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The superposition approximations (SAs), first proposed in the distribution function

theories of liquids, are a family of approximations to a multivariate probability distribution

function (pdf) in terms of its lower order marginal pdfs. In this talk, we first present

the relationship between various forms of SA, the measurement of correlation via mutual

information, and approximations to the entropy of the full pdf via truncations of the

Mutual Information Expansion.

Next, based on the SAs, a novel framework to construct computationally tractable

approximations to the N -dimensional Boltzmann conformational distribution of molecule

in terms of its low order marginal pdfs is presented. The marginal pdfs are obtained

as normalized histograms of internal coordinates of a set of Boltzmann distributed

conformations obtained by molecular dynamics (MD) simulation. We evaluate the accuracy

of these approximate distributions constructed from marginal pdfs of order l ≤ 3 for small

molecules (≤ 52 atoms) by using a novel conformational sampling algorithm to sample from

them and comparing the samples with the original MD conformations used to populate

the pdfs. We find that the triplet (l = 3) level approximation has high conformational

overlap with the physical Boltzmann distribution, and significantly better than that for



the singlet (l = 1) or doublet (l = 2) level approximations. The results shed light on the

relative importance of correlations of different orders.

The singlet (l = 1) and doublet (l = 2) level approximate distributions are then used

to define reference systems with known free energies, and then to compute the physical

free energy of molecules using the reference system approach. Free energies are computed

for small peptides as test molecules, and it is found that the convergence of the free energy

estimate using a doublet reference is dramatically faster than with the singlet reference,

consistent with greater overlap of the doublet reference system with the physical system.

Potential further developments and practical applications are discussed.
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Chapter 1

Introduction

1.1 Background

Atomistic modeling and simulation of molecules represents a powerful tool for

understanding chemical and biological systems at the microscopic level. Computational

approaches are indispensable for studying many complex real world systems where analytic

and experimental analysis are difficult or impossible. Indeed, computational tools are

widely used in industrial applications for applications ranging from material design to

pharmaceutical drug design [1].

Some microscopic properties of molecules, such as covalent bonded structure and

quantum energy levels, can be obtained from first principles using quantum mechanical

calculations [2, 3]. In biological systems, quantum chemistry calculations have been widely

used to study various phenomena involving changes in the electronic properties of the

molecules, such as photosynthesis and the reaction mechanisms of enzymes [4, 5, 6].

Of particular practical importance is the application of quantum chemistry methods in

computer aided drug design to compute properties of flexible biomolecules in a thermal

solvent environment [7, 8]. However such calculations are currently challenging, due
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to the combined cost of modeling the details of electronic structure and of accounting

for conformational flexibility; i.e., nuclear motions [7]. In situations where the details

of the electronic structure are not modified (e.g. no covalent bond modifications),

a full quantum mechanical energy treatment may be replaced with a less expensive

approximation via an empirical force-field, and nuclear motions may be treated classically,

in accordance with the Born-Oppenheimer approximation. An empirical force-field, also

termed a molecular mechanics force-field, specifies the potential energy of the molecule as

a function of its configuration and is typically parameterized against quantum chemistry

calculations and experimental data. The development of accurate and efficient force-

fields [9, 10, 11, 12, 13, 14, 15], and hybrid QM/MM methods where only a small subset of

atoms of the molecule are treated quantum mechanically, are active fields of research [4, 6].

Statistical thermodynamic quantities can be computed using molecular dynamics

(MD) or Monte Carlo (MC) simulations with empirical force-fields. Such calculations were

first applied to simple liquids [16], and soon after, to proteins [17]. With advances in

simulation techniques and computing technology, the field of biomolecular modeling and

simulations has since progressed tremendously and has shed light on diverse phenomena

such as protein folding [18], non-covalent binding [19], molecular recognition [20] and

allostery [21, 22]. Central challenges in biomolecular simulations are sampling the

physically relevant regions of the high dimensional conformational space, and calculating

free energies. This thesis develops a novel conformational sampling method based on

approximation to the full Boltzmann distribution, and describes how this sampling method

can be used to compute free energies. Potential applications and enhancements are also

described.
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1.2 Motivation

In a thermal environment, three-dimensional structure, or conformation, of a

molecule fluctuates continuously. These fluctuations are key determinants of thermodynamic

properties and are intimately connected with biomolecular functions, such as binding .

The equilibrium fluctuations of a molecule with M atoms in contact with a heat bath at

temperature T are captured by the Boltzmann probability distribution function (pdf) over

its N = 3M − 6 internal degrees of freedom, ξ = (ξ1, . . . , ξN ):

pBN (ξ) =
1

ZP
exp (−β UP(ξ)) J(ξ) (1.1)

where

ZP =

∫
exp (−β UP (ξ)) J(ξ) dξ , (1.2)

β = 1/(kB T ), kB being the Boltzmann constant; ZP is termed the configurational

integral; J(ξ) is the Jacobian of the transformation from internal coordinates to Cartesian

coordinates; and UP (ξ) is the energy as a function of conformation. (This expression

omits a prefactor of the configuration integral that results from integration over the

momentum degrees of freedom and which cancels upon taking a free energy difference [23].)

For a molecule in solution, the energy function comprises the molecule’s potential

energy and a contribution from the solvent [24]. The Boltzmann distribution links

conformational fluctuations to thermodynamic observables, such as free energy and

entropy, but its high dimensionality and the potentially complex multi-particle energetic

couplings make it computationally unworkable. It is therefore of interest to construct

computationally tractable approximations to the Boltzmann distribution, perhaps by

limiting the complexity of the correlations among internal coordinates that are accounted

for in the approximate pdf.
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It is not clear a priori how well a pdf with a reduced accounting of correlations

could approximate a full Boltzmann pdf. However, some indication of what might be

possible can be derived from studies of the Gibbs entropy, because this quantity, broadly

speaking, depends upon the degree of correlation. This general statement can be made

more specific by the aid of concepts drawn from the fields of probability and information

theory, which have useful mathematical connections with the statistical description of

microscopic system in terms of ensembles and probability distributions of microstates.

Indeed, the mathematical form of the Gibbs entropy is identical to the Shannon information

entropy of a general multivariate stochastic system. Concepts and tools from information

theory can, therefore, be usefully applied in the statistical thermodynamical treatment of

physical systems. One such concept, which is of particular interest here, is that of mutual

information as a quantitative measure of correlations among multiple stochastic variables.

Further, using the mutual information expansion (MIE), the entropy of a multivariate

distribution can be written in terms of mutual information contributions corresponding to

correlations of increasing orders. The MIE thus provides a tool to dissect the contributions

of different orders of correlations to the fluctuations of the full system.

Similar ideas have been developed in statistical mechanics theories of liquids based

on distribution functions of liquid particles. In particular, the MIE is closely related to

the entropy expansion of a liquid in terms of distribution functions of increasing number

of liquid particles. Furthermore, the mathematical form of the MIE can be obtained from

superposition approximations (SA) like those which have been used to approximate the

distribution functions of liquids. However, the MIE can be applied not just to liquids, but

to any pdf, including one not explicitly connected to any physical system.

This thesis project was motivated by the prior observation that the entropy

4



associated with the conformational fluctuations, or the configurational entropy, of a

molecule computed using the MIE was dominated by the low-order mutual informations

among the internal coordinates of the molecule. This observation led to our initial

hypothesis that the conformational fluctuations of a molecule might be dominated by low-

order correlations, and that the SA family of approximations could be useful in developing

computationally tractable approximations to the Boltzmann distribution. Exploration of

this concept led to a novel approximation of the Boltzmann pdf, which we then applied to

the calculation of molecular free energies.

1.3 Overview of thesis and contributions

In Chapter 2 we present an information theory based view of correlations and the

MIE of the entropy of a multivariate pdf. We show that approximation of the entropy

with low-order terms in the MIE is directly related to a superposition approximation of

the distribution in terms of its marginal pdfs.

Chapters 3 and 4 present the main contributions of this work. In Chapter 3, the

SA framework is used to develop novel conformational sampling algorithms to sample

molecular conformations from the high dimensional conformational space using pdfs of

up to order three. We show that the overlap between the distribution thus sampled,

and the physical Boltzmann distribution improves on incorporating more correlations.

The sampling distributions represent a computationally tractable and a normalized

approximation to the Boltzmann distribution.

Due to the normalization property, reference systems with known free energy can be

set up in terms of the sampling distributions and the free energy of a physical system of

interest can then be obtained as a free energy difference. This approach is used in Chapter

5



4 to compute the absolute free energy, or the configurational integral, of a molecule using

samples drawn from the aforementioned conformational sampling algorithms. We show

that the convergence of the estimated free energy dramatically improves upon using a

reference which includes pairwise correlations among the internal coordinates via the SA

framework.

Chapter 5 presents potential extensions and applications of the ideas and methods

developed in the previous chapters.
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Chapter 2

Superposition Approximations

2.1 Introduction

Superposition approximations (SAs) are a family of approximations which express

a multivariate probability distribution in terms of its marginal distributions of subsets of

the variables. They provide a tool to model correlations in a system with many degrees

of freedom. Superposition approximations have a long history in statistical mechanical

theory of liquids and in information theory of communication.

Superposition approximations were first proposed in the distribution function

theories of liquid by Kirkwood and Boggs [25] where the Kirkwood superposition

approximation (KSA) was used as a closure equation for truncating the Bogoliubov-

Born-Green-Yvon-Kirkwood (BBGYK) [26] hierarchy at the doublet, or two-particle, level

enabling calculation of the pair correlation function, or the radial distribution function,

g(r). The KSA was derived by approximating the three-particle potential of mean force

as the sum of the three two-particle potential of mean forces, which is equivalent to

approximating the three-particle joint distribution function as the product of the three two-

particle distributions. In practice, based on empirical comparison with other theoretical

methods and experiments, the KSA closure is accurate only at low densities, for which
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the three-particle and higher order correlations are weak. Fisher and Kopeliovich [27]

improved upon the KSA by approximating the four-particle distribution in terms of lower-

order distribution functions and closing the BBGYK hierarchy at the triplet or three

particle level.

The SAs in liquid theory can be derived based on considerations of permutation

symmetry of particle labels and correct asymptotic limits. Using a variational principle

for the free energy of a liquid, Reiss [28] showed that, assuming a functional form as the

product of the marginal distributions, the KSA and FKSA were the optimal closures at

the doublet and triplet level, respectively, and also extended it to higher levels. Bugaenko

et. al., [29] and more recently, Singer [30], derived the superposition approximation

closures for correlation functions in liquids based on the maximum entropy principle. The

generalization of the KSA to express an N -dimensional distribution function in terms of

its marginal pdfs of up to order N − 1 is called the generalized Kirkwood superposition

approximation (GKSA) [31, 32, 30]. Based on the GKSA, a series expansion to the entropy

of a liquid can be derived, where the kth term is a function of the joint distribution function

of k particles [33, 34]. The entropy expansion has been used to assess the contributions

of higher order correlations to the entropy of the liquid [35].

Remarkably similar concepts and mathematical forms arise in the field of information

theory. The Shannon information entropy, which is a measure of uncertainty in a stochastic

system, is closely related to the Gibbs entropy in statistical thermodynamics, which

measures disorder in a many-particle system. The connection between information and

correlation is central to communication theory, which deals with problems of estimating

the amount of information transferred given correlations among multiple stochastic inputs

and outputs. The earliest attempt to address such a problem using information theory
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is apparently due to McGill, who defined “transmission information” as a measure of

correlation [36]. Fano subsequently identified the transmission information with mutual

information and presented the generalized mutual information as a measure of the

correlations among N (> 2) variables [37].

An important result of the information theory is the Mutual Information Expansion

(MIE) of the entropy of an N -dimensional probability distribution function in terms of

mutual informations among different subsets of variables [37, 38]. The MIE is analogous to

the entropy expansions in liquid theory, except that they are applicable to general discrete

valued distributions of a heterogeneous system. The MIE of entropy has been applied

to problems beyond communication theory, such as signal processing [31], configurational

entropy calculation of molecules [39] and general complex systems such as frustrated spin

systems [32].

The main goal of this chapter is to motivate mutual information as a measure of

correlations and establish its relationship with the superposition approximation. This

chapter begins by presenting the basics of discrete probability theory. Attention is

restricted to discrete distributions, since we are interested in modeling conformational

distributions of molecules in a discretized internal coordinate space. Also information

theoretic concepts are easier to present in terms of probability distributions of discrete-

valued variables. Next, relevant concepts from information theory are presented and

the MIE is discussed. A series of approximations to the entropy of a multivariate

probability distribution obtained by truncating the MIE at different levels is discussed.

The connections between various superposition approximations, mutual information and

entropy expansions are discussed.
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2.2 Basic concepts of discrete probability

Consider a discrete-valued random variable X, which assumes values from a finite

set ΩX = {x1, x2, ..., xnx} with nx elements. We imagine multiple measurements or

observations of X, each of which returns a value xi from the state-space ΩX . With each

xi, we assign a real number p(xi) ∈ [0, 1] as the frequency of observing xi in the limit of

infinite observation. A probability distribution function, p(X), is a vector of probability

values corresponding to the elements of the state space ΩX :

ΩX = {x1, x2, ..., xnx}

p(X) = {p(x1), p(x2), ..., p(xnx)} . (2.1)

In this work, we subscribe to the above frequentist interpretation of probability, though the

concepts presented here should be compatible with the interpretation where probability

indicates the degree of belief in a particular outcome. (For a discussion of the frequentist

versus Bayesian views of probability see Jaynes [40].) Since the probability values measure

the fractional occurrence of all possible outcomes, the sum of the probability values over

all possible outcomes is one, ∑
x∈ΩX

p(x) = 1 (2.2)

and the pdf is said to be normalized. Observation of a random variable is sometimes

referred to as the drawing of a sample from its pdf. Any set of non-negative real numbers

can be thought of as a pdf with its normalization given by the sum of all numbers.

Before proceeding further, a comment on the notation is in order. We use upper-

case letters for labels of random variables, and lower-case to denote specific values from the

state-space. Also, for brevity, p(X) is used for the pdf of X, instead of the more accurate

notation of pX(X). Thus, p(X) is a different pdf than, say, the pdf p(Y ) of variable Y
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defined over a state-space ΩY with ny states.

Next, considering simultaneous measurement of the two random variables, X and

Y , the joint probability, p(x, y), is the frequency of observations with X = x and Y = y.

The joint probability distribution, p(X,Y ), is the set of probability values for all possible

combinations of the two variables, that is, ΩX ×ΩY , and can be viewed as a matrix

p(X,Y ) =



p(x1, y1) · · · p(x1, yny)

:
. . . :

p(xnx, y1) · · · p(xnx, yny)


(2.3)

with each row denoting a specific value of X and column denoting a specific value of Y .

The joint distribution function is also normalized, so that,

∑
x∈ΩX

∑
y∈ΩY

p(x, y) = 1. (2.4)

Given the joint distribution, summing over one of the variables gives the marginal

probability distribution function, or the marginal, of the other variable. Thus, the

marginals of X and Y are, respectively,

p(X) =
∑
y∈ΩY

p(x, y)

and, p(Y ) =
∑

x∈ΩX

p(x, y) . (2.5)

In effect, the marginal for X is obtained by summing the rows in Eq. 2.3, and for Y by

summing the columns.

2.2.1 Conditional probability distributions and independence

The probability distribution of X conditional on knowledge that Y = y is given by

the product rule [40]

p(X|y) =
p(X, y)

p(y)
, p(y) ̸= 0 (2.6)
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and, similarly, the conditional distribution of Y given X = x is

p(Y |x) =
p(x, Y )

p(x)
. (2.7)

In terms of the matrix representation of the joint distribution, p(X, y) corresponds to the

Y = y column, and p(x, Y ) corresponds to the X = x row. The normalization of the

conditional pdfs can be seen as follows

∑
y∈ΩY

p(y|x) =
∑
y∈ΩY

p(x, y)

p(x)

=
1

p(x)

∑
y∈ΩY

p(x, y)

=
1

p(x)
p(x)

= 1 (2.8)

and similarly for p(X, y). Rearranging the product rule yields the chain rule of conditional

distributions for two variables:

p(x, y) = p(x)p(y|x) = p(y)p(x|y) . (2.9)

Notice that p(x)p(y|x) is the probability of picking the X = x row of p(X,Y ), times the

probability of picking Y = y column in that row.

Variables X and Y are said to be independent if their joint distribution equals

the product of their marginal distributions; otherwise they must be correlated. Denoting

independence by “⊥”, we have

X ⊥ Y ⇒ p(x, y) = p(x)p(y) (2.10)

and from Eqs. 2.6 and 2.7

X ⊥ Y ⇒ p(X|y) = p(X) , and

p(Y |x) = p(Y ) . (2.11)
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Note that, if X and Y are perfectly correlated, for example, if they are related as x = y,

then the joint distribution is a diagonal matrix so that p(X|y) will be unity for one of X

and zero for the others; and similarly for p(Y |x).

2.2.2 Generalization to N random variables

The above definitions can be generalized in a straightforward manner to N discrete-

valued random variables , each of which assumes a finite number of distinct values. The

probability that variables X1, . . . , XN take values x1, . . . , xN , respectively, is denoted by

pN (x1, x2, . . . , xN ) ≡ pN (X1 = x1, X2 = x2, . . . , XN = xN ) (2.12)

where pN denotes the joint pdf of all variables. Marginal pdf, pk(Xi1 , Xi2 , . . . , Xik), of a

subset of variables where i1, . . . , ik ∈ {1, . . . , N}, is obtained by summing over the other

N − k variables:

pk(Xi1 , . . . , Xik) =
∑

Xik+1

· · ·
∑
XiN

pN (xi1 , . . . , xiN ) (2.13)

where
∑

Xij
denotes the sum over all possible values of Xij . The subscript in pk, which

denotes the dimensionality, or the order, of the pdf, will sometimes be dropped if the

arguments of the pdf are explicitly listed. At order k, there are CN
k different marginal

pdfs of pN , each corresponding to a unique combination of k variables. The marginal pdfs

at orders k = 1, 2 and 3 are termed singlet, doublet and triplet pdfs, respectively. All

marginal distributions and pN are non-negative and normalized.

As in the case of two variables, independence of two sets of variables X =

{X1, . . . , XNx} and Y = {Y1, . . . , YNy} implies that their joint distribution is given by

the product distribution

p(x,y) = p(x)p(y) . (2.14)
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The conditional distribution of X given y is

p(X|y) = p(X,y)

p(y)
(2.15)

and the chain rule for the joint distribution between, say, X, Y and Z is

p(x,y, z) = p(x) p(y|x) p(z|x,y) . (2.16)

Also, in the case of more than two variables, we have the notion of conditional independence

where two sets of variables, otherwise correlated, become independent given knowledge of

a third set; each set may contain one or more variables. If X and Y are independent

conditional on knowledge of Z, then we have the following relations:

X⊥Y | Z ⇒ p(x,y|z) = p(x|z)p(y|z)

p(x,y, z) = p(z)p(x|z)p(y|z)

p(x|y, z) = p(x|z) . (2.17)

Note that, since X and Y are correlated, p(x|y) ̸= p(x).

2.3 Information theory view of correlations and entropy

The central quantity in information theory is the Shannon entropy [41], which

measures the uncertainty in a random variable. The Shannon entropy, or simply entropy,

S(X), of a discrete-valued random variable X with pdf p(X) is given by

S(X) ≡ −
∑

x∈ΩX

p(x) ln p(x) (2.18)

where p(X) is the pdf of X, and the units are set by the base of the logarithm, and

0 ln 0 ≡ 0. The entropy of X gives the amount of information required to specify its value
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given its probability distribution. Consider the following simple examples that illustrate

this property and the sense in which entropy is a measure of uncertainty.

Let the logarithm in Eq. 2.18 be in base 2 thereby setting the units to bits. Consider

the case where X is deterministic, in the sense that X takes only a single value xi, so that

p(X = xi) = 1 and p(X ̸= xi) = 0. For this case, the entropy is zero, consistent with the

fact that, given p(X), no further information is required to know the value of X. Next,

suppose X can take two values, x1 and x2, with equal probabilities: p(x1) = p(x2) = 1/2,

and the probability is zero for other values. In this case, the entropy is 1 bit, as would

be expected, since a single bit of information suffices to specify whether or not X = x1,

simultaneously specifying whether or not X = x2. The increased uncertainty in X on

adding another possible value was reflected in the increase of entropy from 0 to 1 bit. The

uncertainty in X is maximum when all values of X are equally likely, that is, p(x) = 1/nx,

where nx is the size of the state-space of X. In this case, the entropy takes its maximum

value of lnnx. The bounds on entropy are

0 ≤ S(X) ≤ lnnx (2.19)

where the lower bound corresponds to the deterministic limit, and the upper bound to the

maximum uncertainty limit. For a multivariate system the entropy is given by

S(X) = −
∑
X

p(x) ln p(x) (2.20)

where p(X) is the joint distribution of the system. Also, the entropy of two independent

sets of variables is additive,

S(X,Y) = S(X) + S(Y) (2.21)

since p(x,y) = p(x)p(y) for independent variables.
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2.3.1 Conditional entropy

Suppose we have another random variable Y , in addition to X. We ask the question:

what is the uncertainty in X given that Y = y? This is given by the entropy of the

conditional distribution p(X|y):

S(X|y) = −
∑

x∈ΩX

p(x|y) ln p(x|y). (2.22)

We define conditional entropy, S(X|Y ), as the average of the uncertainty in X given y,

for all possible values of Y . The conditional entropy is obtained by taking an average of

S(X|y) with respect to the probability distribution of Y :

S(X|Y ) ≡
∑
y∈ΩY

p(y)S(X|y) . (2.23)

Using Eq. 2.22 we get

S(X|Y ) =
∑
y∈ΩY

p(y)

−
∑

x∈ΩX

p(x|y) ln p(x|y)


= −

∑
y∈ΩY

∑
x∈ΩX

p(y) p(x|y) ln p(x|y)

= −
∑
y∈ΩY

∑
x∈ΩX

p(x, y) ln
p(x, y)

p(y)

= −
∑
y∈ΩY

∑
x∈ΩX

p(x, y) ln p(x, y)−

−
∑
y∈ΩY

∑
x∈ΩX

p(x, y) ln p(y)


= S(X,Y )− S(Y ) (2.24)

where, in the last step, we summed over X to get S(Y ). Thus, the average uncertainty in

X conditioned on knowledge of Y is expressed as the following conditional entropy:

S(X|Y ) = S(X,Y )− S(Y ) . (2.25)

Notice that, if X and Y are independent then, we have

S(X|Y ) = S(X)

and S(Y |X) = S(Y ) (2.26)
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which is consistent with the intuitive expectation that if the two variables are independent,

then knowledge of one does not give any information on the other. In the other limit, if X

is perfectly correlated with Y so that specifying Y determines X, we expect the conditional

entropy to be zero. This can be seen as follows. In case of perfect correlation, the matrix

of the joint distribution, p(X,Y ), is diagonal, so the conditional distribution p(X|y) is zero

for each value of y (i.e., for each column) for all x except one. As a result, from Eq. 2.22,

S(X|y) = 0 giving S(X|Y ) = 0. Thus, the bounds on conditional entropy are

0 ≤ S(X|Y ) ≤ S(X)

0 ≤ S(Y |X) ≤ S(Y ) (2.27)

where the lower bound corresponds to perfect correlation and upper bound to independence

of the two variables. Note that conditioning can only reduce the entropy of or the

uncertainty in a variable.

Based on the conditional independence relations from Eq. 2.17, and additivity of

entropy, if X and Y are conditionally independent on knowledge of Z, we have

S(X,Y |Z) = S(X|Z) + S(Y |Z) . (2.28)

An important relation based on the conditional entropy is the chain rule for the entropy

of a multivariate system

S(X1, ..., XN ) = S(X1) + S(X2|X1) + S(X3|X1, X2) + . . .+ S(XN |X1, ..., XN−1) . (2.29)

Using the fact that conditioning reduces entropy, i.e. S(Xi|X1, . . . , Xi−1) ≤ S(Xi), we get

the following inequality for the entropy of the full system

S(X1, ..., XN ) ≤ S(X1) + S(X2) + . . .+ S(XN ) (2.30)
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and the equality is obtained when all variables are independent. In other words,

correlations reduce the entropy of a system. The above relations can be extended to

sets of multiple variables, e.g. S(X|Y) = S(X,Y)− S(Y), etc.

2.3.2 Kullback-Leibler distance

The Kullback-Leibler (KL) distance, also known as relative entropy or KL divergence,

between two normalized distributions, p(X) and q(X), that are defined on the same state

space, is given by [42]

D(p||q) ≡
∑
X

p(X) ln
p(X)

q(X)
. (2.31)

D(p||q) is a measure of the deviation between the two distributions. The KL distance is

zero iff the two distributions are equal, and is not symmetric, that is, D(p||q) ̸= D(q||p).

An important property of KL distance is that it is non-negative [43], so that,

D(p||q) ≥ 0

⇒
∑
X

p(X) ln p(X) ≥
∑
X

p(X) ln q(X)

⇒ S(X) ≤ −
∑
X

p(X) ln q(X) . (2.32)

The expression on the left-hand side is the entropy of p, and the expression on the right-

hand side is termed the cross-entropy of q with respect to p. The inequality implies that

the cross-entropy of any approximation to p will be greater than the entropy of p. Note

that the above inequality for normalized distributions is a special case of a more general

statement. By using the log-sum inequality [43], it can be shown that, the inequality holds

as long as normalization factor of p is greater than that of q.
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2.3.3 Mutual information between two variables

Using the concept of conditional entropy discussed in Section 2.2.1, we can answer

the question: How does the uncertainty in X change when one is provided with knowledge

of Y ? We have seen that the uncertainty in X is given by the entropy S(X), while the

average uncertainty in X given knowledge of Y is the conditional entropy S(X|Y ). We

thus define the reduction in uncertainty of X due to learning the value of Y as

I(X;Y ) ≡ S(X)− S(X|Y ) . (2.33)

Since the reduction in uncertainty is equivalent to the gain in information, I(X;Y ) can

also be viewed as the gain in information about X due to knowledge of Y . Using Eq. 2.25,

I(X;Y ) = S(X) + S(Y )− S(X,Y ) (2.34)

Similarly, the gain of information about Y due to knowledge of X is

I(Y ;X) ≡ S(X)− S(X|Y )

= S(X) + S(Y )− S(X,Y ) (2.35)

where Eq. 2.25 is used in the second step. I(X;Y ) and I(Y ;X) are termed the mutual

information between X and Y . It is evident that the mutual information is symmetric in

the two variables, implying that the gain in information about X due to knowledge of Y is

same as the gain in information about Y due to knowledge of X. In terms of probability

distributions, we have

I(X;Y ) =
∑

x∈ΩX

∑
y∈ΩY

p(x, y) ln
p(x, y)

p(x)p(y)
(2.36)

which is same as the KL distance between the joint and the product distributions.

Therefore, the mutual information is zero iff the two variables are independent and is
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positive otherwise. If the two variables are perfectly correlated, we get I(X;Y ) = S(X),

implying that the uncertainty in X is completely removed on knowledge of Y , as would be

expected. Note that if X and Y are perfectly correlated then S(X) = S(Y ). The bounds

on mutual information are

0 ≤ I(X;Y ) ≤ min{S(X), S(Y )} (2.37)

where the lower bound corresponds to independence and upper bound to perfect

correlation. Based on these properties, the mutual information has been used as a measure

of correlation between the two variables. It is always non-negative, and greater mutual

information indicates higher correlation. Note that mutual information can measure

non-linear correlations as well, unlike linear measures, such as the Pearson’s correlation

coefficient. As a side note, since S(X|X) = 0, from Eq. 2.34, I(X,X) = S(X); based on

this property, entropy is sometimes also referred to as the self-information. Extending the

above relations to two sets of multiple variables, we have,

I(X;Y) = S(X) + S(Y)− S(X,Y)

=
∑
X

∑
Y

p(x,y) ln
p(x,y)

p(x)p(y)
. (2.38)

2.3.4 Mutual information among three variables

We have seen that the gain in information for X on learning Y is the mutual

information I(X;Y ), which is also a measure of correlation between X and Y . We next

consider how the correlation between variables X and Y may change when the value of a

third variable, Z, becomes known. By analogy with conditional entropy, discussed above,

we define a mutual information between X and Y conditioned on knowledge that the value
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of Z is z:

I(X;Y |z) ≡ S(X|z)− S(X|Y, z)

=
∑

x∈ΩX

∑
y∈ΩY

p(x, y|z) ln
p(x, y|z)

p(x|z)p(y|z)
. (2.39)

Note that the expression in terms of distributions is similar to that for the unconditioned

mutual information in Eq. 2.36, except that all distributions are now conditioned on z.

Also, since it is the KL distance between two distributions, it is non-negative. Averaging

I(X;Y |z) over all possible values of Z gives the expression for the conditional mutual

information among the three variables:

I(X;Y |Z) =
∑
z∈ΩZ

p(z)I(X;Y |z)

=
∑
z∈ΩZ

p(z)
∑

x∈ΩX

∑
y∈ΩY

p(x, y|z) ln
p(x, y|z)

p(x|z)p(y|z)

=
∑
z∈ΩZ

∑
x∈ΩX

∑
y∈ΩY

p(x, y, z) ln
p(x, y, z)p(z)

p(x, z)p(y, z)

= −S(X,Y, Z)− S(Z) + S(X,Z) + S(Y, Z) . (2.40)

In terms of conditional entropies, using Eq. 2.25, we have

I(X;Y |Z) = S(X|Z) + S(Y |Z)− S(X,Y |Z) (2.41)

which is same as Eq. 2.34 for pairwise mutual informations with all entropies now

conditioned on Z. Conditional mutual information is non-negative and it is zero iff X

and Y are conditionally independent given Z, as can be seen from Eqs. 2.28 and 2.41. In

another limit, if Z is independent of both X and Y , then from Eq. 2.26, the conditional

mutual information reduces to the mutual information between X and Y , as expected,

since Z does not provide any additional information on X or Y . Therefore, we have,

X ⊥ Y |Z ⇒ I(X;Y |Z) = 0

X ⊥ Z andY ⊥ Z ⇒ I(X;Y |Z) = I(X;Y ) . (2.42)
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Using the definition for the conditional mutual information, we now write the change in

correlation between X and Y due to knowledge of Z as

I(X;Y ;Z) ≡ I(X;Y )− I(X;Y |Z) (2.43)

This expression may be usefully reformatted by using Eq. 2.34 and substituting Eq. 2.40

into Eq. 2.43 to yield

I(X;Y ;Z) = S(X) + S(Y ) + S(Z)− (S(X,Y ) + S(X,Z) + S(Y, Z)) + S(X,Y, Z)

(2.44)

involving entropies of all marginals and the full three-dimensional distribution. Remarkably

I(X;Y ;Z) is symmetric in the three variables, similar to the expression for the pairwise

mutual information. Therefore,

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z)

= I(Y ;Z)− I(Y ;Z|X)

= I(X;Z)− I(X;Z|Y ) (2.45)

so that the I(X;Y ;Z) gives the change in correlation between any pair of variables due

to the third variables. The quantity I(X;Y ;Z) is termed the mutual information at third

order and measures the information shared by the three variables. It can be considered as a

measure of correlation existing among the three variables above and beyond that captured

by the pairwise mutual information. In particular, conditional independence of X and Y

on knowledge of Z, cannot be inferred from the pairwise mutual informations. Also, there

may be correlations at the triplet level, even if there are no correlations at the pairwise

level. In contrast to the pairwise mutual information, the third order mutual information

may be either positive or negative. In other words, knowledge of a third interacting variable
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may increase or reduce the correlation between the other two variables. To illustrate this,

perhaps unexpected result, in Section 2.3.4.1 we take a digression from the main text to

present examples for a simple system with three binary random variable.

In physical systems, one can imagine, for example, that correlations in motions of two

distant side chains in a protein may become independent on treating the protein backbone

as rigid. In other words, side chain motions may become independent conditional on the

backbone coordinates, so the third order mutual information among the coordinates of the

two side chains and the backbone will be positive. As another example, Matsuda used

analytically solvable model systems of 3-6 interacting spins to relate the phenomenon of

frustration to the sign of the third and higher order mutual informations [32].

We list below the main relations of this section and a few additional useful identities:

I(X;Y |Z) = I(X;Y, Z) − I(X;Z)

= S(X|Z)− S(X |Y, Z)

= S(X |Z) + S(Y |Z)− S(X,Y |Z)

I(X ;Y ;Z) = I(X;Y ) + I(Y ;Z) − I(Y ; X , Z) (2.46)

where I(X;Y, Z) denotes the mutual information between distributions p(X) and p(Y, Z),

I(X;Y,Z) = S(X)+S(Y, Z)−S(X,Y, Z) and is different from I(X;Y ;Z). These relations

are valid for three sets of multiple variables as well. Finally, using the fact that both terms

in the definition of I(X;Y ;Z) (Eq. 2.45) are non-negative, the following bounds can be

obtained on the third order mutual information corresponding to conditions where one of

the terms is zero and the other takes an extreme value [44, 32]:

−min{S(X), S(Y ), S(Z)} ≤ I(X;Y ;Z) ≤ min{I(X;Y ), I(Y ;Z), I(X;Z)}

≤ min{S(X), S(Y ), S(Z)} . (2.47)
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2.3.4.1 Sign of the third order mutual information

The sign of the third order mutual information depends on the relative magnitude

of the two terms in Eq. 2.45. This section presents scenarios where the third order mutual

information takes a particular sign.

Considering the negative case first, I(X;Y ;Z) will be negative if, X and Y are

independent in the absence of knowledge of Z, implying I(X;Y ) = 0, but the two become

correlated conditional on Z, implying I(X;Y |Z) > 0. This can be seen in terms of

distributions as follows. Given X ⊥ Y , we can write the joint distribution of the three

variables as

p(x, y, z) = p(x)p(y)p(z|x, y) (2.48)

which gives

p(x, y|z) = p(x, y, z)

p(z)
=

p(z)p(y)p(z|x, y)
p(z)

. (2.49)

In general, the above distribution does not factorize as the product p(x|z)p(y|z), and,

therefore, from Eq. 2.42, I(X;Y |Z) can be positive. To see this more concretely with an

example, suppose X, Y and Z are binary variables, and X and Y are independent and

their joint distribution is:

p(X,Y ) =

1/4 1/4

1/4 1/4

 . (2.50)

Now, suppose Z = (X + Y ) mod2 so that the value of Z is zero if either X or Y is zero,

and one if both are one [45]. Using chain rule, and the above information we can compute

the joint probability of, for example, p(X = 0, Y = 0, Z = 0), as

p(X = 0, Y = 0, Z = 0) = p(X = 0, Y = 0)p(Z = 0|X = 0, Y = 0)

= 1/4× 1

= 1/4 . (2.51)
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Table 2.1: Calculation of p(X,Y, Z) for X ⊥ Y,Z = (X + Y )mod 2

X Y Z p(X,Y ) p(Z|X,Y ) p(X,Y, Z)

0 0 0 1/4 1 1/4
0 1 0 1/4 0 0
1 0 0 1/4 0 0
1 1 0 1/4 1 1/4
0 0 1 1/4 0 0
0 1 1 1/4 1 1/4
1 0 1 1/4 1 1/4
1 1 1 1/4 0 0

Above computation for all combinations of the three variable are listed in Table 2.1.

Using Table 2.1, the marginals of p(X,Y, Z) are obtained as

p(X) = p(Y ) = p(Z) =

1/2

1/2

 (2.52)

p(X,Y ) = p(X,Z) = p(Y, Z) =

1/4 1/4

1/4 1/4

 (2.53)

and the corresponding entropies using Eq. 2.18 are

S(X) = S(Y ) = S(Z) = 1

S(X,Y ) = S(Y, Z) = S(X,Z) = 2 (2.54)

where base 2 is used for the logarithm. The entropy of the full distribution, computed

using Table 2.1, is

S(X,Y, Z) = 2 . (2.55)

Using above entropy values and Eqs. 2.34 and 2.44, the mutual informations are obtained

as

I(X;Y ) = I(X;Y ) = I(X;Y ) = 1 + 1− 2 = 0

I(X;Y ;Z) = (1 + 1 + 1)− (2 + 2 + 2) + 2 = −1 . (2.56)
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Thus, all pairwise mutual informations are zero, indicating no correlations at the pairwise

level, but the third order mutual information is non-zero is negative. Thus, introduction

of a third variable given by a deterministic function of the other two variables introduced

correlations among all three variables.

We can similarly imagine scenarios where the third order mutual information is

positive. For instance, if X and Y are correlated in the absence of information on Z, but

become independent if Z is known, then I(X;Y ;Z) = I(X;Y ) > 0. The joint distribution

in this case is given by

p(x, y, z) = p(z)p(x|z)p(y|z)

= p(z)
p(x, z)

p(z)

p(y, z)

p(z)

=
p(x, z)p(y, z)

p(z)
(2.57)

and, in general, the marginal p(X,Y ) from the above distribution does not factorize as

p(X)p(Y ) giving I(X;Y ) > 0. Following is an illustration for the case of binary variables.

Using Eq. 2.57, starting with the following distributions

p(Z) =

1/2

1/2

 ; p(X,Z) =

1/2 0

0 1/2

 ; p(Y, Z) =

 0 1/2

1/2 0

 , (2.58)

we can construct the full distribution and verify that the entropies are

S(X) = S(Y ) = S(Z) = S(X,Y ) = S(Y,Z) = S(X,Z) = S(X,Y, Z) = 1 (2.59)

giving the mutual informations

I(X;Y ) = I(Y ;Z) = I(X;Z) = 1

and I(X;Y ;Z) = 1 (2.60)

which shows that I(X;Y ;Z) is positive. Note that the conditional mutual information

I(X;Y |Z) using Eq. 2.40 is indeed zero.
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2.3.5 Mutual information expansion (MIE) of entropy

The ideas described in the previous sections, can be generalized to define the mutual

information among any number of variables. By analogy to the definition of third order

mutual information (Eq 2.43), the mutual information among N variables captures the

change in mutual information (or correlation) among any subset of N − 1 variables due to

the knowledge of the last variable:

I(X1; . . . ;XN ) ≡ I(X1; . . . ;XN−1)− I(X1; . . . ;XN−1|XN ) . (2.61)

Expressions for the N -order mutual information in terms of the entropies of all marginals

of the joint distribution of the N -variables can be derived by using the following recursion

formula [32]

IN (X1; . . . ;XN ) = IN−1(X1; . . . ;XN−2;XN−1) + IN−1(X1; . . . ;XN−2;XN )

− IN−1(X1; . . . ;XN−2;XN−1, XN ) (2.62)

where Ik denotes a k-order mutual information. Note that the comma in the third term

indicates a mutual information involving the joint pdf of variables XN−1 and XN . For

illustration, this recursion relation is now used to obtain an expression for the fourth-order

mutual information which is defined as

I(X1;X2;X3;X4) ≡ I(X1;X2;X3)− I(X1;X2;X3|X4) . (2.63)
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Using Eq. 2.62 and a shorthand notation Xi ≡ i, we have

I4(1; 2; 3; 4) = I3(1; 2; 3) + I3(1; 2; 4)− I3(1; 2; 3, 4)

= S(1) + S(2) + S(3)− (S(1, 2) + S(1, 3) + S(2, 3)) + S(1, 2, 3)

+S(1) + S(2) + S(4)− (S(1, 2) + S(1, 4) + S(2, 4)) + S(1, 2, 4)

− (S(1) + S(2) + S(3, 4)− (S(1, 2) + S(1, 3, 4) + S(2, 3, 4)) + S(1, 2, 3, 4))

= S(1) + S(2) + S(3) + S(4)

−(S(1, 2) + S(1, 3) + S(1, 4) + S(2, 3) + S(2, 4) + S(3, 4))

+S(1, 2, 3) + S(1, 2, 4) + S(1, 3, 4) + S(2, 3, 4)

−S(1, 2, 3, 4) (2.64)

where the second step used Eq. 2.44. To illustrate the pattern, we list the expressions of

mutual informations that have been derived so far:

I2(1; 2) = S(1) + S(2)− S(1, 2)

I3(1; 2; 3) = S(1) + S(2) + S(3)− (S(1, 2) + S(1, 3) + S(2, 3) ) + S(1, 2, 3)

I4(1; 2; 3; 4) = S(1) + S(2) + S(3) + S(4)

− (S(1, 2) + S(1, 3) + S(1, 4) + S(2, 3) + S(2, 4) + S(3, 4))

+ S(1, 2, 3) + S(1, 2, 4) + S(1, 3, 4) + S(2, 3, 4)

− S(1, 2, 3, 4) . (2.65)

In general, for any N > 2, the N -th order mutual information is given by [37, 43]:

IN (X1; . . . ;XN ) ≡
N∑
j=1

(−1)j+1
∑
CN

j

Sj(Xi1 , . . . , Xij ) (2.66)

where i1, i2, .. ∈ 1, .., N and
∑

CN
j

denotes a summation over all unique combinations of j

variables out of the full N variables. The N -order mutual information, similar to pairwise
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and third order mutual informations, is symmetric in all variables. IN for N > 2 can be

of either sign and, due to this property, bounds analogous to Eqs 2.37 and 2.47 cannot be

placed on IN for N > 3.

Note that the last term of Eq. 2.66, is the entropy of the joint distribution of all

variables. The equations for IN can be inverted to obtain an expansion for SN , the entropy

of the full N -dimensional distribution, in terms of mutual informations of increasing orders.

For N = 2, 3 and 4, we have

S(1, 2) = S(1) + S(2)− I2(1; 2)

S(1, 2, 3) = S(1) + S(2) + S(3) − (I2(1; 2) + I2(1; 3) + I2(2; 3)) + I3(1; 2; 3)

S(1, 2, 3, 4) = S(1) + S(2) + S(3) + S(4)

− (I2(1; 2) + I2(1; 3) + I2(1; 4) + I2(2; 3) + I2(2; 4) + I2(3; 4))

+ I3(1; 2; 3) + I3(2; 3; 4) + I3(1; 3; 4) + I3(1; 2; 4)

− I4(1; 2; 3; 4) . (2.67)

which can be verified using expressions for mutual information from Eq. 2.65. Generalizing

for any N > 2, gives the Mutual Information Expansion (MIE) for the entropy of an N -

dimensional system [31, 32, 30] :

SN ≡ S(X1, . . . , XN ) =
∑
N

S(Xi1)−
∑
CN

2

I2(Xi1 , Xi2)

+
∑
CN

3

I3(Xi1 , Xi2 , Xi3) + . . .+ (−1)N+1IN (Xi1 , . . . , XiN ) . (2.68)

This expansion allows one to compute the entropy while systematically including the

influence of correlations at successively higher orders as captured by the corresponding

mutual informations. The MIE is exact if mutual informations at all orders, including at

the highest order IN are included. However, since IN requires SN itself (Eq. 2.66), the
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MIE is not particularly useful for computing the entropy if there are strong correlations at

all orders up to N . However, the expansion becomes useful if correlations beyond a certain

order l (< N) are absent or weak enough to justify dropping terms of order greater than

l, to provide a l-level approximation, S(l)
N , to the full entropy, SN :

SN ≈ S
(1)
N =

∑
N

S1

≈ S
(2)
N =

∑
N

S1 −
∑
CN

2

I2

≈ S
(3)
N =

∑
N

S1 −
∑
CN

2

I2 +
∑
CN

3

I3

...

≈ S
(l)
N =

∑
N

S1 −
∑
CN

2

I2 + . . .+ (−1)l+1
∑
CN

l

Il (2.69)

where
∑

N S1 denotes the sum of entropy of all singlet marginals. S
(1)
N , S(2)

N and S
(3)
N are

termed the singlet, doublet and triplet level approximations of the entropy, respectively.

From Eq. 2.30, the singlet approximation to the entropy places an upper bound on the true

entropy, i.e. SN ≤ S
(1)
N . Thus, for a correlated system, the mutual information terms in

the MIE collectively reduce the entropy of the system relative to an uncorrelated system.

Also, since the higher-order mutual informations, except pairwise, can be of either sign

the entropy approximations at successive orders may not decrease monotonically as higher

order mutual informations are included. The l-level entropy approximation do not place

any bounds on the true entropy, SN , a possible explanation for which is given in the next

section.
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2.4 Mutual information and MIE in terms of superposition

approximations

In the previous section we described IN , the mutual information at order N , as a

measure of correlation existing among N variables, and presented expressions for it in

terms of the entropies of the marginal pdfs of the N -dimensional distribution, pN . We

also presented a series of approximations (Eq. 2.69) to the entropy of an N -dimensional

distribution in terms of sums of mutual informations of different orders. Here, we first

review the GKSA distribution which expresses an N -dimensional pdf in terms of all its

marginals up to order N−1 and show that the N -order mutual information can be written

in terms of the GKSA. We then derive the SA-l distribution which allows one to express

an N -dimensional distribution in terms of marginal pdfs of up to a given order l < N

and show that the l-level entropy approximation can be written in terms of the SA-l. The

overall scheme can be summarized as

pN (X1, . . . , XN ) ; SN → {marginals of pN} → p
(l)
N (X1, . . . , XN ) ; S

(l)
N . (2.70)

2.4.1 Generalized Kirkwood superposition approximation

We begin by noting that, for an N = 2 variable system, Eq. 2.36 relates the pairwise

mutual information to the joint distribution and the product distribution of the marginal

pdfs as

I2(X1;X2) =
∑∑

p(x1, x2) ln

(
p(x1, x2)

p(x1)p(x2)

)
. (2.71)

The mutual information at any order N , can be written in a similar form in terms of the

GKSA, p(N−1)
N as [37, 32]:

IN (X1; . . . ;XN ) = (−1)N
∑

X1,...,XN

pN (x) ln
pN (x)

p
(N−1)
N (x)

. (2.72)
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The superscript (N − 1) indicates that the GKSA is a function of all marginals of pN up

to order N − 1. The first proposed and the simplest SA, corresponding to N = 3, is the

KSA [25]

p
(2)
3 (1, 2, 3) =

p(1, 2)p(1, 3)p(2, 3)

p(1)p(2)p(3)
(2.73)

which is a function of only the one- and two-dimensional marginals of the full distribution

p3(1, 2, 3). This can be verified by substituting the KSA in Eq. 2.72 and comparing the

resulting expression in terms of entropy of the marginals of p3 with I3 in Eq. 2.65. For

N = 4, the p
(3)
4 distribution is the FKSA [27]

p
(3)
4 (1, 2, 3, 4) =

p(1, 2, 3)p(1, 2, 4)p(1, 3, 4)p(2, 3, 4)
p(1,2)p(1,3)p(1,4)p(2,3)p(2,4)p(3,4)

p(1)p(2)p(3)p(4)

(2.74)

which includes all marginal pdfs of up to order N − 1 = 3. Denoting the product of all

CN
j j-order marginal pdfs of the N -dimensional distribution by

P(N,j) ≡
∏

1≤i1<i2<...<ij≤N

pj(i1, . . . , ij) (2.75)

the GKSA for any N ≥ 2, is given by [37, 32, 30]:

p
(N−1)
N (X1, . . . , XN ) = P+1

(N,N−1)P
−1
(N,N−2) × . . .× P

(−1)N−2

(N,1)

=

1∏
j=N−1

P
(−1)N−1−j

(N,j) . (2.76)

The exponents of the marginals of successive orders alternate between +1 and −1, with

the highest order (= N−1) having an exponent of +1. Substituting the GKSA in Eq. 2.72,

gives the expression for IN in terms of entropies of all marginal distributions (Eq. 2.66).

Note that, if pN = p
(N−1)
N , then IN = 0, implying that in the absence of correlations

at the highest order, the GKSA is exact. Based on this property, which is analogous to the

definition of independence of two variables, GKSA has been used as a definition of “semi-

independence” of more than two variables [38]. Also note that, if there are correlations
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at order N , the GKSA distribution is not normalized, and, in general, the normalization

can be either greater or less than one [46, 26, 30]. As a result despite the resemblance of

Eq. 2.72 to the KL distance expression (Eq. 2.31), the non-negativity of KL distance does

not apply here. This is consistent with the fact that IN , for N > 2, can be of either sign.

The GKSA is related to the l = N − 1 level entropy approximation, Eq. 2.69, as

S
(N−1)
N = −

∑
X

pN (X) ln p
(N−1)
N (X) . (2.77)

This can be seen by using the logarithm to convert the product of pdfs in the GKSA to

a summation and, for each term, marginalizing the variables not present in the marginal

pdf under the logarithm. In other words, the cross-entropy of the GKSA distribution

with respect to pN gives the (N − 1)-level entropy approximation. Since, GKSA is not

normalized if there are correlations at the highest order S(N−1) does not give a bound on

SN . In general, the l-level entropy approximation can be written as

S
(l)
N = −

∑
X

pN (X) ln p
(l)
N (X) (2.78)

where p(l) denotes the l-level SA, or SA-l, approximation to pN which is derived next.

2.4.2 The Superposition Approximation at level l (SA-l)

The SA-l distributions include marginal pdfs of pN of up to order l and have the

general form

p
(l)
N = P

a(l;N,l)
(N,l) P

a(l−1;N,l)
(N,l−1) × . . .× P

a(1;N,l)
(N,l)

=

1∏
j=l

P
a(j;N,l)
(N,j) (2.79)

where a(j;N, l) is the exponent of the product of j-order marginal pdfs; it depends on

the level of approximation, l, and the dimensionality, N . The exponents are derived by
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recursively applying the GKSA on the marginals of the highest order until marginals of

only order l and lower remain. The procedure is best illustrated through simple examples.

In the next subsection, we derive the doublet (SA-2) and triplet (SA-3) level SAs for

an N = 5 dimensional distribution. Generalization to any N and l is discussed in the

subsequent subsection.

2.4.2.1 Examples: SA-2 and SA-3 for a 5-dimensional distribution

From Eq.(2.76) the GKSA expression for N = 5 is

p
(4)
5 (1, 2, 3, 4, 5) =

p(1, 2, 3, 4)p(1, 3, 4, 5)p(1, 2, 3, 5)p(1, 2, 4, 5)p(2, 3, 4, 5)

p(1, 2, 3)p(1, 2, 4)p(1, 2, 5)p(1, 3, 4)p(1, 3, 5)p(1, 4, 5)p(2, 3, 4)p(2, 3, 5)p(2, 4, 5)p(3, 4, 5)

× p(1, 2) p(1, 3) p(1, 4) p(1, 5) p(2, 3)p( p(2, 4) p(2, 5) p(3, 4) p(3, 5) p(4, 5)

p(1)p(2)p(3)p(4)p(5)

= P+1
(5,4)P

−1
(5,3)P

+1
(5,2)P

−1
(5,1) . (2.80)

By applying the FKSA from Eq. 2.74 to each of the five 4-D pdfs we can express the

product of the 4-D pdfs in terms of the 3-, 2- and 1-D pdfs as

P+1
(5,4) =

(p(1, 2, 3)p(1, 2, 4)p(1, 2, 5)p(1, 3, 4)p(1, 3, 5)p(1, 4, 5)p(2, 3, 4)p(2, 3, 5)p(2, 4, 5)p(3, 4, 5))2

(p(1,2) p(1,3) p(1,4) p(1,5) p(2,3)p( p(2,4) p(2,5) p(3,4) p(3,5) p(4,5))3

(p(1)p(2)p(3)p(4)p(5))4

= P+2
(5,3)P

−3
(5,2)P

+4
(5,1) . (2.81)

The triplet level SA, p(3)5 , is then obtained by substituting Eq. 2.81 in Eq. 2.80

p
(3)
5 =

(p(1, 2, 3)p(1, 2, 4)p(1, 2, 5)p(1, 3, 4)p(1, 3, 5)p(1, 4, 5)p(2, 3, 4)p(2, 3, 5)p(2, 4, 5)p(3, 4, 5))1

(p(1,2) p(1,3) p(1,4) p(1,5) p(2,3)p(2,4) p(2,5) p(3,4) p(3,5) p(4,5))2

(p(1)p(2)p(3)p(4)p(5))3

= P+1
(5,3)P

−2
(5,2)P

+3
(5,1). (2.82)

Next, applying the KSA to express the product of the triplet marginals in terms of doublet

and singlet marginals gives

P+1
(5,3) = P+3

(5,2)P
−6
(5,1) (2.83)
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and the doublet level SA, p(2)5 , is obtained by substituting Eq. 2.83 in Eq. 2.82:

p
(2)
5 = =

p(1, 2) p(1, 3) p(1, 4) p(1, 5) p(2, 3)p( p(2, 4) p(2, 5) p(3, 4) p(3, 5) p(4, 5)

(p(1)p(2)p(3)p(4)p(5))3

= P+1
(5,2)P

−3
(5,1) . (2.84)

Thus the exponents for SA-2 and SA-3 for N = 5, are

SA− 2 : a(2; 5, 2) = +1 a(1; 5, 2) = −3

SA− 3 : a(3; 5, 3) = +1 a(2; 5, 3) = −2 a(1; 5, 3) = +3 . (2.85)

2.4.2.2 SA-l for any N , l

Generalizing the above procedure, we obtain the following expression for the

exponents in Eq. 2.79

a(j;N, l) = (−1)l−j
l−j∏
i=1

N − l + i− 1

i
(2.86)

where j = 1, . . . , l ; l < N , as derived in the Appendix A. To illustrate the pattern, we list

the first five SA-l:

p
(1)
N = P+1

(N,1)

p
(2)
N = P+1

(N,2)P
−(N−2)
(N,1)

p
(3)
N = P+1

(N,3)P
−(N−3)
(N,2) P

+
(N−3)(N−2)

2!

(N,1)

p
(4)
N = P+1

(N,4)P
−(N−4)
(N,3) P

+
(N−4)(N−3)

2!

(N,2) P
− (N−4)(N−3)(N−2)

3!

(N,1)

p
(5)
N = P+1

(N,5)P
−(N−5)
(N,4) P

+
(N−5)(N−4)

2!

(N,3) P
− (N−5)(N−4)(N−3)

3!

(N,2) P
+

(N−5)(N−4)(N−3)(N−2)
4!

(N,1) .

(2.87)

One can furthermore verify that, for l = N − 1, the SA-l becomes the GKSA, as it should,

since it was the starting point for deriving SA-l. Also, if all variables are independent, the
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SA-l (l > 1) reduces to the product of the 1-D pdfs, as expected. In this work, only the

singlet, doublet and triplet level approximations are used.

2.4.3 Mixed superposition approximations

The SA-l distributions (Eq 2.79) correspond to the l-level entropy approximations,

which include all mutual informations of up to order l. However, one can imagine a scenario

where only select mutual informations of various orders contribute significantly to the

overall entropy; i.e., only certain variables of the full distribution are highly correlated.

A mixed-order truncation of the mutual information expansion, where select mutual

information terms are retained, can be written as the cross-entropy a SA approximation

of mixed order with respect to the true distribution. The mixed-SA distributions can be

derived by starting from the SA-l corresponding to the highest order of included mutual

informations, and then approximating the marginal pdfs corresponding to the dropped

mutual informations using appropriate GKSAs, as illustrated below.

Suppose, for an N = 5 dimensional system, we wish to derive the mixed-SA

distribution, p(m)
5 , corresponding to the entropy expansion

S(m) = S(1) + S(2) + S(3) + S(4) + S(5)

− (I2(1; 2) + I2(1; 3) + I2(2; 3) + I2(2; 5) + I2(3; 4) + I2(4; 5))

+ I3(1; 2; 3) . (2.88)

The above expansion effectively assumes that the remaining mutual informations –

I(1; 4), I(1; 5), I(2; 4), I(3; 5) among doublets, all triplets except I(1, 2, 3) and all fourth-

order and the fifth order mutual informations – in the full MIE are zero. In order to derive

p
(m)
5 , since in Eq. 2.88 the highest order among the mutual informations is order three, we
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start with the SA-3 approximation from Eq. 2.82

p
(3)
5 =

p(1, 2, 3)p(1, 2, 4)p(1, 2, 5)p(1, 3, 4)p(1, 3, 5)p(1, 4, 5)p(2, 3, 4)p(2, 3, 5)p(2, 4, 5)p(3, 4, 5)
(p(1,2) p(1,3) p(1,4) p(1,5) p(2,3)p(2,4) p(2,5) p(3,4) p(3,5) p(4,5))2

(p(1)p(2)p(3)p(4)p(5))3

.

(2.89)

Expanding all triplet pdfs, except p(1, 2, 3) which corresponding to I3(1, 2, 3), using the

KSA and furthermore the doublets for p(1, 4), p(1, 5), p(2, 4) and p(3, 5) corresponding to

the zero pairwise mutual informations, gives the final mixed-SA:

p
(m)
5 =

p(1, 2, 3)p(2, 5)p(3, 4)p(4, 5)

p(2)p(3)p(4)p(5)
. (2.90)

As a consistency check, note that p(m)
5 reduces to the product of the singlets if all variables

are independent. It can be verified that the cross-entropy of p(m)
5 matches with Eq. 2.88.

2.5 Conclusions

This chapter used concepts from information theory to motivate mutual information

as a measure of correlations among variables of a multivariate stochastic system. We also

presented the MIE of entropy, an exact expansion of the entropy of the system in terms

of mutual information sums of increasing order, and developed approximations to the

entropy by truncating the MIE at various levels under the assumption that higher order

correlations are weak. We showed that any given entropy approximation can be written

as a cross-entropy of a superposition approximation to the full distribution of the system.

Below we summarize some properties of SA-based distributions and make a few additional

points.

(i) Normalization

If the neglected correlations are not absent, the SA-based distributions are not

normalized, and consequently the cross-entropy does not provide a bound on the
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true entropy, SN . In Chapter 3 we develop a normalized distribution, p̃(l), closely

related to the SA-l, whose cross-entropy places an upper bounds on SN (Chapter 5).

(ii) Probabilistic interpretation of GKSA

Based on probabilistic conditions of independence, Singer showed that the GKSA

is exact if any variable out of the total N variables is independent of all other

variables [30]. This is equivalent to the N -order mutual information vanishing if

any one of the N variables is independent of the other variables (Section 2.3.4). In

terms of N -particle distribution functions of liquids, this condition is equivalent to

the assumption that one of the particles is not interacting with the other particles.

(iii) SA-based distributions do not preserve marginals

The SA-based distributions can be considered probabilistic closure equations, since

they approximate a higher dimensional distribution in terms of its marginals. It is

worth mentioning that the SA distributions, in general, are not marginal-preserving

closures; i.e., a marginal of the SA-l need not equal the corresponding marginal of

the full distribution that the SA-l approximates.

(iv) SA-l is a fully coupled distribution

The SA-l distributions, except for the trivial case of l = 1, are fully coupled “all-

to-all” distributions, which means that they cannot be factorized by grouping the

marginals into factors with non-overlapping subsets of the variables. This property

has implications for numerical calculations of marginals or the normalization of the

SA-l distributions. For instance, calculation of the normalization, which requires

summing over the N -dimensional state space will be an O(BN ) calculation, where

B is the number of discrete states for each variable, and hence computationally
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infeasible for large N .

Finally, we note that the SA-based approximations of a multivariate distribution and the

MIE-based approximations to the entropy of the distribution are based on assumptions

regarding the strength of correlations of various orders among the variables of the system.

However, for a complex and high-dimensional system, such as the molecular systems

considered in this work, it is difficult to determine the strength of various correlations

a priori, necessitating empirical tests of the approximations. One such test is developed

in the next chapter.
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Chapter 3

Superposition Approximation Based

Conformational Sampling

3.1 Introduction

The thermal fluctuations of the internal degrees of freedom of a flexible molecule

are correlated, due to the bonded and non-bonded interactions among its atoms. The

configurational entropy is a measure of a molecule’s thermal fluctuations. Recent

calculations of the configurational entropy for small (<50 atoms) molecules, with two

independent approaches [47, 48], have provided preliminary insights into the contributions

of correlations of various orders to the conformational fluctuations.

In one approach, the MIE of entropy was used to approximate the full entropy

using mutual information terms of orders up to only l=1, 2 or 3, effectively assuming that

correlations of higher orders are absent [48]. The retained mutual information terms were

computed from marginals of the Boltzmann distribution; these, in turn, were computed

as normalized histograms of coordinate values in a Boltzmann distributed ensemble of

conformations generated by a MD simulation. The MIE-based low-order approximations

of the entropy were furthermore compared with numerical results from the Mining Minima
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(M2) method [47]. In M2, the configurational integral of a molecule is computed as a

sum over local energy minima on a molecular mechanics force-field energy surface, where

the energy minima are enumerated using an aggressive search algorithm. M2 provides

the free energy and average energy of a molecule, and the configurational entropy can be

computed from the difference between these two quantities. Since the M2 method uses the

full configurational integral (subject to the approximation of summing over local energy

wells), it implicitly accounts for all physically relevant correlations at a given temperature.

The observation of relevance here is that, for small molecules, molecular entropies estimated

with the MIE at the doublet and triplet levels – i.e., neglecting correlations above second

and third order, respectively – agreed well with independent M2 calculations [48]. Because

M2 implicitly includes all correlations, this observation suggests that most of the physically

relevant fluctuations of these molecules involved only low-order correlations. This leads to

the hypothesis that conformational probability distributions may be well described with a

tractable set of low-order distribution functions. In this chapter, a novel approach to test

this hypothesis is presented.

More particularly, we pose the question: how accurately can the conformational

fluctuations of a molecule in a thermal environment be described without accounting

for high-order correlations? This is addressed by developing a conformational sampling

algorithm that allows one to sample conformations in the full N -dimensional space using

only the low-order marginal distributions of the full Boltzmann distribution, the same

marginals that were used for the MIE entropy calculations mentioned above. The sampling

algorithm at level l uses pdfs of highest order l. The ensemble of conformations sampled

at different levels is evaluated by comparing with the MD ensemble used to populate

the pdfs. Based on tests on multiple small molecules with different bonded topologies,
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we find, in brief, that the ensemble of sampled conformations better resembles the MD

ensemble as successively higher-order correlations are included. For molecules with linear

chain-like topologies, conformations sampled at the doublet level match MD conformations

rather well, while the triplet level sampling generated high quality conformations for all

molecules. These results suggest that the low-order correlations suffice to describe most

of the conformational fluctuations of molecules in a thermal environment. The rest of

this chapter is divided into two main sections. The first develops the sampling algorithm

and discusses its mathematical and computational properties, and the second describes

the application of the sampling algorithm to molecular system. A practical application of

the sampling algorithms for calculation of absolute free energy of molecules is presented in

Chapter 4. This chapter is based on Ref [49].

3.2 SA-l based ancestral sampling algorithms

Following notation from Chapter 2, we consider an N -dimensional pdf

pN (X1, X2, . . . , XN ) of discrete valued variables X1, X2, . . . , XN each of which can take

B different values, so that the N -dimensional discrete space consists of BN points. The

distribution pN will typically be a high dimensional distribution but its low-order marginals

can be numerically approximated using samples drawn from pN . The goal in this section is

to sample points the N -dimensional space using marginal pdfs of pN of up to order l < N .

The sampling algorithm is based on the SA-l distributions described in Section 2.4.2, and

is done using a variant of the ancestral sampling algorithm [50].
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3.2.1 Ancestral sampling

The ancestral algorithm allows exact sampling from an N -dimensional distribution

and is based upon the chain rule:

pN (X1, ..., XN ) = p(X1) p(X2|X1) p(X3|X1, X2) × ...× p(XN |X1, ..., XN−1) . (3.1)

This product can be represented graphically by the directed, acyclic graph shown in

Figure 3.1, where each node represents a variable and the incoming arrows originate from

the “parent” nodes, that is, the nodes of the conditioning variables. The following pseudo-

code explains how the ancestral algorithm samples a point x = (x1, ..., xN ) from pN :

Algorithm 1: Ancestral sampling

Step 1: x1 ∼ p(X1)

Step 2: x2 ∼ p(X2|pa(X2)) = p(X2|x1)

Step 3: x3 ∼ p(X3|pa(X3)) = p(X3|x1, x2)

Step 4: FOR k = 4 to N

xk ∼ p(Xk|pa(Xk)) = p(Xk|x1, ..., xk−1)

ENDFOR

where pa(Xk) are the parent variables for Xk and “∼” means “sampled from”. Thus, the

first variable is sampled from its one-dimensional singlet distribution, and each subsequent

variable is sampled from its one-dimensional distribution conditioned upon the values of

all the variables that have been sampled so far. This algorithm is exact since, in the limit

of infinite sampling, the sampled points are distributed as pN . It is also worth noting

that variables can be sampled in any order, so long as one has access to the required

conditionals; and that, in contrast with Monte Carlo or molecular dynamics sampling,

successive samples are uncorrelated.
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Figure 3.1: Representation of an N -dimensional distribution function
p(X1, ..., XN ) as a directed graph. Variables are represented by circles
containing the label of the respective variables. Solid arrows indicate the
conditional dependencies of each variable as per the one dimensional conditional
distribution indicated on the right of each node. Dashed lines schematize
elided portions of the graph. The ancestral sampling uses exact conditional
distributions for each variable. The l-level sampling algorithms presented in
Section 3.2 use approximations to conditional pdfs for (l+ 1)-th and following
variables. Doublet level algorithm uses Eq. 3.10 while triplet level algorithm
uses Eq. 3.11.
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3.2.2 Superposition approximation based conditional distribution

In ancestral sampling, the k-th variable is sampled from its conditional distribution

given values of the previous k−1 sampled variables. Using the product rule for conditional

pdfs, we have

p(Xk|x1, ..., xk−1) =
pk(x1, ..., xk−1, Xk)

pk−1(x1, ..., xk−1)
(3.2)

which requires marginal pdfs of order k and k− 1. Since the marginal pdfs of orders k > l

are not available, we approximate them using the SA-l

p(Xk|x1, ., xk−1) ≈ p
(l)
k (Xik |x1, ., xk−1)

= p
(l)
k (x1, ., xk−1, Xk)

1

Nk(x1, ., xk−1)
(3.3)

where the pdf of the already sampled variables in the denominator of Eq. 3.3 is absorbed

into the normalization constant Nk, as elaborated below. The doublet level approximations

(l = 2) to p(X3|x1, x2) and p(X4|x1, x2, x3) are now derived as illustrations.

Considering p(X3|x1, x2) first, we apply the SA-2 (Eq. 2.73) approximation to a 3-D

pdf to obtain

p(X3|x1, x2) =
p(x2, x1, X3)

p(x1, x2)

≈ p(x2, X3)p(x1, X3)p(x1, x2)

p(x1)p(x2)p(X3)

1

p(x1, x2)

=
p(x1, X3)p(x2, X3)

p(X3)

[
1

p(x1)p(x2)

]
(3.4)

where pdfs that do not depend on X3, the variable to be sampled, are collected in the square

bracket. Eq. 3.4 is a one-dimensional distribution in X3 and is not normalized because

the SA-l distributions are not normalized. However, normalization can be imposed in the

standard manner by dividing by the sum of the distribution for all values of X3. Thus,
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dividing Eq. 3.4 by [
1

p(x1)p(x2)

]∑
X3

p(x1, x3)p(x2, x3)

p(x3)
(3.5)

cancels the pdfs in the square brackets giving the required doublet level approximation of

the third order conditional as

p(X3|x1, x2) ≈ p(2)(X3|x1, x2)

=
p(x1, X3)p(x2, X3)

p(X3)

1

N3(x1, x2)
. (3.6)

The normalization factor N3(x1, x2) is

N3(x1, x2) =
∑
X3

p(x1, x3)p(x2, x3)

p(x3)
(3.7)

which is a sum over only the pdfs that contain X3. Following similar steps, we can write

the doublet level approximation of the conditional distribution of X4 given x1, x2 and x3,

as

p(X4|x1, x2, x3) ≈ p(2)(X4|x1, x2, x3)

=
p
(2)
4 (x1, x2, x3, X4)

p
(2)
3 (x1, x2, x3)

=
p(x1, x2) p(x1, x3) p(x1, X4) p(x2, x3) p(x2, X4) p(x3, X4)

(p(x1) p(x2) p(x3) p(X4))
2

1

p
(2)
3 (x1, x2, x3)

=
p(x1, X4) p(x2, X4) p(x3, X4)

(p(X4))
2

1

N4(x1, x2, x3)
(3.8)

where the SA-2 for N = 4 (Eq. 2.79 with N = 4 and l = 2) is used in the second

step, and all pdfs independent of X4 cancel due to normalization. Note that pdfs that

do not contain the variable to be sampled essentially generate constants multiplying the

1-D conditional distribution of the variable, and therefore are eliminated by normalization.

The normalization factor in Eq. 3.8 is given by

N4(x1, x2, x3) =
∑
X4

p(x1, x4) p(x2, x4) p(x3, x4)

(p(x4))
2 . (3.9)
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More generally, at the doublet level, the normalized conditional probability distribution of

variable Xk, k > 2, given values of the other k − 1 variables, takes the form

p(Xk|x1, . . . , xk−1) ≈ p(2)(Xk|x1, . . . , xk−1)

=

∏
1≤i≤k−1

p(xi, Xk)

(p(Xk))
k−2

1

Nk (x1, . . . , xk−1)
. (3.10)

Similarly, the triplet level approximation of the conditional distribution, obtained by using

SA-3 in Eq. 3.3, is:

p(Xk|x1, . . . , xk−1) ≈ p(3)(Xk|x1, . . . , xk−1)

=

(p(Xk))
(k−3)(k−2)

2
∏

1≤i<j≤k−1

p(xi, xj , Xk)( ∏
1≤i≤k−1

p(xi, Xk)

)(k−3)

1

Nk (x1, . . . , xk−1)

(3.11)

where k > 3. In this work, only the doublet and triplet level approximations to the

conditional pdfs are used, but expressions for approximate conditional pdfs using SA-l at

higher levels and mixed SA can be derived similarly. Note that the normalization factors

can be computed efficiently on the fly as they are summations over a single variable; and

that the normalization factor for the conditional pdf of Xk depends only on the previously

sampled variables x1, . . . , xk−1.

3.2.3 Sampling based on low-order marginal pdfs

The SA-l based conditional probability distributions are now inserted into the

ancestral sampling algorithm to enable ancestral-style sampling from an approximation of

the targeted N -dimensional pdf, based upon only its singlet, doublet and triplet marginal

pdfs. Sampling at level l will refer to sampling using marginal pdfs of order l and lower.

Thus, the singlet level algorithm uses only the N singlet pdfs, doublet level uses the
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N(N − 1)/2 doublet pdfs as well, and the triplet-level algorithm incorporates, in addition,

the N(N − 1)(N − 2)/6 triplet pdfs. We now describe the sampling algorithms, starting,

for completeness, with the singlet level sampling algorithm, although it does not require

construction of SA-l based conditional pdfs.

For singlet level sampling, all variables are assumed to be independent, so one simply

samples each variable from its singlet distribution without reference to the other variables.

The pseudocode for the singlet level sampling algorithm thus is:

Algorithm 2: Singlet level sampling

Step 1: x1 ∼ p(X1)

Step 2: x2 ∼ p(X2)

:

Step k: xk ∼ p(Xk)

:

Step N: xN ∼ p(XN )

This algorithm effectively samples from the N -dimensional distribution

p̃
(1)
N = p(X1)× p(X2)× . . .× p(XN ) . (3.12)

Similar to ancestral sampling, singlet level sampling is independent of the sampling order.

Also, since all singlet pdfs are normalized, p̃(1)N is normalized.

For sampling at higher levels, the conditional distributions for the first l variables are

computed using Eq. 3.2, with the available marginal pdfs, just as in the regular ancestral

algorithm; but the SA-l based approximations are used for the subsequent variables. Thus,

for the doublet level sampling algorithm, approximate conditional pdfs computed using the

singlet and doublet marginal pdfs are used to sample the third and subsequent variables.
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The pseudocode for doublet level sampling is:

Algorithm 3: Doublet level (l = 2) sampling

Step 1: x1 ∼ p(X1)

Step 2: x2 ∼ p(X2|x1)

Step 3: FOR k = 3 to N

xk ∼ p(2)(Xk|x1, ..., xk−1) from Eq. 3.10

ENDFOR

Similarly, triplet-level sampling uses the approximate conditional pdfs to sample variable

X4 onwards:

Algorithm 4: Triplet level (l = 3) sampling

Step 1: x1 ∼ p(X1)

Step 2: x2 ∼ p(X2|x1)

Step 3: x3 ∼ p(X3|x1, x2)

Step 3: FOR k = 4 to N

xk ∼ p(3)(Xk|x1, ..., xk−1) from Eq. 3.11

ENDFOR

The doublet and triplet level sampling algorithms generalize to higher levels of approximation

– i.e., to larger values of l – and the standard ancestral algorithm is recovered when l = N .

3.2.4 Properties of SA-l based ancestral sampling algorithms

As detailed above, the sampling algorithm at level l samples points in the N -

dimensional space using estimates of the marginal pdfs of the full-dimensional target

distribution, pN , that are of orders l and lower, where l < N . These estimated marginals,

termed the reference marginals, are constructed numerically, as normalized histograms,
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from a finite set of samples from pN . Given a set of NP samples, ΩP = {x1,x2, . . . ,xNP
}

where xi ∼ pN , the probability associated with a reference histogram bin is the fractional

occupancy of the bin. For example, if the number of samples in ΩP with X1 = x1, X2 =

x2, X3 = x3 is n, then the corresponding entry in the 3-D reference pdf has the value

p3(x1, x2, x3) = n/NP , and similarly for all reference pdfs. The reference pdfs are

normalized since they contain fractional occupancy of each bin. An important consequence

of using a finite set of samples to populate the reference pdfs is that if a certain combination

of variable values is absent from ΩP then it is assigned a zero probability in the reference

distribution, even though the corresponding entry in the exact marginal of pN might be

non-zero. The consequences of zeros, or “holes”, in the reference distributions on the output

of the present sampling algorithms are discussed below (item 5).

Mathematical and computational properties of the SA-l based ancestral sampling

algorithms are discussed next. In view of application to conformational sampling later, we

sometimes refer to the N -dimensional discrete space as the conformational space, and to

a point in the space as a conformation.

(i) Sampling distribution

The distribution sampled by the l-level sampling algorithm, denoted by p̃
(l)
N , is

obtained by substituting the conditional pdf (Eqs. 3.10 and 3.11), from which each

variable is sampled, into the chain rule of Eq. 3.1. Thus, the doublet level algorithm

samples from the distribution

p̃
(2)
N = p(X1, X2)p

(2)(X3|X1, X2)× . . .× p(2)(XN |X1, . . . , XN−1) (3.13)

and the triplet-level algorithm from

p̃
(3)
N = p(X1, X2, X3)p

(3)(X4|X1, X2, X3)× . . .× p(3)(XN |X1, . . . , XN−1) . (3.14)
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Although the closed form expression of the p̃
(l)
N distribution is complicated, its value

can be readily be obtained numerically for each sampled conformation. This will be

important when it comes to using the present algorithm for free energy calculations

(Chapter 4).

(ii) The sampling distribution, p̃(l)N , is normalized

The sampling distribution is automatically normalized since all the conditional pdfs

used in the chain rule are normalized. This can be seen as follows:

∑
X1

· · ·
∑
XN

p̃
(l)
N =

∑
X1

· · ·
∑
XN

 p(x1, ..., xl) p(l)(xl+1|x1, ..., xl−1)× . . .×

p(l)(xN−1|x1, . . . , xN−2)p
(l)(xN |x1, . . . , xN−1)



=
∑
X1

· · ·
∑
XN−1


p(x1, ..., xl) p(l)(xl+1|x1, ..., xl−1)× . . .×∑

XN

p(l)(xN |x1, . . . , xN−1)


︸ ︷︷ ︸

=1

 (3.15)

where the innermost summation over the conditional pdf of XN is one due to

normalization. Similarly, successive conditional pdfs are summed out, finally giving

the summation over the highest order reference pdf which is one by construction:

∑
X1

· · ·
∑
XN

p̃
(l)
N =

∑
X1

· · ·
∑
Xl

p(x1, ..., xl)

= 1 . (3.16)

Therefore, the sampling distributions are normalized.

(iii) Relationship between the l-level sampling distribution and the SA-l

The sampling distribution at level l, p̃
(l)
N , is different from the N -dimensional SA-

l distribution, p
(l)
N . One important difference is that the sampling distribution

is normalized, whereas the SA-l, in general, is not. To further appreciate the

relationship between these two distributions, it is instructive to compare their
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analytic expressions for the simple case of a three dimensional distribution at the

doublet level. The SA-2 for N = 3 is

p
(2)
3 (X1, X2, X3) =

p(X1, X2)p(X1, X3)p(X2, X3)

p(X1)p(X2)p(X3)
(3.17)

and the corresponding sampling distribution is

p̃
(2)
3 (X1, X2, X3) =

p(X1, X2)p(X1, X3)p(X2, X3)

p(X3)

1∑̄
X3

p(X1,X̄3)p(x2,X̄3)
p(X̄3)

(3.18)

where X̄3 is a dummy variable for X3. From the above expressions it appears that

the sampling distribution does not include all reference marginal pdfs. However,

comparing Eq. 3.18 with Eq. 3.17, the pdfs absent from p̃
(2)
3 , p(X1) and p(X2), are

marginals of the included 2-D pdfs, p(X1, X2), p(X1, X3) and p(X2, X3). Therefore,

if the 2-D pdfs are non-zero, p(X1) and p(X2) will also be non-zero, and for

any conformation with a non-zero sampling probability the corresponding SA-l

probability will also be non-zero. An important implication of this overlap between

the sampling distribution and the corresponding SA-l distribution is that, due to the

product form of the SA-l, any conformation with non-zero p̃
(l)
N necessarily falls in the

non-zero bins of each reference pdf.

Comparison of Eq. 3.17 with Eq. 3.18 brings out another distinction between the

sampling distribution and the SA-l distribution – p
(2)
3 is symmetric in all three

variables but p̃
(2)
3 in Eq. 3.18 is symmetric in only X1 and X2. In general, due

to the use of the approximate conditional distributions, p̃
(l)
N is symmetric in only

the first l sampled variables; the remaining asymmetry leads to a dependency of p̃(l)N

on the order in which the variables are sampled, in contrast to the SA-l which is

symmetric in all variables.
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(iv) Zeros in reference pdfs may lead to null samples

If the reference pdfs have holes then the doublet and higher level sampling algorithms

can fail to yield a complete set of variables in a sampling iteration. Consider the

following SA-3 based conditional distribution for X4 given values of the first three

variable:

p(3)(X4|x1, x2, x3) =
p(X4)p(x1, x2, X4)p(x1, x3, X4)p(x2, x3, X4)

p(x1, X4)p(x2, X4)p(x3, X4)

1

N4 (x1, x2, x3)
.

(3.19)

In order to be able to sample X4, the conditional probability for at least one out of

the B possible values of X4 must be non-zero. This may not hold if, for each value

of X4, one or more of the pdfs in Eq. 3.19 are zero. In practice, a sampling iteration

is terminated if this null condition is encountered, and a new iteration is begun. The

possibility of generating a null sample is likely to decreases as more data is used to

populate the reference marginals.

(v) Reference pdfs restrict the accessible conformational space

As discussed in the previous two items, any conformation sampled from the l-level

sampling algorithm necessarily falls in the non-zero bins of every reference pdf used,

thereby restricting the conformational space accessible to the sampling algorithms.

The accessible region of conformational space can shrink as higher-order reference

pdfs are incorporated, since these may include zero-probability bins not present in the

lower-order pdfs. Indeed, this will often be the case, because higher-order pdfs have

more bins and are therefore require more data to be adequately populated. Therefore,

the conformational region accessible to singlet level sampling will typically be larger

than that accessible to doublet level sampling, which in turn will be larger than at

the triplet-level, and so on. Denoting the set of conformations accessible to l-level
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sampling by Ω(l), we have

Ω ⊇ Ω(1) ⊇ Ω(2) ⊇ Ω(3) ⊇ . . . ⊇ ΩP (3.20)

where Ω is the set of all possible BN conformations in the discrete state-space. Note

that the points used to populate the reference distributions, ΩP , by construction are

associated with bins having non-zero probability in all reference distributions and,

therefore, will fall in regions accessible to sampling at all orders. In other words,

although the accessible region may be restricted, it will always be at least as large as

the region represented by the original samples from the true distribution pN . Indeed,

due to the omission of higher level marginals, the sampling algorithms can generate

conformations which are distinct from those used to populate the reference pdfs.

Note that since conformations in ΩP are used to populate the reference pdfs, the

accessible region Ω(l), in turn, is influenced by ΩP .

(vi) Computational cost and memory requirement

The computational cost of the l-level sampling algorithm for generating a single

sample in N -dimensions scales as O(N l). At the singlet level (l = 1), all variables

are sampled independently from their singlet pdfs, so the cost is simply N times

the cost of sampling a single variable, giving a linear scaling with N . Sampling

at higher levels has the additional cost of computing the conditional pdfs, which,

for the last variable sampled, involves a product of all the reference pdfs. At

the doublet level, since there are O(N) singlet pdfs and O(N2) doublet pdfs, the

number of multiplication operations is O(N2), which implies quadratic scaling of the

computational cost. Similarly, the computational cost of triplet-level sampling scales

as O(N3). All algorithms scale linearly with respect to B, the number of discrete
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values for each variables.

The present MATLAB [51] implementation took 0.0017, 0.04 and 0.6 seconds on a

3.8 GHz Pentium 4 PC for an N = 32, B = 30 test case at the singlet, doublet

and triplet levels, respectively. We anticipate that the computer time could be

substantially reduced by reimplementation of the algorithm in a lower level language,

such as C or Fortran, and by straightforward code optimizations. Furthermore, the

wall-clock time required to generate a given number of samples would be reduced

substantially by distributing the computation on multiple parallel nodes, especially

since the sampling iterations are independent, so that no internode communication

would be required. In other words, the sampling can be done in an embarrassingly

parallel fashion.

The reference pdfs of order l are stored as l-dimensional matrices with Bl elements.

Since there are CN
l pdfs at order l, the total numbers of elements in all doublet and

triplet reference distributions are, respectively, (N(N − 1)/2)B2 and

[(N(N−1)(N−2))/6]B3. In general, the storage required for l-order pdfs is O(N lBl),

and these numbers can become large for molecular systems. For example, in this

work, the largest molecular system considered at the doublet level (tetra-alanine in

Chapter 4) has N = 150 and B = 30 and required storage of ∼107 numbers for the

doublet distributions; and the largest system at the triplet level (host-guest complex

in this Chapter) has N = 32, B = 30 which corresponds to ∼109 bins requiring about

1 GB of memory at double precision (8 byte floats). However, the storage requirement

was reduced by as much as six-fold by using a sparse matrix representation of the

pdfs, where only the non-zero entries are stored.
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(vii) Numerical implementation of conditional pdfs

The conditional probability distribution constructed at each step of the SA-l based

sampling algorithms (Eqs. 3.10 and 3.11) requires the product of the probability

values from the reference distributions. The number of factors in this product

becomes large as the number of variables increase. Direct multiplication of these

factors can lead to underflow errors, because the probabilities that are multiplied are

less than one. This problem is solved by taking the logarithms of the factors and

adding them, instead of multiplying the factors themselves.

3.3 Application of SA-l based sampling to molecular systems

In this section, the SA-l based sampling algorithms developed above are applied

to the problem of conformational sampling for molecules. The dimensionality of the

conformational space, N , is the number of internal coordinates of the molecule; the true

distribution, pN , is the Boltzmann distribution corresponding to a molecular mechanics

force-field (Eq. 1.1); and the reference distributions are populated using MD simulation

data. The continuous conformational space sampled by the MD simulations is discretized

to compute the reference distributions as detailed below. We wish to determine whether

the molecular conformations sampled using the low-order reference distributions are

distributed similarly to the original MD conformations used to populate the reference

pdfs.

Following is an overview of the overall computational protocol followed here:

(i) Run a constant temperature MD simulation of the molecule of interest (Section

3.3.2), saving NP conformations.
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(ii) For each saved snapshot of the MD trajectory, extract the bond-angle-torsion

(BAT) and Anchored Cartesian (XYZ) internal coordinates (Section 3.3.1); discretize

each coordinate, ξi, into equally spaced bins of width, δi = ∆i/B, where

∆i = ξi,max − ξi,min is the difference between the maximum and minimum observed

value.

(iii) Map the continuous space BAT and XYZ conformations to the discrete space where

a conformation, X = (X1, . . . , XN ), is specified by N integers in {1, .., B} denoting

the bin number for each coordinate.

(iv) Construct normalized histograms of the discrete space MD coordinates to obtain

the first-, second- and third-order reference pdfs for both coordinate systems

(Section 3.3.3).

(v) Use these reference pdfs in the SA-l based sampling algorithms (Section 3.2)

to generate NR samples, each representing a conformation in the discretized

conformational space.

(vi) For each reference sample, map the sampled bin numbers to real values of the internal

coordinates by assigning the center-of-bin values to each coordinate as

ξi(Xi) = ξi,min + (Xi − 1/2)δi (3.21)

and reconstruct the three-dimensional conformation of the molecule.

(vii) Compare the distributions of internal coordinates, conformations and force-field

energies obtained by SA-l sampling to those from the original MD run (Section 3.3.4).
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3.3.1 Internal coordinate systems for molecules with branched topologies

The MD conformations are mapped to an internal coordinate system to remove

three translational and three rotational degrees of freedom that are not involved in the

Hamiltonian for the field-free systems considered here. The correlations among the internal

coordinates, as captured by the reference pdfs, depend on the specific internal coordinate

system used. To assess the impact of the choice of coordinate system, we examine both

the bond-angle-torsion (BAT) and anchored Cartesian (XYZ) coordinate systems [52, 53].

The XYZ system is defined in terms of three root atoms, and the molecule is oriented

such that atom 1 is at the origin, atom 2, which is bonded to atom 1, is on the positive

x-axis, and atom 3 is in the x−y plane, thereby fixing six Cartesian coordinates to zero. In

BAT coordinates, the conformation of an M -atom molecule is given by M−1 bond-lengths,

M − 2 bond-angles, and M − 3 torsions. Note that both the XYZ and BAT coordinate

systems are non-unique, in the sense that the coordinates depend upon the choices of root

atoms and, for BAT coordinates, the choices of bond-angles and torsions selected as internal

coordinates and the treatment of so-called phase angles [54]; the coordinate setups used

for the molecules studied here are described in the next section. The correlation among

the coordinates is expected to be less in the BAT system because the bonded energy terms

in the force-field used for MD simulation are defined in terms of the BAT coordinates, and

the natural circular motions of atoms associated with torsional fluctuations are naturally

handled in BAT coordinates. The XYZ system, on the other hand, is more convenient for

computing the force-field energy of molecules since most software implementations of the

force-fields require the input to be in Cartesian coordinates. It is straightforward to map

back and forth between XYZ and BAT coordinates.
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3.3.2 Molecular test systems

Three molecular systems are studied: nonane, cyclohexane, and a small host-guest

complex [55, 56]. Figure 3.2 diagrams the chemical structures of these molecules and the

subsets of atoms used for testing the sampling algorithms. For each system, 5 million MD

snapshots spanning 50 ns of a single MD simulation were processed to generate the reference

marginals. The MD trajectories were those used in a previous study of configurational

entropy from our group [48]. The MD simulations use an all-hydrogen CHARMM force-

field [57] and approximate the effects of solvent with a simple distance-dependent dielectric

model [58], Dij = 4rij , where rij is the distance in angstroms between atoms i and j.

In order to reduce the computational cost, internal coordinates with very narrow

distributions, such as dihedrals within a phenyl ring, which are not expected to significantly

influence the overall conformation of the molecule are not sampled. Instead, these

coordinates are held fixed at their equilibrium values established by the force-field. The

coordinates for which we compute reference marginals, so that they contribute to the

SA-l based sampling, are termed “active”. For all three molecules, atoms 1, 2 and 3 in

Figure 3.2 are the root atoms for both the XYZ and BAT coordinate systems. Because we

use united-atom representations of the molecules, there are N = 12 internal coordinates

for cyclohexane, (for the BAT coordinates, these comprise 5 bond-lengths, 4 bond-angles

and 3 torsions) and N = 21 internal coordinates for nonane (for BAT coordinates, these

comprise 8 bond-lengths, 7 bond-angles and 6 torsions), all of which were treated as active.

The labeling of the BAT coordinates for nonane and cyclohexane is as follows: i-th bond

is between atoms i and i + 1; the i-th angle is between atoms i,i + 1 and i + 2; and the

i-th torsion is the angle between the plane of atoms (i, i+1, i+2) and the plane of atoms

(i + 1, i + 2, i + 3). (See also Figure 4.1 which illustrates the two coordinate systems for
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propane.)

Nonane and cyclohexane conformations were sampled in both BAT and Cartesian

coordinates at all three levels: singlet, doublet and triplet. The sampling sequence in

XYZ coordinates follows the atom numbering of Figure 3.2 where, for each atom, the x-

coordinate is sampled first, followed by the y- and z-coordinates. In BAT coordinates, for

nonane and cyclohexane, the bond-length coordinates of all atoms in their indexed order

were sampled first, followed by angles and torsions in the same order.

The dimensionality of the host-guest system was reduced by limiting attention to a

skeleton of 23 atoms (numbered atoms in Figure 3.2) out of the simulated 56-atom complex.

The retained atoms correspond to 63 (= 3×23−6) internal degrees of freedom. Out of the

63 BAT coordinates, 32 coordinates were treated as active: all bond-angle and torsional

degrees of freedom except the ones in the rings, along with one pseudo-bond, two pseudo-

angles and three pseudo-dihedrals [47] that together specify the position and orientation of

the guest with respect to the host. Table 3.1 lists the active degrees of freedom as well as the

equilibrium values of the inactive ones. Three torsion angles (indicated in Table 3.1) that

might be viewed as flexible are treated as phase angles [54] of flexible torsions that share

the same rotatable bond; these phase angles have narrow distributions and are therefore

treated as inactive. For the host-guest system, conformations were sampled only in the

BAT system at the singlet, doublet and triplet levels, following the order listed in Table 3.1.

3.3.3 Calculation of reference marginal pdfs

For each active coordinate, the continuously varying coordinate values from the

MD simulations were discretized by setting up B = 30 equally spaced bins between the

minimum and maximum value observed in the MD data, except in the case of the torsional
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Figure 3.2: Molecular systems used for testing the SA-l based sampling
algorithms: (a) Nonane, (b) Cyclohexane and (c) Host-guest complex. Atoms
included in the sampled structure are numbered. The internal coordinate
system is set up such that atom 1 is on the origin, the bond between atom
1 and 2 is along the x-axis and atom 3 is in the x-y plane. For nonane and
cyclohexane, only the carbon chain is sampled, although the MD simulations
included all hydrogens. For the host-guest complex, a dotted line represents the
pseudo-bond used in defining the position and orientation of the guest relative
to the host.
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coordinates of cyclohexane. To effectively capture the bimodal distributions of the torsional

coordinates of cyclohexane, 15 equally spaced bins were used in the two intervals – [0, 220.3]

and [497.5, 720] degrees – for a total of 30 bins. In the discrete space a continuous BAT

or XYZ coordinate value maps to an integer denoting the number of the bin to which the

value belongs. The reference singlet, doublet and triplet distributions are then constructed

as normalized histograms as described in the computational protocol above.

Table 3.1: List of BAT degrees of freedom corresponding to the 23-atom skeleton of
the host-guest complex. All 22 bonds, 21 angles and 20 torsions are listed using the
atom numbers shown in Figure 3.2. Active variables are indicated by A. For the inactive
variables, the equilibrium values based on the force-field are listed.

Bond Angle Torsion
Bond Equilibrium Angle Equilibrium Torsion Equilibrium

Value (Å) Value (Rad) Value (Rad)
1-2 1.383 1-2-3 2.0944 1-2-3-4 0
2-3 1.383 2-3-4 2.0944 1-2-3-17 A
3-4 1.383 2-3-17 A 2-3-4-5 0
3-17 1.46 3-4-5 2.0944 2-3-17-18 Phase of

2-3-17-19
4-5 1.383 3-17-19 A 2-3-17-19 A
5-6 1.46 3-17-18 A 3-17-19-20 A
6-8 1.345 4-5-6 A 3-4-5-6 A
6-7 1.225 5-6-8 A 4-5-6-7 Phase of

4-5-6-8
8-9 1.355 5-6-7 A 4-5-6-8 A
8-13 1.0 6-8-9 A 5-6-8-13 A
9-10 1.327 6-8-13 A 5-6-8-9 Phase of

5-6-8-13
10-11 1.327 8-9-10 A 6-8-9-10 A
11-12 1.5 8-13-14 A 6-8-13-14 A
13-14 A 9-10-11 2.0159 8-9-10-11 A
14-15 1.225 10-11-12 A 8-13-14-15 A
15-16 1.345 13-14-15 A 9-10-11-12 A
17-19 1.345 14-15-16 A 13-14-15-16 A
17-18 1.225 17-19-20 A 17-19-20-21 A
19-20 1.355 19-20-21 A 19-20-21-22 A
20-21 1.327 20-21-22 2.0159 20-21-22-23 A
21-22 1.327 21-22-23 A - -
2-23 1.5 - - - -
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3.3.4 Evaluation of sampled conformations

In order to assess the contributions of successively higher-order correlations,

distributions of conformations generated via sampling at the singlet, doublet and triplet

levels were compared to the distributions of the MD conformations. Three types of

comparisons were done.

First, the samples from the SA-l based sampling were used to compute one-, two-

and three-dimensional pdfs, just as done for the MD conformations. These pdfs, which

represent the marginals of the sampling distribution, were compared with the reference

marginal pdfs obtained directly from MD. The difference between a sampled distribution

and the corresponding reference distribution from MD is reported as the root mean square

deviation (RMSD) across the bins of the pdfs.

Second, the sampled conformations were compared with the MD conformations

by comparing the distributions of energies and key intramolecular distances. Doing

this requires reconstructing the molecular conformation associated with a sample in the

discrete space of bin numbers for each active coordinate. Because only the active internal

coordinates are sampled, it was necessary to modify the MD snapshots, in which all

coordinates fluctuate, so that they would be on a comparable footing. This was done

by extracting the active internal coordinates from the MD snapshots, and substituting

the equilibrium values for the inactive coordinates, precisely as done for the sampled

conformations. Then the MD conformations were reconstructed with these idealized

coordinates, and compared with the sampled conformations. For the host-guest complex,

distributions were compared for multiple interatomic distances that characterize the

conformations. For nonane, the distance between the terminal carbons was examined.

For cyclohexane, the distance between carbons 1 and 6 was examined; this distance is
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not part of the BAT coordinate system and depends upon the values of the internal

coordinates in the same way that nonane’s end-to-end distance depends upon its internal

coordinates. Note that, in the XYZ coordinate system, the end-to-end distances for both

nonane and cyclohexane are, in principle, functions of only the Cartesian coordinates of

the last carbon. Nonetheless, since these coordinates are the last three variables to be

sampled, the distributions of end-to-end distances in the sampled conformations depend

on all sampled XYZ coordinates.

Third, the distributions of energy for the sampled conformations, computed with the

same CHARMM [57] force-field model, were compared with those for the reconstructed

(see above) MD conformations. Comparisons were made for both the total molecular

energy and the separate terms provided by the force-field. The separate terms provide

additional physical insight; for example, if the sampled conformations were to yield more

conformations with high Lennard-Jones energies, this would imply steric clashes.

3.4 Results

For nonane and cyclohexane, 500,000 conformations were sampled, while for the

host-guest complex, 200,000 conformations were sampled. Convergence was established

based on the medians of energy and the sampled interatomic distances; a representative

convergence plot of median total energy for the host-guest system is shown in Figure 3.3.

Similar convergence is obtained for nonane and cyclohexane.

The first three subsections here assess the accuracy of conformations sampled

at the singlet, doublet and triplet levels by studying the geometries and energies

of the sampled conformations from the superposition approximations. The fourth

subsection compares marginal distributions of the superposition approximations with the
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Figure 3.3: Convergence of median total energy as a function of the number of
conformations sampled in the BAT coordinate system at the singlet (BAT-1),
doublet (BAT-2) and triplet (BAT-3) levels, for the host-guest complex. The
means and standard deviations of the energy converge similarly, and similar
results are obtained for the other molecular systems in this study.

corresponding reference marginals.

Here BAT-1, BAT-2 and BAT-3 refer to conformational sampling in BAT coordinates

at the singlet, doublet and triplet levels respectively, while XYZ-1, XYZ-2 and XYZ-3

refer to sampling in Cartesian coordinates at the corresponding levels of approximation.

As noted in Section 3.2.4, the distributions of the samples from the doublet and triplet

level algorithms depend upon the sequence in which the variables are sampled. Changing

the sequence of sampling, such as by sampling torsions first versus sampling bond-lengths

first, when BAT coordinates are used, was found to alter the results in detail, but had little

effect on the overall accuracy of the sampled distributions. As discussed in Section 3.2.4,

the doublet and triplet level sampling may generate null samples. For the three molecular

systems studied here, such null samples never occurred for the doublet level algorithm. At

the triplet level, they occurred for < 0.01% of the iterations for nonane and the complex,

and never occurred for cyclohexane.
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A note on the presentation of results for the three molecules – all tables and figures

corresponding to a molecule are collected following the subsection of the molecule and the

tables describing the statistics of a distribution immediately follows the figure with the

distribution.

3.4.1 Nonane

Reference distributions were computed in both XYZ and BAT coordinates and used

to sample at all three levels in both coordinate systems. Thus, conformations are sampled

based on a total of 6 sampling algorithms. The probability distributions of end-to-end

distances (carbon 1 to carbon 9) from MD and from the six sampled sets are compared

numerically in Table 3.2, and Figure 3.4 graphs the corresponding distributions.

For BAT coordinates, both the doublet and triplet-level superposition approximations

provide excellent agreement with the MD results, and are markedly more accurate than

singlet level sampling. In particular, Figure 3.4 shows that doublet and triplet level

sampling produces a substantially smaller fraction of conformations with excessively short

end-to-end distances than does singlet level sampling. This is also evident from the shorter

minimum distance for singlet sampling (0.09 Å) as compared to doublet (0.24 Å) and triplet

sampling (0.67 Å) (Table 3.2). The triplet level is slightly more accurate than the doublet,

but the difference is less striking than that between doublet and singlet.

For Cartesian coordinates, all three sampled cases yield distance distributions that

deviate markedly from the MD distributions: although the numerical statistics in Table 3.2

look reasonable, Figure 3.4 shows that the shapes of the distributions are poor. As with

sampling in BAT coordinates, the population in the short-distance end of the distribution

is notably higher for the singlet than for the doublet or triplet level samples. Interestingly,
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in Cartesian coordinates the triplet-level approximation does not appear to yield greater

accuracy than the doublet level distribution, at least by the present measure.

The BAT coordinates samples of nonane yield distributions of total energy that

agree very well with MD overall at the doublet and triplet levels, as shown in Figure 3.5a.

Interestingly, the total energy distribution at the singlet level is only slightly inferior

to those at higher levels, indicating low correlations among various BAT internal

coordinates. However, the energy distributions from superposition approximations in

Cartesian coordinates disagree strongly with the reference MD distribution: they are wide

and shifted to much higher energies, as shown in Figure 3.5b. The singlet level results are

particularly poor, as the minimum total energy among all conformations is 307.1 kcal/mol

(see Table 3.3), which is outside the range of energies in Figure 3.5b. The fraction of such

high energy conformations is lower for doublet and triplet level samples. It is not surprising

that the energy distributions from Cartesian sampling are poor, given the similarly poor

end-to-end distance distributions described above.

The distributions of the total energy of nonane for the BAT samples show excellent

agreement with the MD distributions especially at the doublet and triplet levels (in

Figure 3.5a,b). This is consistent with the good agreement between the median total

energy of the sampled conformations with the MD conformations (Table 3.3). The larger

deviations for the mean energy and other statistics result from the small fraction of high

energy conformations among the sampled conformations, as evident from Figure 3.5b and

Table 3.4. Closer examination of Table 3.3 indicates that the bond-stretch and bond-

angle energies are well-behaved, but van der Waals energies are sometimes much too large.

This indicates that the high-energy conformations among the BAT samples result from

excessively close atom-atom contacts, consistent with the small values of the minimum
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end-to-end distances listed in Table 3.2. In contrast, the data in Table 3.3 show that the

large errors in the energy distributions based upon XYZ coordinates result not only from

van der Waals overlaps, but also from severe errors in bond-lengths and bond-angles. The

superior performance of the BAT coordinates, relative to Cartesian coordinates, is traceable

to the fact that the BAT coordinates do an excellent job of capturing the marginal pdfs

of those bond-lengths and angles which are included in the coordinate set. Thus, the

energetics of these stiff degrees of freedom are well reproduced.
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Figure 3.4: Probability distributions (top) and corresponding cumulative
distributions (bottom) of end-to-end distances for nonane, from MD
conformations and sampling algorithms at singlet, doublet and triplet levels
in BAT and XYZ coordinates.
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Table 3.2: Statistics of end-to-end distances (Å) for nonane from MD and sampled
conformations.

Median Mean Standard Minimum Maximum
Deviation

MD 8.16 8.01 1.14 2.99 10.98
BAT-1 7.91 7.60 1.64 0.09 10.89
BAT-2 8.18 7.96 1.29 0.24 10.80
BAT-3 8.18 8.01 1.18 0.67 10.85
XYZ-1 7.93 7.76 2.28 0.31 14.84
XYZ-2 8.98 8.96 0.69 3.87 11.08
XYZ-3 7.23 7.24 1.66 3.05 10.97
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Table 3.3: Statistics of energy distributions (kcal/mol) from MD and sampled
conformations for nonane.

Bond Angle Torsion Coulomb VDW Total
Median

MD 7.7 4.4 3.23 34.5 -0.63 50.2
BAT-1 7.8 4.5 3.21 34.9 -0.57 51.5
BAT-2 7.8 4.5 3.22 34.4 -0.62 50.6
BAT-3 7.8 4.5 3.22 34.4 -0.63 50.4
XYZ-1 1.8×104 318.4 4.91 36.0 15.33 2.2× 104

XYZ-2 141.2 48.6 2.78 31.7 -0.52 232.3
XYZ-3 114.4 41.2 3.85 34.7 -0.61 202.8

Mean
MD 8.34 4.9 3.22 34.8 -0.6 50.7

BAT-1 8.49 5.0 3.23 36.3 3.6×103 3.6×103

BAT-2 8.48 5.0 3.23 35.0 182.6 234.3
BAT-3 8.50 5.0 3.22 34.8 11.5 63.0
XYZ-1 2.1×104 325.8 4.90 37.7 9.7×104 1.2×105

XYZ-2 171.93 55.6 2.86 32.1 179.7 442.2
XYZ-3 136.75 47.7 3.84 35.1 252.2 475.6

Standard Deviation
MD 4.15 2.6 1.00 2.46 0.3 5.9

BAT-1 4.22 2.7 1.11 5.59 1.2×105 1.2× 105

BAT-2 4.22 2.7 1.03 3.20 2.6×104 2.6× 104

BAT-3 4.26 2.7 1.00 2.66 4.2×103 4.2× 103

XYZ-1 1.21×104 120.0 1.14 7.94 6.5×105 6.5× 105

XYZ-2 120.9 26.2 0.92 1.85 2.4×104 2.4× 104

XYZ-3 93.4 31.9 1.10 3.22 3.3×104 3.3× 104

Minimum
MD 0.04 0.02 0.01 28.1 -1.49 31.7

BAT-1 0.16 0.02 0.00 28.2 -1.57 32.2
BAT-2 0.17 0.02 0.00 28.4 -1.51 32.0
BAT-3 0.31 0.10 0.00 28.2 -1.53 32.8
XYZ-1 1.9× 102 0.69 0.48 22.6 -1.35 307.1
XYZ-2 0.88 0.47 0.06 27.6 -1.01 43.1
XYZ-3 2.17 0.23 0.00 27.6 -1.42 44.0

Maximum
MD 45.6 34.5 7.64 49.0 5.06 100.2

BAT-1 49.1 28.1 7.88 254.4 9.9×106 9.9×106

BAT-2 45.7 27.4 7.87 130.7 9.0×106 9.0×106

BAT-3 42.0 23.7 7.22 80.5 2.5×106 2.5×106

XYZ-1 1.1×105 955.5 9.56 352.4 9.9×106 ×107

XYZ-2 1.5×103 452.4 7.44 84.7 9.9×106 9.9×106

XYZ-3 1.2×103 386.5 8.52 80.6 8.9×106 8.9×106
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Table 3.4: Fraction of sampled conformations with energies greater than the maximum
energy obtained in MD simulation of each test system.

Number of Number of Fraction of
conformations high-energy high-energy

sampled conformations conformations
Nonane

BAT-1 500,000 14,500 2.9×10−2

BAT-2 500,000 1,450 2.9×10−3

BAT-3 500,000 170 3.4×10−4

XYZ-1 500,000 500,000 1.00
XYZ-2 500,000 480,000 0.96
XYZ-3 500,000 475,000 0.95

Cyclohexane
BAT-1 500,000 401,539 0.80
BAT-2 500,000 192,204 0.38
BAT-3 500,000 48,680 0.09

XYZ-1 500,000 488,561 0.98
XYZ-2 500,000 112,324 0.22
XYZ-3 500,000 12,392 0.02

Host Guest Complex
BAT-1 200,000 22,000 0.11
BAT-2 200,000 2,000 0.01
BAT-3 200,000 1,000 0.005

73



3.4.2 Cyclohexane

As for nonane, we studied the singlet, doublet and triplet level samples in XYZ and

BAT coordinates, for a total of six sets of samples. Results are assessed geometrically

in terms of the distribution of distances between carbon 1 and carbon 6, the only two

successive atoms in the ring whose bond-length is not part of the BAT coordinate system.

As shown in Figure 3.6 and further detailed in Table 3.5, here the Cartesian coordinate

system yields a more accurate distribution than does the BAT coordinate system, and

the triplet-level distribution is more accurate than the doublet- level, which in turn is

substantially better than singlet level distribution. The improvement upon including

correlations in much more apparent in the distance distributions for samples in BAT

coordinates. In BAT samples, the singlet level distributions deviate drastically from the

MD results, but the doublet and triplet level distributions are similar in structure to

those from MD, being unimodal and centered at roughly the same bond-length. Thus, for

cyclohexane, higher order correlations are required to accurately capture the geometry, in

both BAT and Cartesian coordinates. In absolute terms, the distribution of end-to-end

distances from sampling in BAT coordinates for cyclohexane is more accurate than the

distribution of end-to-end distances from sampling in Cartesian coordinates for nonane.

The MD trajectory used to compute the reference marginals includes chair, boat,

and twist-boat conformations. In BAT coordinates, these conformations are established

by the three internal torsions. Figure 3.7 compares representative conformations from MD

and BAT sampling at the three levels. The BAT-3 results resemble MD closely, and the

BAT-2 results are similar, though somewhat less accurate. However, many of the BAT-1

conformations are quite distorted. The reason for the poor BAT-1 conformations has to

do with the fact that singlet level sampling completely ignores correlations, so that the
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effective 2-D pdf linking each pair of torsions is just the product of their respective 1-D

pdfs. Figure 3.8 (left) shows that the correct 2-D pdf of a pair of torsions has two maxima,

corresponding to two different chair conformations.

The corresponding singlet distributions (Figure 3.8, middle) also have two maxima,

so their product (Figure 3.8, right) has four, rather than two maxima. Two of the four

maxima correspond to the correct maxima seen in the reference 2-D pdf (Figure 3.8, left);

the other two are artifacts of singlet level sampling and produce distorted conformations.

Table 3.6 summarizes the statistics of energy components computed from sampled

conformations and reference MD conformations. On the whole, in both BAT and XYZ

coordinate systems, triplet level samples are closer to MD values than doublet level samples.

At the triplet level, the statistics for the bond energies from Cartesian sampling match the

reference MD values better than those from BAT sampling. However, the statistics are

similar for the other energy components, (angle, torsion and van der Waals). This is

generally consistent with the observation that sampling in BAT coordinates leads to an

inappropriately wide distribution of the atom 1- atom 6 bond length, as noted in the

previous paragraph. Overall, the distribution of total energy shown in Figure 3.9 indicates

that triplet-level samples yield the most accurate conformational distributions, Cartesian

coordinates being slightly better than BAT, and that the results become progressively

worse on going to doublet and then single-level sampling. The cumulative distribution

functions in Figure 3.9, as well as the data in Table 3.4, further document marked

reductions in the numbers of abnormally high energy conformations as more correlation is

accounted for, in both BAT and XYZ coordinates. Thus, the energy distributions, like the

distance distributions, highlight the importance of including higher order correlations for

this constrained, yet flexible, chemical ring.
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Figure 3.6: Probability distributions (top) and corresponding cumulative
distributions (bottom) of cyclohexane end-to-end distances computed from MD
conformations and sampled conformations.
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Table 3.5: Statistics of end-to-end distance (Å) from MD and sampled conformations for
cyclohexane.

Median Mean Standard Minimum Maximum
Deviation

MD 1.54 1.54 0.06 1.24 1.83
BAT-1 2.34 2.45 1.00 0.03 5.82
BAT-2 1.63 1.66 0.43 0.09 3.74
BAT-3 1.53 1.52 0.22 0.34 2.41
XYZ-1 1.53 1.51 0.31 0.25 2.40
XYZ-2 1.57 1.57 0.09 1.08 1.93
XYZ-3 1.55 1.55 0.07 1.27 1.84
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Figure 3.9: Probability distributions (top) and corresponding cumulative
distributions (bottom) of the total energy of cyclohexane computed from MD
conformations and sampled conformations using different sampling schemes.
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Table 3.6: Statistics of energy (kcal/mol) for cyclohexane, computed from MD and sampled
conformations. Coulombic term is not reported as it is always zero for this molecule.

Bond Angle Torsion VDW Total
Median

MD 5.3 3.9 7.9 1.0 18.8
BAT-1 198.4 36.6 7.1 1.5 245.4
BAT-2 24.4 8.4 7.6 1.1 44.1
BAT-3 11.7 4.9 7.9 1.0 26.8
XYZ-1 288.8 56.8 6.9 1.8 363.4
XYZ-2 20.5 7.6 8.1 0.9 38.8
XYZ-3 10.0 5.0 7.8 1.1 25.2

Mean
MD 5.9 4.4 7.8 1.2 19.4

BAT-1 498.7 53.8 7.1 3.4 563.0
BAT-2 60.3 14.3 7.5 1.7 83.8
BAT-3 18.5 5.8 7.8 1.4 33.5
XYZ-1 448.8 67.6 7.0 8.1 531.5
XYZ-2 27.7 9.2 8.0 1.2 46.1
XYZ-3 12.7 6.1 7.8 1.3 27.9

Mean
MD 3.4 2.6 0.6 0.9 4.5

BAT-1 669.9 50.4 0.8 8.4 713.0
BAT-2 95.7 15.9 0.8 2.1 107.9
BAT-3 19.9 4.1 0.7 1.2 21.5
XYZ-1 444.0 48.4 0.9 90.2 485.9
XYZ-2 24.2 6.5 0.7 0.9 27.0
XYZ-3 10.2 4.3 0.6 0.9 12.1

Minimum
MD 0.02 0.02 5.28 -0.21 7.87

BAT-1 0.16 0.09 4.71 -0.30 9.09
BAT-2 0.03 0.05 5.17 -0.29 8.27
BAT-3 0.01 0.04 5.32 -0.26 8.26
XYZ-1 0.32 0.15 3.99 -0.30 12.44
XYZ-2 0.08 0.07 5.37 -0.16 8.63
XYZ-3 0.08 0.04 5.66 -0.12 8.47

Maximum
MD 39.9 36.1 10.0 20.5 58.9

BAT-1 4.9×103 292.4 9.9 1.6×103 5.2×103

BAT-2 1.3×103 162.5 9.9 152.7 1.4 ×103

BAT-3 379.3 79.8 9.9 28.4 412.8
XYZ-1 4.3×103 353.3 10.0 2.8×104 2.8×104

XYZ-2 369.1 108.0 10.0 30.4 415.8
XYZ-3 180.1 76.0 10.0 18.1 245.2
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3.4.3 Host-guest complex

Conformations of the host-guest complex were sampled in BAT coordinates at the

singlet, doublet and triplet levels. Table 3.7 and Figure 3.10 analyze the distances between

eight atom pairs: 1-11, 1-22, 12-15, 15-23, 11-22, 12-23, 8-19 and 1-15 (see Figure 3.2c

for atom numbers). Overall, the distance distributions from doublet- and triplet-level

sampling agree well with the reference MD distributions, the triplet-level being somewhat

more accurate than doublet. The singlet level samples give notably poorer distributions,

especially for distances between host and guest atoms, as shown in Figure 3.10c,d and h.

For both BAT-2 and BAT-3 samples, the median values of all energy components

are in excellent agreement with MD, as are the mean values of all energy components other

than van der Waals (Table 3.8). Although the tabulated statistics of BAT-1 samples are

comparable to those of BAT-2 and BAT-3 samples, Figure 3.11 shows that the distribution

of total energies is substantially inferior with singlet level sampling. It is also evident that

the mean van der Waals energy of the BAT-3 samples is substantially better than that

of BAT-1 and BAT-2 samples, though all are skewed towards higher values due to the

presence of a few conformations with bad contacts. These lead to small tails of high energy

conformations for BAT-2 and BAT-3 sampling, as evident from the cumulative probability

distributions of energy (Figure 3.11). Table 3.4 furthermore documents sharp reductions in

the number of conformations with abnormally high energy as more correlation is accounted

for in the sampling.
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Figure 3.10: Probability distributions of interatomic distances (Å) in the host-
guest complex, for atom pairs (a) 1-11, (b) 1-22, (c) 12-15, (d) 15-23, (e) 11-22
(f) 12-23 (g) 8-19 (h) 1-15. Color code: MD in black, BAT-1 in red, BAT-2 in
green, BAT-3 in blue.
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Table 3.7: Statistics of seven key distances (Å) of host-guest conformations reconstructed
from active MD BAT coordinates and sampled BAT coordinates at doublet (BAT-2) and
triplet (BAT-3) levels. Column headings give the atom pairs using atom numbers from
Figure 3.2

1-11 1-22 12-15 15-23 8-19 11-22 12-23 1-15
Median

MD 8.12 8.12 5.10 4.99 4.94 9.20 9.47 6.60
BAT-1 8.13 8.14 5.63 5.47 4.98 9.17 9.35 6.31
BAT-2 8.11 8.10 5.22 5.06 4.93 9.15 9.43 6.57
BAT-3 8.13 8.12 5.11 5.04 4.94 9.18 9.43 6.62

Mean
MD 8.10 8.09 5.14 5.03 4.94 9.17 9.43 6.54

BAT-1 8.11 8.12 5.61 5.71 4.99 9.18 9.43 6.18
BAT-2 8.09 8.08 5.24 5.17 4.93 9.15 9.43 6.50
BAT-3 8.11 8.09 5.12 5.09 4.94 9.17 9.42 6.58

Standard Deviation
MD 0.11 0.12 0.43 0.45 0.13 0.46 0.79 0.45

BAT-1 0.11 0.10 1.00 1.34 0.19 0.67 1.20 0.86
BAT-2 0.11 0.13 0.64 0.88 0.14 0.52 0.88 0.54
BAT-3 0.11 0.12 0.52 0.68 0.13 0.48 0.83 0.43

Minimum
MD 7.06 7.07 3.42 3.12 4.27 6.31 4.95 3.22

BAT-1 7.00 7.26 1.37 1.66 4.21 6.43 5.23 1.66
BAT-2 7.19 7.16 2.20 2.13 4.30 6.58 5.22 2.20
BAT-3 7.04 7.28 2.79 2.66 4.36 7.07 6.06 3.69

Maximum
MD 8.37 8.38 10.34 10.33 5.92 12.17 14.50 7.92

BAT-1 8.35 8.35 9.60 12.53 5.96 12.29 14.79 10.11
BAT-2 8.37 8.36 9.00 11.58 5.68 11.45 13.56 8.41
BAT-3 8.36 8.37 8.17 10.22 5.51 11.10 12.64 8.09
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Figure 3.11: Probability distributions (top) and corresponding cumulative
distributions (bottom) of total energy of the host-guest complex for MD and
sampled conformations.
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Table 3.8: Statistics of energy (kcal/mol) of host-guest complex for conformations
reconstructed from active MD BAT coordinates and sampled BAT coordinates at doublet
(BAT-2) and triplet (BAT-3) levels.

Bond Angle Torsion Improper Coulomb VDW Total
Median

MD 0.0014 7.16 3.87 0.12 65.1 24.7 101.5
BAT-1 0.0015 7.69 3.98 0.16 62.4 26.9 104.0
BAT-2 0.0015 7.20 4.14 0.17 63.6 25.1 101.4
BAT-3 0.0015 7.19 3.85 0.16 64.4 25.0 101.6

Mean
MD 0.0015 7.35 4.07 0.27 65.1 24.9 101.7

BAT-1 0.0015 7.94 4.21 0.27 64.0 5.4×104 5.4×104

BAT-2 0.0015 7.38 4.35 0.28 64.4 3.4×103 3.5×103

BAT-3 0.0015 7.36 4.05 0.25 65.1 959.7 1.0×103

Standard Deviation
MD 0.0004 1.89 1.53 0.38 2.97 1.66 4.26

BAT-1 0.0004 2.19 1.65 0.39 11.3 4.8×105 4.8×105

BAT-2 0.0004 1.90 1.72 0.40 5.49 1.1×105 1.1×105

BAT-3 0.0004 1.87 1.50 0.34 4.75 6.2×104 6.2×105

Minimum
MD 0.0003 1.98 0.19 0.00 46.6 23.0 82.9

BAT-1 0.0003 2.37 0.48 0.00 -583.1 23.0 80.8
BAT-2 0.0003 2.11 0.49 0.00 -111.6 23.0 79.8
BAT-3 0.0004 2.29 0.61 0.00 40.6 23.2 84.8

Maximum
MD 0.0044 24.1 17.2 8.23 84.0 2.5×103 2.6×103

BAT-1 0.0042 23.1 16.4 7.48 1.2×103 9.9×106 9.9×106

BAT-2 0.0041 19.4 16.9 4.54 238.7 9.2×106 9.2×106

BAT-3 0.0040 19.0 12.5 2.97 262.9 8.9×106 8.9×106
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3.4.4 Comparing sampled and reference marginal pdfs

Another way to assess the accuracy of the sampled distributions is to compare their

marginals with those of the original MD simulations. For singlet level sampling, all 1-D

sampled marginal pdfs converge trivially to the corresponding reference pdfs. For higher

level sampling, only the marginals of the first l variables converge to the reference marginals

(data not shown), as expected based upon the structure of the sampling algorithm.

The marginals of the subsequent variables are sampled from approximate conditional

distribution and therefore are expected to deviate from the reference marginals.

The deviations were quantified by computing the root mean square deviations

(RMSD) between all 1-, 2- and 3-D sampled and reference marginal pdfs for each sampling

case. Table 3.9 reports the mean RMSD for the three marginal pdfs in each sampling

case. As expected, for a specific molecule and coordinate system, the mean RMSD of

singlet marginal pdfs is lower for singlet level sampling than for higher-level sampling.

However, the mean RMSDs of doublet and triplet marginal pdfs from doublet- or triplet-

level sampling are, in general, lower than those from singlet level sampling, indicating

presence of correlations similar to those in MD simulations. Sampling of nonane in XYZ

coordinates does not follow this trend, indicating that triplet-level is not sufficient to

capture the correlations in this coordinate system. This observation is consistent with the

analysis of distance and energy distributions, above.

Marginal pdfs generated from sampled conformations are graphically compared

with the corresponding reference marginals from the MD simulations in Figure 3.12 and

Figure 3.13. Figure 3.12 shows the doublet marginal pdf from the XYZ study of nonane

which yielded the highest RMSD values at the singlet, doublet and triplet levels; and

Figure 3.13 similarly analyzes the doublet marginal which yielded the highest RMSD in
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BAT-1 sampling. It is worth noting that the doublet marginal pdf from BAT-1 sampling

(Figure 3.13) is much closer to its reference MD marginal than is the XYZ-1 result for

nonane (Figure 3.12), confirming earlier results where BAT coordinate performed better

than XYZ.

As discussed in Section 3.2.4, the sampling algorithms generate conformations that

have non-zero probability in all the reference marginals. This property is apparent in

Figure 3.12 and Figure 3.13, where the populated bins of a representative 2-D marginal

from doublet- and triplet-level sampling (bottom panel) are a subset of those populated

by the MD trajectories (top left), unlike the marginal from singlet level sampling. In this

way, the reference marginals constrain the range of conformational space accessible to the

sampling algorithm.
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Table 3.9: Accuracy of singlet, doublet and triplet marginal distributions (columns)
computed from conformations sampled at the singlet, doublet and triplet levels (rows),
for the three molecular systems. Results are reported as mean RMSD across all

Singlet Doublet Triplet
Nonane

BAT-1 0.0013 0.0023 0.0020
BAT-2 0.0013 0.0014 0.0015
BAT-3 0.0020 0.0019 0.0019

XYZ-1 0.0012 0.0267 0.0157
XYZ-2 0.0915 0.0620 0.0336
XYZ-3 0.0775 0.0530 0.0290

Cyclohexane
BAT-1 0.0012 0.0062 0.0045
BAT-2 0.0046 0.0037 0.0025
BAT-3 0.0028 0.0022 0.0017

XYZ-1 0.0012 0.0207 0.0129
XYZ-2 0.0238 0.0180 0.0093
XYZ-3 0.0195 0.0148 0.0083

Host-Guest Complex
BAT-1 0.0021 0.0060 0.0050
BAT-2 0.0098 0.0085 0.0055
BAT-3 0.0063 0.0052 0.0039
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Figure 3.12: Comparison of doublet marginals from MD with XYZ-1, XYZ-2
and XYZ-3 sampling of variables 16 and 19 of nonane, which correspond to
the x-coordinates of atoms 8 and 9 (Figure 3.2). The RMSDs of the sampled
doublet marginal pdfs are 0.0504, 0.0955 and 0.0692 for XYZ-1, XYZ-2 and
XYZ-3, respectively. Cells are colored on a linear scale of probability, except
that cells with identically zero probability are colored white.
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Figure 3.13: Comparison of doublet marginals from MD with BAT-1, BAT-2
and BAT-3 sampling of variables 16 and 17 of nonane, corresponding to torsions
1-2-3-4 and 2-3-4-5 respectively (Figure 3.2). The RMSDs of the sampled
doublet marginal pdfs are 0.0106, 0.0015 and 0.0018 for BAT-1, BAT-2 and
BAT-3, respectively. Cells are colored on a linear scale of probability, except
that cells with identically zero probability are colored white.
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3.4.5 Comparing sampled conformations with MD conformations

The part of the N -dimensional configuration space accessible to the present sampling

algorithms is determined by the zero probability bins in reference pdfs used. In one extreme

case, if the reference distributions were populated using a single MD conformation, then

all reference distributions would have zero probability in all bins except one, and only the

single MD conformation would be sampled at all levels.

It was also noted that the sampling algorithms can generate novel conformations.

In all of the present test systems, over 99% of the 2 − 5 × 105 sampled conformations

are new relative to the 5× 106 original MD conformations used to populate the reference

marginals. (Conformations were compared after mapping the coordinates to bin numbers

in the discrete space.) This small degree of overlap is intuitively reasonable, given

the large number of potential conformations, ∼BN , where B = 30 is the number of

bins used to discretize each coordinate and N is the dimensionality. Here N is 12, 21

and 32 for cyclohexane, nonane and host-guest complex, respectively, so the number of

conformations ranges from ∼1017 to ∼1047. To better judge whether the high fraction

of novel conformations generated by the sampling algorithm is reasonable, we did the

following test on the MD trajectories of cyclohexane and nonane. For both molecules, we

counted the number of conformations in the first 5 × 105 MD that were repeated in the

following 4.5×106 conformations. We found no repeats for nonane, while < 1% of the first

5×105 of cyclohexane were repeated, consistent with the low overlap between the sampled

with corresponding MD conformations.
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3.5 Discussion

This chapter introduced algorithms for sampling molecular conformations in a

manner that includes correlations up to a desired order by means of superposition

approximations, and employs the algorithms to test the importance of correlations in

capturing conformational fluctuations. We find that incorporating higher order correlations

systematically improves the distributions of sampled conformations as compared with the

MD conformations, and that conformations sampled via superposition approximations at

the doublet or triplet levels resemble MD conformations rather well, for one or both of

the BAT or Cartesian coordinate systems. This observation supports the hypothesis that

molecular fluctuations may be described to good approximation in the absence of high-

order correlations. This assessment relies on the results obtained for the three molecular

systems considered here, but we expect the picture to be similar for other molecular systems

of similar size and type. It would clearly be of interest to know whether the same is true

for larger systems, such as proteins.

This study was motivated by evidence that configurational entropy may be approximated

to good accuracy without accounting for high-order mutual information terms (see

Section 3.1). Comparing sampled conformations, as done here, provides a more stringent

test of our hypothesis than merely comparing entropy values, because the same entropy

could be obtained for two very different conformational distributions. The present study

confirms that neglecting high-order correlations still allows generation of reasonably good

conformations. By using conditional distributions based on mixed-SA (Section 2.4.3),

the present sampling algorithms can be generalized to use a selected set of higher-order

reference pdfs. The present approach therefore provides a framework for investigating the

contributions of selected correlations to fluctuations in a multi-dimensional system.
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The SA-l sampling algorithms sample points in the high dimensional space which

are simultaneously consistent with all of the given reference pdfs. In principle, this

could have been accomplished by using standard ancestral sampling to sample directly

from the N -dimensional SA-l distribution constructed using the reference samples. In

practice, however, constructing the conditional pdfs to carry out such an approach would

require all marginal pdfs of the SA-l, and this would be intractable because of their high

dimensionality and because all variables in SA-l are coupled with one another. Another

approach to sample directly from the SA-l distribution could be to use Gibbs sampling,

but that is likely to be computationally inefficient because successive samples in Gibbs

sampling are correlated.

The present approach is attractive for molecular conformational sampling for several

reasons. First, it retains the key feature of SA-l distributions – a functional form in terms

of product of all reference distributions. This ensures that the samples are simultaneously

consistent with all the pdfs used and limits the sampled conformations to regions of

configuration space for which the reference marginal pdfs are populated. This helps to avoid

sampling conformations with grossly unrealistic energies, while still allowing construction

of new conformations, i.e., ones not present in the MD samples used to construct the

reference distributions.

Second, the sampling distribution of the present algorithms is normalized, unlike

the SA-l distribution (except for the trivial case of SA-1). Thus the sampling distribution

could be used as a proposal distribution and reweighted according to any N -dimensional

distribution, including the SA-l and the Boltzmann distribution, using standard importance

sampling methods [59]. This property will be used in the next chapter to compute the

normalization of the Boltzmann distribution, that is, the configurational integral of a
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molecule.

Third, unlike other methods of sampling from high dimensional distributions, such as

Gibbs sampling, MC and MD, successive samples from the SA-l sampling are uncorrelated

with each other: in effect, the algorithm has no memory of prior conformations. This

prevents the sampling from getting trapped in particular regions of the configurational

space, such as in low-energy wells of the physical energy surface with high barriers

and should allow better coverage of the conformational space. Note that, although the

conformational region accessible to the sampling algorithms is larger than the region

sampled by the MD simulation, the quality of the MD sampling used to build the reference

marginals is still important. This is because the boundaries of the region accessible to

sampling are a function of the MD samples. For example, consider a molecule that can

be in an open or a closed conformation, depending on the value of a single torsion. If

none of the MD conformations are in the open state, so that the open state torsion

values are never observed, then SA-l sampling cannot access the open state. On the

other hand, this property could be used to focus the sampling in particular regions of the

configurational space which could be advantageous, e.g., in computing the absolute free

energy of a particular conformational state (see item 1 of Section 5.2).

It is worth elaborating on potential weaknesses of the present approach as well.

One is the possibility of generating null samples. However this occurred very rarely in

the present tests. The likelihood of generating null samples might be reduced by using a

reduced set of reference pdfs through the mixed-SA approach and by using more data to

populate the reference pdfs. Second, the sampling distribution depends upon the sampling

sequence, and the optimal sampling order – one maximising the similarity between the

sampling distribution (p̃N ) and the true distribution (pN ) – is not known a priori, although,
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if required, the sequence-dependence could be removed simply by randomizing the order

of sampling.

Chapter 5 discusses potential strategies to scale the sampling algorithms presented

here to larger systems and for improving the quality of the sampled conformations.
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Chapter 4

Free Energy Calculation using Superposition

Approximation Based References

4.1 Introduction

The calculation of the free energy of a molecule is a key problem in computational

chemistry and biophysics, with applications to conformational stability [60], solvation [61]

and molecular recognition [19, 62]. Systems of interest in this regard include relatively

small (<100 atoms) drug-like molecules, moderately sized supramolecular systems (100-

1000 atoms), and proteins with thousands of atoms. The challenge of calculating molecular

free energies stems chiefly from the complexity and high dimensionality of the energy

surfaces involved [63]. In one approach, the problem is recast as a calculation of the

free energy difference between the system of interest and a reference system whose free

energy is known. The effectiveness of this reference system approach increases as the

conformational probability distribution of the reference system more closely approximates

that of the physical system of interest. Contrariwise, if the reference distribution has little

overlap with the physical system, then it will be very difficult to obtain a reliable, converged

result. As a consequence, the choice of reference system is of critical importance.
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In some calculations of this type, the free energy of the reference system can be

computed analytically, as in the harmonic or “Einstein solid” reference system for solids [64,

65] or the ideal gas reference system for liquids [66, 67]. A reference system approach

to computing the absolute free energy of a molecule was apparently first employed by

Stoessel and Nowak [68], whose reference system was a collection of independent harmonic

oscillators centered at atomic coordinates. More recently, simulation data have begun to

be used to construct numerical, rather than analytical, reference systems for free energy

calculations [69, 70]. In one approach, MD simulation data is used to set up a harmonic

reference system whose free energy is computed using normal mode analysis [70, 71]. In

another approach distributions of internal coordinates observed in a simulation are used

to set up the reference system [69]. Reference systems set up using simulation data can

be advantageous, because they can better capture the flexibility and inhomogeneity of

biomolecules, thereby increasing conformational overlap with the physical system. They

also avoid the need for ad hoc tuning of adjustable parameters, such as spring constants.

The work presented in this chapter is inspired by the reference system method of

Zuckerman and coworkers [69], which uses molecular dynamics simulation data to construct

one-dimensional pdfs of internal bond, angle and torsion coordinates. Their reference

distribution is simply the product of these 1-D pdfs, and thus is effectively the singlet

level superposition approximation (SA-1) to the Boltzmann distribution. Samples drawn

from this reference distribution are used to compute the configurational integral of the

molecule. The singlet level reference system is relatively simple to construct, but does

not capture correlations among the internal coordinates, and this neglect of correlations

reduces its overlap with the physical Boltzmann distribution. In particular, as the system

size (dimensionality) increases, there is a rapid rise in the fraction of conformations
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sampled from the reference system that have high energies in the physical system, mainly

due to steric clashes among the atoms. This can lead to poor convergence of the free

energy estimate, restricting the applicability of the method to small molecules with weak

correlations, such as linear chains with weak non-bonded interactions.

The previous chapter presented the SA-l based approximations to the high-

dimensional Boltzmann distribution of a molecule which can account for specified

correlations among the internal coordinates. We also presented algorithms to sample

molecular conformations from SA-l based approximations constructed using marginal pdfs

of up to order l. Importantly for the present application, the sampled distribution is

normalized by construction, allowing us to set up a reference system with known free

energy. As a consequence, the free energy of the physical system can be computed as

the known free energy of the reference system plus the free energy difference between

the physical and reference systems. In this work, we use the SA-l based sampling

distribution as the reference canonical distribution, and as done previously [69], the free

energy difference is estimated using thermodynamic perturbation with samples drawn from

the reference distribution. The main result of this chapter is that incorporating pairwise

correlations among all internal coordinates in the reference system dramatically improves

the convergence of the free energy estimates, in comparison to the original singlet level

reference system.

The following section describes the underlying theory and overall approach, including

the definition of the discretized reference system and the approach to computing the free

energy of the physical system using samples from the reference system. Section 4.3 section

then details the implementation of the free energy calculations for molecular systems.

Section 4.4 evaluates the method numerically on a series of molecular test systems of
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increasing complexity which were used as test cases for a similar calculation by Zuckerman

and coworkers with an uncorrelated reference distribution [72]. Finally, Section 4.5 assesses

the significance of the results. This chapter is based on Ref [73].

4.2 Theory and Approach

We wish to compute a molecule’s configuration integral,

ZP =

∫
ΓP

exp (−β UP (ξ)) J(ξ) dξ (4.1)

where ξ denotes the vector of N internal coordinates, β is the inverse temperature and

J(ξ) is the Jacobian. The potential energy of the molecule, UP (ξ), is termed the physical

energy and, here, is given by a molecular mechanics force field. The integral is over the

region ΓP corresponding to a conformational state of interest; e.g. a tertiary structure of a

peptide, or the bound state of a protein-small molecule system. The absolute free energy,

FP , of the molecule is given by

βFP = − lnZP . (4.2)

Note that ZP is treated as a dimensionless number, and the units of FP are set by kBT .

In this chapter, the BAT internal coordinate system is used with ξ = (b,a, t) ∈ RN where

b , a and t are vectors denoting M -1 bond-lengths, M -2 bond angles and M -3 torsions,

respectively, M being the number of atoms in the molecule. The Jacobian for the BAT

coordinate system, which is independent of the torsion angles, is given by [74, 75, 53]

J(b,a, t) = b3

M∏
i=4

(
b2i sin ai

)
. (4.3)

Figure 4.1 illustrates the specification of the BAT coordinates for test molecules in this

chapter, using propane as an example.
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Figure 4.1: Internal coordinate systems illustrated using propane. The
anchored Cartesian system is defined in terms of three root atoms such that
atom 1 is at the origin, atom 2 is on the x-axis and atom 3 is in the x-y plane
(shaded in blue). For the peptides in Figure 4.2, a C-terminal hydrogen is
labeled as atom 1 and two subsequent carbon atoms in the chain are labeled,
in order, as atoms 2 and 3. The bond, angle and torsion coordinates in the BAT
system are labeled. In all, propane has 11 × 3 − 6 = 27 internal coordinates
specified by 10 bond lengths (top left), 9 bond angles (bottom left) and 8
torsion angles (bottom right). Torsion angles for atoms 10 and 11 are improper
torsions (top right), and the others are proper torsions. Shaded circles: carbon;
unshaded circles: hydrogen.
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4.2.1 Discretized reference systems

The reference system is defined in terms of the SA-l based sampling distributions

which are set up by discretizing the N -dimensional BAT conformational space and using

MD simulation data to populate low-order reference pdfs as described in Section 3.3 of the

previous chapter. A conformation, in the discrete space is denoted by X = (X1, . . . , XN ) ∈

ZN , with Xi ∈ {1, .., B} denoting a bin number for the i-th coordinate. (In this chapter,

the distinction between upper and lower-case variables is not needed, as the context makes

the sense unambiguous.) A discrete-space conformation X maps to the continuous space

conformation ξ(X) as per Eq. 3.21. The MD simulation data are used to construct the N

singlet pdfs, p(Xi), and the N(N − 1)/2 doublet pdfs, p(Xi, Xj) where i < j ∈ 1, .., N .

The singlet and doublet reference systems are set up in terms of the SA-1 and SA-2 based

sampling distributions, which are given, respectively, by

p̃
(1)
N (X) = p(X1)× ..× p(XN ) (4.4)

and

p̃
(2)
N (X) = p(X1, X2)× p(2)(X3|X1, X2)× ..× p(2)(XN |X1, .., XN−1) . (4.5)

Conformations are sampled from these reference distributions via algorithms described in

Section 3.2. In the case of doublet level sampling, which depends on the order in which

the coordinates are sampled, the torsion coordinates are sampled first, followed by the

bond-angles and, finally, the bond-lengths. We define the potential energy function for the

reference systems as:

U
(l)
R (X) ≡


− 1

β ln p̃
(l)
N (X) , if p̃

(l)
N (X) ̸= 0

∞ , if p̃
(l)
N (X) = 0

(4.6)
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where the second case accounts for the fact that the sampling probability for some

conformations may be zero. Based on Eq. 4.6, conformations drawn from p̃
(l)
N are effectively

sampled from the canonical distribution corresponding to the reference energy function.

Since the reference energy function is defined in the discrete space, the partition function

for the reference system is given by the discrete sum

Z
(l)
R =

∑
Xi∈Ω

exp(−β U
(l)
R (Xi)) =

∑
Xi∈Ω

p̃
(l)
N (Xi) = 1 (4.7)

where Ω denotes the set of all possible conformations in the discretized conformational

space. The last equality derives from the normalization of the sampling distribution (item

2 of Section 3.2.4). Therefore, the free energy of the reference systems, βFR = − lnZ
(l)
R , is

identically zero for both singlet and doublet references. Therefore, the physical free energy

can be obtained as the free energy difference between the physical system and the reference

systems.

4.2.2 Estimation of the physical free energy

The configurational integral in Eq. 4.1 can be approximated as a sum over the states

of the discretized conformational space,

ZP ≈ Z̄P ≡ ∆V
∑
Xi∈Ω

exp (−β UP ( ξ(Xi) )) J( ξ(Xi) ) (4.8)

where ∆V ≡ δ1 × .. × δN is the volume of a cell in the discretized BAT space, and the

Jacobian is given by Eq. 4.3. Defining the effective physical energy in the discretized space

as

ŪP (X) ≡ UP (ξ(X)) − 1

β
ln J(ξ(X))− 1

β
ln∆V (4.9)

gives

Z̄P =
∑
Xi∈Ω

exp
(
−βŪP (Xi)

)
. (4.10)
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Note that the last term of Eq. 4.9 is independent of the conformation and is effectively a

constant offset to the physical energy depending on the discretization. The approximation

in Eq. 4.10 goes to the continuous integral of Eq. 4.1 in the limit of infinitely fine

discretization (δi → 0) if the set of discrete space conformations, Ω, covers the desired

region of the continuous conformational space, ΓP . Since the reference partition function,

Z
(l)
R is one (Eq. 4.7), the discrete sum approximation, F̄P , of the physical free energy, FP ,

can be written as

βF̄P = − ln
Z̄P

Z
(l)
R

. (4.11)

Defining the energy difference for conformation X as

∆U (l)(X) ≡ ŪP (X)− U
(l)
R (X) (4.12)

we can write the ratio of the partition functions in Eq. 4.11 in the form of a thermodynamic

perturbation [76]

βF̄
(l)
P = − ln

⟨
exp(−β ∆U (l))

⟩
ref (l)

(4.13)

where the superscript on the left-hand side acknowledges the potential dependence of the

computed physical free energy on the reference system, as explained in the next subsection.

The perturbation estimate is computed using samples drawn from the singlet or doublet

reference canonical distributions as

βF̄
(l)
P

.
= − ln

(
1

NR

NR∑
n=1

exp(−β ∆U (l)(Xi(n)))

)

≡ βF̂
(l)
P (4.14)

where Xi(n) ∼ p̃
(l)
N denotes the conformation corresponding to the n-th sample, and NR

is the total number of reference samples. Note that conformations with infinite reference

energy, which have zero probability in the reference distributions, are never sampled, and

therefore, the energy difference in Eq. 4.14 is finite for all samples.
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For clarity, we note that this discussion has developed the following series of

approximations,

βFP ≈ βF̄P ≈ βF̄
(l)
P ≈ βF̂

(l)
P (4.15)

where the first approximation is associated with the discretization of the coordinate space,

the second approximation indicates potential dependence on the reference system and the

final approximation results from the finite number of reference samples used in practice.

The superscripts again denote the singlet (l = 1) or doublet (l = 2) reference systems used

here.

The approach outlined here is equivalent to the importance sampling method [59],

where samples drawn from one distribution (here, the reference distributions) are

reweighted to compute averages with respect to the distribution of interest (here, the

physical distribution). In the context of importance sampling, the quantity e−β ∆U(l)

is referred to as the importance weight, and the reference distribution as the proposal

distribution [50].

4.2.3 Bias and convergence of the free energy estimate

The bias and convergence of the free energy estimate, F̄
(l)
P , of Eq. 4.14 can be

understood by analyzing its asymptotic, or infinite sampling, limit:

lim
NR→∞

exp
(
−βF̂

(l)
P

)
= lim

NR→∞

1

NR

NR∑
n=1

exp
(
−β ∆U (l)(Xi(n))

)
=
∑

Xi∈Ω

p̃
(l)
N (Xi) exp

(
−β ∆U (l)(Xi)

)
. (4.16)

The second equality uses the fact that, in the limit of infinite sampling, the reference

samples are distributed according to p̃
(l)
N . Dropping conformations with zero probability

in the reference distributions from the summation, and substituting ∆U (l) from Eq. 4.12
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gives

lim
NR→∞

exp(−β F̂
(l)
P ) =

∑
Xi∈Ω;p̃

(l)
N ̸=0

p̃
(l)
N (Xi) exp (+β UR(Xi)) exp

(
−βŪP (Xi)

)

=
∑

Xi∈Ω;p̃
(l)
N ̸=0

p̃
(l)
N (Xi)

1

p̃
(l)
N (Xi)

exp
(
−βŪP (Xi)

)

=
∑

Xi∈Ω(l)

exp
(
−βŪP (Xi)

)
(4.17)

where Eq. 4.6 is used in the second step and Ω(l) denotes the set of conformations accessible

to l-level sampling. Comparing Eq. 4.17 with Eq. 4.10, one can infer that the estimate in

Eq. 4.14 will be asymptotically biased if Ω(l) is a proper subset of Ω, because the asymptotic

limit of the perturbation estimate does not include contributions from conformations not

belonging to Ω(l). Also, since the contribution of the missed conformations is strictly

positive, the asymptotic free energy increases as the conformational region Ω(l) shrinks.

Therefore, since the doublet reference system is expected to have a smaller set of accessible

conformations than the singlet reference (item 5 of Section 3.2.4), in the asymptotic limit

we have

F̄P ≤ F̄
(1)
P ≤ F̄

(2)
P . (4.18)

However, note that, due to the exponential in Eq. 4.17, the free energy is dominated

by conformations with low physical energy. Therefore, if Ω(l) contains these dominant

conformations, the asymptotic bias will be low. Also, due to their larger Boltzmann factors,

the dominant conformations are more likely to be sampled from the physical distribution.

Therefore, if the conformational overlap between samples from the reference and physical

distributions is high, then the bias is likely to be low and convergence faster.

In the present study, we assess conformational overlap in terms of overlap in the

distributions of the force-field energies computed for the reference and the physical samples.
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The overlap of the doublet reference with the physical distribution is likely to be greater

than that of the singlet reference due to the incorporation of pair correlations. Therefore,

the doublet free energy estimate is expected to converge more rapidly than the singlet

estimate, though the asymptotic bias may be somewhat higher.

4.2.4 Boltzmann average using reference distributions

Although this chapter focuses on free energy calculation, it is of interest to point

out a closely related potential application of the reference distributions. Samples from the

reference distributions can also be used to compute the Boltzmann average of any function

of the coordinates, such as the potential energy or the end-to-end distance of a linear chain

molecule. The Boltzmann average of a function f(ξ) is given by

⟨f⟩ = 1

ZP

∫
ΓP

f (ξ) exp(−β UP (ξ)) J(ξ) d ξ . (4.19)

which can be approximated as the discrete space sum

⟨f⟩ ≈ ⟨f⟩ = 1

Z̄P

∑
Xi∈Ω

f (Xi) exp(−β ŪP (Xi)) (4.20)

where ŪP (X) is given by Eq. 4.9. Multiplying and dividing by the l-level reference

probability distribution and changing the summation to include only the accessible

conformations gives

⟨f⟩ ≈ ⟨f⟩(l) = 1

Z̄
(l)
P

∑
Xi∈Ω(l)

f (Xi)
p̃
(l)
N (Xi)

p̃
(l)
N (Xi)

exp(−β ŪP (Xi))

=
1

Z̄
(l)
P

∑
Xi∈Ω(l)

p̃
(l)
N (Xi) f (Xi) exp

(
−β ∆U (l)(Xi)

)

=

⟨
f exp

(
−β ∆U (l)

)⟩
ref (l)⟨

exp
(
−β ∆U (l)

)⟩
ref (l)

(4.21)
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where Z̄
(l)
P = exp(−βF̄

(l)
P ) and F̄

(l)
P is given by Eq. 4.13. Finally, ⟨f⟩(l) can be computed

using samples from the reference distribution as

⟨f⟩(l) .
=

1
NR

NR∑
n=1

f(Xi(n)) exp
(
−β ∆U (l)(Xi(n))

)
1

NR

NR∑
n=1

exp
(
−β ∆U (l)(Xi(n))

) (4.22)

where the denominator is same as the terms in the parenthesis of Eq. 4.14. As in the

case of the free energy calculation above, in the asymptotic limit, the Boltzmann average

computed using Eq. 4.22 will only include contributions from conformations accessible to

the reference distribution. Also, based on Eq. 4.20, it can be seen that the convergence

will be good if the accessible region includes conformations for which the product f e−β ŪP

is large.

It is recognized that the Boltzmann average in Eq. 4.22 could also be computed

directly by using the physical samples used to populate the reference pdfs. The present

approach might nonetheless be useful because the reference sampling can be made

computationally more efficient via distributed computing, and also more exhaustive, since

it is not susceptible to getting trapped in local energy mimima of the physical energy

surface. Also, in Chapter 5, we discuss a strategy for using a library of pdfs for constructing

the reference distribution without using molecule specific simulation data (item 5 of

Section 5.1), and a potential application of the Boltzmann average computed using the

reference samples for computing the configurational entropy (item 3 of Section 5.2).

4.3 Methods

The procedure for setting up the singlet and doublet references pdfs using MD

simulation data is identical to that described in Section 3.3. The additional steps for

computing the free energy are:
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(i) Sample NR molecular conformations by singlet level sampling, and another NR

conformations by doublet level sampling, and compute the sampling probabilities

associated with each set, that is, p̃(1)N and p̃
(2)
N , respectively.

(ii) For each reference sample, compute the reference energy U
(l)
R from Eq. 4.6, map the

samples from the discretized BAT coordinate space to continuous BAT space using

Eq. 3.21, compute the Jacobian using Eq. 4.3, construct the corresponding Cartesian

molecular coordinates of the molecule, compute the force-field energy UP , compute

ŪP from Eq. 4.9 and evaluate the energy difference ∆U (l) from Eq. 4.12.

(iii) Finally, compute the free energy estimates, F̂ (1) and F̂ (2), by applying Eq. 4.14 to

the sets of energy differences corresponding to the samples from the two reference

systems.

4.3.1 Molecular systems

We first validate the theory and implementation with tests on a simplified representation

of all-atom propane (11 atoms), for which the free energy can be computed analytically.

Starting with a standard force-field representation, we drop all nonbonded (Lennard-Jones

and Coulombic) energy terms, as well as all bonded terms that do not correspond to

the BAT coordinates used to specify the conformation. These simplifications decouple

all internal coordinates so the multidimensional configurational integral factorizes into a

product of one-dimensional integrals which may be computed analytically or numerically

(see Appendix B) given the force-field parameters. However, propane is still a high-

dimensional system, with 27 internal coordinates, and thus a useful test case. We then

test the methodologies for full force-field representations of three peptides previously

studied with a closely related method by Zhang et. al. [72]: alanine dipeptide (Ace-
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Ala-Nme, 22 atoms, 60 BAT coordinates), dialanine (Ace-(Ala)2-Nme, 32 atoms, 90 BAT

coordinates) and tetra-alanine (Ace-(Ala)4-Nme, 52 atoms, 150 BAT coordinates) where

Ace is acetyl (CH3-CO), Ala is Alanine (HN-C-CH3-CO) and Nme is N-methylamide (NH-

CH3) (Figure 4.2). GAFF [11] force-field parameters were used in all cases. Force-field

parameter files were generated with Amber AnteChamber [77] and converted to Gromacs

format using amb2gmx from ffAMBER tools [78, 79]. Note that the force-field and

temperature used in this study are different from those in Ref [72], so a quantitative

comparison is not possible. For all molecules except propane, 10 sets of 50 ns vacuum

Figure 4.2: Chemical structures of the molecules used for testing the free energy
method.
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MD simulations were done at 1000 K using Gromacs 4.0.5 [80] with a time step of 1 fs; for

propane, a single 100 ns run was carried out. Conformations were saved every picosecond

to generate a total of 5 × 106 conformations for each peptide and 106 conformations for

propane. Free energies are reported in units of kBT ( = 8.36 kJ/mol at 1000 K). Each

BAT coordinate was discretized into B = 30 bins equally spaced between the minimum

and maximum values found in the MD snapshots, and the coordinate snapshots were used

to populate the singlet and doublet reference pdfs. These were used in turn to generate

NR = 106 samples for propane and NR = 5 × 106 samples for each peptide at both the

singlet and doublet levels.

4.3.2 Assessment of free energy estimates

We monitor convergence of the two free energy estimates, F̂
(1)
P and F̂

(2)
P , as a

function of the number of reference samples NR. Error analysis is done using the bootstrap

method [81, 82] in which the original set of samples from the reference system are resampled

with replacement to generate 100 new sets of samples, and the perturbation formula

(Eq. 4.14) is applied to each data set. The mean and standard deviation of these 100

estimates are reported as the final free energy estimate and its uncertainty, respectively. We

furthermore compare the distributions of the physical (force-field) energies of the original

MD sampled and reference sampled conformations as a measure of the conformational

overlap.
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4.4 Results

4.4.1 Validation with simplified propane

Both free energy estimates for simplified propane converge to 74.77 kBT , within 0.08

kBT of the analytic free energy of 74.692 kBT , as shown in Table 4.1, and appear to be well-

converged, as shown in Figure 4.3 (the range of the vertical axis is 1 KBT ). Nonetheless,

there is evidently a small bias in the estimates, which is likely due to the discretization

and restriction of the conformational space, as discussed above, since the analytic partition

function is computed from continuous integrals with full coordinate ranges instead of

those observed in the simulation (see Appendix B). The positive sign of the small bias

is consistent with the analysis of asymptotic bias in Section 4.2.3. Figure 4.4 plots the

force-field energy distributions of conformations sampled from MD and the two references.

The three energy distributions are virtually identical, indicating high similarity between

the conformations sampled from the reference distributions and the physical distribution.

Overall, the accuracy of the results for this simplified propane test, for which the free

energy is available in a reliable analytic form, validates the theory and implementation of

the free energy calculations.
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Figure 4.3: Convergence of free energy estimates for propane using a simplified
force-field. The solid line indicates the mean of the estimate using 100 bootstrap
samples (error bars of the singlet and doublet estimates are smaller than the
thickness of the line).

Figure 4.4: Normalized histogram (100 equally spaced bins) of potential energy
of simplified propane conformations sampled by MD, singlet level sampling and
doublet level sampling.
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4.4.2 Peptides with full force-field representation

Analytic free energy values are not available for the three peptides (Figure 4.2)

because the internal coordinates are coupled by force-field energy terms so that the

high-dimensional configurational integral cannot be factorized. We therefore assess the

reliability of the four free energy estimates obtained for each molecule (Table 4.1) by

examining convergence plots (Figure 4.5) and the overlaps of the force-field energy

distributions for the reference and the MD samples (Figure 4.6).

The central result of this study is that the doublet level reference systems lead to

dramatically faster free energy convergence than the singlet level reference systems, as seen

in Figure 4.5a-c and the bootstrap standard deviations in Table 4.1.

The excellent convergence of the doublet estimate is consistent with the strong

overlap between the force-field energy distribution (Figure 4.6) of doublet reference samples

with the MD samples from the physical Boltzmann distribution. The singlet reference

systems yield much worse overlap with the physical distributions; indeed, the energies

of over 99% of the singlet samples are greater than the maximum energy on the x-axis

in Figure 4.6, so the singlet distributions are not graphed. These high energies result

mainly from steric clashes. It is also worth remarking that, even for the doublet reference

state, the fraction of high-energy samples increases with the size of the molecules, and the

energy distribution correspondingly shifts toward higher energies. At the doublet level,

the fraction of samples with energies greater than the maximum energy on the x-axis in

Figure 4.6, were 0.9%, 2.4% and 10.5% for alanine dipeptide, dialanine and tetra-alanine,

respectively.

Some of the convergence graphs display relatively long plateaus followed by sudden

drops which occur whenever a sample with low energy difference is encountered [83]. This is
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particularly evident in the singlet results for tetra-alanine (Figure 4.5). Such plateaus risk

generating the deceptive appearance of a converged result. Thus, if a free energy estimate

appears to be converged, but the energy overlaps are poor, then the apparent convergence

may be illusory. On the other hand, if the overlap is extensive, then the convergence will

be more credible.
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Table 4.1: Mean and standard deviation (in parenthesis) of absolute free energy (in kBT )
of molecules from 100 bootstrap resampled data sets.

Number Analytic Singlet Doublet
of Atoms

Simplified Propane 11 74.6920 74.77 74.77
(0.0002) (0.0004)

Alanine Dipeptide 22 - 207.4 207.5
(0.8) (0.005)

Dialanine 32 - 331.5 311.43
(1.3) (0.01)

Tetra Alanine 52 - 631.7 519.3
(17.3) (0.15)
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(a) Alanine dipeptide

(b) Dialanine

(c) Tetra-alanine

Figure 4.5: Convergence of free energy estimates using singlet (thick line) and
doublet (thin line) reference system for (a) alanine dipeptide, (b) dialanine and
(c) tetra-alanine. The solid line indicates the mean of the estimate using 100
bootstrap resampled data sets and the bars indicate the standard deviations
(error bars on the doublet estimates are smaller than the thickness of the line).
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(a) Alanine dipeptide

(b) Dialanine

(c) Tetra-alanine

Figure 4.6: Probability distribution of potential energy of conformations
sampled by MD and by doublet level sampling for (a) alanine dipeptide:
energies of 99.9% singlet samples and 0.1% doublet samples was greater than
500 kJ/mol, (b) dialanine: energies of all singlet samples and 1.3% doublet
samples was greater than 800 kJ/mol, and (c) tetra-alanine: energies of all
singlet samples and 10% doublet samples was greater than 1200 kJ/mol.
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4.5 Discussion

This chapter has described a reference system method for computing the absolute

free energy of a molecule, which achieves convergence with a relatively small number

of conformational samples. The present approach builds on important prior work [69],

in which simulations were used to build singlet pdfs of internal molecular coordinates

and these pdfs in turn were used to define a reference system with a known free energy.

The singlet level reference state was then used as a basis for the calculation of molecular

free energies. The innovation in the present study grows from the use of the SA-based

conformational sampling method (Chapter 3), which incorporates correlations of any given

order, through the use of superposition approximations.

It is worth elaborating on the two sources of bias in the perturbation free energy

estimates computed here. In order to set up the reference distributions, the conformational

space is discretized. This leads to a bias since the method effectively computes the

discrete-space approximation (Eq. 4.10) of the continuous configurational integral (Eq. 4.1).

However, the results for propane, where the deviation of the computed discrete-space

approximation from the continuous-space analytic free energy is <0.1%, suggest that the

bias due to the discretization is small. Based on these propane results, we expect the

discretization bias for peptides to be small as well, since the force-field and discretization

are similar. The second source of bias stems from the fact that the reference distributions

are constructed from a finite set of MD data which restricts the conformational space

accessible to SA-based sampling. However, although difficult to assess a priori, the bias

due to the restrictions on the conformational space is expected to be low if the accessible

region contains the low physical energy conformations that dominate the configurational

integral.
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As noted in Section 2.4.3, the present SA framework can be generalized to construct

reference systems based upon selected second and higher order pdfs. It is thus worth

noting that there can be a trade-off between the bias and convergence of the free energy

estimate. As more pdfs are included, the conformational overlap increases, thereby

speeding convergence, but the bias may increase because it is increasingly difficult to

populate higher-order pdfs so the reference distribution may have more holes. The optimal

SA-based reference will be one that uses the least number of higher order pdfs while

maintaining sufficient overlap to achieve convergence with reasonable number of reference

samples.

In prior work [69], the use of a singlet level reference system was found to limit

the applicability of the reference system method to small molecules, because the overlap

of the reference distribution with the physical ensemble falls with increasing system

size. This limitation motivated the development of an innovative approach where the

molecule is divided into fragments and samples are drawn separately for each fragment [72].

The fragments are then assembled to obtain the free energy of the full molecule. The

present study shows that incorporating correlation into the reference system yields

good convergence for larger molecules without recourse to the fragment-based method.

Ultimately, a combined approach may be of value for still larger molecules, especially

when correlations above second order are expected to be important.

One limitation of the present method is that it will likely need to be used in

conjunction with an implicit solvent model, in order to limit the number of degrees of

freedom to a computationally manageable number [84, 85, 86]. Indeed, even with an

implicit solvent model, the computational requirements will be significant for most systems

large enough to be of practical interest, such as proteins. Possible strategies for scaling
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up the conformational sampling method to be applicable to much larger systems, such as

small proteins, are discussed in Chapter 5.
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Chapter 5

Future Directions

The SA-based conformational sampling method developed here generates physically

reasonable conformations from a region of conformational space whose boundaries are

set based on an initial set of Boltzmann distributed samples from a standard molecular

simulation. Low order marginal pdfs are computed from the simulation data and used

to construct an approximation to the full Boltzmann pdf. We saw that this SA-based

distribution can have high overlap with the physical Boltzmann distribution. Moreover,

since the sampling distribution is normalized, the samples can be reweighted to compute

thermodynamic quantities of the system, such as the free energy, as seen in Chapter 4.

Multiple properties of the SA-based sampling make it potentially more attractive

than simply drawing additional samples from the Boltzmann distribution via MD or

MC methods. First, because the SA-based sampling does not account for higher order

correlations (i.e., correlations of order greater than l), the range of conformations accessible

to it is larger than that of the simulation data used to populate the reference pdfs.

Second, the sampling is not obstructed by energy barriers on the physical energy surface,

so highly dissimilar, yet low energy conformations can readily be sampled. Third,

from a computational standpoint, SA-based sampling is naturally suited for distributed

computing, so that the time required for generating a given number of samples can be
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easily reduced. It is thus worth considering how this approach may be applied to real-world

problems. In this chapter, then, we discuss strategies to extend the “proof-of-principle”

studies, presented in the prior chapters, to larger molecular systems, and also further

potential applications of these methods.

5.1 Accuracy and scale-up of SA-based sampling

A number of strategies could be employed to allow productive application of SA-

based sampling to larger molecular systems, potentially small proteins with ∼2000 atoms.

The effectiveness of the various strategies, and their combinations, should be assessed based

upon the degree of speedup and memory savings they afford, and their conformational

overlap with the physical distribution. The degree of overlap can be evaluated as done in

Chapter 3, and also based upon the convergence properties of reference state free energy

calculations as presented in Chapter 4.

(i) Mixed-SA with select higher order reference pdfs

The l-level sampling algorithm presented in Chapter 3 uses all reference pdfs of up to

order l, leading to order N l scaling of both the CPU time and memory requirements

for sampling a conformation. This scaling will lead to prohibitive computational costs

for sampling larger systems, primarily due to the prohibitive memory requirements

at triplet and higher levels.

However, the number of higher order pdfs required to build an SA-based approximation

may be reduced substantially by dropping the pdfs that correspond to weak

correlations and that, therefore, are not critical for maintaining good overlap with

the physical distribution. For instance, in a long chain molecule, joint distribution

123



of torsions that are far apart in sequence and three-dimensional space might not be

strong. To identify the stronger correlations, heuristic rules such as close proximity in

the bonded topology or in three dimensional space could be used, though these rules

will likely be molecule-dependent. A more sophisticated and automatic approach

could be to use low mutual information as an indicator of weak correlation within

sets of coordinates [39, 87]. Once the pdfs that are least important, in this sense,

have been identified, a mixed SA reference state can be set up by approximating the

dropped pdfs in terms of their lower order marginals (see Section 2.4.3). Note that

reducing the number of higher order reference pdfs by this approach will also reduce

the cost of sampling a single conformation, since fewer multiplication operations will

be required for computing the conditional distributions.

(ii) Distributed computing

The main computational tasks involved in the SA-based sampling are highly

amenable to distributed computing. Thus, the MD or MC physical samples required

to populate the reference pdfs can be generated by short simulations on multiple

compute nodes, and the sampling from SA-based distributions can be trivially

distributed over multiple compute nodes. Indeed, since successive samples are

uncorrelated, no internode communication will be required during this sampling

process.

(iii) Enhanced sampling methods for generating physical samples

To ensure sampling of the desired region of the conformational space, the physical

samples used to populate the reference pdfs should roughly cover the region

corresponding to the state of interest, e.g. the folded structure of a protein. The
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coverage of the physical simulation may be improved by using enhanced sampling

methods, such as temperature replica exchange [88, 89], other Generalized Ensemble

methods [90, 91] and Markov State Models [92]; see Ref [93, 94, 95] for recent reviews.

Moreover, the enhanced sampling algorithms in conjunction with modern computer

hardware technologies [96, 97] and large scale distributed computing [98] can further

help to obtain a good set of initial physical samples.

(iv) Parametric representation of reference pdfs

As noted above, the histogram representation of the reference pdfs can be expensive

in terms of memory requirement. This cost could be moderated by representing

the higher order marginals with a more sophisticated basis set, such as Gaussian

or von Mises distributions, which require far fewer parameters than needed by

the present histogram representation. Maximum-likelihood methods represent one

possible approach to fitting these parametric models to the available simulation

data [50].

(v) Using generic pdfs for analogous coordinates

The SA-based sampling method, as presented in previous chapters, requires a

preliminary MD simulation of the molecule to set up the reference pdfs. This step

limits the flexibility of the method, as MD simulations can be expensive and difficult

to automate. These simulations would become unnecessary if we could establish

a generic set of pdfs which can be used to construct the SA-based distributions

for arbitrary molecules. This idea is based on the expectation that correlations

among certain combinations of internal coordinates may be similar across molecules

in the same chemical family. For instance, referring to the polypeptide test cases
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(Figure 4.2), the correlations among backbone torsion angles of alanine dipeptide

could be used for analogous coordinates in other polypeptides. In general, for

proteins, correlations among adjacent backbone torsion may largely be determined

by the local secondary structure. Since setting up the pdfs would then become

one-time “offline” calculation, extensive computational resources could be devoted to

it. For example, exhaustive simulations could be performed for short polypeptides

in different secondary structure motifs to build a library of pdfs for proteins. A

caveat to using a library based approach is that the various reference pdfs might not

be consistent with one another, e.g., the 1-D marginal, p(X1), from p(X1, X2) and

p(X1, X3) may not match, at least without additional steps to provide for consistency.

Such inconsistencies might increase the fraction of null samples.

In a related approach, for a family of small molecules which differ by a few atoms,

e.g. by varying an R-group, such as a congeneric series of drug-like ligands, one could

build a “super molecule” using dummy atoms, such that the various compounds are

obtained by deleting a subset of atoms of the super molecule. This strategy will

work if the simulation of the super molecule is able to access conformations that are

likely to be sampled by MD simulations of the individual molecules. This can be

accomplished by using an “enveloping” potential energy function for simulating the

super molecule, which would be obtained by combining the potential energy function

of individual ligands [99], or by simply softening the barriers in the torsional energy

terms of the super molecule. In this approach, all pdfs will be mutually consistent.

(vi) Collective coordinates and coarse-grained representation

Another approach for improving the accuracy of the sampled conformations is

suggested by the dependence of the present results upon the choice of coordinate
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system, since different coordinates systems result in different degrees of correlation,

or coupling, among coordinates. Accordingly, other coordinate systems, such as

principal components of the MD trajectory in Cartesian or BAT [100] coordinates,

might better capture complex molecular fluctuations and other high-dimensional

distributions in terms of tractable sets of low-order marginals.

A straightforward approach to reducing the dimensionality of a molecular system,

e.g. protein, would be to use a coarse-grained representation and energy function.

A coarse-grained approach will suffice if only the large scale conformational states,

e.g. different loop conformations, of a protein are of interest, and not details such as

side-chain orientations.

5.2 Applications

The SA-based conformational sampling algorithms and the associated absolute free

energy calculation method could be useful for the following applications:

(i) Conformational equilibrium

The absolute free energy calculation method can be used to compute relative

population for different conformational states [69, 101, 70, 71] which may be

separated by high energy barriers. Consider a molecule, e.g. leucine dipeptide,

which can take either an alpha or beta state depending on the values of the backbone

torsions [69]. The two states essentially represent a partitioning of the conformational

space. The relative population of the two states can be obtained in terms of the

difference in the absolute free energies of the two states which can be obtained by

populating the reference pdfs using conformations from a MD simulation confined
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to the particular state [70]. Direct calculation of the relative population based on

a converged equilibrium simulation could be more computationally expensive, since

interconversion between the two states is restricted by the high energy barriers.

(ii) Binding free energy and configurational integral calculation

The methods developed here could be applied to the calculation of noncovalent

binding affinities, a topic of active interest due to the importance of such methods in

fields like drug discovery and catalysis. The reader is referred to Ref [102, 103, 19,

104, 105] for an overview and current status of the field. The reaction free energy

for the non-covalent association of two molecules - i.e., their binding free energy – is

∆Fbind = FLR
P − FL

P − FR
P (5.1)

where the terms of the right-hand side denote the absolute free energy of ligand

(L), receptor (R) and the complex (LR) [19]. (More formally, these quantities are

standard chemical potentials, corresponding to a hypothetical dilute 1M solution [24].)

The effect of solvent can be approximated by adding an implicit solvent energy

term to the force-field potential energy function [84, 85, 86]. To compute the free

energy of the complex, the internal coordinates will include six pseudo internal

coordinates that specify the orientation and position of the ligand relative to the

receptor. The distributions corresponding to these internal coordinates determine

the “wiggle room” for the ligand in the binding pocket. Such an approach could

potentially be automated and used for virtual screening of a set of ligands against a

target molecule, a challenging task in computer aided drug design [106]. It would be

interesting to compare the resulting binding free energies with those obtained by other

computational approaches and with experimental measurements [62, 19, 103, 105].
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(iii) Configurational entropy

This work was motivated by the observation that the configurational entropy of

molecules could be computed rather accurately using the MIE at the doublet or

triplet level. In Chapter 2, we saw that the l-level MIE of entropy, S(l), is the

cross entropy of the SA-l distribution with respect to the Boltzman distribution.

Another estimate of the configurational entropy, S̃(l), could be obtained as the cross-

entropy of the SA-l based sampling distribution, with the Boltzmann distribution.

Since the p̃
(l)
N distributions are normalized, unlike the superposition approximations,

S̃(l) provides an upper bound on the true entropy, based on the Kullbach-Liebler

inequality (Eq. 2.32). Moreover, we have seen that the doublet or triplet level

sampling distribution can be a good approximation of the Boltzmann distribution.

Therefore, we would expect the cross-entropy of the present sampling distributions

to give a tighter bound as l increases. The S̃(l) estimate is essentially the Boltzmann

average of the log of sampling probability

S̃(l) =
⟨
− ln p̃(l)

⟩
(5.2)

which can be computed using reference samples by Eq. 4.22 of Section 4.2.4 with

f = − ln p̃
(l)
N . Thus, there is an interesting possibility of computing a novel estimator

of the entropy which, like the MIE, is expected to converge on the true entropy but,

unlike the MIE, always represents an upper limit of the true entropy.

(iv) Conformational Search

SA-based sampling could be used as part of a conformational search method in which

sampled conformations are energy-minimized to find conformations corresponding

to the low-energy minima of the physical energy surface. This concept takes
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advantage of the fact that the SA-based sampling randomly combines different

values of the coordinates from their permitted ranges allowing it to visit multiple

energy wells. Such an approach could speed the discovery of stable, bioactive

conformations of drugs and drug-like molecules. It could also help identify stable

conformations of a protein-ligand complex in settings where there is reason to

expect different conformational rearrangements of the binding site in response to

different bound ligands. The SA-based samples could also be used to construct

the a reservoir of conformations for use in Reservoir Replica Exchange [107], and

in conformational analysis using higher level quantum chemistry calculation on the

low-energy conformations of the empirical force-field [108].

Finally, we note that approximating a high-dimensional distribution in terms of

low-order marginals is a common theme in the many fields of inquiry [50, 109, 110].

Although one often has enough data to compute low-order marginals, the available data

are typically too sparse to allow a full, high-dimensional distribution to be evaluated.

The work describes a novel approach to approximate the high-dimensional distribution in

terms of tractable low-order marginals and, furthermore, to sample from this approximate

distribution and compute averages with respect to the true distribution. This work may

thus have applications in fields beyond statistical mechanics, including bioinformatics,

structural biology, data mining, and machine learning.
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Appendix A

Exponents of the superposition approximation at

level l

The SA-l distribution, p(l)N , approximates an N -dimensional distribution pN in terms

of products of its marginal pdfs of highest order l < N − 1 and has the form

pN ≈ p
(l)
N = P

a(l;N,l)
(N,l) P

a(l−1;N,l)
(N,l−1) × . . .× P

a(1;N,l)
(N,l)

=

1∏
j=l

P
a(j;N,l)
(N,j) (A.1)

where P(N,k) denotes the the product the CN
k marginal distributions at order k of pN . In

this appendix, we use reverse induction to show that the SA-l for a general N and l is

given by

p
(l)
N = P+1

(N,l)P
−(N−l)
(N,l−1)P

+
(N−l)(N−l+1)

2!

(N,l−2) × . . .× P
(−1)l−1 (N−l)...(N−2)

(l−1)!

(N,1) (A.2)

so that the exponents in Eq. A.1 are given by

a(j;N, l) = (−1)l−j
l−j∏
i=1

N − l + i− 1

i
. (A.3)

The SA-l distribution is obtained by recursive application of the GKSA

pk ≈ p
(k−1)
k = P+1

(k,k−1)P
−1
(k,k−2) × . . .× P

(−1)k−2

(k,1)

=

1∏
j=k−1

P
(−1)k−1−j

(k,j) (A.4)
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which expresses a k-dimensional pdf in terms of marginal pdfs of up to order k − 1. The

overall strategy of the proof is to show that applying the GKSA to each l-order pdf in the

SA-l gives the SA-l for l = l − 1.

We first derive an approximation, using the GKSA, to the product of all k-order

pdfs in terms of producst of k − 1 and lower order pdfs which has the form

P(N,k) ≈ P
b(k−1;N,k)
(N,k−1) P

b(k−2;N,k)
(N,k−2) × . . .× P

b(1;N,k)

(N,1)

=

1∏
j=k−1

P
b(j;N,k)
(N,j) . (A.5)

The exponents b(j;N, k) are obtained as follows. The quantity P(N,k) is a product of CN
k

pdfs of order k corresponding to the unique combinations of k variables out of the full N

variables. On applying the GKSA, each k-order pdf in P(N,k) generates Ck
j pdfs of order

j ≤ (k − 1). Therefore, the total number of pdfs generated at order j are

Gj = CN
k × Ck

j . (A.6)

Given N variables, the number of possible pdfs at order j is Tj = CN
j . Due to symmetry

of the GKSA, Gj is a multiple of Tj and the ratio gives the magnitude of b(j;N, k) in

Eq. A.5,

|b(j;N, k)| =
Gj

Tj

=
CN
k × Ck

j

CN
j

=

N !
(N−k)! k! ×

k!
(k−j)! j!

N !
(N−j)! j!

=
(N − j)!

(N − k)!(k − j)!
. (A.7)

To find the sign of b(j;N, k), note that, in GKSA (Eq. A.4), the sign of the exponent of

product of pdfs at the highest order, P(N,N−1), is positive, and it alternates for pdfs of
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subsequent orders. Therefore, in Eq. A.5 the exponent b(k−1;N, k) is positive, b(k−2;N, k)

is negative, etc and the exponents in Eq. A.5 are given by

b(j;N, k) = (−1)k−1−j (N − j)!

(N − k)!(k − j)!
. (A.8)

To illustrate the pattern of the exponents b(j;N, k), we list the expressions of P(N,k) for

k = 2 to 5:

P(N,2) = P
N−1

1

(N,1)

P(N,3) = P
N−2

1

(N,2)P
− (N−2)(N−1)

2!

(N,1)

P(N,4) = P
N−3

1

(N,3)P
− (N−3)(N−2)

2!

(N,2) P
+

(N−3)(N−2)(N−1)
3!

(N,1)

P(N,5) = P
N−4

1

(N,4)P
− (N−4)(N−3)

2!

(N,3) P
+

(N−4)(N−3)(N−2)
3!

(N,2) P
− (N−4)(N−3)(N−2)(N−1)

4!

(N,1)

:

P(N,l) = P
N−l+1

1

(N,l−1)P
− (N−l+1)(N−l+2)

2!

(N,l−2) P
+

(N−l+1)(N−l+2)(N−l+3)
3!

(N,l−3) × . . .× P
− (N−l+1)...(N−1)

(l−1)!

(N,1) .

(A.9)

Substituting P(N,l) from Eq. A.9 for the first factor in the RHS of the SA-l in Eq. A.2

gives

( P
N−l+1

1

(N,l−1)P
− (N−l+1)(N−l+2)

2!

(N,l−2) × . . .× P
(−1)l−1 (N−l+1)...(N−1)

(l−1)!

(N,1) )

× (P
−(N−l)
(N,l−1)P

+
(N−l)(N−l+1)

2!

(N,l−2) × . . .× P
(−1)l−2 (N−l)...(N−2)

(l−1)!

(N,1) )

= P+1
(N,l−1)P

−(N−(l−1))
(N,(l−1)−1) × . . .× P

(−1)(l−1)−1 (N−(l−1))...(N−2)
((l−1)−1)!

(N,1)

= p
(l−1)
N (A.10)

which is the SA-l for l = l− 1. Continuing this recursion l times we get the p
(1)
N as P(N,1),

product of all 1-D pdfs, which is true. QED.
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Appendix B

Exact free energy for simplified propane

We derive the partition function of propane, with M = 11 atoms, for a simplified

energy function lacking non-bonded energy terms and possessing a single energy term

corresponding to each of the N = 3 ×M − 6 = 27 BAT coordinates (Figure 4.1) used to

specify the conformation. Thus, the energy function is given by

UP (b,a, t) =
M∑
i=2

Ub(bi) +
M∑
i=3

Ua(ai) +
M∑
i=4

Ut(ti) (B.1)

Harmonic functions are used for bond-stretch and angle-bend energy terms,

Ub(b) =
1

2
kb(b− beq)

2

Ua(a) =
1

2
ka(a− aeq)

2 (B.2)

and the Ryckaert-Bellemans [111] potential is used for torsions,

Ut(x) =

5∑
i=0

Ci (cos (t− π))i (B.3)
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where kB, beq, aeq, kAandCi are the force-field parameters. The configurational integral is

then given by

ZP =

∫
exp(−β UP (b,a, t)) dV

=

∫
exp

(
−β

M∑
i=2

Ub(bi)

)
exp

(
−β

M∑
i=3

Ua(ai)

)
exp

(
−β

M∑
i=4

Ut(ti)

)

b3

M∏
i=4

(
b2i sin ai

)
db2db3 da3

(
M∏
i=4

dbi dai dti

)
(B.4)

Grouping bond, angle and torsion variables gives

ZP =

∫
exp

(
−β

M∑
i=2

Ub(bi)

)
b3 b

2
4.. b

2
M db2.. dbM

×
∫

exp

(
−β

M∑
i=3

Ua(ai)

)
sin a4.. sin aM da3 .. daM

×
∫

exp

(
−β

M∑
i=4

Ut(ti)

)
dt4 .. dtM (B.5)

By separating variables further, we can write the partition function as a product of one-

dimensional integrals of the form

Bonds:
∞∫
0

exp(−β Ub(b)) db ;

∞∫
0

b exp(−β Ub(b)) db ;

∞∫
0

b2 exp(−β Ub(b)) db

Angles:
2π∫
0

exp(−β Ua(a)) da ;

2π∫
0

sin(a) exp(−β Ua(a)) da

Torsions:
2π∫
0

exp(−β Ut(t)) dt (B.6)

all of which, except the integral over torsion coordinates can be computed analytically.

The force-field parameters for propane are as follows. Parameters for the two bond types

are

C-H : kb = 2.8225× 105 , beq = 0.1092

C-C : kb = 2.5363× 105 , beq = 0.1535 (B.7)
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The three angle types have parameters

H-C-C or C-C-H : ka = 3.8828× 102 , aeq = 1.9207

C-C-C : ka = 3.8828× 102 , aeq = 1.9309

H-C-H : ka = 3.8828× 102 , aeq = 1.8911 (B.8)

The units of spring constants, kb and ka, are in kJ/mol/nm2, equilibrium bond lengths,

beq are in nm and equilibrium angles, aeq, are in radians. Finally parameters for the two

torsion types, in kJ/mol, are

H-C-C-C or C-C-C-H : C0 = 0.66944, C1=2.00832, C3 = −2.67776

H-C-C-H : C0 = 0.62760, C1=1.88280, C3 = −2.51040

, (C2 = C4= C5 = 0 ) (B.9)

Substituting these parameters with kBT = 8.36 kJ/mol corresponding to 1000 Kelvin gives

the final free energy (in kBT units) as

FP = − lnZP

= 74.6920 (B.10)

136



Bibliography

[1] W. L. Jorgensen, “The many roles of computation in drug discovery,” Science,
vol. 303, no. 5665, p. 1813, 2004.

[2] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry. McGraw-Hill New York,
1989.

[3] D. A. McQuarrie, Quantum chemistry. Univ Science Books, 2008.

[4] H. M. Senn and W. Thiel, “QM/MM methods for biomolecular systems,” Angewandte
Chemie International Edition, vol. 48, no. 7, p. 1198, 2009.

[5] D. G. Truhlar, J. Gao, C. Alhambra, M. Garcia-Viloca, J. Corchado, M. L. Sànchez,
and J. Villà, “The incorporation of quantum effects in enzyme kinetics modeling,”
Accounts of Chemical Research, vol. 35, no. 6, p. 341, 2002.

[6] A. Warshel, “Computer simulations of enzyme catalysis: Methods, Progress, and
Insights,” Annual Review of Biophysics and Biomolecular Structure, vol. 32, no. 1,
p. 425, 2003.

[7] K. Raha, M. B. Peters, B. Wang, N. Yu, A. M. Wollacott, L. M. Westerhoff, and
K. M. Merz Jr, “The role of quantum mechanics in structure-based drug design,”
Drug Discovery Today, vol. 12, no. 17-18, pp. 725–731, 2007.

[8] A. J. Mulholland, “Modelling enzyme reaction mechanisms, specificity and catalysis,”
Drug Discovery Today, vol. 10, no. 20, p. 1393, 2005.

[9] J. W. Ponder and D. A. Case, “Force fields for protein simulations.,” Advances in
Protein Chemistry, vol. 66, p. 27, 2003.

[10] V. M. Anisimov, G. Lamoureux, I. V. Vorobyov, N. Huang, B. Roux, and A. D.
MacKerell, Jr, “Determination of electrostatic parameters for a polarizable force
field based on the classical Drude oscillator,” Journal of Chemical Theory and
Computation, vol. 1, no. 1, p. 153, 2005.

[11] J. Wang, R. Wolf, J. Caldwell, P. Kollman, and D. Case, “Development and testing
of a general amber force field,” Journal of Computational Chemistry, vol. 25, no. 9,
pp. 1174, 1157, 2004.

[12] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling,
“Comparison of multiple Amber force fields and development of improved protein
backbone parameters,” Proteins: Structure, Function, and Bioinformatics, vol. 65,
no. 3, p. 712, 2006.

[13] A. D. Mackerell Jr, “Empirical force fields for biological macromolecules: overview
and issues,” Journal of Computational Chemistry, vol. 25, no. 13, p. 1584, 2004.

[14] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim,
E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and A. D. M. Jr., “CHARMM general

137



force field: A force field for drug-like molecules compatible with the CHARMM all-
atom additive biological force fields,” Journal of Computational Chemistry, vol. 31,
no. 4, p. 671, 2010.

[15] T. A. Halgren, “Potential energy functions,” Current Opinion in Structural Biology,
vol. 5, no. 2, p. 205, 1995.

[16] A. Rahman and F. H. Stillinger, “Molecular Dynamics Study of Liquid Water,” The
Journal of Chemical Physics, vol. 55, no. 7, p. 3336, 1971.

[17] J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics of folded proteins.,”
Nature, vol. 267, no. 5612, p. 585, 1977.

[18] E. Shakhnovich, “Modelling protein folding: the beauty and power of simplicity,”
Folding and Design, vol. 1, no. 3, p. R50, 1996.

[19] M. K. Gilson and H.-X. Zhou, “Calculation of Protein-Ligand binding affinities,”
Annual Review of Biophysics and Biomolecular Structure, vol. 36, pp. 21–42, 2007.

[20] D. D. Boehr, R. Nussinov, and P. E. Wright, “The role of dynamic conformational
ensembles in biomolecular recognition,” Nature Chemical Biology, vol. 5, no. 11,
p. 789, 2009.

[21] P. I. Zhuravlev and G. A. Papoian, “Protein functional landscapes, dynamics,
allostery: a tortuous path towards a universal theoretical framework,” Quarterly
Reviews of Biophysics, p. 1, 2006.

[22] G. Kar, O. Keskin, A. Gursoy, and R. Nussinov, “Allostery and population shift in
drug discovery,” Current Opinion in Pharmacology, vol. 10, no. 6, p. 715, 2010.

[23] D. Chandler, Introduction to Modern Statistical Mechanics. Oxford University Press,
USA, 1st ed., 1987.

[24] M. K. Gilson, J. A. Given, B. L. Bush, and J. A. McCammon, “The statistical-
thermodynamic basis for computation of binding affinities: a critical review,”
Biophysical Journal, vol. 72, no. 3, p. 1047, 1997.

[25] J. G. Kirkwood and E. M. Boggs, “The radial distribution function in liquids,” The
Journal of Chemical Physics, vol. 10, p. 402, 1942.

[26] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Third Edition. Academic
Press, 3rd ed., 2006.

[27] I. Z. Fisher and B. L. Kopeliovich, “Improvement of superposition approximation in
the theory of liquids,” Doklady Akademii Nauk SSSR, vol. 133, p. 81, 1960.

[28] H. Reiss, “Superposition approximations from a variation principle,” Journal of
Statistical Physics, vol. 6, no. 1, pp. 39–47, 1972.

[29] N. N. Bugaenko, A. Gorban’, and I. Karlin, “Universal expansion of three-particle
distribution function,” Theoretical and Mathematical Physics, vol. 88, no. 3, pp. 977–
985, 1991.

138



[30] A. Singer, “Maximum entropy formulation of the kirkwood superposition
approximation,” The Journal of Chemical Physics, vol. 121, no. 8, p. 3657, 2004.

[31] P. Attard, O. G. Jepps, and S. Marcelja, “Information content of signals using
correlation function expansions of the entropy,” Physical Review E, vol. 56, p. 4052,
1997.

[32] H. Matsuda, “Physical nature of higher-order mutual information: Intrinsic
correlations and frustration,” Physical Review E, vol. 62, p. 3096, 2000.

[33] A. Baranyai and D. J. Evans, “Direct entropy calculation from computer simulation
of liquids,” Physical Review A, vol. 40, no. 7, pp. 3817–3822, 1989.

[34] D. C. Wallace, “On the role of density fluctuations in the entropy of a fluid,” The
Journal of Chemical Physics, vol. 87, p. 2282, 1987.

[35] R. Mountain and H. Raveché, “Entropy and Molecular Correlation Functions in Open
Systems. II Two-and Three-Body Correlations,” The Journal of Chemical Physics,
vol. 55, p. 2250, 1971.

[36] W. McGill, “Multivariate information transmission,” IEEE Transactions on
Information Theory, vol. 4, no. 4, pp. 93–111, 1954.

[37] R. M. Fano, Transmission of Information: A Statistical Theory of Communication.
The MIT Press, 1961.

[38] T. S. Han, “Multiple mutual informations and multiple interactions in frequency
data,” Information and Control, vol. 46, no. 1, pp. 26–45, 1980.

[39] B. J. Killian, J. Y. Kravitz, S. Somani, P. Dasgupta, Y. Pang, and M. K. Gilson,
“Configurational entropy in protein-peptide binding: computational study of tsg101
ubiquitin e2 variant domain with an HIV-derived PTAP nonapeptide,” Journal of
Molecular Biology, vol. 389, p. 315, 2009.

[40] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge University Press,
2003.

[41] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical
Journal, vol. 27, pp. 379–423,623–656, 1948.

[42] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of
Mathematical Statistics, p. 79, 1951.

[43] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience,
2nd ed., 1991.

[44] T. Tsujishita, “On triple mutual information.,” Advances in Applied Mathematics,
vol. 16, p. 269, 1995.

[45] A. Bell, “The co-information lattice,” Tech. Rep. RNI-TR-02-1, Redwood Neurosci.
Inst., 2003.

[46] S. Watanabe, “Information Theoretical Analysis of Multivariate Correlation,” IBM
Journal of Research and Development, vol. 4, no. 1, p. 66, 1960.

139



[47] C. Chang and M. K. Gilson, “Free energy, entropy, and induced fit in host-guest
recognition: calculations with the second-generation mining minima algorithm,”
Journal of the American Chemical Society, vol. 126, p. 13156, 2004.

[48] B. J. Killian, M. K. Gilson, and J. Y. Kravitz, “Extraction of configurational
entropy from molecular simulations via an expansion approximation.,” The Journal
of Chemical Physics, vol. 127, 2007.

[49] S. Somani, B. J. Killian, and M. K. Gilson, “Sampling conformations in high
dimensions using low-dimensional distribution functions,” The Journal of Chemical
Physics, vol. 130, p. 134102, 2009.

[50] C. Bishop, Pattern Recognition and Machine Learning. Springer, 1st ed. 2006. corr.
2nd printing ed., 2007.

[51] The MathWorks Inc., “MATLAB R2009b ver 7.5,” 2009.

[52] K. S. Pitzer, “Energy levels and thermodynamic functions for molecules with internal
rotation: II. unsymmetrical tops attached to a rigid frame,” The Journal of Chemical
Physics, vol. 14, no. 4, p. 239, 1946.

[53] C. Chang, M. J. Potter, and M. K. Gilson, “Calculation of molecular configuration
integrals,” The Journal of Physical Chemistry B, vol. 107, no. 4, pp. 1048–1055, 2003.

[54] R. Abagyan, M. Totrov, and D. Kuznetsov, “ICM-A new method for protein modeling
and design: Applications to docking and structure prediction from the distorted
native conformation,” Journal of computational chemistry, vol. 15, no. 5, pp. 488–
506, 1994.

[55] S. K. Chang and A. D. Hamilton, “Molecular recognition of biologically interesting
substrates: synthesis of an artificial receptor for barbiturates employing six hydrogen
bonds,” Journal of the American Chemical Society, vol. 110, no. 4, pp. 1318–1319,
1988.

[56] S. Goswami and R. Mukherjee, “Molecular recognition: a simple dinaphthyridine
receptor for urea,” Tetrahedron Letters, vol. 38, no. 9, pp. 1619–1622, 1997.

[57] A. D. MacKerell, Jr, D. Bashford, Bellott, R. L. Dunbrack, Jr., J. D. Evanseck,
M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir,
K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen,
B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote,
J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus,
“All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of
Proteins,” The Journal of Physical Chemistry B, vol. 102, no. 18, pp. 3586–3616,
1998.

[58] J. Mazur and R. L. Jernigan, “Distance-dependent dielectric constants and their
application to double-helical DNA,” Biopolymers, vol. 31, no. 13, p. 1615, 1991.

[59] J. S. Liu, Monte Carlo strategies in scientific computing. Springer Verlag, 2008.

140



[60] F. M. Ytreberg and D. M. Zuckerman, “Peptide conformational equilibria computed
via a single-stage shifting protocol,” The Journal of Physical Chemistry. B, vol. 109,
no. 18, pp. 9096–9103, 2005.

[61] M. R. Shirts and V. S. Pande, “Solvation free energies of amino acid side chain
analogs for common molecular mechanics water models,” The Journal of Chemical
Physics, vol. 122, no. 13, p. 134508, 2005.

[62] H. Woo and B. Roux, “Calculation of absolute protein ligand binding free energy
from computer simulations,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 102, no. 19, pp. 6825–6830, 2005.

[63] T. Komatsuzaki, K. Hoshino, Y. Matsunaga, G. J. Rylance, R. L. Johnston, and
D. J. Wales, “How many dimensions are required to approximate the potential energy
landscape of a model protein?,” Journal of Chemical Physics, vol. 122, p. 84714, 2005.

[64] W. G. Hoover, “Thermodynamic properties of the fluid and solid phases for inverse
power potentials,” The Journal of Chemical Physics, vol. 55, no. 3, p. 1128, 1971.

[65] D. Frenkel and A. J. C. Ladd, “New Monte Carlo method to compute the free energy
of arbitrary solids. application to the fcc and hcp phases of hard spheres,” The Journal
of Chemical Physics, vol. 81, no. 7, p. 3188, 1984.

[66] W. G. Hoover, “Use of computer experiments to locate the melting transition and
calculate the entropy in the solid phase,” The Journal of Chemical Physics, vol. 47,
no. 12, p. 4873, 1967.

[67] L. M. Amon and W. P. Reinhardt, “Development of reference states for use in absolute
free energy calculations of atomic clusters with application to 55-atom Lennard-Jones
clusters in the solid and liquid states,” The Journal of Chemical Physics, vol. 113,
no. 9, p. 3573, 2000.

[68] J. P. Stoessel and P. Nowak, “Absolute free energies in biomolecular systems,”
Macromolecules, vol. 23, no. 7, pp. 1961–1965, 1990.

[69] F. M. Ytreberg and D. M. Zuckerman, “Simple estimation of absolute free energies
for biomolecules,” The Journal of Chemical Physics, vol. 124, p. 104105, 2006.

[70] M. D. Tyka, A. R. Clarke, and R. B. Sessions, “An efficient, path-independent method
for free-energy calculations,” The Journal of Physical Chemistry B, vol. 110, no. 34,
p. 17212, 2006.

[71] M. Cecchini, S. V. Krivov, M. Spichty, and M. Karplus, “Calculation of Free-Energy
Differences by Confinement Simulations. Application to Peptide Conformers,” The
Journal of Physical Chemistry B, vol. 113, no. 29, p. 9728, 2009.

[72] X. Zhang, A. B. Mamonov, and D. M. Zuckerman, “Absolute free energies estimated
by combining precalculated molecular fragment libraries,” Journal of Computational
Chemistry, vol. 30, no. 11, pp. 1680–1691, 2009.

[73] S. Somani and M. K. Gilson, “Accelerated convergence of molecular free energy
via superposition approximation-based reference states,” The Journal of Chemical
Physics, To be published.

141



[74] D. R. Herschbach, H. S. Johnston, and D. Rapp, “Molecular partition functions in
terms of local properties,” The Journal of Chemical Physics, vol. 31, no. 6, p. 1652,
1959.

[75] N. Go and H. A. Scheraga, “On the use of classical statistical mechanics in the
treatment of polymer chain conformation,” Macromolecules, vol. 9, no. 4, pp. 535–
542, 1976.

[76] R. W. Zwanzig, “High-Temperature equation of state by a perturbation method. i.
nonpolar gases,” The Journal of Chemical Physics, vol. 22, p. 1420, 1954.

[77] J. Wang, W. Wang, P. A. Kollman, and D. A. Case, “Automatic atom type and
bond type perception in molecular mechanical calculations.,” Journal of Molecular
Graphics and Modelling, p. 247, 2006.

[78] E. Sorin and V. S. Pande, “Exploring the helix-coil transition via all-atom equilibrium
ensemble simulations,” Biophysical Journal, vol. 88, no. 4, pp. 2472–2493, 2005.

[79] A. DePaul, E. Thompson, S. Patel, K. Haldeman, and E. Sorin, “Equilibrium
conformational dynamics in an RNA tetraloop from massively parallel molecular
dynamics,” Nucleic Acids Research, vol. 38, no. 14, pp. 4856–67, 2010.

[80] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms
for highly efficient, Load-Balanced, and scalable molecular simulation,” Journal of
Chemical Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008.

[81] A. M. Zoubir and B. Boashash, “Bootstrap methods and applications,” Signal
Processing Magazine, IEEE, vol. 15, no. 1, pp. 56–76, 1998.

[82] A. C. Davison and D. V. Hinkley, Bootstrap Methods and Their Application.
Cambridge University Press, 1st ed., 1997.

[83] C. Jarzynski, “Rare events and the convergence of exponentially averaged work
values,” Physical Review E, vol. 73, no. 4, p. 46105, 2006.

[84] P. S. Shenkin, F. P. Hollinger, and W. C. Still, “The GB/SA continuum model for
solvation. a fast analytical method for the calculation of approximate born radii,”
Journal of Physical Chemistry A, vol. 101, pp. 3005–3014, 1997.

[85] D. Sitkoff, K. A. Sharp, and B. Honig, “Accurate calculation of hydration free energies
using macroscopic solvent models,” The Journal of Physical Chemistry, vol. 98,
pp. 1978–1988, 1994.

[86] J. Srinivasan, T. E. Cheatham III, P. Cieplak, P. A. Kollman, and D. A. Case,
“Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-
DNA helices,” Journal of the American Chemical Society, vol. 120, pp. 9401–9409,
1998.

[87] C. McClendon, G. Friedland, D. Mobley, H. Amirkhani, and M. Jacobson,
“Quantifying correlations between allosteric sites in thermodynamic ensembles,”
Journal of Chemical Theory and Computation, vol. 5, pp. 2486–2502, 2009.

142



[88] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for
protein folding,” Chemical Physics Letters, vol. 314, pp. 141–151, 1999.

[89] A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for
molecular simulations of biopolymers,” Biopolymers, vol. 60, pp. 96–123, 2001.

[90] J. G. Kim, Y. Fukunishi, and H. Nakamura, “Multicanonical molecular dynamics
algorithm employing an adaptive force-biased iteration scheme,” Physical Review E,
vol. 70, no. 5, p. 57103, 2004.

[91] U. H. E. Hansmann and Y. Okamoto, “New Monte Carlo algorithms for protein
folding,” Current Opinion in Structural Biology, vol. 9, no. 2, p. 177, 1999.

[92] G. R. Bowman, D. L. Ensign, and V. S. Pande, “Enhanced modeling via network
theory: Adaptive sampling of markov state models,” Journal of Chemical Theory
and Computation, vol. 6, no. 3, p. 787, 2010.

[93] M. Christen and W. F. van Gunsteren, “On searching in, sampling of, and
dynamically moving through conformational space of biomolecular systems: a
review,” Journal of Computational Chemistry, vol. 29, no. 2, p. 157, 2008.

[94] A. Mitsutake, Y. Mori, and Y. Okamoto, “Multi-dimensional multicanonical
algorithm, simulated tempering, replica-exchange method, and all that,” Physics
Procedia, vol. 4, p. 89, 2010.

[95] D. M. Zuckerman, “Equilibrium sampling in biomolecular simulation,” Annual
Review of Biophysics, vol. 40, no. 1, 2011.

[96] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L.
Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande, “Accelerating molecular
dynamic simulation on graphics processing units,” Journal of Computational
Chemistry, vol. 30, no. 6, p. 864, 2009.

[97] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,
C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo,
J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Layman,
C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler,
M. Theobald, B. Towles, and S. C. Wang, “Anton, a special-purpose machine
for molecular dynamics simulation,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 2, pp. 1–12, 2007.

[98] V. A. Voelz, G. R. Bowman, K. Beauchamp, and V. S. Pande, “Molecular Simulation
of ab Initio Protein Folding for a Millisecond Folder NTL9 (1- 39),” Journal of the
American Chemical Society, vol. 132, no. 5, p. 1526, 2010.

[99] C. Oostenbrink and W. F. van Gunsteren, “Free energies of binding of polychlorinated
biphenyls to the estrogen receptor from a single simulation,” Proteins, vol. 54, p. 237,
2004.

[100] A. Altis, P. H. Nguyen, R. Hegger, and G. Stock, “Dihedral angle principal component
analysis of molecular dynamics simulations,” The Journal of Chemical Physics,
vol. 126, p. 244111, 2007.

143



[101] D. J. Tobias and C. L. Brooks III, “Conformational equilibrium in the alanine
dipeptide in the gas phase and aqueous solution: A comparison of theoretical results,”
The Journal of Physical Chemistry, vol. 96, no. 9, p. 3864, 1992.

[102] Y. Deng and B. Roux, “Computations of standard binding free energies with
molecular dynamics simulations,” The Journal of Physical Chemistry B, vol. 113,
no. 8, p. 2234, 2009.

[103] C. Chipot and A. Pohorille, Free energy calculations: Theory and applications in
chemistry and biology. Springer Berlin, 2007.

[104] H. X. Zhou and M. K. Gilson, “Theory of free energy and entropy in noncovalent
binding,” Chemical Reviews, vol. 109, no. 9, p. 4092, 2009.

[105] C. D. Christ, A. E. Mark, and W. F. van Gunsteren, “Basic ingredients of free energy
calculations: A review,” Journal of Computational Chemistry, vol. 31, no. 8, p. 1569,
2010.

[106] G. Schneider, “Virtual screening: an endless staircase?,” Nature Reviews Drug
Discovery, vol. 9, no. 4, p. 273, 2010.

[107] A. E. Roitberg, A. Okur, and C. Simmerling, “Coupling of replica exchange
simulations to a non-Boltzmann structure reservoir,” The Journal of Physical
Chemistry B, vol. 111, no. 10, p. 2415, 2007.

[108] D. D. Claeys, T. Verstraelen, E. Pauwels, C. V. Stevens, M. Waroquier, and V. V.
Speybroeck, “Conformational sampling of macrocyclic alkenes using a kennard-stone-
based algorithm,” The Journal of Physical Chemistry A, vol. 114, no. 25, p. 6879,
2010.

[109] C. O. Daub, R. Steuer, J. Selbig, and S. Kloska, “Estimating mutual information
using B-spline functions – an improved similarity measure for analysing gene
expression data,” BMC bioinformatics, vol. 5, no. 1, p. 118, 2004.

[110] A. Deshpande, M. Garofalakis, and R. Rastogi, “Independence is good: dependency-
based histogram synopses for high-dimensional data,” SIGMOD Rec., vol. 30,
pp. 199–210, 2001.

[111] J. P. Ryckaert and A. Bellemans, “Molecular dynamics of liquid alkanes,” Faraday
Discussions of the Chemical Society, vol. 66, p. 95, 1978.

144


