGBTs have been reported 

to fail under excessive electrical and thermal stresses in variable speed drives [2], and 

are considered as reliability problems in wind turbines [3], inverters in hybrid electric 

vehicles [4] and railway traction motors [5].  There is a need to develop methods to 

detect anomalous behavior and predict the remaining useful life (RUL) of IGBTs to 

prevent system downtime and costly failures.  

Prognostics is the process of predicting the future health of a product by 

assessing the extent of deviation or degradation from its expected normal operating 

conditions [6], and by extrapolating the behavior to failure thresholds using 

appropriate models and algorithms. These models and algorithms may need to 

incorporate not only features derived from monitored precursor signals, but also 

current and future environmental conditions and operational loads.  

In this study, a framework for IGBT prognostics is proposed and 

implemented. The implementation of prognostics for IGBTs has potential benefits in 

terms of avoidance of unscheduled maintenance and improved safety. 
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Insulated Gate Bipolar Transistor (IGBT) 

The insulated-gate bipolar transistor (IGBT) is a three-terminal power 

semiconductor device. This device is also called the insulated gate rectifier (IGR), 

conductivity-modulated field effect transistor (COMFET), gain-enhanced metal oxide 

semiconductor field effect transistor (GEMFET), bipolar field effect transistor 

(BiFET), and injector field effect transistor [7].  

The IGBT was first experimentally demonstrated by Baliga in 1979 [8].  

Plummer and Scharf in 1980 also experimentally demonstrated the IGBT and 

provided a quantitative analysis and models for the device [9] [10]. Becke and 

Wheatley filed what is considered the seminal patent on IGBTs in 1980 which was 

subsequently awarded in 1982 [11]. The first IGBT devices were commercially 

available from General Electric in 1983. Currently, IGBTs are widely used in medium 

frequency (20-200 KHz) and medium power (10KW-1MW) applications such as 

switch mode power supplies (SMPS), AC motor drives, uninterrupted power supply 

(UPS) and inductive heating. High voltage and high current IGBTs (6500V, 200-

400A) are used in electric traction applications for locomotives and streetcars [12]. 

Companies that manufacture IGBTs include Toshiba, Infineon, Microsemi, ON 

semiconductor, International Rectifier, IXYS, Hitachi, Fuji Electric, Fairchild 

Semiconductor, Powerex and Siemens.  

The IGBT is a functional integration of metal oxide semiconductor (MOS) 

and bipolar device technologies in monolithic form. IGBTs have switching 

characteristics similar to a metal oxide semiconductor field effect transistor 
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(MOSFET) and the high current and voltage capabilities of a bipolar junction 

transistor (BJT).  

 

Figure 1-1: Schematic of n-channel IGBT operation 

 

The structure of an IGBT is similar to that of a vertical diffusion power 

MOSFET, except for an additional p+ layer above the collector as seen in Figure 1-1. 

The main characteristic of the vertical configuration is that the collector (drain) forms 

the bottom of the device while the emitter (source) region remains the same as a 

traditional MOSFET. Figure 1-1 represents the schematic structure of the n-channel 

IGBT. The additional p+ layer in the IGBT acts as a source of holes that are injected 

into the drift region during operation. These injected holes enable quick turn-off by 

recombination with excess electrons that remain in the body of the IGBT after switch-

off.  

The current flow in this device is composed of both holes and electrons. 

Applying a positive voltage to the gate switches on the device when a conductive 
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channel also known as the inversion layer, is created. Electrons flow from the emitter 

through the conductive channel to the collector terminal. A positive voltage applied to 

the collector with the emitter at ground causes the injection of positive carriers from 

the p+ layer into the drift region which allows for conductivity modulation of the 

device, leading to a lower on-resistance compared to the power MOSFET [12].  Since 

an IGBT is switched on by voltage rather than current, it results in faster switching 

speeds in comparison to BJT. As the conductivity of the device is modulated by 

charge injection from the p+ layer, it allows for lower on-state resistance than the 

power MOSFET. A modification of this structure involves the addition of an 

additional n+ layer, called the buffer layer, above the p+ layer that contacts the 

collector terminal. The additional n+ layer leads to faster evacuation of stored charges 

resulting in increased switching speed of the IGBT.  

IGBTs are classified based on the orientation of the gate as planar or trench. 

In planar structures, the gate is parallel to the collector. In trench IGBTs, the gate is 

vertical to the collector terminal. In the planar IGBT, electrons flow through a 

horizontal channel and then downwards to the collector. This current path leads to 

higher losses during conduction. The trench IGBT on the other hand, has a single 

direction for current flow, from the emitter, through the vertical channel down to the 

collector. This path lowers the conduction loss of the trench IGBT, and minimizes the 

use of silicon, allowing for reduced size of the trench IGBT for a given voltage rating 

in comparison to the planar IGBT. 

IGBTs are further classified as punch-through (PT), non punch-through (NPT) 

and field stop (FS) as shown in Figure 1-2. The punch-through IGBT is manufactured 
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using an expensive epitaxial process. The electric field punches through and 

terminates in the p+ layer (buffer layer). The non punch-through IGBT is 

manufactured using a less expensive float zone silicon process. In this device, the 

electric field terminates in the drift region. For a given voltage rating, the size of the 

NPT IGBT is smaller than a PT IGBT. The field stop IGBT is manufactured using the 

inexpensive float zone process and has a buffer layer that is used to terminate the 

electric field. It has the smallest size for a given voltage rating among the three 

technologies. 

 

Figure 1-2: Overview of IGBT technologies  

 

The conduction loss is a function of the on-state collector emitter voltage 

VCE(ON). The VCE(ON) is a function of the n- drift region thickness. From Figure 1-2, 

we see that the punch-through and field stop IGBTs have thinner drift regions in 

comparison to the non punch-though IGBT. Therefore, the punch-through and the 

field stop IGBTs have lower conduction loss in comparison to NPT. However, the 
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NPT IGBT can sustain large currents such as in short circuit events due to the thicker 

n- drift region. 

The switch-off losses in IGBTs are based on the time required for the holes in 

the drift region to recombine with electrons and be swept out of the device through 

the collector. The punch-through IGBT uses heavy hole injection to reduce 

conductivity losses. These excessive holes lead to high switching losses for punch-

through IGBTs in comparison to the NPT and field stop transistors. 

Trench IGBTs, due to their vertical gate structure, have lower VCE(on) . Hence, 

trench IGBTs have lower conduction losses in comparison to planar IGBTs. A 

modification of the trench IGBT to include a field stop buffer layer leads to a 

reduction in switching losses as well. The trench IGBT configuration in comparison 

with the planar structures is shown in Figure 1-2. 

Prognostic Approaches 

Prognostic approaches can be classified as model-based or data driven. The 

model-based approaches can be further classified into system model and physics of 

failure approaches [13]. The system model based approach to prognostics uses 

mathematical representations to incorporate a physical understanding of the system in 

order to implement diagnostics and prognostics [14].  Statistical estimation 

techniques based on residuals and parity relations are then used to detect, isolate and 

predict degradation. The physics of failure approach (PoF) to prognostics utilizes 

knowledge of a product’s life cycle loading conditions, geometry, and material 

properties to identify potential failure mechanisms and estimate its remaining useful 

life [6]. 
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Data-driven approaches involve learning statistical relationships and patterns 

from sensor data to provide valuable decision-making information. They are based on 

the assumption that the statistical characteristics of the system data remain relatively 

unchanged until a fault occurs in the system. In this approach, in-situ monitoring of 

environmental and operational loads and system parameters is performed. The data is 

then analyzed using a variety of techniques for anomaly detection followed by 

prediction of RUL. Anomaly detection techniques are used for diagnostics in order to 

detect changes in the system that may lead to system malfunction or failure. For 

prognostic purposes, trends in parameter values, features or changes in probabilities 

of the system state are then used to estimate the time to failure of the system using 

prediction algorithms. 

There are several approaches that have been developed for electronic 

prognostics. A few examples of these prognostic approaches will be described. The 

current state of research on prognostics of IGBTs will be discussed in detail. The 

issues unaddressed in previous IGBT prognostics studies will form the basis for the 

motivation of the current study. 

Gu et al. [15] demonstrated the Physics of Failure approach to prognostics of 

electronics under vibration loading by monitoring interconnect strain and assessing 

damage accumulation.  Strain gauges were used to monitor the bending curvature of 

printed wiring boards as a response to loading in the form of vibration. The 

interconnect strain values were used in a vibration failure fatigue model for damage 

assessment. The Miner’s rule was used to estimate the accumulated damage which 

was then used to estimate the RUL of the boards.  
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Saha et al. [16] used a system model approach to estimated the remaining 

useful life of lithium ion batteries. The battery was represented by a lumped 

parameter model. The parameters of the model were calculated using relevance vector 

machine (RVM) regression on experimental data. An extended Kalman filter and 

particle filter algorithms were used to determine the battery RUL.   

Goodman et al. [17] described the use of prognostic cells to predict failure in 

integrated circuits. The prognostic cell is designed to fail prior to the circuit on the 

same chip for all realistic operating conditions. Prognostic monitors in the test cell see 

the exact environment that the actual circuit sees, but at an accelerated rate, thereby 

providing failure prediction. These cells were developed for 0.35, 0.25, and 0.18 

micron complementary metal oxide semiconductor (CMOS) processes to predict 

failure as a result of time dependent dielectric breakdown (TDDB), hot carrier 

injection (HCI), and negative bias temperature instability (NBTI).  

Vichare et al. described four main approaches to electronic prognostics which 

included: built-in-test (BIT);  use of expendable devices, such as ―canaries‖ and fuses 

that fail earlier than the host product to provide advance warning of failure; 

monitoring and reasoning of parameters that are precursors to impending failure, such 

as shifts in performance parameters; and modeling of stress and damage in electronic 

parts and structures utilizing exposure conditions (e.g., usage, temperature, vibration, 

radiation) to compute accumulated damage [18]. 

Kumar et al. [19] used the data-driven approach to detect anomalies of 

notebook computers by monitoring performance parameters and comparing them 

against the historical data using Mahalanobis distance. 
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 IGBT Prognostics 

Xiong et al. [20] proposed an online diagnostic and prognostic system to 

predict the potential failure of an automotive IGBT power module. In this study, 

power cycling tests were performed on Toshiba 600V/800A IGBT modules for 

approximately 10000 hours. The stressing was performed by the application of 

repeated cycles of a 400 A current pulse (1 second), followed by a 20A current pulse 

(0.5 seconds) and a dwell period (8.5 seconds). During the test, collector-emitter 

voltage at saturation (VCE(sat)) was monitored continuously. Unlike previous studies on 

power cycling of power modules, a sudden drop of the VCE(sat) followed by a rise was 

observed as shown in Figure 1-3. The authors suspected an initial solder joint 

degradation before wire-bond failure eventually caused the failure of the power 

module. 

 

Figure 1-3: VCE(sat) variation observed with power cycling in IGBT module [20] 
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Based on the test results, the authors proposed a quasi real-time IGBT failure 

prognostic system. The prognostic approach of the authors consisted of a prognostic 

check-up routine that would be implemented at a preset frequency and current during 

vehicle turn-on and turn-off. During the check-up, VCE(sat) of the IGBT module would 

be compared with a look-up table of healthy data. Any variation of the VCE(sat) over 

15% would signal an alarm. Although the authors reported this approach as a 

prognostic approach, the remaining useful life of IGBTs was not reported. 

Ginart et al. [21] performed a study on IGBTs to develop an online ringing 

characterization technique to diagnose IGBT faults in power drives. The authors 

proposed the analysis of ringing characteristics of current and voltage transitions 

during switching as a feature for the evaluation of IGBT aging. In this study, IGBTs 

were aged by removing the heat sink from the transistor and switching it on and off 

until device latch-up occurred. The transistors were turned off for several minutes 

after latching. After the transistors recovered, they were aged again in a similar 

manner. The transistors latched after recovery but at a lower temperatures and shorter 

aging duration in comparison to previous aging. The transistors were evaluated using 

a custom ringing platform. It was observed that transistors that had latched multiple 

times had more damped voltage responses to an input gate pulse. The damped 

responses observed are shown in Figure 1-4. 



 11 

 

 

Figure 1-4: Changes in the ringing characteristic of the new (i.e., T1) and aged (T2, 

T3, and T4) IGBTs [21] 

 

The authors speculated that the damped response was due to defects in the 

gate oxide which increased the channel resistance and hence the damping in the 

power drive system. Hot-carrier injection and time dependent dielectric breakdown 

were suggested as possible failure mechanisms in operation that could have resulted 

in the observed damped response. 

Lu et al. [22] analyzed an IGBT power electronics module for railway 

applications. Based on a reliability analysis, the lifetime of the module was 

determined to be limited to the lifetime of the wirebond, bus bar, chip and substrate 

solder interconnects. The authors estimated the lifetime of the power module based 

on a strain based model for each of the solder interconnects. In this study, no 

comparison of the predicted lifetime was made with experimental results.  
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Oukaour et al. [23] developed an approach to determine defective IGBTs from 

healthy IGBTs. In this study, power cycling tests were performed on IGBT modules 

by subjecting them to cyclic DC collector-emitter current ICE of 20A with 30 seconds 

power on and 20 seconds power off. Four parameters, the collector-to-emitter on-state 

voltage VCE, the case temperature Tc, the junction temperature Tj and the junction-to-

case thermal resistance Rth-jc were monitored during the tests. Healthy IGBT state was 

established by applying small DC currents to the IGBT from 200mA to 16A by steps 

of 200 mA with 30 seconds power on and 1 second power off.  The VCEsat and Tj 

measurements were performed during this test.  After determining the healthy IGBT 

state, the device was power cycled to failure. The VCEsat and Tj were monitored during 

the aging tests. A neural network based classifier scheme was implemented to 

determine a boundary that can be used to identify defective IGBTs as shown in Figure 

1-5.  

 

Figure 1-5: Boundary to identify defective IGBTs from healthy IGBTs [23] 
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Saha et al. [24] implemented the particle filter algorithm for the prediction of 

the remaining useful life of a punch through (PT) insulated gate bipolar transistor 

(IGBT). The algorithm was implemented on data obtained by performing high 

temperature power cycling aging test on a planar PT IGBT IRG4BC30KD 

manufactured by International Rectifier.  The trend of the IGBT collector-emitter 

current (ICE) at turn-off was fit with an exponential degradation model.  A third 

degree polynomial was used for the regression fit as given by Equation (1.1).  

 )exp( 43

2

2

3

1 PtPtPtPI CE   (1.1) 

As the coefficients of the polynomial fit were highly correlated, only the trend of 

the first coefficient P1 with time was analyzed. This trend was then used in the 

particle filter framework for remaining useful life prediction. The particle filter 

framework proposed by Saha et al. is shown in Figure 1-6. The framework consists of 

extracting features from sensor data and using these features to estimate and track the 

system behavior.  During the state estimation and tracking step, model parameters can 

also be learned from the feature data. The state estimation and tracking continues 

until a diagnostic trigger enables the state prediction and remaining useful life (RUL) 

estimation steps. In [24], the coefficient P1 was trended with time. For RUL 

prediction, the end of life threshold was set as a value of P1 crossing -2.5x10-5. A 

prediction of the RUL was performed at 51.875 minutes as shown in Figure 1-7.  
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Figure 1-6: Particle filter framework [24] 
 

 

Figure 1-7: RUL prediction for PT IGBT [24] 

Motivation 

IGBT prognostics is a relatively new field with limited studies reported in 

literature. The majority of the studies are on development of diagnostic techniques to 

detect anomalies in applications such as automotive, motor drive and railway traction 

systems.  Although remaining useful life estimates are reported by Saha et. al. for PT 

IGBTs, there are several concerns about the approach. First, a coefficient of the fit to 

the ICE cannot be directly related to degradation in the device. For example, the fit 

does not take into account the effects of changes in operating temperature. Second, 

the failure threshold used was a lower limit on the fit parameter which was a fixed 

number. This failure threshold cannot be generalized to other IGBTs as the lower 
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limit of the fit parameter is going to change for every IGBT. Third, the diagnostic 

trigger was chosen arbitrarily. A diagnostic trigger is necessary to initiate the particle 

filter for RUL prediction. As the PF is a computationally intensive process, it needs to 

be used only when required. Hence, a diagnostic routine needs to be incorporated into 

the PF framework.   

From this review, it is concluded that a comprehensive approach to the 

development of a prognostics framework for IGBTs is required. This will involve 

identifying the precursor parameters to IGBT failure, monitoring of these parameters 

during aging, mapping parameter shifts to physical degradation in the device, 

identifying and implementing algorithms for anomaly detection and prediction of 

remaining useful life of IGBTs.   

Dissertation Scope and Outline 

In this study, a prognostic framework for IGBTs is proposed and 

implemented.  This framework involves the use of the Mahalanobis distance to detect 

anomalies in the IGBT and the particle filter algorithm for predicting RUL.  Non 

punch through (NPT) IGBTs were aged by power cycling and several device and load 

parameters were monitored.  Features from the monitored data were extracted to 

compute the Mahalanobis distance (MD). The MD was transformed and used with an 

appropriate threshold to detect anomalous behavior. Upon anomaly detection, the 

particle filter algorithm was implemented to predict the remaining useful life. 

In chapter 2, the experimental set-up used in this study is described. This 

includes the details of the hardware and software developed to age the IGBTs. In 

chapter 3, the power cycling test conditions used to age the IGBTs are described. The 
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results of the data analysis of the monitored parameters are presented. Electrical 

characterization and X-ray analysis was performed before and after aging to 

determine the degradation in the IGBTs due to power cycling. The trends observed in 

the monitored parameters were mapped to degradation observed in the devices. 

In chapter 4, the MD approach used for anomaly detection is described. The 

performance of the MD approach in providing advanced warning of failure is 

evaluated. In chapter 5, the particle filter algorithm is discussed. The remaining useful 

life estimates obtained by implementation of the algorithm are reported. In chapter 6, 

the contributions of this study are summarized and avenues for future research are 

discussed.  
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Chapter 2. Power Semiconductor Aging System 

 

The main goal for the development of the power semiconductor aging system 

was to identify precursor parameters for device failure. Precursor parameters are 

parameters of the device that change with time wherein the change can be mapped to 

degradation in the device. Once the precursor parameters are identified, suitable 

diagnostic and prognostic algorithms can be implemented using these parameters to 

provide early warning of failure and predict remaining useful life.    

Implementation of the aging system involved developing the hardware and 

software to perform power cycling of power semiconductor devices. The 

experimental test bed for this project was developed by Sonnenfeld et al. [25]. The 

aging system can operate gate controlled power transistors such as MOSFETs and 

IGBTs with current ratings ranging between 1 and 50A. The socket on the aging 

board accommodates three pin power transistors in a TO-220 package. The system 

design allows for flexibility in defining aging conditions such as gate (VG) voltage, 

collector-emitter voltage (VCE), switching frequency and case and package 

temperature hence providing the capability to simulate various operating conditions.  

The device parameters that are monitored include the gate-emitter voltage 

(VGE), collector-emitter current (ICE), collector-emitter voltage (VCE) and case and 

package temperatures. The data is stored in a structure array that is compatible with 

MATLAB. This allows for easy interface with diagnostic and prognostic algorithms 

that are developed using MATLAB. The aging system is autonomous. The user only 
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initiates the test sequence. When the device under test fails, the system shutdown is 

initiated automatically.   

Hardware 

IGBT aging was performed under a resistive load. A schematic of the IGBT 

resistive load circuit is shown in Figure 2-1. The relationship between the ICE and VCE 

is given by Equation (2.1). It is observed that there is an inverse relationship between 

the two parameters under this aging condition.  

 
LoadCEsCE RIVV   (2.1) 

                                                         

 

Figure 2-1: IGBT under a resistive load 

 

 Figure 2-2 shows the schematic of the IGBT Aging System. The hardware 

consists of a 300MHz Agilent DSO5034A oscilloscope with 1ns sample time and 

1MB memory, a 20 MHz Agilent 33220A function generator for generating gate 

signals, a National Instruments PCI-6229 data acquisition and source card, a 

input/output connector block containing SCC-TC02 thermocouple measurement 
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modules, a Agilent 6652A 25A/20V DC programmable power supply and a PC with 

LabVIEW.  

 

Figure 2-2: IGBT Aging System 

 

 The function generator provides the input signal to the gate driver. This signal 

is amplified by the gate driver board and is used to turn on the IGBT.  The main 

function of the IGBT gate driver board is to amplify the signal voltage from the 

function generator to the IGBT gate. It has four channels that can be used to drive 

four discrete devices, however just one channel was used to run the experiment. The 

gate driver board houses a LM7171 non-inverting operational amplifier as shown in 

Figure 2-3. The board accepts a signal input range from 0.2 to 1.8V, the linear 

amplifier amplifies the signal with an adjustable gain ranging from 2 to 18V. Its gain 

is approximated by: Gain=1+ R2/R1. R1 is a potentiometer and its resistance is 

variable, however the default value is set to 50 ohms. Resistor R2 is 511 ohms.  
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Figure 2-3. Gate Driver Board 

 

The main board as shown in Figure 2-4 houses the terminal block for the 

IGBT device and BNC output ports. The BNC output ports are used to transfer the 

gate-emitter voltage (VGE), collector-emitter voltage (VCE) and collector-emitter 

current (ICE) signals to the Oscilloscope. The main board also houses a 200 KHz Hall-

effect current sensor with a 100A maximum current rating, an infrared temperature 

sensor port, and a bank of 30Hz low-pass filtered output ports connected to the 

National Instruments PCI-6229 data acquisition card.  A Tenma 0-30V DC power 

supply (not shown in Figure 2-2) is used to provide power to the Hall-effect current 

sensor and to the gate driver board. 
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Figure 2-4: Main board 

 

Temperature monitoring is performed using an Infrared sensor focused on the 

front surface of the package or by thermocouples attached to the case of the IGBT. 

Thermocouples are connected to the thermocouple module which converts the 

temperature to a voltage which is then recorded by the data acquisition system 

(DAQ).  The power conditioner board is designed to remove power supply 

interference and line inductance from the test system. This acts as an ideal power 

source providing a known voltage source. The conditioned power is supplied to the 

collector-emitter terminals of the IGBT.  
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Figure 2-5: Assembled test board 

  

The board assembly which is shown in Figure 2-5 consists of the main board 

and the power conditioner board which are assembled into a single unit. The load 

resistor is located on the power conditioner board.   

Software 

The aging software consists of programs to control the aging process, initiate 

and record measurements, and shut the system down upon device failure. The aging 

software was developed in LabVIEW. LabVIEW, an abbreviation for Laboratory 

Virtual Instrument Engineering Workbench, is a programming environment in which 

programs are created using a graphical interface. It differs from traditional 

programming language like C, C++, or Java, in which you program with text. 

Execution is determined by the structure of a graphical block diagram on which the 

programmer connects different function nodes by drawing wires.  
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The schematic of the aging process used to age the IGBTs in this study is 

shown in Figure 2-6. The IGBTs were power cycled under a resistive load with a 

predefined frequency, duty cycle, gate voltage and collector-emitter voltage. The 

device switching was controlled by temperature limits. The device under test (DUT) 

was switched on and off using a function generator. The device temperature increased 

with switching as a result of conduction and switching losses. When the temperature 

rose beyond a pre-set level Tmax, device switching was stopped. Switching was 

resumed again when the temperature fell below a pre-set value of Tmin. No external 

heat-sink was attached to the device and no external cooling was provided.  

 

 

Figure 2-6: Schematic of the aging process 

 

LabVIEW programs/subroutines are called virtual instruments (VIs). Two 

LabVIEW virtual instruments (VI’s) were developed. The first VI, called the aging 

VI was used to control the function generator based on temperature measurements. 

The second VI called the data storage VI was used to acquire and store voltage, 

current and temperature data.  
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The aging VI turns the function generator on when the package or case 

temperature falls below a minimum set temperature Tmin. The aging VI also stores the 

collector-emitter current (ICE) every 400ms. While the aging VI is running, the data 

storage VI stores data into a MATLAB structured array file. The function generator is 

turned off when the temperature goes beyond Tmax. If the device latches up, the ICE 

increases rapidly. A maximum current threshold is set for the ICE. When the current 

exceeds this threshold, the function generator and the power supply providing voltage 

to the collector-emitter terminals of the IGBT is turned off.  

The primary task of the data storage VI is to acquire and store waveforms of 

the VGE, VCE and ICE using the oscilloscope along with the discrete values of 

temperature and time into a measurement file. An example of a snapshot of the 

waveforms acquired by the oscilloscope is shown in Figure 2-7. The frequency of 

waveform data storage for the experiments performed in this study was varied. For 

short duration aging experiments (~ 1 hour), waveform data was stored every 400 ms 

with a resolution of 0.2s. For long duration experiments (~ 1 day), waveform data 

was stored every second with a resolution of 1s.  
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Figure 2-7: Example of waveforms acquired by the oscilloscope 

 

The MATLAB structure array is shown in Figure 2-8. The benefit of a 

structure array is the ability to store information of different data types within a given 

array. As is shown in the diagrams above, the ―measurement‖ variable is a cluster of 

arrays (in this case it is a 1x29897 one dimensional array) .Within each cell of the 

array, discrete values of the time and temperature are stored along with three 

waveform arrays (VGE, VCE and ICE). These waveforms are used in the data analysis 

which is described in the next chapter.  
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Figure 2-8. MATLAB structure array 
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Chapter 3. Aging Tests and Degradation Analysis 

 

Power cycling simulates the thermal and current pulsing stresses that devices 

encounter in actual circuit applications and this test is frequently used for IGBT 

reliability assessment. The failures caused by power cycling are attributed to thermal 

cycling induced by the repeated switching of the transistors. The main failure 

mechanism in operation during power cycling is thermo-mechanical fatigue of wire 

bonds and solders [26]. The failure modes observed include opens and thermal 

runaway.  Emitter bond wire lifting is commonly observed [27] [28] [29]. Wire lift is 

attributed to high tensile stresses developed due to the induced temperature cycles and 

fabrication issues such as poor binding pressure and contamination. 

Cova and Fantini [26] performed power cycling tests on 10A-600V IGBT 

power modules by current stressing. The junction temperature Tj (90
o
C, 100

o
C, 

120
o
C) and T (50

o
C, 60

o
C, 65

o
C, 70

o
C) was varied in these tests by varying the duty 

cycle. All the IGBTs tested failed due to an open between the collector and emitter. 

The emitter wire bonds were found to be damaged or broken. An exponential 

decrease in lifetime was found with increase in T. No significant correlation 

between lifetime and Tj was observed in this test.  

Die attach solder degradation is also frequently observed in power cycling 

tests [31]. High cyclic shear stresses are induced in the solder as a result of 

temperature gradients and CTE mismatch. These stresses lead to the solder fatigue 

and voiding that increases the thermal resistance. The increased thermal resistance 
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causes device temperatures to rise resulting in catastrophic burn-out failures or 

secondary breakdown [30].  

Morozumi et al. [32] reported the failure sites to be different based on the 

magnitude of temperature swings and solder composition. In this study, it was 

reported that IGBTs that use lead based solders failed due to wire lift-off when ΔTj > 

100, and due to solder fatigue when ΔTj < 80. The cracks occur at the edge of the 

solder/die interface. However, with lead-free solders, no wire lift-off was observed. 

However, die solder fatigue occurred at ΔTj > 110, with solder degradation 

predominantly in the solder area below the die center . 

In this study, powers cycling aging tests were performed on discrete non 

punch through (NPT) IGBTs (IRGB15B60KD) manufactured by International 

Rectifier. The IGBT devices were packaged in a TO-220A package along with a soft 

recovery diode. The devices were rated for a collector-emitter voltage of 600V and 

gate-emitter voltage of 20V. The maximum junction temperature rating was 150
o
C.  

Aging Procedure 

The IGBTs were repeatedly switched under a resistive load with a predefined 

frequency, duty cycle, gate voltage and collector-emitter voltage. The device 

switching was controlled by temperature limits. The device under test (DUT) was 

switched on and off using a function generator. The device temperature increased 

with switching as a result of conduction and switching losses. When the temperature 

rose beyond a pre-set level Tmax, device switching was stopped. Switching was 

resumed again when the temperature fell below a set value of Tmin. No external heat-
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sink was attached to the device and no external cooling was provided. The schematic 

of the aging profile is shown in Figure 3-1.  

 

Figure 3-1: Aging Schematic 

 

Test Condition 1 

 In the first test condition, the aging of IGBTs was performed with a gate 

voltage of 15V, 50% duty cycle, and a collector-emitter voltage of 5V. The switching 

circuit consisted of a load resistance of 0.2. Temperature monitoring was performed 

using an infrared sensor focused on the front surface of the TO-220A package. Tmean 

in the experiments was set to 300
o
C and the minimum and maximum temperatures 

were set to a range of ±15
o
C from the mean temperature. In this aging condition, 

failures observed were either due to latch-up (loss of gate control leading to increase 

in collector emitter current) or failure to turn-on.  The failure mode and failure times 

for the devices tested are given in Table 3-1. 
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Table 3-1: Failure time and failure mode for NPT IGBTs under test condition 1 

Device ID 
Failure Time 

(Minutes) 
Failure Mode 

N1 47.1 Latch-up 

N2 55.8 Failure to turn-on 

N3 48.7 Latch-up 

N4 60.0 Failure to turn-on 

N5 39.4 Latch-up 

N6 56.2 Failure to turn-on 

N7 42.6 Latch-up 

N8 41.0 Latch-up 

N9 54.8 Latch-up 

N10 34.8 Latch-up 

 

In-situ measurement of the gate-emitter voltage, collector-emitter voltage, 

collector-emitter current and package temperature was performed until failure of the 

IGBT under test and recorded using a National Instruments data acquisition system 

(NI-DAQ). The monitoring of the collector-emitter current was performed every 

400ms which allowed for detection of latch-up. Latch-up failure mode observed for 

NPT IGBT ―N3‖ is shown in Figure 3-2. The collector-emitter current is observed to 

be in the range of 4 to 8A before latch-up. The current peaks represent the current as 

the IGBT heats up from Tmin to Tmax. The current reduces to zero as the IGBT cools 

down to Tmin before the aging cycle begins again. At latch-up the current exceeds 12A 

upon which the collector-emitter voltage supply was cut-off to prevent device burn-

out.  
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Figure 3-2: Latch-up of NPT IGBT ―N3‖ aged under test condition 1 

 

Periodically during the aging process, a square gate pulse of magnitude 1.5 

times greater than the aging pulse with a 1ms duration and 50% duty cycle was 

applied to the gate. The collector-emitter current and collector-emitter voltage 

response to this gate pulse was recorded using an oscilloscope as shown in Figure 3-3 

and Figure 3-4. 

 

Figure 3-3: Collector-emitter current response to input gate pulse 
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Figure 3-4: Collector-emitter voltage response to input gate pulse 

 

Data Analysis for Test Condition 1 

To determine the effects of aging without the influence of temperature 

changes, the collector-emitter voltages and currents at the mean aging temperature of 

300
o
C were extracted for this study. For every collector-emitter current and voltage 

waveform obtained at the mean aging temperature, a portion of the waveform was 

sampled in the transistor on-state. A total number of 1000 points were sampled as 

depicted by the window shown in Figure 3-3 and Figure 3-4. The mean of these 1000 

points was then plotted against aging time as shown in Figure 3-5 for NPT IGBT N3.  
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Figure 3-5: ICE(ON) and VCE(ON)  vs. aging time for NPT IGBT ―N3‖ aged by test 

condition 1 
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IGBT that failed to turn-on is shown in Figure 3-7. The I-V characteristics show 

increased resistance of the device with aging.  

Threshold voltage measurements were performed before and after aging. For 

the devices that did not have a gate short, the threshold voltage was found to have 

increased by 200-300 mV indicating gate oxide degradation had occurred during the 

tests. 

 

 

Figure 3-6: I-V characteristics (room temperature) for IGBT N3 aged by test 

condition 1 
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Figure 3-7: I-V characteristics (room temperature) for IGBT N2 aged by test 

condition 1 

X-ray Analysis for Test Condition 1  

X-ray analysis of the IGBTs was performed before and after aging to 

determine degradation in the die attach. The X-ray images of one aged NPT IGBT is 

shown in Figure 3-8. In the X-ray images, the larger die attach corresponds to the 

IGBT, and the smaller die attach to the free-wheeling diode. Test condition 1 was 

observed to cause die attach degradation in all the IGBTs tested. 

        

Figure 3-8: Before (left) and after (right) X-ray images of NPT IGBT aged by test 

condition 1 
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Test Condition 2 

In the second test condition, the aging of IGBTs was performed with a gate 

voltage of 15V, 50% duty cycle, and a collector-emitter voltage of 9V. The switching 

circuit consisted of a load resistance of 0.5. Temperature monitoring was performed 

using a T-type thermocouple attached to the heat-sink of the TO-220A package. 

Tmean in the experiments was set to 150
o
C and the minimum and maximum 

temperatures were set to a range of ±50
o
C from the mean temperature. In this aging 

condition, failures observed were the same as in test condition 1.  

Table 3-2: Failure time and failure mode for test condition 2 

Device ID 
Failure Time 

(Hours) 
Failure Mode 

NPT1 19.2 Latch-up 

NPT2 31.6 Failure to turn-on 

NPT3 27.0 Latch-up 

NPT4 24.2 Failure to turn-on 

NPT5 12.3 Latch-up 

 

The failure times and failure modes are given in Table 3-2. The failures 

occurred due to latch-up (loss of gate control leading to increase in collector emitter 

current) as shown in Figure 3-9 or failure to turn-on as shown in Figure 3-10.  
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Figure 3-9: Latch-up of NPT IGBT ―NPT2‖ aged by test condition 2 

 

 

Figure 3-10: NPT IGBT ―NPT3‖ aged by test condition 2 failed to turn-on  

 

Data Analysis for Test Condition 2 
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Figure 3-11: ICE(ON) and VCE(ON)  vs. aging time for NPT IGBT ―NPT3‖ 
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Figure 3-12: I-V characteristics (room temperature) for IGBT NPT2 aged by 

test condition 2 

X-ray Analysis for Test Condition 2 

The X-ray images of the NPT IGBT aged by test condition 2 are shown in 

Figure 3-13. Similar to test condition 1, test condition 2 also results in degradation of 

the die attach.  

 

Figure 3-13: Before (left) and after (right) X-ray images of NPT IGBT aged by test 

condition 2 
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temperature of test condition 1 was 300
o
C with a T of 30

o
C. For test condition 2, the 

mean aging temperature was 150
o
C with aT of 100

o
C . The mean time to failure for 

test condition 1 was 48.04 minutes. The mean time to failure for test condition 2 was 

1375.2 minutes. The acceleration factor obtained by using the ratio of the failure 

times is given by Equation (3.1) 

    
     
     

 
      

     
      (3.1) 

The acceleration factor obtained by this method may provide inaccurate 

predictions of IGBT lifetime at a different temperature as the aging tests were 

performed for only two test conditions. The die attach in the IGBTs tested is a lead 

free J alloy. A previous study on J-alloy degradation [33] in power devices reports the 

acceleration factor by using the Coffin-Manson equation as given by Equation (3.2) 

    (
   
   

)
 

 (3.2) 

where     is the temperature swing at the high stress condition,     is the 

temperature swing at the low stress condition and q is the fit parameter for the fatigue 

failure mechanism. The power device lifetime is a function of the thermal resistance 

of the die attach. It has been reported that the degradation of the thermal resistance of 

the J-alloy die attach is a function of the structure and composition of the die attach 

layer, the size of the die as well as the attachment process [33]. To obtain a better 

estimate of the acceleration factor, thermal cycling tests will have to be performed 

under several different ΔT conditions to obtain the q fit parameter.  

From the VCE(ON) and ICE(ON) data, it is not possible to predict the two failure 

modes which are ―latch-up‖ and ―failure to turn-on‖. For both the failure modes, an 
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increase in the VCE(ON) was observed with a reduction in the ICE(ON) as shown in Figure 

6-1 and Figure 6-2. For test condition 2 as well, it is not possible to distinguish the 

two failure modes as shown in Figure 6-10 and Figure 6-11 . 

Latch up in IGBTs occurs by the activation of the parasitic thyristor inherent 

in the device. The latch up current required for activation of the parasitic thyristor 

reduces with an increase in temperature. For example, in one study on NPT IGBTs, it 

was reported that the current required to activate the parasitic thyristor reduced from 

60 A at room temperature to 10 A at 200
o
C [34].  The latching current is given by the 

expression [7]. 

 

Esppnp

bi
LatchCE

L

V
I


)(  (3.3) 

where ICE(latch) is the current required to activate the parasitic thyristor, Vbi is 

the built in potential of the N
+
-P emitter base junction, αpnp is the gain of the PNP 

bipolar transistor, ρsp is the sheet resistance of the p-base and LE is the length of the 

emitter. With an increase in the temperature, the gain of the bipolar transistor and the 

sheet resistance of the p-base increases leading to a reduction in the collector current 

required for IGBT latch-up [35].  

The power cycling of the IGBTs in this study resulted in die attach 

degradation. The die attach degradation led to an increase in the temperature within 

the device due to the increased thermal impedance. With rise in temperature, the 

current required for latch up reduced. In some of the IGBTs that were aged, the 

increase in temperature was high enough to cause latch up of the IGBT. In the devices 

that did not latch-up, failure eventually occurred as a result of increased device 



 42 

 

resistance that prevented the IGBT from turning on. This hypothesis is supported by 

observing the failure times for test condition 1 as given in Table 3-1. For test 

condition 1, it was observed that latch-up failures occurred earlier than the failure to 

turn on. For test condition 2 (Table 3-2) also, it is observed that failure by latch up 

occurred earlier than the failure to turn on for all but one device. One possible method 

to predict latch up of the IGBT is by monitoring the junction temperature. By 

monitoring the junction temperature, one may be able to determine a threshold 

temperature beyond which latch up failure can be predicted.  

Measurement of Junction Temperature 

The junction temperature of the IGBT can be determined from the collector-

emitter voltage (VCE) measurements as the VCE is a temperature sensitive parameter. 

The VCE is also dependent on the collector-emitter current (ICE) and gate-emitter 

voltage (VGE). To estimate the junction temperature from the VCE, the IGBT needs to 

be calibrated. Calibration is performed by placing the IGBT device or IGBT module 

in a thermal chamber. The temperature is then varied in steps. At each temperature 

step, the device or module is allowed to attain thermal equilibrium before VCE 

measurement. The VCE is measured using a short duration low amplitude ICE 

(typically 100mA) at a constant VGE. The short duration and low amplitude ICE 

reduces the effects of self- heating. The result of the calibration process is a 

calibration characteristic curve for the IGBT as shown in Figure 3-14. As observed 

from Figure 3-14, the VCE has a negative temperature coefficient of temperature. This 

occurs due to the fact that the VCE is measured at ICE of 100mA. At these low current 

magnitudes, the main contributor to the VCE is the pn junction at the collector 
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terminal which has a negative coefficient of temperature [34]. With an increase in the 

ICE, the VCE attains a positive temperature coefficient [36].  

 

Figure 3-14: Calibration curve (Tj versus VCE at ICE = 100mA) [26] 

 

To determine the junction temperature during aging, the VCE is measured at an 

ICE of the same magnitude as that used in the calibration process as shown in Figure 

3-15 . The measured VCE is then input to the regression equation obtained by 

calibration to determine the junction temperature.  The knowledge of the junction 

temperature is useful for diagnostics and prognostics as it is allows for monitoring 

solder degradation in the IGBT package or module. Solder degradation causes 

variation of thermal resistance which affects the junction temperature. An accurate 

estimation of the junction temperature improves the assessment of the health of the 

IGBT. 
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Figure 3-15: VCE measurement during aging process at ICE = 100mA [26]  

 

Summary 

Power cycling induced thermal cycling of IGBTs under a resistive load led to 

failures by latch-up or failure to turn-on in both test condition 1 and test condition 2. 

The in-situ monitored on-state collector-emitter current showed a decreasing trend 

while the on-state collector-emitter voltage showed an increase with aging. For the 

parts that did not exhibit a gate short, an increase in the threshold voltage was 

observed. This indicates that the aging led to degradation in the gate oxide. X-ray 

analysis revealed degradation in the die attach for all the IGBTs tested. I-V 

characterization tests revealed a short in the IGBTs that latched-up.  

The die attach is an integral part of the heat dissipation path and its 

degradation leads to increased thermal impedance. The increased thermal impedance 

leads to higher device temperatures. Latch-up occurs by the activation of the parasitic 

thyristor inherent in the IGBT. The susceptibility to latch-up is higher at elevated 

temperatures as the trigger current for latch-up reduces with increasing temperature 
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[35] [39]. The die attach degradation can thus be hypothesized to have contributed to 

the latch-up observed in some of the NPT IGBTs.  

The NPT IGBTs exhibited a positive co-efficient of resistance with aging. 

With increased aging, the resistance of the NPT IGBTs increased. The IGBTs that did 

not latch-up eventually failed as a result of increased resistance which prevented them 

from turning on. One additional point to be noted is that latch-up failure is not a hard 

failure. If the voltage supply is cut-off immediately after latch up thereby preserving 

the device, it can be operated again. However, the failure to turn on is a hard failure.  

The ICE(ON) and VCE(ON) parameters were identified as precursors for NPT 

IGBTs. These parameters were found to be independent of the two aging conditions, 

i.e., the parameters exhibited a consistent trend irrespective of the aging condition. 

These parameters were used for anomaly detection and remaining life estimates as 

described in the following chapters. 
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Chapter 4.  Anomaly Detection  

 

Anomaly detection refers to the problem of finding patterns in data that do not 

conform to expected behavior [37]. The importance of anomaly detection techniques 

is that anomalies in data could be due to changes in the system that lead to 

malfunction or failure. Therefore, anomaly detection techniques can be used to 

perform diagnostics. Several anomaly detection approaches have been reported in 

literature for identifying faults in IGBT power inverters which involve monitoring 

system level currents and voltages, collector-emitter voltage, gate emitter voltage and 

collector emitter current for fault diagnosis. These methods have been implemented to 

identify system level faults and the location of the faulty IGBTs and not to detect 

faults in the IGBTs themselves [2] [38].  

A diagnostic approach was reported for IGBTs in power modules in 

automotive applications [20]. This approach involved measurement of the IGBT 

collector-emitter saturation voltage at vehicle start-up and comparison of the 

measured value to a look-up table that contained healthy values of VCE(sat). A fixed 

percentage change for VCE(sat) was used as a threshold for signaling of an alarm.  

Approaches to implementing anomaly detection depend on the type of data 

available from the system under consideration. When healthy data from a system is 

available, anomaly detection can be implemented by determining a detection 

threshold based on the healthy data in order to identify outliers. Threshold detection 

therefore is an important step in diagnostics in order to have advanced warning of 

failure. Threshold values are typically defined based on expert knowledge of known 
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fault conditions and economic factors such as the need to reduce the number of false 

alarms. These diagnostic approaches may not be able to detect anomalies when a 

priori knowledge of faults is not available. It is therefore useful to implement a 

generalized probabilistic approach to determine thresholds for anomaly detection 

[40].  

Mahalanobis Distance 

Mahalanobis distance (MD) is a distance measure that is used in applications 

such as anomaly detection, pattern recognition and process control [41]. In 

electronics, MD has been used for detecting anomalies in notebook computers [40] 

and multilayer ceramic capacitors [42]. Kumar et al. [40] developed a probabilistic 

technique for determination detection thresholds using MD followed by a power 

transformation of the MD values which are always positive so that they follow the 

normal distribution. Statistical thresholds were then developed based on the mean and 

standard deviation of the transformed data.  

Anomaly Detection Approach 

The MD approach to anomaly detection involves distinguishing between 

healthy and anomalous data using the distance measure (MD) thus reducing 

multivariate data to univariate data. MD is sensitive to changes between various 

parameters monitored as it takes the correlation between the different parameters into 

account. Additionally, MD is not sensitive to the differing scales of the parameters 

monitored, as MD values are calculated using normalized parameters.  
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Monitored data that is known to be healthy is used to calculate the mean and 

standard deviation for normalization. Further, this healthy data is used to compute the 

correlation matrix. With the mean, standard deviation and correlation matrix obtained 

from the healthy data, the MD is calculated for every test data point. The MD values 

calculated from the healthy data are transformed using the Box-Cox power 

transformation into the normal distribution. A detection threshold is then calculated 

based on the mean and standard deviation of the transformed healthy MD data. The 

calculations are then repeated for every test data using the mean, standard deviation, 

correlation matrix and Box-Cox transformation parameter learnt from the healthy 

data. Using this approach anomalies are detected when the transformed MD for a test 

data point crosses the detection threshold.  

In this work, this approach to anomaly detection of discrete IGBTs was 

investigated. MD was calculated using VCE(ON) and ICE(ON) parameters and a threshold 

was defined to detect anomalies. To implement the MD approach, VCE(ON) and ICE(ON) 

data at the mean aging temperature were partitioned into healthy data and test data. 

The initial observations (approximately the initial five minutes of the test) were 

classified as healthy data. The entire set of observations was used as test data. The 

parameters that form the input for MD computation are denoted by i, where i = 1, 2, 

…, p. In our study VCE(on) and ICE(on) were used as input parameters, hence p = 2. The 

number of observations recorded for each parameter is denoted by j, where 

j=1,2,….n. Xij denotes the value of parameter i at time instance j. Each individual 

observation of a given parameter in the data vector was normalized using the mean 

and standard deviation for the parameter as given by Equation (4.1). The mean and 
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standard deviation for the input parameters was computed by using Equation (4.2) 

from the healthy data. 
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The healthy MD values were computed by using Equation (4.3) with the 

normalized parameters obtained from Equation (4.1), where Zj was the normalized 

ICE(ON) and VCE(ON) at time j            
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where C is the correlation matrix. Equation (4.4) was used to calculate the 

correlation matrix from the healthy data.  
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To compute the test MD values, the mean and standard deviation obtained 

from the healthy MD computation was used to normalize the test ICE(ON) and VCE(ON). 

These normalized test parameters were then used to compute the test MD by Equation 

(4.3) where the correlation matrix was obtained from the healthy data.   

The healthy MD values obtained were found to not follow a normal 

distribution. The Box-Cox power transformation was used to transform the healthy 

MD values into a normal distribution. Transforming the healthy MD data into a 

normal distribution allows for the use of statistical process control rules to determine 
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if the test data from the device is healthy or unhealthy. This approach has been 

demonstrated to be effective in threshold estimation for anomaly detection of 

electronic products [40]. The Box-Cox transformation is defined by the following 

equations [43]. 

 

 

   (4.5) 

where x() is the transformed vector, x is the original vector and  is the 

transform parameter.  

The Box-Cox transform method attempts to normalize the data by determining 

the appropriate transform parameter . The parameter is varied across a range; say -

10 to 10 in small increments and the logarithm of the likelihood function 

(representing the likelihood that the data is distributed according to the normal 

distribution) is computed as given in Equation (4.6) for each increment of . Hence, 

the parameter with the maximum likelihood is used to transform the data of interest as 

this parameter is most likely to yield a normal distribution. 
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learned from the healthy data. When the transformed test MD values crossed the 

threshold, an anomaly was said to have occurred. 

Anomaly Detection for Test Condition 1 

The ICE(ON) and VCE(ON) data obtained from the IGBTs aged in test condition 1 

were  partitioned into healthy data and test data. The first 50 observations 

(corresponding to the initial 5-8 minutes of the test) of ICE(ON) and VCE(ON) obtained at 

the mean aging temperature of 300
o
C were used as healthy data and the entire dataset 

was used as test data. For each IGBT, the healthy data was normalized by 

computation of the mean and standard deviation of each parameter using Equation 

(4.2).  

The histogram of the healthy MD data obtained from IGBT ―N3‖ is shown in 

Figure 4-1. The mean and standard deviation were found to be 13.1A, 0.027 and 

2.03V, 0.007 respectively for ICE and VCE from the healthy data. From the histogram, 

we observe that 90% of the healthy MD values have a value less than 2.  

This normal probability plot in Figure 4-2 shows the healthy MD data plotted 

against a theoretical normal distribution. The normal probability plot is a graphical 

technique to assess the normality of a given distribution. The healthy MD values do 

not exhibit a normal distribution as seen in Figure 4-2. To transform the healthy MD 

distribution to a normal distribution, a Box-Cox transformation was used. 
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Figure 4-1: Histogram of the healthy MD values for IGBT ―N3‖ 

 

 

Figure 4-2: Normal probability plot of the healthy MD data for IGBT N3 
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The logarithm of the likelihood function given in Equation (4.6) was computed for 

each value. For IGBT N3, the maximum likelihood was obtained at a value of  = 

0.1. This parameter was used to transform the healthy MD data. The healthy data 

after the Box-Cox transformation is shown in Figure 4-3. From Figure 4-4, we 

observe that the transformed MD data is approximately normally distributed.  
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Figure 4-3: Transformed healthy MD data for IGBT N3 

 

 

Figure 4-4: Normal probability plot of the transformed healthy MD data for IGBT N3 
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then transformed using the Box-Cox transform. The time when the transformed test 

MD data crossed the threshold was considered as the time when the anomaly was first 

detected.  

 

Figure 4-5: Transformed MD data vs.ing time for IGBT ―N3‖ 

   

The anomaly in the N3 IGBT was detected at 11.8 minutes as shown in Figure 
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the anomaly detection time and time to 20% increase in VCE(ON), and the time to 20% 

increase in VCE(ON).  

The second metric is defined as % time to functional failure after anomaly 

detection. This is the ratio of the difference between the anomaly detection time and 

time to functional failure, and the time to functional failure. Functional failure refers 

to the time when the IGBT latched-up or failed to turn-on. This failure time 

corresponds to the failure times reported in Chapter 3, Table 3-1.  The anomaly 

detection times obtained for the IGBTs in test condition 1 is provided in Table 4.1 

along with the two metrics.  

Table 4-1: Anomaly detection times obtained for test condition 1 

Device 

ID 

Detection 

time using 

transformed 

MD 

(Minutes) 

Time for 

20% 

increase in 

VCE(ON) 

(Minutes) 

Failure 

time 

(Minutes) 

% Time to 

parametric 

failure after 

detection using 

transformed 

MD 

% Time to 

functional 

failure after 

detection 

using 

transformed 

MD 

N1 13.8 24.3 47.1 43.2 70.8 

N2 12.8 22.8 55.8 43.8 77.1 

N3 11.8 21.4 48.7 44.8 75.8 

N4 18.7 23.6 60.0 20.7 68.9 

N5 11.4 23.1 39.4 50.7 71.0 

N6 12.0 21.5 56.2 44.2 78.7 

N7 16.2 22.4 42.6 27.7 62.0 

N8 17.2 24.6 41.0 30.1 58.0 

N9 14.6 24.8 54.8 41.1 73.3 

N10 15.0 25.2 34.8 40.5 57.0 

  

Anomaly Detection for Test Condition 2 

Similar to the analysis for test condition 1, the initial ICE(ON) and VCE(ON) data 

at the mean aging temperature of 150
o
C were used to compute healthy MD values.  
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The first 100 measurements corresponding approximately to 1 hour of aging time was 

used as healthy data.  

The histogram of the healthy MD data for IGBT part ―NPT3‖ is shown in 

Figure 4-6. The mean and standard deviation were found to be 6.6A, 0.018 and 2.1V, 

0.014 respectively for ICE and VCE from the healthy data.  From the figure, it is 

observed that 70% of the healthy MD values are < 1. 

 
Figure 4-6: Histogram of the healthy MD values for IGBT ―NPT3‖ 

 

 

Figure 4-7: Normal probability plot of the healthy MD data for IGBT NPT3 
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After the Box-Cox transform, the transformed healthy MD data is observed to 

be approximately normally distributed as shown in the histogram in Figure 4-8 and 

the normal probability plot in Figure 4-9. 

 

Figure 4-8: Transformed healthy MD data for IGBT NPT3 

 

 

Figure 4-9: Normal probability plot of the transformed healthy MD data for IGBT 

NPT3 
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Figure 4-10: Transformed MD data vs. aging time for IGBT ―NPT3‖ 

 

The results of the MD anomaly detection approach for test condition 2 is 

summarized in Table 4-2. The anomalies were detected well in advance for all the 

parts both in terms of functional and parametric failure criteria. 

Table 4-2: Anomaly detection times obtained for test condition 2 

Device 

ID 

Detection 

time using 

transformed 

MD 

(Hours) 

Time for 

20% 

increase in 

VCE(ON) 

(Hours) 

Failure 

time 

(Hours) 

% Time to 

parametric 

failure after 

detection using 

transformed 

MD 

% Time to 

functional 

failure after 

detection 

using 

transformed 

MD 

NPT1 3.6 9.0 19.2 60.3 81.5 

NPT2 9.7 17.4 31.6 43.9 69.2 

NPT3 4.4 13.5 27.0 67.8 83.9 

NPT4 4.4 11.9 24.5 62.0 81.9 

NPT5 5.6 8.8 12.3 36.5 54.5 
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Comparison of the MD Approach with a Fixed VCE(ON) Threshold for Anomaly 

Detection 

A 5% change in VCE(ON) was used as a threshold for anomaly detection and 

compared with the MD approach. The transformed MD test and VCE(ON) data along 

with their respective thresholds for IGBT ―N3‖ (test condition 1) are shown in Figure 

4-11. The part failed due to latch-up at 49 minutes and anomalies in the device was 

detected at 12 minutes using the MD approach and 17 minutes using the VCE(ON) 

threshold.  

 

Figure 4-11: Comparison of transformed MD and fixed 5% VCE(ON) threshold for 

IGBT ―N3‖ 
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ten devices, two devices had the same detection time while for one device the 5% 

change in VCE(ON) threshold yielded an earlier detection time. For test condition 2, the 

MD approach provides an earlier detection time in comparison to the fixed threshold 

for all the devices evaluated.  

Table 4-3: Detection time comparison for test condition 1 

Device 

ID 

Detection 

time using 

transformed 

MD 

(Minutes) 

Time for 

5% 

increase 

in Vce(on) 

(Minutes) 

Failure 

time 

(Minutes) 

% Time to 

failure after 

detection 

using 

transformed 

MD 

% Time to 

failure after 

5% increase 

in Vce(on) 

N1 13.8 17.8 47.1 70.8 62.3 

N2 12.8 16.7 55.8 77.1 70.1 

N3 11.8 16.5 48.7 75.8 66.2 

N4 18.7 18.7 60.0 68.9 68.9 

N5 11.4 17.1 39.4 71.0 56.5 

N6 12.0 16.7 56.2 78.7 70.3 

N7 16.2 17.4 42.6 62.0 59.2 

N8 17.2 17.2 41.0 58.0 58.0 

N9 14.6 8.0 54.8 73.3 85.3 

N10 15.0 18.0 34.8 57.0 48.4 

 

Table 4-4: Detection time comparison for test condition 2 

Device 

ID 

Detection 

time using 

transformed 

MD 

(Hours) 

Time for 

5% 

increase 

in VCE(ON) 

(Hours) 

Failure 

time 

(Hours) 

% Time to 

failure after 

detection 

using 

transformed 

MD 

% Time to 

failure after 

5% increase 

in Vce(on) 

NPT1 3.6 5.6 19.2 81.5 70.9 

NPT2 9.7 11.9 31.6 69.2 62.3 

NPT3 4.4 8.8 27.0 83.9 67.5 

NPT4 4.4 6.0 24.5 81.9 75.5 

NPT5 5.6 7.2 12.3 54.5 41.8 

 

The anomaly detection times observed show that the MD approach that 

incorporates the degradation in ICE(ON) in addition to VCE(ON) is a better approach for 

anomaly detection compared to using a fixed percentage change of 5% in VCE(ON). It 
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is to be noted than using a percentage lower than 5% for the fixed threshold on the 

voltage may lead to equivalent or earlier detection times compared to the MD 

approach. However, determining the fixed threshold to be selected is typically based 

on the application conditions and expert judgment. The advantage of the MD 

approach is that the threshold is based on the healthy behavior of the device. Further, 

MD uses multivariate data for anomaly detection. The use of a multivariate data is 

known to provide better assessment of the health of the data when compared to the 

use of a single parameter. For example, there are situations in which measurements 

from a system may be within the thresholds of the individual parameters but are not 

part of the healthy space. In such situations, the MD approach detects the anomaly 

while the single parameter threshold is not able to do so.    

Summary 

NPT IGBTs were aged by power cycling under a resistive load until failure. 

The initial ICE(ON) and VCE(ON) parameters extracted at the mean aging temperature 

were used to compute the healthy MD distance. This health MD distance was 

transformed and the mean and standard deviation of the transformed MD data was 

obtained. The µ+3σ upper bound obtained from the transformed healthy MD was then 

used as a threshold for anomaly detection.  

The MD based anomaly detection approach was able to detect anomalies 

before failure for all the devices evaluated for both test conditions. The anomaly 

detection times obtained in this analysis are used for initiating the particle filter 

algorithm to predict the remaining useful life of the devices as discussed in the next 

chapter.  
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Chapter 5. Prognostics  

 

One of the most important goals of a prognostics and health management 

system is the prediction of remaining useful life (RUL). A particle filter based 

approach is one of the techniques that has been used to predict RUL. A particle filter 

based approach was used for the prognostics of a planetary gear plate [46]. In this 

approach, the system model was based on an empirical model for crack growth. The 

model constants were obtained by finite element analysis and data obtained from 

seeded fault tests. A sampling importance resampling (SIR) particle filter and an 

expectation-based long-term prediction generation approach were used for remaining 

useful life (RUL) estimation. Another particle filter approach has been used for 

battery prognostics [16]. A lumped parameter model was used to represent the 

batteries. The parameters of the model were extracted from sensor data collected from 

experiments using relevance vector machine regression. The system description 

model was then fed to the SIR particle filter for state estimation and RUL prediction. 

Particle Filter: General Description 

The particle filter (PF) is a sequential Monte Carlo method that has been used 

extensively in robotics, automation and artificial intelligence applications. It is a non-

parametric approach to implementing the Bayes filter for state estimation. Estimation 

of dynamic states using system models and measurements are based on probabilistic 

laws that exercise the use of conditional independence and Markov property. The key 

idea of particle filters is that they represent distributions by a set of samples drawn 
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from the distribution, hence making the method non-parametric. This means that the 

representations are not limited to Gaussian distributions and can be used to represent 

more complex distributions such as multi-modal distributions. Another advantage 

provided by the particle filter’s sample based representation is that it can model non-

linear evolutions of system state in addition to linear state models.  

The PF approach is a solution to the non-linear Bayesian tracking problem. 

The objective of tracking is to estimate the evolution of the system state xk which is 

the state at time k based on control inputs u1:k , and measurements z1:k which are the 

set of inputs and measurements obtained from time 1 to k respectively. In order to 

analyze the system, a model describing the evolution of the system state with time 

(and control inputs, if present) and a model relating the measurements to the system 

state known as the system model and the measurement model respectively are 

required in a probabilistic state-space formulation. The system state at time k is given 

by Equation (5.1) where fk is the system model which is a function of the previous 

state, time and any control inputs as well as ωk which is the system noise.  

 
 

(5.1) 

 

The measurement at time k is related to the system state using the 

measurement equation as shown in Equation (5.2) where hk is the measurement model 

and vk is the measurement noise.  

  (5.2) 

 

),( 11  kkkk xfx 

),( kkkk xhz 
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The PF implementation consists of two recursive steps, prediction and update 

[48]. The prediction stage uses the knowledge of the previous state estimate and the 

system model to predict the current state estimate which is known as the prior 

probability density function (pdf) denoted as p(xk|xk-1). This is based on the Markov 

property that conditioned on the current system state, the future state is independent 

of the past states of the system. The update step uses the latest measurement to 

modify the prior pdf using the measurement model to obtain the updated system state 

known as the posterior pdf p(xk|zk). This is achieved using Bayes theorem. In the PF 

approach, the system state pdf is approximated by a set of particles representing 

sampled values from the prior or posterior distributions, and a set of associated 

weights denoting discrete probability masses. The particles are generated based on an 

initial assumption of the system state pdf (at time k=0) and recursively estimated 

using the system model, measurement model and a set of available measurements 

[47].  

Prognostics using particle filters is implemented by predicting future particle 

states without any additional measurement information. This is done by employing 

the prediction step repeatedly without the update step and using each predicted state 

as the posterior from which to derive the state at the next instant in time. The 

prediction step is repeated until the predicted value of the parameter under 

consideration crosses the failure threshold.  

In this study, we implement a particle filter approach for prognostics of non 

punch through (NPT) IGBTs. As the PF requires models developed from known 
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system behavior (empirical models) as well as system measurements for state 

estimation, these were developed from the NPT IGBT test data.    

To implement the particle filter the initial state of the system is represented by 

a set of particles i

0x where i=1,2,…,n is the particle index, and n is the number of 

particles. The particles are then independently propagated using the system model as 

given by Equation (5.3), which provides the samples that represent the prior pdf. 

 
    

(5.3) 

 

The posterior pdf of each particle is then calculated by first updating the 

associated particle weights using the measurement model which is the likelihood of 

measurement for each particle as shown in Equation (5.4) and Equation (5.5). 

 
    

     (5.4) 

 
    

(5.5) 

 

After the weights are computed, they are normalized by Equation (5.6) 

 

    

(5.6) 

 

The posterior pdf is then given by Equation (5.7) 

 

    

(5.7) 
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where K is the kernel function and h is the bandwidth of the kernel function. 

One of the issues with the particle filter is particle degeneracy where after a few 

iterations most of the particles will have negligible weights. To avoid the effects of 

particle degeneracy, resampling is performed periodically. Particle degeneracy is 

evaluated by Equation (5.8).  

 

                                              

 (5.8) 

 

If the number of effective particles calculated in Equation (5.8) is less than a 

threshold value, resampling is performed. The resampling process involves sampling 

with replacement wherein particles with low weights are replaced with a new set of 

particles drawn from the posterior pdf. The new set of particles is assigned uniform 

weights at the end of the resampling step as shown in Equation (5.9). 

                                               (5.9) 

RUL Estimation for IGBTs 

A system model was developed for the IGBTs based on the on-state collector-

emitter voltage VCE(ON). A 2
nd

 order least squares regression of the VCE(ON) 

degradation curve for two NPT IGBTs N1 and N2 for test condition 1 was obtained 

from the aging experiments. The system model obtained from the regression is given 

by Equation (5.10).  
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where a and b were model parameters from the least squares regression 

model. The parameters obtained for test condition 1 were a=0.0015 and b= -0.019. 

The measurement model was the actual measured voltage given by 

 
   

(5.11) 

 

The system model obtained from the aging data was then used for RUL 

estimation of the remaining IGBT devices. The number of particles used was 30, the 

initial state was assumed to be Gaussian as the initial voltage values were found to be 

approximately normal based on the normal probability plot of the voltage values, and 

a threshold for resampling was set to 10. To estimate the process noise, the system 

model was used to estimate the VCE(ON) for IGBTs N1 and N2 for test condition 1. For 

each of the estimates, the residuals were obtained by calculating the difference 

between the estimates from the system model and the actual data from the aging 

experiments. The standard deviation of the residuals was then used as the standard 

deviation of the process noise which was assumed to be Gaussian. For test condition 

1, the standard deviation of the process noise was found to be 0.025. The 

measurement noise was assumed to be Gaussian with a standard deviation of 0.05. 

The standard deviation of the measurement noise was obtained based on the noise of 

the voltage measurements performed by the oscilloscope.  

For the purpose of RUL estimation, the system model was used with a 20% 

increase in the VCE(ON) as the failure threshold. In order to calculate the RUL from 

time of anomaly detection k, the prediction step of the particle filter was implemented 

without the weight update step. The predictions were calculated until the value of the 

kk)ON(CEk Vz 
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predicted VCE(ON) increased above the failure threshold. The remaining useful life 

estimate for the IGBT N3 evaluated at the detection time of 11.8 minutes was found 

to be 20.8 minutes while the actual failure occurred at 21.4 minutes resulting in a 

prediction error of 2.6%. The state estimation and prediction for IGBT ―N3‖ is shown 

in Figure 5-1. It is observed that the mean of the state estimates, denoted by particle 

mean in Figure 5-1, tracks the measurements through the aging cycle of the IGBT 

until the detection of an anomaly by the MD approach.  The RUL pdf is represented 

using a mixture of Gaussians of the particle distribution at the predicted failure time.  

 

Figure 5-1: State estimation and RUL prediction of IGBT ―N3‖ 

 

 The RUL estimates from the implementation of the particle filter for the eight 

IGBTs aged under test condition 1 are summarized in Table 5-1. From the results, it 

is observed that the prediction error is < 10% for seven of the eight IGBTs analyzed.  
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Table 5-1: RUL prediction for IGBTs in test condition 1 

Device ID 

Anomaly 

Detection time 

using 

transformed 

MD 

(Minutes) 

Predicted 

Time for 

20% 

increase in 

VCE(ON) 

(Minutes) 

Time for 

20% 

increase in 

VCE(ON) 

(Minutes) 

% Prediction 

Error 

N3 11.8 20.8 21.4 2.6 

N4 18.7 24.4 23.6 -3.3 

N5 11.4 22.6 23.1 2.2 

N6 12.0 22.4 21.5 -4.2 

N7 16.2 23.9 22.4 -6.8 

N8 17.2 23.5 24.6 4.6 

N9 14.6 20.7 24.8 16.3 

N10 15.0 24.3 25.2 3.5 

 

A similar analysis was performed for IGBTs aged under test condition 2. The 

model parameters obtained from the least squares regression for IGBTs NPT 1 and 

NPT 2 were found to be a=0.005 and b=-0.027. The system tracking performance 

and RUL estimate of the particle filter for IGBT NPT 3 is shown in Figure 5-2 . The 

RUL predictions for IGBTs aged under test condition 2 are summarized in Table 5-2. 

 

Figure 5-2: State estimation and RUL prediction of IGBT ―NPT3‖ 
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Table 5-2: RUL prediction for IGBTs in test condition 2 

Device ID 

Anomaly 

Detection time 

using 

transformed 

MD 

(Hours) 

Predicted 

Time for 

20% 

increase in 

VCE(ON) 

(Hours) 

Time for 

20% 

increase in 

VCE(ON) 

(Hours) 

% Prediction 

Error 

NPT3 4.4 10.6 13.5 21.5 

NPT4 4.4 10.0 11.9 15.7 

NPT5 5.6 8.9 8.8 -1.1 

 

Computational Complexity 

The particle filter algorithm involves filtering (prediction and weight update 

steps) followed by resampling whenever particle degeneracy is encountered. The 

prediction step involves calculating the state xk of each particle at time k based on the 

system model p(xk|xk-1). The weight update for each particle is based on calculating 

the probability of measurement zk at time k given the predicted state of the particle 

p(zk|xk). In this implementation, the state xk is a scalar quantity (VCE(ON)). These steps 

are performed N (where N is the number of particles) times to get the predicted 

particles and their respective weights. The computational complexity for the 

prediction and weight update steps is O(N+1) (one additional step is required to 

terminate the FOR loop). The resampling step involves generating N independent 

samples from the uniform distribution U(0,1), sorting them in ascending order and 

comparing them with the cumulative sum of the weights. In this step, the 

computational complexity is determined by the sorting algorithm which is of the 

order of O(N log N). Hence the driving ―n‖ for the computational complexity of the 
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particle filter algorithm is O(N log N). With an increase in the number of particles 

used, the computational complexity increases as shown in Figure 5-3.  

  

 

Figure 5-3: Computational complexity of the particle filter as a function of the 

number of particles 

 

Effect of Number of Particles on Failure Prediction 

To illustrate the effect of increasing the number of particles on the particle 

filter prediction, the number of particles was increased from 10, 30, 100 to 300. The 

predictions were performed at four different times: 3, 6, 12 and 18 minutes. The 

analysis was performed on IGBTs N3 to N10. The results for N3 are presented from  

Figure 5-4 to Figure 5-19.  The results for all the other parts are listed in the 

Appendix C.  

In each figure, the ―green‖ line represents the time at which the particle filter 

prediction is performed, the ―cyan‖ line is the predicted mean time to failure obtained 

by the particle filter and the ―red‖ line is the actual failure time determined from the 

test. 
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Predictions for N=10, 30,100 and 300 at 3 minutes 

 

Figure 5-4: Prediction for N= 10 particles and time t= 3minutes 

 

Figure 5-5: Prediction for N= 30 particles and time t= 3 minutes 
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Figure 5-6: Prediction for N= 100 particles and time t= 3 minutes 

 

 

Figure 5-7: Prediction for N= 300 particles and time t= 3 minutes 

Predictions for N=10, 30,100 and 300 at 6 minutes 

Failure Threshold 

Failure Threshold 



 74 

 

 

Figure 5-8: Prediction for N= 10 particles and time t= 6 minutes 

 

Figure 5-9: Prediction for N= 30 particles and time t= 6 minutes 

 

Figure 5-10: Prediction for N= 100 particles and time t= 6 minutes 
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Figure 5-11: Prediction for N= 300 particles and time t= 6 minutes 

Predictions for N=10, 30,100 and 300 at 12 minutes 

 

Figure 5-12: Prediction for N= 10 particles and time t= 12 minutes 
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Figure 5-13: Prediction for N= 30 particles and time t= 12 minutes 

 

Figure 5-14: Prediction for N= 100 particles and time t= 12 minutes 

 

Figure 5-15: Prediction for N= 300 particles and time t= 12 minutes 
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Failure Threshold 
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Predictions for N=10, 30,100 and 300 at 18 minutes 

 

Figure 5-16: Prediction for N= 10 particles and time t= 18 minutes 

 

Figure 5-17: Prediction for N= 30 particles and time t= 18 minutes 
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Figure 5-18: Prediction for N= 100 particles and time t= 18 minutes 

 

 

Figure 5-19: Prediction for N= 300 particles and time t= 18 minutes 
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Table 5-3: Effect of particle size on failure prediction time for IGBT N3 (Actual 

Failure=21.4 minutes) 

Time of 

Prediction 

No of 

particles 

Predicted Failure Time 

Tlower(minutes) Tmean(minutes) Tupper(minutes) 

3 Minutes 10 15.7 24.1 30.2 

 

30 10.4 23.3 28.5 

 

100 10.4 22.7 35.0 

 

300 10.4 22.2 33.6 

6 Minutes 10 14.8 24.1 30.2 

 

30 14.8 22.7 28.3 

 

100 13.7 22.7 35.0 

 

300 10.7 22.2 30.5 

12 Minutes 10 16.7 25.2 28.8 

 

30 17.6 20.8 28.0 

 

100 14.8 22.7 33.6 

 

300 15.7 22.4 32.7 

18 Minutes 10 20.3 23.0 28.8 

 

30 18.9 21.9 28.3 

 

100 19.7 22.7 31.3 

 

300 19.2 22.4 32.2 

 

From this analysis, it is clearly observed that 10 particles are not sufficient to 

adequately represent the system state, especially when the prediction is performed at 

3 minutes and 6 minutes. However, due to the smaller number of particles, the 

predicted failure PDF has a lower variance.  As shown in Figure 5-4 to Figure 5-7 and 

Table 5-3, when the particle filter is used for prediction after an aging time of 3 

minutes, an increase in the number of particles causes a wider distribution for the 

failure PDF. The lower bound for the failure PDF for 100 and 300 particles provides a 

more conservative estimate of the failure time.  

When the predictions are performed after 6 minutes of aging (Figure 5-8 to 

Figure 5-11 and Table 5-3), the mean predicted failure times with 30, 100 and 300 

particles have negligible differences. However, the lower bound of the failure 
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prediction continues to provide a conservative estimate of the failure. This is 

especially true for 300 particles. After 12 minutes of aging (Figure 5-12 to Figure 

5-15 and Table 5-3), the failure PDFs are narrower providing more confidence in the 

failure prediction. The predictions performed with 30 particles are the most accurate.  

From Table 5-3 and the results for the other parts documented in the 

Appendix C, we observe that with 30, 100 or 300 particles, there is no significant 

change in the mean predicted failure time. With an increase in the number of 

particles, the peak of the failure distribution PDF is observed to shift to the actual 

failure time. However, the lower bound of the failure prediction is very conservative 

for predictions performed at 3 minutes and 6 minutes. This illustrates the case that 

initiating the particle filter for prediction too early results in larger distribution for the 

failure PDF.  With 30 particles, one can obtain a reasonable representation of the 

system state without loss of accuracy in term of failure prediction time.  

From the analysis presented in Figure 5-4 to Figure 5-19, it is observed that 

the failure probability distribution narrows with time. At the particle filter prediction 

step, say tp, the developed system model is used to predict future states at times tp+1, 

tp+2 and so on until the predicted voltage crosses the failure threshold. After each 

prediction, the system noise adds up. Hence a prediction performed in the initial 

stages for a given particle size will have a wide distribution. For the prediction using 

100 particles at 3 minutes and 18 minutes (by comparing Figure 5-6 and Figure 5-18), 

we observe that PDF distribution narrows from 25 minutes to 12 minutes.  
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Effect of Increased Number of Parts in Development of System Model 

The number of parts used to develop the system model was increased to 3, 4 

and 5 from the 2 parts used in the initial analysis. This analysis was performed for test 

condition 1. The system model consists of two coefficients ―a‖ and ―b‖ and the 

standard deviation system noise parameter σω. In Table 5-4, the coefficients obtained 

using 2(N1, N2), 3 (N1, N2, N3), 4 (N1, N2, N3, N4) and 5 (N1, N2, N3, N4, N5) 

parts is shown.  The system model was used in a particle filter algorithm to determine 

the mean predicted time to failure for the IGBTs ―N6 to N10‖ at the time of anomaly 

detection by the MD approach. The results of the analysis are given in Table 5-5. The 

prediction times do not change significantly with an increase in the number of parts.  

From this analysis, we can conclude that using more than two parts for the system 

model for test condition 1 does not provide improvements in the failure prediction 

time. However, the time to failure PDFs change with the inclusion of more parts in 

the system model as shown in Figure 5-20, Figure 5-21 and Figure 5-22. 

Table 5-4: System model parameters 

No of Parts A b σω 

2  0.00149 -0.01867 0.0254 

3  0.00159 -0.02044 0.0221 

4  0.00158 -0.02120 0.0254 

5  0.00157 -0.02099 0.0234 
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Table 5-5: Mean time to failure prediction using particle filters for the four system 

models 

Device 

ID 

Predicted 

mean time to 

failure (2 

parts) 

(Minutes) 

Predicted 

mean time to 

failure (3 

parts) 

(Minutes) 

Predicted 

mean time to 

failure (4 

parts) 

(Minutes) 

Predicted 

mean time to 

failure (5 

parts) 

(Minutes) 

Failure 

Time  

(Minutes) 

N6 22.4 22.7 22.7 22.7 21.5 

N7 23.9 23.3 23.3 23.9 22.4 

N8 23.5 23.7 24.9 24.0 24.6 

N9 20.7 21.0 21.9 20.7 24.8 

N10 24.3 24.0 24.3 23.7 25.2 

 

 

Figure 5-20: Failure prediction for part N6 using three part system model 

 

 

Figure 5-21: Failure prediction for part N6 using four part system model 
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Figure 5-22: Failure prediction for part N6 using five part system model 

 

Effect of Number of Particles on the Confidence of the Failure Prediction 

Distribution 

To determine the effect of increasing number of particles on the confidence of 

the prediction PDF, the upper, mean and lower prediction times for parts N3 to N10 

are given in Table 5-6 for N=10, 30,100 and 300 particles at time t=12 minutes.  With 

an increase in the number of particles used for prediction, the variance associated 

with the prediction increases. As illustrated by Table 5-6, the failure distribution 

widens with increase in the number of particles.   
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Table 5-6: Effect of particle size on predicted failure distribution (time of prediction = 

12 minutes) 

Device 
No of 

particles 

Predicted Failure Time Tupper -Tlower 

(minutes) Tlower(minutes) Tmean(minutes) Tupper(minutes) 

N3 10 16.7 25.2 28.8 12.1 

 

30 17.6 20.8 28.0 10.4 

 

100 14.8 22.7 33.6 18.8 

 

300 15.7 22.4 32.7 17.1 

N4 10 18.9 23.6 28.5 9.5 

 

30 16.5 21.9 30.4 14.0 

 

100 17.0 22.5 29.9 12.9 

 

300 16.2 23.0 32.4 16.2 

N5 10 17.4 26.1 28.9 11.5 

 

30 18.8 22.6 27.5 8.6 

 

100 14.8 23.7 34.2 19.4 

 

300 15.1 23.1 32.8 17.6 

N6 10 18.8 26.6 30.3 11.5 

 

30 16.4 22.4 27.6 11.2 

 

100 15.2 23.6 33.1 17.9 

 

300 15.8 23.0 31.6 15.8 

N7 10 17.7 24.2 31.6 13.9 

 

30 18.0 23.0 26.9 8.9 

 

100 16.2 22.7 32.5 16.3 

 

300 17.1 22.7 32.2 15.1 

N8 10 20.9 26.0 29.2 8.3 

 

30 15.8 22.0 26.9 11.1 

 

100 14.6 22.3 33.6 18.9 

 

300 15.2 22.0 31.7 16.5 

N9 10 20.2 24.5 28.4 8.2 

 

30 14.6 21.3 27.2 12.5 

 

100 14.3 22.4 32.6 18.2 

 

300 13.7 21.6 32.3 18.5 

N10 10 22.8 24.3 31.9 9.1 

 

30 17.4 24.0 28.5 11.1 

 

100 17.7 24.0 32.2 14.5 

 

300 16.7 23.7 31.9 15.1 
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Implementation of the Particle Filter using ICE(ON) 

The particle filter algorithm was implemented using the ICE(ON) measurements 

for test condition 1.  The system model was developed by using a least squares 

regression of the ICE(ON)  data for IGBTs N1 and N2. The coefficients obtained by the 

regression were a = -0.0067 and b = 0.085.  The standard deviation of the system 

noise was 0.1. The failure time was the time required for the VCE(ON) to increase by 

20%. The predicted mean time to failure using the ICE(ON) was computed for N3 as 

shown in Figure 5-23. The ICE(ON)  parameter gives equivalent prediction results to the 

VCE(ON) and as such either parameter can be used for the particle filter prediction. 

However, as the failure criteria are typically defined based on the change in VCE(ON), 

the VCE(ON) parameter was selected for prediction by particle filters in this study. 

 

 

Figure 5-23: Particle filter prediction using ICE(ON) for part "N3" 

 

Summary 

In this study, a particle filter approach was used for the prognostics of IGBTs. 

A system model was developed using the degradation trend of the on-state collector-
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emitter voltage VCE(ON) parameter. This was obtained by a least squares regression of 

the IGBT degradation curve. The tracking and prediction performance of the model 

with the particle filter was demonstrated. The prediction error ranged from 1 to 20% 

when prediction was performed at the anomaly detection time provided by the MD 

approach. 

This study demonstrates that the use of the Mahalanobis distance (MD) for 

anomaly detection and the particle filter approach using either the VCE(ON) or ICE(ON) 

parameters provides accurate estimation of the remaining useful life of NPT IGBTs. 

The prognostics approach proposed is not specific to the non-punch through (NPT) 

IGBT investigated in this dissertation.  It is also applicable to the other two main 

IGBT technologies: field stop (FS) and punch-through (PT). This is due to the fact 

that the degradation of the die attach with power cycling stresses will result in 

changes in the VCE(ON) as well as ICE(ON) for all IGBT technologies.  However, the 

patterns of degradation are going to be different depending on the technology.  For 

example, the degradation of the die attach will result in an increase in the VCE(ON) for 

the field stop IGBT, but the increase will not be of the same magnitude as it is for the 

NPT IGBT because the field stop layer reduces the VCE(ON) by conductivity 

modulation.  For a given IGBT technology, the degradation trends are also going to 

change with changes in the part family.  

For implementing this approach on a different IGBT, aging tests will need to 

be performed to develop the system model for the VCE(ON) degradation curve. Other 

costs involved will include sensors and data acquisition systems to perform in-situ 

monitoring of the required device parameters. Some efforts will also be required to 
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obtain the optimum size of the healthy data for anomaly detection by MD as well as 

tuning the particle filter model. 

To implement the particle filter approach in fielded systems, IGBTs will need 

to be tested under suitable life cycle conditions to determine the degradation trend in 

the VCE(ON) in order to develop the system model. Improvements in RUL estimation 

can be achieved by the accurate estimation of the system and measurement noise, 

optimization of the number of particles and the resampling threshold.   
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Chapter 6. Contributions and Future Work 

 

The main contribution of this study is the development and implementation of 

a prognostics framework for IGBTs that uses the Mahalanobis distance approach for 

anomaly detection and particle filters for failure prediction. The particle filter 

approach developed using the system model based on the VCE(ON) was demonstrated 

to provides estimates of IGBT remaining useful life with an error of < 20% at the 

time of anomaly detection .  

The MD based probabilistic threshold approach implemented in this work was 

successfully able to detect anomalies in the IGBTs before either parametric failure or 

functional failure for both the test conditions evaluated. 

 The VCE(ON) and ICE(ON) parameters were identified as precursors to IGBT 

failure. The degradation in these parameters was mapped to degradation in the 

devices by electrical characterization tests and X-ray analysis. It was determined that 

die attach degradation as well as degradation in the gate oxide contributed to the 

changes observed in the precursor parameters with aging. 

The implementation of the developed prognostics framework can help provide 

advance warning of failures thereby preventing costly IGBT failures and system 

downtime. 

Future Work 

Further research is needed to implement the developed prognostics approach 

in a real world application. The degradation trend of the VCE(ON) is technology 
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dependent, i.e., it varies for punch through, non-punch through and field stop IGBTs. 

Additionally, the trends will be different for different classes of IGBTs within the 

same technology. Hence, to develop the system model, one would need to perform 

accelerated aging tests for each new class of IGBT. One possible solution to this 

problem would be to update the system model parameters for each new class of IGBT 

as more information from the new IGBT is obtained.  The model parameters could be 

updated by reducing the error obtained by the difference between the voltage 

predicted by the system model and the actual measured voltage of the new IGBT.  

Since the system model is developed for a fixed temperature, the VCE(ON) will 

need to be measured in  application at the temperature used to obtain the system 

model. One method of resolving this issue would be to determine a temperature 

dependent correction parameter for the VCE(ON) system model to account for changes 

in temperature.   
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Appendix A 

 

Figure 6-1: ICE(ON) and VCE(ON)  vs. aging time for ―N1‖ aged by test condition 1 

 

 

Figure 6-2: ICE(ON) and VCE(ON)  vs. aging time for ―N2‖ aged by test condition 1 
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Figure 6-3: ICE(ON) and VCE(ON)  vs. aging time for ―N4‖ aged by test condition 1 

 

Figure 6-4: ICE(ON) and VCE(ON)  vs. aging time for ―N5‖ aged by test condition 1 
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Figure 6-5: ICE(ON) and VCE(ON)  vs. aging time for ―N6‖ aged by test condition 1 

 

 

Figure 6-6: ICE(ON) and VCE(ON)  vs. aging time for ―N7‖ aged by test condition 1 
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Figure 6-7: ICE(ON) and VCE(ON)  vs. aging time for ―N8‖ aged by test condition 1 

 

 

Figure 6-8: ICE(ON) and VCE(ON)  vs. aging time for ―N9‖ aged by test condition 1 
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Figure 6-9: ICE(ON) and VCE(ON)  vs. aging time for ―N10‖ aged by test condition 1 

 

 

Figure 6-10: ICE(ON) and VCE(ON)  vs. aging time for ―NPT1‖ aged by test condition 2 

2.1

2.2

2.3

2.4

2.5

2.6

2.7

10.6

11.1

11.6

12.1

12.6

13.1

0 10 20 30

V
C

E
(O

N
)
(V

 )

I C
E

(O
N

)
(A

)

Aging Time (Minutes)

Series1

Series2

ICE(ON)

VCE(ON)

1.9

2.4

2.9

3.4

3.9

4.4

4.9

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 5 10 15 20

V
C

E
(O

N
) 
(V

)

I C
E

(O
N

) 
(A

)

Aging Time (Hours)

Series1

Series2

ICE(ON)

VCE(ON)



 95 

 

 

Figure 6-11: ICE(ON) and VCE(ON)  vs. aging time for ―NPT2‖ aged by test condition 2 

 

Figure 6-12: ICE(ON) and VCE(ON)  vs. aging time for ―NPT4‖ aged by test condition 2 
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Figure 6-13: ICE(ON) and VCE(ON)  vs. aging time for ―NPT5‖ aged by test condition 2 
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Appendix B 

 

Figure 6-14: Transformed MD data vs. aging time for IGBT ―N1‖

 

Figure 6-15: Transformed MD data vs. aging time for IGBT ―N2‖ 
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Figure 6-16: Transformed MD data vs. aging time for IGBT ―N4‖ 

 

Figure 6-17: Transformed MD data vs. aging time for IGBT ―N5‖ 
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Figure 6-18: Transformed MD data vs. aging time for IGBT ―N6‖ 

 

 Figure 6-19: Transformed MD data vs. aging time for IGBT ―N7‖ 
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Figure 6-20: Transformed MD data vs. aging time for IGBT ―N8‖ 

 

 

 

Figure 6-21: Transformed MD data vs. aging time for IGBT ―N9‖ 
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Figure 6-22: Transformed MD data vs. aging time for IGBT ―N10‖ 

 

  

 

Figure 6-23: Transformed MD data vs. aging time for IGBT ―NPT1‖ 

-4

-2

0

2

4

6

8

10

0 10 20 30 40

T
r
a

n
sf

o
r
m

e
d

 M
D

Aging Time (Minutes)

Transformed 

MD crosses 

threshold

Transformed MD threshold

-5

0

5

10

15

20

25

0 5 10 15 20

T
r
a

n
sf

o
r
m

e
d

 M
D

Aging Time (Hours)

Transformed MD 

crosses threshold

Transformed MD threshold



 102 

 

 

Figure 6-24: Transformed MD data vs. aging time for IGBT ―NPT2‖ 

 

 

Figure 6-25: Transformed MD data vs. aging time for IGBT ―NPT4‖ 
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Figure 6-26: Transformed MD data vs. aging time for IGBT ―NPT5‖ 
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Appendix C 

Predictions for “N4” IGBT after 3, 6, 12 and 18 minutes  

Prediction for10 particles  

 

Figure 6-27: Prediction for N= 10 particles and time t= 3 minutes 

 

 

 

Figure 6-28: Prediction for N= 10 particles and time t= 6 minutes 
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Figure 6-29: Prediction for N= 10 particles and time t= 12 minutes 

 

 

Figure 6-30: Prediction for N= 10 particles and time t= 18 minutes 
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Prediction for 30 particles 

 

Figure 6-31: Prediction for N= 30 particles and time t= 3 minutes 

 

Figure 6-32: Prediction for N= 30 particles and time t= 6 minutes 

 

Figure 6-33: Prediction for N= 30 particles and time t= 12 minutes 
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Figure 6-34: Prediction for N= 30 particles and time t= 18 minutes 

 

Prediction for 100 particles 

 

Figure 6-35: Prediction for N= 100 particles and time t= 3 minutes 
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Figure 6-36: Prediction for N= 100 particles and time t= 6 minutes 

 

 

Figure 6-37: Prediction for N= 100 particles and time t= 12 minutes 
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Figure 6-38: Prediction for N= 100 particles and time t= 18 minutes 

Prediction for 300 particles 

 

Figure 6-39: Prediction for N= 300 particles and time t= 3 minutes 

 

Figure 6-40: Prediction for N= 300 particles and time t= 6 minutes 
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Figure 6-41: Prediction for N= 300 particles and time t= 12 minutes 

 

Figure 6-42: Prediction for N= 300 particles and time t= 18 minutes 
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Predictions for “N5” IGBT after 3, 6, 12 and 18 minutes  

Prediction for 10 particles 

 

Figure 6-43: Prediction for N= 10 particles and time t= 3 minutes 

 

Figure 6-44: Prediction for N= 10 particles and time t= 6 minutes 

 
Figure 6-45: Prediction for N= 10 particles and time t= 12 minutes 
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Figure 6-46: Prediction for N= 10 particles and time t= 18 minutes 

Prediction for 30 particles 

 

Figure 6-47: Prediction for N= 30 particles and time t= 3 minutes 

 

Figure 6-48: Prediction for N= 30 particles and time t= 6 minutes 
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Figure 6-49: Prediction for N= 30 particles and time t= 12 minutes 

 

 

Figure 6-50: Prediction for N= 30 particles and time t= 18 minutes 
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Prediction for 100 particles 

 

Figure 6-51: Prediction for N= 100 particles and time t= 3 minutes 

 

 

Figure 6-52: Prediction for N= 100 particles and time t= 6 minutes 
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Figure 6-53: Prediction for N= 100 particles and time t= 12 minutes 

 

Figure 6-54: Prediction for N= 100 particles and time t= 18 minutes 

Prediction for 300 particles 

 

Figure 6-55: Prediction for N= 300 particles and time t= 3 minutes 
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Figure 6-56: Prediction for N= 300 particles and time t= 6 minutes 

 

Figure 6-57: Prediction for N= 300 particles and time t= 12 minutes 
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Figure 6-58: Prediction for N= 300 particles and time t= 18 minutes 

 

Predictions for “N6” IGBT after 3, 6, 12 and 18 minutes  

Prediction for 10 particles 

 

 

Figure 6-59: Prediction for N= 10 particles and time t= 3 minutes 
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Figure 6-60: Prediction for N= 10 particles and time t= 6 minutes 

 

 

Figure 6-61: Prediction for N= 10 particles and time t= 12 minutes 
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Figure 6-62: Prediction for N= 10 particles and time t= 18 minutes 

 

Prediction for 30 particles 

 

Figure 6-63: Prediction for N= 30 particles and time t= 3 minutes 
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Figure 6-64: Prediction for N= 30 particles and time t= 6 minutes 

 

 

 Figure 6-65: Prediction for N= 30 particles and time t= 12 minutes  
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Figure 6-66: Prediction for N= 30 particles and time t= 18 minutes 

Prediction for 100 particles 

 

Figure 6-67: Prediction for N= 100 particles and time t= 3 minutes 

 

Figure 6-68: Prediction for N= 100 particles and time t= 6 minutes 

Failure Threshold 

Failure Threshold 

Failure Threshold 



 122 

 

 

Figure 6-69: Prediction for N= 100 particles and time t= 12 minutes 
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Figure 6-70: Prediction for N= 100 particles and time t= 18 minutes 

Prediction for 300 particles 

 

Figure 6-71: Prediction for N= 300 particles and time t= 3 minutes 

 

Figure 6-72: Prediction for N= 300 particles and time t= 6 minutes 
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Figure 6-73: Prediction for N= 300 particles and time t= 12 minutes 

 

 

Figure 6-74: Prediction for N= 300 particles and time t= 18 minutes 
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Predictions for “N7” IGBT after 3, 6, 12 and 18 minutes  

Prediction for 10 particles 

 

Figure 6-75: Prediction for N= 10 particles and time t= 3 minutes 

 

Figure 6-76: Prediction for N= 10 particles and time t= 6 minutes 
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Figure 6-77: Prediction for N= 10 particles and time t= 12 minutes 

 

Figure 6-78: Prediction for N= 10 particles and time t= 18 minutes 
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Prediction for 30 particles 

 

Figure 6-79: Prediction for N= 30 particles and time t= 3 minutes 

 

Figure 6-80: Prediction for N= 30 particles and time t= 6 minutes 

 

Figure 6-81: Prediction for N= 30 particles and time t= 12 minutes 

Failure Threshold 

Failure Threshold 

Failure Threshold 



 128 

 

 

Figure 6-82: Prediction for N= 30 particles and time t= 18 minutes 

 

Prediction for 100 particles 

 

Figure 6-83: Prediction for N= 100 particles and time t= 3 minutes 
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Figure 6-84: Prediction for N= 100 particles and time t= 6 minutes 

 

 

Figure 6-85: Prediction for N= 100 particles and time t= 12 minutes 
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Figure 6-86: Prediction for N= 100 particles and time t= 18 minutes 

Prediction for 300 particles 

 

Figure 6-87: Prediction for N= 300 particles and time t= 3 minutes 
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Figure 6-88: Prediction for N= 300 particles and time t= 6 minutes 

 

Figure 6-89: Prediction for N= 300 particles and time t= 12 minutes 

 

Figure 6-90: Prediction for N= 300 particles and time t= 18 minutes 
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Predictions for “N8” IGBT after 3, 6, 12 and 18 minutes  

Prediction for 10 particles 

 

Figure 6-91: Prediction for N= 10 particles and time t= 3 minutes 

 

Figure 6-92: Prediction for N= 10 particles and time t= 6 minutes 
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Figure 6-93: Prediction for N= 10 particles and time t= 12 minutes 

 

Figure 6-94: Prediction for N= 10 particles and time t= 18 minutes 

Prediction for 30 particles 

 

Figure 6-95: Prediction for N= 30 particles and time t= 3 minutes 
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Figure 6-96: Prediction for N= 30 particles and time t= 6 minutes 

 

Figure 6-97: Prediction for N= 30 particles and time t= 12 minutes 
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Figure 6-98: Prediction for N= 30 particles and time t= 18 minutes 

Prediction for 100 particles 

 

Figure 6-99: Prediction for N= 100 particles and time t= 3 minutes 

 

Figure 6-100: Prediction for N= 100 particles and time t= 6 minutes 
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Figure 6-101: Prediction for N= 100 particles and time t= 12 minutes 

 

Figure 6-102: Prediction for N= 100 particles and time t= 18 minutes 

Prediction for 300 particles 

 

Figure 6-103: Prediction for N= 300 particles and time t= 3 minutes 
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Figure 6-104: Prediction for N= 300 particles and time t= 6 minutes 

 

Figure 6-105: Prediction for N= 300 particles and time t= 12 minutes 

 

Figure 6-106: Prediction for N= 300 particles and time t= 18 minutes 
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Predictions for “N9” IGBT after 3, 6, 12 and 18 minutes  

Prediction for 10 particles 

 

 

Figure 6-107: Prediction for N= 10 particles and time t= 3 minutes 

 

 

Figure 6-108: Prediction for N= 10 particles and time t= 6 minutes 
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Figure 6-109: Prediction for N= 10 particles and time t= 12 minutes 

 

Figure 6-110: Prediction for N= 10 particles and time t= 18 minutes 

Prediction for 30 particles 

 

Figure 6-111: Prediction for N= 30 particles and time t= 3 minutes 
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Figure 6-112: Prediction for N= 30 particles and time t= 6 minutes 

 

Figure 6-113: Prediction for N= 30 particles and time t= 12 minutes 

 

Figure 6-114: Prediction for N= 30 particles and time t= 18 minutes 
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Prediction for 100 particles 

 

Figure 6-115: Prediction for N= 100 particles and time t= 3 minutes 

 

 

Figure 6-116: Prediction for N= 100 particles and time t= 6 minutes 
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Figure 6-117: Prediction for N= 100 particles and time t= 12 minutes 

 

 

Figure 6-118: Prediction for N= 100 particles and time t= 18 minutes 
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Prediction for 300 particles 

 

Figure 6-119: Prediction for N= 300 particles and time t= 3 minutes 

 

Figure 6-120: Prediction for N= 300 particles and time t= 6 minutes 

 

Figure 6-121: Prediction for N= 300 particles and time t= 12 minutes 
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Figure 6-122: Prediction for N= 300 particles and time t= 18 minutes 

Predictions for “N10” IGBT after 3, 6, 12 and 18 minutes  

Prediction for 10 particles 

 

Figure 6-123: Prediction for N= 10 particles and time t= 3 minutes 

 



 145 

 

 

Figure 6-124: Prediction for N= 10 particles and time t= 6 minutes 

 

Figure 6-125: Prediction for N= 10 particles and time t= 12 minutes 

 

Figure 6-126: Prediction for N= 10 particles and time t= 18 minutes 
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Prediction for 30 particles 

 

Figure 6-127: Prediction for N= 30 particles and time t= 3 minutes 

 

Figure 6-128: Prediction for N= 30 particles and time t= 6 minutes 
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Figure 6-129: Prediction for N= 30 particles and time t= 12 minutes 

 

Figure 6-130: Prediction for N= 30 particles and time t= 18 minutes 

Prediction for 100 particles 

 

Figure 6-131: Prediction for N= 100 particles and time t= 3 minutes 
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Figure 6-132: Prediction for N= 100 particles and time t= 6 minutes 

 

Figure 6-133: Prediction for N= 100 particles and time t= 12 minutes 

 

Figure 6-134: Prediction for N= 100 particles and time t= 18 minutes 
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Prediction for 300 particles 

 

Figure 6-135: Prediction for N= 300 particles and time t= 3 minutes 

 

 

Figure 6-136: Prediction for N= 300 particles and time t= 6 minutes 
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Figure 6-137: Prediction for N= 300 particles and time t= 12 minutes 

 

 

Figure 6-138: Prediction for N= 300 particles and time t= 18 minutes 
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