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IP geolocation is the process of finding the geographic locations of Internet

hosts. We will focus on Internet hosts in metropolitan area network(MAN). The

Internet hosts will be under the same Internet service provider(ISP). Machines in

close geographic distance will share almost identical network infrastructure due to

having the same ISP. We propose two MAN IP geolocation techniques that are based

on wavelets, e.g. wavelet density estimation and wavelet time-frequency analysis.

Wavelet density estimation looks for similarity among RTT distributions of

nearby machines. To achieve this, wavelet density estimation utilizes wavelets as or-

thonormal basis in L2(R) to construct estimated probability density functions(pdfs)

of RTT distributions. A symmetrized version of Kullback-Leibler divergence is de-

vised to measure the similarity between two estimated pdfs. The second technique,

wavelet time-frequency analysis, explores a common pattern in frequency content

evolutions over time of the RTT sequences of nearby machines. Wavelet time-

frequency analysis employs wavelets to analyze frequency contents of RTT sequences



over short time-intervals. Sudden rises of frequency content in RTT sequences can

then be detected. We evaluate the performance of these two MAN IP geolocation

techniques with data sets collected from our testbed. With these data sets, we an-

alyze the effects of RTT sample size, RTT probing rate and landmark distribution

to the performance of the techniques.



METROPOLITAN AREA NETWORK
IP GEOLOCATION

THROUGH WAVELET TECHNIQUES

by

Choon Yik Lee

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2010

Advisory Committee:
Professor Richard La, Chair/Advisor
Professor Bobby Bhattacharjee
Professor Mark Shayman



c© Copyright by
Choon Yik Lee

2010



Acknowledgments

I would like to thank my colleagues, Satinder Pal Singh and Randolph Baden,

for their tremendous effort in setting up the testbed and for their assitance in ex-

plaining the configurations of the testbed to me. I am grateful to Professor Mark

Shayman and Professor Bobby Bhattacharjee for accepting me to this project and

for their advice and suggestions during the course of this thesis. Last but not least,

a special thanks to my advisor, Professor Richard La, for introducing wavelets to me

and for guiding me through tackling the problem of MAN IP geolocation to produce

this thesis.

ii



Table of Contents

List of Figures iv

List of Abbreviations ix

1 Introduction to MAN IP Geolocation 1

2 Anscombe Variance-Stabilizing Transform 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Simulation Study of Anscombe Transform . . . . . . . . . . . . . . . 5

3 Stein’s Unbiased Risk Estimate (SURE) 8
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Stein’s Unbiased Risk Estimate . . . . . . . . . . . . . . . . . . . . . 8
3.3 Almost Differentiability of Soft Threshold Estimator . . . . . . . . . . 9
3.4 Stein’s Unbiased Risk Estimate of L2 Risk of Soft Threshold Estimator 13

4 A Brief Introduction to Wavelet 15

5 Wavelet Density Estimation 20
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Wavelet Density Estimation . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Distance Metric Between Estimated PDFs . . . . . . . . . . . . . . . 27
5.4 Implementation Issues of Wavelet Density Estimation . . . . . . . . . 27
5.5 Estimation of Known Densities with Wavelet Density Estimation . . . 29
5.6 Pictorial Depiction of Wavelet Density Estimation . . . . . . . . . . . 42

6 Wavelet Time-Frequency Analysis 44
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Wavelet Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . 45
6.3 Time-Frequency Analysis With Wavelet To Geolocate . . . . . . . . . 50
6.4 Implementation Issues of Wavelet Time-Frequency Analysis . . . . . . 52
6.5 Pictorial Depiction of Wavelet Time-Frequency Analysis . . . . . . . 54

7 Experiments and Results 57
7.1 Wavelet Density Estimation With Different RTT Sample Sizes . . . . 60
7.2 Wavelet Time-Frequency Analysis With Different RTT Sample Sizes . 77
7.3 Wavelet Time-Frequency Analysis With Different Landmark Distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Wavelet Time-Frequency Analysis With Different Ping Rates . . . . . 107

8 Conclusions 117

Bibliography 119

iii



List of Figures

2.1 Comparison of cdfs of Y and N
(
2
√
α = 5, 1

)
. . . . . . . . . . . . . . 6

3.1 Soft Threshold Function δsoftλ (·) . . . . . . . . . . . . . . . . . . . . . 10
3.2 Locations of Non-Differentiable Points . . . . . . . . . . . . . . . . . 13

4.1 Examples of scaling functions . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Piecewise constant function . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Example of different approximation spaces, Vj and Vj−1. . . . . . . . 17
4.4 Examples of Wavelet Functions . . . . . . . . . . . . . . . . . . . . . 18

5.1 Wavelet density estimation of a gamma density of α = 1.5 and λ = 1
with 512 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Wavelet density estimation of a gamma density of α = 1.5 and λ = 1
with 1024 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Wavelet density estimation of a gamma density of α = 1.5 and λ = 1
with 2048 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Wavelet density estimation of a gamma density of α = 1.5 and λ = 1
with 4096 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Wavelet density estimation of a gamma density of α = 4 and λ = 0.5
with 512 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 Wavelet density estimation of a gamma density of α = 4 and λ = 0.5
with 1024 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Wavelet density estimation of a gamma density of α = 4 and λ = 0.5
with 2048 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8 Wavelet density estimation of a gamma density of α = 4 and λ = 0.5
with 4096 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.9 Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =
1.5, λ = 1) + 0.3 ∗N(5, 1) with 512 samples. . . . . . . . . . . . . . . 37

5.10 Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =
1.5, λ = 1) + 0.3 ∗N(5, 1) with 1024 samples. . . . . . . . . . . . . . . 37

5.11 Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =
1.5, λ = 1) + 0.3 ∗N(5, 1) with 2048 samples. . . . . . . . . . . . . . . 38

5.12 Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =
1.5, λ = 1) + 0.3 ∗N(5, 1) with 4096 samples. . . . . . . . . . . . . . . 38

5.13 Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =
4, λ = 0.5) + 0.1 ∗N(17, 1) with 512 samples. . . . . . . . . . . . . . . 39

5.14 Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =
4, λ = 0.5) + 0.1 ∗N(17, 1) with 1024 samples. . . . . . . . . . . . . . 39

5.15 Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =
4, λ = 0.5) + 0.1 ∗N(17, 1) with 2048 samples. . . . . . . . . . . . . . 40

5.16 Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =
4, λ = 0.5) + 0.1 ∗N(17, 1) with 4096 samples. . . . . . . . . . . . . . 40

5.17 A mixture density, 0.7 ∗ gamma(α = 1.5, λ = 1) + 0.3 ∗N(5, 1) . . . 41

iv



5.18 A mixture density, 0.9 ∗ gamma(α = 4, λ = 0.5) + 0.1 ∗N(17, 1) . . . 41
5.19 A 500-element RTT sequence collected from a landmark . . . . . . . 42
5.20 Rescaling the RTT values into [0,1] . . . . . . . . . . . . . . . . . . . 42
5.21 RTT distribution of scaled RTT values . . . . . . . . . . . . . . . . . 43
5.22 Estimated pdf constructed by wavelet density estimation . . . . . . . 43

6.1 Wavelet Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . 48
6.2 A 500-element RTT sequence collected from a landmark . . . . . . . 54
6.3 Wavelet transform of the RTT sequence at fine scale . . . . . . . . . . 54
6.4 Wavelet transform of the RTT sequence at coarser scale . . . . . . . . 55
6.5 Multiscale product to produce enhanced features while reducing back-

ground noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6 Zero-one sequence with ones indicating sudden rises of frequency con-

tent in the original RTT sequence . . . . . . . . . . . . . . . . . . . . 56

7.1 Our Testbed at Baltimore-Washington D.C. Metropolitan Area . . . . 58
7.2 For a CP target and for all RTT sample sizes, the mean of minimum

divergence from CP landmarks is the lowest followed by the mean
of minimum divergence from GB landmarks. The mean of minimum
divergence from GA landmark and the mean of minimum divergence
from GE landmarks are significantly higher. All four lines stabilize
and flatten as RTT sample size increases. . . . . . . . . . . . . . . . . 67

7.3 For a GB target and for all RTT sample sizes, the mean of minimum
divergence from GB landmarks is the lowest followed by the mean
of minimum divergence from CP landmarks. The mean of minimum
divergence from GA landmark and the mean of minimum divergence
from GE landmarks are significantly higher. All four lines stabilize
and flatten as RTT sample size increases. . . . . . . . . . . . . . . . . 68

7.4 For a GA target and for all RTT sample sizes, the mean of minimum
divergence from GE landmarks is the lowest. The mean of minimum
divergence from CP landmarks and the mean of minimum divergence
from GB landmarks are significantly higher. All three lines stabilize
and flatten as RTT sample size increases. . . . . . . . . . . . . . . . . 69

7.5 For a GE target and for all RTT sample sizes, the mean of minimum
divergence from GA landmark is the lowest followed by the mean of
minimum divergence from GE landmark. The mean of minimum di-
vergence from CP landmarks and the mean of minimum divergence
from GB landmarks are significantly higher. The top two lines stabi-
lize and flatten as RTT sample size increases. The bottom two lines
go down slightly with their gap closing up as RTT sample size increases. 70

7.6 The general trend is that the matching percentage of a CP target to
CP landmarks increases as RTT sample size increases. . . . . . . . . . 71

7.7 The matching percentage of a CP target to CP or GB landmarks
increases as RTT sample size increases. . . . . . . . . . . . . . . . . . 71

v



7.8 The matching percentage of a CP target to GA or GE landmarks
decreases as RTT sample size increases. . . . . . . . . . . . . . . . . . 72

7.9 The general trend is that the matching percentage of a GB target to
GB landmarks increases as RTT sample size increases. . . . . . . . . 72

7.10 The matching percentage of a GB target to CP or GB landmarks
increases as RTT sample size increases. . . . . . . . . . . . . . . . . . 73

7.11 The matching percentage of a GB target to GA or GE landmarks
decreases as RTT sample size increases. . . . . . . . . . . . . . . . . . 73

7.12 The matching percentage of a GA target to GE landmarks generally
increases as RTT sample size increases from 0 to 256 samples. After
256 samples, the percentage of GA matched to GE landmarks drops. 74

7.13 The matching percentage of a GA target to CP or GB landmarks
generally decreases as RTT sample size increases from 0 to 256 sam-
ples. After 256 samples, the percentage of GA matched to CP or GB
landmarks increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.14 The general trend is that the matching percentage of a GE target to
GE landmark increases as RTT sample size increases. . . . . . . . . . 75

7.15 The general trend is that the matching percentage of a GE target to
GA or GE landmarks increases as RTT sample size increases. . . . . . 75

7.16 The general trend is that the matching percentage of a GE target to
CP or GB landmarks decreases as RTT sample size increases. . . . . 76

7.17 The average number of 1’s in a zero-one sequence increases as RTT
sample size increases. More network activities are captured as ob-
servation period of RTT values increases. The average number of 1’s
matched up for inner products increases as RTT sample size increases.
The difference of average number of 1’s matched up between correct
and incorrect city matchings increases as RTT sample size increases. . 88

7.18 For a CP target, the mean of the maximum inner product from CP
landmarks is consistently higher than those of landmarks from other
cities for all RTT sample sizes. . . . . . . . . . . . . . . . . . . . . . . 89

7.19 For a GB target, the mean of the maximum inner product from GB
landmarks is consistently higher than those of landmarks from other
cities for all RTT sample sizes. . . . . . . . . . . . . . . . . . . . . . . 89

7.20 For a GA target, the mean of the maximum inner product from GE
landmarks is higher than those of landmarks from other cities for all
RTT sample sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.21 For a GE target, the mean of the maximum inner product from GE
landmark is consistently lower than those of landmarks from other
cities for all RTT sample sizes. However, the mean of the maximum
inner product from GA landmark is consistently higher than those of
landmarks from other cities. . . . . . . . . . . . . . . . . . . . . . . . 91

7.22 Variation of 2% is not significant. . . . . . . . . . . . . . . . . . . . . 92
7.23 The matching percentage of a CP target to CP or GB landmarks

increases as RTT sample size increases. . . . . . . . . . . . . . . . . . 92

vi



7.24 The matching percentage of a CP target to GA or GE landmarks
decreases as RTT sample size increases. . . . . . . . . . . . . . . . . . 93

7.25 The general trend is that the matching percentage of a GB target to
GB landmarks increases as RTT sample size increases. . . . . . . . . 93

7.26 Variation of 2% is not significant. . . . . . . . . . . . . . . . . . . . . 94
7.27 Variation of 2% is not significant. . . . . . . . . . . . . . . . . . . . . 94
7.28 The matching percentage of a GA target to GE landmarks increases as

RTT sample size increases from 0 to 300 samples. After 300 samples,
the percentage of GA matched to GE landmarks drops. Wavelet
density estimation registered similar observation. . . . . . . . . . . . 95

7.29 The matching percentage of a GA target to CP or GB landmarks
decreases as RTT sample size increases from 0 to 300 samples. After
300 samples, the percentage of GA matched to CP or GB landmarks
increases. Wavelet density estimation captured similar observation. . 96

7.30 The general trend is that the matching percentage of a GE target to
GE landmark increases as RTT sample size increases. . . . . . . . . . 96

7.31 There is no definite behavior for the matching percentage of a GE
target to GA or GE landmarks as RTT sample size increases. . . . . . 97

7.32 There is no definite behavior for the matching percentage of a GE
target to CP or GB landmarks as RTT sample size increases. . . . . . 97

7.33 As there are more landmarks in CP, a CP target is more likely to be
matched to CP city. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.34 A CP target matched to CP city or GB city more often when there
are more landmarks in both cities. . . . . . . . . . . . . . . . . . . . . 102

7.35 As there are more landmarks in GB, a GB target is more likely to be
matched to GB city. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.36 A GB target matched to CP city or GB city more often when there
are more landmarks in both cities. . . . . . . . . . . . . . . . . . . . . 103

7.37 With landmark distribution of 2CPs, 2GBs, 1GA and 2GEs, the
matching percentage of GA to GE increases to 68%. It is 47% when
landmark distribution is 4CPs, 4GBs, 1GA and 2GEs. Thus, the is-
sue of fewer GA and GE landmarks in landmark distribution of 4CPs,
4GBs, 1GA and 2GEs does play a role in the low matching percentage
of GA to GE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.38 With landmark distribution of 2CPs, 2GBs, 1GA and 2GEs, the
matching percentage of GE to GE increases to 20%. It is 14% when
landmark distribution is 4CPs, 4GBs, 1GA and 2GEs. . . . . . . . . . 105

7.39 With landmark distribution of 2CPs, 2GBs, 1GA and 2GEs, the
matching percentage of GE to GA/GE increases to 76%. It is 61%
when landmark distribution is 4CPs, 4GBs, 1GA and 2GEs. Thus,
fewer GA and GE landmarks in landmark distribution of 4CPs, 4GBs,
1GA and 2GEs contribute to the low matching percentage of GE to
GA/GE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



7.40 As ping rate increases with shorter inter-packet interval, more dynam-
ics of the network are captured as shown by the increasing average
number of 1’s in a 500-element zero-one sequence. . . . . . . . . . . . 115

7.41 As ping rate increases with shorter inter-packet interval, the average
number of 1’s matched up in correct city matchings and the average
number of 1’s matched up in incorrect city matchings both decrease.
Thus, as ping rate increases, more network dynamics are captured
with more 1’s in a zero-one sequence but most of these dynamics
captured are not network activities experienced by nearby landmarks
as suggested by the decreasing average number of 1’s matched up in
correct city matchings. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



List of Abbreviations

1[a,b](·) Indicator Function of Interval [a, b]
a.e almost everywhere
CBG Constraint-Based Geolocation
CDF Cumulative Distribution Function
DNS Domain Name System
i.i.d independent and identically distributed
IP Internet Protocol
ISP Internet Service Provider
KL Divergence Kullback-Leibler Divergence
MAN Metropolitan Area Network
N(µ, σ2) Normal random variable with mean µ and variance σ2

MRA Multiresolution Analysis
PDF Probability Density Function
Poisson(α) Poisson random variable with parameter α
PMF Probability Mass Function
RTT Round-Trip Time
SURE Stein’s Unbiased Risk Estimate
UMD University of Maryland

ix



Chapter 1

Introduction to MAN IP Geolocation

IP geolocation is the process of finding the geographic locations of Internet

hosts. This thesis focuses on Internet hosts in metropolitan area network(MAN).

Potential applications of MAN IP geolocation are targeted advertising (e.g. an-

noucement of local events and weather), selective media streaming based on territo-

rial content policies and automatic display of nearby stores during online shopping.

Previous works on IP geolocation are[10][12]:

(i) GeoTrack looks for possible location information from the DNS name of an Inter-

net host. For instance, www.comp.state.md.us implies the state of Maryland

in the U.S. and www.weatheroffice.gc.ca implies the country of Canada.

(ii) Whois Database Look-up searches through Whois database for the location

information of an Internet host.

(iii) GeoPing and Constraint-Based Geolocation(CBG) exploit network delay mea-

surement to infer the distance of an Internet host from reference hosts with

known locations.

Each of the aforementioned geolocation techniques has some drawbacks. GeoTrack

will fail when the DNS name does not contain location information. Whois database

may not be updated with the latest information about an Internet host frequently

1



enough. Whois database may have just one single entry for a large group of Internet

hosts. GeoPing and CBG are not suitable for MAN. In MAN, queueing delay is

significant in end-to-end delay measurement. Thus, there will be less correlation

between end-to-end delay and distance traveled by measurement packets.

To overcome the limitations of previous works, we introduce two MAN IP ge-

olocation techniques, wavelet density estimation and wavelet time-frequency anal-

ysis. These two techniques involve three types of Internet hosts: targets, land-

marks and probe machines. Targets are Internet hosts whose unknown locations

are to be geolocated. Landmarks are Internet hosts whose exact locations are

known. Probe machines are Internet hosts that send out time-synchronous ping

packets(ICMP Echo Requests) to targets and landmarks. Targets and landmarks

are to respond to ping packets. From the returned packets, probe machines con-

struct time-synchronous RTT sequences for targets and landmarks. Targets and

landmarks are to be under the same Internet service provider(ISP). A target and

its nearby landmarks will then share almost identical network infrastructure due to

having the same ISP.

The first technique, wavelet density estimation, creates RTT distributions

from RTT sequences constructed by probe machines. Based on the RTT distri-

butions, wavelet density estimation generates correspoding estimated probability

density functions(pdfs). A target and its nearby landmarks share a large portion

of the network infrastructure under the same ISP. Hence, they have similar RTT

distributions and thus similar estimated pdfs. Geolocation of a target is then based

on the similarity of its estimated pdf to nearby landmarks’ estimated pdfs.
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The second technique, wavelet time-frequency analysis, analyzes the evolutions

of frequency content over time of the time-synchronous RTT sequences of targets

and landmarks. Wavelet time-frequency analysis can then detect time-synchronous

sudden rises of frequency contents in those RTT sequences. Network activities cause

momentary increases of frequency content in RTT sequences. Under the same ISP,

a target and its nearby landmarks experience network activities at roughly the same

time. Therefore, a target and its nearby landmarks record time-synchronous sudden

rises of frequency contents in their RTT sequences. Wavelet time-frequency analysis

geolocates a target to its nearby landmarks based on these time-synchronous sudden

increases of frequency contents in their RTT sequences.

We have evaluated the two techniques, wavelet density estimation and wavelet

time-frequency analysis, with a collection of data sets. Larger RTT sample size

generally improves the performance of both techniques. Wavelet time-frequency

analysis is more susceptible to poor performance when landmark distribution is

sparse. Sufficient landmarks are crucial to the performance of both techniques. The

performance of wavelet time-frequency analysis shows that high RTT probing rates

capture more network dynamics which are not network activities shared by nearby

landmarks.

The rest of the thesis is organized as follows. In Chapters 2 and 3, we present

materials necessary for detailed explanations of wavelet density estimation. We

give a brief introduction to wavelet in Chapter 4. Chapter 5 discusses the first

technique, wavelet density estimation, from theoretical aspects till implementation

issues. Chapter 6 does the same for the second technique, wavelet time-frequency

3



analysis. Performance analysis of both techniques is in Chapter 7. Finally, we

present the conclusions of this thesis in Chapter 8.

4



Chapter 2

Anscombe Variance-Stabilizing Transform

2.1 Overview

Definition: (Anscombe Variance Stabilizing Transform[1])

Let X = Poisson(α), α > 0

Y = 2
√

X + 3
8

It was shown that Y≈ N (2
√
α, 1)[1]. The transform is said to be variance stabilizing

because the variance of the transformed random variable Y does not depend on

its mean. Variance-stabilizing transforms strive to make the transformed variance

functionally free from the transformed mean. The transform is also a normalizing

transform whereby the transformed random variable Y can be approximated by a

normal random variable. Algorithms that expect normally-distributed input data

can then be used to do further data analysis[6].

2.2 Simulation Study of Anscombe Transform

Simulation study was conducted to evaluate how well the transformed random

variable Y is approximated by a normal random variableN (2
√
α, 1). The simulation

study fixed the Poisson parameter α = 5 for the input variable X. The cumulative
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distribution functions(cdfs) of Y and N
(
2
√
5, 1

)
were plotted simultaneously in

Figure 2.1. Since two cdfs are close to each other, it is valid to approximate Y with

normal random variable N (2
√
α, 1) when α = 5.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

CDF of Y

CDF of N(2
√

α, 1)

Figure 2.1: Comparison of cdfs of Y and N
(
2
√
α = 5, 1

)

We will tabulate the maximum absolute error(MAE) of the cdfs of Y and

and N (2
√
α, 1) as max{|P (Y ≤ ci) −

∫ ci
−∞

1√
2π
e−

(x−2
√
α)2

2 dx|, ci = 2
√

i+ 3
8
, i =

0, 1, 2, . . . , 50} for α = 1, 2, 3, 4, 5, 10, 15, 20. We will also tabulate the sample mean

and the sample variance of Y with sample size of 10000 Poisson(α)-distributed X

samples to compare with the Gaussian mean 2
√
α and the Gaussian variance 1 for

6



α = 1, 2, 3, 4, 5, 10, 15, 20.

Numerical Investigation of Anscombe Transform

MAE of CDFs Sample Gaussian Sample Gaussian

α Y and N (2
√
α, 1) Mean Mean Variance Variance

of Y 2
√
α of Y 1

1 0.1488 2.1851 2.0000 0.7204 1

2 0.0915 2.9319 2.8284 0.9347 1

3 0.0719 3.5496 3.4641 0.9764 1

4 0.0612 4.0635 4.0000 1.0229 1

5 0.0541 4.5270 4.4721 0.9808 1

10 0.0375 6.3706 6.3246 0.9875 1

15 0.0304 7.7604 7.7460 1.0109 1

20 0.0263 8.9673 8.9443 0.9965 1

As the magnitude of α increases, the MAE of cdfs of Y and N (2
√
α, 1) decreases.

With larger α, the sample mean of Y is closer to the approximation of 2
√
α and the

sample variance of Y approaches unit variance.
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Chapter 3

Stein’s Unbiased Risk Estimate (SURE)

3.1 Overview

Given a particular estimator of the unknown means of independent normal

random variables, Stein’s Unbiased Risk Estimate[14] is an unbiased estimate of

the L2 risk of that particular estimator under certain conditions. The estimator

of interest here is the soft threshold estimator. We will show that soft threshold

estimator fulfills certain conditions so that Stein’s Unbiased Risk Estimate(SURE)

can be applied to be an unbiased estimate of the L2 risk of soft threshold estimator.

3.2 Stein’s Unbiased Risk Estimate

We will present SURE and the necessary conditions to apply SURE[14]. Let

ξ = (ξ1, . . . , ξp) be an unknown constant p-dimensional vector. Let V = (V1, . . . , Vp)

be jointly Gaussian with mean ξ and with identity matrix as covariance matrix.

Let ξ̂ = µ̂(V ) where µ̂(·) is an estimator of the unknown mean ξ and ξ̂ is the

corresponding estimate of ξ. We will define almost differentiability quoted as follows.

Definition (Almost Differentiability)[14]: For x,y∈ Rp, we define x · y =

∑p
i=1 xiyi and ‖x‖2 = x · x =

∑p
i=1(xi)

2. A function h : Rp → R will be called

almost differentiable if there exists a function ∇h : Rp → Rp such that, for all

8



z ∈ Rp, h(x + z) − h(x) =
∫ 1

0
z · ∇h(x + tz) dt, for almost all x ∈ Rp. A function

g : Rp → Rp is almost differentiable if all its coordinate functions are.

Notationwise, let gi : R
p → R be the ith coordinate function of g : Rp → Rp to

take the role of h in the quoted definition of almost differentiability. Let ∇gi be as

∇h in the quoted definition of almost differentiability. Then, we can define ∇ · g .
=

∑

i∇igi =
∑

i (i
th component of ∇gi). Stein showed that when µ̂(V ) = V + g(V )

where g : Rp → Rp is an almost differentiable with Eξ
∑

i |∇igi(V )| < ∞, then the

L2 risk Eξ‖ξ̂ − ξ‖2 = Eξ‖µ̂(V ) − ξ‖2 = Eξ‖V + g(V ) − ξ‖2 is p + Eξ{‖g(V )‖2 +

2∇ · g(V )} and p + ‖g(V )‖2 + 2∇ · g(V ) is an unbiased estimate of the L2 risk.

p+ ‖g(V )‖2 + 2∇ · g(V ) is called Stein’s Unbiased Risk Estimate(SURE).

3.3 Almost Differentiability of Soft Threshold Estimator

Let x = (x1, . . . , xp) ∈ Rp as in the quoted definition of almost differentiability.

x will be the multi-dimensional parameter of the following soft threshold estimator

µ̂(·). We define soft threshold estimator µ̂(·) as µ̂(x) .=





δsoft
λ

(x1)

...
δsoft
λ

(xp)



 where

δ
soft
λ (u) =







u− λ if u > λ

0 if −λ ≤ u ≤ λ

u+ λ if u < −λ

9



−λ λ

slope = 1

slope = 1

u

δ
λ
soft (u)

Figure 3.1: Soft Threshold Function δsoftλ (·)

Let g(x)
.
=

[
g1(x)

...
gp(x)

]

=





δsoft
λ

(x1)−x1
...

δsoft
λ

(xp)−xp



. Then, µ̂(x) = x + g(x). Now, we

will show that g(x) : Rp → Rp is almost differentiable. According to the quoted

Stein’s definition of almost differentiability, we need to show that the coordinate

functions gk(x) = δ
soft
λ (xk)− xk : Rp → R are almost differentiable for k = 1, . . . , p.

Let z ∈ Rp and t ∈ R. Then, gk(x + z) = δ
soft
λ (xk + zk) − (xk − zk) and

gk(x+ z)− gk(x) = δ
soft
λ (xk + zk)− (xk − zk)−

(

δ
soft
λ (xk)− (xk)

)

. Let ∇gk(x+ tz)

be as

10



∇gk(x+ tz) =



























0

...

0

−1[−λ,λ](xk + tzk)

0

...

0



























← kthcomponent

Thus, ∇gk : Rp → Rp and z · ∇gk(x + tz) = zk · −1[−λ,λ](xk + tzk). Taking

integration from 0 to 1, we find that
∫ 1

0
z · ∇gk(x + tz) dt =

∫ 1

0
zk · −1[−λ,λ](xk +

tzk) dt =
∫ xk+zk
xk

−1[−λ,λ](y) dy. Now, we need to use one form of Fundamental

Theorem of Calculus. We will define it first and we will later verify that all the

necessary conditions of Fundamental Theorem of Calculus are satisfied in our case.

Definition (Fundamental Theorem of Calculus)[3]: Suppose there is a finite

set E in [a, b] and functions f, F : [a, b]→ R such that:

(a) F is continuous on [a, b],

(b) F ′(x) = f(x) for all x ∈ [a, b] \ E,

(c) f belongs to R[a, b].

Then we have
∫ b

a
f = F (b)− F (a).

We will verify the conditions of Fundamental Theorem of Calculus are sat-

isfied in our case,
∫ xk+zk
xk

−1[−λ,λ](y) dy. Let a = xk and b = xk + zk. Let f(u) =

−1[−λ,λ](u) : [a, b]→ R and F (u) = δ
soft
λ (u)−u : [a, b]→ R. Since F (u) = δ

soft
λ (u)−

u is continuous on R and thus on [a, b], condition (a) is satisfied. F (u) = δ
soft
λ (u)−u

11



is not differentiable at u = −λ and at u = λ as shown in Figure 3.2. Hence,

F ′(u) = d
du

[

δ
soft
λ (u)− u

]
a.e
= −1[−λ,λ](u) = f(u), ∀u ∈ [a, b] \ {−λ, λ}. Condition (b)

is satisfied as {−λ, λ} is a finite set. f(u) = −1[−λ,λ](u) is Riemann-integrable as

indicator function is a simple and nice function. Therefore, condition (c) is satisfied.

Since our case,
∫ xk+zk
xk

−1[−λ,λ](y) dy, satisfies all conditions of Fundamental

Theorem of Calculus, we can proceed as follows:
∫ xk+zk
xk

−1[−λ,λ](y) dt = F (b) −

F (a) = F (xk + zk) − F (xk) = δ
soft
λ (xk + zk) − (xk − zk) −

(

δ
soft
λ (xk)− (xk)

)

=

gk(x + z) − gk(x). Finally, we have shown that
∫ 1

0
z · ∇gk(x + tz) dt = gk(x +

z) − gk(x), ∀x, z ∈ Rp. By Stein’s definition, gk(x) = δ
soft
λ (xk) − xk is al-

most differentiable. Since the previous proof is true for gk’s, k = 1, . . . , p, g(x)=
[
g1(x)

...
gp(x)

]

=





δsoft
λ

(x1)−x1
...

δsoft
λ

(xp)−xp



 is almost differentiable as all its coordinate functions gk’s

are almost differentiable. Hence, we have shown that soft threshold estimator

µ̂(V ) =





δsoft
λ

(V1)

...
δsoft
λ

(Vp)



 = V + g(V ) where g(V ) =

[
g1(V )

...
gp(V )

]

=





δsoft
λ

(V1)−V1
...

δsoft
λ

(Vp)−Vp



 is almost

differentiable.
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Figure 3.2: Locations of Non-Differentiable Points

3.4 Stein’s Unbiased Risk Estimate of L2 Risk of Soft Threshold

Estimator

We have demonstrated that soft threshold estimator µ̂(V ) =





δsoft
λ

(V1)

...
δsoft
λ

(Vp)



 =

V + g(V ) where g(V ) =

[
g1(V )

...
gp(V )

]

=





δsoft
λ

(V1)−V1
...

δsoft
λ

(Vp)−Vp



 is almost differentiable. It

is also true that Eξ
∑

i |∇igi(V )| = Eξ
∑

i | − 1[−λ,λ](Vi)| = Eξ
∑

i 1[−λ,λ](Vi) =

∑

iEξ1[−λ,λ](Vi) =
∑

i P (−λ ≤ Vi < λ) < ∞. Thus, we can use Stein’s Unbi-

ased Risk Estimate to estimate the L2 risk of soft threshold estimator as follows:

‖g(V )‖2 = ∑p
i=1(gi(V ))2 =

∑p
i=1(δ

soft
λ (Vi)− Vi)2 =

∑p
i=1 (min (|Vi|, λ))

2

∇ · g(V ) =
∑p

i=1∇igi =
∑p

i=1−1[−λ,λ](Vi)
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SURE(λ;V ) = p+ ‖g(V )‖2 + 2∇ · g(V )

= p+
∑p

i=1 (min (|Vi|, λ))
2 + 2

∑p
i=1−1[−λ,λ](Vi)

= p− 2 ·#{i : |Vi| ≤ λ}+∑p
i=1 (min (|Vi|, λ))

2

where #A for some set A denotes the cardinality of the set A.
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Chapter 4

A Brief Introduction to Wavelet

We will present wavelet and some of its properties in this chapter. Chui[7],

Boggess and Narcowich[4] and Ogden[11] are good introductory texts on wavelet.

We borrow materials from the manuscript by Boggess and Narcowich[4] in the fol-

lowing descriptions of wavelet. We start with the definition of multiresolution anal-

ysis(MRA).

Definition (Multiresolution Analysis)[4]: Let Vj, j = . . . ,−2,−1, 0, 1, 2, . . . be

a sequence of subspaces of functions of L2(R). The collection of spaces {Vj, j ∈ Z}

is called a multiresolution analysis with scaling function φ if the following conditions

hold:

1. (nested) Vj ⊂ Vj+1

2. (density) ∪Vj = L2(R)

3. (separation) ∩Vj = {0}

4. (scaling) The function f(x) belongs to Vj if and only if the function f(2−jx)

belongs to V0.

5. (orthonormal basis) The function φ belongs to V0 and the set {φ(x− k), k ∈ Z}

is an orthonormal basis (using the L2 inner product) for V0.

From the definition of MRA, distinct scaling functions φ’s give birth to distinct
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multiresolution analyzes. Usually, scaling functions have finite support and are

identically zero outside the finite support. Examples of scaling functions are Haar

scaling function and Daubechies scaling function as plotted in Figure 4.1.
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(a) Haar Scaling function
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(b) Daubechies Scaling function

Figure 4.1: Examples of scaling functions

The Vj ’s are called approximation spaces. It can be shown that for any j ∈

Z,
{
φj,k(x) = 2j/2φ (2jx− k) , k ∈ Z

}
is an orthonormal basis for Vj . Thus, Vj

consists of functions constructed from the scaled and translated scaling functions,

2j/2φ
(
x−k2−j

2−j

)

. For instance, if φ(x) is the Haar scaling function and f(x) ∈ Vj, f(x)

is piecewise constant as shown in Figure 4.2. If j is sufficiently large, we can use a

function ĝj(x) ∈ Vj to approximate some arbitrary function g(x) as in Figure 4.3(a).

By changing j, we can approximate the function g(x) at various resolutions as in

Figure 4.3. Thus, Vj’s are aptly called the approximation spaces.
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Figure 4.3: Example of different approximation spaces, Vj and Vj−1.
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Next, we introduce wavelet function ψ(x). For every scaling function φ(x),

there is a corresponding wavelet function ψ(x). For example, the Haar wavelet

and the Daubechies wavelet are plotted in Figure 4.4. A wavelet function ψ(x)

has most of its energy localized on a finite support. A wavelet decays to zero as x

moves away from the finite support. A wavelet function ψ(x) oscillates or vibrates

around zero on the finite support with
∫∞
−∞ ψ(x) dx = 0. Due to its localized and

oscillatory properties, a “wave”let function looks like a small wave as in the Haar

and Daubechies wavelets. When the x-axis is considered as time axis and with the

oscillatory part representing some frequency content, a wavelet function ψ(x) is said

to possess the property of time-frequency localization when energy of the wavelet

function is localized in both time domain and frequency domain.
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(a) Haar Wavelet function
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Figure 4.4: Examples of Wavelet Functions

Lastly, we define the dilated and translated wavelet functions ψj,k(x)’s as fol-
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lows:

ψj,k(x)
.
= 2j/2ψ

(
2jx− k

)
= 2j/2ψ

(
x− k2−j

2−j

)

It can be shown that the set of wavelets {ψj,k}j,k∈Z is an orthonormal basis for

L2(R). Notationwise, we denote the inner product of two functions h1(x) and h2(x)

as < h1(x), h2(x) >
.
=

∫∞
−∞ h1(x)h2(x). Thus, for any function q(x) ∈ L2(R), q(x) =

∑

j,k∈Z < q(x), ψj,k(x) > ψj,k(x).
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Chapter 5

Wavelet Density Estimation

5.1 Overview

We will describe the first geolocation technique, wavelet density estimation, in

this chapter. The discussion of wavelet density estimation will involve materials in

Chapter 2 and Chapter 3, which are about Anscombe variance-stabilizing transform

and Stein’s Unbiased Risk Estimate(SURE). As explained in the introduction, a

probe machine sends out ping packets to the target and all the landmarks. From

the returned packets, the probe machine constructs a RTT sequence for each ma-

chine. For example, if we send out n ping packets to each machine, we will have

a RTT sequence
(
X
target
1 , X

target
2 , . . . , X target

n

)
for the target and a RTT sequence

(
X landmark

1 , X landmark
2 , . . . , X landmark

n

)
for some landmark.

We assume that the RTT of a machine is a random variable and the elements

in the machine’s RTT sequence are independent and identically distributed(i.i.d.)

samples of the RTT random variable. Wavelet density estimation creates a RTT

distribution from these i.i.d. samples in the RTT sequence. Next, wavelet density

estimation utilizes wavelets ψj,k’s as orthonormal basis in L2(R) to construct esti-

mated probability density function(pdf) from the RTT distribution. For instance,

wavelet density estimation will construct an estimated pdf of target’s RTT from

(
X
target
1 , X

target
2 , . . . , X target

n

)
. After estimated pdfs of target and landmarks have
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been constructed, we will use a symmetrized version of Kullback-Leibler(KL) diver-

gence to measure how similar two estimated pdfs are.

If two estimated pdfs of two machines’ RTTs are similar under the aforemen-

tioned KL divergence, we assume that the two machines are geographically close to

each other. Two nearby machines share a large portion of network infrastructure

under the same Internet service provider(ISP). Almost identical network infrastruc-

ture generates similar RTT distributions for the two nearby machines. Similar RTT

distributions will result in similar estimated pdfs. Thus, the physical closeness of

two machines can be inferred from the degree of similarity between two estimated

pdfs. Therefore, wavelet density estimation geolocates target to the landmark that

has the most similar estimated pdf with respect to target’s estimated pdf under the

symmetrized KL divergence.

5.2 Wavelet Density Estimation

We will show how to construct an estimated pdf from a RTT sequence. We

follow the ideas proposed in [8] and [9]. Let X1,. . . ,Xn be i.i.d. samples of pdf

f(x) with support [0, 1]. X1,. . . ,Xn are assumed to be the normalized elements of

a RTT sequence. Partition [0, 1] into M = 2[log2 n]−2 equally spaced subintervals

where [·] denotes the closest integer function. For n close to a power-of-two number,

[log2 n] ≈ log2 n and thus 2[log2 n]−2 ≈ 2log2 n−2 = n
4
. Let Ni be the number of

samples Xk’s that fall into ith interval, for i = 1, 2, . . . ,M . Let 1[a,b](·) be the
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indicator function for interval [a, b]. Then, we can express Ni as follows:

Ni
.
=

n∑

k=1

1[ i−1
M
, i
M ] (Xk) , i = 1, 2, . . . ,M.

Ni is Binomial (n, pi) where pi =
∫ i
M
i−1
M

f(x) dx for i = 1, . . . ,M . As n → ∞,

Ni’s are approximately independent. As n → ∞, each subinterval’s length, 1
M

=

4
n
, goes to zero. Thus, pi =

∫ i
M
i−1
M

f(x) dx ≈ f( i
M
) · 1

M
→ 0 as n → ∞. But,

αi
.
= npi ≈ n · f( i

M
) · 1

M
= n · f( i

M
) · 4

n
= 4 · f( i

M
) is fixed as n → ∞. So,

we can approximate such binomial random variable with Poisson random variable.

Ni ∼ Binomial(n, pi) ≈ Poisson(αi = npi = 4f( i
M
)). Thus, as n → ∞, Ni is

approximately Poisson(αi = 4f( i
M
)).

Next, we will use Anscombe variance-stabilizing transform to transform a Pois-

son random variable into a Gaussian random variable. By using Anscombe trans-

form, let Yi = 2
√

Ni +
3
8
. Then, for large sample size n, Yi ≈ N(2

√

4f( i
M
), 1) =

N(4
√

f( i
M
), 1) and Yi’s are approximately independent. So, Yi ≈ 4

√

f( i
M
) + zi,

where zi’s are i.i.d. N(0,1). For notational simplicity, we will ignore the scaling

and the square-root operations. We will consider Yi ≈ f( i
M
) + zi, where zi’s are

i.i.d. N(0,1). Once we obtain the estimates of means of Yi’s, we can divide the

estimates by four and square them to compensate the scaling and the square-root

operations. Therefore, Yi’s can be viewed as the sampled values of density f(x) with

noise components zi’s.

Now, we will project the noisy samples of density f(x) onto wavelet basis ψj,k’s
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through wavelet transform. Let

Y =











Y1

...

YM











=











f( 1
M
)

...

f(M
M
)











︸ ︷︷ ︸
.
= F

+











z1

...

zM











︸ ︷︷ ︸
.
= Z

Θ̃ =











θ̃J−1,2J−1−1

...

θ̃−1,0











= WY

where W is an orthogonal matrix implementing the wavelet transform of orthonor-

mal wavelet basis ψj,k’s[9]. θ̃j,k’s are the observed wavelet coefficients of basis ψj,k’s.

J = log2M as this is the finest resolution on density f(x). θ̃−1,0 denotes the scaling

coefficient at the coarsest level. Since Y = F + Z, Θ̃ = WF +WZ. WF represents

the true wavelet coefficients and WZ represents the noise components. Let θj,k’s

denote the true wavelet coefficients and let uj,k’s denote the noise components, i.e.,

Θ =











θJ−1,2J−1−1

...

θ−1,0











.
= WF

U =











uJ−1,2J−1−1

...

u−1,0











.
= WZ

Since W is an orthogonal matrix and zi’s are i.i.d. Gaussian N(0,1), noise compo-

nents uj,k’s are jointly Gaussian with mean E(U) = E(WZ) = WE(Z) = W · 0̄ = 0̄
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and covariance COV (U) = COV (WZ) = E[(WZ)(WZ)T ] = E[WZZTW T ] =

WE[ZZT ]W T = WIW T = WW T = WW−1 = I. So, the transformed noise com-

ponents uj,k’s are also i.i.d. Gaussian N(0,1).

Donoho and Johnstone[9] proposed using soft threshold estimator θ̂j,k = δ
soft
λj

(θ̃j,k),

k = 0, 1, . . . , 2j − 1 to estimate the true coefficients θj,k’s at level j with a still-to-be-

determined level-dependent threshold λj. The L
2 risk of this soft threshold estimator

is

EΘ[
∑

j

∑

k

(

θ̂j,k − θj,k
)2

] = EΘ[
∑

j

∑

k

(

δ
soft
λj

(θ̃j,k)− θj,k
)2

]

=
∑

j EΘ[
∑

k

(

δ
soft
λj

(θ̃j,k)− θj,k
)2

].

The L2 risk at level j is EΘ[
∑

k

(

δ
soft
λj

(θ̃j,k)− θj,k
)2

]. We want to choose the level-

dependent threshold λj to minimize the L2 risk at level j. To do this, we will find

an unbiased estimate of the L2 risk at level j and then will minimize the unbiased

estimate by choosing the proper λj. Recall from Chapter 3 that the Stein’s Unbiased

Risk Estimate(SURE) of the L2 risk of soft threshold estimator with threshold t is

SURE(t; θ̃j,k
′s) = 2j − 2 ·#{k : |θ̃j,k| ≤ t}+

2j∑

k=1

[min(|θ̃j,k|, t)]2

Now, the threshold t is selected to minimize the unbiased estimate SURE(t; θ̃j,k
′s):

λj = argmin
t≥0

SURE(t; θ̃j,k
′s)

= argmin
t≥0

2j − 2 ·#{k : |θ̃j,k| ≤ t}+∑2j

k=1[min(|θ̃j,k|, t)]2

We will show that there is not much computation in finding λj. Without loss of
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generality, assume that θ̃j,k’s are arranged such that |θ̃j,0| ≤ |θ̃j,1| ≤ · · · ≤ |θ̃j,2j−1|.

SURE(t; θ̃j,k
′s) is strictly increasing when t goes from |θ̃j,i| to |θ̃j,i+1| excluding

both ends |θ̃j,i| and |θ̃j,i+1| because the term
∑2j

k=1[min(|θ̃j,k|, t)]2 increases while

the remaining terms stay constant. Similarly, SURE(t; θ̃j,k
′s) is strictly increasing

when t goes from 0 to |θ̃j,0| excluding both ends 0 and |θ̃j,0|. Also, SURE(t; θ̃j,k ′s)

stays constant for t ≥ |θ̃j,2j−1|. So, minimum of SURE(t; θ̃j,k
′s) must occur at 0 or

at one of |θ̃j,k|’s.

After the soft threshold λj for level j is determined through SURE(t; θ̃j,k
′s),

the observed wavelet coefficients at level j, θ̃j,k’s, are soft thresholded accordingly.

This process is done for all the levels j = 0, . . . , J − 1.

As pointed out by Donoho and Johnstone[9], the SURE-based selection of

soft threshold does not perform well when most of the true wavelet coefficients are

zero. This is because the contribution to SURE estimate from the noise of most

coordinates of the multivariate Gaussian with zero means will “swamp” the little

information provided by the few coordinates with non-zero means. The situation in

which most wavelet coefficients are zeros is called the sparsity of wavelet coefficients.

Donoho and Johnstone then proposed to check the sparsity of wavelet coefficients

θ̃j,k’s at a fixed level j as follows:

Let d =2j (the total number of wavelet coefficients at level j)

s2=
∑d−1
k=0(θ̃2j,k−1)

d

γ = (log2d)
3
2√

d
(the critical value of sparsity)
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If s2 ≤ γ, then the wavelet coefficients at level j are determined to be

sparse and the soft threshold will be defaulted to a fixed

value
√

2log(d) =
√

2log (2j).

If s2 > γ, then the wavelet coefficients at level j are determined to be

not sparse and the soft threshold will be determined

through SURE(t; θ̃j,k
′s).

This method, called “SureShrink”, will first test the sparsity of wavelet coefficients

at each level j to determine whether the subsequent threshold selection is to be based

on SURE estimate or to use a fixed threshold
√

2log (2j).

The “SureShrink” method is summarized as follows:

1. From the noisy observable samples of the unknown density f(x), {Yi ∼ N(f( i
M
), 1), i =

1, . . . ,M}, we will perform wavelet transform to get the noisy observable

wavelet coefficients θ̃j,k, j = 0, . . . , J − 1, k = 0, . . . , 2j − 1, where J = log2M .

2. For each fixed level j, we will soft threshold the wavelet coefficients θ̃j,k’s at that

level j with soft threshold λj selected as follows:

λj =
√

2log(2j) if
∑2j−1
k=0 (θ̃2j,k−1)

2j
≤ (log22j)

3
2

√
2j

= argmin
t≥0

SURE(t; θ̃j,k
′s) if

∑2j−1
k=0 (θ̃2j,k−1)

2j
>

(log22j)
3
2

√
2j

θ̂j,k = δ
soft
λj

(θ̃j,k), k = 0, . . . , 2j − 1.
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3. From the estimated wavelet coefficients θ̂j,k’s, we will perform inverse wavelet

transform to get an estimated pdf f̂(x) of the unknown pdf f(x).

5.3 Distance Metric Between Estimated PDFs

After getting the samples of two estimate densities f̂( i
M
) and ĝ( i

M
), i =

1, . . . ,M , we will measure their similarity with a symmetrized version of Kullback-

Leibler divergence D(f̂ ||ĝ),

D(f̂ ||ĝ) .=
∫ 1

0

f̂(x)log2(
f̂(x)

ĝ(x)
) dx+

∫ 1

0

ĝ(x)log2(
ĝ(x)

f̂(x)
) dx.

Since we only have discrete samples of f̂ and ĝ, we will use Simpson’s rule[2]

to do numerical integration for D(f̂ ||ĝ). Simpson’s rule offers better numerical inte-

gration result than midpoint and trapezoidal numerical integrations. By Simpson’s

rule, we have

∫ 1

0
f̂ log2

f̂
ĝ
≈ 1

3M
[ 4f̂( 1

M
)log2

f̂( 1
M

)

ĝ( 1
M

)
+ 2f̂( 2

M
)log2

f̂( 2
M

)

ĝ( 2
M

)

+ . . . +

+ 4f̂(M−1
M

)log2
f̂(M−1

M
)

ĝ(M−1
M

)
+ f̂(1)log2

f̂(1)
ĝ(1)

]

5.4 Implementation Issues of Wavelet Density Estimation

To fit the theoretical framework, certain modifications and configurations are

necessary to implement wavelet density estimation.

1. The elements of the RTT sequences acquired from machines in one experiment
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will be scaled to [0, 1] as follows:

Let XIP1 = (XIP1
1 , XIP1

2 , . . . , XIP1
n )

XIP2 = (XIP2
1 , XIP2

2 , . . . , XIP2
n )

...

XIPk = (XIPk
1 , XIPk

2 , . . . , XIPk
n )

where n is the total ping packets sent for each machine and k is the

number of machines being probed in the experiment.

Let p = max
1≤s≤n
1≤r≤k

{XIPr
s }

q = min
1≤s≤n
1≤r≤k

{XIPr
s }

Then, the rescaled RTT values are:

X
IPm,rescaled
l =

XIPm
l

−q
p−q ∀l ∈ {1, . . . , n}, ∀m ∈ {1, . . . , k}

2. Dropped packets will be ignored. However, machines that have more than 20%

drop rate will be discarded for geolocation purpose. This is to protect the

integrity of raw data before further processing.

3. We will use periodic extension to alleviate boundary distortion when taking

wavelet transform.

4. Daubechies 4 is selected as the wavelet basis for wavelet density estimation due to

its orthonormality and its smoothness. Daubechies 4 wavelets are orthonormal

basis in L2(R). Projecting noisy samples of a density function onto Daubechies
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4 wavelets will transform original i.i.d. Gaussian noise into i.i.d. Gaussian

noise in wavelet domain. Daubechies 4 wavelets are relatively smooth. The

smoothness of Daubechies 4 will result in the smoothness of the reconstructed

functions which are the estimated pdfs in our case.

5.5 Estimation of Known Densities with Wavelet Density Estimation

After presenting wavelet density estimation, we will use it to estimate a known

density. The estimated pdf and the actual pdf will then be compared to evaluate

the performance of wavelet density estimation. After some literature survey on RTT

distributions, it appears that most RTT distributions are like gamma distribution[5].

This concurs with our observations that most of the RTT distributions collected

from our testbed have gamma shape. Thus, we will use a known gamma density

to generate the corresponding i.i.d. samples which will be used to construct an

estimated pdf through wavelet density estimation.

The pdf of a gamma(α, λ) random variable is given by:

f(x) =
λ (λx)α−1

e−λx

Γ(α)
, α > 0, λ > 0, 0 < x <∞

where Γ(α) =

∫ ∞

0

xα−1e−x dx

Figures 5.1, 5.2, 5.3 and 5.4 contain the actual pdf of a gamma density with

α = 1.5 and λ = 1 and the estimated pdfs based on different sample sizes, i.e. 512,

1024, 2048 and 4096 samples. We employ mean absolute percentage error(MAPE):

100%
n

∑n
i=1

|f̂i−fi|
|fi| and mean absolute error(MAE): 1

n

∑n
i=1 |f̂i − fi| to measure the

similarity between the actual pdf and the estimated pdf. As shown, the four esti-
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mated pdfs have gamma shape. As sample size increases through 512, 1024, 2048

and 4096 samples, the MAPE decreases through 51%, 42%, 10% and 5% and the

MAE decreases through 0.0721, 0.0534, 0.0112 and 0.0091.

Next, wavelet density estimation will estimate a different gamma density with

α = 4 and λ = 0.5. Figures 5.5, 5.6, 5.7 and 5.8 contain the actual pdf gamma(α =

4, λ = 0.5) and the estimated pdfs based on different sample sizes, i.e. 512, 1024,

2048 and 4096 samples. The MAPE between the actual pdf and the estimated pdf is

shown on respective plots. As in previous gamma density estimation with different

gamma parameters, an increase in sample size leads to smaller estimation error in

terms of MAPE. In detail, the MAPE decreases through 17%, 15%, 14% and 13%

and the MAE decreases through 0.0059, 0.0051, 0.0037 and 0.0024 as sample size

increases through 512, 1024, 2048 and 4096.

Some RTT distributions have gamma shape with Gaussian lobe at the tail.

Therefore, wavelet density estimation will estimate the following mixture density

0.7 ∗ gamma(α = 1.5, λ = 1)+0.3 ∗N(5, 1) where the Gaussian density N(5, 1) will

simulate a Gaussian lobe at the tail of the gamma density gamma(α = 1.5, λ = 1)

. Figure 5.17 plots out the mixture density. Figures 5.9, 5.10, 5.11 and 5.12 contain

the actual mixture pdf and the estimated pdfs based on different sample sizes, i.e.

512, 1024, 2048 and 4096 samples.The MAPE decreases through 28%, 16%, 10% and

6% and the MAE decreases through 0.0288, 0.0157, 0.0105 and 0.0086 as sample

size increases through 512, 1024, 2048 and 4096.

Wavelet density estimation will estimate another mixture density 0.9∗gamma(α =

4, λ = 0.5)+0.1∗N(17, 1) where the Gaussian density N(17, 1) will simulate a Gaus-
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sian lobe. Figure 5.18 shows the mixture density. Figures 5.13, 5.14, 5.15 and 5.16

show the actual mixture pdf and the estimated pdfs based on sample sizes of 512,

1024, 2048 and 4096 samples. The MAPE decreases through 19%, 14%, 13% and

11% and the MAE decreases through 0.0072, 0.0053, 0.0035 and 0.0028 as sample

size increases through 512, 1024, 2048 and 4096.

The MAPEs and the MAEs of three different densities at various sample sizes

are tabulated as follows:

Sample Size 512 1024 2048 4096

MAPE of 51% 42% 10% 5%

Gamma(α = 1.5, λ = 1)

MAPE of 17% 15% 14% 13%

Gamma(α = 4, λ = 0.5)

MAPE of 28% 16% 10% 6%

0.7 ∗Gamma(α = 1.5, λ = 1)

+0.3 ∗N(5, 1)

MAPE of 19% 14% 13% 11%

0.9 ∗Gamma(α = 4, λ = 0.5)

+0.1 ∗N(17, 1)
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Sample Size 512 1024 2048 4096

MAE of 0.0721 0.0534 0.0112 0.0091

Gamma(α = 1.5, λ = 1)

MAE of 0.0059 0.0051 0.0037 0.0024

Gamma(α = 4, λ = 0.5)

MAE of 0.02888 0.0157 0.0105 0.0086

0.7 ∗Gamma(α = 1.5, λ = 1)

+0.3 ∗N(5, 1)

MAE of 0.0072 0.0053 0.0035 0.0028

0.9 ∗Gamma(α = 4, λ = 0.5)

+0.1 ∗N(17, 1)

If we accept MAPE of less than 15% as satisfactory estimation based on visual

inspection of the estimated pdfs, the minimum sample size to adequately estimate

the four densities is about 2048 samples.
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Figure 5.1: Wavelet density estimation of a gamma density of α = 1.5 and λ = 1

with 512 samples.
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Figure 5.2: Wavelet density estimation of a gamma density of α = 1.5 and λ = 1

with 1024 samples.
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Figure 5.3: Wavelet density estimation of a gamma density of α = 1.5 and λ = 1

with 2048 samples.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

Wavelet Density Estimation of Gamma(α=1.5, λ=1) With 4096 Samples

 

 

estimated PDF
actual PDF

MAE	: 0.0091
MAPE	: 5%

Figure 5.4: Wavelet density estimation of a gamma density of α = 1.5 and λ = 1

with 4096 samples.

34



0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12
Wavelet Density Estimation of Gamma(α=4, λ=0.5) With 512 Samples

 

 

estimated PDF
actual PDF

MAE	: 0.0059
MAPE	: 17%

Figure 5.5: Wavelet density estimation of a gamma density of α = 4 and λ = 0.5

with 512 samples.
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Figure 5.6: Wavelet density estimation of a gamma density of α = 4 and λ = 0.5

with 1024 samples.
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Figure 5.7: Wavelet density estimation of a gamma density of α = 4 and λ = 0.5

with 2048 samples.
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Figure 5.8: Wavelet density estimation of a gamma density of α = 4 and λ = 0.5

with 4096 samples.
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Figure 5.9: Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =

1.5, λ = 1) + 0.3 ∗N(5, 1) with 512 samples.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Wavelet Density Estimation of 0.7*Gamma(α=1.5, λ=1)+0.3*N(5,1) With 1024 Samples

 

 

estimated PDF
actual PDF

MAE	: 0.0157
MAPE	: 16%

Figure 5.10: Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =

1.5, λ = 1) + 0.3 ∗N(5, 1) with 1024 samples.
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Figure 5.11: Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =

1.5, λ = 1) + 0.3 ∗N(5, 1) with 2048 samples.
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Figure 5.12: Wavelet density estimation of a mixture density 0.7 ∗ gamma(α =

1.5, λ = 1) + 0.3 ∗N(5, 1) with 4096 samples.

38



0 2 4 6 8 10 12 14 16 18 20 22
0

0.02

0.04

0.06

0.08

0.1

0.12
Wavelet Density Estimation of 0.9*Gamma(α=4, λ=0.5)+0.1*N(17,1) With 512 Samples

 

 

estimated PDF
actual PDF

MAE	: 0.0072
MAPE	: 19%

Figure 5.13: Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =

4, λ = 0.5) + 0.1 ∗N(17, 1) with 512 samples.
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Figure 5.14: Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =

4, λ = 0.5) + 0.1 ∗N(17, 1) with 1024 samples.
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Figure 5.15: Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =

4, λ = 0.5) + 0.1 ∗N(17, 1) with 2048 samples.
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Figure 5.16: Wavelet density estimation of a mixture density 0.9 ∗ gamma(α =

4, λ = 0.5) + 0.1 ∗N(17, 1) with 4096 samples.
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Figure 5.17: A mixture density, 0.7 ∗ gamma(α = 1.5, λ = 1) + 0.3 ∗N(5, 1)
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Figure 5.18: A mixture density, 0.9 ∗ gamma(α = 4, λ = 0.5) + 0.1 ∗N(17, 1)
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5.6 Pictorial Depiction of Wavelet Density Estimation
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Figure 5.19: A 500-element RTT sequence collected from a landmark
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Figure 5.20: Rescaling the RTT values into [0,1]
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Figure 5.21: RTT distribution of scaled RTT values
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Figure 5.22: Estimated pdf constructed by wavelet density estimation
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Chapter 6

Wavelet Time-Frequency Analysis

6.1 Overview

We discuss the second geolocation technique, wavelet time-frequency analysis,

in this chapter. We will start with explaining the time synchronization among

RTT sequences. A probe machine sends out time-synchronized ping packets to all

machines. Thus, the elements of the RTT sequences collected for all the machines

are synchronized in time. All RTT sequences share a common time axis. We want

to analyze the frequency contents of these RTT sequences over short time intervals

along the common time axis. For some signal s(t) where t represents time, the

analysis of its frequency content as a function of time t is called time-frequency

analysis. Time-frequency analysis allows us to know how frequency content of s(t)

changes over time t.

Geographically-close machines under the same ISP share almost identical net-

work infrastructure. These machines in close vicinity experience similar network

activities at roughly the same time. Network activities cause significant variations

in RTT values during short time intervals. These momentarily significant variations

of RTT values will translate into an increase in frequency content at those time

intervals. Wavelet time-frequency analysis employs wavelets to analyze frequency

content over short time intervals. Wavelet time-frequency analysis can then ge-

44



olocate a target to its nearby landmarks by detecting time-synchronized increases

of frequency contents in target’s RTT sequence and its nearby landmarks’ RTT

sequences.

6.2 Wavelet Time-Frequency Analysis

Fourier transform could analyze the frequency content of a signal s(t). Let

s(t) be relatively smooth except with a sharp spike during some short time interval.

The Fourier transform of s(t) will have high frequency component to indicate the

existence of the sharp spike. But, Fourier transform of s(t) could not provide time

information about when the sharp spike happens along the time axis of the signal

s(t).

To locate the sharp burst along the time axis, we need to analyze the frequency

content of the signal s(t) as a function of time t. This is called time-frequency

analysis. Wavelet can perform time-frequency analysis due to its time-frequency

localization property. The following explanations of time-frequency analysis with

wavelet could be found in [11]. We will define the following notations:

Inner Product < f, g >
.
=

∫∞
−∞ f(x)g(x) dx

Fourier Transform f̂(w)
.
=

∫∞
−∞ f(x)e−jwx dx

Parseval’s Identity < f, g > = 1
2π
< f̂, ĝ >

∫∞
−∞ f(x)g(x) dx = 1

2π

∫∞
−∞ f̂(w)ĝ(w) dw

Wavelet ψ(a,b)(x)
.
= a−

1
2ψ(x−b

a
)

(Real-Valued) where b = translation index to
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translate/shift wavelet

a = dilation index to

dilate/scale wavelet

Continuous (Wψf)(a, b)
.
=< f, ψ(a,b) >

Wavelet = a−
1
2

∫∞
−∞ f(x)ψ(x−b

a
) dx

Transform

Suppose wavelet ψ(t) is localized in time and frequency which means its energy

is localized in time domain and in frequency domain. Such wavelet is said to possess

the property of time-frequency localization. Assume the effective support of ψ(t)

has center t∗ and radius(=distance from center) △ψ on the x-axis. Then, ψ(a,b) =

a−
1
2ψ( t−b

a
) has effective support with center b+ at∗ and radius a△ψ.

Continuous wavelet transform (Wψf)(a, b) = a−
1
2

∫∞
−∞ f(t)ψ( t−b

a
) dt will pro-

duce a windowing effect on f(t) with time window [b + at∗ − a△ψ, b + at∗ + a△ψ].

Thus, only the portion of f(t) at t ∈ [b + at∗ − a△ψ, b + at∗ + a△ψ] is analyzed.

Notice that the window [b+ at∗− a△ψ, b+ at
∗+ a△ψ] can be shifted left or right by

shifting wavelet ψ(a,b)(t) with its translation index b and can be shrinked or stretched

by scaling wavelet ψ(a,b)(t) with its dilation index a. Thus, by shifting and scaling

wavelet ψ(a,b)(t), we can analyze function f(t) at any interval with any width. In

short, we can do a time-localized analysis on f(t).

To see the corresponding frequency-localized analysis in frequency domain, we

will derive the Fourier transform of ψ(a,b)(t):
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ψ̂(a,b)(w) =
∫∞
−∞ a−

1
2ψ( t−b

a
)e−jwt dt

Let x = t−b
a

=
∫∞
−∞ a−

1
2ψ(x)e−jw(ax+b) adx

= a−
1
2ae−jwb

∫∞
−∞ ψ(x)e−j(wa)x dx

=
√
ae−jwbψ̂(aw)

By Parseval’s identity,

(Wψf)(a, b) =
∫∞
−∞ f(x)ψ(a,b)(x) dx

Parseval′s
= 1

2π

∫∞
−∞ f̂(w)ψ̂(a,b)(w) dw

= 1
2π

∫∞
−∞ f̂(w)

√
ae−jwbψ̂(aw) dw

=
√
a

2π

∫∞
−∞ f̂(w)ψ̂(aw)ejwb dw

Assume the effective support of ψ̂(w) has center w∗ and radius △ψ̂ on the fre-

quency w-axis. Then, ψ̂(a,b)(w) =
√
ae−jwbψ̂(aw) has effective support with center

w∗

a
and radius

△
ψ̂

a
. Thus, continuous wavelet transform

√
a

2π

∫∞
−∞(f̂(w)ψ̂(aw))ejwb dw

will produce a windowing effect in frequency domain with frequency window [w
∗

a
−

△
ψ̂

a
, w

∗

a
+

△
ψ̂

a
]. Notice that the frequency window streches out for small a and shrinks

for large a. Thus, by adjusting a, we can analyze different frequency contents at

different frequency windows. In short, we can do a frequency-localized analysis.

By changing a and b, time-frequency localization of wavelet ψ(a,b) permits

analyzing a portion of the function f(t) at time t ∈ [b + at∗ − a△ψ, b + at∗ + a△ψ]

for frequency content at frequency w ∈ [w
∗

a
− △

ψ̂

a
, w

∗

a
+

△
ψ̂

a
]. Translation index b is

responsible for moving wavelet ψ(a,b) and thus the time window [b+ at∗ − a△ψ, b+
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at∗ + a△ψ] along the time axis so that portion of the function f(t) inside the time

window could be analyzed regardless of the rest of the function f(t) outside the

time window. Dilation index a is responsible for stretching or compressing wavelet

ψ(a,b)(t) and thus the time window [b + at∗ − a△ψ, b + at∗ + a△ψ] but inversely

compressing or stretching frequency window [w
∗

a
− △

ψ̂

a
, w

∗

a
+

△
ψ̂

a
] so that different

frequency contents could be analyzed. By changing the translation index b and the

dilation index a, we could analyze the frequency content as a function of time. This

means that due to the time-frequency localization of wavelet, we could use wavelet

to do time-frequency analysis.

For an illustrative purpose, consider the following plot:
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Figure 6.1: Wavelet Time-Frequency Analysis
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A signal h(t) is an relatively smooth except with a significant variation over

time interval T1. The signal ψT1(t) is a wavelet time-localized at time interval T1

and the ψT2(t) is identical to ψT1(t) except for being shifted to time interval T2.

So, ψT2(t) is also a wavelet time-localized at time interval T2. Let hT1(t) be the

truncated version of h(t) to time interval T1 and hT2(t) be the truncated version of

h(t) to time interval T2.

WψT1
h =

∫∞
−∞ h(t)ψT1(t) dt

≈
∫∞
−∞ hT1(t)ψT1(t) dt

Parseval′s
= 1√

2π

∫∞
−∞ ĥT1(w)ψ̂T1(w) dw

Due to significant variations of hT1(t), ĥT1(w) is localized at high frequency. Due

to oscillatory nature of ψT1(t), ψ̂T1(w) is also localized at high frequency. Thus,

∫∞
−∞ ĥT1(w)ψ̂T1(w) dw > 0. And, WψT1

h > 0. This could also be derived in time

domain as hT1(t) and ψT1(t) have good correlation in time domain with their peaks

almost aligned in time.

Now, we will turn our focus to wavelet ψT2(t).

WψT2
h =

∫∞
−∞ h(t)ψT2(t) dt

≈
∫∞
−∞ hT2(t)ψT2(t) dt

Parseval′s
= 1√

2π

∫∞
−∞ ĥT2(w)ψ̂T2(w) dw

Due to smoothness of hT2(t), ĥT2(w) is localized at low frequency. Due to oscillatory

nature of ψT2(t), ψ̂T2(w) is localized at high frequency. Thus,
∫∞
−∞ ĥT2(w)ψ̂T2(w) dw ≈

0. And, WψT2
h ≈ 0. This could also be derived in time domain as hT2(t) and ψT2(t)

are hardly correlated in time domain.
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In summary, by using wavelets, we can analyze the frequency content of h(t)

over two time intervals T1 and T2. We can detect h(t) to have high frequency content

at T1 and to have low frequency content at T2.

6.3 Time-Frequency Analysis With Wavelet To Geolocate

To do time-frequency analysis on a RTT sequence Ỹ = (Y1, Y2, . . . , Yn) where

Yi’s are RTT values at equally spaced time instants, we will perform continuous

wavelet transform on the RTT sequence Ỹ . Let Y (t) be the continuous RTT

waveform of the discretized RTT sequence Ỹ . Let ψ̃(a,b) be the discretized ver-

sion of conitnuous-time wavelet ψ(a,b)(t). In computers, continuous wavelet trans-

form
∫∞
−∞ Y (t)ψ(a,b)(t) dt is performed by taking elementwise multiplication of Ỹ and

ψ̃(a,b) and then conducting numerical integration.

We will perform continuous wavelet transform at two scales, fine scale and

coarser scale to conduct multiscale product analysis as introduced in [13].

Let Ṽ f = (V f
1 , V

f
2 , . . . , V

f
n ) be the wavelet coefficients of fine scale.

Ṽ c = (V c
1 , V

c
2 , . . . , V

c
n ) be the wavelet coefficients of coarser scale.

We will construct the multiscale product Ṽ as follows:

Ṽ = Ṽ f · (Ṽ c)T

(V1, V2, . . . , Vn) = (V f
1 · V c

1 , V
f
2 · V c

2 , . . . , V
f
n · V c

n , )

At fine scale, wavelets are time-localized to small finite support. These com-

pressed wavelets could detect fine features of some sample function f(t). At the same
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time, the compressed wavelets will be more susceptible to pick up fine, tiny noise

from the sample function f(t). At coarser scale, wavelets are time-localized to larger

support. The stretched-out wavelets will slightly smoothen out the fine features of

the sample function f(t). However, these stretched-out wavelets will smoothen out

fine, tiny noise. Thus, the multiscale product of the fine-scale coefficients and the

coarser-scale coefficients will amplify the features of the sample function f(t) while

reducing noise.

The absolute values of the multiscale product coefficients in Ṽ are thresholded

into zeros and ones. Thresholding schemes that have been studied are standard

deviation, mean and simple compression of certain percentage. Standard deviation

as the threshold produced the best result and is decided to be the finalized thresh-

olding scheme. Note that the ones in a zero-one sequence indicate sudden rises of

frequency content at those portions of the RTT sequence.

After RTT sequences have been transformed into zero-one sequences, inner

products will be taken as follows:

< xl, xt >
< xt, xt >

, where xl denotes the zero-one sequence of a landmark.

xt denotes the zero-one sequence of target.

The inner product will have value between 0 and 1. If inner product is close to 1, that

means the sudden rises of frequency contents of the target’s RTT sequence and the

landmark’s RTT sequence are highly correlated in time. This will imply the network

activities experienced by the target and the landmark are time-synchronized. This
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will happen when the target and the landmark are geographically close. If inner

product is close to 0, the frequency contents of the target’s RTT sequence and the

landmark’s RTT sequence are not correlated in time.

6.4 Implementation Issues of Wavelet Time-Frequency Analysis

1. Machines that have more than a 5% drop rate of total packets sent will be dis-

carded for geolocation purpose. This is to protect the integrity of raw data

before further processing. As compared to the 20% drop rate allowed in wavelet

density estimation, we choose a smaller drop rate for wavelet time-frequency

analysis. Wavelet time-frquency analysis looks for temporal information in

terms of frequency content evolution over time. High drop rate will have

serious repercussion to this temporal information.

2. Missing RTT values in RTT sequences due to dropped packets will be interpolated

with cubic spline.

3. We will use odd-symmetric extension to avoid creating artificial high frequency

content at boundaries when taking wavelet transform.

4. We choose Daubechies 2 wavelet to perform time-frequency analysis due to its

time-frequency localization property. Daubechies 2 also offered better perfor-

mance for wavelet time-frequency analysis during the testing phase with other

types of wavelets.

5. A landmark could produce a zero-one sequence with large number of 1’s and few
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0’s. Then, a lot of targets irrespective of their geographic locations will be

matched to this landmark. To solve this issue, we reason that a landmark

close to the target should have almost the same number of 1’s in its zero-one

sequence as in target’s zero-one sequence. Thus, we will compare the number

of 1’s in every landmark’s zero-one sequence. Assume that target has p 1’s in

its zero-one sequence. If there are q 1’s in a landmark’s zero-one sequence with

q > p, we will retain p 1’s that correspond to multiscale product coefficients

of the largest absolute values among the q coefficients. The remaining (q-p)

1’s will be converted to 0’s.
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6.5 Pictorial Depiction of Wavelet Time-Frequency Analysis
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Figure 6.2: A 500-element RTT sequence collected from a landmark
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Figure 6.3: Wavelet transform of the RTT sequence at fine scale
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Figure 6.4: Wavelet transform of the RTT sequence at coarser scale
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Figure 6.5: Multiscale product to produce enhanced features while reducing back-

ground noise
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in the original RTT sequence
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Chapter 7

Experiments and Results

We now analyze the performance of both geolocation techniques, wavelet den-

sity estimation(WDE) and wavelet time-frequency analysis(WTA). To do this, we

will use data sets collected from our testbed described as follows:

Testbed : Comcast network in the Baltimore-Washington D.C.

Metropolitan Area

Probe machine : Shuttle PC running the 2.6.27-9 revision of the Linux

kernel connected to UMD network

Landmark Distribution : One landmark in Gaithersburg(GA)

(Comcast) Two landmarks in Germantown(GE)

Four landmarks in College Park(CP)

Four landmarks in Greenbelt(GB)
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Figure 7.1: Our Testbed at Baltimore-Washington D.C. Metropolitan Area

For one data set, probe machine will send out 500 time-synchronous ping pack-

ets to each landmark with 200ms interval between successive packets. Thus, each

data set contains 11 RTT sequences of 500 RTT values as there are 11 landmarks

in our testbed. 100 such data sets were collected to analyze the two geolocation

techniques.

We will conduct several tests on both geolocation techniques with the 100

data sets. After each test, there will be a city-to-city matching percentage result

calculated as follows. First, we choose a geolocation technique. We pick a landmark

as target and try to geolocate the target to one of the remaining landmarks with the

chosen technique for each of the 100 data sets. Next, we switch to another landmark

as target and try to geolocate this new target to one of the remaining landmarks

with the chosen technique for each of the 100 data sets. This process is repeated

until all the landmarks have been picked once as a target. The matching percentage
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of City A to City B under the chosen geolocation technique is obtained as follows:

the number of matchings = the number of landmarks in City A × 100 data sets

the number of City B matchings = the number of geolocations to some landmark

in City B for targets in City A

the matching percentage of City A to City B = the number of City B matchings
the number of matchings

× 100%

We conduct several tests on the two geolocation techniques to characterize

different aspects of the techniques. We will test the performance of wavelet density

estimation and wavelet time-frequency analysis with different RTT sample sizes.

We want to investigate possible impacts of different RTT sample sizes to both tech-

niques. We will also analyze the performance of wavelet time-frequency analysis for

different landmark distributions to explore the effects of landmark distribution to

the technique. We will conduct wavelet time-frequency analysis on additional data

sets collected with different ping rates to examine possible consequences.
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7.1 Wavelet Density Estimation With Different RTT Sample Sizes

We want to explore possible impacts of RTT sample size to wavelet density

estimation. We will conduct wavelet density estimation with the 100 RTT data

sets collected from our testbed. We will use the first 16 elements, 32 elements, 64

elements, 128 elements, 256 elements and 500 elements of the 500-element RTT

sequences in the 100 RTT data sets to evaluate this geolocation technique with

different RTT sample sizes. The reason of choosing power-of-two numbers for RTT

sample sizes is to alleviate the effect of taking the closest integer of log2(sample size),

i.e. [log2 n] of Section 5.2.

We will tabulate the city-to-city matching percentages for each of the RTT

sample sizes. In addition, we will describe how to obtain the mean of the minimum

divergence from each city for targets in a city. Wavelet density estimation produces

KL divergence metric for each pair of target(TG) and a landmark(LM), denoted

as div(TG, LM). The mean of the minimum divergence from City A for targets in

City B is mean{ min{div(TG,LM), LM∈City A}, TG∈City B, all 100 data sets}.

Thus, the mean of the minimum divergence from City A for targets in City B is the

average of the minimum divergence in City A over all targets in City B and over all

100 data sets.

60



City-to-City Matching Percentages of WDE with 500 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 61% 34% 0% 0%

Greenbelt 39% 65% 3% 0%

Gaithersburg 0% 0% Nil 60%

Germantown 0% 1% 97% 40%

Note: ‘Nil’ is due to having only one landmark in Gaithersburg.

City-to-City Matching Percentages of WDE with 256 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 58% 37% 0% 0%

Greenbelt 42% 62% 0% 7%

Gaithersburg 0% 0% Nil 65%

Germantown 0% 1% 100% 28%
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City-to-City Matching Percentages of WDE with 128 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 61% 35% 0% 0%

Greenbelt 39% 64% 0% 22%

Gaithersburg 0% 0% Nil 52%

Germantown 0% 1% 100% 26%

City-to-City Matching Percentages of WDE with 64 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 61% 37% 0% 0%

Greenbelt 39% 61% 7% 18%

Gaithersburg 0% 1% Nil 52%

Germantown 0% 1% 93% 30%
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City-to-City Matching Percentages of WDE with 32 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 59% 40% 0% 3%

Greenbelt 40% 58% 3% 7%

Gaithersburg 0% 0% Nil 48%

Germantown 1% 2% 97% 42%

City-to-City Matching Percentages of WDE with 16 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 50% 49% 7% 14%

Greenbelt 46% 44% 14% 16%

Gaithersburg 2% 3% Nil 47%

Germantown 2% 4% 79% 23%
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Mean of Minimum Divergence From Each City with 500 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea
n
of

M
in

D
iv
er
ge
n
ce

F
ro
m

Collge Park 2.0308 1.4662 4.8985 4.5682

Greenbelt 2.7108 0.7806 3.3345 2.9168

Gaithersburg 6.9545 5.7149 Nil 0.8715

Germantown 6.2121 4.8086 0.6757 1.0494

Mean of Minimum Divergence From Each City with 256 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea
n
of

M
in

D
iv
er
ge
n
ce

F
ro
m

Collge Park 2.0176 1.4147 4.7755 4.4720

Greenbelt 2.6644 0.8090 3.2498 2.7369

Gaithersburg 6.8259 5.6278 Nil 1.0770

Germantown 6.0906 4.7044 0.7702 1.3985
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Mean of Minimum Divergence From Each City with 128 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea
n
of

M
in

D
iv
er
ge
n
ce

F
ro
m

Collge Park 1.9429 1.2928 4.2058 3.9847

Greenbelt 2.5213 0.7534 2.8826 2.4473

Gaithersburg 6.4415 5.1789 Nil 1.0893

Germantown 5.7014 4.3260 0.6595 1.4738

Mean of Minimum Divergence From Each City with 64 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea
n
of

M
in

D
iv
er
ge
n
ce

F
ro
m

Collge Park 1.7503 1.1482 3.5729 3.3175

Greenbelt 2.3828 0.7045 2.3394 1.9353

Gaithersburg 6.4370 4.9381 Nil 0.8795

Germantown 5.3404 3.9296 0.5393 1.1145
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Mean of Minimum Divergence From Each City with 32 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea
n
of

M
in

D
iv
er
ge
n
ce

F
ro
m

Collge Park 1.4969 0.8947 2.7462 2.2319

Greenbelt 2.0455 0.5447 1.9191 1.4208

Gaithersburg 5.9523 4.5000 Nil 0.4961

Germantown 5.1998 3.6614 0.2426 0.5801

Mean of Minimum Divergence From Each City with 16 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea
n
of

M
in

D
iv
er
ge
n
ce

F
ro
m

Collge Park 0.7462 0.5118 1.8118 1.5243

Greenbelt 0.6292 0.4437 0.9470 0.8085

Gaithersburg 4.2499 3.3307 Nil 0.4801

Germantown 3.4592 2.5666 0.2145 0.6603
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Figure 7.2: For a CP target and for all RTT sample sizes, the mean of minimum

divergence from CP landmarks is the lowest followed by the mean of minimum di-

vergence from GB landmarks. The mean of minimum divergence from GA landmark

and the mean of minimum divergence from GE landmarks are significantly higher.

All four lines stabilize and flatten as RTT sample size increases.
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Figure 7.3: For a GB target and for all RTT sample sizes, the mean of minimum

divergence from GB landmarks is the lowest followed by the mean of minimum di-

vergence from CP landmarks. The mean of minimum divergence from GA landmark

and the mean of minimum divergence from GE landmarks are significantly higher.

All four lines stabilize and flatten as RTT sample size increases.
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Figure 7.4: For a GA target and for all RTT sample sizes, the mean of minimum

divergence from GE landmarks is the lowest. The mean of minimum divergence

from CP landmarks and the mean of minimum divergence from GB landmarks are

significantly higher. All three lines stabilize and flatten as RTT sample size increases.
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Figure 7.5: For a GE target and for all RTT sample sizes, the mean of minimum

divergence from GA landmark is the lowest followed by the mean of minimum diver-

gence from GE landmark. The mean of minimum divergence from CP landmarks

and the mean of minimum divergence from GB landmarks are significantly higher.

The top two lines stabilize and flatten as RTT sample size increases. The bottom

two lines go down slightly with their gap closing up as RTT sample size increases.
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Figure 7.6: The general trend is that the matching percentage of a CP target to CP

landmarks increases as RTT sample size increases.
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Figure 7.7: The matching percentage of a CP target to CP or GB landmarks in-

creases as RTT sample size increases.
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Figure 7.8: The matching percentage of a CP target to GA or GE landmarks de-

creases as RTT sample size increases.
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Figure 7.9: The general trend is that the matching percentage of a GB target to

GB landmarks increases as RTT sample size increases.
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Figure 7.10: The matching percentage of a GB target to CP or GB landmarks

increases as RTT sample size increases.
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Figure 7.11: The matching percentage of a GB target to GA or GE landmarks

decreases as RTT sample size increases.
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Figure 7.12: The matching percentage of a GA target to GE landmarks generally

increases as RTT sample size increases from 0 to 256 samples. After 256 samples,

the percentage of GA matched to GE landmarks drops.
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Figure 7.13: The matching percentage of a GA target to CP or GB landmarks

generally decreases as RTT sample size increases from 0 to 256 samples. After 256

samples, the percentage of GA matched to CP or GB landmarks increases.
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Figure 7.14: The general trend is that the matching percentage of a GE target to

GE landmark increases as RTT sample size increases.
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Figure 7.15: The general trend is that the matching percentage of a GE target to

GA or GE landmarks increases as RTT sample size increases.
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Figure 7.16: The general trend is that the matching percentage of a GE target to

CP or GB landmarks decreases as RTT sample size increases.
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7.2 Wavelet Time-Frequency Analysis With Different RTT Sample

Sizes

As with wavelet density estimation, we will explore possible impacts of RTT

sample size to wavelet time-frequency analysis. We will perform wavelet time-

frequency analysis with the 100 RTT data sets. We will use the first 100 elements,

200 elements, 300 elements, 400 elements and 500 elements of the 500-element RTT

sequences in the 100 RTT data sets to analyze the technique with different RTT

sample sizes. We will present the city-to-city matching percentages for each of the

RTT sample sizes. In place of minimum divergence, we will explain how to calculate

the mean of the maximum inner product from each city for targets in a city. Wavelet

time-frequency analysis produces inner product metric for each pair of target(TG)

and a landmark(LM), denoted as inProd(TG, LM). The mean of the maximum inner

product from City A for targets in City B is mean{ max{inProd(TG,LM), LM∈City

A}, TG∈City B, all 100 data sets}. Thus, the mean of the maximum inner product

from City A for targets in City B is the average of the maximum inner product in

City A over all targets in City B and over all 100 data sets.

We will present several statistics regarding the zero-one sequences for different

RTT sample sizes. One of the statistics is the average number of 1’s in a zero-one

sequence for different RTT sample sizes. The average number of 1’s that are matched

up for inner products is obtained by multiplying the average number of 1’s in a zero-

one sequence with the average inner product. The average number of 1’s matched

up in correct city matchings is obtained by multiplying the average number of 1’s
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in a zero-one sequence with the average inner product for correct city matchings.

The average number of 1’s matched up in incorrect city matchings is obtained by

multiplying the average number of 1’s in a zero-one sequence with the average inner

product for incorrect city matchings. We will also look at the difference between the

average number of 1’s matched up in correct city matchings and the average number

of 1’s matched up in incorrect city matchings. The calculations of these statistics

are shown after the following table.
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Mean of Maximum Inner Product From Each City with 500 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea

n
o
f
M
a
x
In
n
er

P
ro
d
u
ct

F
ro
m

Collge Park 0.3605 0.2075 0.2448 0.2321

Greenbelt 0.2183 0.2826 0.2726 0.2459

Gaithersburg 0.1705 0.1689 Nil 0.2497

Germantown 0.1883 0.1702 0.2787 0.2219

Various statistics of zero-one sequences with 500 RTT sample size are calculated as

follows:

• The average number of 1’s in a zero-one sequence = 34.1615 out of 500

• The average number of 1’s matched up for inner products = (1/15)*( 0.3605

+ 0.2183 + 0.1705 + 0.1883 + 0.2075 + 0.2826 + 0.1689 + 0.1702 + 0.2448

+ 0.2726 + 0.2787 + 0.2321 + 0.2459 + 0.2497 + 0.2219)*34.1615 = 7.9995

• The average number of 1’s matched up in correct city matchings = (1/4)*(

0.3605 + 0.2826 + 0.2787 + 0.2219 )*34.1615 = 9.7676

• The average number of 1’s matched up in incorrect city matchings = (1/11)*(

0.2183 + 0.1705 + 0.1883 + 0.2075 + 0.1689 + 0.1702 + 0.2448 + 0.2726 +

0.2321 + 0.2459 + 0.2497)*34.1615 = 7.3565
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• The difference of average number of 1’s matched up between correct and in-

correct city matchings = 9.7676 - 7.3565 = 2.4111
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Mean of Maximum Inner Product From Each City with 400 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea

n
o
f
M
a
x
In
n
er

P
ro
d
u
ct

F
ro
m

Collge Park 0.3374 0.1966 0.2897 0.2602

Greenbelt 0.2008 0.2711 0.2944 0.2610

Gaithersburg 0.1815 0.1772 Nil 0.2836

Germantown 0.2012 0.1863 0.3357 0.2385

Various statistics of zero-one sequences with 400 RTT sample size are as follows:

• The average number of 1’s in a zero-one sequence = 28.7550 out of 400

• The average number of 1’s matched up for inner products = 7.1220

• The average number of 1’s matched up in correct city matchings = 8.5021

• The average number of 1’s matched up in incorrect city matchings = 6.6202

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = 1.8819

81



Mean of Maximum Inner Product From Each City with 300 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea

n
o
f
M
a
x
In
n
er

P
ro
d
u
ct

F
ro
m

Collge Park 0.3484 0.2128 0.3266 0.2940

Greenbelt 0.2198 0.2884 0.3469 0.3041

Gaithersburg 0.2129 0.1970 Nil 0.3146

Germantown 0.2394 0.2128 0.4151 0.2665

Various statistics of zero-one sequences with 300 RTT sample size are as follows:

• The average number of 1’s in a zero-one sequence = 22.7992 out of 300

• The average number of 1’s matched up for inner products = 6.3827

• The average number of 1’s matched up in correct city matchings = 7.5146

• The average number of 1’s matched up in incorrect city matchings = 5.9711

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = 1.5435
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Mean of Maximum Inner Product From Each City with 200 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea

n
o
f
M
a
x
In
n
er

P
ro
d
u
ct

F
ro
m

Collge Park 0.3673 0.2405 0.4495 0.3696

Greenbelt 0.2354 0.3065 0.4250 0.3547

Gaithersburg 0.2277 0.2229 Nil 0.3782

Germantown 0.2548 0.2523 0.5243 0.2983

Various statistics of zero-one sequences with 200 RTT sample size are as follows:

• The average number of 1’s in a zero-one sequence = 16.8265 out of 200

• The average number of 1’s matched up for inner products = 5.5045

• The average number of 1’s matched up in correct city matchings = 6.2948

• The average number of 1’s matched up in incorrect city matchings = 5.2171

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = 1.0777
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Mean of Maximum Inner Product From Each City with 100 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
ea

n
o
f
M
a
x
In
n
er

P
ro
d
u
ct

F
ro
m

Collge Park 0.3855 0.2970 0.5702 0.4881

Greenbelt 0.2850 0.3705 0.5119 0.4664

Gaithersburg 0.2810 0.2807 Nil 0.5368

Germantown 0.3052 0.3129 0.6901 0.4612

Various statistics of zero-one sequences with 100 RTT sample size are as follows:

• The average number of 1’s in a zero-one sequence = 9.8575 out of 100

• The average number of 1’s matched up for inner products = 4.1024

• The average number of 1’s matched up in correct city matchings = 4.7003

• The average number of 1’s matched up in incorrect city matchings = 3.8849

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = 0.8154
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City-to-City Matching Percentages of WTA with 500 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 67% 30% 23% 17%

Greenbelt 24% 54% 30% 22%

Gaithersburg 5% 9% Nil 47%

Germantown 4% 7% 47% 14%

City-to-City Matching Percentages of WTA with 400 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 65% 31% 20% 12%

Greenbelt 25% 55% 17% 20%

Gaithersburg 5% 9% Nil 57%

Germantown 5% 5% 63% 11%
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City-to-City Matching Percentages of WTA with 300 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 65% 30% 10% 22%

Greenbelt 24% 54% 7% 23%

Gaithersburg 7% 11% Nil 47%

Germantown 4% 5% 83% 8%

City-to-City Matching Percentages of WTA with 200 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 66% 36% 20% 23%

Greenbelt 20% 48% 3% 18%

Gaithersburg 8% 8% Nil 55%

Germantown 6% 8% 77% 4%
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City-to-City Matching Percentages of WTA with 100 RTT Sample Size

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 66% 40% 24% 31%

Greenbelt 17% 44% 3% 3%

Gaithersburg 11% 11% Nil 60%

Germantown 6% 5% 73% 6%
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Figure 7.17: The average number of 1’s in a zero-one sequence increases as RTT

sample size increases. More network activities are captured as observation period

of RTT values increases. The average number of 1’s matched up for inner products

increases as RTT sample size increases. The difference of average number of 1’s

matched up between correct and incorrect city matchings increases as RTT sample

size increases.
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Figure 7.18: For a CP target, the mean of the maximum inner product from CP

landmarks is consistently higher than those of landmarks from other cities for all

RTT sample sizes.

0 50 100 150 200 250 300 350 400 450 500
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Mean of Maximum Inner Product of Landmarks in a City for a GB Target Versus Different Sample Sizes

RTT Sample Size

M
e

a
n

 o
f 
M

a
x
im

u
m

 I
n

n
e

r 
P

ro
d

u
c
t

 

 
Mean of maximum inner product of CP Landmarks for a GB Target
Mean of maximum inner product of GB Landmarks for a GB Target
Mean of maximum inner product of GA Landmarks for a GB Target
Mean of maximum inner product of GE Landmarks for a GB Target

Figure 7.19: For a GB target, the mean of the maximum inner product from GB

landmarks is consistently higher than those of landmarks from other cities for all

RTT sample sizes.
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Figure 7.20: For a GA target, the mean of the maximum inner product from GE

landmarks is higher than those of landmarks from other cities for all RTT sample

sizes.
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Figure 7.21: For a GE target, the mean of the maximum inner product from GE

landmark is consistently lower than those of landmarks from other cities for all RTT

sample sizes. However, the mean of the maximum inner product from GA landmark

is consistently higher than those of landmarks from other cities.
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Figure 7.22: Variation of 2% is not significant.
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Figure 7.23: The matching percentage of a CP target to CP or GB landmarks

increases as RTT sample size increases.
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Figure 7.24: The matching percentage of a CP target to GA or GE landmarks

decreases as RTT sample size increases.
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Figure 7.25: The general trend is that the matching percentage of a GB target to

GB landmarks increases as RTT sample size increases.

93



100 150 200 250 300 350 400 450 500
84

84.2

84.4

84.6

84.8

85

85.2

85.4

85.6

85.8

86
Percentages of GB Matched To CP or GB with Different RTT Sample Sizes

RTT Sample Size

P
e

rc
e

n
ta

g
e

 %

Figure 7.26: Variation of 2% is not significant.
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Figure 7.27: Variation of 2% is not significant.
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Figure 7.28: The matching percentage of a GA target to GE landmarks increases as

RTT sample size increases from 0 to 300 samples. After 300 samples, the percentage

of GA matched to GE landmarks drops. Wavelet density estimation registered

similar observation.
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Figure 7.29: The matching percentage of a GA target to CP or GB landmarks

decreases as RTT sample size increases from 0 to 300 samples. After 300 samples,

the percentage of GA matched to CP or GB landmarks increases. Wavelet density

estimation captured similar observation.
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Figure 7.30: The general trend is that the matching percentage of a GE target to

GE landmark increases as RTT sample size increases.
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Figure 7.31: There is no definite behavior for the matching percentage of a GE

target to GA or GE landmarks as RTT sample size increases.
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Figure 7.32: There is no definite behavior for the matching percentage of a GE

target to CP or GB landmarks as RTT sample size increases.

97



7.3 Wavelet Time-Frequency Analysis With Different Landmark Dis-

tributions

For wavelet time-frequency analysis with 500 RTT sample size, the city-to-

city matching percentages of GA to GE and GE to GA/GE are 47% and 61%

respectively. These matching percentages are significantly lower than those of CP

to CP/GB and GB to CP/GB, which are 91% and 84% respectively. Nonetheless,

wavelet density estimation does not record the same discrepancy between the two

groups of matching percentages. There are 1 GA landmark and 2 GE landmarks

compared to 4 CP landmarks and 4 GB landmarks. We want to investigate if the

issue of fewer GA and GE landmarks causes the low matching percentages of GA

to GE and GE to GA/GE in wavelet time-frequency analysis. To do so, we will

evaluate wavelet time-frequency analysis with the 100 RTT data sets collected from

our testbed. First, we will analyze wavelet time-frequency analysis with the original

landmark distribution, 4GBs, 4CPs, 1GA and 2GEs. We will execute wavelet time-

frequency analysis with the 500-element RTT sequences of all the landmarks, 4CPs,

4GBs, 1GA and 2GEs, in the 100 RTT data sets. We then tabulate the city-to-city

matching percentage result for this landmark distribution.

Next, we will analyze wavelet time-frequency analysis with a slightly reduced

landmark distribution, 3CPs, 3GBs, 1GA and 2GEs. There are 4 ways of taking out

one CP landmark from four CP landmarks. Similarly, there are 4 ways of taking

out one GB landmark from four GB landmarks. Thus, there are 4× 4 = 16 ways of

obtaining a reduced landmark distribution of 3CPs, 3GBs and 1GA and 2GEs from
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the original landmark distribution of 4CPs, 4GBs, 1GA and 2GEs. We will run

wavelet time-frequency analysis for each of the 16 reduced landmark distributions

of 3CPs, 3GBs, 1GA and 2GEs. We will put a weight factor of 1
16

on the city-to-

city matching percentage result of each of the 16 reduced landmark distributions.

We then sum up the 16 sets of weighted city-to-city matching percentage result

to produce a representative city-to-city matching percentage result for the reduced

landmark distribution of 3CPs, 3GBs, 1GA and 2GEs.

We will analyze wavelet time-frequency analysis with a further reduced land-

mark distribution, 2CPs, 2GBs, 1GA and 2GEs. There are 6 ways of taking out

two CP landmarks from four CP landmarks. Similarly, there are 6 ways of taking

out two GB landmarks from four GB landmarks. Therefore, there are 6 × 6 = 36

ways of obtaining a reduced landmark distribution of 2CPs, 2GBs and 1GA and

2GEs from the original landmark distribution of 4CPs, 4GBs, 1GA and 2GEs. We

will execute wavelet time-frequency analysis for each of the 36 reduced landmark

distributions of 2CPs, 2GBs, 1GA and 2GEs. We will now put a weight factor of 1
36

on the city-to-city matching percentage result of each of the 36 reduced landmark

distributions. We then add up the 36 sets of weighted city-to-city matching per-

centage result to produce a representative city-to-city matching percentage result

for the reduced landmark distribution of 2CPs, 2GBs, 1GA and 2GEs.

99



City-to-City Matching Percentages of WTA with 4CPs, 4GBs, 1GA and 2GEs

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 67% 30% 23% 17%

Greenbelt 24% 54% 30% 22%

Gaithersburg 5% 9% Nil 47%

Germantown 4% 7% 47% 14%

City-to-City Matching Percentages of WTA with 3CPs, 3GBs, 1GA and 2GEs

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 50% 33% 16% 13%

Greenbelt 39% 49% 26% 18%

Gaithersburg 5% 10% Nil 51%

Germantown 6% 8% 58% 18%
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City-to-City Matching Percentages of WTA with 2CPs, 2GBs, 1GA and 2GEs

Targets

College Park Greenbelt Gaithersburg Germantown

M
at
ch
in
g
P
er
ce
n
ta
ge

T
o
C
it
y

Collge Park 27% 41% 11% 10%

Greenbelt 59% 38% 21% 14%

Gaithersburg 6% 13% Nil 56%

Germantown 8% 8% 68% 20%
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Figure 7.33: As there are more landmarks in CP, a CP target is more likely to be

matched to CP city.
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Figure 7.34: A CP target matched to CP city or GB city more often when there are

more landmarks in both cities.
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Figure 7.35: As there are more landmarks in GB, a GB target is more likely to be

matched to GB city.
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Figure 7.36: A GB target matched to CP city or GB city more often when there

are more landmarks in both cities.
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Figure 7.37: With landmark distribution of 2CPs, 2GBs, 1GA and 2GEs, the match-

ing percentage of GA to GE increases to 68%. It is 47% when landmark distribution

is 4CPs, 4GBs, 1GA and 2GEs. Thus, the issue of fewer GA and GE landmarks in

landmark distribution of 4CPs, 4GBs, 1GA and 2GEs does play a role in the low

matching percentage of GA to GE.
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Figure 7.38: With landmark distribution of 2CPs, 2GBs, 1GA and 2GEs, the match-

ing percentage of GE to GE increases to 20%. It is 14% when landmark distribution

is 4CPs, 4GBs, 1GA and 2GEs.
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Figure 7.39: With landmark distribution of 2CPs, 2GBs, 1GA and 2GEs, the match-

ing percentage of GE to GA/GE increases to 76%. It is 61% when landmark dis-

tribution is 4CPs, 4GBs, 1GA and 2GEs. Thus, fewer GA and GE landmarks in

landmark distribution of 4CPs, 4GBs, 1GA and 2GEs contribute to the low match-

ing percentage of GE to GA/GE.
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7.4 Wavelet Time-Frequency Analysis With Different Ping Rates

Different ping rates will mean different probing rates of network dynamics.

Capturing network dynamics at different rates in the form of RTT values might

have possible consequences to wavelet time-frequency analysis that exploits time-

synchronous network activities shared among nearby landmarks. To examine pos-

sible consequences of different ping rates to wavelet time-frequency analysis, we

collected the following additional RTT data sets. Landmark distribution was 2CPs,

3GBs and 1GE. For experiment 1, probe machine sent out 500 pings with 400ms

interval between successive pings to all landmarks. For experiment 2, probe machine

sent out 500 pings with 200ms interval between successive pings to all landmarks.

For experiment 3, probe machine sent out 500 pings with 100ms interval between

successive pings to all landmarks. For experiment 4, probe machine sent out 500

pings with 50ms interval between successive pings to all landmarks. The process was

repeated. For experiment 5, probe machine sent out 500 pings with 400ms interval

between successive pings to all landmarks. For experiment 6, probe machine sent

out 500 pings with 200ms interval between successive pings to all landmarks. The

process was continued until experiment 120. We also imposed a 60-second pause

between experiments.

Thus, we have 30 data sets for each of four different ping rates, e.g. 400ms,

200ms, 100ms and 50ms. We will conduct wavelet time-frequency analysis through

the 30 data sets of a specific ping rate. After that, we tabulate the corresponding

city-to-city matching percentage result and the various statistics of zero-one se-
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quences and the mean of the maximum inner product as in wavelet time-frequency

analysis with different RTT sample sizes.
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City-to-City Matching Percentages of WTA with 400ms Ping Rate

Targets

College Park Greenbelt Germantown
M

a
tc
h
in

g
P
e
rc

e
n
ta

g
e
T
o

C
it
y

Collge Park 35% 53% 35%

Greenbelt 55% 35% 65%

Germantown 10% 12% Nil

Note: ‘Nil’ is due to having only one landmark in Germantown.

City-to-City Matching Percentages of WTA with 200ms Ping Rate

Targets

College Park Greenbelt Germantown

M
a
tc
h
in

g
P
e
rc

e
n
ta

g
e
T
o

C
it
y

Collge Park 22% 42% 28%

Greenbelt 67% 47% 72%

Germantown 11% 11% Nil

For 200ms ping rate, GB is matched to GB with 47%. This percentage is very close

to 49% of wavelet time-frequency analysis simulated with landmark distribution of

3CPs, 3GBs, 1GA and 2GEs in previous section. Similarly, CP is matched to CP

with 22%, which is also close to 27% of wavelet time-frequency analysis simulated

with landmark distribution of 2CPs, 2GBs, 1GA and 2GEs.
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City-to-City Matching Percentages of WTA with 100ms Ping Rate

Targets

College Park Greenbelt Germantown
M

a
tc
h
in

g
P
e
rc

e
n
ta

g
e
T
o

C
it
y

Collge Park 22% 48% 21%

Greenbelt 71% 33% 79%

Germantown 7% 19% Nil

City-to-City Matching Percentages of WTA with 50ms Ping Rate

Targets

College Park Greenbelt Germantown

M
a
tc
h
in

g
P
e
rc

e
n
ta

g
e
T
o

C
it
y

Collge Park 14% 48% 33%

Greenbelt 66% 42% 67%

Germantown 20% 10% Nil
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Mean of Maximum Inner Product From

Each City with 400ms Ping Rate

Targets

College Park Greenbelt Germantown
M

e
a
n

o
f
M

a
x

In
n
e
r
P
ro

d
F
ro

m

Collge Park 0.1556 0.2704 0.3582

Greenbelt 0.2730 0.2793 0.4662

Germantown 0.2314 0.2618 Nil

Various statistics of zero-one sequences with 400ms ping rate are as follows:

• The average number of 1’s in a zero-one sequence = 22.2324 out of 500

• The average number of 1’s matched up for inner products = 6.3804

• The average number of 1’s matched up in correct city matchings = 4.8344

• The average number of 1’s matched up in incorrect city matchings = 6.8957

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = -2.0613
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Mean of Maximum Inner Product From

Each City with 200ms Ping Rate

Targets

College Park Greenbelt Germantown
M

e
a
n

o
f
M

a
x

In
n
e
r
P
ro

d
F
ro

m

Collge Park 0.1214 0.1720 0.2439

Greenbelt 0.2048 0.2057 0.3379

Germantown 0.1760 0.1968 Nil

Various statistics of zero-one sequences with 200ms ping rate are as follows:

• The average number of 1’s in a zero-one sequence = 25.2428 out of 500

• The average number of 1’s matched up for inner products = 5.2331

• The average number of 1’s matched up in correct city matchings = 4.1285

• The average number of 1’s matched up in incorrect city matchings = 5.6014

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = -1.4729
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Mean of Maximum Inner Product From

Each City with 100ms Ping Rate

Targets

College Park Greenbelt Germantown
M

e
a
n

o
f
M

a
x

In
n
e
r
P
ro

d
F
ro

m

Collge Park 0.1073 0.2030 0.2312

Greenbelt 0.1804 0.2137 0.3217

Germantown 0.1507 0.2107 Nil

Various statistics of zero-one sequences with 100ms ping rate are as follows:

• The average number of 1’s in a zero-one sequence = 26.8372 out of 500

• The average number of 1’s matched up for inner products = 5.4302

• The average number of 1’s matched up in correct city matchings = 4.3074

• The average number of 1’s matched up in incorrect city matchings = 5.8044

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = -1.4971
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Mean of Maximum Inner Product From

Each City with 50ms Ping Rate

Targets

College Park Greenbelt Germantown
M

e
a
n

o
f
M

a
x

In
n
e
r
P
ro

d
F
ro

m

Collge Park 0.0878 0.1522 0.2182

Greenbelt 0.1652 0.1722 0.2928

Germantown 0.1369 0.1645 Nil

Various statistics of zero-one sequences with 50ms ping rate are as follows:

• The average number of 1’s in a zero-one sequence = 26.7232 out of 500

• The average number of 1’s matched up for inner products = 4.6425

• The average number of 1’s matched up in correct city matchings = 3.4740

• The average number of 1’s matched up in incorrect city matchings = 5.0320

• The difference of average number of 1’s matched up between correct and in-

correct city matchings = -1.5580
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Figure 7.40: As ping rate increases with shorter inter-packet interval, more dynamics

of the network are captured as shown by the increasing average number of 1’s in a

500-element zero-one sequence.
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Figure 7.41: As ping rate increases with shorter inter-packet interval, the average

number of 1’s matched up in correct city matchings and the average number of 1’s

matched up in incorrect city matchings both decrease. Thus, as ping rate increases,

more network dynamics are captured with more 1’s in a zero-one sequence but

most of these dynamics captured are not network activities experienced by nearby

landmarks as suggested by the decreasing average number of 1’s matched up in

correct city matchings.
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Chapter 8

Conclusions

We have attempted to geolocate an Internet host in a metropolitan area net-

work (MAN) within city-level granularity. We explored two wavelet-based tech-

niques to perform MAN IP geolocation, i.e. wavelet density estimation and wavelet

time-frequency analysis.

For wavelet density estimation, we used the fact that wavelets are orthonormal

basis in L2(R) to construct the estimated pdf of a RTT distribution. We devised

a symmetrized version of Kullback-Leibler divergence to measure the similarity of

two estimated pdfs. Thus, geolocation of a target is based on the similarity of its

RTT distribution to some landmark’s RTT distribution. We evaluated this tech-

nique with data sets collected from our testbed. As RTT sample size increases, the

matching percentages to the correct cities are more likely to increase. There are

good separations in the means of the minimum divergence from different cities.

For wavelet time-frequency analysis, we utilized the time-frequency localiza-

tion property of wavelets to analyze how the frequency content of a RTT sequence

changes with time. Therefore, geolocation of target is based on the temporal fre-

quency content. We geolocate a target to a landmark that displays similar pattern in

its frequncy content changes over time. From our evaluation of this technique with

data sets collected, we found that wavelet time-frequency analysis generally per-
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forms better with larger RTT sample size. This geolocation technique can achieve

better matching percentages to correct cities when there are sufficient landmarks

in those cities. Wavelet time-frequency analysis reveals that increased RTT prob-

ing rates tend to capture more network dynamics that are not network activities

experienced by nearby landmarks.

In summary, MAN IP geolocation can be conducted through wavelet density

estimation and wavelet time-frequency analysis with their performance influenced

by RTT sample size and landmark distribution.
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Birkhäuser, 1997.

[12] V. N. Padmanabhan and L. Subramanian, “An Investigation of Geographic
Mapping Techniques for Internet Hosts,” in Proc. ACM SIGCOMM, San Diego,
CA, Aug. 2001, pp. 173-185.

119



[13] B. M. Sadler and A. Swami, “Analysis of Multiscale Products for Step Detection
and Estimation,” IEEE Transactions on Information Theory, Vol. 45, No. 3, pp.
1043-1051, April 1999.

[14] C. M. Stein, “Estimation of the Mean of a Multivariate Normal Distribution,”
The Annals of Statistics, Vol. 9, No. 6, pp. 1135-1151, 1981.

120


