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The neuroendocrine system is a critical regulator of vertebrate homeostasis that 

includes five hypothalamic-pituitary axes which develop during embryogenesis. Adrenal 

glucocorticoids play an important role in functional maturation of the anterior pituitary 

through initiation of growth hormone (GH) production. These studies were aimed at 

characterizing ontogenic and glucocorticoid-regulated changes in gene expression during 

neuroendocrine system development in the chick. First, to ascertain timing of initiation 

and establishment of each neuroendocrine axis, we measured mRNA levels of 

hypothalamic regulatory factors, their pituitary receptors, and pituitary hormones from 

embryonic day (e) 10 through post-hatch day (d) 7. We found that the adrenocorticotropic 

axis is the first to be established (e12), followed by establishment of the thyrotropic 

(e18), somatotropic (e20), lactotropic (d1), and gonadotropic (d5) axes. Next, we 

examined in detail mechanisms through which glucocorticoids initiate pituitary GH 

expression during embryogenesis. We determined that glucocorticoids elevate GH 



mRNA levels on e11 by increasing transcriptional activity of the GH gene rather than 

enhancing mRNA stability, and protein synthesis, histone deacetylase activity, ras 

signaling, and ERK1/2 signaling are required for this activation. Conversely, sustained 

activation of ERK1/2 and p38MAPK pathways reduced glucocorticoid stimulation of GH 

expression, indicating the requirement for ERK1/2 activity is transitory. Finally, we 

identified ras-dva as a novel Pit-1 and glucocorticoid-regulated gene in the chicken 

embryonic pituitary gland. Pituitary ras-dva mRNA levels increased between e10 and 

e18, decreased just prior to hatch, and remained low or undetectable post-hatch. Ras-dva 

expression was highly enriched within the pituitary gland on e18, and glucocorticoids 

rapidly induced ras-dva mRNA in cultured pituitary cells through a mechanism involving 

transcriptional activation. Potential regulatory elements within the 5’-flanking region of 

chicken ras-dva responsible for pituitary-specific expression were identified, as was a 2 

kb fragment necessary for its glucocorticoid induction in embryonic pituitary cells. These 

results enhance our understanding of neuroendocrine system development and 

establishment during embryogenesis, reveal mechanisms underlying glucocorticoid 

initiation of GH expression in somatotrophs, and identify a new Pit-1 and glucocorticoid 

target gene that may play an important role in pituitary development. 
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Introduction 

Glucocorticoids are steroid hormones produced by the adrenal cortex that are 

absolutely essential to life and have effects in virtually every cell in the body except 

mature erythrocytes. They are important for regulation of several important physiological 

processes, including metabolism, immune function, the stress response, and development. 

They have pleiotropic effects that include rapid as well as prolonged cellular changes. 

Glucocorticoids are involved in functional maturation of several tissues, including 

adipose, lung, small intestine, and anterior pituitary. Within the anterior pituitary, 

glucocorticoids play an essential role in initiating hormone expression in somatotroph 

cells that produce growth hormone (GH).  

The hypothalamus and pituitary gland make up the core of the neuroendocrine 

system. Through integration of internal and external cues, the neuroendocrine system 

regulates several important physiological processes that include response to stress, 

metabolic homeostasis, growth, and reproduction. At the central level, the hypothalamus 

transmits central nervous system signals in the form of releasing and release-inhibiting 

factors to the anterior pituitary gland, which relays the information to endocrine target 

organs through secretion of trophic hormones (1). The hypothalamus and pituitary 

develop during embryonic development in all vertebrates, and considerable progress has 

been made regarding signaling molecules and transcription factors involved in tissue 

commitment, organ formation, and cellular differentiation within this system. Despite this 

progress, molecular mechanisms involved in functional differentiation of specific 

pituitary cell types, including somatotrophs, are still poorly understood.  
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Glucocorticoid hormones 

 Glucocorticoid hormones are produced by the adrenal cortex under control of the 

hypothalamic-pituitary-adrenal axis. Release of hypothalamic corticotropin-releasing 

hormone (CRH) triggers adrenocorticotropic hormone (ACTH) production by the 

anterior pituitary gland, which in turn stimulates synthesis and release of glucocorticoids 

from the adrenal cortex. The primary circulating glucocorticoid in humans and most 

mammals is cortisol, while the principal glucocorticoid in birds and rodents is 

corticosterone (CORT). Glucocorticoid hormones are essential to life and have important 

immunomodulatory, metabolic, and developmental effects.  

 Once released into circulation, glucocorticoids are bound by corticosteroid-

binding globulin (CBG) and distributed to target tissues throughout the body. Precisely 

how glucocorticoid hormones are delivered to individual cells within tissues is unknown. 

Mechanisms that have been proposed include free diffusion across cellular membranes 

due to their hydrophobic nature, the presence of specific glucocorticoid transporters that 

mediate active transmembrane transport, and/or binding of the CBG-CORT complex to a 

membrane receptor which either acts as a transporter or is internalized through 

endocytosis (2, 3). In any mechanism, CBG would need to be cleaved in order for free 

CORT to activate intracellular receptors, either the type I mineralocorticoid receptor 

(MR) or the type II glucocorticoid receptor (GR). The level of glucocorticoid transporters 

or CBG receptors could influence local delivery of CORT to specific tissues or cells in 

the last two scenarios. A second level of pre-receptor regulation that can modulate 

glucocorticoid activity is the presence of 11β-hydroxysteroid dehydrogenase (11β-HSD) 

enzymes that catalyze interconversion of active and inactive hormone. 11β-HSD1 in 
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target tissues facilitates interaction of glucocorticoids with GR, because it increases levels 

of active, reduced hormone. Conversely, 11β-HSD2 converts active hormone to an 

inactive, oxidized form unable to bind receptors. Therefore, 11β-HSD2 is expressed 

mainly in mineralocorticoid target tissues, serving to protect MR from excess levels of 

glucocorticoids in circulation as compared to the mineralocorticoid aldosterone. These 

tissues include kidney, colon, and placenta, where 11β-HSD2 prevents fetal exposure to 

high amounts of maternal glucocorticoids (4).  

Glucocorticoid receptor 

 A member of the nuclear receptor superfamily, GR has the ability to modulate 

gene expression by acting as a ligand-induced transcription factor. There are three major 

functional domains of nuclear receptors (5): the N-terminal domain (NTD), a central 

deoxyribonucleic acid (DNA) binding domain (DBD), and a ligand-binding domain 

(LBD) at the C-terminus. The NTD contains a ligand-independent transcriptional 

activation region, activation function-1 (AF-1), which is required for maximal 

transcriptional enhancement through recruitment of co-activators and association with 

basal transcriptional machinery. Two conserved zinc fingers within the DBD provide an 

interface for receptor dimerization or other protein-protein interactions and facilitate 

binding to glucocorticoid response elements (GREs) located within regulatory regions of 

direct transcriptional targets of GR. The GRE consensus sequence is an inverted 

hexameric nucleotide repeat with a 3 base pair (bp) spacer, AGAACAnnnTGTTCT (6). 

The LBD is responsible for recognition and binding of glucocorticoid ligands, as well as 

interaction with chaperones that are part of the cytoplasmic multiprotein complex in 

which GR is held in absence of ligand (see below). In addition, the LBD contains the 
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nuclear localization signal and ligand-dependent activation domain, activation function-2, 

which recruits gene-specific co-activators and co-repressors. 

 Several post-translational modifications can modulate activity of GR. As is the 

case with many other transcriptional regulators, GR is a phosphoprotein under basal 

(ligand-free) conditions and additional phosphorylation events occur upon hormone 

binding (7). Most phosphorylated residues are serines located within AF-1. In human GR, 

there are 5 serines in this region (S113, S141, S203, S211, S226), and a mutant GR 

lacking these sites showed substantially reduced phosphorylation levels and 

transcriptional activity (8). Four of these residues are conserved in chicken GR (9-11) and 

correspond to S115, S203, S211, and S226. Mitogen-activated protein kinase (MAPK) 

pathway activity has been implicated in phosphorylation of at least two of these residues. 

In human GR, S211 may be a target of p38 mitogen-activated protein kinase (p38MAPK) 

activity (12) and S226 may be a target of c-jun-N-terminal kinase (JNK) (13). Mouse GR 

S234 (corresponding to human/chicken S226) may be a target of extracellular signal-

regulated kinase (ERK) MAPK signaling (14). Phosphorylation of GR at S203 and S211 

appears necessary for full transcriptional activity of GR (15), and phosphorylation at 

S226 has been implicated in decreased GR transcriptional activity (13) and associated 

with GR nuclear export upon hormone withdrawal (16). It is becoming apparent that the 

combinatorial code of phosphorylated residues within AF-1 is a mechanism by which 

gene-specific GR regulation can be achieved. Different GR phospho-isoforms have been 

shown to selectively occupy certain GR target genes (17), and GR phosphorylation at 

different residues has been shown to alter recruitment of co-regulators in a gene-specific 

manner (17).  
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 Activity of GR can be modulated by other post-transcriptional modifications as 

well. The covalent addition of small ubiquitin-related modifier-1 was shown to increase 

GR stability and dramatically enhance transcriptional activity (18), and a consensus 

sumoylation site is present in AF-1. However, this modification only appears to enhance 

transcriptional activity when multiple GREs are present in a promoter, and the synergy 

increases as the number of GREs increases. Acetylation of multiple lysine residues within 

the GR hinge region located between the DBD and LBD has been shown to modulate GR 

transcriptional activity (19). When GR was acetylated, it exhibited decreased binding to 

GREs and consequent decreased transcriptional activation. 

Mechanism of glucocorticoid action: genomic effects 

 The classical model for glucocorticoid action involves regulation of gene 

transcription through interaction with intracellular GR, which then becomes a ligand-

activated transcription factor that can induce or repress target gene transcription (20). In 

the absence of ligand, GR is part of a large cytoplasmic complex that is essential for 

maintaining it in a state competent to bind glucocorticoid hormones. This multimeric 

complex includes heat shock protein (HSP) 40, HSP70, HSP90, immunophilins such as 

FK506-binding protein 5 (FKBP5), and kinases including Src tyrosine kinase (21). Upon 

ligand binding, GR undergoes a conformational change that allows its dissociation from 

the chaperone complex and exposes its nuclear localization signal. Following nuclear 

translocation, GR can interact with regulatory regions of target genes to alter their level 

of gene expression. 

There are four types of GR-binding elements, and in three of these GR directly binds 

DNA (5, 20) (Figure 1). Binding of GR to simple GREs usually involves 
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Figure 1. Mechanisms through which GR interacts with its regulatory elements. At simple GREs, GR 
directly binds DNA as a homodimer and can positively or negatively regulate transcription. Simple 
elements where GR represses transcription are called negative GREs (nGRE). At composite elements, GR 
binds in conjunction with another transcription factor as a homodimer or as a monomer. At competitive 
elements, GR binding prevents another transcription factor from binding. Protein-protein interactions in 
which GR is tethered to the DNA by another transcription factor also occur.  
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homodimerization, which leads to recruitment of transcriptional co-regulators and can 

also include tethering of additional transcription factors to the DNA by GR. Composite 

elements consist of direct DNA binding by GR and another transcription factor, and can 

involve GR binding as a homodimer to a GRE or GR binding as a monomer to a half-site. 

Competitive response elements consist of overlapping, mutually exclusive binding sites 

for GR and another transcription factor. In the fourth type of element, GR is tethered to 

the DNA through protein-protein interaction with another transcription factor. Interaction 

of GR with simple GREs can lead to positive or negative transcriptional regulation. In 

most cases, composite response elements are involved in positive regulation of 

transcription by GR and tethering interactions are involved in negative transcriptional 

regulation by GR (5), although there are exceptions. Tethering of GR to DNA by signal-

transducer and activator of transcription 5 (STAT5) is involved in positive regulation of 

insulin-like growth factor-I (IGF-I) transcription in the liver, and tethering of GR to an 

activator protein-1 (AP-1) site in the gonadotropin-releasing hormone receptor (GnRH-R) 

regulatory region is involved in positive regulation of GnRH-R expression in a 

gonadotroph cell line (14, 22). Competitive response elements are generally associated 

with transcriptional interference (5, 20). Glucocorticoids can also interfere with 

transcriptional regulation by other factors through protein-protein interactions that 

prevent these factors from binding to their response elements. Ultimately, as with other 

transcription factors, GR is capable of inducing epigenetic changes to chromatin and can 

recruit co-repressors, co-activators, and basal transcriptional machinery in order to 

regulate the expression level of target genes. 
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Mechanism of glucocorticoid action: rapid, “non-genomic” effects 

In addition to the classic transcriptional mechanism of action described above, 

glucocorticoids are capable of eliciting rapid effects that occur within seconds or minutes 

and involve direct actions on membrane lipids, membrane proteins, and cytosolic 

proteins. These effects are often termed “non-genomic”, although in most cases the 

ultimate result at the cellular level involves transcriptional changes that may be secondary 

to rapid glucocorticoid effects. It is more useful to consider these as actions which do not 

initially affect gene expression but instead stimulate more rapid changes involving 

generation of second messengers and stimulation of intracellular signaling cascades (23). 

In many cases, it is hypothesized that these two modes of action are functionally related, 

and rapid effects lead to immediate changes that are necessary until slower genomic 

effects can lead to more persistent cellular changes (3). Several criteria are involved when 

classifying cellular responses as “non-genomic,” which include some or all of the 

following: rapid response time; resistance to transcriptional and translational inhibition; 

resistance to inhibition of GR/MR; stimulation by membrane-impermeable forms of 

glucocorticoids; and action in non-nucleated cells (3, 24).  

Interaction of steroids, including glucocorticoids, directly with cellular 

membranes has been shown to influence membrane fluidity and affect ion permeability  

and adenosine triphosphate (ATP) utilization (3, 25). These effects primarily occur in 

doses exceeding even pharmacological levels, and therefore their physiological relevance 

is questionable. Rapid glucocorticoid action also occurs through interaction with 

membrane proteins, and these effects are implicated in a wide variety of physiological 

processes such as calcium trafficking, neurotransmission, and stimulation of intracellular 
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signaling cascades, including protein kinase A (PKA), protein kinase C (PKC), MAPK, 

and phosphatidylinositol 3-kinase (PI3-K) (3, 12, 24, 26-30). The identity of the 

membrane associated receptor is unknown, but several lines of evidence implicate 

involvement of G-protein coupled receptor activity in membrane-initiated signaling 

events (26). Both low and high affinity glucocorticoid binding sites have been localized 

to plasma membrane, endoplasmic reticulum, endomembrane vesicles, and mitochondria 

(3), although their functional involvement in mediating rapid glucocorticoid action is not 

known. Rapid effects of glucocorticoids have also been shown to be mediated by 

classical intracellular receptors and/or components of the chaperone complex such as 

HSP70, HSP90, and Src (3, 31).  

Functional anatomy of the neuroendocrine system 

The pituitary gland, or hypophysis, hangs immediately beneath the hypothalamus 

at the base of the brain. The two are connected by the infundibular stalk surrounding the 

hypothalamic-hypophyseal portal veins that form the vascular connection between the 

two organs. The hypophysis is made up of two anatomically and functionally distinct 

parts: the posterior pituitary gland, or neurohypophysis; and the anterior pituitary gland, 

or adenohypophysis (32). The neurohypophysis is an extension of the hypothalamus, 

containing axons projecting from magnocellular neurons in the hypothalamus that release 

arginine vasopressin and oxytocin directly into the general circulation. The endocrine 

hypothalamus also contains parvocellular neurons that control production and release of 

hormones from the adenohypophysis. The parvocellular neurosecretory cell bodies are 

located in distinct clusters, or nuclei, and they release their hypophysiotropic factors from 

axonal projections in the median eminence at the inferior hypothalamic boundary (33, 



 11

34). From here, these factors enter the hypophyseal portal system and influence trophic 

hormone secretion from five distinct pituitary cell types characterized by the hormones 

they produce (Figure 2).  

Neurosecretory cell bodies that release CRH and thyrotropin-releasing hormone 

(TRH), which primarily control ACTH and thyroid-stimulating hormone (TSH) secretion 

from corticotrophs and thyrotrophs, respectively, are localized to the paraventricular 

hypothalamus (35, 36). Pituitary gonadotrophs produce and secrete two hormones, 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These are positively 

regulated by gonadotropin-releasing hormone 1 (GnRH1) released from cells located in 

the hypothalamic preoptic area and negatively influenced by gonadotropin-inhibitory 

hormone (GnIH) released from neurons contained in the paraventricular nucleus (37). GH 

secretion from pituitary somatotrophs is primarily regulated in a positive manner by 

growth hormone-releasing hormone (GHRH) released from neurons located in the 

arcuate nucleus of the hypothalamus and in a negative manner by somatostatin (SST) 

secreted by neurons in the periventricular hypothalamic area (38). GH can also be 

positively regulated by ghrelin and pituitary adenylate cyclase-activating polypeptide 

(PACAP), which directly stimulate GH release from the pituitary, enhance GHRH release 

from the hypothalamus, and potentiate GHRH signaling cascade (39, 40). The primary 

source of ghrelin in circulation is from the gastric mucosa, although it is also found in the 

hypothalamic arcuate nucleus and several additional internuclear areas (41). 

Neurosecretory cell bodies containing PACAP have been localized to the paraventricular 

nucleus, the preoptic area, and the supra-optic nucleus (42). In birds, TRH is also a potent 

GH secretagogue (43). Production of prolactin (PRL) from pituitary lactotrophs is unique  



 12

 

 

Figure 2. Representation of the avian hypothalamic-pituitary neuroendocrine axis. Hypothalamic releasing 
and release-inhibiting factors regulate synthesis and secretion of pituitary trophic hormones, which are 
secreted by distinct cell types. Adapted with permission from reference (44) 

 

in that, in mammals, it is primarily under tonic inhibition from hypothalamic 

dopaminergic neurons located in the arcuate and periventricular nuclei (45) but can also 

be positively regulated by vasoactive intestinal peptide (VIP) released from neurons in 

the paraventricular nucleus in mammals and birds (46).  

Anterior pituitary cell types are not randomly distributed throughout the gland; 

rather, they are organized within spatially restricted zones, such that common cell types 

tend to be clustered together. Additionally, recent work using two-photon excitation 

microscopy has revealed that GH-producing somatotrophs are organized into complex 

three-dimensional networks thought to facilitate cell-to-cell communication and 
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coordinate pulsatile GH secretion (47). It is likely that other pituitary cell types are 

organized into these networks as well. Two distinct caudal and cephalic lobes are found 

in the avian adenohypophysis, with four of the five pituitary cell types unevenly 

distributed among them. Corticotrophs, thyrotrophs, and lactotrophs are primarily 

localized to the cephalic lobe of the anterior pituitary gland, while somatotrophs reside in 

the caudal lobe (48-53). Gonadotrophs are initially present in the caudal lobe but spread 

throughout the entire gland as the pituitary develops (53, 54). In rodents and humans 

(55), gonadotrophs are most ventrally located, thyrotrophs are just dorsal to 

gonadotrophs, somatotrophs and lactotrophs are located in the medial region of the gland 

and are dorsal relative to thyrotrophs, and corticotrophs are clustered ventrally and 

rostrally relative to the somatotroph/lactotroph population. In addition to these endocrine 

cells, agranular folliculostellate cells are distributed throughout the pituitary gland. 

Folliculostellate cells are important paracrine regulators of anterior pituitary cell function 

through growth factor and cytokine secretion and are also thought to play an important 

role in intrapituitary communication between different cell types (56).  

Neuroendocrine system development  

 The hypothalamus and pituitary gland develop in tandem during embryogenesis, 

and direct contact between the oral ectoderm that will ultimately give rise to the anterior 

pituitary and the overlying neural epithelium are required for their co-dependent 

development (57). The majority of what is known about neuroendocrine system 

development comes from spontaneous and engineered mouse models, and recent work 

has confirmed that the general principles are highly similar in zebrafish and chicken 

embryos. The importance of factors identified as having a role in neuroendocrine system 



 14

development is underscored by identification of mutations in several of the genes 

associated with human neuroendocrine pathologies (58). As with the development of 

many other systems, induction and formation of both the endocrine hypothalamus and 

anterior pituitary are dependent on signaling gradients leading to a combinatorial code of 

transcription factor expression in a temporally and spatially restricted manner.  

Development of the neuroendocrine hypothalamus 

 Along the midline, the ventral region of the diencephalon gives rise to the 

hypothalamus. Ventral sonic hedgehog (Shh) signaling plays a critical inductive and early 

patterning role in hypothalamic development. Deficiency of Shh leads to hypothalamic 

loss, while increased activity leads to ectopic expression of hypothalamic markers (59, 

60). After induction of the ventral diencephalon is complete, Shh signaling is 

downregulated by a dorsal gradient of bone morphogenetic proteins (BMPs), so 

differentiation into hypothalamic progenitor cells can occur (61). 

The early Shh ventral-late BMP dorsal signaling gradient is necessary for 

establishing a correct spatial pattern of transcription factor expression in the developing 

hypothalamus (34). Complete loss of neurons within the supra-optic, paraventricular, and 

periventricular nuclei, including CRH-, TRH-, and SST-producing cells, occurs in 

homozygous mutant mice lacking the basic helix-loop-helix transcription factor single-

minded homolog 1 or its dimerization partner aryl hydrocarbon receptor nuclear 

translocator 2. Loss of the above nuclei, as well as the arcuate nucleus containing GHRH 

and dopaminergic neurons, occurs in mutants lacking the homeobox gene orthopedia. 

Mutants for the homeodomain transcripton factor NK2 homeobox 1 (Nkx2.1) also fail to 

generate the arcuate nucleus and ventromedial nucleus located just dorsal to it. Mutations 
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in all of the above transcription factors lead to perinatal lethality, but there are other 

mutations that affect only a single neurosecretory cell type and lead to hypopituitarism. 

For example, Mash1 has been shown to be indispensable for generation of GHRH 

neurons (62), and H6 family homeobox 2 and 3 double mutants are deficient in only 

GHRH neurons within the arcuate nucleus (63). 

During neurogenesis, progenitor cells become post-mitotic and differentiate into 

immature neurons that migrate from their place of “birth” to their final destination, where 

they develop neuronal projections. Neuronal birthdating studies combining in utero BrdU 

labeling with post-natal dual immunohistochemistry for BrdU and parvocellular peptides 

has revealed that parvocellular neurons arise concurrently from surrounding 

neuroepithelium early in the latter half of mammalian embryogenesis, between e12 and 

e13 in the rat (33, 64). It is generally thought that these neurons migrate inwards, so that 

the hypothalamus matures laterally to medially (33, 34). It should be noted that GnRH1 

neurons are unique in that they arise in the olfactory placode and migrate through the 

ventral forebrain to the hypothalamus (33, 64). Beyond this, little is known about 

differentiation of these neuronal populations, particularly regarding the unique sets of 

transcription factors involved in neurosecretory cell-specific gene expression or timing of 

their functional differentiation (34). In the somatotropic axis, Gsh1 and Ikaros are 

required for GHRH expression, and mice with targeted disruption of these genes have 

almost complete loss of GHRH neurons, hypoplastic pituitary glands with reduced 

numbers of somatotrophs, and severe growth deficiencies (65-67). 
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Development of the anterior pituitary gland 

 The pituitary gland is of dual embryonic origin, with the neurohypophysis 

generated from a downward evagination of the ventral diencephalon and the 

adenohypophysis generated from an upward invagination of oral ectoderm known as 

Rathke’s pouch (55). Adenohypophyseal development and differentiation can be divided 

into three stages (68, 69): gland commitment from primordial tissue; formation of 

Rathke’s pouch; and emergence of terminally differentiated cell types. It is apparent that 

each stage of development is guided by signaling gradients that coordinate a sequential 

expression of transcription factors that in turn dictate cell-type specification, precursor 

proliferation, and terminal differentiation of the five hormone-producing cell types (69). 

 Inductive signals from the region of the ventral diencephalon that ultimately gives 

rise to the hypothalamus are required for pituitary gland commitment from primordial 

tissue, and direct contact between ventral diencephalon and adjacent ectoderm is essential 

for appearance of pituitary cell types (57, 70). Through an in vitro co-culture system and 

examination of signaling molecule expression in the neuroepithelium and oral ectoderm, 

it was revealed that BMP4 and fibroblast growth factor (FGF) 8 signaling originating 

from the ventral diencephalon are essential for pituitary gland commitment from oral 

ectoderm and Rathke’s pouch formation (68). Subsequently, it was determined with 

Nkx2.1 and BMP4 knockout mice that formation of Rathke’s pouch is a two-step process 

involving at least two sequential inductive signals from the ventral diencephalon (71). 

BMP4 is necessary for commitment and formation of a rudimentary pouch, and Nkx2.1 is 

necessary to support FGF8 expression leading to development of the definitive pouch. 

Shh signaling is also essential for pituitary development. It is initially expressed in both 
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the ventral diencephalon and throughout the oral ectoderm, but immediately upon 

formation its expression is restricted from Rathke’s pouch (68, 72). Both dorsal FGF8 

emanating from the diencephalon and ventral Shh from the oral ectoderm are necessary 

for induction of Lhx3, a transcription factor essential for proliferation of progenitor cells 

that allows progression beyond rudimentary pouch formation (68, 71, 72). Shh signaling 

also appears necessary to support the intrinsic BMP2 signaling that emerges ventrally 

within the developing pouch (68, 72). These opposing dorsal-to-ventral FGF8 and 

ventral-to-dorsal BMP2 gradients are ultimately what appear to create the spatial and 

temporal restriction of transcription factor expression that leads to emergence of pituitary 

cell types (69, 73). Similar gradients have recently been observed in chicken embryos and 

zebrafish (53, 74), confirming the highly conserved nature of neuroendocrine 

development.  

 During anterior pituitary development, many of the earlier transcription factors 

induced are involved in proliferation, patterning, and expansion of progenitor cells, while 

factors expressed later are involved in lineage determination and functional 

differentiation of cell types. In addition to Lhx3, the homeodomain transcription factors 

Isl1, Pitx1 and Pitx2 are important for cellular proliferation leading to gland maturation 

after Rathke’s pouch formation (71, 75, 76). In addition to these factors that are important 

for organogenesis, additional homeodomain transcription factors are necessary for 

positional commitment of pituitary cell types, including Six1, Six4, and Pax6 (77). 

Several of these play multiple roles in the pituitary and are involved in regulation of 

hormone expression in the mature gland in addition to organogenesis. Homeobox 

expressed in ES cells 1 (Hesx1) is a transcriptional repressor that becomes restricted to 
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Rathke’s pouch shortly after its formation and is downregulated just prior to appearance 

of terminally differentiated cell types (78). It is thought to play a role in preventing 

terminal differentiation during proliferation of progenitor cells, and it must be 

downregulated in order for appearance of all cell types except corticotrophs (77, 79).  

The combinatorial pattern of transcription factors necessary for cell type-specific 

gene expression is slowly being revealed, although by no means are all factors essential 

for this specificity known. In the pituitary, Tbx19 is restricted to corticotrophs and 

melanotrophs, and its expression precedes that of pro-opiomelanocortin (POMC), the 

precursor from which ACTH is proteolytically cleaved. In combination with Pitx1, it is 

essential for corticotroph and melanotroph gene expression (80). The downregulation of 

Hesx1 coincides with expression of a closely-related pituitary-specific transcriptional 

activator, prophet of pit-1 (Prop-1). Hesx1 and Prop-1 have mutually antagonistic 

activities. Hesx1 can heterodimerize with Prop-1 at consensus DNA binding sites and 

prevent its activity (81), while Prop-1 can act as a transcriptional repressor of Hesx1 

expression in the presence of appropriate cofactors (82). Prolonged expression of Hesx1 

during embryogenesis prevents differentiation of thyrotrophs, somatotrophs, lactotrophs, 

and gonadotrophs through interference with Prop-1 transcriptional activity (81). Prop-1 

initially activates expression of pituitary-specific transcription factor 1 (Pit-1) (81), which 

is essential for differentiation and maintenance of hormone expression in thyrotrophs, 

somatotrophs, and lactotrophs (83). In thyrotrophs, GATA-2 and Pit-1 are both required 

for differentiation and maintenance of cell type-specific gene expression (84). 

Lactotroph-specific PRL expression is known to require estrogen receptor, Pit-1, Ets-1, 

and Pitx factors (85-87). Steroidogenic factor-1 (SF-1) is required for differentiation of 
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gonadotrophs, and cell type-specific gene expression requires not only the presence of 

SF-1, which cooperates with GATA-2, but also the absence of Pit-1 (73, 77). In 

somatotrophs, Pit-1, retinoid X receptor, retinoic acid receptor, thyroid hormone receptor, 

Sp-1, and Zn-15 are required for  GH expression (77, 88-90). Three closely spaced Pit-1 

binding sites located approximately 14.5 kilobases (kb) upstream of the human pituitary 

GH gene are required for appropriate somatotroph expression (91, 92). This region is 

hyperacetylated in a pituitary-specific manner, and deletion of two of these Pit-1 sites 

leads to a decrease in acetylation and reduction in pituitary GH expression (93), 

indicating that these Pit-1 sites play an important role in epigenetic modifications 

necessary for transcriptional activation of GH in somatotrophs. It is not known if similar 

mechanisms are involved in somatotroph-specific GH expression in other species. The 

above examples are by no means inclusive, but rather represent the best characterized 

transcription factors involved in specification of pituitary cell type gene expression. In 

addition, although factors have been identified in regulating gene expression in mature 

pituitary cell types, there is still a scarcity of information regarding mechanisms and 

factors specifically involved in initiating cell-type specific gene expression during 

functional differentiation of the hormone-producing cells.  

Despite this, it is well established that pituitary cell types emerge during 

embryogenesis in a temporally conserved manner in all species. Corticotrophs are the 

first cell type to appear in rodents and birds (53, 87, 94-96). Gonadotrophs are considered 

to be the second cell type to appear, despite observations that pituitary FSH and LH 

levels substantially increase at the end of embryonic developmental or early in post-natal 

life (53, 54, 87, 94-97). The cell types in the Pit-1 lineage are the final three to appear, 
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with thyrotrophs emerging first, followed by somatotrophs and, lastly, lactotrophs (51-53, 

87, 94-96, 98-106).  

Pituitary somatotrophs 

Pituitary GH plays a central role in regulating post-natal growth and body 

composition in all vertebrates. With the exception of lactating mammals and nesting 

birds, somatotrophs are the most abundant cell type within the mature anterior pituitary 

gland, comprising up to 50% of all pituitary cells. Additionally, the most common form 

of congenital hypopituitarism is isolated growth hormone deficiency (58). In humans, 

deficient GH secretion leads to short stature, decreased muscle and bone mass, and 

increased fat mass. An excess of GH secretion, generally resulting from pituitary 

adenomas, causes tissue overgrowth, life-threatening metabolic disorders, and can lead to 

gigantism if it occurs prior to long bone growth plate closure (107). The effect of GH on 

overall growth and its contribution to leanness are also important for meat production in 

agriculturally important animals, such as chickens.  

Somatotropic axis and regulation of post-natal growth 

Classically, the somatotropic axis is composed of pituitary GH, its chief 

hypothalamic regulators GHRH and SST, and IGF-I produced in liver and other 

peripheral tissues. In addition to regulation by hypothalamic factors (GHRH, PACAP, 

Ghrelin, and SST), pituitary GH is subject to negative feedback from IGF-I and GH itself 

in the peripheral circulation. Although IGF-I is produced in many tissues, circulating 

IGF-1 from the liver is primarily responsible for negative regulation of GH (108). IGF-I 

blocks GH synthesis and release from somatotrophs and can stimulate and inhibit release 

of hypothalamic SST and GHRH, respectively (109). In the hypothalamus, GH  decreases 
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GHRH messenger ribonucleic acid (mRNA) and increases SST mRNA, and it can 

decrease GHRH receptor (GHRH-R) mRNA in the anterior pituitary (110).  In birds, 

thyroid hormones negatively feed back on TRH-stimulated GH release (43).  

The somatotropic axis is absolutely essential for postnatal growth. This is evident 

from multiple naturally occurring mutations in the axis that result in decreased somatic 

growth of mammals and birds. The little mouse has a missense mutation in the GHRH-R 

that disrupts function within the pituitary (111), the Snell dwarf is a Pit-1 null mutant 

(83), and the Ames dwarf is a Prop-1 null mutant (81). The spontaneous dwarf rat has a 

point mutation in the GH gene that results in premature translational termination (112). In 

all these mutations, GH-producing cells are absent or severely reduced. The sex-linked 

dwarf chicken has a mutation in the GH receptor that results in a functional knockout 

(113). These mutations have relevance in human medicine. Isolated growth hormone 

deficiency can result from defects in GHRH-R, combined pituitary hormone deficiency 

can result from mutations in Prop-1 and Pit-1, and Laron dwarf syndrome results from 

GH insensitivity due to a truncated or inactive receptor (114). Defective GH receptor 

signaling through Janus kinase (JAK)-STAT can also be a cause of Laron dwarfism. 

Similarly, deficiencies in IGF-I production, transport and metabolism, and IGF-I receptor 

levels or signaling can lead to decreased growth (115). 

 Regulation of postnatal growth by components of the somatotropic axis is referred 

to as the somatomedin hypothesis (116). According to the current hypothesis, GH 

stimulates both hepatic IGF-I production that mediates peripheral growth in an endocrine 

manner and local IGF-I that regulates growth in an autocrine/paracrine fashion. In 

addition, GH directly affects muscle, bone, and adipose and can have IGF-I independent 



 22

effects on growth. The most conclusive evidence for an indispensable role of GH in 

postnatal growth of mammals and birds comes from ablation/replacement experiments in 

which pituitary removal results in cessation of growth that can be partially reversed by 

administration of exogenous GH (117, 118). In addition, transgenic mice overexpressing 

human GH exhibit accelerated growth relative to normal littermates starting at 3 weeks of 

age (119).  

Somatotroph differentiation during embryogenesis 

 In both rodents and chickens, somatotrophs functionally differentiate during the 

second half of embryonic development, and their numbers dramatically increase at the 

end of this period. During the 21-day pregnancy, GH mRNA and protein expression in 

rats and mice is first evident on embryonic day (e) 15, and somatotroph numbers 

substantially increase between e18 and e19 (87, 95, 96, 100, 101, 120-123). 

Somatotrophs first appear during the chick 21-day incubation period on e12 and become 

a significant anterior pituitary cell population around e16 (44, 53, 94, 99, 103, 104, 106, 

124-127). Ontogeny of somatotrophs is associated with an increase in GH mRNA (101, 

124, 126, 128), protein (99, 100, 103, 120), and secretory capacity (103, 129). In 

chickens, initial somatotrophs are subject to negative regulation by SST and IGF-I and 

are responsive to GHRH, but they do not become fully responsive to TRH until e20 (103, 

130, 131). 

Somatotrophs are part of the Pit-1 lineage (83), and the presence of cell types 

within this lineage is absolutely dependent on pituitary-restricted transcription factors 

Prop-1 and Pit-1.  Ames and Snell dwarf mutant mice have mutations in Prop-1 and Pit-1, 

respectively, and have hypoplastic pituitaries with absence (Snell) or near-absence 



 23

(Ames) of thyrotrophs, lactotrophs, and somatotrophs (83, 132). Prop-1 appears to be 

necessary for Pit-1 lineage-specific proliferation prior to terminal differentiation (132) 

and for proper initiation of Pit-1 expression (81). Regulation of GHRH-R by Pit-1 is at 

least partially responsible for the hypoplastic pituitary phenotype in Snell dwarf mice, 

because GHRH signaling is necessary for proper expansion of the somatotroph lineage 

during pituitary development (65, 133, 134). Pit-1 expression begins prior to onset of 

somatotroph appearance in mammals and birds, and Pit-1 mRNA was first apparent in 

mice on e13.5 (135) and in chickens on e5 (136). Analysis of GH promoter sequences in 

mammals and birds revealed multiple Pit-1 binding sites (135, 137), and this transcription 

factor is essential for GH gene expression (135). 

Pituitary somatotroph differentiation during embryonic development is modulated 

by adrenal glucocorticoids and thyroid hormones (44, 121), and appearance of 

somatotrophs in fetal rats and embryonic chickens coincides with an increase in 

circulating glucocorticoid and thyroid hormone levels (10, 138-142). Extra-pituitary 

signals are required for initiation of pituitary GH. In pituitary explants taken from fetal 

rats prior to the onset of GH appearance, somatotrophs did not autonomously develop in 

culture (143-145). The involvement of an endocrine signal in initiation of pituitary GH 

expression is also evident from experiments in which dispersed pituitary cells from e12 

chickens did not spontaneously begin producing GH during extended cell culture 

(through 6 days) but required treatment with serum from e16 chickens (146). 

Hypothalamic factors that regulate somatotroph function in birds, including GHRH and 

TRH, were not effective at initiating GH secretion. The blood-borne factor was later 

identified as CORT (147), the primary circulating glucocorticoid in rodents and birds.  
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Subsequent experiments further established a role for CORT in somatotroph 

differentiation in embryonic chickens in vivo. When e11 chicken embryos were treated 

with either serum from e16 chickens or CORT, the number of GH-secreting cells on e13 

and e14 was increased (148, 149). Similar results have been observed in mammals. 

Treatment of pregnant rats with dexamethasone increased the abundance of somatotrophs 

present in e17 or e18 fetuses (145, 150). Glucocorticoids are also capable of increasing 

somatotroph differentiation in vitro, as they have been shown to increase GH mRNA, GH 

intracellular protein, and GH secretion in pituitary explants from fetal rats (143, 144, 151, 

152) or cultured chick embryonic pituitary cells (129, 147, 153-155). This effect can be 

enhanced by GHRH. In e12 chicken pituitary cells, GHRH alone did not increase the 

number of somatotrophs but was shown to augment CORT induction of GH-secreting 

cells and GH mRNA after at least 3 days in culture (129, 154). Somatotrophs induced 

prematurely by CORT in embryonic chickens are fully functional and able to respond to 

the hypothalamic GH-releasing factors GHRH and TRH (129). Aldosterone has also been 

shown to increase GH production in chicken embryonic pituitary cells (155, 156). 

Further evidence that circulating CORT is involved in somatotroph recruitment 

comes from experiments in rats and chickens where endogenous glucocorticoid levels 

were manipulated. Suppression of fetal adrenal glucocorticoid synthesis by 

administration of metyrapone to pregnant rats resulted in a reduction of fetal 

somatotrophs on e19 (150), and increasing circulating CORT levels in chick embryos 

through in ovo ACTH injection on e11 leads to premature GH cell appearance on e13 

(140). Despite the large body of evidence indicating that adrenal glucocorticoids trigger 

GH expression associated with functional differentiation of somatotrophs, it was recently 



 25

reported that GH mRNA levels spontaneously increased in pituitary explants from e11 

chickens cultured for 48 h (155). The authors attributed this spontaneous increase to 

intrapituitary production of corticosteroids, because it was blocked by metyrapone and 

they detected steroidogenic enzyme transcripts in the embryonic pituitary gland.  

Unlike glucocorticoids, thyroid hormones alone cannot increase GH expression in 

somatotrophs but do appear to modulate effects of corticosteroids. In fetal rat explants 

and cultured pituitary cells from embryonic chickens, thyroid hormones failed to increase 

GH expression but did enhance the increase that resulted from glucocorticoid treatment 

(143, 157). The combined effect of glucocorticoid and thyroid hormone treatment is 

dependent on hormone dosage. A synergistic effect of thyroid hormones was only 

apparent at lower glucocorticoid doses in fetal rat explants (143), and higher doses of 

thyroid hormone blocked CORT stimulation of GH-secreting cells in cultures from 

embryonic chickens (157). Similar results were obtained when thyroid hormones were 

administered in vivo. Injection of thyroxine into pregnant rats did not induce GH without 

concomitant administration of dexamethasone (145). In studies using embryonic 

chickens, in ovo injection of thyroid hormones increased the number of GH-secreting 

cells (141). However, the authors concluded that this was due to the interaction of 

injected hormones with endogenous glucocorticoids, because the findings were in 

contrast to the aforementioned in vitro results. Suppression of endogenous thyroid 

hormone levels by methimazole decreased the somatotroph number on e19 in rats and 

e14 in chickens (141, 145), and the effects were reversed with thyroid hormone injection. 

The ability of exogenous glucocorticoids to increase numbers of GH-producing 

cells in vivo is restricted to a narrow period of embryonic development. Oral 
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administration of dexamethasone to pregnant rats did not induce the number of GH-

containing cells on e16, minimally induced them on e17, and led to a maximal increase 

on e18. On e19, dexamethasone administration led to an increase in the amount of GH 

protein within somatotrophs but did not increase somatotroph abundance (150). In 

chickens, in ovo CORT injection on e11 and e12 increased the number of GH-secreting 

cells on e13 and e14, respectively, but injection of CORT on earlier ages did not increase 

numbers of GH cells (149). However, although CORT injection on e11 increased 

somatotroph abundance on e13, the increase was not maintained on e16, e19, or post-

hatch day (d) 1. Somatotrophs are found in the caudal lobe of the avian pituitary gland 

(49, 50, 53, 128). The induction of pituitary GH by CORT in vitro occurs mainly in the 

caudal lobe as opposed to the cephalic lobe (129, 155), and the increase resulting from in 

ovo CORT injection was observed to be caudally restricted (149). Taken together, these 

results imply that glucocorticoids are involved in the final stages of somatotroph 

differentiation and initiate GH expression in premature somatotrophs already committed 

to this lineage.  

The working model of functional differentiation of pituitary somatotrophs 

involves the interplay of endocrine factors from adrenal and thyroid glands, the 

hypothalamus, and the pituitary gland itself (Figure 3). The effects of circulating 

glucocorticoids are influenced by thyroid hormones and at least one hypothalamic factor, 

GHRH. The increase in circulating adrenal glucocorticoids and thyroid hormones most 

likely results from increased ACTH and TSH output from the pituitary toward the end of 

embryonic development, which may be a result of hypothalamic CRH and TRH 

stimulation.  



 27

 

 

 

Figure 3. Model for the interplay of endocrine factors involved in pituitary somatotroph differentiation 
during embryonic development. Reproduced with permission from reference (44). 
 

Mechanisms involved in glucocorticoid induction of pituitary GH expression 

Molecular mechanisms underlying glucocorticoid recruitment of somatotrophs 

during pituitary development are largely unknown. In embryonic chickens, the CORT-

stimulated increase in GH-secreting cells was not observed to involve proliferation of 

existing somatotrophs (147). This is consistent with in vivo observations that the majority 

of initial GH-containing cells that emerge in fetal rats around e18 were not labeled with 

BrdU, but somatotroph expansion that occurred perinatally did involve mitotic events 

(123). Glucocorticoid initiation of GH expression in the mammalian and avian pituitary 

gland appears to occur in an indirect manner requiring synthesis of an intermediary 



 28

factor(s). Stimulation of pituitary GH mRNA by dexamethasone in fetal rat pituitaries 

required at least 8 h exposure (151), and CORT induction of GH mRNA in cultured 

chicken embryonic pituitary cells also required treatment over 4 h (153). In both cases, 

the increase in GH mRNA was blocked by protein synthesis inhibitors.  

The hypothesis that glucocorticoids are indirectly inducing GH production in 

anterior pituitary cells through stimulation of an intermediary protein(s) is supported by  

evidence implicating involvement of nuclear receptors that traditionally act as ligand-

induced transcription factors. Glucocorticoids are capable of binding to and activating 

both GR and MR. In the fetal rat pituitary, GR mRNA is detected by e15, well before 

somatotroph appearance, and GR protein increased between e17 and e18 (158). 

Transcripts for MR and GR are detected as early as e5 in the chicken embryonic anterior 

pituitary gland (155). Quantitative measurements indicate that both MR and GR increase 

between e10 and e14 (10, 124, 159), when somatotrophs first begin to appear and around 

the time somatotrophs can be induced by in ovo glucocorticoid injection. In the chicken 

embryonic pituitary gland, expression of GR protein was detected as early as e8 and 

levels slightly increased through e12. On e12, GR was detected in virtually all pituitary 

cells. Conversely, MR protein was not detected until e12, when it was present in 

approximately 40% of all pituitary cells and 90% of somatotrophs induced in vitro by 

CORT. Experiments investigating involvement of these receptors in CORT stimulation of 

GH in the chicken embryonic pituitary gland indicate that both are likely involved in the 

response. In one study, the presence of either a GR-specific antagonist (ZK98299) or a 

MR-specific antagonist (spironolactone) partially repressed CORT increases in GH 

mRNA or numbers of GH-protein containing cells, but  inclusion of both antagonists 
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completely abolished CORT induction of GH (156). In another study, antagonists to 

either GR or MR were sufficient to block CORT stimulation of GH mRNA (155). In a 

third study, antagonism of GR alone completely blocked the CORT-induced increase of 

GH secretion, while MR antagonism was only partially effective (159). Further evidence 

for involvement of traditional receptors comes from a report that CORT stimulation of 

intracellular GH protein content is blocked by geldanamycin, a compound that prevents 

proper assembly of GR and MR complexes necessary for steroid binding (153). 

The identity of the key intermediary factor(s) has yet to be elucidated, although 

evidence suggests that they are not likely to be Pit-1 or GHRH-R. In fetal rats, 

dexamethasone treatment of explanted e18 pituitary glands significantly increased GH 

mRNA and protein but did not increase Pit-1 mRNA or protein (151). Similarly, in vitro 

treatment of e13 chicken anterior pituitary cells did not increase the number of Pit-1 

containing cells or the level of Pit-1 protein in the cells (160). Pituitary GHRH-R mRNA 

was initially detected in fetal rat pituitaries on e19, coincident with appearance of 

somatotrophs. Likewise, in the chicken embryonic pituitary gland, GHRH-R mRNA 

increased between e10 and e14 (124), around the time of somatotroph appearance. 

Despite observations that dexamethasone is capable of increasing GHRH-R mRNA in 

fetal rat pituitary explants (161), experiments in chicken embryonic pituitary cells do not  

provide evidence that GHRH-R is involved in CORT induction of GH. Treatment with 

CORT did not elevate GHRH-R mRNA or protein levels in chick embryonic pituitary 

cells, nor did it increase GHRH binding to the cells (Ellestad and Porter, unpublished; 

Bossis and Porter, unpublished). Further, pharmacological inhibition and activation of 

PKA or PKC, the primary routes for GHRH-R signaling (162), did not block CORT 
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stimulation of GH mRNA or increase GH mRNA in the absence of CORT. Alternatively, 

inhibition of ras signaling with manumycin A did suppress CORT induction of GH (153).  

Enhancement of CORT-stimulated GH expression by GHRH does appear to 

involve GHRH-R signaling through the PKA pathway. Pharmacological activation of 

PKA mimicked the effect of GHRH on CORT induction of GH mRNA, and inhibition of 

PKA blocked the effect. Manipulation of PKC signaling did not influence GH mRNA 

levels, either under basal or CORT-treated conditions (153). Nonetheless, while GHRH-

R induced PKA signaling may be necessary for synergistic effects of GHRH and CORT 

on GH mRNA induction, GHRH-R does not appear to mediate the indirect effect of 

glucocorticoid treatment. Results with manumycin A imply that the intermediary factor 

may be a ras-like protein, a factor that activates ras signaling, or a target of ras-induced 

signaling cascades. Of particular interest regarding glucocorticoid initiation of pituitary 

GH during somatotroph functional differentiation is glucocorticoid stimulation of 

intracellular signaling pathways that are known effectors of ras signaling, since the ras 

inhibitor manumycin A repressed CORT induction of GH mRNA in the developing 

pituitary gland (153). Four pathways that are known be effectors of ras and have been 

demonstrated to be activated by glucocorticoids are PI3-K (30) and three major MAPK 

pathways, ERK1/2, p38MAPK, and JNK (12, 27-29). A simplified scheme of well-

characterized cascades within these pathways is shown in Figure 4.     
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Figure 4. Potential ras-induced signaling cascades involved in glucocorticoid initiation of pituitary GH 
expression. PI3-K enzymes are intracellular lipid kinases that phosphorylate phosphatidylinositol 
phosphates (PIPs), creating docking sites for 3’-phosphoinositide-dependent kinase 1 (PDK1) and protein 
kinase B (PKB). PDK1 activates PKB by phosphorylation, and PKB can in turn phosphorylate multiple 
cellular targets. MAPK signaling cascades consist of three core kinases that act in a sequential manner to 
transmit extracellular signals to elicit cellular responses. Examples of well characterized components are 
shown. Ras interacts with and activates MAPK kinase kinases (Raf-1, MEKK2, MLK3), which in turn 
activate MAPK kinases through serine/threonine phosphorylation (MEK1/2, MKK3/6, MKK4/7). These in 
turn activate MAPKs (ERK1/2, p38MAPK, and JNK) through phosphorylation on tyrosine and threonine 
residues. Activated MAPKs phosphorylate both cytosolic and nuclear substrates, including kinases, 
transcription factors, and histones. Sites of action for pharmacological inhibitors used in studies 
investigating signaling mechanisms involved in CORT initiation of GH are shown. 
 

Avian embryo as a model for neuroendocrine system development 

 The development, control, and function of the neuroendocrine system are 

generally similar in mammals and birds. The embryonic/early post-hatch chicken offers 

unique advantages over mammalian systems for studying endocrine gland development. 

Accessibility of the embryo readily allows in ovo manipulation of individual embryos, 

and the chicken embryo develops in the absence of interactions with maternal endocrine 

systems, permitting manipulation of embryonic endocrine systems without maternal 
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interference (163). Importantly, fertilized chicken eggs are inexpensive and can be 

developmentally synchronized simply by placing them in an incubator, and chicken 

embryos are large in size relative to traditional rodent models at comparable 

developmental stages. This allows collection of adequate tissue for analysis and also 

facilitates in vitro investigation of intracellular mechanisms underlying important 

developmental endocrine processes in a defined cell culture system. In addition, the 

neuroectoderm and Rathke’s pouch are accessible to several techniques that could 

enhance understanding of the role that signaling molecules and transcription factors play 

in hypothalamic and pituitary development, including introduction of retroviral vectors 

and in ovo electroporation of expression plasmids and antisense oligonucleotides. The 

recent acquisition of a large expressed sequence tag collection and the completion of the 

genome sequence have confirmed the chicken’s status as an excellent developmental 

model and will allow it to be used in large-scale screens assessing gene function during 

embryonic development (164-167). 
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Rationale and Objectives 

 Although the importance of the neuroendocrine system in regulating several key 

vertebrate physiological processes is widely recognized, no comprehensive studies 

investigating gene expression changes during hypothalamic and pituitary development 

have been conducted. Understanding relationships among components of the five 

neuroendocrine axes should significantly enhance our comprehension of neuroendocrine 

system development. The essential nature of the somatropic axis in regulating post-natal 

growth is apparent from naturally occurring genetic mutations at several levels of the axis 

in mammals and birds. Despite this, molecular mechanisms underlying appearance of 

pituitary somatotrophs that secrete GH, a central component of this axis, are poorly 

understood. Glucocorticoid hormones have important developmental effects in several 

tissues, including the anterior pituitary gland. Understanding their role in initiating 

pituitary GH expression and investigating regulation of novel glucocorticoid targets in 

the anterior pituitary should provide insights into glucocorticoid action in other tissues. 

Therefore, this research project had three primary objectives:  

 

1. To characterize mRNA levels of hypothalamic releasing and release-

inhibiting factors, their pituitary receptors, and pituitary hormones in 

the major neuroendocrine axes during development; 

2. To investigate molecular mechanisms through which glucocorticoid 

hormones initiate GH expression during somatotroph development;  

3. To characterize glucocorticoid and pituitary regulation of a novel gene, 

ras dorsal-ventral anterior (ras-dva). 
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CHAPTER 2 

 

Ontogenic characterization of gene expression in the developing neuroendocrine system 

of the chick 
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Abstract 

The neuroendocrine system consists of five major hypothalamic-pituitary 

hormone axes that regulate several important metabolic processes, and it develops in all 

vertebrates during embryogenesis. Despite their importance, a comprehensive analysis of 

the ontogeny of all axes simultaneously has not been performed in any species. In order 

to define initiation and establishment of these five axes in the developing chicken, mRNA 

expression profiles of hypothalamic releasing and release-inhibiting factors, their 

pituitary receptors, and pituitary hormones were characterized during the second half of 

embryogenesis and the first week post-hatch in the chick. Axis initiation was defined as 

the age when pituitary hormone mRNA levels began to increase substantially, and 

establishment was defined as the age when mRNA for all components had reached 

maximum expression levels. The adrenocorticotropic axis appears established by e12, as 

there were no major increases in gene expression after that age. Hypothalamic TRH and 

pituitary TSH β-subunit (TSH-β) increased between e10 and e18, indicating 

establishment of the thyrotropic axis during this period. Pituitary GH substantially 

increased on e16, and hypothalamic GHRH did not increase until e20, indicating that 

somatotropic axis activity is established late in embryonic development. Lactotropic axis 

initiation is evident just prior to hatch, as pituitary PRL and vasoactive intestinal peptide 

receptor 1 (VIP-R1) did not increase until e18 and e20, respectively. Hypothalamic 

GnRH1 increased after hatch, and pituitary LH β-subunit (LH-β) expression remained 

low until d3, indicating the gonadotropic axis is not fully functional until after hatching. 

This study is the first to characterize major hypothalamic and pituitary components of all 
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five axes and considerably increases our understanding of neuroendocrine system 

establishment during development. 

Introduction 

 There are five major hypothalamic-pituitary axes, each consisting of releasing and 

inhibiting hormones produced by the hypothalamus that control pituitary hormone 

production by acting through receptors on specific cell types within the adenohypophysis. 

In corticotrophs, ACTH is produced through proteolytic cleavage of the POMC 

precursor. Thyrotrophs secrete TSH, one of the three pituitary glycoprotein hormones 

that are dimers of a common α-glycoprotein subunit (α-GSU) and a hormone-specific β-

subunit (TSH-β). The two remaining glycoprotein hormones, LH and FSH, are produced 

by gonadotrophs and consist of α-GSU and LH-β or FSH-β, respectively. Somatotrophs 

secrete GH, and PRL is produced in lactotrophs.  

 It has been well established in all vertebrate classes that the endocrine 

hypothalamus and pituitary gland develop concurrently during embryogenesis, and 

inductive signals from the neural tissue that will ultimately give rise to the hypothalamus 

and neurohypophysis are required for anterior pituitary development (53, 57, 77). 

Terminally differentiated, hormone-secreting cell types of the anterior pituitary do not 

appear simultaneously; rather, they arise in a temporally distinct manner during mid- to 

late-embryogenesis that is similar in mammals and birds (53, 77, 87, 95). In contrast, 

hypothalamic parvocellular neurons appear to be generated simultaneously early in the 

second half of mammalian embryonic development (64). Based on initiation of neuronal 

gene expression, however, it seems that there are differences in the timing of functional 

differentiation of these neuronal populations (34). Around the time that hypothalamic 
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neurons appear and terminally differentiated cell types begin to emerge in the anterior 

pituitary, the anatomical and functional linkage between the endocrine hypothalamus and 

the anterior pituitary occurs. In mammals and birds, the hypothalamo-hypophyseal portal 

vessels are intact and can be visualized by infusion with India ink, siliconized rubber, or, 

more recently, fluorescently-conjugated gelatin by mid- to late embryonic development 

(168-170). 

There have been a large number of studies examining developmental changes of a 

single or small number of hormones and/or receptors in multiple tissues [e.g. (171, 172)], 

ontogeny of hormone gene expression within one neuroendocrine tissue [e.g. (53, 87, 95, 

124)], or development of one or a few neuroendocrine axes [e.g. (126, 173)]. However, a 

thorough characterization of the establishment of all five hypothalamo-pituitary axes 

within a single in vivo system has not been conducted in any species. Therefore, the 

objective of this study was to characterize gene expression profiles of major components 

in each hypothalamic-pituitary axis, including hypophysiotropic factors, their receptors in 

the anterior pituitary gland, and pituitary hormones, during the second half of chicken 

embryogenesis and the first week of neonatal life.  

There is a high degree of similarity in development and control of the 

neuroendocrine axes between mammals and birds, and any information obtained 

regarding ontogenic changes in gene expression within the avian hypothalamus and 

pituitary should provide insight into mammalian development as well. The chicken 

embryo offers several advantages over traditional rodent models in examining this 

process, including accessibility, large size relative to rodent embryos of a comparable 

stage, and the ability to developmentally synchronize large numbers of embryos to allow 
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collection of adequate amounts of tissue for analysis. The ages used in this study were 

chosen based on previous observations that the functionally differentiated cell types arise 

within the chicken anterior pituitary during the latter half of embryogenesis and early 

post-hatch (51-54, 94, 96, 97, 103, 105). In addition, the portal vasculature connecting the 

hypothalamus and the anterior pituitary is present (170) and the earliest pituitary cell 

types to arise (corticotrophs and thyrotrophs) are thought to come under hypothalamic 

control around e12 (174). In the current experiment, hypothalami and anterior pituitary 

glands were collected every two days between e10 and d7. Changes in mRNA levels of 

the hypothalamic releasing and inhibiting factors, the receptors for these factors in the 

pituitary gland, and the pituitary hormones were examined by quantitative real-time 

reverse transcription polymerase chain reaction (qRT-PCR). The results presented here 

significantly increase our understanding of neuroendocrine system establishment during 

development.  

Materials and Methods 

Animals and tissue collection  

 Embryonated broiler strain chicken eggs used for the experiment were obtained 

from Allen’s Hatchery (Seaford, DE). On e0, eggs were placed in a 37.5 C humidified 

incubator and removed on the appropriate day of the 21-day incubation period or allowed 

to hatch. Chicks that were allowed to hatch were fed ad libitum a commercially available 

starter diet (Chick Start-N-Grow, CM-25-236007; Cooperative Milling, Gettysburg, PA) 

that was formulated to meet or exceed all known nutrient recommendations for poultry 

(175) and included the anti-coccidial drug Amprolium at 0.0125%. Hypothalami and 

anterior pituitary glands were collected from e10, e12, e14, e16, e18, e20, d1, d3, d5, and 
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d7 birds with the aid of a dissecting microscope. Two hypothalami from each age were 

pooled for each replicate sample. Pituitaries from 3 e10, 2 e12, 2 e14, and 2 e16 embryos 

were pooled for each replicate sample to yield sufficient total ribonucleic acid (RNA) 

from each developmental age, and one pituitary per replicate was used for the older ages. 

Four replicate samples were collected for each age (n=4). We did not determine sex of 

the embryonic birds used. After hatch, sex was determined and we collected two replicate 

samples of tissue from female birds and two replicate samples from male birds. Tissues 

were immediately frozen in liquid N2 and stored at -80 C until RNA extraction. All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Maryland. 

qRT-PCR 

Total RNA was isolated from hypothalami and anterior pituitary glands with 

RNeasy Midi or Mini kits (Qiagen, Valencia, CA), respectively, which included an on-

column deoxyribonclease (DNase) digestion step. Samples were quantified with Quant-iT 

RiboGreen RNA Quantitation Reagent (Invitrogen, Carlsbad, CA). Reverse transcription 

reactions (20 µl) were performed on 500 ng total RNA with SuperScript III (Invitrogen) 

and an oligo-dT primer (5’-CGGAATTCTTTTTTTTTTTTTTTTTTTTV-3’). As a 

control for genomic DNA contamination, a pool of total RNA was made and the reaction 

conducted as the others except reverse transcriptase was not added. Reactions were 

diluted to 100 µl prior to polymerase chain reaction (PCR) analysis. 

Levels of Pit-1 isoform mRNA, as well as hypothalamic and pituitary mRNA 

levels of the primary genes in each of the five major neuroendocrine axes, were 

quantified by qRT-PCR. Primers (Sigma-Aldrich, St. Louis, MO) used in the PCR
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Table 1. Primers used for qRT-PCR in the neuroendocrine axis development study. 

Gene ID1 Forward Primer (5’ → 3’) Reverse Primer (5’ → 3’) 
Adrenocorticotropic Axis 

CRH 25026 CATCTCCCTGGACCTGACTT CCATCAGTTTCCTGTTGCTG 
CRH-R1 00503 TTCTCATGACCAAGCTCCGAG AGGTGATTCCCAGCAAGGG 
CRH-R2 09078 CCTGGTGAAGATGATATTTCCCA CCATCTTTTCCTGGCAGCAG 

POMC 36767 CGCTACGGCGGCTTCA TCTTGTAGGCGCTTTTGACGAT 
 

Thyrotropic Axis 
TRH 13835 TGGATGACATCCTGCAGAGATC GGAAAGCCATTGTGGCAGA 

TRH-R 25942 GGCTCAACAAAACAAGACTGTGAA TCGATAGGGCATCCACAGAAA 
TSH-β 04024 ACTGCCTGGCCATCAACAC ACACGTTTTGAGACAGAGCACTTTT 
α-GSU 37154 CTTTCCCAGATGGAGAATTTCTCA ACCTGTTCTCCCCTAGCTTGC 

 

Somatotropic Axis 
GHRH 06098 AGGAGAAGGGGTGCACAA CTCCCAAGAAGTCCCTCAGT 

PACAP/GHRH 23977 CATAGACGGCATCTTCACGGA GCTACTCGGCGTCCTTTGTTT 
Ghrelin 13700 GCTCTGGCTGGCTCTAGTTTTTT TCTGTGCCTCGGCGATGTA 

SST 11903 TCCTGCGGAGCTGTGTTACAT CCGACTCCAGAGCTTCATTTTC 
GHRH-R 08374 CCTTGGCATTCGGCTTTATTTAG TCAGGAAACAGTAGAGGAGTGCTACA 

GHRH-R2 00361 ATCCCCAGACATCAGCAAAAACTA GGAAGAACGCAAACACCACATAG 
PACAP-R1 08391 ATTGGGACTGGGATCTTTCCA GACTTTCCAGCTCCTCCATTTTC 

GHRH-LPR 08424 CTTCTATATTGCTTCTCAAATGCGG CAGTCCCCTGTTTGTGTGTGAA 
GHS-R 14964 GAGGAAGAACATCGGTCCGAG AAGGCAACCAGCAGAGTATGAAA 
SSTR2 38508 CTGCTGGCTCCCCTTCTACA TGGGCACGATCAGGACAGA 

GH 00328 CACCTCAGACAGAGTGTTTGAGAAA CAGGTGGATGTCGAACTTATCGT 
 

Lactotropic Axis 
VIP 22132 TTCGAAAGCAAATGGCTGTG AGGTTCAAGAATTTCTGCTTCACC 

VIP-R1 08443 GGGAAAAATAAATGCCCAACCTAC CCTGCTCATGTTCTTCCTGTCC 
VIP-R2 10623 GATTGATTGTTGCAGTCCTGTATTG AATTGAGCTGTGCAGTCTGTAGTCTC 

PRL 20680 AGGAATGGAGAAAATAGTTGGGC TCATTTCCAGCATCACCAGAAT 
 

Gonadotropic Axis 
GnRH1 00366 ACACTGGTCTTATGGCCTGCA ATTCAGCCTTCTGCCCTTCTC 

GnIH 37842 GCATGGTATGTGCCTAGATGAACTAAT TCCTCTGCTTTTCCTCCAAGATA 
GnRH-R 33784 TCCGAATCATTTGGGAGATCAG TGGCAACAATCACAATGGTCA 
GnIH-R1 07077 GGGCATCTTCTGCATGCCTA AAAACAGAGGCGGAGACAGACA 
GnIH-R2 18978 AAGGAATCTCTGTCTCTGCCTCC GACAGCAGTTGAAGTGGTCAGCT 

FSH-β 19832 AGCAGTGGAAAGAGAAGAATGTGA TGTTTCATACACAACCTCCTTGAAG 
LH-β2  GGATGCCCCCAATGTATGG TCCCGCGTCCTGCAGTA 

 

Others 
Pit-1α 30398 ACCAATGTTGTCTCCACAGGACT GAGACTTGCTGATAGCATCTCTGG 
Pit-1β 24989 CAATGTTGTCTCCACAGTCCCA GACAGGAGGGCACAGAGTAGTGTAG 
Pit1-γ 36836 TCCTCATGCATTTTCTTACCAGTC TCTCTGGAGTTGCAGGCTTGA 

Total Pit-1  AAATCAATACTGTCCAAGTGGCTG GTGGTTCTGCGCTTCCTCTT 
GAPDH 37122 AGCCATTCCTCCACCTTTGAT AGTCCACAACACGGTTGCTGTAT 

PGK-1 12893 CTACATGCTGTGCGAAGTGGAA GCCAGGAAGAACCTTACCCTCTAG 
 

1ID is the transcript identification from Ensembl chicken genome assembly 
(http://www.ensembl.org/Gallus_gallus/Info/Index) and is preceded by ENSGALT000000 in all cases. 
 
2The sequence for LH-β is not on the assembled chicken genome and primers were designed based on the 
sequence from reference (176). 
 

reactions are listed in Table 1 and were designed with Primer Express Software (Applied 

Biosystems, Foster City, CA) to have a melting temperature (Tm) = 58 – 60 C (optimal 59 

C), %GC content = 40 – 60%, length = 18 – 30 nucleotides, and yield an amplicon length 
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= 100 – 150 bp (optimal 125 bp). Whenever possible, primers were also designed to span 

an intron within the 3’-end of the transcript. In the adrenocorticotropic axis, mRNA 

levels of hypothalamic CRH, pituitary CRH receptors 1 and 2 (CRH-R1 and CRH-R2), 

and pituitary POMC were measured. Hypothalamic TRH and pituitary TRH receptor 

(TRH-R), TSH-β, and α-GSU mRNA expression levels were measured in the thyrotropic 

axis. For the somatotropic axis, hypothalamic expression profiles of GHRH, pituitary 

adenylate cyclase-activating polypeptide/growth hormone-releasing hormone-like peptide 

(PACAP/GHRH-like), ghrelin, and SST mRNA were determined. Pituitary mRNA levels 

of GHRH-R, GHRH receptor 2 (GHRH-R2), PACAP receptor 1 (PACAP-R1), GHRH-

like peptide receptor (GHRH-LPR), growth hormone secretagogue receptor (GHS-R), 

SST receptor type 2 (SSTR2), and GH were also quantified. In the lactotropic axis, 

mRNA levels for hypothalamic VIP, pituitary VIP receptors 1 and 2 (VIP-R1 and VIP-

R2, respectively), and pituitary PRL were determined. Hypothalamic expression of 

GnRH1 and GnIH mRNA were determined for the gonadotropic axis, as were pituitary 

levels mRNAs for GnRH receptor (GnRH-R), GnIH receptors 1 and 2 (GnIH-R1 and 

GnIH-R2), FSH-β, and LH-β. For normalization purposes, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and phosphoglycerate kinase 1 (PGK1) were quantified in each 

sample. 

PCR reactions (15 µl) contained 1 µl diluted complementary deoxyribonucleic 

acid (cDNA), 400 nM each primer, PCR buffer (50 mM KCl, 10 mM Tris 

(tris(hydroxymethyl)aminomethane)-HCl, 0.1% Triton-X-100), 0.12 U/µl Taq 

Polymerase, 200 nM deoxynucleoside triphosphates (dNTPs), 40 nM fluorescein 

(Invitrogen), and SYBR Green I Nucleic Acid Gel Stain (Invitrogen) diluted 1:10,000 
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and were carried out in the MyiQ Single-Color Real-Time PCR Detection System (Bio-

Rad, Hercules, CA). The PCR cycling conditions were as follows: initial denaturation at 

95 C for 3 m followed by 40 cycles of 95 C for 15 s, 60 C for 30 s, and 72 C for 30 s. 

Dissociation curve analysis and gel electrophoresis were conducted to ensure that a single 

PCR product of appropriate size was amplified in each reverse transcription (RT) reaction 

and was absent from control reactions containing no enzyme.  

The amount of each target gene in the hypothalamus was normalized to the level 

of GAPDH mRNA, and each target gene in the pituitary gland was normalized to the 

level of PGK1 mRNA. The genes chosen for normalization in each tissue were based on 

the observation that GAPDH mRNA levels did not change between e10 and e17 in the 

hypothalamus but tended to decrease with age in the pituitary samples, and PGK1 mRNA 

levels were constant between e10 and e17 in the pituitary samples but tended to increase 

with age in the hypothalamus. The following equation was used for transformation and 

normalization of each target gene: mRNA level = (2ΔCt)target/(2ΔCt)GAPDH or PGK , where ΔCt 

= Ctno RT – Ctsample. The cycle threshold (Ct) value is the threshold cycle when the amount 

of amplified product reaches a fixed threshold for fluorescence due to binding of SYBR 

green to the double-stranded PCR product. The mRNA level of each target gene in each 

sample was then divided by the mean of the mRNA level in the age with the highest 

expression level for that gene, such that data are expressed relative to the age with the 

highest expression level (equal to 100%).  

Data analysis 

The data, expressed relative to the age with the highest expression level for a 

given target gene, were log2-transformed prior to statistical analysis. All data were 
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analyzed by one-way analysis of variance using the MIXED models procedure of SAS 

(SAS Institute, Cary, NC), and differences between groups were determined using the 

test of least significant difference (PDIFF; SAS). The data are presented as 

backtransformed least-squares mean (LSmean) and positive pooled standard error of the 

mean (SEM), which were calculated with the following equations: backtransformed 

LSmean = 2LSmean; backtransformed positive SEM =  2(LSmean + SEM) – 2(LSmean). 

Results 

Pit-1 Isoforms 

 Pit-1 is necessary for functional differentiation of thyrotrophs, somatotrophs, and 

lactotrophs. In the chicken, there are three Pit-1 isoforms, Pit-1α, Pit-1β, and Pit-1γ (136). 

These isoforms have a conserved C-terminal DNA binding domain but differ in the N-

terminal transactivation domain, allowing the use of isoform-specific primers within the 

5’-end of the transcript to distinguish each variant and the use of primers within the 

conserved 3’-end to quantify total Pit-1 levels. We measured ontogeny of the three Pit-1 

variants, as well as total levels of Pit-1 transcript (Figure 5). Each transcript variant was 

detectable on all ages examined, and each was expressed at higher levels during mid-

embryonic development than during late embryogenesis and early post-hatch. Both Pit1α 

and Pit1γ mRNA levels increased after e10 and were highest around e14 (P<0.05, n=4). 

Pit1β was highest on the earlier embryonic ages, decreased between e16 and e20, and 

remained low after hatch (P<0.05, n=4). The expression patterns for each isoform are 

consistent with the appearance and expansion of cell types in the Pit-1 lineage, which 

occurs between e10 and e17 in the chicken (51, 53, 103, 105, 106, 139). 



 44

 

 

 

 
Figure 5. Developmental ontogeny of Pit-1 isoforms in the chiken anterior pituitary gland. Total RNA 
isolated from embryonic day 10 through post-hatch day 7 pituitaries (n=4) was analyzed by qRT-PCR to 
measure mRNA expression of Pit-1α, Pit-1β, Pit-1γ, and total Pit-1. Levels of mRNA for each gene were 
normalized to levels of PGK1 mRNA. All genes are expressed relative to the age with the highest 
expression level (set to 100% prior to log2-transformation for statistical analysis). Values (backtransformed 
mean + pooled SEM) within each graph without a common letter are significantly different (P<0.05).  
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Adrenocorticotropic Axis 

In the neuroendocrine adrenocorticotropic axis, hypothalamic CRH stimulates 

production of pituitary ACTH from corticotrophs through CRH-R1 (177). Additionally, 

CRH can act as a TSH secretagogue in non-mammalian vertebrates, and this action is 

mediated by CRH-R2 localized on pituitary thyrotrophs (178). Levels of hypothalamic 

CRH mRNA increased between e10 and e12 (Figure 6; P<0.05, n=4) and remained 

constant throughout the remainder of the study. CRH-R2 mRNA increased to maximal 

levels between e10 and e12, but then decreased again between e16 and e20 before 

reaching intermediary levels after hatch (Figure 6; P<0.05, n=4). Neither CRH-R1 nor 

POMC mRNA changed significantly during the developmental period analyzed in this 

study (Figure 6; P>0.05, n=4), although both tended to increase between mid- and late-

embryonic development. The apparent increase in POMC mRNA is consistent with an 

earlier report demonstrating an increase in pituitary POMC between e10 and e17 in 

developing chickens (124). Based on these findings, initial adrenocorticotropic axis 

activity occurs before e10 and it appears to be established by e12, as the mRNA for all 

genes measured in this axis have reached their maximum level by this age.  

Thyrotropic Axis 

Synthesis and release of TSH from pituitary thyrotrophs in birds is controlled by 

several hypothalamic factors, including TRH acting through the TRH-R, CRH acting 

through the CRH-R2, and somatostatin acting through the SSTR2 (177, 178). 

Hypothalamic TRH mRNA remained low until e14, at which point levels increased 

through e20 and remained elevated for the duration of the ages examined 
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Figure 6. Gene expression profiles of components of the adrenocorticotropic axis in the developing 
neuroendocrine system of the chick. Total RNA samples isolated from embryonic day 10 through post-
hatch day 7 hypothalami and pituitaries (n=4 per tissue) were analyzed by qRT-PCR to measure expression 
of hypothalamic CRH, pituitary CRH-R1 and CRH-R2, and pituitary POMC mRNA levels. Hypothalamic 
genes are normalized to levels of GAPDH mRNA, and pituitary mRNA levels are normalized to levels of 
PGK1 mRNA. All genes are expressed relative to the age with the highest expression level for that gene 
(set to 100% prior to log2-transformation for statistical analysis). Values (backtransformed mean + pooled 
SEM) within each graph without a common letter are significantly different (P<0.05).  
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(Figure 7; P<0.05, n=4). Conversely, levels of TRH-R mRNA in the anterior pituitary 

gland increased to a maximum on e12, decreased to a minimum on e20, and remained 

low after hatch (Figure 7; P<0.05, n=4). As has been demonstrated previously in chickens 

(124, 126, 138, 139), we observed an increase in pituitary TSH-β mRNA between e10 

and e18 that was followed by a sharp decline in expression just prior to hatch (Figure 7; 

P<0.05, n=4). This pattern correlated with the increase in pituitary α-GSU mRNA that 

occurred between e10 and e18, as well as the decrease observed on e20 (Figure 7; 

P<0.05, n=4). In contrast to TSH-β mRNA levels, however, expression of α-GSU mRNA 

then increased steadily through d7 (Figure 7; P<0.05, n=4). Taken together, these results 

indicate that thyrotropic axis activity is initiated around e12, and apparent activity 

increases throughout embryogenesis until establishment occurs around e18. 

Somatotropic Axis 

 Production and release of GH from pituitary somatotrophs is under the control of 

both stimulatory and inhibitory hypothalamic factors working through their pituitary 

receptors. As in mammals, the primary stimulatory factor is GHRH and the main 

inhibitory factor is SST. In addition, GH is stimulated by TRH in chickens and, to a 

lesser extent, by PACAP/GHRH-like and ghrelin [reviewed in (40)]. Hypothalamic 

GHRH and PACAP/GHRH-like mRNA showed profiles similar to GH, with an increase 

in expression toward the end of embryonic development that persisted after hatch (Figure 

8A and B; P<0.05, n=4). Pituitary receptors for chicken GHRH include GHRH-R and the 

recently identified GHRH-R2 (179-181). While GHRH-R mRNA in the pituitary 

increased between e10 and e12 (Figure 8A; P<0.05, n=4), levels changed relatively little 

for the remainder of the ages investigated. On the other hand, pituitary GHRH-R2 mRNA  
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Figure 7. Developmental expression profiles for genes of the thyrotropic axis in the neuroendocrine system 
of the chick. Samples of total RNA isolated from embryonic day 10 through post-hatch day 7 hypothalami 
and pituitaries (n=4 per tissue) were analyzed by qRT-PCR to measure expression of hypothalamic TRH 
and pituitary TRH-R, TSH-β, and α-GSU mRNA. Hypothalamic genes are normalized to levels of GAPDH 
mRNA, and pituitary mRNA levels are normalized to levels of PGK1 mRNA. All genes are expressed 
relative to the age with the highest expression level for that gene (set to 100% prior to log2-transformation 
for statistical analysis). Values (backtransformed mean + pooled SEM) within each graph without a 
common letter are significantly different (P<0.05). 
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Figure 8. Ontogenic characterization of the somatotropic axis in the developing neuroendocrine system of 
the chick. Total RNA samples isolated from embryonic day 10 through post-hatch day 7 hypothalami and 
pituitaries (n=4 per tissue) were analyzed by qRT-PCR to measure mRNA expression of: (A) hypothalamic 
GHRH, and pituitary GHRH-R and GHRH-R2 levels; (B) hypothalamic PACAP/GHRH-like, and PACAP-
R1 and GHRH-LPR in the pituitary; (C) hypothalamic ghrelin and pituitary GHS-R; (D) hypothalamic SST 
and SSTR2 in the pituitary; and (E) pituitary GH. Hypothalamic genes are normalized to levels of GAPDH 
mRNA, and pituitary mRNA levels are normalized to levels of PGK1 mRNA. All genes are expressed 
relative to the age with the highest expression level for that gene (set to 100% prior to log2-transformation 
for statistical analysis). Values (backtransformed mean + pooled SEM) within each graph without a 
common letter are significantly different (P<0.05). 
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dramatically increased throughout embryonic development to a peak perihatch, and then 

decreased again by d7 (Figure 8A; P<0.05, n=4). In the chicken, hypothalamic PACAP 

and GHRH-like peptide can activate signaling events from GHRH-R, PACAP-R1, and 

GHRH-LPR (181) to potentially regulate GH expression. Expression of PACAP-R1 

mRNA exhibited a reciprocal expression pattern to PACAP/GHRH-like mRNA, 

decreasing during the final third of embryonic development and remaining low after 

hatch (Figure 8B; P<0.05, n=4). Levels of mRNA for GHRH-LPR increased between e10 

and e14 but then decreased again on e16 and remained at a similar level for the duration 

of the study (Figure 8B; P<0.05, n=4). Unlike GHRH and PACAP/GHRH-like mRNA, 

the other two hypothalamic regulators of pituitary GH, ghrelin and SST, did not fluctuate 

during the developmental ages examined (Figure 8C and D; P>0.05, n=4). However, 

levels of mRNA for pituitary receptors of these factors did change. Pituitary GHS-R 

mRNA increased between e10 and e14, remained elevated through e18, and decreased 

just prior to hatch on e20. After hatch, there was a slight decrease in GHS-R mRNA 

expression that occurred during the first week of life (Figure 8C; P<0.05, n=4). In 

chickens, SSTR2 is the primary SST receptor subtype responsible for mediating 

inhibitory effects of SST on GH release (182). Embryonic expression of SSTR2 mRNA 

remained low from e10 through e18 then increased on e20. Immediately following hatch, 

there was a decrease in SSTR2 mRNA expression on d1 before levels increased again on 

d3 and remained high through d7 (Figure 8D; P<0.05, n=4). Consistent with the 

appearance of pituitary somatotrophs in rodents and birds (101, 103), we found that 

pituitary GH mRNA levels increased significantly between e10 and e20, continued to 

further increase after hatch, and remained elevated throughout the first week of post-
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hatch life (Figure 8E; P<0.05, n=4). Based on expression patterns of pituitary GH, its 

major hypothalamic regulators, and their pituitary receptors, activity of the somatotropic 

axis begins to occur around e16 and increases until its establishment during early post-

hatch development. 

Lactotropic Axis 

 The neuroendocrine lactotropic axis in mammals and birds consists of 

hypothalamic VIP, which acts through VIP-R1 and VIP-R2 located on pituitary 

lactotrophs, to stimulate synthesis and release of PRL (183, 184). Hypothalamic VIP 

mRNA increased significantly on e14 and remained elevated through d7 (Figure 9; 

P<0.05, n=4). Pituitary VIP-R1 mRNA increased on e20 and remained highest after hatch 

(Figure 9; P<0.05, n=4), and, while VIP-R2 mRNA did not change significantly 

throughout the course of the study, levels tended to be highest between e14 and e20 

before decreasing after hatch. Consistent with the appearance of pituitary lactotrophs in 

the chicken around e17 (105, 124, 128), PRL mRNA levels increased dramatically 

between e16 and e20 and remained high during the first week of neonatal life (Figure 9; 

P<0.05, n=4). Although initiation of lactotropic axis activity begins to occur around e18, 

there are major increases in pituitary VIP-R1 and PRL mRNA perihatch, indicating that 

full lactotropic axis functionality does not occur until between e20 and d1.  

Gonadotropic Axis 

 The gonadotropins, FSH and LH, are positively regulated by GnRH1 and 

negatively regulated by GnIH. These hypothalamic factors act through GnRH-R, GnIH-

R1, and GnIH-R2 located on pituitary gonadotrophs to regulate LH and FSH synthesis 

and release (185). While pituitary GnRH-R mRNA did not change between e10 and d7,
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Figure 9. Gene expression profiles of components of the lactotropic axis in the developing neuroendocrine 
system of the chick. Total RNA samples isolated from embryonic day 10 through post-hatch day 7 
hypothalami and pituitaries (n=4 per tissue) were analyzed by qRT-PCR to measure expression of 
hypothalamic VIP, pituitary VIP-R1 and VIP-R2, and pituitary PRL mRNA levels. Hypothalamic genes are 
normalized to levels of GAPDH mRNA, and pituitary mRNA levels are normalized to levels of PGK1 
mRNA. All genes are expressed relative to the age with the highest expression level for that gene (set to 
100% prior to log2-transformation for statistical analysis). Values (backtransformed mean + pooled SEM) 
within each graph without a common letter are significantly different (P<0.05). 
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hypothalamic GnRH1 increased slightly between e10 and e20, further increased just after 

hatch, and remained high through the first week of post-hatch life (Figure 10A; P<0.05, 

n=4). Hypothalamic GnIH mRNA levels increased from e12 to a maximum on e14, 

decreased through the last week of incubation, and remained low post-hatch, with the 

exception of d3 (Figure 10B; P<0.05; n=4). Pituitary GnIH-R1 levels were highest 

between e10 and e16, decreased prior to hatch, and remained low through d7 (Figure 

10B; P<0.05, n=4). The developmental profile for GnIH-R2 was similar to that of GnIH-

R1, although the biggest decrease in expression was observed post-hatch, on d3 (Figure 

10B; P<0.05, n=4). Pituitary gonadotrophs are immunoreactive as early as e8 in chicken 

embryos (54, 97). Consistent with this, we were able to detect mRNA for both FSH-β and 

LH-β at all ages examined, though FSH-β mRNA did not change significantly through 

the course of the study (Figure 10C; P>0.05, n=4). LH-β mRNA remained relatively low 

with a slight increase throughout embryonic development, and further increased through 

the first week post-hatch to maximum levels on d7 (Figure 10C; P<0.05, n=4). Initiation 

of gonadotropic axis activity appears to have begun by mid-embryogenesis. However, the 

changes in hormone and receptor gene expression that occur between d1 and d7 indicate 

that apparent activity of this axis increases during the first week of post-hatch life, and it 

is not fully established until d7.   

Discussion 

 This investigation is the first comprehensive study of ontogenic expression 

profiles of the major genes within all primary neuroendocrine axes in a single in vivo 

system. The results, including overall initiation, establishment, and relative changes in 

mRNA expression for each axis, are summarized in Figure 11. Initiation of each axis was 
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Figure 10. Developmental expression patterns of genes in the gonadotropic axis in the neuroendocrine 
system of the chick. Samples of total RNA isolated from embryonic day 10 through post-hatch day 7 
hypothalami and pituitaries (n=4 for each tissue) were analyzed by qRT-PCR to measure mRNA 
expression of (A) hypothalamic GnRH1 and pituitary GnRH-R, (B) hypothalamic GnIH, and pituitary 
GnIH-R1 and GnIH-R2, and (C) pituitary levels of FSH-β and LH-β. Hypothalamic genes are normalized 
to levels of GAPDH mRNA, and pituitary mRNA levels are normalized to levels of PGK1 mRNA. All 
genes are expressed relative to the age with the highest expression level for that gene (set to 100% prior to 
log2-transformation for statistical analysis). Values (backtransformed mean + pooled SEM) within each 
graph without a common letter are significantly different from one another (P<0.05). 
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Figure 11. A summary of the results depicting ontogenic changes in hypothalamic and anterior pituitary 
gene expression during initiation and establishment of the five major neuroendocrine axes in the 
developing chick. This process occurs during the second half of embryogenesis (embryonic day (e) 10 
through e20) and early post-hatch (post-hatch day (d) 1 through d7). For each axis, the thick bar at the top 
depicts the age at which activity in the axis is initiated (light grey) and the age when activity is fully 
established (black). Initiation of each axis occurs when mRNA levels of the pituitary hormone begin to 
significantly and substantially increase, and each axis was determined to be established when mRNA levels 
of all major components have reached maximum expression levels. The thin bars underneath each axis 
represent the significant and substantial changes measured for hypothalamic releasing (green) and release-
inhibiting (red) factors; pituitary receptors for each of the releasing (green) and release-inhibiting (red) 
factors; and pituitary hormones (blue). The shade of each line indicates the predominant pattern of relative 
expression for each gene or genes within a given tissue, with the lightest color representing the lowest 
expression level and the darkest color representing the highest level of expression. 



 57

defined to occur when mRNA levels of the pituitary hormone began to significantly and 

substantially increase, and each axis was defined to be established when mRNA levels of 

all major components had reached maximum expression. It should be noted that 

production and secretion of pituitary hormones was not measured in this study, and the 

conclusions drawn from the data on neuroendocrine axis activity are based solely on 

changes in mRNA levels we observed for each component. Detectable levels of mRNA 

were measured for all genes we investigated at each age, indicating that hypothalamic 

and pituitary expression of the major neuroendocrine components has begun by mid-

embryogenesis in the chicken. 

 In combination with additional cell-type specific transcription factors, the anterior 

pituitary-specific transcription factor Pit-1 is essential for expression of pituitary 

hormones in thyrotrophs, somatotrophs, and lactotrophs (83). As in mammals (186), the 

avian pituitary gland contains multiple Pit-1 variants that are generated by alternative 

splicing and differing transcription start sites (136, 187, 188), and Pit-1α is the most 

abundant variant (188). We designed four sets of primers in order to distinguish each of 

the isoforms and quantify levels of total Pit-1 mRNA. Although a strict comparison 

between different mRNA variants in the current study is not possible because of potential 

differences in efficiency of the PCR reaction with each primer pair, the Ct values for Pit-

1α were closer to those of the highly-expressed housekeeping gene (PGK1) and, 

therefore, Pit-1α was most likely the most abundant isoform detected in this study. In the 

embryonic chicken anterior pituitary, Pit-1 mRNA is first detectable by RT-PCR 

beginning on e5 and expression is maintained throughout embryogenesis (106, 136). 

Consistent with this, we detected expression of all Pit-1 isoforms between e10 and d7. 
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The isoforms showed a similar ontogenic profile, increasing between e10 and e14 before 

decreasing toward the end of embryogenesis and remaining relatively low post-hatch 

(Figure 5). Pit-1 mRNA is increased in cultured chicken primary pituitary cells treated 

with TRH and is thought to play a role in mediating TRH-stimulated GH and TSH-β 

expression (189). The observed rise in Pit-1 mRNA between e10 and e14 may be partly 

due to the increase in hypothalamic releasing factors that regulate hormone production in 

cells of the Pit-1 lineage that also increased on e14 in the current study, including TRH, 

PACAP/GHRH-like, and VIP (Figures 7-9).  

Levels of Pit-1 mRNA and protein are greater in the fetal human pituitary gland 

than levels in the adult gland (190). We also found that Pit-1 mRNA levels are highest 

during mid-embryogenesis and lower during the first week of neonatal life. This 

expression pattern is likely reflective of the established role for mammalian Pit-1 in 

terminal differentiation and proliferation of thyrotrophs, lactotrophs, and somatotrophs 

(77), which occurs during vertebrate embryonic development. In chickens as well as 

mammals, the appearance of Pit-1 precedes expression of TSH-β, GH, and PRL (87, 106, 

190). We observed slightly different ontogenic expression patterns for each isoform, with 

Pit-1β being highest on e10 and Pit-1α and Pit-1γ increasing after e10 to the highest 

levels on e12 or e14, respectively. This may indicate differential involvement of the 

isoforms in appearance of different cell types within the Pit-1 lineage, suggesting that Pit-

1β may play a role in thyrotroph differentiation, while Pit-1α and Pit-1γ may play a role 

in somatotroph and/or lactotroph differentiation. A functional requirement for Pit-1 in 

thyrotroph, somatotroph, and lactotroph hormone expression has not been demonstrated 

in the avian adenohypophysis. However, the increase in Pit-1 mRNA during mid-
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embryogenesis is concurrent with (TSH-β) or just prior to (GH and PRL) the increase in 

hormone mRNA levels observed in this study and is consistent with a role for Pit-1 in 

functional differentiation of thyrotrophs, somatotrophs, and lactotrophs in the avian 

pituitary gland.   

The first pituitary hormone transcript that is expressed in the developing 

mammalian (87, 95) and avian (53, 191) pituitary is α-GSU. However, the earliest 

hormone-producing cell type to emerge in these species are ACTH-secreting 

corticotrophs (53, 87, 94-96). Based on the hypothalamic and pituitary mRNA ontogeny 

determined in this study, the adrenocorticoptropic axis is the first of the neuroendocrine 

axes to become established (Figure 11). Initial activity for this axis occurs before e10, 

and it is established by e12. Levels of mRNA for hypothalamic CRH, pituitary CRH-R1 

and CRH-R2, and pituitary POMC were readily detectable on e10, and they had all 

reached maximum levels by e12 (Figure 6). In this study, hypothalamic CRH mRNA 

increased between e10 and e12, after which no significant changes in expression 

occurred. This is consistent with a previous report that CRH mRNA in the hypothalamus 

changes very little after e14 in two breeds of broiler chickens (126). On the contrary, an 

earlier study reported a slight, yet significant, decrease in CRH mRNA between e18 and 

e20 in the chicken diencephalon (192), similar to the perinatal decrease in hypothalamic 

CRH mRNA observed in fetal rats and mice (193, 194).  

In the chicken pituitary gland, CRH-R1 is confined primarily to corticotrophs and 

is thought to mediate CRH-stimulated ACTH release, and CRH-R2 is expressed on 

thyrotrophs and is thought to mediate CRH-stimulated TSH release (177, 178). The 

decrease in CRH-R2 mRNA we observed during the last week of embryogenesis is 
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identical to that reported previously in chickens (138) and may be reflective of its role in 

mediating CRH-induced TSH release from pituitary thyrotrophs, as both CRH-R2 and 

TSH-β mRNA sharply declined in the pituitary between e18 and e20. Pituitary expression 

of CRH-R2 and TSH-β mRNA in this study is negatively correlated with circulating 

thyroid hormones, which dramatically increase in the developing chick around e20 (138, 

139), and further support a role for pituitary CRH-R2 in mediating thyrotropic effects of 

CRH rather than adrenocorticotropic effects. The apparent rise in CRH-R1 and POMC 

mRNA observed in this study between e12 and e14 is consistent with the idea that 

hypothalamic CRH, which increased significantly on e12, may be stimulating POMC 

expression on e14 via CRH-R1 located on corticotrophs. The subsequent increase in 

ACTH production will stimulate adrenal glucocorticoid production, accounting for the 

substantial increase in circulating CORT that occurs after e14 in developing chick 

embryos (10, 138, 140, 141).  

The ontogenic pattern we observed for hypothalamic CRH mRNA, pituitary 

CRH-R1 mRNA, and pituitary POMC mRNA support the hypothesis that adrenal CORT 

secretion comes under hypothalamic and pituitary regulation in the developing chick 

embryo around e14 (174) and feedback regulation begins to be established around e16. 

Mammalian neonates undergo a stress hyporesponsive period, and one mechanism 

partially responsible for this is thought to be a decrease in pituitary CRH-R1 toward the 

end of embryonic development (195). CRH-R1 is known to be decreased by both CRH 

and glucocorticoids (195-197) as a result of negative feedback to control the stress 

response. We observed a seeming decline in CRH-R1 mRNA between e16 and d1, which 

may reflect both the rise in circulating CORT that begins just prior to this time (10, 138, 
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140, 141) and the elevated hypothalamic CRH mRNA we observed on these ages. This 

provides further evidence that CRH-R1 mediates adrenocorticotropic effects of CRH and 

indicates that birds may undergo a perihatch stress hyporesponsive period similar to that 

seen in perinatal mammals.  

Pituitary thyrotrophs are the second hormone-secreting cell type to emerge during 

embryogenesis in mammals and birds (53, 87, 95, 96). Pituitary TSH-β mRNA 

substantially increased on e12 and rose steadily through e18, after which time a sharp 

decline occurred. This rise from mid- to late-embryogenesis, followed by a decrease just 

prior to hatch, has been reported previously (126, 138, 139) and may be a result of 

decreased pituitary sensitivity to TRH or CRH late in embryogenesis. This idea is 

supported by the current results that decreased levels of pituitary TRH-R and CRH-R2 

mRNA were observed on e18 and e20, despite the maintenance of elevated hypothalamic 

CRH and TRH mRNA during late embryogenesis. The decreased expression of TRH-R, 

CRH-R2, and TSH-β mRNA we observed also reflects the establishment of negative 

feedback from increased thyroid hormone levels in late embryogenesis (138, 139), and 

supports other data indicating that this process occurs in birds just prior to hatch (51, 

198). Hypothalamic TRH mRNA did not begin to substantially increase until the 3 days 

prior to hatch, and it remained elevated through d7. This is consistent with previous 

ontogenic reports of hypothalamic TRH mRNA (142) and protein (171, 199) in the 

chicken and is similar to the developmental pattern observed in the rat (200). Both TRH 

and CRH are capable of increasing TSH-β mRNA and stimulating TSH secretion in 

embryonic pituitary cells (139, 201). Thus, the increase in hypothalamic TRH toward the 

end of embryonic development, in addition to the observed rise in hypothalamic CRH, 
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appears to be driving the increase in TSH-β expression that occurred between e10 and 

e18. Based on the ontogenic profiles determined for components in the thyrotropic axis 

(Figure 7), its activity is initiated around e12 and apparent activity increases toward the 

end of embryonic development, but full establishment does not occur until between e18 

and e20 (Figure 11).  

As thyrotroph and gonadotroph populations expand in the developing mammalian 

and avian pituitary gland, α-GSU expression increases (53, 87, 95, 191) due to increasing 

levels of pituitary glycoproteins (TSH, FSH, and LH). In this study, we detected an 

increase in α-GSU mRNA between e10 and e18, a decrease perihatch, and then a 

subsequent increase through d7 (Figure 7). This pattern may be a manifestation of 

differential regulation of β-subunit gene expression in thyrotrophs and gonadotrophs, as 

TSH-β mRNA levels were highest just prior to hatching while LH-β mRNA levels 

increased after hatch between d3 and d7. 

 It is well established that pituitary somatotrophs become a significant cell 

population during the final third of embryonic development in both chickens and rodents, 

and pituitary GH mRNA and protein content increase considerably during this time and 

even further on the first day of neonatal life (95, 99, 101, 103, 106, 124, 126). Consistent 

with these reports, we detected a substantial increase in pituitary GH mRNA between e14 

and e16, suggesting that initiation of somatotropic axis activity occurs around this time. 

Pituitary mRNA levels for all hypothalamic GH releasing factor receptors we measured 

were upregulated by e14, just prior to the rise in pituitary GH. This supports initiation of 

somatotropic activity at this time and suggests that these releasing factor receptors 

contribute to somatotroph maturation. It has been shown that initial GH-containing cells 
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to appear in rat (120, 202) and chicken (103, 129, 130) are responsive to GHRH and 

TRH, which may be in part due to an increase in receptor level as reflected by the 

increase in secretagogue receptor mRNA we measured. The observation that mRNA for 

several critical hypothalamic regulators of GH and pituitary receptors did not reach 

maximum levels until e20 or d1, in combination with the large increase in pituitary GH 

mRNA that was measured just after hatch, indicates that somatotropic axis activity 

increases throughout embryonic development but does not fully mature until late-

embryogenesis or early post-hatch (Figures 8 and 11). It is known that hypothalamic 

GHRH is important for proper development and function of GH-producing cells in the 

fetal rat (203). Based on the rise in hypothalamic mRNA levels for GHRH, 

PACAP/GHRH-like, and TRH we observed during late embryogenesis, these factors 

likely also contribute to somatotropic axis maturation in the chicken and are responsible 

for the increase in pituitary GH mRNA observed at the same time.  

 Endogenous ligands for chicken GHRH-R were recently identified (204), as well 

as a novel receptor for GHRH (GHRH-R2) and the receptor for GHRH-like peptide 

(GHRH-LPR) (181). Both GHRH-R and GHRH-R2 are highly specific for chicken 

GHRH (181) and are developmentally regulated in the anterior pituitary gland during 

chicken embryogenesis. Developmental expression for GHRH-R has been reported 

previously (126, 172) and was similar to what was observed in this study. GHRH-R 

mRNA levels increased between e10 and e12 and remained elevated throughout the 

remainder of development. This study is the first to characterize ontogeny of GHRH-R2 

and GHRH-LPR. In contrast to mRNA levels for GHRH-R, GHRH-LPR, PACAP-R1, 

and GHS-R, which were shown to increase during mid-embryogenesis and then decrease 
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just prior to hatch, the greatest increase in GHRH-R2 did not occur until late embryonic 

development, and it remained elevated through d7. The differential patterns of pituitary 

receptor mRNA levels indicate that GHRH-R, GHRH-LPR, PACAP-R1, and GHS-R 

may play a role in initial somatotroph responsiveness to secretagogues, and GHRH-R2 

may be important in more mature cells and act as the primary mediator for the large 

increase that occurs in GH expression after hatch. In support of this, GHRH-LPR and 

PACAP-R1 were barely detected in pituitary glands of adult chickens (181). 

 In chickens, pituitary GH is negatively regulated by hypothalamic SST acting 

primarily through SSTR2 (182). While SST mRNA levels did not change in this study, 

there was a dramatic increase in pituitary mRNA levels of SSTR2 on e20, and these 

remained elevated through d7. This increase in pituitary SSTR2 mRNA just prior to hatch 

has been reported previously (138) and, in combination with the decline in mRNA levels 

for PACAP-R1, GHRH-LPR, GHS-R, and TRH-R observed around the same time, may 

be reflective of the onset of negative feedback in the somatotropic axis from circulating 

GH itself or GH-stimulated IGF-I, both of which are substantially elevated after hatch 

(142, 199). Gene expression for hypothalamic GHRH and pituitary GHRH receptors 

appears to be resistant to this negative feedback, as mRNA levels for these components 

were maintained at elevated levels through d7. This resistance may be conveyed, in part, 

by elevated circulating CORT and thyroid hormones in the chick embryo at this time (10, 

138-141). Thyroid hormones and glucocorticoids are capable of stimulating GHRH-R 

mRNA in the rat fetal pituitary gland (205). Both pituitary TSH-β [Figure 7 and (126, 

138, 139)]  and circulating TSH levels decrease just prior to hatch (199), and the rise in 

SSTR2 mRNA that occurred on e20 may reflect the inhibition of pituitary TSH synthesis 
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and release by SST (201), which is thought to be mediated by SSTR2 localized on 

pituitary thyrotrophs (178).  

 In this study, elevation of pituitary PRL mRNA began around e16, substantially 

increased on e18, continued to rise on e20, and remained elevated after hatch. This is 

consistent with the appearance of pituitary lactotrophs in the developing pituitary gland 

shortly after GH-producing cells, just prior to birth in rodents (100, 102) and hatch in 

birds (53, 98, 105, 106). Pituitary mRNA for PRL has previously been shown to increase 

just prior to and immediately following the end of embryogenesis in mammals and birds 

(53, 87, 95, 98, 101, 124, 128), correlating with the rise in circulating PRL that occurs at 

the same time (98). The considerable increase in pituitary PRL mRNA that occurred on 

e18 indicates that lactotropic axis activity is initiated around this age. However, 

maximum expression of VIP mRNA in the hypothalamus, as well as VIP-R1 and PRL 

mRNA in the pituitary, did not occur until e20, indicating that activity increases perihatch 

and establishment of this axis occurs between e20 and d3 (Figures 9 and 11). 

In both mammals and birds, VIP is a major PRL-releasing factor (183, 184). We 

observed an increase in hypothalamic VIP mRNA on e14, just prior to the age at which 

PRL mRNA began to increase in the pituitary, as well as an apparent increase in pituitary 

VIP-R2 mRNA at the same age and an increase in VIP-R1 mRNA toward the end of 

embryonic development. In addition to stimulating PRL release, VIP can trigger 

premature lactotroph differentiation in cultures of e13 primary chicken pituitary cells in 

vitro (105) and increase PRL gene expression through transcriptional and post-

transcriptional mechanisms (206). Therefore, cumulative increases in hypothalamic VIP 

and pituitary VIP-R1 and VIP-R2 may be contributing to the induction of PRL gene 
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expression in late embryonic development. Both VIP-R1 and VIP-R2 are potently 

activated by chicken VIP and, therefore, are thought to function as true VIP receptors 

(181). Interestingly, the same group measured high levels of VIP-R1 expression in adult 

chicken pituitary glands, but was barely able to detect VIP-R2 mRNA in the same 

samples. In our current study, VIP-R2 mRNA tended to increase on e14, remained 

elevated through e20, and then declined after hatch. On the contrary, VIP-R1 did not 

begin to increase until e20 and remained elevated after hatch. Taken together, the results 

of our study and those published by Wang et al. (181) indicate that VIP-R2 may function 

to initiate PRL gene expression during lactotroph functional differentiation, while VIP-

R1 acts as the primary receptor mediating VIP-induced PRL expression and release in 

late embryogenesis and after hatch. 

Immunoreactive gonadotrophs appear in the pituitary of chick embryos by e8 or 

e9, and increase in number toward the end of embryonic development (53, 54, 97, 191). 

Consistent with these reports, the ontogenic profiles we determined for components in the 

gonadotropic axis (Figure 10) indicate that activity is initiated prior to e10, based on the 

observation that both gonadotropin-β subunits are already expressed and FSH-β mRNA 

did not further increase during the period investigated. However, hypothalamic GnRH1 

mRNA and pituitary LH-β mRNA do not reach maximum levels until d5 or d7, 

respectively, which implies that apparent activity of the reproductive axis dramatically 

increases during the first week of neonatal life and establishment does not occur until 

well after hatching (Figure 11). It has been shown previously that FSH-β (53) and LH-β 

mRNA (54) in the pituitary are detectable from e4 in the chick, and that neither change 

much after e10, the earliest age we investigated. Similarly, we found no significant 
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increases in levels of either pituitary gonadotropin-β subunit mRNA during 

embryogenesis. Results from a recent study suggest that there is an increase in both LH-β 

and FSH-β mRNA between e11, e17, and d1 in female, but not male, chick embryos 

(173). We did not sex the birds used in our study until after hatch, at which time we used 

2 females and 2 males for each age. This sexual dimorphism may explain the lack of an 

increase in mRNA levels for these genes that we observed, and also the higher level of 

variability we obtained when analyzing genes in this axis as compared to the others. In 

fetal rodents, FSH-β and LH-β mRNA are detected at low levels a few days before birth, 

and their expression dramatically increases in the early postnatal pituitary (87, 95), 

supporting our conclusion that this axis is initiated during embryogenesis but is not fully 

developed until neonatal life. 

In mammals and birds, pituitary gonadotropins are under dual hypothalamic 

control, with synthesis and release stimulated and inhibited by GnRH1 and GnIH, 

respectively (207-210). We observed an increase in hypothalamic GnRH1 beginning 

around e14 that continued through post-hatch d7, which is consistent with the reported 

increase in GnRH1 brain content that occurs at the end of embryogenesis in rats and 

chickens (211, 212). An inverse ontogenic profile was measured for GnIH mRNA, which 

tended to decrease between late embryonic development and early post hatch. A similar  

pattern for GnIH mRNA was detected in quail perihatch (213). These changes clearly 

precede the increase in pituitary LH-β mRNA we observed, suggesting that both GnRH1 

and GnIH are important factors in determining the onset of gonadotropin synthesis.  

GnIH-R immunoreactive cells were recently found to colocalize with LH-β and 

FSH-β mRNA (214), indicating that it is directly mediating the effect of GnIH on LH and 
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FSH expression and secretion. It has also been shown that pituitary GnIH-R mRNA 

fluctuates during the reproductive cycle in the chicken and is higher in the pituitary of 

reproductively immature birds (214, 215). Further, stimulation of GnIH-R can decrease 

GnRH-induced signaling in a dose-dependent manner (215). The authors proposed that, 

during avian sexual maturation, a down-regulation of GnIH-R on pituitary gonadotrophs 

leads to an increased GnRH-R:GnIH-R ratio. This mechanism allows for a switch in 

pituitary sensitivity to hypothalamic factors from inhibitory to stimulatory, which in turn 

promotes synthesis and release of gonadotropins (185, 214, 215). A similar mechanism 

may be occurring during gonadotroph development and reproductive axis maturation. We 

did not detect any changes in pituitary GnRH-R mRNA during the current study. 

However, the decrease in GnIH-R1 mRNA that clearly occurred between mid-

embryogenesis and d7 would cause an increase in the GnRH-R:GnIH-R1 ratio during 

development and shift pituitary sensitivity from inhibitory to stimulatory. Likewise, 

increased GnRH1 mRNA, coupled with the trend for decreased GnIH mRNA, suggest 

hypothalamic influence also switches from inhibitory to stimulatory.  

In summary, we have clearly established the timing of initiation and maturation of 

gene expression within the five major hypothalamic-pituitary axes during neuroendocrine 

system development in the chick by quantifying gene expression for their major 

components. Initiation of all five axes occurs during embryonic development, but several 

are not fully established until after hatch. The first axis established is the 

adrenocorticotropic axis, followed by the thyrotropic, somatotropic, and lactotropic axes. 

Although initiation of gonadotropic activity appears to occur rather early in embryonic 

development, the reproductive axis is the final one to be fully established. These results 
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are the first comprehensive study to reveal ontogenic relationships among major 

components of each of the five neuroendocrine axes. 



 70

 

 

 

 

CHAPTER 3 

 

Mechanisms involved in glucocorticoid induction of pituitary growth hormone 

expression during embryonic development 
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Abstract 

Glucocorticoid hormones are involved in functional differentiation of 

somatotrophs, the GH-producing cells in the anterior pituitary gland. Glucocorticoid 

treatment prematurely induces GH expression in mammals and birds in a process that 

requires both protein synthesis and ras signaling. The objective of this study was to 

further investigate mechanisms through which glucocorticoids initiate GH expression 

during embryogenesis. Presently, we determined that stimulation of GH expression 

occured through transcriptional activation of the GH gene, rather than through 

enhancement of mRNA stability, and this process requires histone deacetylase (HDAC) 

activity. Further, through pharmacological inhibition, we identified the ERK1/2 pathway 

as a possible downstream ras-effector necessary for CORT stimulation of GH. Additional 

evidence indicated that CORT increased ERK1/2 activity in cultured embryonic pituitary 

cells after 3 h. However, we also found that chronic activation of ERK1/2 and p38MAPK 

activity with constitutively active mutants or stimulatory ligands reduced initiation of GH 

expression by CORT. Therefore, we conclude that the requirement for kinase signaling is 

transitory and that these pathways must be subsequently down-regulated during CORT 

treatment for maximal glucocorticoid induction of GH to occur. These results are the first 

in any species to demonstrate that ras- and ERK1/2-mediated transcriptional events 

requiring HDAC activity are involved in glucocorticoid induction of pituitary GH during 

embryonic development. 
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Introduction 

Somatotrophs are one of the most abundant cell types in the mature anterior 

pituitary gland, and these GH-producing cells functionally differentiate during the second 

half of mammalian and avian fetal and embryonic development, respectively. Expression 

of GH in rats and mice is first apparent during the 21-day gestation around e15, and the 

number of somatotrophs substantially increases between e18 and e19 (87, 95, 96, 100, 

101, 120-123). During the chick 21-day incubation period, somatotrophs first begin to 

appear on e12 and become a significant population in the anterior pituitary gland around 

e16 (44, 53, 94, 99, 103, 104, 106, 124-127).  

Glucocorticoids can prematurely induce somatotroph appearance during fetal rat 

and embryonic chick development both in vivo and in vitro (44, 121, 143-150, 152-155, 

159). In pregnant rats, treatment with dexamethasone increases somatotroph abundance 

in e17 or e18 fetuses (145, 150), and glucocorticoids can stimulate somatotroph 

differentiation in vitro (143, 144, 152). Similarly, treatment of chick embryos in ovo 

(148, 149) or chicken anterior pituitary cells in vitro with CORT, the primary circulating 

glucocorticoid in rodents and birds, increases the number of somatotrophs (147, 153-155, 

159). In addition to the stimulation of GH expression in mammalian and avian embryos 

as a result of treatment with exogenous glucocorticoids, evidence exists for involvement 

of endogenous glucocorticoids in functional differentiation of somatotrophs. A decrease 

in the level of circulating CORT by administration of metyrapone to pregnant rats leads 

to reduction in the number of fetal somatotrophs on e19 (150), and an increase in 

circulating CORT in chick embryos as a result of in ovo ACTH injection leads to 
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premature GH cell appearance (140). These prematurely induced somatotrophs are fully 

functional, as they are responsive to GH-secretagogues (129). 

Although the precise details of somatotroph recruitment by glucocorticoids are 

unknown, an indirect mechanism influencing the final stages of somatotroph 

differentiation appears involved. In both rats and chicks, glucocorticoid induction of GH 

mRNA does not occur until after several hours of treatment, and the induction is blocked 

by inhibitors of protein synthesis (151, 153). The absence of a classical GRE within the 

region of the chicken GH gene that is at least partially responsible for mediating 

induction by CORT (137, 216) further implies that glucocorticoids increase expression of 

an intermediary factor necessary for stimulation of GH. Induction of GH-producing cells 

by glucocorticoids in vivo is restricted to a narrow period of development, between e17-

e18 in fetal rats (150) and e11-e13 in embryonic chickens (149), and earlier or later 

administration of exogenous corticosteroids has no effect. Further, in chicken embryos, 

induction of GH expression by CORT is greater in the caudal lobe of the anterior 

pituitary, where somatotrophs normally reside (49, 50, 53, 128), as compared to the 

cephalic lobe (129, 149, 155). Taken together, this evidence suggests that circulating 

glucocorticoids are involved in the functional differentiation and enhancement of GH 

expression in cells already committed to the somatotroph lineage.  

We previously reported that both type I (MR) and type II (GR) receptors mediate 

glucocorticoid induction of somatotrophs, as antagonists to both are necessary to abolish 

the CORT response (156, 159). Investigation into possible signaling events involved in 

CORT regulation of GH expression during embryonic development revealed that 

pharmacological activation or inhibition of PKA and PKC does not affect glucocorticoid 
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induction of GH mRNA. However, ras signaling appears to play a role in the induction of 

GH mRNA, because the ras inhibitor manumycin A suppresses the response to CORT 

(153, 217). Beyond this, little is known regarding possible signaling mechanisms or the 

contribution of transcriptional and post-transcriptional events to glucocorticoid initiation 

of pituitary GH expression during embryogenesis in any species. Therefore, the objective 

of this study was to examine in detail mechanisms through which glucocorticoids induce 

GH expression during pituitary development, including determining whether the process 

involves transcriptional activation of the GH gene, an increase in GH mRNA stability, 

histone deacetylation, and known ras-induced signaling pathways.  

Materials and Methods 

Animals and pituitary dispersions 

 Broiler strain chicken embryos were incubated as described in the Materials and 

Methods section of Chapter 2, and pituitary glands were isolated using a dissecting 

microscope from embryos removed from the incubator on e11. For each replicate trial of 

a given experiment, anterior pituitaries from e11 chickens (50-60 embryos) or e15-e16 

mice (25-30 fetuses) were isolated and pooled. On average, an e11 chicken anterior 

pituitary gland yields 3.5x105 cells, while an anterior pituitary from an e15-e16 mouse 

yields only 7.5x104 cells. Anterior pituitary glands were dissociated into individual cells 

using trypsin digestion in combination with mechanical agitation as previously described 

(103). All procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Maryland. 
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Cell culture 

Unless otherwise stated, hormones and other chemicals were obtained from 

Sigma-Aldrich, and all cell culture reagents were obtained from Invitrogen. Cells were 

maintained in a 37.5 C, 5% CO2 atmosphere. With the exception of experiments 

involving transfection (see below), dispersed pituitary cells were allowed to attach 

overnight in poly-L-lysine coated cell culture plates (Corning Life Sciences, Lowell, 

MA) in serum-free Dulbecco’s modified Eagle’s medium:Ham’s nutrient mixture F12 

(DMEM/F12) supplemented with 0.1% bovine serum albumen (BSA), 5 μg/ml human 

insulin, 100 U/ml penicillin G, and 100 μg/ml streptomycin sulfate prior to addition of 

any inhibitors or treatment. Leghorn male hepatoma (LMH) cells [American Type 

Culture Collection (ATCC), Manassas, VA], a chicken hepatocellular carcinoma 

epithelial cell line, were maintained in Waymouth’s medium (Sigma) supplemented with 

10% fetal bovine serum (Equitech-Bio, Inc., Kerrville, TX) in 75-cm2 flasks (Corning 

Life Sciences) coated with 0.1% gelatin (Sigma). Human embryonic kidney-293 (HEK-

293) cells (ATCC) were maintained in 75-cm2 flasks in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum.  

The protein synthesis inhibitor cycloheximide (CHX) was dissolved in media and 

used at a final concentration of 10 µg/ml, a concentration that has previously been shown 

to block the increase in GH mRNA in response to CORT (153). Cells (1x106/well for 

chicken and 2.5x106/well for mouse; 24-well plate format) were pretreated with vehicle 

(media) or CHX for 1.5 h prior to CORT (1 nM) treatment for the indicated times. All 

remaining inhibitors were dissolved in dimethyl sulfoxide (DMSO) such that the final 

concentration of DMSO in cell culture wells was less than 1%. Actinomycin D (ActD), a 
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transcriptional inhibitor, was used at a final concentration of 5 µg/ml. The HDAC 

inhibitors, HC toxin and trichostatin A (TSA), were used at final concentrations of 100 

nM or 200 nM, respectively. Intracellular signaling proteins were inhibited using the 

following compounds: PI3-K with LY294002 (50 μM) and wortmannin (100 nM); 

ERK1/2 with U0126 (10 μM) and PD98059 (50 μM); p38MAPK with SB203580 (40 

μM); JNK with SP600125; and ras with manumycin A (1 μM). Concentrations for HC 

toxin, TSA, LY294002, wortmannin, U0126, PD98059, SB203580, and SP600125 are 

based on published reports (218-223). The concentration of manumycin A is the highest 

non-lethal dose determined in preliminary experiments (Malkiewicz and Porter, 

unpublished) and is lower than that used previously in chickens (153). Cells (1x106/well 

in a 24-well plate format) were pretreated with vehicle (DMSO) or inhibitors for 1 h prior 

to addition of CORT (1 nM) for the indicated times. In experiments where both GH 

mRNA and protein expression were examined, cells were harvested by retrypsinization 

and an aliquot (2.5x105 cells) was washed and re-plated for detection of intracellular GH 

protein by immunocytochemistry (ICC). To determine efficacy of U0126 and SB203580, 

cells (5x106/well in a 12-well format) were cultured in the absence or presence of CORT 

(1 nM), epidermal growth factor (EGF; 100 ng/ml), or anisomycin (10 µM) for 3 h, 

following pretreatment with DMSO or inhibitors for 1 h. 

To determine the effect of CORT treatment on GH mRNA stability during 

embryonic development, pituitary cells (1x106/dish) were cultured in 35-mm dishes (BD 

Biosciences, San Jose, CA) in the absence or presence of CORT (1 nM) for 6 h. 

Subsequently, cell culture medium in all dishes was replaced with medium containing 

ActD alone (Basal cells) or ActD plus CORT (CORT-treated cells), and cells were 
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collected at 0, 2, 4, 8, 12, 16, 20, and 24 h after medium replacement for total cellular 

RNA extraction and analysis by qRT-PCR. 

In experiments evaluating the effect of ERK1/2 and p38MAPK pathway 

activation on CORT induction of GH mRNA expression, cells (1x106/well in a 24-well 

plate format) were left untreated or treated with EGF (100 ng/ml) or anisomycin (100 

nM) for 30 m, after which time stimuli were washed out and cells were cultured in the 

absence or presence of CORT (1 nM) for another 6 h. Additional cells were left untreated 

or treated with CORT in the absence or presence of EGF or anisomycin for 6 h. Cells 

were also treated alone with EGF (100 ng/ml) or anisomycin at indicated doses for 6 h to 

assess the effect of longer treatment times on MAPK phosphorylation status. 

In experiments evaluating levels of phosphorylated MAPK and kinase activity 

under basal and CORT-treated conditions, cells (5x106/well in a 12-well plate format) 

were left untreated or treated with CORT (1 nM) for the final 5 m, 30 m, 3 h, or 6 h of 

culture. For each time point, medium was replaced in both basal and CORT-treated wells 

to control for any effect the media change might have on MAPK pathways. Additional 

cells were stimulated for 30 m with epidermal growth factor (EGF; 100 ng/ml) or 

anisomycin (10 µM), as positive controls for ERK1/2 and p38MAPK activation, 

respectively. 

Plasmids and transfection 

The reporter construct containing -1,727 to +48 of the chicken GH gene driving 

firefly luciferase (pGL3-1727) has previously been demonstrated to be responsive to 

dexamethasone in a rat pituitary cell line (137) and was kindly provided by Dr. F. Leung 

(University of Hong Kong). The empty reporter construct (pGL3-Basic) and the 
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normalization plasmid constitutively expressing renilla luciferase (pRL-SV40) used in 

promoter analysis studies were purchased from Promega (Madison, WI). 

Mouse constitutively active MAPK/ERK kinase (MEK) 1 (caMEK1) and 

dominant negative MEK 1 (dnMEK1) (224) were kindly provided by Dr. Natalie Ahn 

(University of Colorado, Boulder, CO) and Dr. Paul Shapiro (University of Maryland 

School of Pharmacy, Baltimore, MD). The caMEK1 mutant is missing the nuclear export 

signal at the N-terminus (ΔN32-51) and has negatively charged amino acids (glutamic 

and aspartic acids) substituted at the serine residues that are phosphorylated in the wild-

type enzyme (S218E/S222D). The dnMEK1 mutant is a catalytically inactive ATP-

binding mutant with a lysine to methionine substitution in the active site (K97M). Human 

dominant-negative ERK1 (dnERK1) and rat dominant negative ERK2 (dnERK2) were 

generously provided by Dr. Melanie Cobb (University of Texas Southwestern Medical 

Center, Dallas, TX). Both dnERK1 (K71R) and dnERK2 (K52R) are catalytically 

inactive ATP-binding mutants with a lysine to arginine mutation in the active site (225). 

Mouse constitutively active mitogen-activated protein kinase kinase (MKK) 3 and MKK6 

(caMKK3, caMKK6), dominant negative MKK3 and MKK6 (dnMKK3, dnMKK6), and 

dominant negative p38MAPKα and p38MAPKβ (dnp38α, dnp38β) were kindly provided 

by Dr. Jiahuia Han (Scripps Research Institute, La Jolla, CA). The caMKK3 and 

dnMKK3 mutants were created by replacing the serine residues that are phosphorylated 

in wild-type MKK3 with glutamic acid (S189E/S193E) or alanine (S189A/S193A), 

respectively. Similar mutations were made to create caMKK6 (S207E/S211E) and 

dnMKK6 (S207A/S211A) (226). Mutations in threonine and tyrosine residues that are 

phosphorylated in activated wild-type p38MAPK to alanine and phenylalanine, 
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respectively, were used to create the dnp38α (T180A/Y182F) and dnp38β 

(T188A/Y190F) mutants (227).  

Since mutant enzymes were obtained from multiple sources and were in several 

different expression vectors, each was non-directionally subcloned into the CMV-

promoter driven pCMV-Sport6.1 expression vector (Sport6.1; Invitrogen) to allow for a 

high level of constitutive expression. Primers (Sigma-Aldrich) used for PCR 

amplification of the coding region of each mutant off the original plasmid template are 

listed in Table 2 and include restriction enzyme sites at the 5’-end. Amplification was 

conducted using AccuPrime Pfx SuperMix (Invitrogen) according to the manufacture’s 

protocol, and reactions contained 600 nM each primer. PCR cycling parameters were as 

follows: 95 C for 5 m; 35 cycles of 95 C for 15 s, 53 C for 45 s, and 68 C for 2 m; and a 

final extension at 68 C for 5 m. The following restriction enzymes were used to create 

expression constructs in Sport6.1: HindIII was used to subclone caMEK1, dnMEK1, 

dnERK2, and dnp38α; EcoRI was used to subclone caMKK3, dnMKK3, and dnp38β; 

KpnI was used to subclone caMKK6 and dnMKK6; and MluI was used to subclone 

dnERK1. Clones were screened by PCR for directionality of the insert using Sport6.1 

SP6 or T7 primers (Table 2) in combination with forward and reverse cloning primers, 

and vectors from a clone containing the insert in the forward orientation were purified 

using the NucleoBond PC 500 plasmid purification kit (Macherey-Nagel, Inc., 

Bethlehem, PA) according to the manufacturer’s directions. All clones were sequenced in 

their entirety using Sport6.1, cloning, and real-time primers listed in Table 2. Sequencing 

was conducted at the University of Maryland’s Center for Biosystems Research DNA 
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Sequencing Facility with AmpliTaq-FS DNA polymerase and Big Dye terminators with 

dITP in an Applied Biosystems DNA Sequencer (Model 3100). Overlapping sequences 

were assembled into the full-length cDNA sequence using the ContigExpress feature of 

Vector NTI 9.0 software (Invitrogen). The AlignX tool of the same software was used for 

sequence comparisons to ensure that clones contained the appropriate mutations and had 

not gained any additional mutations during the subcloning process.   

All cells were transfected in supplement-free optimized modified Eagle’s minimal 

essential medium (Opti-MEM I) using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocol. In experiments investigating CORT induction of GH promoter 

activity in the absence or presence of MAPK pathway inhibitors, e11 pituitary cells 

(5x105/well in a 24-well format) were allowed to attach the cell culture plate for 2 h in 

supplement-free Opti-MEM I medium prior to transient transfection with Lipofectamine 

2000 according to the manufacturer’s protocol. Plating medium was then replaced with 

transfection medium, consisting of Opti-MEM I containing 1 µg pGL3-1727 or 1 µg 

pGL3-Basic together with 20 ng pRL-SV40 and 2 µl Lipofectamine. After 6 h, 

transfection medium was replaced with cell culture medium, and cells were allowed to 

recover for 18 hours. Subsequently, cells were pretreated for 1 h with DMSO or MAPK 

inhibitors prior to addition of CORT (100 nM) to appropriate wells for 20 h.  

In experiments evaluating effects of constitutively active mutants on GH promoter 

activity under basal and CORT-treated conditions, cells were plated and transfected as 

described above, with the following exceptions: cells received 1 µg Sport6.1, 1 µg 

caMEK1, or 0.5 µg MKK3 and 0.5 µg MKK6 in addition to reporter and normalization 
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plasmids; and the medium contained 4 µl Lipofectamine. After recovery, cells were left 

untreated or treated for 20 h with CORT (100 nM).  

In experiments determining effects of constitutively active mutants on GH mRNA 

expression, e11 pituitary cells (3x106/well in a 12-well format) were co-transfected for 6 

h with 1 µg golgi-targeted green-fluorescent protein (GFP) expression vector (228) and 

either 1 µg Sport6.1, 0.5 µg Sport6.1 and 0.5 µg caMEK1, or 0.5 µg caMKK3 and 0.5 µg 

caMKK6 in Opti-MEM I containing 4 µl Lipofectamine. To enhance transfection 

efficiency, cells were transfected in suspension for 2 h with gentle inversion every 30 m 

and then plated into 12-well culture plates for the remaining 4 h. GFP was used to assess 

transfection efficiency and as a marker to isolate transfected cells using flow cytometric 

cell sorting. Subsequently, transfection medium was replaced with culture medium, and 

cells were allowed to recover for 18 h prior to addition of CORT (1 nM) to appropriate 

wells for 20 h. Cells were collected by retrypsinization, washed one time with ice-cold 

phosphate-buffered saline (PBS; 2.67 mM KCl, 1.47 mM KH2PO4, 138 mM NaCl, 8.1 

mM Na2HPO4, pH 7.4), resuspended in 0.25 ml ice-cold PBS, and held on ice until flow 

cytometric analysis and sorting. 

When LMH and HEK-293 cells were used in transfection experiments, cells were 

recovered from culture flasks using retrypsinization in the presence of 0.03% 

ethylenediamine tetraacetic acid (EDTA) and re-plated (1x106/well) in their respective 

growth media in 12-well plates coated with 0.1% gelatin (Sigma). Cells were grown for 

approximately 24 h, until they reached ~90% confluence, after which time they were 

transfected with 2 µg Sport6.1, 1 µg Sport6.1 and 1 µg caMEK1, 1 µg Sport6.1 and 1 µg 

dnMEK1, 1 µg dnERK1 and 1 µg dnERK2, 1 µg caMKK3 and 1 µg caMKK6, 1 µg 
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dnMKK3 and 1 µg dnMKK6, or 1 µg dnp38α and 1 µg dnp38β in Opti-MEM I 

containing 4 µl Lipofectamine. After 6 h transfection, medium was replaced with serum-

free growth medium supplemented with 0.1% BSA, and cells were allowed to recover for 

24 h prior to treatment. To investigate ERK1/2 MAPK activity and functionality of 

ERK1/2 pathway mutants, cells were left untreated or stimulated with EGF (100 ng/ml) 

for 30 m. To investigate p38MAPK activity and functionality of pathway mutants, cells 

were left untreated or stimulated with anisomycin (100 nM) for 30 m. 

Analysis of promoter activity 

After removal of culture medium, cells were gently rinsed one time with PBS and 

lysed using 100 µl passive lysis buffer (Promega) with gentle agitation. Lysates were 

stored at -20 C until luciferase reporter activity was measured. Cell lysates (20 µl) were 

analyzed for firefly (reporter gene) and renilla (normalization gene) enzyme activities 

with the Dual-Luciferase Reporter Assay System (Promega) according to the 

manufacturer’s instructions. For each culture well, firefly luciferase activity was divided 

by renilla luciferase activity to normalize for variations in transfection efficiency. 

Promoter activity (mean + SEM) is expressed as fold induction over basal cells 

transfected with pGL3-Basic and, where appropriate, Sport6.1.  

Flow cytometry 

Successfully transfected cells in constitutively active ERK1/2 and p38MAPK 

pathway mutant overexpression studies were identified by flow cytometric detection of 

GFP (fluorescence detection 530/30 nm) at the University of Maryland, Department of 

Veterinary Medicine’s Flow Cytometry Core Facility. Cells were passed through a cell-

strainer cap containing 35 µm nylon mesh (BD Biosciences) to remove clumps, and GFP-
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positive cells were sorted using a high-speed benchtop flow cytometer and cell sorter 

(FACSAria II; BD Biosciences) equipped with a fixed-alignment 488 nm laser (Sapphire; 

Coherent, Inc., Santa Clara, CA). Data acquisition and analysis were performed with 

FACSDiva software (version 6.1.2; BD Biosciences). Sorting of the GFP-positive 

population (13.8 ± 0.9% of cells; n=3 replicate experiments) resulted in collection of 

approximately 50,000 GFP-positive cells per group. GFP-negative cells were also 

collected. GFP-positive cells were collected directly into 0.5 ml cell lysis buffer RLT of 

the RNeasy Mini Kit (Qiagen) containing no β-mercaptoethanol, vortexed several times, 

and held at room temperature approximately 1 h until all samples were collected. Final 

volumes were measured and adjusted using nuclease-free water or buffer RLT so the 

RLT:sample ratio was 3.5:1, β-mercaptoethanol was added to each sample (1 µl per 100 

µl RLT buffer),  and total RNA was extracted immediately, as described below. 

qRT-PCR 

Cells were harvested at the completion of each experiment by retrypsinization, 

immediately frozen in liquid nitrogen, and stored at -80 C until RNA extraction. Total 

RNA was extracted from cultured cells with the RNeasy Mini Kit (Qiagen) and included 

an on-column DNase digestion. Quantification of RNA, RT reactions using 500 ng total 

RNA, and real-time PCR reactions were all performed as described in the Materials and 

Methods section of Chapter 2, with the following exceptions. RT reactions were 

conducted using random primers (Invitrogen) in the experiment investigating effect of 

CORT treatment on GH mRNA stability. For the experiment involving detection of 

nascent GH mRNA transcript, RT reactions were conducted on 350 ng total RNA using 

random primers (Invitrogen) and were diluted to 70 µl prior to PCR analysis. In addition, 
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reactions containing no reverse transcriptase enzyme were conducted for each sample to 

ensure that the transcript detected in this experiment was truly nascent mRNA and not 

contaminating genomic DNA. The resulting PCR product was sequenced to confirm the 

presence of intronic sequence, which distinguished the product from mature GH mRNA 

species. RT reactions contained 25 ng total RNA and were left undiluted prior to PCR 

analysis for experiments involving overexpression of ERK1/2 and p38MAPK 

constitutively active mutants. For the experiment using cultured fetal mouse anterior 

pituitaries, RT reactions were also used undiluted for the PCR, and contained 100 ng total 

RNA.   

Primers (Table 2; Sigma-Aldrich) were designed as described in the methods of 

Chapter 2 to detect chicken nascent and mature GH mRNA, GHRH-R2 mRNA, FKBP5 

mRNA, beta-actin (ACTB) mRNA, and GAPDH mRNA; mouse GH mRNA, ACTB 

mRNA, and p38MAPKα mRNA; human MEK1 mRNA, ERK1 mRNA, MKK3 mRNA, 

MKK6 mRNA, and p38MAPKβ mRNA; and rat ERK2 mRNA. In all experiments except 

the one evaluating the effect of CORT treatment on GH mRNA stability, the amount of 

target mRNA was normalized to the amount of ACTB mRNA as previously described 

(229) using the following equation:  ΔCt = (Ctno RT – Ctsample)target – (Ctno RT – 

Ctsample)ACTB, where Ct is the cycle number when the amount of amplified product reaches 

a fixed threshold for fluorescence due to binding of SYBR green to the double-stranded 

PCR product. Data were then transformed using the equation 2ΔCt,  and the transformed 

value for each sample was divided by the mean of the transformed value for basal cells 

receiving no CORT, EGF, anisomycin, or inhibitors and, where appropriate, transfected 

with Sport6.1. Data for each gene (mean + SEM) are presented as fold induction over 
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basal mRNA levels for each experiment. In the experiment investigating the effect of 

CORT treatment on mRNA stability, mRNA levels of GH, ACTB, and GAPDH for each 

time point were expressed as a percentage of levels at time of ActD addition (0 h) under 

basal and CORT-treated conditions for each replicate (set to 100% for each condition). 

The half-life (t1/2; h) of each gene under basal and CORT-treated conditions was then 

calculated for each replicate by plotting log2-transformed percentage versus time after 

ActD addition (h) and calculating the slope of the resulting line with linear regression, 

which was then used to determine half-life for each mRNA species using the equation: 

t1/2 (h) = -1/slope. Data (mean + SEM) for this experiment are presented in two ways, as 

fold induction relative to levels in basal cells receiving no CORT for the first 6 h and as a 

percentage of levels at 0 h after ActD addition for each condition (set to 100% with no 

variance for both basal and CORT-treated conditions).   

Immunocytochemistry  

 After being gently washed one time with PBS, plated cells were fixed with 3.7% 

formaldehyde in PBS for 20 m. Cells were then washed with PBS (3x5 m), permeabilized 

with 0.1% Triton-X-100/0.1% Tween-20 in PBS for 8 m, and quenched with 0.3% H202 

in PBS for 5 m after washing twice with PBS. After blocking with 2% normal goat serum 

(NGS) in PBS for 1 h, cells were incubated overnight at 4 C with a previously validated 

rabbit anti-chicken GH primary antibody (1:4000 in 1% NGS) (103). Cells were then 

thoroughly washed with PBS and analyzed for intracellular GH protein content using a 

rabbit Avidin/Biotin-Complex kit followed by development with VIP peroxidase 

substrate according to the manufacturer’s protocols (Vector Laboratories, Burlingame, 
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CA). GH-containing cells were visualized with an inverted light microscope, and results 

(mean + SEM) expressed as a percentage of all pituitary cells present. 

Western blotting 

 To verify expression of constitutively active and dominant negative pathway 

mutants in chicken cells, LMH cells were left untransfected or transfected with Sport6.1, 

caMEK1, dnMEK1, dnERK1 and dnERK2, caMKK3 and caMKK6, dnMKK3 and 

dnMKK6, or dnp38MAPKα and dnp38MAPKβ. Following 24 h of culture, cells were 

placed on ice, gently rinsed one time with ice-cold PBS, and incubated on ice with 

rocking for 5 m in non-denaturing cell lysis buffer [20 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1 mM Na2EDTA, 1 mM ethylene glycol tetraacetic acid (EGTA), 1% Triton-X-

100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 µg/ml 

leupeptin, and 1 mM phenylmethylsulfonyl fluoride (PMSF; added immediately before 

use)]. Cells were scraped, transferred to a 1.7-ml microcentrifuge tube, and sonicated on 

ice (3x10 s with 30 s break in between each round) with the sonicator (Model W350; 

Heat Systems-Ultrasonics, Inc., Plainview, NY) on the continuous setting at output level 

4. Subsequently, samples were centrifuged at 14,000xg for 10 m at 4 C, and the 

supernatant was stored at -80 C until analysis. 

 Protein levels in each sample were quantified with the Micro BCA Protein Assay 

Kit (Pierce, Rockford, IL). Extracts (15 µg total cellular protein) were boiled in Laemmli 

sample buffer [60 mM Tris-HCl (pH 6.8), 100 mM dithiothreitol (DTT), 2% sodium 

dodecyl sulfate (SDS), 10% glycerol, 0.01% bromophenol blue] for 5 m, resolved on a 

12% gel by SDS- polyacrylamide gel electrophoresis (SDS-PAGE) with Tris-glycine 

buffer (25 mM Tris, 192 mM glycine) containing 0.1% SDS, and transferred to a 
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polyvinylidene fluoride (PVDF) membrane (Immobilon-P; Millipore, Billerica, MA) for 

30 m at 16 V and 1 h at 25 V using a Trans-Blot SD Semi-Dry Electrophoretic Transfer 

Cell (Bio-Rad) in Tris-glycine buffer containing 20% methanol. Membranes were 

washed for 15 m with Tris-buffered saline containing Tween-20 (TBS/T; 20 mM Tris-

HCl, 136 mM NaCl, 0.1% Tween-20, pH 7.6), blocked for 2 h at room temperature in 

TBS/T containing 5% nonfat dry milk, and incubated overnight at 4 C with rabbit 

polyclonal antibodies (1:1000; Cell Signaling Technology, Inc.) against MEK1, ERK1/2, 

MKK3, MKK6, p38MAPKα/β/γ, or a mouse monoclonal antibody (1:500; Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA) against α-tubulin diluted in TBS/T containing 1% 

nonfat dry milk. Following thorough washing with TBS/T, membranes were incubated 

with horseradish peroxidase-conjugated anti-rabbit IgG (1:2000; Cell Signaling 

Technologies) or anti-mouse IgG (1:5000; Amersham Biosciences; Piscataway, NJ) 

diluted in TBS/T containing 5% nonfat milk. Immunoreactive bands were detected using 

enhanced chemiluminescent detection reagents (LumiGLO; Cell Signaling Technologies, 

Inc.) and the ChemiDoc XRS system equipped with Quantity One software (version 

4.5.2; Bio-Rad). 

 Samples used for determining efficacy of SB203580 were analyzed for levels of 

endogenous phosphorylated activating transcription factor 2 (p-ATF2), a downstream 

target of p38MAPK, as described above, except total cellular protein (10 µg) was 

resolved using SDS-PAGE on an 8% gel, and the membrane was incubated with a rabbit 

polyclonal antibody (1:1000) against p-ATF2 (Thr71; Cell Signaling Technology, Inc.). 

Following detection of p-ATF2, membranes were stripped for 30 m at 55 C in buffer 

containing 62.5 mM Tris-HCl (pH 6.8), 100 mM β-mercaptoethanol, and 2% SDS and re-
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probed for α-tubulin as described above. Bands were quantified using Quantity One 

Software (Bio-Rad) and data [(mean + standard deviation (SD)] are presented as average 

band intensity for p-ATF2 divided by average band intensity for α-tubulin. 

MAPK enzyme activity assays  

 Cells were lysed and quantified as described above, and protein extracts (80 µg 

for e11 primary cells and 100 µg for cell lines) were analyzed for MAPK enzyme 

activities using nonradioactive p44/42 MAP Kinase (Thr202/Tyr204) and p38 MAP 

Kinase (Thr180/Tyr182) Assay Kits (Cell Signaling Technology, Inc.). Briefly, total 

cellular protein was immunoprecipitated overnight by gentle rotation at 4 C with 

immobilized monoclonal antibodies specific for phosphorylated ERK1/2 (p-ERK1/2 

;1:15) or phosphorylated p38MAPK (p-p38MAPK; 1:10). Immunoprecipitates were 

washed twice with cell lysis buffer and twice with kinase assay buffer [25 mM Tris-HCl 

(pH 7.5), 10 mM MgCl2, 2 mM DTT, 5 mM β-glycerophosphate, and 0.1 mM sodium 

orthovanadate] prior to incubation for 1.5 h at 30 C in kinase assay buffer supplemented 

with 200 µM ATP and 1 µg of the appropriate substrate. During kinase assay incubation, 

samples were flicked gently every 15-20 m to prevent beads from settling. Substrates 

used in the assays are fusion proteins of well-established downstream targets for ERK1/2 

activity [(Ets-like gene 1 (Elk-1)] and p38MAPK activity (ATF2). Reactions were stored 

at -20 C overnight until analyzed for levels of phosphorylated Elk-1 (p-Elk1) and p-

ATF2. Samples were resolved on a 12% gel by SDS-PAGE and levels of p-Elk1 or p-

ATF2 were detected by western blotting (1:1000 primary antibody dilution) as described 

above. Where indicated, bands were quantified using Quantity One Software (Bio-Rad) 

and data (mean + SD) are presented as average band intensity.  
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Detection of phosphorylated MAPKs 

 Cells were lysed and total cellular protein was quantified as described above. 

Protein levels in each sample were adjusted to 0.5 µg/µl with cell lysis buffer prior to 

analysis using PathScan Phospho-p44/42 MAPK (Thr202/Tyr204) and PathScan 

Phospho-p38 MAPK (Thr180/Tyr182) Sandwich ELISA Kits (Cell Signaling 

Technology, Inc., Danvers, MA) to assess levels of p-ERK1/2 and p-p38MAPK. In order 

to express results in a semi-quantitative manner, standard curves were generated for each 

assay by analyzing two-fold dilutions of LMH cell lysates stimulated with EGF or 

sodium arsenite, a strong inducer of p38MAPK activity in these cells (230). Data (mean + 

SEM) are expressed as equivalents p-ERK1/2 or p-p38MAPK per mg protein, where one 

equivalent is equal to the amount of p-ERK1/2 or p-p38MAPK in 1 µg total cellular 

protein extracted from LMH cells stimulated with EGF or sodium arsenite, respectively.  

Data analysis 

Promoter activity and qRT-PCR data (expressed as fold induction over basal cells 

receiving vehicle and transfected with empty reporter and expression vectors, as 

appropriate), were log2-transformed prior to statistical analysis. To correct for non-

homogeneity of variance in comparisons of somatotroph percentages, the ICC percentage 

data were transformed by taking the log10 of the arcsin of the percentage prior to 

statistical analysis. All data were analyzed using SAS software (SAS Institute). Data were 

analyzed using the t-test procedure (two-tailed) for the experiment evaluating mRNA 

half-life, and all remaining data were analyzed by analysis of variance using the MIXED 

models procedure, with differences between groups determined by the test of least 

significant difference (PDIFF). 
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Results 

Glucocorticoids initiate GH gene transcription during embryogenesis 

 Although it is well-established that corticosteroid treatment elevates GH mRNA 

levels in the embryonic anterior pituitary gland (44, 121, 129, 145, 149-153, 155, 156, 

159), it is not known whether this is due to an increase in gene transcription, enhanced 

mRNA stability, or both. The transcriptional inhibitor ActD completely abolished the rise 

in GH mRNA resulting from CORT treatment of e11 anterior pituitary cells (Figure 12A; 

P<0.05, n=3 replicate trials), indicating this increase requires active gene transcription. 

The observation that CORT stimulated promoter activity from a reporter construct driven 

by 1,727 bp of the chicken GH gene 5’-flanking region (pGL3-1727; Figure 12B; 

P<0.05, n=3 replicate trials) suggests that at least part of the response is a result of an 

increase in transcription of the GH gene itself. In order to definitively confirm that CORT 

increases transcription of GH in embryonic pituitary cells, we designed primers to span 

exon 3 of the GH gene that would partially bind intronic sequence and, therefore, only 

amplify newly synthesized transcript that had not yet been spliced. The increase in 

nascent GH mRNA resulting from treatment of e11 pituitary cells with CORT is similar 

in magnitude to the observed increase in spliced, mature GH mRNA (Figure 12C; n=3 

replicate trials) and clearly indicates that glucocorticoids initiate transcription of GH 

during embryogenesis. In order to ensure that the detected nascent transcript was not 

actually contaminating genomic DNA, we performed control RT reactions for each 

sample that did not contain any reverse transcriptase enzyme. Amplified PCR product of 

the predicted size was detected only in samples from reactions containing enzyme (Figure 

12D), and the presence of intronic sequence was confirmed in the product.  
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Figure 12. Glucocorticoids induce pituitary GH mRNA during chicken embryonic development through 
transcriptional activation of the GH gene. (A) After pretreatment for 1 h with DMSO or the transcriptional 
inhibitor ActD (5 µg/ml), e11 pituitary cells (n=3) were cultured in the absence or presence of CORT (1 
nm) and DMSO or ActD for 6 h. Levels of GH mRNA, analyzed by qRT-PCR and normalized to ACTB 
mRNA levels, are expressed as fold induction over levels in basal cells receiving DMSO. (B) Anterior 
pituitary cells (n=3) from e11 chickens were cultured in the absence or presence of CORT (100 nM) for 20 
h following transfection with a firefly luciferase reporter construct containing 1,727 bp of the chicken GH 
5’-flanking region (pGL3-1727) or an empty reporter vector (pGL3-Basic) in combination with a renilla 
luciferase expression construct. Promoter activity in each sample was determined by dividing firefly 
luciferase activity by renilla luciferase activity and is expressed as fold induction over basal cells 
transfected with pGL3-Basic. (C) E11 anterior pituitary cells (n=3) were cultured in the absence or 
presence of CORT (1 nM) for 6 h. Levels of GH mRNA, analyzed by qRT-PCR and normalized to ACTB 
mRNA levels, are expressed as fold induction over levels in basal cells. Nascent mRNA was distinguished 
from mature, spliced mRNA through the use of primers that span the intron/exon junctions on either side of 
exon 3 of the GH transcript. (D) An agarose gel picture depicting nascent GH mRNA PCR product in each 
of the 3 basal and CORT treated samples from reactions containing reverse transcriptase (RT+) or reactions 
without reverse transcriptase (RT-), which served as a control for genomic DNA contamination. (A,B) 
Values (mean + SEM) without a common letter are statistically different (P<0.05). (C) Values (mean + 
SEM) denoted with an asterisk (*) indicate a significant increase in GH nascent or mature mRNA levels 
over basal cells (P<0.05).  
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 An increase in GH transcription does not preclude the possibility that 

glucocorticoids may also increase GH mRNA stability. In order to evaluate this, anterior 

pituitary cells (n=4 replicate trials) were cultured in the absence and presence of CORT 

for 6 h prior to addition of ActD to inhibit new gene transcription for various time points. 

As expected, treatment with CORT increased GH mRNA levels (Figure 13A; P<0.05) 

but did not affect levels of ACTB (Figure 13B) or GAPDH (data not shown) mRNA. The 

half-life (t1/2) was determined for each gene as a measure of mRNA stability (Figure 13 

and data not shown). For GH mRNA, half-lives under basal and CORT-treated conditions 

did not differ (P=0.36) and were t1/2=14.9±6.2 h and t1/2=9.7±2.3 h, respectively, 

indicating that stabilizing mRNA is not a mechanism by which CORT enhances GH 

expression. Likewise, half-lives for ACTB mRNA (Basal t1/2=10.0±0.9, CORT 

t1/2=9.5±0.4 h; P=0.62) and GAPDH mRNA (Basal t1/2=29.7±6.9, CORT t1/2=26.3±3.9 h; 

P=0.74) did not differ. Taken together, these results indicate that glucocorticoids initiate 

GH expression in differentiating somatotrophs primarily through stimulating transcription 

of the GH gene rather than enhancing GH mRNA stability. 

Glucocorticoid induction of GH requires ongoing protein synthesis and HDAC activity 

 Stimulation of pituitary GH mRNA by dexamethasone in fetal rat pituitaries 

requires at least 8 h exposure and is suppressed by the protein synthesis inhibitor 

puromycin (151). Similarly, CORT induction of GH mRNA during chicken embryonic 

development, as assessed by an in situ hybridization plate assay, requires continual 

protein synthesis and long-term exposure (153). In order to confirm these results using an 

alternative technique and extend them to another rodent model, anterior pituitary cells 

from e11 chickens and e15-e16 fetal mice were left untreated or treated with CORT in 



 94

 

 

 

 

 

Figure 13. Glucocorticoids do not stimulate pituitary GH expression by increasing GH mRNA stability. 
E11 chicken anterior pituitary cells (n=4) were left untreated or treated with CORT (1 nM) for 6 h, after 
which time ActD (5 µg/ml) was added to the culture. (A) GH and (B) ACTB mRNA levels were measured 
using qRT-PCR after 6 h of CORT treatment (left panel and time 0 h in right panel) and in cells collected at 
2, 4, 8, 12, 16, 20, and 24 h after ActD D addition. In the left panel, mRNA levels are expressed as fold 
induction relative to levels in basal cells receiving no CORT for the first 6 h of culture prior to addition of 
ActD. In the right panel, levels of mRNA in basal and CORT-treated cells are expressed relative to levels at 
0 h after ActD addition for each condition (equivalent to the respective levels depicted in the left panel). 
Values (mean + SEM) without a common letter are statistically different (P<0.05). 
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the absence or presence of the protein synthesis inhibitor CHX (Figure 14). In mouse 

cells, no increase in GH mRNA was detected after 1.5 h (Figure 14B) or 6 h (data not 

shown) CORT treatment (P>0.05). Consistent with previous data (151, 153), the dramatic 

increase in GH mRNA levels observed in both species as a result of CORT treatment (6h, 

chicken; 24 h, mouse) was suppressed or completely abolished by inclusion of CHX 

(P<0.05, n=3 replicate trials).  

One mechanism by which glucocorticoids may initiate pituitary GH expression 

during embryogenesis is through transcriptional de-repression. This phenomenon often 

involves an increase in histone acetylation state around transcriptionally active genes 

through removal of HDAC proteins from their regulatory region, and may also involve a 

decrease in expression of repressor proteins through recruitment of HDAC enzymes to 

their regulatory regions (231, 232). We evaluated involvement of HDAC activity in 

CORT induction of GH expression by treating e11 pituitary cells (n=4 replicate trials) 

with or without CORT in the absence or presence of two HDAC inhibitors, HC toxin and 

TSA, for 16 h. HDAC inhibition did not affect basal GH mRNA levels, but induction of 

GH mRNA and protein was completely abolished in the presence of either inhibitor 

(Figure 15A and B; P<0.05). Recently, it has been shown that hyperacetylated GR has 

reduced transcriptional activity in certain contexts (19), and that HDAC activity is 

necessary for proper assembly of the GR chaperone complex and optimal signaling 

through the receptor (233, 234). To verify that these HDAC inhibitors were not globally 

decreasing GR transcriptional activity, we analyzed mRNA levels of two additional genes 

which are known to be directly upregulated by CORT, FKBP5 (235, 236) and GHRH-R2 

(Ellestad and Porter, unpublished observation). Both genes were still induced by CORT
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Figure 14. Glucocorticoid induction of pituitary GH mRNA is suppressed by the protein synthesis inhibitor 
cycloheximide in both (A) embryonic chickens and (B) fetal mice. Anterior pituitary cells (n=3) from (A) 
e11 chickens or (B) e15-e16 mice were cultured in the absence or presence of CORT (1 nM) with or 
without CHX (10 µg/ml) for the indicated times. Cells receiving CHX were pretreated for 1.5 h prior to 
addition of CORT. Levels of GH mRNA were determined using qRT-PCR and normalized to ACTB 
mRNA levels. GH mRNA levels are expressed as fold induction over basal cells receiving no CHX for that 
time point. Values (mean + SEM) without a common letter are statistically different (P<0.05). 

 



 97

 

 

Figure 15. Glucocorticoid upregulation of GH expression during chicken embryonic development is 
blocked by the histone deacetylase inhibitors HC toxin and TSA. E11 anterior pituitary cells (n=4) were 
pretreated for 1 h with DMSO, HC toxin (100 nM), or TSA (200 nM) prior to addition of no treatment or 
CORT (1 nM) for 16 h. (A-C) Levels of GH, FKBP5, and GHRH-R2 mRNA were measured by qRT-PCR 
and are expressed as fold induction over basal cells receiving DMSO. Levels of mRNA for each gene were 
normalized to ACTB mRNA levels. (D) The number of GH-positive cells was determined with ICC in 
fixed cells. Values (mean + SEM) without a common letter are significantly different (P<0.05). 



 98

in the presence of HC toxin, although basal levels of each were increased two- to three-

fold by HC toxin (Figure 15C and D; P<0.05). Treatment of the cells with TSA alone led 

to a further increase in FKBP5 and GHRH-R2 expression, such that mRNA levels in 

basal and CORT-treated cells were not different in the presence of this HDAC inhibitor 

(Figure 15C and D; P>0.05). Nonetheless, it appears that CORT induction of GH 

expression does require HDAC activity, and our findings with HC toxin indicate that this 

effect is not due to an overall repression of GR signaling.  

Ras and ERK1/2 signaling are necessary for glucocorticoid initiation of GH expression  

Previous results from our laboratory implicate involvement of ras or a ras-like 

protein in the mechanism by which CORT induces GH mRNA during somatotroph 

differentiation (153, 217). Pharmacological inhibitors of several known ras-induced 

signaling cascades were used to evaluate which, if any, of these pathways are involved in 

initiating GH expression in somatotrophs. Anterior pituitary cells (n=4 replicate trials) 

from e11 chickens were cultured for 12 h in the presence or absence of CORT and 

DMSO (vehicle) or inhibitors of ras (manumycin A), PI3-K (LY294002 and 

wortmannin), MEK1/2 (U0126 and PD98059), p38MAPK (SB203580), and JNK 

(SP600125). As expected from previous results (129, 143, 144, 152, 153, 155-157, 159, 

217), CORT treatment increased GH mRNA levels (Figure 16A and B; P<0.05) and the 

abundance of GH protein-containing cells (Figure 16C and D; P<0.05). Inhibition of ras 

using manumycin A abolished the increase in percentage of GH-containing cells resulting 

from stimulation with CORT (Figure 16C; P<0.0.5), and it slightly reduced the increase 

in GH mRNA levels, although this effect was not significant (Figure 16A; P>0.05). 

Despite the fact that the two PI3-K inhibitors yielded differing results in their effect on 
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intracellular GH protein levels [LY294002 significantly suppressed CORT induction of 

somatotrophs (Figure 16C; P<0.05) while wortmannin had no effect], neither influenced 

induction of GH mRNA by CORT (Figure 16A; P>0.05). Likewise, the two MEK1/2 

inhibitors had differential effects, particularly in their ability to interfere with CORT 

stimulation of GH mRNA. Levels of GH mRNA in the presence of U0126 were lower 

than those in the presence of CORT alone (Figure 16A; P<0.05), but inclusion of 

PD98059 did not suppress stimulation of GH mRNA. Both MEK1/2 inhibitors also 

partially repressed the increase in percentage of GH-containing cells that resulted from 

CORT treatment (Figure 16C; P<0.05). Of the compounds used, the p38MAPK inhibitor, 

SB203580, was most effective at suppressing induction of both GH mRNA and protein 

by CORT (Figure 16A and C; P<0.05). Inhibition of JNK with SP600125 did not 

influence CORT regulation of GH expression (Figure 16B and D; P>0.05), although GH 

mRNA in both basal and CORT-treated cells had a tendency to be higher in the presence 

of the inhibitor.  

 

 

 

 

 

Figure 16. Pharmacological inhibitors of ERK1/2, p38MAPK, and ras signaling suppress glucocorticoid 
induction of GH expression in chicken embryonic anterior pituitary cells. E11 pituitary cells (n=4) were 
pretreated for 1 h with DMSO or inhibitors for PI3-K [LY294002 (LY; 50 µM) and wortmannin (WORT; 
100 nM)], MEK1/2 [U0126 (U0; 10 µM) and PD98059 (PD; 50 µM)], p38MAPK [SB203580 (SB; 40 
µM)], Ras [manumycin A (Man; 1 µM)], or JNK [SP600125 (SP; 10 µM)] prior to addition of no treatment 
or CORT. (A-D) Cells were treated with CORT (1 nM) for 12 h. (A,B) Levels of GH mRNA, analyzed 
using qRT-PCR and normalized to ACTB mRNA levels, are expressed as fold induction over basal cells 
receiving DMSO. (C,D) Cells were fixed and the number of GH-positive cells was determined using ICC. 
(E) Cells were pretreated and treated with CORT (100 nM) for 20 h following transfection with a firefly 
luciferase reporter construct containing 1,727 bp of the chicken GH 5’-flanking region (pGL3-1727) or an 
empty reporter vector (pGL3-Basic) in combination with a renilla luciferase expression construct. Promoter 
activity in each sample was determined by dividing firefly luciferase activity by renilla luciferase activity 
and is expressed as fold induction over basal cells cultured in the presence of DMSO and transfected with 
pGL3-Basic. Values (mean + SEM) without a common letter are statistically different (P<0.05). 
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Treatment with U0126 and SB203580 had the most consistent and significant 

effects on glucocorticoid induction of GH expression, making ERK1/2 and p38MAPK 

the most likely candidates to be downstream effectors of ras signaling in this process. 

Therefore, we determined whether inhibiting these pathways had any effect on CORT 

stimulation of the pGL3-1727 reporter construct. In addition, we included SP600125 

because of the slight increase in GH mRNA observed when JNK was inhibited. Pituitary 

cells (n=4 replicate trials) were transfected with the empty reporter (pGL3-Basic) or 

pGL3-1727 and treated with CORT for 20 h in the presence of DMSO, U0126, 

SB203580, SP600125, or manumycin A (Figure 16E). It should be noted that the 

decrease in normalized luciferase activity observed in U0126-treated cells was primarily 

due to an increase in renilla luciferase activity (internal transfection control) and not a 

decrease in firefly luciferase activity (data not shown). Treatment with CORT induced a 

3-fold increase in GH promoter activity (P<0.05), and this induction was suppressed by 

U0126 and SB203580 (P<0.05). Inhibiting JNK with SP600125 did not decrease CORT-

stimulated GH promoter activity, and surprisingly, neither did manumycin A (P>0.05).  

In the current experiments, manumycin A completely suppressed the increase in 

numbers of GH-positive cells resulting from treatment with CORT (Figure 16C) but was 

only slightly effective at reducing CORT-stimulated GH promoter activity and mRNA 

expression. One possibility is that manumycin A initially blocked the increase in GH 

mRNA resulting from CORT treatment, which led to a decrease in GH protein 

accumulation, but lost its effect the longer the cells were in culture. In this case, GH 

mRNA may have begun to increase again before a detectable increase in GH protein 

occurred. To address this and further confirm ERK1/2 and p38MAPK involvement, a 
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time course experiment was conducted in which e11 pituitary cells (n=4 replicate 

experiments) were treated with and without CORT in the presence of U0126, SB203580, 

and manumycin A for the final 3, 6, or 12 h of a 24 h culture (Figure 17). Since none of 

the inhibitors affect GH expression under basal conditions (Figure 16A and B), cells that 

were treated with DMSO alone for the final 13 h of culture served as a control. Treatment 

with CORT stimulated GH mRNA at all time points (Figure 17A), and inclusion of 

manumycin A completely blocked induction at 3 h and substantially repressed the 

response at 6 and 12 h (P<0.05). Neither U0126 nor SB203580 had any effect on CORT 

induction of GH mRNA at 3 h (P>0.05), but both were equally effective at attenuating 

the response at 6 h and further reducing CORT induction after 12 h (P<0.05). In order to 

verify that inhibiting these signaling pathways in embryonic anterior pituitary cells was 

not globally affecting their ability to respond to CORT, mRNA levels for FKBP5 and 

GHRH-R2 were also measured in this experiment (Figure 17B and C). Both genes were 

substantially upregulated at all time points (P<0.05) and, though there were effects of the 

inhibitors on their induction at the earlier time points [e.g. U0126 and manumycin A 

suppressed induction of FKBP5, and all inhibitors suppressed induction of GHRH-R2 

and at 3 h (P<0.05)], none of the inhibitors suppressed induction of either gene at 12 h 

(P>0.05). Therefore, it appears that these compounds are not perturbing the general 

response to CORT, and the effect is somewhat specific to regulation of GH expression. 

Representative pictures of ICC results from e11 cells treated with DMSO (vehicle), 

DMSO plus CORT, U0126 plus CORT, SB203580 plus CORT, and manumycin A plus 

CORT are shown in Figure 17D and clearly demonstrate the reduction in intracellular GH 

protein accumulation resulting from inhibitor treatment.  



 103

 

Figure 17. Glucocorticoid stimulation of GH mRNA and protein expression during chicken embryonic 
development is decreased in the presence of ERK1/2, p38MAPK, and ras signaling inhibitors. E11 pituitary 
cells (n=4) were pretreated for 1 h with DMSO or inhibitors for MEK1/2 [U0126 (U0; 10 µM)], p38MAPK 
[SB203580 (SB; 40 µM)] and Ras [manumycin A (Man; 1 µM)] prior to addition of no treatment or CORT 
(1 nM) for (A-C) 3 h, 6 h, 12 h, or (D) 24 h. (A-C) Levels of GH, FKBP5, and GHRH-R2 mRNA were 
measured by qRT-PCR and are expressed as fold induction over basal cells receiving DMSO. Levels of 
mRNA for each gene were normalized to ACTB mRNA levels. (D) Cells were fixed and the number of 
GH-positive cells was determined using ICC. Cells with detectable intracellular GH protein are purple. 
Values (mean + SEM) denoted with different letters within each time point are significantly different from 
one another (P<0.05). 
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An experiment was conducted to confirm efficacy of the two MAPK pathway 

inhibitors that consistently reduced CORT induction of GH expression in embryonic 

anterior pituitary cells. The ERK1/2 pathway inhibitor, U0126, inhibits MEK1/2 activity 

and, therefore, prevents phosphorylation and subsequent activation of ERK1/2 (Figure 4). 

We verified that U0126 was reducing ERK1/2 pathway signaling in our cell culture 

system on two levels, by determining the amount of p-ERK1/2 in the presence and 

absence of the inhibitor using an ELISA and by assessing ERK1/2 kinase activity under 

the same conditions. Anterior pituitary cells from e11 chickens (n=2 replicate trials) were 

left untreated or treated for 3 h with CORT or EGF in the presence of DMSO or U0126. 

ERK1/2 kinase activity in the cells was assessed by incubating immunoprecipitated 

active, p-ERK1/2 with Elk-1 substrate in vitro and determining the level of p-Elk1 by 

immunoblotting. The inhibitor clearly reduced ERK1/2 kinase activity under basal, 

CORT-treated, or EGF-stimulated conditions (Figure 18A). As expected, levels of p-

ERK1/2, as determined by an ELISA, were substantially reduced by U0126 under all 

conditions as well (data not shown). A similar experiment was conducted to determine 

efficacy of the p38MAPK pathway inhibitor, although in this case the only way to verify 

this was to measure p38MAPK activity itself, since SB203580 inhibits p38MAPK 

activity but does not affect phosphorylation status of the enzyme (Figure 4). Cells (n=2 

replicate trials) were cultured under basal, CORT-treated, or anisomycin-stimulated 

conditions for 3 h in the presence of DMSO or SB203580. Kinase activity for p38MAPK 

was determined in a similar manner to ERK1/2, except the amount of p-ATF2 was 

assessed by western blotting after incubating the p-p38MAPK immunoprecipitate with 

ATF2. Surprisingly, this inhibitor was completely ineffective at blocking p38MAPK
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Figure 18. The pharmacological inhibitor of MEK1/2, U0126, is effective at reducing ERK1/2 MAPK 
pathway activity in chicken embryonic anterior pituitary cells, but SB203580 does not block p38MAPK 
activity. E11 pituitary cells (n=2) were pretreated for 1 h with DMSO or inhibitors for (A) MEK1/2 [U0126 
(U0; 10 µM)] or (B,C) p38MAPK [SB203580 (SB; 40 µM)] prior to addition of no treatment, CORT (1 
nM), (A) EGF (100 ng/ml), or (B,C) anisomycin (Ani; 10 µM) for 3 h. (A) ERK1/2 and (B) p38MAPK 
kinase activity were measured with non-radioactive MAPK assays in which in vitro phosphorylated 
substrate was detected by Western blotting. In each panel, the image is a representative blot depicting 
levels of phosphorylated (A) Elk-1 (p-Elk1) or (B) ATF2 (p-ATF2), and the graph represents the 
quantification (mean + SD) of 2 independent trials. (C) Levels of endogenous p-ATF2 and α-tubulin (α-
TUB) were determined by Western blotting. The image on the left is a representative blot. The graph on the 
right depicts quantification (mean + SD) of 2 independent replicate trials in which levels of p-ATF2 were 
normalized to α-TUB.  
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activity and even appeared to enhance it in one replicate trial (Figure 18B). In order to 

ensure that the lack of an effect was not due to an artifact of the in vitro assay, 

endogenous levels of p-ATF2 were determined in the cells by western blotting (Figure 

18C). Again, the inhibitor was completely ineffective at reducing basal or stimulated 

levels of p-ATF2 and appeared to increase it in one replicate trial. Thus, it appears that 

the inhibitory effect of U0126 on CORT-stimulated GH expression is indeed due to 

inhibition of ERK1/2 signaling, but the suppressive effect of SB203580 is not a result of 

p38MAPK inhibition in these cells and may implicate involvement of another kinase. It 

should be noted that SB203580 had no effect on ERK1/2 pathway activity in these 

experiments (data no shown), indicating that the suppressive effects of SB203580 are not 

due to inhibition of ERK1/2 signaling. Taken together, our results indicate that ras- and 

ERK1/2-mediated transcriptional events are involved in glucocorticoid initiation of 

pituitary GH during development. 

Concurrent MAPK activation during glucocorticoid treatment suppresses GH induction 

In an attempt to delineate the role of ERK1/2 signaling in this process, as well as 

evaluate involvement of p38MAPK signaling with an alternative approach, we obtained 

dominant negative and constitutively active elements of these pathways to further assess 

their involvement in CORT stimulation of GH expression during development. In 

addition, this approach should alleviate concerns regarding specificity and stability of 

pharmacological inhibitors. It was hoped that results observed using pharmacological 

inhibitors would be complemented by this genetic approach. We hypothesized that 

dominant negative mutants would interfere with GH induction, while constitutively 

active mutants would augment induction or recapitulate it all together. Although these are 
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mutant forms of mammalian kinases, the proteins are highly conserved across species. 

Chicken MEK1 and 2, ERK2, MKK3, MKK6, and p38MAPK are 88-99% identical to 

mammalian counterparts, as determined by Basic Local Alignment Search Tool (BLAST) 

alignments. Further, mammalian mutant enzymes have been successfully utilized in 

chickens (230, 237, 238).  

First, it was confirmed that each mutant was successfully expressed at the protein 

level in chicken cells. Western blot analysis was performed on total cellular protein 

extracted from chicken LMH cells left untransfected or transfected with Sport6.1 (empty 

expression vector), caMKK3 and caMKK6, caMEK1, dnMKK3 and dnMKK6, dnp38α 

and dnp38β, dnMEK1, or dnERK1 and dnERK2. Each mutant was readily detected in 

appropriate lysates at approximately the same level (Figure 19), indicating that these 

proteins are efficiently expressed in chicken cells. Next, functionality of each mutant was 

determined in both chicken and mammalian cell lines by assessing levels of 

phosphorylated MAPK and enzyme activity for each pathway in LMH and HEK-293 

cells transfected as described above and left untreated (Basal) or stimulated with EGF or 

anisomycin to assess ERK1/2 and p38MAPK mutants, respectively. Functionality of all 

mutants was tested using the in vitro kinase assay for the appropriate pathway, and 

functionality dnMEK1, caMEK1, dnMKK3, dnMKK6, caMKK3, and caMKK6 were 

further evaluated using an ELISA to measure intracellular p-ERK1/2 or p-p38MAPK 

levels. As expected, treatment with EGF and anisomycin stimulated an increase in 

detectable p-ERK1/2 and p-p38MAPK (Figure 20A and B; P<0.05, n=4 replicate trials), 

respectively, as well as an increase in ERK1/2 and p38MAPK kinase activity (Figure 20C 

and D), respectively, in both cell lines. Unexpectedly, however, dominant negative
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Figure 19. Constitutively active and dominant negative mutants of mammalian ERK1/2 and p38MAPK 
pathways are efficiently expressed in chicken cells. LMH cells, a chicken hepatoma cell line, were left 
untransfected, transfected with an empty expression vector (Sport6.1) or expression vectors for 
constitutively active MKK3/6 (caMKK3/6), constitutively active MEK1 (caMEK1), dominant negative 
MKK3/6 (dnMKK3/6), dominant negative p38MAPKα/β (dnp38MAPKα/β), dominant negative MEK1 
(dnMEK1), or dominant negative ERK1/2 (dnERK1/2). Total cellular protein was extracted and analyzed 
by Western blotting using antibodies for MKK3, MKK6, p38MAPK, MEK1, ERK1/2, or α-tubulin (α-
TUB)  to verify that proteins were successfully expressed at comparable levels for each mutant.  

 

mutants of each pathway did not prevent the increase in either phosphorylated MAPK 

status (Figure 20A and B; P>0.05) or MAPK activity. This is clearly not an issue of using 

mammalian proteins in chicken cells, as the mutants were not functional in HEK-293 

cells either, and is not related to expression level. At this point, it is unclear why the 

dominant negative enzymes did not function in our transient transfection system. On the 

other hand, in both cell types, caMEK1 expression was able to elevate p-ERK1/2 to 

levels that were not different from those in EGF-stimulated cells (Figure 20A; P<0.05), 

and expression of caMKK3 and caMKK6 resulted in levels of p-p38MAPK that were 

equal to (HEK-293) or greater than (LMH) those in anisomycin-treated cells (Figure 20B;  
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Figure 20. Constitutively active (CA) mutants of  (A,C) ERK1/2 and (B,D) p38MAPK pathways are highly 
effective at increasing MAPK signaling, but dominant negative (DN) mutants of each pathway are non-
functional in both chicken and human cells. Total cellular protein was extracted from chicken LMH cells 
and human HEK-293 (HEK) cells transfected with the empty expression vector Sport6.1 (Sp6.1) or 
expression vectors for (A,C) DN MEK1, CA MEK1, and DN ERK1/2 or (B,D) DN MKK3/6, CA 
MKK3/6, and DN p38MAPKα/β (p38α/β). Cells were left untreated (-) or stimulated (+) with (A,C) EGF 
(100 ng/ml) or (B,D) anisomycin (100 nM) for 30 m. (A,B) Levels of phosphorylated (A) ERK1/2 and (B) 
p38MAPK were determined using a sandwich ELISA. One equivalent is equal to the amount of 
phosphorylated ERK1/2 or p38MAPK in 1 µg total cellular protein extracted from LMH cells stimulated 
with EGF or anisomycin, respectively. Values (mean + SEM) denoted with different letters for each cell 
line are significantly different from one another (P<0.05). (C) ERK1/2 and (D) p38MAPK kinase activity 
were measured using non-radioactive MAPK assays in which in vitro phosphorylated (C) Elk1 or (D) 
ATF2, substrates for ERK1/2 and p38MAPK, respectively, were detected by Western blotting. 
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P<0.05). Similar results were obtained when transfected cell lysates were analyzed with 

the kinase assays (Figure 20C and D), confirming functionality of constitutively active 

pathway mutants. As a result, only these were used in subsequent experiments. 

A series of experiments was conducted in order to determine the consequence of 

ERK1/2 and p38MAPK activation on GH expression in the embryonic anterior pituitary 

gland. First, effects of overexpressing constitutively active mutants within each pathway 

on CORT regulation of GH promoter activity and mRNA expression were determined. 

Anterior pituitary cells (n=3 replicate trials) from e11 chickens were transfected with 

pGL3-Basic or the GH promoter-driven pGL3-1727 reporter construct in combination 

with Sport6.1, caMEK1, or caMKK3 and caMKK6. Surprisingly, although 

overexpression of constitutively active mutants in both pathways had no effect on 

promoter activity in basal cells, they completely blocked the CORT-stimulated increase 

in GH promoter activity (Figure 21A and C; P<0.05). Cells were also transfected with the 

constitutively active mutants or Sport6.1 along with a Golgi-targeted GFP expression 

vector, used for sorting of successfully transfected (GFP-positive) cells, and GH mRNA 

levels were determined in cells cultured under basal and CORT-treated conditions for 20 

h. The presence of high levels of caMEK1, caMKK3, and caMKK6 in appropriately 

transfected cells was confirmed by qRT-PCR (data not shown). Consistent with the effect 

of constitutively active mutant overexpression on CORT induction of GH promoter 

activity, levels of GH mRNA in CORT treated cells transfected with either caMEK1 or 

caMKK3 and caMKK6 were approximately 3-fold lower than those in CORT-treated 

cells transfected with Sport6.1 (Figure 21B and D; P<0.05, n=3 replicate trials), although 

there was still an induction in the presence of the mutants (P<0.05). 
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Figure 21. Glucocorticoid induction of GH expression in the chicken embryonic pituitary gland is 
suppressed by overexpression of constitutively active mutants in the ERK1/2 and p38MAPK signaling 
pathways. Anterior pituitary cells (n=3) from e11 chickens were transfected with (A,C) a firefly luciferase 
reporter construct containing 1,727 bp of the chicken GH 5’-flanking region (pGL3-1727) or an empty 
reporter vector (pGL3-Basic) in combination with a renilla luciferase expression construct and  expression 
vectors for constitutively active MEK1 (caMEK1), constitutively active MKK3/6 (caMKK3/6), or an 
empty expression vector (Sport6.1) or (B,D) Sport6.1, caMEK1, or caMKK3/6 expression vectors alone. 
(A,C) Following addition of no treatment or CORT (1 nM) for 20 h, promoter activity in each sample was 
determined by dividing firefly luciferase activity by renilla luciferase activity and is expressed as fold 
induction over basal cells transfected with pGL3-Basic and Sport6.1. (B,D) Cells were left untreated or 
treated with CORT (1 nM) for 20 h, and levels of GH mRNA were measured by qRT-PCR and are 
expressed as fold induction over basal cells transfected with Sport6.1. Levels of GH mRNA were 
normalized to ACTB mRNA levels. Values (mean + SEM) without a common letter are significantly 
different (P<0.05). 
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We next took an alternative approach to confirm the observed inhibitory effect of 

ERK1/2 and p38MAPK pathway activation on CORT stimulation of GH expression. We 

examined if co-treatment of the cells with CORT and EGF or anisomycin would 

influence the GH response to glucocorticoids, as well as the effect of “priming” each 

pathway by exposing the cells to EGF or anisomycin and washing it out prior to CORT 

treatment. In one experiment, e11 anterior pituitary cells (n=3 replicate trials) were left 

untreated or stimulated with EGF for 30 m. Subsequently, EGF was washed out and cells 

were cultured for an additional 6 h in the presence and absence of CORT. Additional 

cells were treated for 6 h with EGF alone or EGF and CORT. Pretreatment with EGF for 

30 m did not have any effect on CORT stimulation of GH mRNA (P>0.05); however, co-

stimulation of the cells with CORT and EGF reduced induction of GH by about 50% 

(Figure 22A; P<0.05). We also measured the effect of EGF treatments on FKBP5 and 

GHRH-R2 mRNA levels, to determine specificity of the inhibition. CORT stimulation of 

FKBP5 and GHRH-R2 mRNA in these cells was 12- and 4-fold, respectively (Figure 

22B and C; P<0.05), and these responses were not influenced by EGF pre- or co-

treatment. There was a tendency for the level of GHRH-R2 mRNA in basal and CORT-

treated cells that were exposed to EGF for both short and long-term treatments to be 

higher than that in cells receiving no EGF, although only in the case of cells treated with 

EGF alone for 6 h was the difference significant (Figure 22C; P<0.05). An increase in the 

level of p-ERK1/2 was maintained after 6 h exposure of the cells to EGF (Figure 22D; 

P<0.05), indicating that the inhibitory effect of chronic stimulation does not appear to be 

due to a downregulation of ERK1/2 activity resulting from negative feedback.  

 



 113

 

 

 

 

 
 
Figure 22. Co-stimulation of ERK1/2 signaling with EGF during glucocorticoid treatment reduces 
induction of GH mRNA in the chicken embryonic anterior pituitary gland. Pituitary cells (n=3) from e11 
chickens were left untreated or treated with EGF (100 ng/ml) for 30 m, after which time EGF was washed 
out and cells were cultured in the absence or presence of CORT (1 nM) for 6 h. Additional cells were left 
untreated or treated with CORT in the absence and presence of EGF for 6 h. (A-C) Levels of GH, FKBP5, 
and GHRH-R2 mRNA were measured by qRT-PCR and are expressed as fold induction over basal cells 
receiving no EGF. Levels of mRNA for each gene were normalized to ACTB mRNA levels. (D) Levels of 
phosphorylated ERK1/2 were determined using a sandwich ELISA in cells stimulated for 6 h with EGF 
alone. One equivalent is equal to the amount of phosphorylated ERK1/2 in 1 µg total cellular protein 
extracted from LMH cells stimulated with EGF. Values (mean + SEM) without a common letter are 
statistically different (P<0.05). 
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Anisomycin is a translational inhibitor similar to CHX at higher concentrations 

(e.g. 10 µM), but at lower concentrations (e.g. 100 nM) can stimulate p38MAPK activity 

without inhibiting protein synthesis (239). Therefore, we first conducted a trial to 

determine the least effective dose of anisomycin that would suppress CORT stimulation 

of GH mRNA, allowing us to distinguish any inhibitory effects of p38MAPK activation 

from those due to inhibition of protein synthesis, which is known to be necessary for this 

process (151, 153). Cells (n=3 replicate trials) were left untreated or treated for 6 h with 

CORT in the absence and presence of anisomycin at 3 concentrations: 10 µM, 100 nM, 

and 20 nM. The highest dose most strongly increased the amount of p-p38MAPK in the 

cells and substantially decreased both basal and CORT-stimulated GH mRNA levels 

(Figure 23A and B; P<0.05). Co-treatment with 100 nM anisomycin suppressed CORT 

stimulation of GH mRNA expression, and this dose increased levels of p-p38MAPK 

above those in basal cells, but less than those in cells stimulated with 10 µM anisomycin 

(Figure 23A and B; P<0.05). The lowest dose had no effect on GH mRNA levels and did 

not stimulate a detectable increase in p-p38MAPK (Figure 23A and B; P>0.05). Based on 

these results, we conducted an experiment identical to the one described above for 

ERK1/2 pathway activation, except we used 100 nM anisomycin as the stimulus. 

Pretreatment and subsequent removal of anisomycin had no influence on basal or CORT-

treated mRNA levels, but concurrent treatment with CORT and anisomycin for 6 h 

suppressed induction of GH mRNA (Figure 23C; P<0.05, n=3 replicate trials). An 

increase in p-p38MAPK levels in these cells following exposure to 100 nM anisomycin 

for 6 h was verified (Figure 23F; P<0.05). Again, the inhibitory effect of anisomycin 

treatment on CORT-induced gene expression is not a global one, as FKBP5 and GHRH-
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Figure 23. Concurrent activation of p38MAPK signaling with anisomycin during glucocorticoid treatment 
suppresses stimulation of GH mRNA in the chicken anterior pituitary gland during embryogenesis. (A) E11 
pituitary cells (n=3) were left untreated or cultured with CORT (1 nM) for 6 h in the absence and presence 
of anisomycin (Ani) at the indicated doses. (C-E) Pituitary cells (n=3) from e11 chickens were left 
untreated or treated with Ani (100 nM) for 30 m, after which time Ani was washed out and cells were 
cultured in the absence or presence of CORT (1 nM) for 6 h. Additional cells were left untreated or treated 
with CORT in the absence or presence of Ani for 6 h. (A, C-E) Levels of GH, FKBP5, and GHRH-R2 
mRNA were measured by qRT-PCR and are expressed as fold induction over basal cells receiving no Ani. 
Levels of mRNA for each gene were normalized to ACTB mRNA levels. (B,F) Levels of phosphorylated 
p38MAPK were determined using a sandwich ELISA in cells stimulated for 6 h with anisomycin (100 nM 
unless otherwise indicated) alone. One equivalent is equal to the amount of phosphorylated p38MAPK in 1 
µg total cellular protein extracted from LMH cells stimulated with Ani. Values (mean + SEM) without a 
common letter are significantly different (P<0.05). 
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R2 mRNA stimulation were not reduced (Figure 23D and E; P>0.05). In fact, co-

stimulation with anisomycin for 6 h substantially increased CORT induction of FKBP5 

(Figure 23D; P<0.05). Thus, although somewhat contradictory to what was expected 

based on our results from the pharmacological inhibition experiments, it appears that 

chronic activation of both ERK1/2 and p38MAPK interferes with glucocorticoid 

regulation of GH expression during somatotroph development. 

Glucocorticoids increase ERK1/2 kinase activity in embryonic pituitary cells 

 Glucocorticoids have been shown to both initiate and prevent MAPK signaling in 

several systems (12, 27-29, 240), and the results described above provide evidence that 

CORT induction of pituitary GH requires active MAPK signaling but is prevented by 

chronic stimulation (Figures 16, 17, 21, 22, and 23). In order to determine if 

glucocorticoid treatment affects either ERK1/2 or p38MAPK signaling in the embryonic 

anterior pituitary gland, cells (n=3 replicate trials) were cultured in the absence or 

presence of CORT for 30 m, 3 h, or 6 h, and levels of phosphorylated MAPK were 

determined. Although we were able to demonstrate an increase in p-ERK1/2 and p-

p38MAPK levels in response to EGF and anisomycin stimulation, respectively (Figure 

24; P<0.05), we did not detect any differences in phosphorylated MAPK levels in 

response to CORT treatment (P>0.05). Since active MAPK enzymes are phosphorylated, 

this implies that glucocorticoids are not stimulating or inhibiting ERK1/2 and p38MAPK 

signaling in e11 anterior pituitary cells. However, we did observe an increase in ERK1/2 

kinase activity after 3 h CORT treatment in one of the two trials we conducted to 

determine efficacy of the MEK1/2 inhibitor, U0126 (Figure 18A). Therefore, we 

examined ERK1/2 kinase activity in protein extracts from e11 anterior pituitary cells 
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Figure 24. Glucocorticoids do not affect (A) ERK1/2 or (B) p38MAPK phosphorylation in chicken 
embryonic anterior pituitary cells. Pituitary cells (n=3) from e11 chickens were left untreated or treated 
with CORT (1 nM) for 30 m, 3 h, or 6 h. Levels of phosphorylated (A) ERK1/2 and (B) p38MAPK were 
determined using a sandwich ELISA. To serve as positive controls for the ability to detect increased MAPK 
phosphorylation, cells were also treated with EGF (100 ng/ml) or anisomycin (10 µM) for 30 m to activate 
ERK1/2 and p38MAPK pathway activity, respectively. One equivalent is equal to the amount of 
phosphorylated ERK1/2 or p38MAPK in 1 µg total cellular protein extracted from LMH cells stimulated 
with EGF or anisomycin, respectively. Values (mean + SEM) denoted with different letters are 
significantly different from one another (P<0.05). 
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treated with CORT for short and long time periods (Figure 25). This was not a 

completely balanced experiment, and only one replicate trial was analyzed for 5 m and 30 

m treatments, while 3 replicate trials were analyzed for 3 h and 6 h treatments. Treatment 

with CORT for 3 h increased ERK1/2 activity in all 3 replicate trials, and statistical 

analysis demonstrated this increase to be significant (P<0.05; n=3 replicate trials).

 

 

Figure 25. Long-term treatment with glucocorticoids may increase ERK1/2 signaling in chicken embryonic 
pituitary cells. Anterior pituitary cells from e11 chickens were cultured in the absence or presence of CORT 
(1 nM) for 5 m (n=1), 30 m (n=1), 3 h (n=3), or 6 h (n=3). The level of ERK1/2 kinase activity was 
measured with a non-radioactive MAPK assay in which in vitro phosphorylated substrate (p-Elk1) was 
detected by Western blotting. (A) Western blots depicting detection of p-Elk1 in each of the samples. (B) 
Quantification of the level of p-Elk1 detected by Western blotting. In the case of 3 h and 6 h treatments, the 
value (mean + SEM) was determined from 3 independent replicate samples. The asterisk (*) denotes a 
significant increase in p-MEK1 over basal cells (P<0.05). 
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Activity also appeared elevated after 6 h CORT treatment in two of the three replicate 

trials (Figure 25A), but this effect was not statistically significant (P>0.05). Cells exposed 

to CORT for 5 m demonstrated increased ERK1/2 kinase activity (Figure 25A), although 

the significance of this cannot be determined due to incomplete replication. Nonetheless, 

treatment of embryonic anterior pituitary cells with glucocorticoids is capable of 

stimulating ERK1/2 activity, implicating this pathway in the mechanism by which CORT 

increases GH expression during development. 

Discussion 

In this study, we investigated mechanisms through which glucocorticoids induce 

GH expression in pituitary somatotrophs. We determined that the primary mechanism 

through which CORT increases GH mRNA levels in the embryonic pituitary gland is 

through transcriptional initiation. We confirmed published reports (151, 153) 

demonstrating a requirement for ongoing protein synthesis in this process and extended 

these to another rodent model, reiterating the high level of conservation in processes 

governing pituitary development among vertebrates. In addition, we determined that 

CORT stimulation of GH expression requires HDAC activity. We previously reported 

that inhibition of ras with manumycin A partially prevents the CORT-stimulated increase 

of GH mRNA in embryonic pituitary somatotrophs (153, 217). Here, we confirmed this 

finding and extended the investigation to implicate ERK1/2 as a potential downstream 

effector of ras signaling in this process, as well as demonstrated that CORT treatment 

may increase ERK1/2 kinase activity in the anterior pituitary gland. Despite this, we also 

found the surprising result suggesting that chronic stimulation of ERK1/2 and p38MAPK 

pathways suppresses CORT induction of GH. 
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Treatment with CORT leads to an accumulation of GH mRNA in embryonic 

pituitary cells during a stage when these cells normally contain very low or undetectable 

levels (44, 121, 129, 149, 151, 152), and this increase was also evident in the current 

experiments. Although one group has reported that dexamethasone did not stimulate 

reporter activity from a construct driven by 1.7 kb of the rat GH 5’-flanking region in the 

rat MtT/S somatotroph cell line (241), other evidence indicates that glucocorticoids are 

capable of transcriptionally activating the GH gene in other pituitary cell lines (242-246). 

In most cases the transcriptional effect is very small, and the increase in GH mRNA 

expression stimulated by glucocorticoids is thought to occur primarily as a result of 

enhanced mRNA stability (121, 245-247). In primary pituitary cells from embryonic 

chickens or fetal mice removed just prior to normal onset of GH expression in vivo, the 

induction of GH mRNA is at least 10-fold, and often observed to be 20- to 30-fold, when 

measured by qRT-PCR [(159) and Figures 12-17 and 21-23]. Thus, it is highly unlikely 

that during this stage in pituitary development, the principal mechanism through which 

CORT increases GH expression is through mRNA stabilization. The results presented 

here provide no evidence of CORT stabilizing GH mRNA in e11 chicken primary 

pituitary cells (Figure 13); rather, based on the induction of GH promoter activity and 

nascent transcript by CORT (Figure 12), it is clear that the primary mechanism through 

which glucocorticoids increase GH expression during somatotroph recruitment is 

transcriptional activation of the GH gene. The agreement between fold induction of 

nascent GH mRNA transcript and mature GH mRNA transcript also demonstrates that 

discrepancy between fold induction of GH promoter activity (4-fold) and GH mRNA (10- 
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to 30-fold) is most likely due to differences in the two techniques, rather than any 

contribution of mRNA stability.    

In both fetal rats and embryonic chickens (151, 153), the requirement for ongoing 

protein synthesis in glucocorticoid stimulation of GH mRNA implies an indirect 

mechanism, wherein an intermediary factor is induced that is crucial for the increase in 

GH transcription resulting from CORT treatment. We confirmed this requirement in the 

present study, as the inclusion of CHX with CORT abolished induction of GH mRNA as 

determined by qRT-PCR, in both embryonic chickens and fetal mice (Figure 14). 

Glucocorticoids do not induce expression of Pit-1 in fetal rats (151) or embryonic 

chickens (160), making it unlikely that this transcription factor is the required 

intermediary protein, although it is known to be necessary for somatotroph differentiation 

and GH expression. The reported increase in Pit-1 mRNA that occurred around the time 

of somatotroph development in the chicken embryonic pituitary gland (Figure 5) is most 

likely due to an expansion in somatotroph number, which rapidly occurs after appearance 

of this cell type (53, 103, 123). However, this intermediary protein may be another 

transcription factor or co-activator that stimulates expression of the GH gene in 

combination with Pit-1 via protein-protein and/or protein-DNA interactions. Another 

attractive candidate as the intermediary factor involved in this process is GHRH-R, 

whose expression pattern in the embryonic pituitary also reflects a potential role in 

somatotroph differentiation in mammals and birds  [(124, 161) and Figure 8]. 

Glucocorticoid treatment in vitro increased GHRH-R mRNA in fetal rat pituitaries in a 

manner that is insensitive to inhibition of protein synthesis (161, 205); however, CORT 

does not appear to increase GHRH binding to chick embryonic pituitary cells (179) or 
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increase GHRH-R mRNA or protein levels in the cells (Ellestad and Porter, unpublished; 

Bossis and Porter, unpublished). The recent discovery of GHRH-R2 as a functional 

receptor for GHRH in the chicken pituitary (181), in combination with its developmental 

profile in the embryonic pituitary gland (Figure 8) and ability to be upregulated by CORT 

in anterior pituitary cells (Figures 17, 22, and 23), identify it as an exciting prospect to 

investigate further. Notably, it has been demonstrated that CORT stimulation of GHRH-

R2 occurs in the presence of CHX (Ellestad and Porter, unpublished), implying it may be 

a direct target of glucocorticoids in the anterior pituitary.  

Inclusion of HDAC inhibitors abolished glucocorticoid induction of GH mRNA 

and protein expression (Figure 15). Epigenetic modifications, including histone 

acetylation status, have an important effect on chromatin organization and gene 

transcription during development (232), and glucocorticoids are known to regulate target 

genes through influencing their histone acetylation state (231). Further, acetylation of the 

GH regulatory region is thought to contribute to GH expression level (248, 249). Current 

research in our laboratory is aimed at identifying CORT-regulated epigenetic changes in 

the proximal GH promoter, and it has been shown that CORT treatment leads to a short-

lived increase in acetylated histone 3 (Ac-H3) levels around the GH transcriptional start 

site and two Pit-1 sites within the chicken GH 5’-flanking region, one very near the 

transcriptional start site (-111 to -117) and one more distal (-538 to -546) (Narayana and 

Porter, unpublished). This increase occurred after 1.5 h of exposure to CORT, but after 6 

h CORT treatment Ac-H3 levels were no different than those in untreated cells. The 

immediate acetylation event may be necessary to recruit appropriate transcription factors 

to initiate transcription from the GH promoter, and subsequent downregulation in 
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acetylation status mediated by HDAC enzymes may be necessary for sustained 

transcription leading to elevated GH mRNA. A recent mapping of genome-wide histone 

acetyltransferase (HAT) and HDAC chromatin localization revealed both are targeted to 

transcriptionally active genes, and HDAC activity is necessary to reset chromatin for 

further activation by removing acetyl groups added by HATs (250). An alternative 

requirement for HDAC activity may result from a mechanism involving indirect de-

repression of GH to allow for initiation of transcription. The HDAC inhibitors used in 

this study did not alter GH mRNA in cells cultured under basal conditions, implying that 

the mechanism by which CORT increases histone acetylation after 1.5 h is not simply a 

direct effect of CORT reducing HDAC activity at the GH regulatory region to increase 

accessibility for recruitment of the transcriptional machinery. Glucocorticoids are capable 

of stimulating HDAC expression (251), as well as enhance their recruitment to repressor 

complexes (252), and an indirect requirement for HDAC activity implies that CORT-

mediated deacetylation may be required to reduce expression of an inhibitory factor that 

represses GH transcription, while CORT-mediated transcriptional activation may induce 

expression of a gene that stimulates GH transcription. It cannot be ruled out, however, 

that the abolishment of GH induction by CORT in the presence of HDAC inhibitors was 

due to hyperacetylation of GR itself, resulting from HDAC inhibition. It was recently 

demonstrated that the self-oscillating transcription factor CLOCK is capable of 

acetylating a cluster of lysine residues on GR, and in this hyperacetylated state the 

receptor has decreased capability of binding GREs and transactivating a subset of 

glucocorticoid induced genes (19). These potential requirements for HDAC activity in 

glucocorticoid induction of pituitary GH are by no means mutually exclusive, and the 
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response may indeed involve a combination of these mechanisms. Nonetheless, 

stimulation of other CORT-induced genes was not affected by HDAC inhibition, 

implying that the requirement for GH expression is relatively specific and not due to 

compromised GR signaling resulting from HSP90 hyperacetylation (233, 234).  

Inhibitors of PI3-K inhibitors and JNK did not interfere with the increase in GH 

mRNA resulting from CORT treatment, indicating that these are not major pathways 

involved in glucocorticoid induction of GH expression during pituitary development. 

However, LY294002, but not wortmannin, repressed CORT stimulation of GH protein 

expression and may be due to the instability of wortmannin in aqueous solution (253) or 

inhibition of a PI3-K enzyme that is insensitive to wortmannin by LY294002, such as 

many class IV PI3-Ks (253). The reduction in GH protein levels after CORT treatment in 

the presence of LY294002 indicates that PI3-K activity is necessary for synthesis of GH 

protein, although this effect may not be specific to GH, as PI3-K signaling is a major 

pathway that stimulates initiation of translation through phosphorylation of eukaryotic 

initiation factor 4E binding proteins (254). The JNK inhibitor, SP600125, did tend to 

elevate levels of GH mRNA under basal and CORT-stimulated conditions (Figure 16B), 

indicating that JNK signaling may play a role in repression of GH during this period of 

pituitary development. The observation that inhibition of JNK did not affect basal or 

CORT-induced GH promoter activity (Figure 16E) indicates that the repressive effect of 

JNK on GH mRNA levels is either non-transcriptional or that the responsive region lies 

outside the -1,727 to +48 fragment of the GH gene contained in the reporter construct.  

Glucocorticoid induction of GH promoter activation, mRNA, and protein were 

strongly repressed by SB203580, a compound traditionally used as a p38MAPK 
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inhibitor. Although SB203580 is clearly affecting CORT regulation of GH expression, its 

activity as an inhibitor of p38MAPK signaling could not be confirmed in the chicken 

embryonic anterior pituitary cells used in these experiments and, at times, it appeared to 

enhance p38MAPK activity (Figure 18). Although initial studies investigating specificity 

and mechanism of SB203580 indicated it was highly selective for p38MAPK isoforms 

(255), it has since been reported to inhibit additional kinases with similar or increased 

potency (256). As a result, there is no indication of a requirement for p38MAPK activity 

in CORT regulation of GH during development, although other kinases that are inhibited 

by SB203580, which include cyclin G-associated kinase, casein kinase, and receptor-

interacting protein 2 (256), may play a role in this process.   

Manumycin A, a ras farnesyltranferase inhibitor, was partially effective at 

suppressing glucocorticoid induction of GH mRNA and abolished the increase in 

intracellular GH protein (Figure 16A and C). Suppression of GH mRNA levels by 

manumycin A under CORT-treated conditions was more effective the shorter the CORT 

treatment (Figure 17), and this inhibitor did not reduce CORT-induced GH promoter 

activity after 20 h exposure (Figure 16E). This indicates that either the inhibitor is losing 

effectiveness over long term culture conditions or that ras signaling is involved in events 

leading to initiation of GH transcription but is not required for sustained transcription. 

Regardless, the reduction in CORT-induced GH mRNA levels in the presence of 

manumycin A observed here is consistent with previous work, in which GH mRNA 

stimulation by CORT was partially attenuated in the presence of manumycin A (153). A 

simple explanation that satisfies the requirements for ras signaling, ERK1/2 activity, and 

ongoing protein synthesis is that CORT is directly inducing a ras-like protein which then 
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stimulates ERK1/2 activity, ultimately leading to initiation of GH expression. Although 

the observation that the ras inhibitor is more effective than U0126 at reducing GH mRNA 

expression during shorter treatment times may seem inconsistent with this, one 

explanation is that the hypothetical ras protein independently stimulates multiple 

signaling cascades with some functional redundancy. Two potential ras proteins that are 

intriguing candidates in mediating CORT effects on somatotroph GH expression are 

dexamethasone-induced ras-related protein 1 (Dexras1) and ras-dva. Each has a 

developmental profile similar to GH in the chick embryonic pituitary gland [(124) and 

Figure 27] and is upregulated by CORT in the presence of CHX in chicken embryonic 

pituitary cells [(235) and Figure 31). Dexras1 was identified as a transcript rapidly 

upregulated by dexamethasone in a mouse corticotroph cell line (257), and the human 

Dexras1 gene contains a functional GRE in its 3’-flanking region (258), indicating that it 

is most likely a direct target of the GR. Ras-dva was identified in Xenopus embryos as a 

novel transcriptional target of anterior neural fold protein-1 (Anf-1) (259), a 

transcriptional repressor essential for normal pituitary development (58), and is an 

essential signaling component for anterior neural plate and ectodermal patterning in 

Xenopus embryos (260).  

Of the two ERK1/2 pathway inhibitors utilized, only U0126 effectively reduced 

CORT stimulation of GH mRNA and protein expression (Figures 16 and 17). Stimulation 

of GH promoter activity was also completely suppressed by U0126 (Figure 16E). The 

lack of an effect of PD98059 on GH mRNA levels is similar to previous results from our 

laboratory (153), and inconsistent effects of these two inhibitors have been observed 

previously. Induction of nitric oxide synthase in differentiating PC12 cells was blocked 
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by U0126 but not PD98059, and it was ultimately found that U0126 was a more effective 

inhibitor of ERK1/2 signaling (261). Our results clearly demonstrate that U0126 

decreased ERK1/2 kinase activity under basal, CORT-treated, and EGF-stimulated 

conditions (Figure 18), implying that the reduction in GH expression in the presence of 

U0126 is a result of ERK1/2 inhibition. Although an increase of p-ERK1/2 levels after 

CORT treatment of embryonic pituitary cells was not detected in this study (Figure 24), 

ERK1/2 kinase activity was increased after 3 h of CORT treatment and may also be 

elevated after both a 5 m and 6 h treatment (Figure 25). This suggests that ERK1/2 

signaling is not only required for GH induction by CORT, but also activated by CORT 

treatment.  

We previously reported that the CORT response in somatotrophs is mediated by 

classical glucocorticoid nuclear receptors (156). Glucocorticoids may be working through 

GR and/or MR to increase expression of an intermediary protein that activates the 

ERK1/2 signaling pathway. Activated GR has previously been shown to induce 

expression of ras and Raf-1, upstream activators of ERK1/2 signaling cascades (29). 

Alternatively, CORT may be working through GR and/or MR to activate the ERK1/2 

signaling cascade in a non-transcriptional manner. The GR antagonist RU486 blocks 

dexamethasone-induced rapid phosphorylation of ERK1/2 (27), and this may occur 

through direct interaction of ligand-bound GR with Raf (262). ERK1/2-mediated 

phosphorylation of GR promotes efficient nuclear translocation of the receptor (263), and 

kinase phosphorylation of GR has been implicated as a means to fine-tune glucocorticoid 

transcriptional regulation (7, 17). 
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Although the dominant negative mutants of ERK1/2 and p38MAPK pathways 

obtained to examine their involvement in glucocorticoid initiation of GH expression did 

not appear to be functional, constitutively active mutants in each pathway highly 

increased both MAPK phosphorylation and enzyme activity (Figure 20). Based on 

pharmacological inhibition data, it was hypothesized that activation of these pathways 

would increase GH expression in the absence of CORT or enhance CORT induction. 

Unexpectedly, overexpression of caMEK1 or caMKK3 and caMKK6 completely 

abolished CORT-stimulated promoter activity and substantially repressed CORT 

stimulation of GH mRNA (Figure 21). The inhibitory effects of elevated ERK1/2 and 

p38MAPK activity were confirmed using alternative stimulatory ligands. Concurrent 

treatment with CORT and EGF, which activates ERK1/2 signaling, or anisomycin, which 

activates p38MAPK, also suppressed stimulation of GH mRNA expression (Figures 22 

and 23). On the other hand, pretreatment with and removal of the stimulatory ligands had 

no effect, indicating the repression truly is due to chronic activation. This implies that 

down-regulation of MAPK activity is necessary for full induction of GH by CORT, and 

there are several examples of glucocorticoids decreasing MAPK signaling, often through 

upregulation of phosphatase enzymes (240). However, there is no evidence that CORT 

treatment led to a reduction in either p-ERK1/2 or p-p38MAPK levels or their kinase 

activities (Figures 18, 24, and 25), suggesting that overstimulation of these pathways is 

responsible for their suppressive effect on CORT stimulation of GH. Recently, it was 

reported that different GR phospho-isoforms are preferentially recruited to certain GR-

induced genes (17), and it is known that phosphorylation status can affect sub-cellular 

GR localization (7). Chronic stimulation of ERK1/2 or p38MAPK, which is known to 
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phosphorylate GR (12), may alter the phospho-isoforms present and prevent recruitment 

to certain target genes whose regulation is required for the CORT response. Another 

possibility is that a transcription factor involved in initiating GH expression, either 

through de-repression or activation, is regulated by phosphorylation and, further, that 

chronic MAPK stimulation leads to an altered phosphorylation state of the protein that 

perturbs its transcriptional regulatory activity. One such possible transcription factor is 

Ets-1. Recent research in our laboratory has uncovered a glucocorticoid-responsive 

region within the chicken GH gene that lies between -985 bp and -1019 bp relative to the 

transcriptional start site (216). That region contains a putative Ets-1 binding site, and it 

was demonstrated using chromatin immunoprecipitation that Ets-1 appears to bind near 

that region under basal conditions but is released upon treatment with CORT for 1.5 h or 

6 h [(216) and Narayana and Porter, unpublished]. Ets-1 DNA binding activity is 

regulated, in part, by phosphorylation status at different domains (264). Activation of Ets-

1 through phosphorylation of T38 by ERK1/2 increases DNA binding, and 

phosphorylation at alternative regions by other kinases inhibits DNA binding. It is 

possible that Ets-1 is part of a repressor complex that must be released from the GH 5’-

flanking region in order for transcriptional activation by CORT and that chronic ERK1/2 

activity maintains Ets-1 phosphorylation and prevents its release. Nonetheless, it appears 

that sustained overstimulation of MAPK signaling interferes with glucocorticoid 

induction of GH and that the requirement for and/or activation of ERK1/2 activity in this 

response is transitory. 

In conclusion, these results are the first to provide strong evidence that 

glucocorticoid induction of GH expression during pituitary development occurs through 



 130

an indirect mechanism requiring ongoing protein synthesis and HDAC-, ras-, and 

ERK1/2-mediated transcriptional events. In addition, the requirement for ERK1/2 

signaling is transitory, and chronic stimulation of both ERK1/2 and p38MAPK interfere 

with CORT stimulation of GH expression. Although further studies are needed to 

precisely define the molecular mechanism underlying glucocorticoid-induced GH gene 

expression and somatotroph differentiation during development, this report substantially 

increases our understanding of this process and may provide insight into glucocorticoid-

induced developmental changes in other tissues and cell types as well.  
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CHAPTER 4 

 

Ras-dva is a novel Pit-1 and glucocorticoid-regulated gene in the embryonic 

anterior pituitary gland 
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Abstract 

Glucocorticoids are involved in the functional differentiation of at least two cell 

types within the developing anterior pituitary gland. Ras-dva was initially identified as a 

gene regulated by Anf-1/Hesx1, a transcription factor known to be critical in pituitary 

development, and has an expression profile in the chicken embryonic pituitary gland that 

is consistent with in vivo regulation by glucocorticoids. However, nothing has been 

reported regarding the presence or regulation of ras-dva in the neuroendocrine system. 

Therefore, the objective of this study was to characterize expression and regulation of 

ras-dva in the developing chicken anterior pituitary gland. Pituitary ras-dva mRNA levels 

increased during embryogenesis to a maximum on e18, then decreased and remained low 

or undetectable after hatch, and ras-dva expression was highly enriched in the pituitary 

gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary 

cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, both in the 

absence and presence of a protein synthesis inhibitor, suggesting that it may be a direct 

transcriptional target of glucocorticoids. Ras-dva mRNA stability was unaffected by 

CORT treatment, further suggesting that it is transcriptionally regulated by 

glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5’-flanking 

region, containing six putative Pit-1 binding sites and two potential GR binding sites, was 

highly activated in embryonic pituitary cells and upregulated by CORT treatment. 

Mutagenesis of the most proximal Pit-1 site substantially reduced promoter activity in 

chicken e11 pituitary cells, and overexpression of Pit-1 in cells lacking endogenous Pit-1 

(COS-7) led to significant activation of ras-dva promoter activity. On the other hand, 

mutagenesis of either putative GR binding site or both sites in combination did not reduce 
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induction of ras-dva promoter activity by CORT, indicating that additional DNA 

elements within the 5’-flanking region are responsible for glucocorticoid regulation. In 

conclusion, we have identified ras-dva as a glucocorticoid-regulated gene that is most 

likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary 

gland.  

Introduction 

In the developing anterior pituitary gland, terminally differentiated hormone-

producing cell types arise during the latter half of embryogenesis (53, 77, 87, 95). In both 

mammals and birds, circulating glucocorticoids increase toward the end of embryonic 

development (174, 265, 266) and are thought to play a critical role in functional 

maturation of the pituitary through initiation of hormone production in at least two of 

these pituitary cell types, GH-producing somatotrophs and PRL-producing lactotrophs 

(44, 121, 147-150, 152, 155, 160, 267). Glucocorticoids also repress POMC expression 

during negative feedback on ACTH release from pituitary corticotrophs (268), although it 

is unclear when this feedback is established.  

Ras-dva was identified as a transcript upregulated between mid- and late-

embryogenesis in a study investigating global gene expression changes in the chicken 

embryonic pituitary gland that occur around cellular differentiation of cells in the Pit-1 

lineage (TSH-producing thyrotrophs, somatotrophs, and lactotrophs) (124). The observed 

increase in pituitary ras-dva mRNA between e12 and e17 occurs concurrently with, or 

just prior to, appearance of pituitary somatotrophs and lactotrophs in the chicken, 

respectively (53, 94, 103-106, 127, 149). In addition to the correlation of pituitary ras-dva 

expression with the increase in circulating CORT in the chick embryo that occurs around 
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the same time (10, 138, 140, 141), ras-dva was recently identified as a gene whose 

mRNA levels are increased in cultured chicken embryonic pituitary cells treated with 

CORT (235). Based on its developmental expression pattern and its upregulation by 

CORT in embryonic pituitary cells, ras-dva may be mediating effects of glucocorticoids 

in this tissue.  

Anf-1, also known as Hesx1, is a homeobox factor that functions as a 

transcriptional repressor to regulate expression of transcription factors involved in 

anterior embryo patterning (269). Ras-dva was originally identified in a screen aimed at 

discovering targets that are downregulated by Xenopus Anf-1/Hesx1 in anterior neural 

ectoderm (259), and subsequently determined to be an essential component in the FGF 

signaling network required for patterning of the early anterior neural plate and adjacent 

ectoderm in Xenopus laevis embryos (260). Importantly, during embryogenesis, Anf-

1/Hesx1 expression eventually becomes restricted to the ventral diencephalon and 

Rathke’s pouch, the pituitary primordium, and it is one of the earliest markers of the 

anterior pituitary gland (77, 78). In the absence of Anf-1/Hesx1, a small number of 

embryos lack a pituitary gland altogether but the majority of mice exhibit hypopituitarism 

that ranges from combined pituitary hormone deficiency to isolated growth hormone 

deficiency (79).  

Thus, not only is ras-dva known to be expressed and developmentally regulated in 

the anterior pituitary gland (124), it was initially discovered as a target of a transcription 

factor essential for normal pituitary development (259), although in an extra-pituitary 

context. Despite this, no studies examining the presence or regulation of ras-dva in the 

neuroendocrine system have been reported, and there have been no published reports 



 135

regarding glucocorticoid regulation of this gene. Therefore, the objectives of this study 

were four-fold: 1) to determine the expression pattern of chicken ras-dva, both in terms of 

its ontogeny in the developing pituitary and its tissue distribution in the embryo; 2) to 

characterize glucocorticoid regulation of ras-dva in embryonic pituitary cells; 3) to 

identify regions of the ras-dva gene that may be involved in its pituitary and/or 

glucocorticoid regulation; and 4) to determine whether overexpression of ras-dva can 

mimic glucocorticoid effects on pituitary hormone expression.       

Materials and Methods 

Sequencing of chicken ras-dva and comparison with other species  

The putative chicken ras-dva clone was part of a neuroendocrine cDNA library used 

to construct a custom cDNA microarray and was initially identified through random 

sequencing of the library in combination with BLAST comparisons (270, 271). The 

plasmid containing chicken ras-dva (pgp2n.pk003.j19; GenBank accession no. 

BM492047) was purified according to a standard protocol (272), and the clone was 

sequenced in its entirety in both directions so that there was sequence from at least two 

reactions covering each region of the assembled full-length cDNA. Primers (Sigma-

Aldrich) used for sequencing were Sport6.1 SP6, Sense462, and Sense1145 for the 

forward reactions, and Sport6.1 T7, Antisense734, and qRT-PCR reverse primer for the 

reverse reactions (Tables 2 and 3). Sequencing reactions and assembly of overlapping 

sequences into full-length cDNA were performed as described in the Materials and 

Methods section of Chapter 3.  

BLAST searches of GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Ensembl 

(http://www.ensembl.org/index.html) databases were conducted using the putative coding 
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sequence in order to identify potential ras-dva homologs in other species, and any 

BLAST scores ≥200 were considered positive. The predicted amino acid sequence for 

chicken ras-dva was compared with those of other species using the AlignX tool of 

VectorNTI 9.0 (Invitrogen). The chicken sequence was compared with zebra finch 

(Taeniopygia guttata), green anole (Anolis carolinensis), common platanna frog 

(Xenopus laevis), western clawed frog (Xenopus tropicalis), fugu puffer (Takifugu 

rubripes), stickleback (Gasterosteus aculeatus), rainbow trout (Oncorhynchus mykiss), 

green spotted puffer (Tetraodon nigroviridis), medaka (Oryzias latipes), zebrafish (Danio 

rerio), sea lamprey (Petromyzon marinus), and opossum (Monodelphis domestica) 

sequences. Zebra finch and opossum sequences were predicted by automated 

computational analysis and derived from genomic sequence, and sequences from 

remaining species were from cloned cDNAs. Biology Workbench 

(http://workbench.sdsc.edu/) was used to create the alignment (CLUSTALW tool), color-

coding (BOXSHADE tool), and unrooted phylogenetic tree diagrams. The chicken ras-

dva cDNA sequence was compared with the chicken genome sequence using Ensemble 

(http://www.ensembl.org/Gallus_gallus/Info/Index). Analysis of the 5’- and 3’-flanking 

regions of the chicken ras-dva gene for predicted transcription factor binding sites was 

performed using Transcription Element Search System (TESS; 

http://www.cbil.upenn.edu/cgi-bin/tess/tess). Default search parameters were used, 

except stringency was increased by changing the minimum log-likelihood ratio score 

from 12 to 18 to decrease the total number of putative sites identified and, therefore, 

reduce the likelihood of false prediction. 
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Animals, tissue collection, and pituitary dispersions 

 Broiler strain chicken embryos were incubated and removed on the appropriate 

day or allowed to hatch as described in the Materials and Methods section of Chapter 2. 

Pituitary samples described in Chapter 2 were used for the ontogeny experiment. In a 

separate experiment, anterior pituitary glands from d7, d21, d35, and d48 chickens were 

also collected (n=4 replicate samples per age). For the tissue distribution experiment, 

pituitary, hypothalamus, whole brain, lung, kidney, spleen, liver, heart, breast muscle, 

and stomach (proventriculus) were collected from e18 chickens. Four replicate samples 

were collected for each tissue (n=4). Two hypothalami were pooled for each replicate, 

and one bird per replicate was used for the remainder of the tissues. Caudal and cephalic 

lobes (n=4 replicate samples each) of the anterior pituitary from e18 chickens were 

collected to examine ras-dva distribution within the pituitary gland. Tissues were 

immediately frozen in liquid N2 and stored at -80 C until RNA extraction. For cell culture 

experiments, pituitaries were isolated and dispersed from e11 and e18 chickens as 

described in the Materials and Methods section of Chapter 3. For each replicate trial of a 

given experiment, anterior pituitaries from e11 (50-60 embryos) or e18 (10 embryos) 

embryos were isolated and pooled. On average, an e18 chicken anterior pituitary gland 

yields 1x106 cells. All procedures were approved by the Institutional Animal Care and 

Use Committee at the University of Maryland. 

Cell culture 

 Embryonic pituitary cells and cell lines were cultured as described in the 

Materials and Methods section of Chapter 3. To confirm glucocorticoid-induced 

upregulation of ras-dva in the anterior pituitary gland, dispersed cells from e11 and e18 
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chickens were cultured in the absence or presence of CORT (1 nM) for indicated times. 

To investigate glucocorticoid regulation of pituitary ras-dva, the same samples from the 

following experiments described in Chapter 3 were also analyzed for ras-dva mRNA 

levels: e11 cells treated with CORT in the presence or absence of ActD to determine a 

requirement for transcription (Figure 12); e11 cells pretreated with CORT and cultured 

for 24 additional hours with ActD to evaluate CORT affects on mRNA stability (Figure 

13); and e11 cells cultured with CORT in the presence or absence of CHX, HC toxin, and 

TSA to assess a requirement for protein synthesis and HDAC activity (Figures 14 and 

15). Cells were harvested at the completion of each experiment by retrypsinization, 

immediately frozen in liquid nitrogen, and stored at -80 C until RNA extraction. The 

monkey kidney fibroblast cell line, COS-7 was kindly provided by Dr. G. L. Hager 

(National Cancer Center, Bethesda, MD) and maintained in DMEM supplemented with 

10% fetal bovine serum (Equitech-Bio, Inc) in 75-cm2 flasks (Corning Life Sciences).  

Plasmids, transfection, analysis of promoter activity, and flow cytometry 

Two fragments of the 5’-flanking region of the ras-dva gene were amplified from 

chicken genomic DNA extracted from liver using primers listed in Table 3. With the 

exception of the 5’-2kb_rev primer, which binds to the region in an area that contains an 

EcoRI site, primers have restriction enzyme sites at their 5’-end. Amplifications were 

conducted using Phusion High-Fidelity PCR Master Mix (Finnzymes, Inc., Woburn, MA) 

according to the manufacturer’s protocol. Reactions contained 250 ng genomic DNA and 

500 nM each primer, and the PCR cycling parameters were as follows: 98 C for 10 s; 35 

cycles of 98 C for 1 s, 60 C for 5 s, and 72 C for 1 m; and a final extension at 72 C for 1 

m. All fragments are numbered relative to the ATG start codon, rather than the predicted 
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Table 3. Primers used to characterize chicken ras-dva and investigate its regulation within 
the embryonic anterior pituitary gland. 
 
Gene ID1 Forward Primer (5’ → 3’) Reverse Primer (5’ → 3’) 
qRT-PCR 

Ras-dva 34869 ACACCAGCGGCAGTTACTCCT GTAGACCAAAGCGAAGGCGTC 
GH 00328 CACCTCAGACAGAGTGTTTGAGAAA CAGGTGGATGTCGAACTTATCGT 

PRL 20680 AGGAATGGAGAAAATAGTTGGGC TCATTTCCAGCATCACCAGAAT 
POMC 36767 CGCTACGGCGGCTTCA TCTTGTAGGCGCTTTTGACGAT 
TSH-β 04024 ACTGCCTGGCCATCAACAC ACACGTTTTGAGACAGAGCACTTTT 

GHRH-R 08374 CCTTGGCATTCGGCTTTATTTAG TCAGGAAACAGTAGAGGAGTGCTACA 
SSTR2 38508 CTGCTGGCTCCCCTTCTACA TGGGCACGATCAGGACAGA 

Total Pit-12  AAATCAATACTGTCCAAGTGGCTG GTGGTTCTGCGCTTCCTCTT 
PGK-1 12893 CTACATGCTGTGCGAAGTGGAA GCCAGGAAGAACCTTACCCTCTAG 
ACTB3  CAGGATGCAGAAGGAGATCACA TAGAGCCTCCAATCCAGACAGAGTA 

 

Other Ras-dva primers 
Full-length   CAAACTTTGCAGAACCGGGAGCAG CCGCTTTGCATCACCGTGTTTATTG 

Sense462  AAATTCCCTCCCATCGTGGT  
Sense135  AGGGAAGGAGAAGAGCCACG  

Sense1145  AGGGCAGGATCCCAAAAAGG  
Antisense734   CTGTTGGTTTTGTTCATGGG 

 

Cloning 5’-flanking region 
5’-4kb_fwd  CCGGAATTCCCTCTCTGCCGCTGCTAATCCTGG 
5’-2kb_fwd  CCCAAGCTTGGGGAATTCCTTCCTGATGAAAAGAAATATGCCTATTTC 

5’-flank_rev  CCCAAGCTTGGGGGCTGGGAGCAGAGGGGACG 
5’-2kb_rev  GGAAGGAATTCTGTTTGTGCTTCTTGGTG 
5’-3.2_fwd  GTTACACTGGGGTCATGGGGAGC 
5’-2.4_fwd  GGGCAAGCTCAGCATGAAGTCG 
5’-2.1_fwd  CCGAAATCCTCCGTTGCTTTGAGG 
5’-1.5_fwd  GCCAAAACTGAAGGGTGAAACTGGC 
5’-0.9_fwd  CTCCACAGCCGGTGCCAGG 
5’-0.3_fwd  GGTGCGGTGCTCTCCAGGG 
5’-0.3_rev   CCCTGGAGAGCACCGCACC 
5’-0.9_rev   CCTGGCACCGGCTGTGGAG 
5’-1.5_rev   GCCAGTTTCACCCTTCAGTTTTGGC 
5’-2.4_rev   CGACTTCATGCTGAGCTTGCCC 
5’-3.2_rev   GCTCCCCATGACCCCAGTGTAAC 

pGL3-Basic_47704  GCTGTCCCCAGTGCAAGTGCAG  
pGL3-Basic_904   CCATGGTGGCTTTACCAACAGTACCG 

 

Site-directed mutagenesis primers 
Prox-Pit1_fwd GCGCTGCCGGCAGCGGTGAGAGTTCCCCCTGACGTGCGCAACGCAGCGGTGC 
Prox-Pit1_rev GCACCGCTGCGTTGCGCACGTCAGGGGGAACTCTCACCGCTGCCGGCAGCGC 
Dist-GR_fwd AGAGATGCTATAGAAACTCCTCTGAGCCTGCTCCACGCGGTGCTAAATCCCTTTAGTCCTAACG

AGAGG 
Dist-GR_rev CCTCTCGTTAGGACTAAAGGGATTTAGCACCGCGTGGAGCAGGCTCAGAGGAGTTTCTATAGC

ATCTCT 
Prox-GR_fwd ACCTTTCAGGCTCTCGGTAACCATAGCCTCCACGCGGTGAAAACGCACAGCAGACAGCTGATG 
Prox-GR_rev CATCAGCTGTCTGCTGTGCGTTTTCACCGCGTGGAGGCTATGGTTACCGAGAGCCTGAAAGGT 

 

1ID is the transcript identification from Ensembl chicken genome assembly 
(http://www.ensembl.org/Gallus_gallus/Info/Index) and is preceded by ENSGALT000000 in all cases. 
 
2The primers used to measure total Pit-1 mRNA levels detect all 3 transcript variants (ENSGALT000000): 
Pit-1α (30398); Pit-1β (24989); and Pit-1γ (36836).  
 
3The sequence for ACTB is not on the assembled chicken genome and primers were designed based on the 
sequence for chicken cytoplasmic beta-actin in GenBank (accession no. X00182). 
 
4The pGL3-Basic vector (Promega) was firefly luciferase reporter vector used to determine Ras-dva 
promoter activity. The pGL3-Basic_4770 primer is on the 5’-end of the multiple cloning site and the pGL3-
Basic_90 primer is on the 3’-end of the multiple cloning site relative to the luciferase reporter gene. 
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transcriptional start site. A region from -1 bp to -2,009 bp was amplified using 5’-

2kb_fwd and 5’-flank_rev primers, and the resulting fragment was cloned into an empty 

reporter construct (pGL3-Basic; Promega) using HindIII to generate the pGL3-2kb 

reporter construct. A region from -1,999 bp to -4,154 bp was amplified using 5’-4kb_fwd  

and 5’-2kb_rev primers, and the resulting fragment was cloned into the pGL3-2kb 

plasmid using EcoRI to generate the pGL3-4kb reporter construct. As such, pGL3-2kb 

contains a luciferase reporter driven by 2,009 bp of the chicken ras-dva 5’-flanking 

region, and pGL3-4kb contains a luciferase reporter driven by 4,154 bp of the chicken 

ras-dva 5’-flanking region. Both reporter vectors were sequenced in their entirety with 

vector- and insert-specific primers listed in Table 3. The QuikChange II Site-Directed 

Mutagenesis Kit (Agilent Technologies, Inc., Santa Clara, CA) was used according to the 

manufacturer’s directions to mutate the proximal putative Pit-1 site within pGL3-2kb and 

the distal and proximal putative GR binding sites within pGL3-4kb. Primers (Table 3) for 

site directed mutagenesis were designed using the QuikChange Primer Design application 

available from the company’s website (http://www.agilent.com/genomics/qcpd). 

Reactions contained 25 ng plasmid template and 125 ng each primer. The proximal 

putative Pit-1 site was mutated within pGL3-2kb to generate pGL3-mPit1 using the 

following cycling parameters: 95 C for 30 s; and 18 cycles of 95 C for 30 s, 55 C for 1 m, 

and 68 C for 7 m. The parameters for mutating the putative GR binding sites within 

pGL3-4kb were identical, with the exception that the 68 C extension was conducted for 9 

m. The proximal GR binding site was mutated to create pGL3-mpGR, the distal GR 

binding site was mutated to create pGL3-mdGR, and the proximal GR binding site within 

pGL3-dGR was mutated to create the double GR binding site mutant, pGL3-mGR. The 
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proximal putative Pit-1 site was mutated from ACAAATGCAT to CCCCCTGACG, the 

proximal predicted GR binding site was mutated from AGCACAGATG to 

CTCCACGCGG, and the distal predicted GR site was mutated from AGAACAGCTG to 

CTCCACGCGG (underlined nucleotides were mutated). All plasmids were sequenced to 

confirm presence of the mutations, and sequence from mutated plasmids was re-analyzed 

using TESS to verify that mutations did not create additional putative transcription factor 

binding sites. Expression vectors containing the coding region for chicken Pit-1α 

(Mukherjee and Porter, unpublished) and the coding region for chicken GR (11) cloned 

into the empty expression vector Sport6.1 were generated by our laboratory. The plasmid 

from our neuroendocrine cDNA library (124, 270, 271) that contained full-length chicken 

ras-dva (pgp2n.pk003.j19) in Sport6.1 was used in ras-dva overexpression experiments.  

Cells were transfected using Lipofectamine 2000 (Invitrogen) in Opti-MEM I as 

described in the Materials and Methods section of Chapter 3. In experiments 

investigating ras-dva promoter activity in embryonic pituitary cells, e11 cells (1x106/well 

in a 24-well format) were transfected with 1 µg pGL3-Basic, 1 µg pGL3-2kb, or 1 µg 

pGL3-4kb together with 20 ng pRL-SV40. After 6 h, transfection medium was replaced 

with cell culture medium, and cells were allowed to recover for 18 h. Subsequently, cells 

were left untreated or treated with CORT (100 nM) for 6 h or 24 h prior to lysis. In the 

experiment investigating the effect of mutating the proximal Pit-1 site, e11 pituitary cells 

were plated and transfected as described above with 1 µg pGL3-Basic, 1 µg pGL3-2kb, 

or 1 µg pGL3-mPit1 in combination with 20 ng pRL-SV40. Cells were cultured under 

basal conditions an additional 42 h after transfection prior to lysis. In the experiment 

investigating the effect of mutating the predicted GR binding sites, e11 pituitary cells 
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were plated and transfected as described above with 1 µg of pGL3-Basic, pGL3-4kb, 

pGL3-mdGR, pGL3-mpGR, or pGL3-mGR together with 20 ng of pRL-SV40. Following 

transfection, cells were allowed to recover for 18 h and left untreated or treated with 

CORT (100 nM) for 6 h prior to lysis. In the experiment evaluating effects of ras-dva 

overexpression on GH promoter activity, cells were plated and transfected as described in 

the Materials and Methods section of Chapter 3 with 1 µg Sport6.1 or 1 µg ras-dva 

expression vector in addition to pRL-SV40 and pGL3-Basic or the pGL3-1727 reporter 

driven by the GH 5’-flanking region. After recovery, cells were left untreated or treated 

for 20 h with CORT (100 nM) prior to lysis. 

When COS-7 cells were used in transfection experiments, cells were recovered 

from culture flasks by retrypsinization in the presence of 0.03% EDTA and re-plated 

(2.5x105/well in a 24-well plate format) in growth medium for 24 h. To investigate 

functionality of the predicted proximal Pit-1 site, COS-7 cells were transfected with 0.5 

µg pGL3-Basic or 0.5 µg pGL3-2kb and pRL-SV30 together with 0.5 µg Sport6.1 or 0.5 

µg Pit-1 expression vector in Opti-MEM I containing 2 µl Lipofectamine. After 6 h, 

transfection medium was replaced with serum-free DMEM supplemented with 0.1% 

BSA, and cells were cultured an additional 42 h under basal conditions prior to lysis. To 

investigate functionality of the putative GR binding sites, COS-7 cells were transfected 

and cultured as described above with 0.5 µg pGL3-Basic or 0.5 µg pGL3-4kb and pRL-

SV30 together with 0.5 µg Sport6.1 or 0.5 µg GR expression vector. During the final 6 h 

of culture, CORT (100 nM) was added to some wells prior to lysis. For experiments 

evaluating ras-dva or GH promoter activity, cells were lysed and reporter gene activity 

was determined and normalized as described in the Materials and Methods section of 
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Chapter 3. Promoter activity (mean + SEM) is expressed as fold induction over basal 

cells transfected with pGL3-Basic and, where appropriate, Sport6.1.  

In the experiment investigating a potential role for ras-dva in regulating gene 

expression in the embryonic anterior pituitary gland, e11 chicken cells (3x106/well in a 

12-well format) were co-transfected for 6 h with 1 µg GFP expression vector (228) and 

either 1 µg Sport6.1 or 1 µg ras-dva expression vector as described in the Materials and 

Methods section of Chapter 3. Following transfection, cells were allowed to recover for 

18 h prior to addition of CORT (1 nM) to appropriate wells for 20 h. Cells were collected 

by retrypsinization, and successfully transfected cells were identified using flow 

cytometric detection as described in the Materials and Methods section of Chapter 3. 

Sorting of the GFP-positive population (10.0 ± 0.3% of cells; n=3 replicate experiments) 

resulted in collection of approximately 75,000 GFP-positive cells per group. Cells were 

collected as described in Chapter 3, and total RNA was immediately extracted as 

described below. 

qRT-PCR 

 Total RNA was isolated from cultured cells and anterior pituitary, lung, kidney, 

and spleen tissue with the RNeasy Mini kit (Qiagen). Total RNA was isolated from 

hypothalamus, whole brain, liver, heart, breast muscle, and stomach tissue using the 

RNeasy Midi kits (Qiagen). Heart, breast muscle, and stomach tissue were digested with 

proteinase K (100 µg/ml) for 20 m at 55 C after homogenization, and all RNA extractions 

included an on-column DNase digestion. Quantification of RNA, RT reactions, and real-

time PCR reactions were all performed as described in the Materials and Methods 

sections of Chapters 2 and 3.   
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Primers (Table 3) designed as described in the methods of Chapter 2 were used to 

detect mRNA levels of chicken ras-dva, GH, PRL, POMC, TSH-β, GHRH-R, SSTR2, 

total Pit-1, PGK1, and ACTB. In the ontogeny experiment, ras-dva mRNA levels in 

pituitary glands from e10 through d48 chickens were transformed and normalized to 

PGK1 using the equation described in the Materials and Methods section of Chapter 2. 

For both experiments (e10 through d7, and d7 through d48), the level of ras-dva mRNA 

in each sample was divided by the mean of ras-dva mRNA levels on d7, such that data 

(mean + SEM) are expressed relative to d7 (equal to 100%) for each experiment. In the 

tissue distribution experiments and all cell culture experiments, the amount of target gene 

mRNA was normalized to the amount of ACTB mRNA and transformed using the 

equations described in the Materials and Methods section of Chapter 3. For the tissue 

distribution experiment, the transformed value for each sample was divided by the mean 

of the transformed value for anterior pituitary tissue, such that data (mean + SEM) are 

expressed relative to levels in the pituitary gland on e18 (equal to 100%). For the 

experiment assessing mRNA levels in caudal and cephalic anterior pituitary lobes, the 

transformed value for each sample was divided by the mean of the transformed value for 

the lobe with the highest expression level for a particular gene, such that data (mean + 

SEM) are expressed relative levels in the caudal or cephalic lobe (equal to 100%). In cell 

culture experiments, the transformed value for each sample was divided by the mean of 

the transformed value for basal cells receiving no CORT or inhibitors and, where 

appropriate, transfected with Sport6.1. Data for each gene (mean + SEM) are presented as 

fold induction over basal mRNA levels for each experiment. In the experiment 

investigating the effect of CORT treatment on ras-dva mRNA stability, t1/2 (h) calculation 
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and data (mean + SEM) presentation are as described in the Materials and Methods 

section of Chapter 3. 

RT-PCR and 3’-rapid amplification of cDNA ends (RACE) 

 A pool of cDNA for each tissue collected on e18 was made from the four 

replicate samples, and primers (Table 3) which amplify full-length ras-dva cDNA were 

used as an alternative method to qRT-PCR to assess ras-dva tissue distribution. The no 

RT control for genomic contamination and a no template control were also analyzed. 

Reactions were conducted using GoTaq Green Master Mix (Promega) as directed, and 

contained 500 nM each primer and 1 µl cDNA, no RT, or water template, as appropriate. 

Cycling parameters were as follows: 95 C for 3 m; 35 cycles of 95 C for 45 s, 52 C for 45 

s, and 72 C for 2 m; and a final extension at 72 C for 5 m. 

 For 3’-RACE, cDNA from e18 pituitary glands and a no RT control were 

amplified using two consecutive, nested PCR reactions. The first reaction contained 

undiluted cDNA or no RT template and was amplified using Sense135 (Table 3) and 

oligo-dT (5’-CGGAATTCTTTTTTTTTTTTTTTTTTTTV-3’) primers, purified with a 

spin column-100 (Sigma–Aldrich), and diluted 1:100 for subsequent amplification using 

Sense462 (Table 3) and oligo-dT primers. Reactions contained 1 µl template, 1 µM 

sense135 or sense462, and 1.5µM oligo-dT primer and were amplified using GoTaq 

Green Master Mix (Promega) with the following cycling parameters: 94 C for 3 m; 30 

cycles of 94 C for 45 s, 48.2 C for 45 s, and 72 C for 2 m; and a final extension at 72 C 

for 7 m. Products were visualized using agarose gel (1%) electrophoresis and ethidium 

bromide staining. No product was visible after the first amplification, and the 816 bp 

product visible after the second amplification was sequenced to confirm it was ras-dva. 
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Data analysis 

The ras-dva ontogeny qRT-PCR data were analyzed as described in the Materials 

and Methods section of Chapter 2. Promoter activity and cell culture qRT-PCR data 

(expressed as fold induction over basal cells receiving vehicle and transfected with empty 

reporter and expression vectors, as appropriate), were subjected to statistical analysis as 

described in the Material and Methods section of Chapter 3. Tissue distribution data 

(expressed as percentage of pituitary levels or percentage of the lobe with the highest 

levels for a given gene) were log2-transformed prior to statistical analysis using SAS 

software (SAS Institute). To examine ras-dva mRNA tissue distribution on e18, data were 

analyzed by analysis of variance using the MIXED models procedure with differences 

between groups determined by the test of least significant difference (PDIFF). Data were 

analyzed using the t-test procedure (two-tailed) in the experiment evaluating mRNA 

levels in caudal and cephalic pituitary lobes.  

Results 

Chicken ras-dva is highly similar to ras-dva from other vertebrates  

Although a homolog for chicken ras-dva (accession no. AY729886) has 

previously been identified through a bioinformatics approach (260), the submission was 

based on screening GenBank databases using BLAST searches for Xenopus laevis ras-

dva homologs and was not verified by direct sequencing. Therefore, we sequenced the 

insert contained in the ras-dva clone in its entirety in both directions. Chicken ras-dva 

mRNA (accession no. HQ317880) is 1,276 nucleotides long, and the longest open 

reading frame encodes a predicted protein consisting of 208 amino acids. Our mRNA 

sequence contains 122 nucleotides in the 5’-untranslated region (UTR) and 527 
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nucleotides in the 3’-UTR. It should be noted that the final 156 nucleotides in the 3’-UTR 

of our sequence did not align very well with that of the chicken ras-dva sequence already 

in GenBank, so 3’-RACE was performed on a cDNA sample generated from a pool of 

four e18 chickens to determine if alternative transcript variants exist that differ in their 

3’-UTR. The resulting PCR product (Figure 28B) was of the predicted length (816 bp), 

and sequencing confirmed that a single variant corresponding to our clone insert exists in 

the embryonic pituitary gland. Importantly, this sequence contains a polyadenylation 

signal (AAUAAA) just upstream of the 3’-end of our sequence and aligns perfectly with 

the chicken genome sequence. Based on alignments of our ras-dva insert sequence with 

the assembled chicken genome, ras-dva is an intronless gene and, therefore, consists of 

only one exon. 

BLAST searches of available databases were conducted using the putative coding 

sequence of chicken ras-dva to identify potential homologs in other species. Orthologs 

were identified in one mammal, opossum, and several non-mammalian vertebrate 

species, with frog and several of the fish species having multiple ras-dva paralogs. No 

orthologs were identified in any other mammalian species or invertebrate organism. 

Comparison of the predicted amino acid sequence of chicken ras-dva with that of another 

bird, a lizard, two frog species, several species of fish, and opossum indicates that there is 

high sequence similarity among these vertebrates (52-92%), especially when positive 

amino acid substitutions are considered (59-95%). As expected, the species with highest 

similarity are zebra finch and green anole, while sea lamprey and opossum ras-dva are 

least similar with chicken ras-dva (Table 4). The predicted amino acid sequence of 

chicken ras-dva and those of other species were aligned (Figure 26A). In cases where a 
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species had multiple ras-dva paralogs, the one with the highest identity to chicken ras-dva 

(Table 4) was used. Black underlined regions depict the G-box motifs necessary for GTP 

binding and hydrolysis, and consensus sequences for the ras-dva family of small GTPases 

(260) are given in the legend of Figure 26. The dotted underlined region is the C-terminal 

prenylation site (-CaaX; where “C” is cysteine; “a” is any aliphatic amino acid; and “X” 

is cysteine or serine), and the cysteine residue has been demonstrated as essential for 

 
Table 4. Comparison of predicted amino acid (AA) sequence of chicken ras-dva with 
those of other vertebrate species. 
 
 
Species 

 GenBank 
Accession No.

 
AA1 

% Identical 
AA 

% Positive 
Substitutions 

Zebra Finch2 Ras-dva XP_002194543 208 92.3 94.7 
Green Anole Ras-dva ABY84978 208 84.7 88.0 
X. laevis Ras-dva 

Ras-dva2 
NP_001082322 
NP_001165979 

209 
209 

46.7 
66.7 

59.4 
75.2 

X. tropicalis Ras-dva 
Ras-dva2 

NP_001011503 
NP_001037874 

211 
209 

46.7 
67.6 

59.0 
76.2 

Fugu Puffer Ras-dva 
Ras-dva2 
Ras-dva3 

ABB84859 
ABB84860 
ABB84861 

212 
208 
206 

52.3 
74.2 
72.2 

63.6 
82.3 
78.9 

Stickleback Ras-dva3 ABB84862 208 73.2 81.3 
Rainbow Trout Ras-dva3 ABB84863 216 71.9 79.3 
Green Spotted Puffer Ras-dva CAG02679 205 74.2 80.4 
Medaka Ras-dva3 ABB84864 208 67.5 77.0 
Zebrafish Ras-dva 

Ras-dva2 
NP_001073403 
NP_001007782 

211 
208 

54.7 
75.1 

65.1 
83.3 

Sea Lamprey Ras-dva ABY86653 237 49.2 58.8 
Opossum2 Ras-dva XP_001377674 219 52.9 62.4 

 
1Chicken ras-dva has 208 amino acids. 
 
2These sequences were predicted by automated computational analysis and are derived 
from genomic sequence. 
 

Figure 26. Chicken ras-dva is highly similar to ras-dva from other vertebrate species. (A) Predicted amino 
acid sequences for the indicated species were aligned. The paralog with the highest identity to chicken ras-
dva (see Table 4) was used from species with multiple ras-dva genes. Identical residues are denoted in dark 
gray and similar residues are denoted in light gray. The G-box motifs (G1-G5) necessary for GTP binding 
and hydrolysis are underlined in black. Consensus for the ras-dva family of small GTPases are as follows: 
G1 – GAAGVGKT; G2 (switch) – (H/Y)RRTVEE; G3 – I(I/L)DTSGSY; G4 – (V/I)GNKX(D/E); G5 – 
F(V/L)ESSAK. The C-terminal CaaX box prenylation motif is underlined with dashed line. (B) Unrooted 
phylogenetic tree of ras-dva amino acid sequences from species listed in panel (A). The length of the lines 
connecting the species indicates the predicted evolultionary distance. 
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localization to the plasma membrane and other endomembrane structures (273). Despite 

the insertions in sea lamprey and opossum ras-dva proteins, the high

degree of similarity among the species is apparent. Phylogenetically, chicken ras-dva is 

closest to zebra finch and green anole ras-dva, furthest from opossum and sea lamprey, 

and lies between opossum and the other non-mammalian vertebrate species (Figure 26B). 

Ras-dva is developmentally regulated in the pituitary gland 

 The mature anterior pituitary gland consists of five major cell types that emerge 

during development in a temporally specific manner. Initiation of hormone transcription 

in these cells occurs during the second half of embryogenesis and continues during early 
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neonatal life in both mammals and birds (53, 87, 95, 104, 124). We characterized anterior 

pituitary levels of ras-dva mRNA during this time in order to evaluate if its expression in 

this tissue is regulated in a manner that indicates it may play a role in development of any 

pituitary cell type. In addition, we measured ras-dva mRNA in pituitary glands of birds 

between d7 and d48 (Figure 27). As expected from a previous report (124), ras-dva 

mRNA steadily increased from mid- to late-embryonic development, between e10 and 

e18 (P<0.05, n=4). Pituitary mRNA levels then began to decrease just prior to hatch and 

were equivalent to levels during mid-embryogenesis through d7. Consistent with the 

decrease in expression detected between late embryonic development and early post-

hatch, pituitary ras-dva mRNA decreased between d7 and d21 and was undetectable in 

older birds (P<0.05, n=4). This expression profile indicates that ras-dva may play a 

developmental role in this tissue, and it is most consistent with a potential role in 

maturation of somatotrophs and lactotrophs, based on timing of their appearance.  

Ras-dva is highly enriched in the pituitary gland during late embryogenesis 

 Based on the ontogenic profile observed in the developing and mature pituitary 

gland, tissue distribution of ras-dva mRNA was determined on e18, the age when levels 

in the anterior pituitary gland were observed to be highest. We examined ras-dva mRNA 

expression in neuroendocrine tissues as well as tissues that are important glucocorticoid 

targets, including pituitary, hypothalamus, whole brain, lung, kidney, spleen, liver, heart, 

breast muscle, and stomach (proventriculus). Standard RT-PCR analysis indicated that 

ras-dva mRNA was highly enriched in the pituitary gland and also detectable in 

hypothalamus, brain, kidney, and breast muscle (Figure 28A). The high level of ras-dva 

mRNA in the anterior pituitary relative to other tissues examined was confirmed with
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Figure 27. Ontogeny of ras-dva in the developing and mature avian anterior pituitary gland. Total RNA 
isolated from embryonic day 10 through post-hatch day 48 pituitaries (n=4) was analyzed by qRT-PCR to 
determine expression levels of ras-dva mRNA, which were normalized to PGK1 mRNA levels. The graph 
depicts results from two experiments, one profiling mRNA expression from embryonic day 10 through 
post-hatch day 7 and the other profiling expression from d7 through d48. The data are expressed relative to 
the level on d7 (set to 100%) for each experiment. Ras-dva mRNA was not detected (ND) on d35 and d48. 
Values (mean + SEM) denoted with different letters are significantly different from one another (P<0.05).  
 

qRT-PCR. Although it was detected everywhere, levels of ras-dva mRNA in the pituitary 

were over 1,200-fold higher than those in other tissues (Figure 28C; P<0.05, n=4). The 

tissues with the next highest expression level were those where ras-dva mRNA was 

detected using standard RT-PCR, namely hypothalamus, brain, breast muscle, and 

kidney. The high level of ras-dva mRNA in the pituitary during late embryogenesis, as 

well as elevated levels in the hypothalamus and brain, suggests it may play an important 

role in neuroendocrine system development or function during this time. 

Given the degree of pituitary specificity observed for ras-dva on e18, localization 

within this tissue was further defined in an attempt to implicate a functional role for ras-
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Figure 28. Ras-dva mRNA is highly enriched in the anterior pituitary during late embryogenesis and 
expressed in both caudal and cephalic lobes of the avian pituitary gland. (A) Agarose gel picture depicting 
RT-PCR reactions for ras-dva and ACTB from e18 pituitary (Pi), hypothalamus (Hy), whole brain (Br), 
lung (Lu), kidney (Ki), spleen (Sp), liver (Li), heart (He), breast muscle (Mu), and stomach (St). Control 
reactions containing no reverse transcriptase (RT-) and no template (NT) were also analyzed. (B) Agarose 
gel picture of the 3’-RACE PCR product and RT- control conducted on an e18 pituitary sample. (C) Levels 
of ras-dva mRNA in the indicated e18 tissues (n=4) were determined by qRT-PCR and are expressed 
relative to the level in the pituitary gland. Levels of ras-dva mRNA were normalized to ACTB mRNA 
levels. Inset depicts levels in extra-pituitary tissues. Values (mean + SEM) without a common letter are 
significantly different (P<0.05). (D) Levels of GH, PRL, POMC, TSH-β, and ras-dva mRNA were 
measured with qRT-PCR in caudal and cephalic pituitary lobes (n=3) collected from e18 chicks. Levels of 
mRNA for each gene are expressed relative to the lobe with the highest expression level for that gene (set 
to 100%) and were normalized to ACTB mRNA levels. Values (mean + SEM) denoted with an asterisk (*) 
indicate significantly higher levels in that lobe (P<0.05).   
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dva in a specific cell type(s) during late embryogenesis. The avian anterior pituitary 

consists of two anatomically distinct caudal and cephalic lobes, and four of the major 

pituitary cell types are unevenly distributed between the two lobes. GH-producing 

somatotrophs reside primarily in the caudal lobe, while PRL-producing lactotrophs, TSH- 

producing thyrotrophs, and ACTH-producing corticotrophs are mainly localized within 

the cephalic lobe (48-53, 128). Gonadotrophs, which produce LH and FSH, are initially 

present in the caudal lobe but spread throughout the entire gland as the pituitary develops 

(53, 54). We measured mRNA levels of GH, PRL, POMC, TSHβ, and ras-dva in caudal 

and cephalic portions of pituitary glands dissected from e18 chicks. Hormone mRNA 

levels were highly enriched in the appropriate lobes, as expected, and ras-dva mRNA 

levels were easily detected in both lobes but approximately 3-fold higher in the caudal 

lobe than in the cephalic lobe (Figure 28D; P<0.05, n=4). The distribution of ras-dva 

mRNA within both lobes of the pituitary gland indicates that it may play a role in 

multiple cell types that are each specific to different lobes, such as corticotrophs, 

somatotrophs, and lactotrophs. Alternatively, ras-dva may function in cell types that are 

more evenly distributed throughout the gland, such as gonadotrophs. 

Ras-dva is directly upregulated by glucocorticoids in embryonic pituitary cells 

The expression profile of ras-dva in the developing chicken pituitary gland is 

consistent with in vivo regulation by glucocorticoids, as ras-dva mRNA levels increased 

at the same time during embryogenesis that circulating CORT levels increase and 

decreased just around hatch similar to serum CORT (10, 138, 140, 141, 266, 274). 

Further, ras-dva appears to be upregulated by glucocorticoids in e11 chicken embryonic 

pituitary cells in vitro (235). To confirm that CORT can induce ras-dva in embryonic 
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pituitary cells from birds at an age when both pituitary ras-dva mRNA and circulating 

glucocorticoid levels are comparably low, and to determine whether CORT can induce 

ras-dva in cells from embryos at an age when pituitary ras-dva mRNA and circulating 

glucocorticoids are high, embryonic pituitary cells from e11 (n=4 replicate trials) and e18 

(n=3 replicate trials) chickens were left untreated or treated with CORT for the indicated 

times. On both ages, CORT increased ras-dva mRNA levels in pituitary cells at all time 

points examined (Figure 29; P<0.05). In the case of e18 pituitary cells, CORT treatment 

for as little as 30 m led to an increase in ras-dva mRNA (Figure 29B; P<0.05).  

Based on the rapid induction by CORT in both mid- and late-embryogenesis, a set 

of experiments was conducted to evaluate if ras-dva is a direct transcriptional target of 

glucocorticoids in the embryonic pituitary gland. In e11 pituitary cells, the transcriptional 

inhibitor ActD completely blocked induction of ras-dva by CORT (Figure 30A; P<0.05, 

n=3 replicate trials). Promoter activity from a reporter construct driven by 4,154 bp of the 

5’-flanking region of the chicken ras-dva gene (pGL3-4kb) was upregulated 

approximately 4-fold by CORT treatment of e11 cells (Figure 30B; P<0.05, n=3 replicate 

trials), indicating that transcriptional activation of the ras-dva gene occurs upon exposure 

to glucocorticoids. In order to determine if CORT treatment enhances ras-dva mRNA 

stability in addition to increasing transcriptional activation of the ras-dva gene, e11 

anterior pituitary cells (n=4 replicate trials) were cultured in the absence or presence of 

CORT for 6 h prior to addition of ActD to inhibit new gene transcription for various time 

points. Although ras-dva mRNA levels were stimulated by 6 h CORT treatment (Figure 

30C; P<0.05), half-life under basal conditions (t1/2=3.7±0.4 h) was the same as that under 

CORT-treated conditions (t1/2=3.6±0.6 h; P=0.98) and, therefore, CORT does not appear
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Figure 29. Glucocorticoids induce ras-dva mRNA expression in the chicken anterior pituitary gland during 
mid- and late-embryogenesis. (A) E11 (n=4) and (B) e18 (n=3) anterior pituitary cells were cultured in the 
absence or presence of CORT (1 nM) for the indicated times. Levels of ras-dva mRNA, analyzed using 
qRT-PCR and normalized to ACTB mRNA levels, are expresssed as fold induction over basal cells. Values 
(mean + SEM) without a common letter are significantly different (P<0.05). 
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Figure 30. Glucocorticoids induce ras-dva mRNA through transcriptional activation and not through 
enhancing ras-dva mRNA stability in the embryonic pituitary gland. (A) After pretreatment for 1 h with 
DMSO or the transcriptional inhibitor ActD (5 µg/ml), e11 chicken anterior pituitary cells (n=3) were 
cultured in the absence or presence of CORT (1 nM) and DMSO or ActD for 6 h. Levels of Ras-dva 
mRNA, analyzed by qRT-PCR and  normalized to ACTB mRNA levels, are expressed as fold induction 
over levels in basal cells receiving DMSO. (B) E11 anterior pituitary cells (n=3) were cultured in the 
absence or presence of CORT (100 nM) for 20 h following transfection with a firefly luciferase reporter 
construct containing 4,154 bp of the chicken ras-dva 5’-flanking region (pGL3-4kb) or an empty reporter 
vector (pGL3-Basic) in combination with a renilla luciferase expression construct. Promoter activity in 
each sample was determined by dividing firefly luciferase activity by renilla luciferase activity and is 
expressed as fold induction over basal cells transfected with pGL3-Basic. Inset depicts activity for the 
pGL3-Basic construct. (C) Anterior pituitary cells (n=4) from e11 chickens were left untreated or treated 
with CORT (1 nM) for 6 h, after which time ActD was added to the culture. Ras-dva mRNA levels were 
measured using qRT-PCR after 6 h of CORT treatment (left panel and time 0 h in right panel) and in cells 
collected at 2, 4, 8, 12, 16, 20, and 24 h after ActD addition. In the left panel, mRNA levels are expressed 
as fold induction relative to levels in basal cells receiving no CORT for the first 6 h of culture prior to 
addition of ActD. In the right panel, levels of mRNA in basal and CORT-treated cells are expressed relative 
to levels at 0 h after ActD addition for each condition (equivalent to the respective levels depicted in the 
left panel). Values (mean + SEM) without a common letter are statistically different (P<0.05). 
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to increase ras-dva mRNA stability. To determine if glucocorticoid upregulation of 

pituitary ras-dva is a direct effect, e11 anterior pituitary cells (n=3 replicate trials) were 

treated with and without CORT for 6 h in the absence or presence of CHX, an inhibitor of 

protein synthesis. Levels of ras-dva mRNA were induced by CORT, both in the absence 

and presence of CHX (Figure 31A; P<0.05). Finally, neither of the HDAC inhibitors, HC 

toxin nor TSA, decreased CORT induction of ras-dva mRNA in e11 pituitary cells 

(Figure 31B; P<0.05, n=4 replicate trials). Taken together, these results imply that the 

rapid induction of ras-dva expression by glucocorticoids during mid- and late-

embryogenesis results from direct transcriptional activation of the ras-dva gene.  

The ras-dva promoter is highly activated in embryonic pituitary cells  

 Expression of ras-dva mRNA is highly specific to the anterior pituitary gland 

during late embryogenesis, and ras-dva appears to be a direct transcriptional target of 

glucocorticoids in embryonic pituitary cells. Therefore, 5 kb of the 5’-flanking region and 

2 kb of the 3’-flanking region of the chicken ras-dva gene were analyzed for putative Pit-

1 and GR binding sites using TESS, a web-based search tool for transcription factor 

binding site prediction. The binding site for Pit-1, a pituitary specific transcription factor, 

is a rather degenerate AT-rich region with a consensus sequence of 

Ta/ttAT/aTT/aATT/aCAT, where upper-case letters are more highly conserved (275). 

Traditional GREs are an inverted repeat of a hexanucleotide motif with a 3 bp spacer, 

AGAACAnnnTGTTCT (6). Within approximately 4 kb of the ATG start codon, 6 

potential Pit-1 binding sites were identified and 2 putative GR binding sites were 

identified (Table 5). The predicted GR binding sites are actually one copy of the 

hexanucleotide motif, or a half-site. Based on this, we cloned two fragments of the 5’-
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Figure 31. Pituitary ras-dva is upregulated by glucocorticoids in the presence of the protein synthesis 
inhibitor cycloheximide and the histone deacetylase inhibitors HC toxin and TSA. (A) Anterior pituitary 
cells (n=3) from e11 chickens were cultured in the absence or presence of CORT (1 nM) with or without 
cycloheximide (10 µg/ml) for 6 h. Cells receiving cycloheximide were pretreated for 1.5 h prior to addition 
of CORT. (B) E11 pituitary cells (n=4) were pretreated for 1 h with DMSO, HC toxin (100 nM), or TSA 
(200 nM) prior to addition of no treatment or CORT (1 nM) for 16 h. (A,B) Levels of ras-dva mRNA, 
analyzed by qRT-PCR and normalized to ACTB mRNA levels, are expressed as fold induction over basal 
cells receiving DMSO. Values (mean + SEM) without a common letter are significantly different (P<0.05). 
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Table 5. Predicted1 Pit-1 and GR binding sites located within the 5’-flanking region of 
chicken ras-dva. 
 

Location2 Strand Sequence (5’→3’)3 

Pit-1   
-341 → -350 + ACAAATGCAT 

-2167 → -2176 + AAATATTCAT 
-2502 → -2514 + ATGAATTAATCCA 
-3200 → -3208 + AAAATGTAT 
-3221 → -3230 - ATGCATAGAT 
-3368 → -3377 + AATTAATCAC 

GR   
-2071 → -2080 + AGCACAGATG 
-4071 → -4062 + AGAACAGCTG 

 
1Pit-1 and GR binding sites were predicted using web-based tool Transcription Element 
Search System (TESS; http://www.cbil.upenn.edu/cgi-bin/tess/tess). 

 
2Locations of putative binding sites are relative to the ATG start codon. 
 

3Underlined nucleotides were changed to create mutated binding sites in pGL3-mPit1, 
pGL3-mpGR, pGL3-mdGR, and pGL3-mGR. 
 

flanking region into a luciferase reporter construct (Figure 32A). The longer 4,154 bp 

fragment contains all 8 putative binding sites (pGL3-4kb), and the shorter 2,009 bp 

fragment contains only the most proximal predicted Pit-1 binding site.  

 To investigate ras-dva promoter activity under basal and CORT-treated conditions 

in the embryonic pituitary gland, e11 anterior pituitary cells (n=3 replicate trials) were 

transfected with the empty reporter pGL3-Basic, pGL3-2kb, or pGL3-4kb and left 

untreated or treated with CORT for the final 6 h or 24 h of culture. Under basal 

conditions, pGL3-2kb was activated approximately 40-fold over pGL3-basic, and pGL3-

4kb was activated an additional 4-fold above pGL3-2kb, or approximately 160-fold over 

the empty reporter (Figure 32B, left; P<0.05). Furthermore, CORT treatment for either 6  

h or 24 h increased promoter activity of pGL3-4kb an additional 4-fold (Figure 32B, 

right; P<0.05), while having no affect on promoter activity of the shorter construct 

(P>0.05). The dramatic increase observed in promoter activity of the pGL3-2kb construct  
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Figure 32. The ras-dva promoter is highly activated in chicken embryonic anterior pituitary cells and can be 
induced by glucocorticoids. (A) Schematic depicting the two ras-dva promoter-driven firefly luciferase 
reporter constructs containing 4,154 bp (pGL3-4kb) or 2,009 bp (pGL3-2kb) of the chicken ras-dva 5’-
flanking region. The six putative Pit-1 binding sites are denoted with grey boxes, and the two putative GR-
binding sites are denoted with white boxes. (B) Anterior pituitary cells (n=3) from e11 chickens were 
cultured in the absence or presence of CORT (100 nM) for 6 or 24 h following transfection with an empty 
reporter vector (pGL3-Basic), pGL3-4kb, or pGL3-2kb in combination with a renilla luciferase expression 
construct. Promoter activity in each sample was determined by dividing firefly luciferase activity by renilla 
luciferase activity and is expressed as fold induction over basal cells transfected with pGL3-Basic. The left 
graph depicts promoter activity under basal conditions only. Inset in the right graph depicts activity for the 
pGL3-Basic construct. Values (mean + SEM) without a common letter are significantly different (P<0.05). 
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over the reporter lacking ras-dva cis regulatory elements in pituitary cells suggests that 

the most proximal putative Pit-1 binding site contained in this construct is involved in the 

constitutive expression. Likewise, the two predicted GR binding sites contained in pGL3-

4kb may play a role in glucocorticoid regulation of ras-dva in embryonic anterior 

pituitary cells. 

 Two approaches were taken to investigate functionality of the most proximal 

predicted Pit-1 binding site and the two putative GR binding sites identified by TESS. 

First, site-directed mutagenesis was used to mutate critical nucleotides in the sequences 

to the alternate purine or pyrimidine of their complement (i.e. A↔C, G↔T). The mutated 

nucleotides are underlined in Table 5. In the second approach, reconstitution of promoter 

activity through overexpression of Pit-1 or GR in a non-pituitary cell type lacking GR 

(COS-7) was evaluated. To assess whether the most proximal Pit-1 site is necessary for 

full ras-dva promoter activation in pituitary cells, e11 cells (n=3 replicate trials) were 

transfected with pGL3-Basic, pGL3-2kb, or pGL2-mPit1, a reporter construct in which 

the Pit-1 site was mutated in the context of pGL3-2kb, and cultured under basal 

conditions. Again, pGL3-2kb reporter activity was dramatically stimulated as compared 

to the empty reporter construct (Figure 33A; P<0.05), and, although pGL3-mPit1 was 

still activated over pGL3-Basic, it had significantly lower activity than pGL3-2kb 

(P<0.05). Reporter activity in COS-7 cells transfected with pGL3-2kb in either the 

absence of presence of Pit-1 was higher than activity in cells transfected with pGL3-

Basic (Figure 33B; P<0.05, n=4), indicating slight activation of the ras-dva promoter 
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even in non-pituitary cell types. More importantly, ras-dva promoter activity in COS-7 

cells co-transfected with pGL3-2kb and an expression vector for Pit-1 was approximately  

 

 

 
 
Figure 33. The most proximal Pit-1 binding site located in the chicken ras-dva 5’-flanking region is 
functional and necessary for full activation of the promoter in embryonic anterior pituitary cells. (A) E11 
pituitary cells (n=3) were cultured under basal conditions after tranfection with an empty reporter vector 
(pGL3-Basic), a reporter construct containing 2,009 bp of the chicken ras-dva 5’-flanking region (pGL3-
2kb), or a reporter construct containing the same fragment as pGL3-2kb in which the putative Pit-1 binding 
site was mutated (pGL3-mPit1) in combination with a renilla luciferase expression construct. Promoter 
activity in each sample was determined by dividing firefly luciferase activity by renilla luciferase activity 
and is expressed as fold induction over cells transfected with pGL3-Basic. The diagram on the left is a 
schematic depicting the two Ras-dva promoter-driven firefly luciferase reporter constructs. (B) Monkey 
kidney-derived COS-7 cells (n=4) were transfected with pGL3-Basic or pGL3-2kb and the empty 
expression vector Sport6.1 or an expression vector for chicken Pit-1α (Pit-1). Promoter activity in each 
sample was determined by dividing firefly luciferase activity by renilla luciferase activity and is expressed 
as fold induction over cells transfected with Sport6.1 and pGL3-Basic. Values (mean + SEM) without a 
common letter are statistically different (P<0.05). 
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2-fold higher than in COS-7 cells receiving pGL3-2kb and the empty expression vector, 

Sport6.1 (Figure 33B; P<0.05), indicating that Pit-1 can regulate ras-dva promoter 

activity.  

In the case of the predicted GR binding sites, 3 mutated constructs in which the 

distal GR site was mutated (pGL3-mdGR), the proximal GR site was mutated (pGL3-

mpGR), or both sites were mutated together (pGL3-mGR) were created in the context of 

pGL3-4kb. Pituitary cells from e11 chickens (n=3 replicate trials) were transfected with 

pGL3-Basic, pGL3-4kb, pGL3-mdGR, pGL3-mpGR, and pGL3-mGR and treated with 

and without CORT for 6 h. As observed previously, activity of pGL3-4kb was increased 

dramatically by CORT (Figure 34A; P<0.05). However, mutation of either putative GR 

binding site alone or the two in combination had no substantial impact on the CORT 

response of the ras-dva 5’-flanking region, although there was a slight, but significant, 

reduction in activation of pGL3-mdGR by CORT as compared to pGL3-4kb (Figure 34A; 

P<0.05). An approximate 50% reduction in promoter activity under basal conditions from 

constructs in which the distal GR binding site was mutated (pGL3-mdGR and pGL3-

mGR) was the largest observed effect in this experiment (Figure 34A; P<0.05). COS-7 

cells lack functional GR, and only in cells co-transfected with pGL3-4kb and an 

expression vector for GR was ras-dva promoter activity induced by CORT treatment 

(Figure 34B; P<0.05). However, while this may indicate that GR protein is necessary for 

the CORT induction of ras-dva promoter activity, the response was marginal at best. 



 165

 

 
Figure 34. Neither of the predicted GR binding sites located within 4 kb of the chicken ras-dva 5’-flanking 
region are involved in glucocorticoid-induced expression of ras-dva in the embryonic anterior pituitary 
gland. (A) E11 pituitary cells (n=3) were cultured in the absence or presence of CORT (100 nM) for 6 h 
after transfection with an empty reporter vector (pGL3-Basic), a reporter construct containing 4,154 bp of 
the chicken ras-dva 5’-flanking region (pGL3-4kb), or constructs containing the same fragment as pGL3-
4kb in which the distal and proximal putative GR binding sites were mutated singly (pGL3-mdGR and 
pGL3-mpGR, respectively) or in combination (pGL3-mGR) together with a renilla luciferase expression 
construct. Promoter activity in each sample was determined by dividing firefly luciferase activity by renilla 
luciferase activity and is expressed as fold induction over basal cells transfected with pGL3-Basic. The 
diagram on the left is a schematic depicting the four ras-dva promoter-driven firefly luciferase reporter 
constructs. (B) Monkey kidney-derived COS-7 cells (n=4) were transfected with pGL3-Basic or pGL3-4kb 
and the empty expression vector Sport6.1 or an expression vector for chicken GR. Promoter activity in each 
sample was determined by dividing firefly luciferase activity by renilla luciferase activity and is expressed 
as fold induction over basal cells transfected with Sport6.1 and pGL3-Basic. Values (mean + SEM) without 
a common letter are significantly different (P<0.05). 
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Ras-dva overexpression does not affect pituitary GH mRNA levels 

 Pituitary ras-dva expression is developmentally regulated, and it appears to be a 

direct transcriptional target of glucocorticoids in the embryonic anterior pituitary gland. 

Moreover, the enrichment of ras-dva in the pituitary during late embryogenesis and 

apparent functionality of at least one of the Pit-1 binding sites in its 5’-flanking region 

indicate it may mediate CORT initiation of pituitary hormones in cells of the Pit-1 

lineage, namely somatotrophs and lactotrophs (44, 121, 143-150, 152-155, 160). Two 

experiments were conducted to evaluate whether overexpression of ras-dva in chicken 

embryonic pituitary cells would alter CORT-regulated expression of pituitary hormones 

initiated during mid- to late-embryogenesis. Examining the effect of both CORT 

treatment and ras-dva overexpression on e11, when both circulating glucocorticoids and 

pituitary ras-dva mRNA levels are low, allowed us to assess whether ras-dva can mimic 

effects of CORT on pituitary hormone regulation.  

In one experiment, pituitary cells (n=4 replicate trials) transfected with an empty 

reporter vector (pGL3-Basic) or the reporter construct driven by the GH 5’-flanking 

region (pGL3-1727) in combination with Sport6.1 or an expression vector for ras-dva  

were cultured in the absence or presence of CORT for 20 h. CORT treatment increased 

GH promoter activity approximately 4-fold (Figure 35A; P<0.05), as expected, but 

overexpression of ras-dva did not influence the induction (P>0.05). In the second 

experiment, anterior pituitary cells (n=4 replicate trials) were transfected with Sport6.1 or 

an expression vector for ras-dva along with the GFP expression vector to allow collection 

of successfully transfected (GFP-positive) cells. We then analyzed mRNA levels of GH, 

PRL, and pituitary receptors for the major hypothalamic regulators of GH (40), GHRH-R 
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and SSTR2. In addition, we determined the effect of ras-dva overexpression on POMC 

mRNA, which is repressed by glucocorticoids (268), as well as mRNA levels for Pit-1 

and TSH-β (data not shown). As previously reported (150, 152, 153, 155, 159, 160, 235) 

and similar to the results shown in Figures 29-31, CORT treatment induced mRNA levels 

for ras-dva (6-fold), GH (12-fold), and PRL (3.5-fold) (Figure 35B, F, and H; P<0.05). 

However, CORT did not affect POMC, GHRH-R, SSTR2, or TSH-β expression (Figure 

35C- E, G, and data not shown; P>0.05). Ras-dva mRNA levels were 250- to 300-fold 

higher in cells transfected with the ras-dva expression vector as compared to those 

transfected with Sport6.1 (Figure 35H; P<0.05). Despite this, overexpression of ras-dva 

did not alter mRNA levels for any of the genes examined under basal or CORT-treated 

conditions (Figure 35B-G and data not shown; P>0.05).  

Discussion 

In this report, which is the first description of ras-dva in the neuroendocrine 

system of any species, expression and regulation of ras-dva in the chicken pituitary gland 

was characterized. Pituitary ras-dva mRNA levels increased between e10 and e18, 

decreased slightly just prior to hatch, and remained low or undetectable during post-natal 

life. On e18, ras-dva mRNA was highly enriched in the anterior pituitary gland as  

 
Figure 35. Overexpression of ras-dva does not influence glucocorticoid regulation of GH or pituitary 
receptors for its major hypothalamic regulators. Anterior pituitary cells (n=4) from e11 chickens were 
transfected with (A) a firefly luciferase reporter construct containing 1,727 bp of the chicken GH 5’-
flanking region (pGL3-1727) or an empty reporter vector (pGL3-Basic) in combination with a renilla 
luciferase expression construct and an empty expression vector (Sport6.1) or an expression vector for ras-
dva or (B-H) Sport6.1 or ras-dva expression vectors alone. (A) Following addition of no treatment or 
CORT (1 nM) for 20 h, promoter activity in each sample was determined by dividing firefly luciferase 
activity by renilla luciferase activity and is expressed as fold induction over basal cells transfected with 
pGL3-Basic and Sport6.1. (B-H) Cells were left untreated or treated with CORT (1 nM) for 20 h, and levels 
of GH, GHRH-R, SSTR2, POMC, PRL, Pit-1 and ras-dva mRNA were measured by qRT-PCR and are 
expressed as fold induction over basal cells transfected with Sport6.1. Levels of mRNA for all genes were 
normalized to ACTB mRNA levels. Values (mean + SEM) without a common letter are significantly 
different (P<0.05). 
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compared to other tissues. During both mid- and late-embryogenesis, glucocorticoids 

rapidly induced ras-dva mRNA expression in cultured anterior pituitary cells, and the 

mechanism of induction appears to involve a direct effect on transcriptional activation of 

the ras-dva gene. Potential sites that may mediate pituitary-specific and glucocorticoid-

induced ras-dva expression were identified within the regulatory region of the chicken 

ras-dva gene.    

Interestingly, homologs for ras-dva were identified in several different taxa of 

non-mammalian vertebrates, but only in one mammalian species (Table 4). In all 

vertebrates, the principles of pituitary gland commitment and development are very 

similar, although positional location of the differentiated cell types can differ (53, 55, 73, 

77). In particular, the major cell types are localized to anatomically discrete areas in a 

rostral-to-caudal organization in non-mammalian vertebrates (48-54, 276, 277), while cell 

types with a similar phenotype in the mammalian pituitary are localized to distinct 

regions in a more ventral-to-dorsal manner (53, 55, 73, 77). It is possible that ras-dva 

participates in a rostral-to-caudal signaling gradient unique to non-mammalian 

vertebrates leading to the different pituitary cell type distribution as compared to 

mammals. A role such as this is consistent with its postulated involvement in the 

signaling network essential for anterior ectoderm patterning and development of head 

structures in Xenopus embryos (273). 

In the chick embryo, serum glucocorticoid concentrations rise from subnanomolar 

levels on e10 to 40-50 nM on e17, and decrease slightly on e20 (10, 138, 140, 141, 174, 

266). Levels remain in the 10-30 nM range through d7 (274). The expression profile of 

ras-dva mRNA in the developing anterior pituitary during the latter half of 
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embryogenesis and early post-hatch development observed in this study reflect these 

levels of serum CORT (Figure 27), indicating that its expression may be regulated by 

circulating glucocorticoids in vivo. Pituitary ras-dva mRNA increased almost 10-fold 

between e10 and e18, similar to what has been reported previously (124), and decreased 

slightly just prior to hatch. Beyond d21, ras-dva was no longer detected in the anterior 

pituitary. Exposure of e11 anterior pituitary cells to levels of CORT reflective of those 

found in circulation on e14 increased ras-dva mRNA (Figure 29), strongly suggesting 

that the rise in ras-dva mRNA observed between e10 and e18 is a result of increasing 

circulating glucocorticoid levels. In the current study, ras-dva mRNA was upregulated by 

CORT within 30 m, and this upregulation was demonstrated to be sensitive to 

transcriptional inhibition but insensitive to an inhibitor of protein synthesis. Additionally, 

CORT treatment increased ras-dva promoter activity but did not influence mRNA half-

life (Figures 29-31). Taken together, these observations strongly suggest that ras-dva is 

directly regulated at the transcriptional level by glucocorticoids.  

Examination of the 5’-flanking region of chicken ras-dva revealed the presence of 

two putative GR binding sites within the region that is responsive to CORT treatment 

(Figure 32), although mutagenesis of these sites did not substantially affect induction of 

the promoter (Figure 34). Classically, the mode of action of glucocorticoids involves 

binding to intracellular GR, which then functions as a ligand-activated transcription 

factor to regulate gene expression through direct DNA binding or indirect association 

with DNA through protein-protein interactions. GR can bind to DNA as a homodimer at 

GREs or in conjunction with other factors at half-sites within composite binding elements 

(5, 278). The GR half-sites within the ras-dva promoter do not appear to be part of a 
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composite element, so it is more likely that the mechanism through which GR is 

transcriptionally activating the ras-dva gene is through tethering of the receptor to DNA 

via another transcription factor. There are several examples of this in the literature, 

including AP-1, nuclear factor-κ B (NF-κB), and STAT5 (5, 14, 22, 279). Both an NF-κB 

site and an AP-1 site were predicted within the CORT-responsive region of the ras-dva 

promoter. In most cases, the interaction of GR with these two transcription factors 

involves negative regulation of gene expression (5). Recently, however, it was 

demonstrated that glucocorticoids can stimulate GnRH-R expression in a pituitary 

gonadotroph cell line in a mechanism that involves recruitment of GR to the AP-1 site 

within the GnRH-R regulatory region bound by c-Jun and c-Fos (14). It is possible that a 

similar mechanism is involved in glucocorticoid stimulation of ras-dva expression in 

pituitary cells. The predicted AP-1 binding site within the ras-dva regulatory region is 

adjacent to the most distal putative Pit-1 binding site. It is tempting to speculate that 

CORT-bound GR is recruited to this region by AP-1, and transcriptional activation within 

pituitary cells involves its interaction with Pit-1. It is also possible that GR does not 

interact with cis-regulatory elements within the ras-dva 5’-flanking region at all, but 

rather sequesters a repressor protein and relieves transcriptional inhibition of ras-dva 

when glucocorticoids are present. 

In addition to in vivo regulation by glucocorticoids, the observed increase in 

pituitary ras-dva expression after e10 is consistent with a relief from repression by Anf-

1/Hesx1 in this tissue, which was shown to downregulate ras-dva in the anterior neural 

ectoderm of Xenopus embryos (259). In the developing mouse pituitary gland, Anf-

1/Hesx1 expression is observed only in progenitor cell populations and is thought to be 
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important for initial progression of pituitary gland formation and cell proliferation (55, 

77, 79, 81, 132). Its subsequent downregulation allows appearance of Prop-1-dependent 

pituitary cell lineages, which include gonadotrophs as well as thyrotrophs, lactotrophs, 

and somatotrophs (81, 132). Early expression of Anf-1/Hesx1 in Rathke’s pouch and its 

subsequent downregulation prior to emergence of functionally differentiated cells during 

chicken pituitary organogenesis has recently been demonstrated in our laboratory 

(Proszkowiec-Weglarz and Porter, unpublished). Therefore, relief from repression as a 

result of Anf-1/Hesx1 downregulation by the end of the first half of embryonic 

development, in combination with activation by circulating glucocorticoids that increase 

during the latter half of embryonic development, likely contributes to the increase in ras-

dva mRNA expression that occurs between e10 and e18. 

The ras-dva promoter is highly activated in embryonic anterior pituitary cells, 

regardless of treatment with glucocorticoids (Figures 32-34). In conjunction with the 

relative pituitary-specific expression of ras-dva observed on e18 in this study, the high 

level of activation in pituitary cells strongly suggests that elements within the regulatory 

region are stimulated by factors enriched in, or specific to, the anterior pituitary gland. 

Pit-1 is a pituitary-specific transcription factor essential for functional differentiation and 

expansion of three cell types in the anterior pituitary: thyrotrophs, somatotrophs, and 

lactotrophs (83). Six potential Pit-1 binding sites were identified within 4 kb of the 

translational start site, and one of these is located within only -350 bp (Table 5). Mutation 

of this most proximal Pit-1 site substantially inhibited ras-dva promoter activation in 

pituitary cells, and actually repressed it to the level observed in COS-7 cells, a non-

pituitary cell type (Figure 33), indicating that this is an important site in pituitary 
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induction of ras-dva expression. Overexpression of Pit-1 in COS-7 cells increased ras-dva 

promoter activity, although it did not fully restore it. This implies that, while the proximal 

Pit-1 site appears to be essential for full activation of ras-dva expression in pituitary cells, 

other cell-type specific factors are also involved. Nonetheless, functionality of the Pit-1 

site and the presence of additional predicted Pit-1 binding sites suggest that ras-dva is 

expressed in cells of the Pit-1 lineage. 

On e18, ras-dva mRNA expression was detected within both lobes of the chicken 

pituitary (Figure 28), indicating that expression is not restricted to any particular cell 

type. Thyrotrophs and lactotrophs are found in the cephalic lobe, while somatotrophs 

reside in the caudal lobe (49-53, 128), and ras-dva may be found in multiple Pit-1-

expressing cell types. Alternatively, expression of ras-dva may be restricted to one cell 

type within the Pit-1 lineage and also expressed in cells that are distributed throughout 

the gland, such as gonadotrophs that secrete FSH and LH or folliculostellate cells that 

play an important role in autocrine/paracrine regulation of the pituitary (56). Although 

overexpression of ras-dva in e11 anterior pituitary cells did not influence hormone 

mRNA expression in cells of the Pit-1 lineage (Figure 35 and data not shown), this does 

not mean that it may not play a role in regulating other aspects of cell function, including 

hormone secretion or proliferation. A major source of pituitary growth factors is 

folliculostellate cells, and pituitary FGF2 is known to regulate proliferation and hormone 

secretion of multiple pituitary cell types (280, 281). Interestingly, ras-dva was identified 

as a probable component of the FGF signaling network during anterior ectoderm 

development (260), and FGF2 signaling has recently been identified as an important 

autocrine regulator of folliculostellate cell growth (282). Perhaps ras-dva functions to 
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mediate these autocrine and/or paracrine effects of FGF2 in folliculostellate and/or 

hormone-producing cells within the pituitary. 

Although the developmental profile and upregulation by glucocorticoids are 

consistent with initiation of hormone expression in pituitary somatotrophs and 

lactotrophs, our results do not indicate that ras-dva is a major limiting factor in the 

process of hormone initiation. Interestingly, homologs for ras-dva were identified in 

several different taxa of non-mammalian vertebrates, but only in one mammalian species 

(Table 4). In all vertebrates, the principles of pituitary gland commitment and 

development are very similar, although positional location of the differentiated cell types 

can differ (53, 55, 73, 77). In particular, the major cell types are localized to anatomically 

discrete areas in a rostral-to-caudal organization in non-mammalian vertebrates (48-54, 

276, 277), while cell types with a similar phenotype in the mammalian pituitary are 

localized to distinct regions in a more ventral-to-dorsal manner (53, 55, 73, 77). It is 

possible that ras-dva participates in a rostral-to-caudal signaling gradient unique to non-

mammalian vertebrates leading to the different pituitary cell type distribution as 

compared to mammals. A role such as this is consistent with its postulated involvement 

in the signaling network essential for anterior ectoderm patterning and development of 

head structures in Xenopus embryos (273). 

This is the first report to demonstrate that ras-dva is present and transcriptionally 

regulated by glucocorticoids in the anterior pituitary gland of any species. The expression 

profile of pituitary ras-dva in the embryonic, neonatal, and mature gland indicates it may 

play a critical role in development of this important tissue, although at this time a 

function has not yet been identified. The presence of several putative Pit-1 binding sites 
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in the 5’-flanking region of chicken ras-dva, and the demonstration that at least one of 

these is functional, suggests that ras-dva is expressed in cells of the Pit-1 lineage. In 

conclusion, ras-dva was identified as a novel Pit-1 and glucocorticoid-regulated gene in 

the developing anterior pituitary gland. 
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 The overall objective of these studies was to characterize ontogenic and 

glucocorticoid-regulated gene expression in the developing neuroendocrine system. To 

this end, three studies were conducted using chickens as the primary developmental 

model. In the first, we measured mRNA levels of hypothalamic releasing and release-

inhibiting factors, pituitary receptors for these factors, and pituitary hormones for 

adrenocorticotropic, thyrotropic, somatotropic, lactotropic, and gonadotropic 

neuroendocrine axes during the last half of embryogenesis and the first week of post-

hatch life. Next, we investigated mechanisms behind glucocorticoid initiation of pituitary 

GH expression during somatotroph development. Finally, we characterized pituitary 

expression and glucocorticoid regulation of ras-dva, a developmentally interesting gene 

recently identified by our laboratory as a novel CORT-induced target in embryonic 

anterior pituitary cells (124, 235).  

The developmental and functional conservation of the neuroendocrine system 

highlights its essential role in maintenance of metabolism, growth, body composition, 

reproduction, and the stress response in vertebrate organisms. Given the importance of 

this system, it is rather surprising that no comprehensive studies investigating global 

changes in gene expression during hypothalamic and pituitary development have been 

conducted. Although there have been reports published investigating a single axis or one 

tissue (53, 87, 95, 124, 126, 171-173), this study is the first to characterize ontogenic 

expression profiles for major hormones and receptors in all five hypothalamo-pituitary 

axes within a single in vivo system. From these results, precise timing of initiation and 

establishment of each axis were determined based on the measured mRNA expression 

profiles (Figure 11). Initiation occurred when mRNA levels of the pituitary hormone 
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began to significantly and substantially increase, and each axis was established when 

mRNA of all major components had reached maximum expression levels. Clearly, a 

major limitation to our findings is that the conclusions regarding initiation and 

establishment of neuroendocrine axis activity are based solely on changes in mRNA 

expression level. In the case of pituitary hormones, the age of axis initiation that was 

determined in this study is in good agreement with previous reports of pituitary cell type 

appearance based on immunohistochemical analysis (51-54, 94, 97, 99, 103-106). 

Therefore, it is not unreasonable to draw inferences regarding protein production based 

on expression levels of mRNA.  

One main function of the neuroendocrine system is secretion of anterior pituitary 

hormones, which is ultimately controlled by hypothalamic factors. In order to truly assess 

neuroendocrine activity, one would need to measure release of hypothalamic factors into 

the portal vasculature, activation of pituitary receptors for those factors, and release of 

pituitary hormones into circulation as a result of receptor activation. Performing such 

measurements for each of the five neuroendocrine axes was beyond the scope of the 

current study, not to mention technical difficulties associated with determining levels of 

hypothalamic factors in the embryonic/early post-hatch portal vasculature and assessing 

receptor activation in vivo. However, future studies should focus on confirming the 

mRNA expression profiles determined here by measuring protein levels of those 

components for which this information has not yet been published. Further, functionality 

of hypothalamic-pituitary axes as a unit can be evaluated by measuring, at different ages, 

the ability of anterior pituitary cells to respond to hypothalamic factors in an in vitro cell 

culture system. In regards to this, the results presented here provide valuable information 
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regarding the age of embryos which should be used for such experiments. For example, 

in assessing functionality of the somatotropic axis, it would make sense to evaluate 

effects of PACAP on GH production and release between e12 and e16, when PACAP-R1 

mRNA levels were highest, while effects of SST would be better determined later in 

embryonic development, when SSTR2 mRNA levels are highest.  

Pituitary GH is essential for normal post-natal growth, and GH-producing 

somatotrophs are the most abundant cell type within the mature anterior pituitary gland. 

Adrenal glucocorticoids play a critical role in triggering functional differentiation of 

pituitary somatotrophs by initiating GH expression in both fetal rats and embryonic 

chickens (44, 121, 143-150, 152-155, 159). Recently, a group examining GR function in 

regulation of the hypothalamic-pituitary-adrenal axis generated a conditional knockout 

mouse lacking GR in the pituitary and parts of the brain (283). The authors reported that 

knockout mice were indistinguishable in size from control littermates at birth but were 

50% smaller by post-natal day 6. The authors determined that loss of GR protein 

occurred by e14.5, prior to appearance of somatotrophs in mice. Although they did not 

measure pituitary GH content or somatotroph abundance in the study, it is tempting to 

speculate that the smaller phenotype is due to GH insufficiency resulting from lack of 

somatotroph recruitment by glucocorticoids. Despite the importance and relative 

abundance of pituitary somatotrophs, little is known about underlying mechanisms 

involved in glucocorticoid induction of GH expression in this cell type. Therefore, a 

major focus of this project was to investigate mechanisms behind this process. 

Our current findings confirm a requirement for ongoing protein synthesis and 

involvement of a ras protein in glucocorticoid induction of GH during embryonic 
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development, and extend previous findings to demonstrate that HDAC activity and 

ERK1/2 signaling are also involved. It was also demonstrated that an increase in 

transcriptional activity of the GH gene is the primary mechanism by which 

glucocorticoids initiate hormone production during functional differentiation of this cell 

type. These findings, as well as other recent results obtained in our laboratory, are 

incorporated into the working model for glucocorticoid induction of pituitary GH 

expression during embryogenesis presented in Figure 36. In immature somatotroph 

precursors, GH mRNA levels are barely detectable, likely resulting from negative 

regulation of GH transcription by repressor proteins that are expressed in this cell type 

(Figure 36A). As circulating glucocorticoid levels increase in the embryo, CORT initiates 

hormone production in a process that may involve both de-repression and activation of 

GH transcription (Figure 36B). Both HDAC activity and ERK1/2 signaling may function 

to enhance the ability of CORT-activated nuclear receptors to bind to GREs and 

transactivate transcription of glucocorticoid target genes through deacetylation and  

Figure 36. Model for glucocorticoid induction of pituitary growth hormone expression during 
embryogenesis. (A) In anterior pituitary cells harvested from e11 chickens or e15 mice, just prior to 
initiation of GH expression, transcriptional activation of the GH gene is minimal and GH mRNA levels are 
barely detectable (right). This likely results from negative regulation of GH transcription by repressor 
proteins that are highly expressed in somatotrophs during this stage of development (left). (B) CORT 
treatment may downregulate repressor proteins in a mechanism requiring HDAC activity, while 
simultaneously increasing expression of transcription factors, chromatin modifying enzymes, and/or 
signaling molecules (activators) that increase GH expression. HDAC activity may be required for 
deacetylation of GR to facilitate its binding to GREs, and ERK1/2 activity may be required to enhance GR 
transcriptional activity through phosphorylation (top left). Ultimately, this leads to de-repression and 
activation of GH transcription in a process that involves a temporary increase in histone acetylation status 
at the GH proximal 5’-flanking region and transient ERK1/2-mediated phosphorylation events. The 
activator complex and histone acetyl transferase enzymes (HATs) alter chromatin accessibility and allow 
for recruitment of RNA polymerase II and other transcriptional machinery (middle). Other potential 
ERK1/2 targets include transcription factors in the activator complex, chromatin modifying enzymes, 
and/or Pit-1. HDAC activity may also be required for deacetylation of histones in the proximal 5’-flanking 
region of the GH gene, which occurs after prolonged exposure to CORT. The transitory nature of both 
epigenetic modifications and MAPK-mediated phosphorylation events, depicted by reduced 
phosphorylation and histone acetylation, is required for sustained transcriptional activation of the GH gene, 
leading to a dramatic rise in GH mRNA during initiation of hormone expression in pituitary somatotrophs 
(bottom).  
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phosphorylation of the receptor, respectively. Glucocorticoid-induced HDAC recruitment 

to target genes may also be necessary for downregulation of proteins which repress GH 

transcription. Potential activators upregulated by CORT are transcription factors, 

chromatin modifying enzymes such as HATs and HDACs, and signaling molecules that 

include ras proteins which activate ERK1/2 pathway activity. Ultimately, GH 

transcription is induced in a manner that involves a temporary increase in Ac-H3 levels at 

the proximal 5’-flanking region, as well as transient ERK1/2-mediated phosphorylation 

events. Potential ERK1/2 targets include transcription factors in the activator complex, 

chromatin modifying enzymes, and Pit-1. This temporary increase in phosphorylation of 

transcriptional regulators and Ac-H3 may facilitate recruitment of RNA polymerase II 

and other transcriptional machinery. After initial transcriptional activation, Ac-H3 levels 

decrease and ERK1/2 activity must be downregulated for sustained expression of GH to 

occur, highlighting the dynamic and transitory nature of signaling mechanisms involved 

in the developmental programming leading to somatotroph maturation.  

The results presented in Figures 12 and 13 clearly demonstrated that CORT 

increases GH mRNA levels in embryonic anterior pituitary cells through transcriptional 

activation of the GH gene rather than through enhancement of mRNA stability, and 

provide evidence that HDAC activity is necessary for full induction. The requirement for 

HDAC activity leads to at least three non-mutually exclusive hypotheses (Figure 36): 

HDAC activity is necessary for indirect derepression, or glucocorticoid downregulation 

of proteins that repress GH transcription prior to this stage of development; HDAC 

activity is required for deacetylation of GR to enhance its transcriptional activity; and/or 

HDAC activity is required for transient epigenetic changes that appear to occur in the GH 
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5’-flanking region during glucocorticoid induction. In all cases, the hypotheses are easily 

testable and the following experiments should be conducted. To investigate involvement 

of HDAC activity in derepression of GH, a microarray screen could be conducted using 

e11 embryonic pituitary cells treated with CORT in the presence or absence of HDAC 

inhibitors. Any transcripts that are repressed by CORT in the absence of HDAC 

inhibition, but not in their presence, would be candidate repressors. These could then be 

overexpressed, both alone and in combination, in e11 pituitary cells treated with CORT 

to examine if they suppress the glucocorticoid induction of GH. Additionally, these 

candidates could be downregulated through RNA interference to determine if loss of their 

activity leads to increased GH expression on e11 in the absence of CORT. To examine 

whether hyperacetylation of GR in the presence of HDAC inhibitors is preventing its 

ability to transcriptionally regulate critical genes necessary for the response, the 

acetylation state of GR as a result of CORT treatment in the presence and absence of 

HDAC inhibitors can be determined. In addition, predicted acetylation sites could be 

mutated to determine if this affects HDAC suppression of CORT induction of pituitary 

GH. Finally, to examine if HDAC activity plays a role in the transient nature of the 

increase in Ac-H3 that occurs at the proximal GH 5’-flanking region, Ac-H3 levels can 

be measured in that region in e11 pituitary cells treated with CORT for 1.5 h and 6 h in 

the presence and absence of HDAC inhibitors. In retrospect, the results from the HDAC 

inhibitor experiment conducted in this study would have been more informative had the 

cells been treated for 1.5 h in addition to 6 h. In the hypothetical model, initial activation 

of GH transcription by CORT involves an increase in Ac-H3, while sustained activation 

leading to maximal induction involves a decrease in Ac-H3, possibly resulting from 
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HDAC activity. If this is true, short-term inhibition should not block the initial CORT 

activation of GH, while inhibition for 6 h should prevent full induction.  

Experiments investigating mechanisms through which glucocorticoid treatment 

initiates pituitary GH expression also followed up on previous reports implicating ras 

signaling in the response (153, 217). We attempted two approaches, pharmacological 

inhibition and use of genetic mutants. The pharmacological approach was taken to 

narrow down possible involvement of all known ras-induced signaling cascades 

previously reported to be activated by glucocorticoids (12, 27-30). In hindsight, efficacy 

and proper dosing of each inhibitor should have been confirmed in chicken embryonic 

anterior pituitary cells prior to performing any experiments determining their effects on 

CORT stimulation of GH. This would have allowed us to more confidently distinguish a 

lack of inhibitor efficacy from a lack of pathway involvement. For example, neither the 

PI3-K inhibitors (wortmannin or LY294002) nor the JNK inhibitor (SP600125) affected 

the CORT increase in GH mRNA levels. This was interpreted as a lack of involvement of 

these pathways, but without demonstrating efficacy of the inhibitors in these cells, it 

cannot be ruled out that the lack of an effect was due to lack of pathway inhibition. 

Additionally, a compound such as BIRB 0796, which is thought to be more specific and 

potent than SB203580 at inhibiting p38MAPK (256), could have been evaluated. As it is, 

a requirement for p38MAPK signaling in glucocorticoid induction of GH has not yet 

been tested. However, stimulation of p38MAPK using caMKK3/6 and anisomycin 

blocked the response, indicating this pathway may play a role. Similarly, activity of each 

dominant negative and constitutively active mutant we obtained should have been 

confirmed in LMH and HEK-293 cell lines prior to subcloning and use in experiments 
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with embryonic pituitary cells. Again, we may have been able to obtain alternative 

mutants that truly functioned in a dominant negative capacity to assess involvement of 

ERK1/2 and p38MAPK pathways. Not only would this have allowed us to confirm the 

pharmacological inhibition studies, these could be used in combination with EGF and 

anisomycin to demonstrate more convincingly that the decrease in CORT-stimulated GH 

mRNA levels in the presence of these compounds was truly due to ERK1/2 and 

p38MAPK activity.  

Our results do conclusively demonstrate that active ERK1/2 signaling is required 

for glucocorticoid induction of pituitary GH, and further suggest that CORT treatment 

may stimulate ERK1/2 kinase activity in embryonic pituitary cells. Clearly, more 

experiments evaluating CORT effects on ERK1/2 kinase activation need to be conducted 

before it can be definitively concluded that glucocorticoid treatment stimulates ERK1/2 

activity. In addition, targets of ERK1/2 phosphorylation should be identified. Potential 

candidates to test are indicated in the model of glucocorticoid induction of pituitary GH 

(Figure 36) and include GR, Pit-1, and other yet-to-be identified factors. Phosphorylation 

state of GR and Pit-1 can be determined with and without CORT treatment in the 

presence and absence of the ERK1/2 pathway inhibitor, U0126. Identifying unknown 

targets of ERK1/2 would be somewhat more complicated, although not impossible. A 

functional proteomics approach involving two-dimensional (2D) gel electrophoresis and 

mass spectrometry has been successfully used in the past to reveal previously 

unidentified targets of ERK1/2 signaling (284). Protein extracts from e11 anterior 

pituitary cells treated with and without CORT could be resolved by a 2D gel, which 

would not only indicate up- or downregulation by CORT but also provide information 
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about post-translational modifications such as phosphorylation. Proteins resolved on a 

duplicate gel could be transferred to a membrane and blotted for phosphorylated serine 

and threonine residues, and spots with altered phosphorylation state could be identified 

using mass spectrometry. Ideally, the above experiment would be performed in the 

absence and presence of U0126 to identify ERK1/2 targets that are phosphorylated after 

CORT treatment only in the absence of the inhibitor. However, including U0126 

treatments may not be possible due to limitations in the number of anterior pituitary cells 

that can be used in a given experiment and the amount of protein extract needed for 2D 

analysis. In this case, simply identifying proteins that are phosphorylated in the presence 

of CORT would allow a more targeted, one-protein-at-a-time approach to be taken, 

similar to that outlined above for GR and Pit-1.  

Given that manumycin A prevents full glucocorticoid induction of GH in 

embryonic anterior pituitary cells (153, 217), ras-dva was identified as a potential 

intermediary factor involved in the response when it was reported to be upregulated by 

CORT in e11 pituitary cells (235). The developmental profile of ras-dva expression in the 

anterior pituitary gland between e10 and e17 (124), as well as its initial identification as a 

target of a transcriptional repressor important in pituitary development (259), further 

enhanced its appeal as a candidate gene mediating initiation of pituitary GH. In e11 

anterior pituitary cells, ras-dva mRNA was stimulated by CORT even in the presence of a 

protein synthesis inhibitor, and treatment of e18 cells with CORT for as little as 30 m 

increased ras-dva mRNA levels. Taken together, these results imply that it is a direct 

transcriptional target of GR in embryonic anterior pituitary cells. In retrospect, treatment 

of e11 cells for 30 m and/or treatment of e18 cells in the presence of CHX would provide 
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even more compelling evidence that ras-dva is directly regulated in the pituitary at both 

stages of development. In addition, although levels of ras-dva mRNA were much lower 

in other tissues on e18, it would have been informative to assess glucocorticoid regulation 

of ras-dva in other tissues to determine if the effect is pituitary-specific.  

At least one GR binding site was predicted within 4 kb of the translational start 

site in all species with an assembled genome in which a ras-dva homolog was identified. 

This strongly suggests that it is also a glucocorticoid regulated gene in other species. In 

the chicken, two putative GR binding sites were identified within the 5’-flanking region, 

at approximately -2 kb and -4 kb relative to the translational start site. The observation 

that a reporter construct containing these sights was induced by CORT, while a construct 

containing a shorter fragment that lacks the putative GR sites was not, further suggested 

that ras-dva is a direct transcriptional target of GR. Despite this, mutation of the predicted 

binding sites did not substantially reduce CORT induction of ras-dva promoter activity. 

This does not mean ras-dva is not directly regulated by glucocorticoids, only that these 

sites are not fully responsible for the induction. Future experiments should include 

identification of the cis-acting elements necessary for CORT stimulation of ras-dva 

promoter activity. Given that GR has recently been reported to be recruited to an AP-1 

site during dexamethasone-stimulated activation of the GnRH-R promoter (14), an 

obvious site to test by mutagenesis would be the AP-1 site located at approximately -3.4 

kb. An alternative approach would be to test reporter activity from constructs created by 

serial deletions of the 5’-flanking region between -4 kb and -2 kb.  

In addition to GR sites, multiple Pit-1 binding sites were predicted in the 5’-

flanking region of ras-dva in all species, suggesting pituitary expression in these species. 
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Of the six predicted sites in the chicken, one was experimentally tested and determined to 

be necessary for full activation in embryonic anterior pituitary cells. The remaining sites 

are located rather distally, in the region that is responsive to glucocorticoids. Future 

experiments should evaluate functionality of these distal predicted sites, in terms of basal 

ras-dva promoter activity and CORT-responsiveness. In addition, the prediction that ras-

dva mRNA is expressed in cells of the Pit-1 lineage should be tested. To achieve this, e18 

pituitary cells can be sorted by flow cytometry on the basis of TSH-β, GH, and PRL 

expression, and ras-dva mRNA can be measured in positive and negative populations. 

An attempt was made to identify a functional role for ras-dva in the developing 

anterior pituitary gland. We focused on hormones that are known to be regulated by 

glucocorticoids, both developmentally (GH and PRL) and in the mature gland (ACTH, as 

measured by POMC mRNA levels). In addition, we evaluated a role for ras-dva in 

regulating expression of TSH-β, Pit-1, and two pituitary receptors involved in regulating 

GH release (GHRH-R and SSTR2). We were unable to demonstrate that overexpression 

of ras-dva influenced basal or CORT-stimulated mRNA levels for any of the genes we 

measured. This indicates that ras-dva is not a limiting factor involved in regulating these 

genes under basal conditions and demonstrates that increased ras-dva expression alone is 

not sufficient to recapitulate glucocorticoid regulation of these genes. However, at this 

time, it cannot be ruled out that ras-dva is necessary for expression of these genes under 

basal or CORT-stimulated conditions. In order to test this, an experiment in which 

mRNA levels are measured in the absence and presence of CORT after knocking down 

ras-dva in embryonic anterior pituitary cells by RNA interference needs to be conducted. 

In order to more accurately predict a function for ras-dva in the developing anterior 
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pituitary gland, gene expression profiling of embryonic pituitary cells in which ras-dva is 

both overexpressed and knocked down could be conducted under basal and CORT-

treated conditions. Based on its developmental profile, regulation by glucocorticoids, and 

identification as a Pit-1 target, it seems most practical to concentrate efforts on 

investigating a role for ras-dva in cell types of the Pit-1 lineage. Potential functions to test 

can include developmental expansion of thyrotrophs, somatotrophs, and lactotrophs, as 

well as expression and/or secretion of TSH, GH, and PRL from these cells.   

In summary, we have determined developmental mRNA expression patterns of 

important hypothalamic and pituitary genes involved in neuroendocrine system function 

and delineated mechanisms necessary for GH expression during anterior pituitary 

development. We have also identified and characterized regulation of a novel gene that 

has never been investigated within the neuroendocrine system of any species. These 

results substantially increase our knowledge of neuroendocrine system establishment 

during embryogenesis and particularly enhance our understanding of mechanisms 

involved in glucocorticoid initiation of GH expression in somatotrophs. Further, ras-dva 

was identified as a Pit-1 and glucocorticoid target gene that may play an important role in 

development of the anterior pituitary. Despite these advances, further studies are clearly 

needed to truly understand development of the neuroendocrine system as a unit and 

precisely define mechanisms involved in emergence of terminally differentiated cell 

types. 



 190

REFERENCES 

1. Sam S, Frohman LA 2008 Normal physiology of hypothalamic pituitary 
regulation. Endocrinol Metab Clin North Am 37:1-22 

 
2. Breuner CW, Orchinik M 2002 Plasma binding proteins as mediators of 

corticosteroid actions in vertebrates. J Endocrinol 175:99-112 
 
3. Haller J, Mikics E, Makara GB 2008 The effects of non-genomic 

glucocorticoid mechanisms on bodily functions and the central neural system. A 
critical evaluation of findings. Front Neuroendocrinol 29:273-291 

 
4. Draper N, Stewart PM 2005 11beta-hydroxysteroid dehydrogenase and the pre-

receptor regulation of corticosteroid hormone action. J Endocrinol 186:251-271 
 
5. Kassel O, Herrlich P 2007 Crosstalk between the glucocorticoid receptor and 

other transcription factors: molecular aspects. Mol Cell Endocrinol 275:13-29 
 
6. Merkulov VM, Merkulova TI 2009 Structural variants of glucocorticoid 

receptor binding sites and different versions of positive glucocorticoid responsive 
elements: analysis of GR-TRRD database. J Steroid Biochem Mol Biol 115:1-8 

 
7. Ismaili N, Garabedian MJ 2004 Modulation of glucocorticoid receptor function 

via phosphorylation. Ann N Y Acad Sci 1024:86-101 
 
8. Almlof T, Wright AP, Gustafsson JA 1995 Role of acidic and phosphorylated 

residues in gene activation by the glucocorticoid receptor. J Biol Chem 
270:17535-17540 

 
9. Kwok AHY, Wang Y, Wang CY, Leung FC 2007 Cloning of chicken 

glucocorticoid receptor (GR) and characterization of its expression in pituitary 
and extrapituitary tissues. Poult Sci 86:423-430 

 
10. Porter TE, Ghavam S, Muchow M, Bossis I, Ellestad L 2007 Cloning of partial 

cDNAs for the chicken glucocorticoid and mineralocorticoid receptors and 
characterization of mRNA levels in the anterior pituitary gland during chick 
embryonic development. Domest Anim Endocrinol 33:226-239 

 
11. Proszkowiec-Weglarz M, Porter TE 2010 Functional characterization of 

chicken glucocorticoid and mineralocorticoid receptors. Am J Physiol Regul 
Integr Comp Physiol 298:R1257-R1268 

 
12. Miller AL, Webb MS, Copik A, Wang Y, Johnson BH, Kumar R, Thompson 

EB 2005 p38 Mitogen-activated protein kinase (MAPK) is a key mediator in 
glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 



 191

MAPK activation and site-specific phosphorylation of the human glucocorticoid 
receptor at serine 211. Mol Endocrinol 19:1569-1583 

 
13. Rogatsky I, Logan SK, Garabedian MJ 1998 Antagonism of glucocorticoid 

receptor transcriptonal activation by the c-Jun N-terminal kinase. Proc Natl Acad 
Sci U S A 95:2050-2055 

 
14. Kotitschke A, Gijsen HS-V, Avenant C, Fernandes S, Hapgood JP 2009 

Genomic and nongenomic cross talk between the gonatropin-releasing hormone 
receptor and glucocorticoid receptor signaling pathways. Mol Endocrinol 
23:1726-1745 

 
15. Avenant C, Ronacher K, Stubsrud E, Louw A, Hapgood JP 2010 Role of 

ligand-dependent GR phosphorylation and half-life in determination of ligand-
specific transcriptional activity. Mol Cell Endocrinol 327:72-88 

 
16. Itoh M, Adachi M, Yasui H, Takekawa M, Tanaka H, Imai K 2002 Nuclear 

export of glucocorticoid receptor is enhanced by c-Jun-N-terminal kinase-
mediated phosphorylation. Mol Endocrinol 16:2382-2392 

 
17. Blind RD, Garabedian MJ 2008 Differential recruitment of glucocorticoid 

receptor phospho-isoforms to glucocorticoid-induced genes. J Steroid Biochem 
Mol Biol 109:150-157 

 
18. Le Drean Y, Mincheneau N, Le Goff P, Michel D 2002 Potentiation of 

glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 
143:3482-3489 

 
19. Nader N, Chrousos GP, Kino T 2009 Circadian rhythm transcription factor 

CLOCK regulates the transcriptional activity of the glucocorticoid receptor by 
acetylating its hinge region lysine cluster: potential physiological implications. 
FASEB J 23:1572-1583 

 
20. Schoneveld OJLM, Gaemers IC, Lamers WH 2004 Mechanisms of 

glucocorticoid signalling. Biochim Biophys Acta 16820:114-128 
 
21. Pratt WB 1998 The hsp90-based chaperone system: involvement in signal 

transduction from a variety of hormone and growth factor receptors. Proc Soc Exp 
Biol Med 217:420-434 

 
22. Gross KL, Cidlowski JA 2008 Tissue-specific glucocorticoid action: a family 

affair. Trends Endocrinol Metab 19:331-339 
 
23. Lösel R, Wehling M 2003 Nongenomic actions of steroid hormones. Nat Rev 

Mol Cell Biol 4:46-56 



 192

24. Stellato C 2004 Post-transcriptional and nongenomic effects of glucocorticoids. 
Proc Am Thorac Soc 1:255-263 

 
25. Buttgereit F, Scheffold A 2002 Rapid glucocorticoid effects on immune cells. 

Steroids 67:529-532 
 
26. Tasker JG, Di S, Malcher-Lopes R 2006 Minireview: rapid glucocorticoid 

signaling via mebrane-associated receptors. Endocrinology 147:5549-5556 
 
27. Jeon JW, Lee SJ, Kim JB, Kang JJ, Lee JH, Seong GJ, Kim EK 2003 Cellular 

proliferative effect of dexamethasone in immortalized trabecular meshwork cell 
(TM5) line. Yonsei Med J 44:299-306 

 
28. Qi A-Q, Qiu J, Xiao L, Chen Y-Z 2005 Rapid activation of JNK and p38 by 

glucocorticoids in primary cultured hippocampal cells. J Neurosci Res 80:510-517 
 
29. Revest J-M, DiBlasi F, Kitchener P, Rouge-Pont F, Desmedt A, Turiault M, 

Tronche F, Piazza PV 2005 The MAPK pathway and Egr-1 mediate stress-
related behavioral effects of glucocorticoids. Nat Neurosci 8:664-672 

 
30. Wang L-L, Ou C-C, Chan JYH 2005 Receptor-independent activation of 

GABAergic neurotransmission and receptor-dependent nontranscriptional 
activation of phosphatidylinositol 3-kinase/protein kinase Akt pathway in short-
term cardiovascular actions of dexamethasone at the nucleus tractus solitarii of 
the rat. Mol Pharmacol 67:489-498 

 
31. Croxtall JD, Choudhury Q, Flower RJ 2000 Glucocorticoids act within minutes 

to inhibit recruitment of signaling factors to activated EGF receptors through a 
receptor-dependent, transcription-independent mechanism. Br J Pharmacol 
130:289-298 

 
32. Ojeda SR 2004 The anterior pituitary and hypothalamus. In: Griffin JE, Ojeda SR 

(eds) Textbook of Endocrine Physiology, Fifth ed. Oxford University Press, Inc., 
New York, NY, pp 120-146 

 
33. Markakis EA 2002 Development of the neuroendocrine hypothalamus. Front 

Neuroendocrinol 23:257-291 
 
34. Szarek E, Cheah P-S, Schwartz J, Thomas P 2010 Molecular genetics of the 

developing neuroendocrine hypothalamus. Mol Cell Endocrinol 323:115-123 
 
35. Ishikawa K, Taniguchi Y, Inoue K, Kurosumi K, Suzuki M 1988 

Immunocytochemical delineation of thyrotrophic area: origin of thyrotropin-
releasing hormone in the median eminence. Neuroendocrinology 47:384-388 



 193

36. Makara GB, Stark E, Kapocs G, Antoni FA 1986 Long-term effects of 
hypothalamic paraventricular lesion on CRF content and stimulated ACTH 
secretion. Am J Physiol 250:E319-E324 

 
37. Tsutsui K, Bentley GE, Ubuka T, Saigoh E, Yin H, Osugi T, Inoue K, 

Chowdhury VS, Ukena K, Ciccone N, Sharp PJ, Wingfield JC 2007 The 
general and comparative biology of gonadotropin-inhibitory hormone (GnIH). 
Gen Comp Endocrinol 153:365-370 

 
38. Romero MI, Phelps CJ 1997 Identification of growth hormone-releasing 

hormone and somatostatin neurons projecting to the median eminence in normal 
and growth hormone-deficient Ames dwarf mice. Neuroendocrinology 65:107-
116 

 
39. Cunha SR, Mayo KE 2002 Ghrelin and growth hormone (GH) secretagogues 

potentiate GH-releasing hormone (GHRH)-induced cyclic adenosine 3',5'-
monophosphate production in cells expressing transfected GHRH and GH 
secretagogue receptors. Endocrinology 143:4570-4582 

 
40. Gahete MD, Duran-Prado M, Luque RM, Martinez-Fuentes AJ, Quintero A, 

Gutierrez-Pascual E, Cordoba-Chacon J, Malagon MM, Gracia-Navarro F, 
Castano JP 2009 Understanding the multifactorial control of growth hormone 
release by somatotropes: Lessons from comparative endocrinology. Ann N Y 
Acad Sci 1163:137-153 

 
41. Kageyama H, Kitamura Y, Hosono T, Kintaka Y, Seki M, Takenoya F, Hori 

Y, Nonaka N, Arata S, Shioda S 2008 Visualization of ghrelin-producing 
neurons in the hypothalamic arcuate nucleus using ghrelin-EGFP transgenic mice. 
Regul Pept 145:116-121 

 
42. Peeters K, Berghman LR, Vandesande F 1998 Comparative distribution of 

pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal 
polypeptide immunoreactivity in the chicken forebrain. Ann N Y Acad Sci 
839:417-419 

 
43. Kuhn ER, Geelissen SME, Van der Geyten S, Darras VM 2005 The release of 

growth hormone (GH): relation to the thyrotropic- and corticotropic axis in the 
chicken. Domest Anim Endocrinol 29:43-51 

 
44. Porter TE 2005 Regulation of pituitary somatotroph differentiation by hormones 

of peripheral endocrine glands. Domest Anim Endocrinol 29:52-62 
 
45. Demaria JE, Lerant AA, Freeman ME 1999 Prolactin activates all three 

populations of hypothalamic neuroendocrine dopaminergic neurons in 
ovariectomized rats. Brain Res 837:236-241 



 194

46. Mezey E, Kiss JZ 1985 Vasoactive intestinal peptide-containing neurons in the 
paraventricular nucleus may participate in regulating prolactin secretion. Proc 
Natl Acad Sci U S A 82:245-247 

 
47. Bonnefont X, Lacampagne A, Sanchez-Hormigo A, Fino E, Creff A, Mathieu 

M-N, Smallwood S, Carmignac D, Fontanaud P, Travo P, Alonso G, 
Courtois-Coutry N, Pincus SM, Robinson ICAF, Mollard P 2005 Revealing 
the large-scale network organization of growth hormone-secreting cells. Proc Natl 
Acad Sci U S A 102:16880–16885 

 
48. Gerets HHJ, Peeters K, Arckens L, Vandesande F, Berghman LR 2000 

Sequence and distribution of pro-opiomelanocortin in the pituitary and brain of 
the chicken. J Comp Neurol 417:250-262 

 
49. Kansaku N, Shimada K, Saito N 1995 Regionalized gene expression of 

prolactin and growth hormone in the chicken anterior pituitary gland. Gen Comp 
Endocrinol 99:60-68 

 
50. Lopez ME, Hargis BM, Dean CE, Porter TE 1995 Uneven regional 

distributions of prolactin-and growth hormone-secreting cells and sexually 
dimorphic proportions of prolactin secretors in the adenohypophysis of adult 
chickens. Gen Comp Endocrinol 100:246-254 

 
51. Muchow M, Bossis I, Porter TE 2005 Ontogeny of pituitary thyrotrophs and 

regulation by endogenous thyroid hormone feedback in the chick embryo. J 
Endocrinol 184:407-416 

 
52. Nakamura K, Iwasawa A, Kidokoro H, Komoda M, Zheng J, Maseki Y, 

Inoue K, Sakai T 2004 Development of thyroid-stimulating hormone beta 
subunit-producing cells in the chicken embryonic pituitary gland. Cells Tissues 
Organs 177:21-28 

 
53. Parkinson N, Collins MM, Dufresne L, Ryan AK 2010 Expression patterns of 

hormones, signaling molecules, and transcription factors during adenohypophysis 
development in the chick embryo. Dev Dyn 239:1197-1210 

 
54. Maseki Y, Nakamura K, Iwasawa A, Zheng J, Inoue K, Sakai T 2004 

Development of gonadotropes in the chicken embryonic pituitary gland. Zoolog 
Sci 21:435-444 

 
55. Wagner J, Thomas P 2007 Genetic determinants of mammalian pituitary 

morphogenesis. Front Biosci 12:125-134 
 
56. Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P 2002 Hidden face 

of the anterior pituitary. Trends Endocrinol Metab 13:304-309 
 



 195

57. Treier M, Rosenfeld MG 1996 The hypothalamic-pituitary axis: co-development 
of two organs. Curr Opin Cell Biol 8:833-843 

 
58. Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT 2009 

Genetic regulation of pituitary gland development in human and mouse. Endocr 
Rev 30:790-829 

 
59. Barth KA, Wilson SW 1995 Expression of zebrafish nk2.2 is influenced by sonic 

hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal 
differentiation in the embryonic forebrain. Development 121:1755-1768 

 
60. Mathieu J, Barth A, Rosa FM, Wilson SW, Peyrieras N 2002 Distinct and 

cooperative roles for Nodal and Hedghog signals during hypothalamic 
development. Development 129:3055-3065 

 
61. Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek 

M 2006 Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway 
coordinates fate and proliferation through Shh downregulation. Dev Cell 11:873-
885 

 
62. McNay DE, Pelling M, Claxton S, Guillemot F, Ang SL 2006 Mash1 is 

required for generic and subtype differentiation of hypothalamic neuroendocrine 
cells. Mol Endocrinol 20:1623-1632 

 
63. Wang W, Grimmer JF, Water TRVD, Lufkin T 2004 Hmx2 and Hmx3 

homeobox genes direct development of the murine inner ear and hypothalamus 
and can be functionally replaced by Drosophila Hmx. Dev Cell 7:439-453 

 
64. Markakis EA, Swanson LW 1997 Spatiotemporal patterns of secretomotor 

neuron generation in the parvicellular neuroendocrine system. Brain Res Brain 
Res Rev 24:255-291 

 
65. Ezzat S, Mader R, Fischer S, Yu S, Ackerley C, Asa SL 2006 An essential role 

for the hematopoietic transcription factor Ikaros in hypothalamic-pituitary-
mediated somatic growth. Proc Natl Acad Sci U S A 103:2214-2219 

 
66. Li H, Zeitler PS, Valerius MT, Small K, Potter SS 1996 Gsh-1, an orphan Hox 

gene, is required for normal pituitary development. EMBO J 15:714-724 
 
67. Mutsuga N, Iwasaki Y, Morishita M, Nomura A, Yamamori E, Yoshida M, 

Asai M, Ozaki N, Kambe F, Seo H, Oiso Y, Saito H 2001 Homeobox protein 
Gsh-1-dependent regulation of the rat GHRH gene promoter. Mol Endocrinol 
15:2149-2156 

 



 196

68. Treier M, Gleiberman AS, O'Connell SM, Szeto DP, McMahon JA, 
McMahon AP, Rosenfeld MG 1998 Multistep signaling requirements for 
pituitary organogenesis in vivo. Genes Dev 12:1691-1704 

 
69. Dasen JS, Rosenfeld MG 1999 Combinatorial codes in signaling and synergy: 

lessons from pituitary development. Curr Opin Genet Dev 9:566-574 
 
70. Watanabe YG 1982 Effects of brain and mesenchyme upon the cytogenesis of 

rat adenohypophysis in vitro. Cell Tissue Res 227:257-266 
 
71. Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BLM, Pfaff 

SL, Westphal H, Kimura S, Mahon KA 1998 Formation of Rathke's pouch 
requires dual induction from the diencephalon. Development 125:4835-4840 

 
72. Treier M, O'Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang 

P-T, McMahon AP, Rosenfeld MG 2001 Hedgehog signaling is required for 
pituitary gland development. Development 128:377-386 

 
73. Scully KM, Rosenfeld MG 2002 Pituitary development: regulatory codes in 

mammalian organogenesis. Science 295:2231-2235 
 
74. Guner B, Ozacar AT, Thomas JE, Karlstrom RO 2008 Graded hedgehog and 

fibroblast growth factor signaling independently regulate pituitary cell fates and 
help establish the pars distalis and pars intermedia of the zebrafish 
adenohypophysis. Endocrinology 149:4435-4451 

 
75. Suh H, Gage PJ, Drouin J, Camper SA 2002 Pitx2 is required at multiple stages 

of pituitary organogenesis: pituitary primordium formation and cell specification. 
Development 129:329-337 

 
76. Zhao Y, Morales DC, Hermesz E, Lee W-K, Pfaff SL, Westphal H 2006 

Reduced expression of the LIM-homeobox gene Lhx3 impairs growth and 
differentiation of Rathke's pouch and increases cell apoptosis during mouse 
pituitary development. Mech Dev 123:605-613 

 
77. Zhu X, Gleiberman AS, Rosenfeld MG 2007 Molecular physiology of pituitary 

development: signaling and transcriptional networks. Physiol Rev 87:933-963 
 
78. Hermesz E, Mackem S, Mahon KA 1996 Rpx: a novel anterior-restricted 

homeobox gene progressively activated in the prechordal plate, anterior neural 
plate and Rathke's pouch of the mouse embryo. Development 122:41-52 

 
79. Dasen JS, Barbera J-PM, Herman TS, O'Connell S, Olson L, Ju BG, 

Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG 2001 Temporal regulation of a 
paired-like homeodomain repressor/TLE corepressor complex and a related 
activator is reuired for pituitary organogenesis. Genes Dev 15:3193-3207 



 197

80. Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T, Enjalbert A, 
Drouin J 2001 A pituitary cell-restricted T box factor, Tpit, activates POMC 
transcription in cooperation with Pitx homeoproteins. Cell 104:849-859 

 
81. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, 

Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, 
Andersen B, Beamer WG, Rosenfeld MG 1996 Pituitary lineage determination 
by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 
384:327-333 

 
82. Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, Wu W, 

Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG 2006 
Homeodomain-mediated beta-catenin-dependent switching events dictate cell-
lineage determination. Cell 125:593-605 

 
83. Li S, Crenshaw III EB, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld 

MG 1990 Dwarf locus mutants lacking three pituitary cell types result from 
mutations in the POU-domain gene pit-1. Nature 347:528-533 

 
84. Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, 

Hooshmand F, Aggarwal AK, Rosenfeld MG 1999 Reciprocal interactions of 
Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary 
cell types. Cell 97:587-598 

 
85. Bradford AP, Conrad KE, Tran PH, Ostrowski MC, Gutierrez-Hartmann A 

1996 GHF-1/Pit-1 functions as a cell-specific integrator of Ras signaling by 
targeting the Ras pathway to a composite Ets-1/GHF-1 response element. J Biol 
Chem 271:24639-24648 

 
86. Nowakowski BE, Maurer RA 1994 Multiple Pit-1-binding sites facilitate 

estrogen responsiveness of the prolactin gene. Mol Endocrinol 8:1742-1749 
 
87. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld 

MG, Swanson LW 1990 Pituitary cell phenotypes involve cell-specific Pit-1 
mRNA translation and synergistic interactions with other classes of transcription 
factors. Genes Dev 4:695-711 

 
88. Scully KM, Jacobson EM, Jepsen K, Lunyak V, Viadiu H, Carriere C, Rose 

DW, Hooshmand F, Aggarwal AK, Rosenfeld MG 2000 Allosteric effects of 
Pit-1 DNA sites on long-term repression in cell type specification. Science 
290:1127-1131 

 
89. Palomino T, Barettino D, Aranda A 1998 Role of GHF-1 in the regulation of 

the rat growth hormone gene promoter by thyroid hormone and retinoic acid 
receptors. J Biol Chem 273:27541-57547 



 198

90. Palomino T, Sanchez-Pacheco A, Pena P, Aranda A 1998 A direct protein-
protein interaction between is involved in the cooperation between thyroid 
hormone and retinoic acid receptors and the transcription factor GHF-1. FASEB J 
12:1201-1209 

 
91. Bennani-Baiti IM, Asa SL, Song D, Iratni R, Liebhaber SA, Cooke NE 1998 

DNase I-hypersensitive sights I and II of the human growth hormone locus 
control region are a major developmental activator of somatotrope gene 
expression. Proc Natl Acad Sci U S A 95:10655-10660 

 
92. Shewchuk BM, Asa SL, Cooke NE, Liebhaber SA 1999 Pit-1 binding sites at 

the somatotrope-specific DNase I hypersensitive sites I, II of the human growth 
hormone locus control region are essential for in vivo hGH-N gene activation. J 
Biol Chem 274:35725-35733 

 
93. Ho Y, Elefant F, Cooke N, Liebhaber S 2002 A defined locus control region 

determinant links chromatin domain acetylation with long-range gene activation. 
Mol Cell 9:291-302 

 
94. Allaerts W, Boonstra-Blom AG, Peeters K, Janse EM, Berghman LR, 

Jeurissen S 1999 Prenatal development of hematopoietic and hormone-producing 
cells in the chicken adenohypophysis. Gen Comp Endocrinol 114:213-224 

 
95. Japon MA, Rubinstein M, Low MJ 1994 In situ hybridization analysis of 

anterior pituitary hormone gene expression during fetal mouse development. J 
Histochem Cytochem 42:1117-1125 

 
96. Watanabe YG, Daikoku S 1979 An immunohistochemical study on the 

cytogenesis of adenohypophysial cells in fetal rats. Dev Biol 68:557-567 
 
97. Puebla-Osorio N, Proudman JA, Compton AE, Clements KE, Decuypere E, 

Vandesande F, Berghman LR 2002 FSH- and LH-cells originate as separate cell 
populations and at different embryonic stages in the chicken embryo. Gen Comp 
Endocrinol 127:242-248 

 
98. Bedecarrats G, Guemene D, Morvan C, Kuhnlein U, Zadworny D 1999 

Quantification of prolactin messenger ribonucleic acid, pituitary content and 
plasma levels of prolactin, and detection of immunoreactive isoforms of prolactin 
in pituitaries from turkey embryos during ontogeny. Biol Reprod 61:757-763 

 
99. Malamed S, Gibney JA, Cain LD, Perez FM, Scanes CG 1993 

Immunocytochemical studies of chicken somatotrophs and somatotroph granules 
before and after hatching. Cell Tissue Res 272:369-374 

 



 199

100. Nagata S, Rosenfeld MG, Inoue K 1992 Development of prolactin and growth 
hormone production in the fetal rat pituitary: An immunochemical study. Dev 
Growth Differ 34:473-478 

 
101. Nogami H, Suzuki H, Enomoto H, Ishikawa H 1989 Studies on the 

development of growth hormone and prolactin cells in the rat pituitary gland by in 
situ hybridization. Cell Tissue Res 255:23-28 

 
102. Ogasawara K, Nogami H, Tsuda MC, Gustafsson J-A, Korach KS, Ogawa S, 

Harigaya T, Hisano S 2009 Hormonal regulation of prolactin cell development 
in the fetal pituitary gland of the mouse. Endocrinology 150:1061-1068 

 
103. Porter TE, Couger GS, Dean CE, Hargis BM 1995 Ontogeny of growth 

hormone (GH)-secreting cells during chicken embryonic development: initial 
somatotrophs are responsive to GH-releasing hormone. Endocrinology 136:1850-
1856 

 
104. Sasaki F, Doshita A, Matsumoto Y, Kuwahara S, Tsukamoto Y, Agawa K 

2003 Embryonic development of the pituitary gland in the chick. Cells Tissues 
Organs 173:65-74 

 
105. Woods KL, Porter TE 1998 Ontogeny of prolactin-secreting cells during chick 

embryonic development: effects of vasoactive intestinal peptide. Gen Comp 
Endocrinol 112:240-246 

 
106. Zheng J, Nakamura K, Maseki Y, Geelissen SME, Berghman LR, Sakai T 

2005 Independent differentiation of mammotropes and somatotropes in the 
chicken embryonic pituitary gland: analysis by cell distribution and attempt to 
detect somatomammotropes. Histochem Cell Biol 125:429-439 

 
107. Melmed S 2009 Acromegaly pathogenesis and treatment. J Clin Invest 119:3189-

3202 
 
108. Sjögren K, Liu J-L, Blad K, Skrtic S, Vidal O, Wallenius V, Le Roith D, 

Törnell J, Isaksson OGP, Jansson J-O, Ohlsson C 1999 Liver-derived insulin-
like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not 
required for postnatal body growth in mice. Proc Natl Acad Sci U S A 96:7088–
7092 

 
109. Melmed S, Yamashita S, Yamasaki H, Fagin J, Namba H, Yamamoto H, 

Weber M, Morita S, Webster J, Prager D 1996 IGF-I receptor signalling: 
lessons from the somatotroph. Recent Prog Horm Res 51:189-215 

 
110. Kamegai J, Unterman TG, Frohman LA, Kineman RD 1998 

Hypothalamic/pituitary-axis of the spontaneous dwarf rat: autofeedback 



 200

regulation of growth hormone (GH) includes suppression of GH releasing-
hormone receptor messenger ribonucleic acid. Endocrinology 139:3554-3560 

 
111. Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE 

1993 GHRH receptor of little mice contains a missense mutation in the 
extracellular domain that disrupts receptor function. Nat Genet 4:227-232 

 
112. Takeuchi T, Suzuki H, Sakurai S, Nogami H, Okuma S, Ishikawa H 1990 

Molecular mechanism of growth hormone (GH) deficiency in the spontaneous 
dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by the 
polymerase chain reaction. Endocrinology 126:31-38 

 
113. Burnside J, Liou SS, Cogburn LA 1991 Molecular cloning of the chicken 

growth hormone receptor complementary deoxyribonucleic acid: mutation of the 
gene in sex-linked dwarf chickens. Endocrinology 128:3183-3192 

 
114. Bona G, Paracchini R, Giordano M, Momigliano-Richiardi P 2004 Genetic 

defects in GH synthesis and secretion. Eur J Endocrinol 151 
 
115. Mullis PE 2005 Genetic control of growth. Eur J Endocrinol 152:11-31 
 
116. Le Roith D, Bondy C, Yakar S, Liu J-L, Butler A 2001 The somatomedin 

hypothesis: 2001. Endocr Rev 22:53-74 
 
117. King DB, Scanes CG 1986 Effect of mammalian growth hormone and prolactin 

on the growth of hypophysectomized chickens. Proc Soc Exp Biol Med 182:201-
207 

 
118. Nagamine J, Nakagawa T, Taiji M 2006 Recombinant human growth hormone 

(SMP-140) is effective for growth promotion in hypophysectomized rats. Biomed 
Res 27:191-195 

 
119. Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL 1983 

Metallothionein-human GH fusion genes stimulate growth of mice. Science 
222:809-814 

 
120. Frawley LS, Hoeffler JP, Boockfor FR 1985 Functional maturation of 

somatotropes in fetal rat pituitaries: analysis by reverse hemolytic plaque assay. 
Endocrinology 116:2355-2360 

 
121. Nogami H, Hisano S 2008 Functional maturation of growth hormone cells in the 

anterior pituitary gland of the fetus. Growth Horm IGF Res 18:379-388 
 
122. Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J 1982 Ontogeny of 

growth hormone and prolactin gene expression in mice. Endocrinology 110:1489-
1497 



 201

123. Taniguchi Y, Yasutaka S, Kominami R, Shinohara H 2001 Proliferation and 
differentiation of pituitary somatotrophs and mammotrophs during late fetal and 
postnatal periods. Anat Embryol (Berl) 204:469-475 

 
124. Ellestad LE, Carre W, Muchow M, Jenkins SA, Wang X, Cogburn LA, 

Porter TE 2006 Gene expression profiling during cellular differentiation in the 
embryonic pituitary gland using cDNA microarrays. Physiol Genomics 25:414-
425 

 
125. Jozsa R, Scanes CG, Vigh S, Mess B 1979 Functional differentiation of the 

embryonic chicken pituitary gland studied by immunohistological approach. Gen 
Comp Endocrinol 39:158-163 

 
126. Lu FZ, Wang XX, Pan QX, Huang RH, Liu HL 2008 Expression of genes 

involved in the somatotropic, thyrotropic, and corticotropic axes during 
development of Langshan and Arbor Acres chickens. Poult Sci 87:2087-2097 

 
127. Thommes RC, Umporowicz DM, Leung FC, Woods JE 1987 Ontogenesis of 

immunocytochemically demonstrable somatotrophs in the adenohypophyseal pars 
distalis of the developing chick embyro. Gen Comp Endocrinol 67:390-398 

 
128. Kansaku N, Shimada K, Terada O, Saito N 1994 Prolactin, growth hormone, 

and luteinizing hormone-β subunit gene expression in the cephalic and caudal 
lobes of the anterior pituitary gland during embryogenesis and different 
reproductive stages in the chicken. Gen Comp Endocrinol 96:197-205 

 
129. Porter TE, Dean CE, Piper MM, Medvedev KL, Ghavam S, Sandor J 2001 

Somatotroph recruitment by glucocorticoids involves induction of growth 
hormone gene expression and secretagogue responsiveness. J Endocrinol 
169:499-509 

 
130. Dean CE, Piper M, Porter TE 1997 Differential responsiveness of somatotrophs 

to growth hormone-releasing hormone and thyrotropin-releasing hormone during 
chicken embryonic development. Mol Cell Endocrinol 132:33-41 

 
131. Piper MM, Porter TE 1997 Responsiveness of chicken embryonic somatotropes 

to somatostatin (SRIF) and IGF-I. J Endocrinol 154:303-310 
 
132. Gage PJ, Brinkmeier ML, Scarlett LM, Knapp LT, Camper SA, Mahon KA 

1996 The Ames dwarf gene, df, is required early in pituitary ontogeny for the 
extinction of Rpx transcription and initiation of lineage-specific cell proliferation. 
Mol Endocrinol 10:1570-1581 

 
133. Frohman LA, Kineman RD 2002 Growth hormone-releasing hormone and 

pituitary development, hyperplasia and tumorigenesis. Trends Endocrinol Metab 
13:299-303 



 202

134. Lin C, Lin SC, Chang CP, Rosenfeld MG 1992 Pit-1-dependent expression of 
the receptor for growth hormone releasing factor mediates pituitary cell growth. 
Nature 360:765-768 

 
135. de la Hoya M, Vila V, Jimenez O, Castrillo JL 1998 Anterior pituitary 

development and Pit-1/GHF-1 transcription factor. Cell Mol Life Sci 54:1059-
1066 

 
136. Van As P, Buys N, Onagbesan OM, Decuypere E 2000 Complementary DNA 

cloning and ontogenic expression of pituitary-specific transcription factor of 
chickens (Gallus domesticus) from the pituitary gland. Gen Comp Endocrinol 
120:127-136 

 
137. Ip SCY, Lau JS, Au WL, Leung FC 2004 Characterization of the 5'-flanking 

transcriptional regulatory region of chicken growth hormone gene. Exp Biol Med 
229:640-649 

 
138. De Groef B, Grommen SVH, Darras VM 2006 Increasing plasma thyroxine 

levels during late embryogenesis and hatching in the chicken are not caused by an 
increased sensitivity of the thyrotropes to hypothalamic stimulation. J Endocrinol 
189:271-278 

 
139. Gregory CC, Dean CE, Porter TE 1998 Expression of chicken thyroid-

stimulating hormone β-subunit messenger ribonucleic acid during embryonic and 
neonatal development. Endocrinology 139:474-478 

 
140. Jenkins SA, Muchow M, Richards MP, McMurtry JP, Porter TE 2007 

Administration of adrenocorticotropic hormone during chicken embryonic 
development prematurely induces pituitary growth hormone cells. Endocrinology 
148:3914-3921 

 
141. Liu L, Porter TE 2004 Endogenous thyroid hormones modulate pituitary 

somatotroph differentiation during chicken embryonic development. J Endocrinol 
180:45-53 

 
142. Lu JW, McMurtry JP, Coon CN 2007 Developmental changes of plasma 

insulin, glucagon, insulin-like growth factors, thyroid hormones, and glucose 
concentrations in chick embryos and hatched chicks. Poult Sci 86:673-683 

 
143. Hemming FJ, Aubert ML, Dubois PM 1988 Differentiation of fetal rat 

somatotropes in vitro: Effects of cortisol, 3, 5, 3' - triiodothyronine, and glucagon, 
a light microscopic and radioimmunological study. Endocrinology 123:1230-1237 

 
144. Hemming FJ, Begeot M, Dubois MP, Dubois PM 1984 Fetal rat somatotropes 

in vitro: Effects of insulin, cortisol, and growth hormone-releasing factor on their 



 203

differentiation: A light and electron microscopic study. Endocrinology 114:2107-
2113 

 
145. Nogami H, Yokose T, Tachibana T 1995 Regulation of growth hormone 

expression in fetal rat pituitary gland by thyroid or glucocorticoid hormone. Am J 
Physiol 268:E262-E267 

 
146. Porter TE, Couger GS, Morpurgo B 1995 Evidence that somatotroph 

differentiation during chicken embryonic development is stimulated by a blood-
borne signal. Endocrinology 136:3721-3728 

 
147. Morpurgo B, Dean CE, Porter TE 1997 Identification of the blood-borne 

somatotroph-differentiating factor during chicken embryonic development. 
Endocrinology 138:4530-4535 

 
148. Dean CE, Morpurgo B, Porter TE 1999 Induction of somatotroph 

differentiation in vivo by corticosterone administration during chicken embryonic 
development. Endocrine 11:151-156 

 
149. Bossis I, Porter TE 2000 Ontogeny of corticosterone-inducible growth hormone-

secreting cells during chick embryonic development. Endocrinology 141:2683-
2690 

 
150. Nogami H, Tachibana T 1993 Dexamethasone induces advanced growth 

hormone expression in the fetal rat pituitary gland in vivo. Endocrinology 
132:517-523 

 
151. Nogami H, Inoue K, Kawamura K 1997 Involvement of glucocorticoid-induced 

factor(s) in the stimulation of growth hormone expression in the fetal rat pituitary 
gland in vitro. Endocrinology 138:1810-1815 

 
152. Sato K, Watanabe YG 1998 Corticosteroids stimulate the differentiation of 

growth hormone cells but suppress that of prolactin cells in the fetal rat pituitary. 
Arch Histol Cytol 61:75-81 

 
153. Bossis I, Porter TE 2003 Evaluation of glucocorticoid-induced growth hormone 

gene expression in chicken embryonic pituitary cells using a novel in situ mRNA 
quantitation method. Mol Cell Endocrinol 201:13-23 

 
154. Dean CE, Porter TE 1999 Regulation of somatotroph differentiation and growth 

hormone (GH) secretion by corticosterone and GH-releasing hormone during 
embryonic development. Endocrinology 140:1104-1110 

 
155. Zheng J, Takagi H, Tsutsui C, Adachi A, Sakai T 2008 Hypophyseal 

corticosteroids stimulate somatotrope differentiation in the embryonic chicken 
pituitary gland. Histochem Cell Biol 129:357-365 



 204

 
156. Bossis I, Nishimura S, Muchow M, Porter TE 2004 Pituitary expression of type 

I and type II glucocorticoid receptors during chicken embryonic development and 
their involvement in growth hormone cell differentiation. Endocrinology 
145:3523-3531 

 
157. Liu L, Dean CE, Porter TE 2003 Thyroid hormones interact with 

glucocorticoids to affect somatotroph abundance in chicken embryonic pituitary 
cells in vitro. Endocrinology 144:3836-3841 

 
158. Cintra A, Solfrini V, Bunnemann B, Okret S, Fortolotti B, Gustafsson J, 

Fuxe K 1993 Prenatal development of glucocortioid receptor gene expression and 
immunoreactivity in the rat brain and pituitary gland: a combined in situ 
hybridization and immunocytochemical analysis. Neuroendocrinology 57:1133-
1147 

 
159. Heuck KA, Ellestad LE, Proudman JA, Porter TE 2009 Somatotropin 

response in vitro to corticosterone and triiodothyronine during chick embryonic 
development: involvement of type I and type II glucocorticoid receptors. Domest 
Anim Endocrinol 36:186-196 

 
160. Fu X, Porter TE 2004 Glucocorticoid induction of lactotrophs and prolactin gene 

expression in chicken embryonic pituitary cells: a delayed response relative to 
stimulated growth hormone production. Endocrinology 145:1322-1330 

 
161. Nogami H, Inoue K, Moriya H, Ishida A, Kobayashi S, Hisano S, Katayama 

M, Kawamura K 1999 Regulation of growth hormone-releasing hormone 
receptor messenger ribonucleic acid expression by glucocorticoids in MtT-S cells 
and in the pituitary gland of fetal rats. Endocrinology 140:2763-2770 

 
162. Anderson LL, Jeftiniha S, Scanes CG 2004 Growth hormone secretion: 

molecular and cellular mechanisms and in vivo approaches. Exp Biol Med 
229:291-302 

 
163. De Groef B, Grommen SVH, Darras VM 2008 The chicken embryo as a model 

for developmental endocrinology: Development of the thyrotropic, corticotropic, 
and somatotropic axes. Mol Cell Endocrinol 293:17-24 

 
164. Brown WRA, Hubbard SJ, Tickle C, Wilson SA 2003 The chicken as a model 

for large-scale analysis of vertebrate gene function. Nature Reviews. Genetics 
4:87-93 

 
165. Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng 

HH, Dodgson JB, Burnside J 2007 Functional genomics of the chicken - a 
model organism. Poult Sci 86:2059-2094 



 205

166. International Chicken Genome Sequencing Consortium 2004 Sequence and 
comparative analysis of the chicken genome provide unique perspectives on 
vertebrate evolution. Nature 432:695-716 

 
167. Stern CD 2005 The chick:  a great model system becomes even greater. Dev Cell 

8:9-17 
 
168. Dearden NM, Holmes RL 1976 Cyto-differentiation and portal vascular 

development in the mouse adenohypophysis. J Anat 121:551-569 
 
169. Nakakura T, Yoshida M, Dohra H, Suzuki M, Tanaka S 2006 Gene 

expression of vascular endothelial growth factor-A in the pituitary during 
formation of the vascular system in the hypothalamic-pituitary axis of the rat. Cell 
Tissue Res 324:87-95 

 
170. Thommes RC, Russo RP 1959 Vasculogenesis in the adenohypophysis of the 

developing chick embryo. Growth 23:205-219 
 
171. Geris KL, D'Hondt E, Kuhn ER, Darras VM 1999 Thyrotropin-releasing 

hormone concentrations in different regions of the chicken brain and pituitary: an 
ontogenetic study. Brain Res 818:260-266 

 
172. Wang CY, Wang Y, Li J, Leung FC 2006 Expression profiles of growth 

hormone-releasing hormone and growth hormone-releasing hormone receptor 
during chicken embryonic pituitary development. Poult Sci 85:569-576 

 
173. Grzegorzewska AK, Sechman A, Paczoska-Eliasiewicz HE, Rzasa J 2009 The 

expression of pituitary FSHβ and LHβ mRNA and gonadal FSH and LH receptor 
mRNA in the chicken embryo. Reproductive Biology 9:253-269 

 
174. Jenkins SA, Porter TE 2004 Ontogeny of the hypothalamo-pituitary-

adrenocortical axis in the chicken embryo: a review. Domest Anim Endocrinol 
26:267-275 

 
175. National Research Council 1994 Nutrient Requirements of Poultry: Ninth 

Revised Edition. National Academy  Press, Washington, DC, USA 
 
176. Noce T, Ando H, Ueda T, Kubokawa K, Higashinakagawa T, Ishii S 1989 

Molecular cloning and nucleotide sequence analysis of the putative cDNA for the 
precursor molecule of the chicken LH-beta subunit. J Mol Endocrinol 3:129-137 

 
177. De Groef B, Geris KL, Manzano J, Bernal J, Millar RP, Abou-Samra AB, 

Porter TE, Iwasawa A, Kuhn ER, Darras VM 2003 Involvement of 
thyrotropin-releasing hormone receptor, somatostatin receptor subtype 2 and 
corticotropin-releasing hormone receptor type 1 in the control of chicken 
thyrotropin secretion. Mol Cell Endocrinol 203:33-39 



 206

178. De Groef B, Goris N, Arckens L, Kuhn ER, Darras VM 2003 Corticotropin-
releasing hormone (CRH)-induced thyrotropin release is directly mediated 
through CRH receptor type 2 on thyrotropes. Endocrinology 144:5537-5544 

 
179. Porter TE, Ellestad LE, Fay A, Stewart JL, Bossis I 2006 Identification of the 

chicken growth hormone-releasing hormone receptor (GHRH-R) mRNA and 
gene: regulation of anterior pituitary GHRH-R mRNA levels by homologous and 
heterologous hormones. Endocrinology 147:2535-2543 

 
180. Toogood AA, Harvey S, Thorner MO, Gaylinn BD 2006 Cloning of the 

chicken pituitary receptor for growth hormone-releasing hormone. Endocrinology 
147:1838-1846 

 
181. Wang Y, Li J, Wang CY, Kwok AHY, Zhang X, Leung FC 2010 

Characterization of the receptors for chicken GHRH and GHRH-related peptides: 
Identification of a novel receptor for GHRH and the receptor for GHRH-LP 
(PRP). Domest Anim Endocrinol 38:13-31 

 
182. Bossis I, Porter TE 2001 Identification of the somatostatin receptor subtypes 

involved in regulation of growth hormone secretion in chickens. Mol Cell 
Endocrinol 182:203-213 

 
183. Christian HC, Chapman LP, Morris JF 2007 Thyrotrophin-releasing hormone, 

vasoactive intestinal peptide, prolactin-releasing peptide, and dopamine regulation 
of prolactin secretion by different lactotroph morphological subtypes in the rat. J 
Neuroendocrinol 19:605-613 

 
184. Youngren OM, Chaiseha Y, El Halawani ME 1998 Regulation of prolactin 

secretion by dopamine and vasoactive intestinal peptide at the level of the 
pituitary in the turkey. Neuroendocrinology 68:319-325 

 
185. Bedecarrats GY, McFarlane H, Maddineni SR, Ramachandran R 2009 

Gonadotropin-inhibitory receptor signaling and its impact on reproduction in 
chickens. Gen Comp Endocrinol 163:7-11 

 
186. Konzak KE, Moore DD 1992 Functional isoforms of Pit-1 generated by 

alternative messenger RNA splicing. Mol Endocrinol 6:241-247 
 
187. Kurima K, Weatherly KL, Sharova L, Wong EA 1998 Synthesis of turkey Pit-

1 mRNA variants by alternative splicing and transcription initiation. DNA Cell 
Biol 17:93-103 

 
188. Tanaka M, Yamamoto I, Ohkubo T, Wakita M, Hoshino S, Nakashima K 

1999 cDNA cloning and developmental alterations in gene expressions of the two 
pit-1/GHF-1 transcription factors in the chicken pituitary. Gen Comp Endocrinol 
144:441-448 



 207

189. Van As P, Janssens K, Pals K, De Groef B, Onagbesan OM, Bruggeman B, 
Darras VM, Denef C, Decuypere E 2006 The chicken pituitary-specific 
transcription factor Pit-1 is involved in the hypothalamic regulation of pituitary 
hormones. Acta Vet Hung 54:455-471 

 
190. Puy LA, Asa SL 1996 The ontogeny of Pit-1 expression in the human fetal 

pituitary gland. Neuroendocrinology 63:349-355 
 
191. Kameda Y, Miura M, Ohno S 2000 Expression of the common α-subunit 

mRNA of glycoprotein hormones during the chick pituitary organogenesis, with 
special reference to the pars tuberalis. Cell Tissue Res 299:71-80 

 
192. Vandenborne K, De Groef B, Geelissen SME, Boorse GC, Denver RJ, Kuhn 

ER, Darras VM, Van der Geyten S 2005 Molecular cloning and developmental 
expression of corticotropin-releasing factor in the chicken. Endocrinology 
146:301-308 

 
193. Grino M, Young III WS, Burgunder JM 1989 Ontogeny of expression of the 

corticotropin-releasing factor gene in the hypothalamic paraventricular nucleus 
and of the proopiomelanocortin gene in rat pituitary. Endocrinology 124:60-68 

 
194. Keegan CE, Herman JP, Karolyi IJ, O'Shea KS, Camper SA, Seasholtz AF 

1994 Differential expression of corticotropin-releasing hormone in developing 
mouse embryos and adult brain. Endocrinology 134:2547-2555 

 
195. Green JL, Figueroa JP, Massmann GA, Schwartz J, Rose JC 2000 

Corticotropin-releasing hormone type 1 receptor messenger ribonucleic acid and 
protein levels in the ovine fetal pituitary: ontogeny and effect of chronic cortisol 
administration. Endocrinology 141:2870-2876 

 
196. Kageyama K, Suda T 2009 Role and action in the pituitary corticotroph of 

corticotroph-releasing factor (CRF) in the hypothalamus. Peptides 30:810-816 
 
197. Makino S, Schulkin J, Smith MA, Pacak K, Palkovits M, Gold PW 1995 

Regulation of corticortropin-releasing hormone receptor messenger ribonucleic 
acid in the rat brain and pituitary by glucocorticoids and stress. Endocrinology 
136:4517-4525 

 
198. McNabb FMA, Stanton FW, Weirich RT, Hughes TE 1984 Responses to 

thyrotropin during development in Japanese quail. Endocrinology 114:1238-1244 
 
199. Geris KL, Berghman LR, Kuhn ER, Darras VM 1998 Pre- and posthatch 

developmental changes in hypothalamic thyrotropin-releasing hormone and 
somatostatin concentrations and in circulating growth hormone and thyrotropin 
levels in the chicken. J Endocrinol 159:219-225 



 208

200. Burgunder JM, Taylor T 1989 Ontogeny of thyrotropin-releasing hormone gene 
expression in the rat diencephalon. Neuroendocrinology 49:631-640 

 
201. Geris KL, De Groef B, Kuhn ER, Darras VM 2003 In vitro study of 

corticotropin-releasing hormone-induced thyrotropin release: ontogeny and 
inhibition by somatostatin. Gen Comp Endocrinol 132:272-277 

 
202. Welsh JB, Cuttler L, Szabo M 1986 Ontogeny of the in vitro growth hormone 

stimulatory effect of thyrotropin-releasing hormone in the rat. Endocrinology 
119:2368-2375 

 
203. Cella SG, Locatelli V, Broccia ML, Menegola E, Giavini E, Colonna VD, 

Torsello A, Wehrenberg WB, Muller EE 1994 Long-term changes of 
somatotrophic function induced by deprivation of growth hormone-releasing 
hormone during the fetal life of the rat. J Endocrinol 140:111-117 

 
204. Wang Y, Li J, Wang CY, Kwok AHY, Leung FC 2007 Identification of the 

endogenous ligands for chicken growth hormone-releasing hormone (GHRH) 
receptor: evidence for a separate gene encoding GHRH in submammalian 
vertebrates. Endocrinology 148:2405-2416 

 
205. Nogami H, Matsubara M, Harigaya T, Katayama M, Kawamura K 2000 

Retinoic acids and thyroid hormone act synergistically with dexamethasone to 
increase growth hormone-releasing hormone receptor messenger ribonucleic acid 
expression. Endocrinology 141:4396-4401 

 
206. Tong Z, Pitts GR, You S, Foster DN, El Halawani M 1998 Vasoactive 

intestinal peptide stimulates turkey prolactin gene expression by increasing 
transcription rate and enhancing mRNA stability. J Mol Endocrinol 21:259-266 

 
207. Ciccone NA, Dunn IC, Boswell T, Tsutsui K, Ubuka T, Ukena K, Sharp PJ 

2004 Gonadotrophin inhibitory hormone depresses gonadotrophin α and follicle-
stimulating hormone β subunit expression in the pituitary of the domestic chicken. 
J Neuroendocrinol 16:999-1006 

 
208. Sari IP, Rao A, Smith JT, Tilbrook AJ, Clarke IJ 2009 Effect of RF-amide-

related peptide-3 on luteinizing hormone and follicle-stimulating hormone 
synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 150:5549-
5556 

 
209. Ubuka T, Ukena K, Sharp PJ, Bentley GE, Tsutsui K 2006 Gonadotropin-

inhibitory hormone inhibits gonadal development and maintenance by decreasing 
gonadotropin synthesis and release in male quail. Endocrinology 147:1187-1194 

 
210. You S, Foster LK, Silsby JL, El Halawani ME, Foster DN 1995 Sequence 

analysis of the turkey LH beta subunit and its regulation by gonadotrophin-



 209

releasing hormone and prolactin in cultured pituitary cells. J Mol Endocrinol 
14:117-129 

 
211. Millam JR, Craig-Veit CB, Petitte JN 1993 Brain content of cGnRH I and II 

during embryonic development in chickens. Gen Comp Endocrinol 92:311-317 
 
212. Aubert ML, Begeot M, Winiger BP, Morel G, Sizonenko PC, Dubois PM 

1985 Ontogeny of hypothalamic luteinizing hormone-releasing hormone (GnRH) 
and pituitary GnRH receptors in fetal and neonatal rats. Endocrinology 116:1565-
1576 

 
213. Ubuka T, Ueno M, Ukena K, Tsutsui K 2003 Developmental changes in 

gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica) 
hypothalamo-hypophysial system. J Endocrinol 178:311-318 

 
214. Maddineni S, Ocon-Grove OM, Krzysik-Walker SM, HendricksIII GL, 

Proudman JA, Ramachandran R 2008 Gonadotrophin-inhibitory hormone 
receptor expression in the chicken pituitary gland: potential influence of sexual 
maturation and ovarian steroids. J Neuroendocrinol 20:1078-1088 

 
215. Shimizu M, Bedecarrats GY 2010 Activation of the chicken gonadotropin-

inhibitory receptor reduces gonadotropin releasing hormone receptor signaling. 
Gen Comp Endocrinol 167:331-337 

 
216. Knubel KH 2010 Identification of a non-classical glucocorticoid responsive 

element in the 5'-flanking region of the chicken growth hormone gene. Doctoral 
Dissertation: Department of Animal and Avian Sciences, University of Maryland, 
College Park, MD. 149 pp 

 
217. Malkiewicz SA 2003 Identification of glucocorticoid-induced early response 

genes in the chicken embryonic pituitary gland. Master of Science Thesis: 
Department of Animal and Avian Sciences, University of Maryland, College 
Park, MD. 88 pp. 

 
218. Egea J, Espinet C, Soler RM, Dolcet X, Yuste VJ, Encinas M, Iglesias M, 

Rocamora N, Comella JX 2001 Neuronal survival induced by neurotrophins 
requires calmodulin. J Cell Biol 154:585-597 

 
219. He H, Kogut MH 2003 CpG-ODN-induced nitric oxide production is mediated 

through clathrin-dependent endocytosis, endosomal maturation, and activation of 
PKC, MEK1/2 and p38 MAPK, and NF-KB pathways in avian macrophage cells 
(HD11). Cell Signal 15:911-917 

 
220. Kogut MH, Lowry VK, Farnell M 2003 The use of selective pharmacological 

inhibitors to delineate signal transduction pathways activated during complement 



 210

receptor-mediated degranulation in chicken heterophils. Int Immunopharmacol 
3:693-706 

 
221. de La Paz LD, Lezama R, Torres-Marquez ME, Pasantes-Morales H 2002 

Tyrosine kinases and amino acid efflux under hyposmotic and ischaemic 
conditions in the chicken retina. Pflugers Arch 445:87-96 

 
222. Takechi S, Adachi M, Nakayama T 2002 Chicken HDAC2 down-regulates IgM 

light chain gene promoter activity. Biochem Biophys Res Commun 299:263-267 
 
223. Witte MC, Montcouquiol M, Corwin JT 2001 Regeneration in avian hair cell 

epithelia: identification of intracellular signals required for S-phase entry. Eur J 
Neurosci 14:829-838 

 
224. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, 

Woude GFV, Ahn NG 1994 Transformation of mammalian cells by 
constitutively active MAP kinase kinase. Science 265:966-970 

 
225. Robbins DJ, Zhen E, Owaki H, Vanderbilt CA, Ebert D, Geppert TD, Cobb 

MH 1993 Regulation and properties of extracellular signal-regulated protein 
kinases 1 and 2 in vitro. J Biol Chem 268:5097-5106 

 
226. Raingeaud J, Whitmarsh AJ, Barret T, De'Rijard B, Davis RJ 1996 MKK3- 

and MKK6-regulated gene expression is mediated by the p38 mitogen-activated 
protein kinase signal transduction pathway. Mol Cell Biol 16:1247-1255 

 
227. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J 1996 

Characterization of the structure and function of a new mitogen-activated protein 
kinase (p38β). J Biol Chem 271:17920-17926 

 
228. Pecot MY, Malhotra V 2004 Golgi membranes remain segregated from the 

endoplasmic reticulum during mitosis in mammalian cells. Cell 116:99-107 
 
229. Ellestad LE, Malkiewicz SA, Guthrie HD, Welch GR, Porter TE 2009 

Expression and regulation of glucocorticoid-induced leucine zipper in the 
developing anterior pituitary gland. J Mol Endocrinol 42:171-183 

 
230. Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL 1998 Mechanism of 

Sodium Arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. J 
Biol Chem 273:8922-8931 

 
231. Adcock IM, Ito K, Barnes PJ 2004 Glucocorticoids: effects on gene 

transcription. Proc Am Thorac Soc 1:247-254 
 
232. Lennartsson A, Ekwall K 2009 Histone modification patterns and epigenetic 

codes. Biochim Biophys Acta 1790:863-868 



 211

233. Kovacs JJ, Murphy PJM, Gaillard S, Zhao X, Wu J-T, Nicchitta CV, 
Yoshida M, Toft DO, Pratt WB, Yao T-P 2005 HDAC6 regulates hsp90 
acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol 
Cell 18:601-607 

 
234. Murphy PJM, Morishima Y, Kovacs JJ, Yao T-P, Pratt WB 2005 Regulation 

of the dynamics of hsp90 action on the glucocorticoid receptor by 
acetylation/deacetylation of the chaperone. J Biol Chem 280:33792-33799 

 
235. Jenkins SA 2006 Characterization of glucocorticoid-induced changes in gene 

expression in the embryonic pituitary gland. Doctoral Dissertation: Department of 
Animal and Avian Sciences, University of Maryland, College Park, MD. 130 pp. 

 
236. U M, Shen L, Oshida T, Miyauchi J, Yamada M, Miyashita T 2004 

Identification of novel direct transcriptional targets of glucocorticoid receptor. 
Leukemia 18:1850-1856 

 
237. Galy A, Bertrand N, Planque N, Saule S, Eychene A 2002 Activated 

MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented 
epithelium into neural retina. Dev Biol 248:251-264 

 
238. Peyssonnaux C, Provot S, Felder-Schmittbuhl MP, Calothy G, Eychene A 

2000 Induction of postmitotic neuroretina cell proliferation by distinct ras 
downstream signaling pathways. Mol Cell Biol 20: 7068-7079 

 
239. Mahadevan LC, Edwards DR 1991 Signalling and superinduction. Nature 

349:747-748 
 
240. Clark AR 2003 MAP kinase phosphatase 1: a novel mediator of biological 

effects of glucocorticoids? J Endocrinol 178:5-12 
 
241. Iwasaki Y, Morishita M, Asai M, Onishi A, Yoshida M, Oiso Y, Inoue K 2004 

Effects of hormones targeting nuclear receptors on transcriptional regulation of 
the growth hormone gene in the MtT/S rat somatotrope cell line. 
Neuroendocrinology 79:229-236 

 
242. Diamond DJ, Goodman HM 1985 Regulation of growth hormone messenger 

RNA synthesis by dexamethasone and triiodothyronine J Mol Biol 181:41-62 
 
243. Dobner PR, Kawasaki ES, Yu L-Y, Bancroft FC 1981 Thyroid or 

glucocorticoid hormone induces pre-growth-hormone mRNA and its probable 
nuclear precursor in rat pituitary cells. Proc Natl Acad Sci U S A 78:2230-2234 

 
244. Evans RM, Birnberg NC, Rosenfeld MG 1982 Glucocorticoid and thyroid 

hormones transcriptionally regulate growth hormone gene expression. Proc Natl 
Acad Sci U S A 79:7659-7663 



 212

245. Nyborg JK, Nguyen AP, Spindler SR 1984 Relationship between thyroid and 
glucocorticoid hormone receptor occupancy, growth hormone gene transcription, 
and mRNA accumulation. J Biol Chem 259:12377-12381 

 
246. Strobl JS, van Eys GJJM, Thompson EB 1989 Dexamethasone control of 

growth hormone mRNA levels in GH3 pituitary cells is cycloheximide-sensitive 
and primarily posttranscriptional. Mol Cell Endocrinol 66:71-82 

 
247. Paek I, Axel R 1987 Glucocorticoids enhance stability of human growth hormone 

mRNA. Mol Cell Biol 7:1496-1507 
 
248. Ezzat S, Yu S, Asa SL 2005 The zinc finger Ikaros transcription factor regulates 

pituitary growth hormone and prolactin gene expression through distinct effects 
on chromatin accessibility Mol Endocrinol 19:1004-1011 

 
249. Sánchez-Pacheco A, Aranda A 2003 Binding of the thyroid hormone receptor to 

a negative element in the basal growth hormone promoter is associated with 
histone acetylation. J Biol Chem 278:39383–39391 

 
250. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K 2009 

Genome-wide mapping of HATs and HDACs reveals distinct functions in active 
and inactive genes. Cell 138:1019-1031 

 
251. Smith E, Frenkel B 2005 Glucocorticoids inhibit the transcriptional activity of 

LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-
dependent and -independent manner. J Biol Chem 280:2388-2394 

 
252. Jee YK, Gilmour J, Kelly A, Bowen H, Richards D, Soh C, Smith P, 

Hawrylowicz C, Cousins D, T TL, Lavender P 2005 Repression of interleukin-
5 transcription by the glucocorticoid receptor targets GATA3 signaling and 
involves histone deacetylase recruitment. J Biol Chem 280:23243-23250 

 
253. Vanhaesebroeck B, Waterfield MD 1999 Signaling by distinct classes of 

phosphoinositide 3-kinases. Exp Cell Res 253:239-254 
 
254. Gingras A-C, Raught B, Sonenberg N 1999 eIF4 initiation factors: effectors of 

mRNA recruitment to ribosomes and regulators of translation. Annu Rev 
Biochem 68:913-963 

 
255. Davies SP, Reddy H, Caivano M, Cohen P 2000 Specificity and mechanism of 

action of some commonly used protein kinase inhibitors. Biochem J 351:95-105 
 
256. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, Mclauchlan H, Klevernic I, 

Arthur JSC, Alessi DR, Cohen P 2007 The selectivity of protein kinase 
inhibitors: a further update. Biochem J 408:297-315 



 213

257. Kemppainen RJ, Behrend EN 1998 Dexamethasone rapidly induces a novel ras 
superfamily member-related gene in AtT-20 cells. J Biol Chem 273:3129-3131 

 
258. Kemppainen RJ, Cox E, Behrend EN, Brogan MD, Ammons JM 2003 

Identification of a glucocorticoid response element in the 3'-flanking region of the 
human Dexras1 gene. Biochim Biophys Acta 1627:85-89 

 
259. Novoselov VV, Alexandrova EM, Ermakova GV, Zaraisky AG 2003 

Expression zones of three novel genes abut the developing anterior neural plate of 
Xenopus embryo. Gene Expression Patterns 3:225-230 

 
260. Tereshina MB, Zaraisky AG, Novoselov VV 2006 Ras-dva, a member of novel 

family of small GTPases, is required for the anterior ectoderm patterning in the 
Xenopus laevis embryo. Development 133:485-494 

 
261. Schonhoff CM, Bulseco DA, Brancho DM, Parada LF, Ross AH 2001 The 

Ras-ERK pathway is required for the induction of neuronal nitric oxide synthase 
in differentiating PC12 cells. J Neurochem 78:631-639 

 
262. Widen C, Zilliacus J, Gustafsson J-A, Wikstrom A-C 2000 Glucocorticoid 

receptor interaction with 14-3-3 and Raf-1, a proposed mechanism for cross-talk 
of two signal transduction pathways. J Biol Chem 275:39296-39301 

 
263. Ji JY, Jing H, Diamond SL 2003 Shear stress causes nuclear localization of 

endothelial glucocorticoid receptor and expression from the GRE promoter. Circ 
Res 92:279-285 

 
264. Dittmer J 2003 The biology of the Ets1 proto-oncogene. Molecular Cancer 2:29 
 
265. Dalle M, Pradier P, Delost P 1985 The regulation of glucocorticosteroid 

secretion during the perinatal period. Reprod Nutr Dev 25:377-991 
 
266. Scott TR, Johnson WA, Satterlee DG, Gildersleeve RP 1981 Circulating levels 

of corticosterone in the serum of developing chick embryos and newly hatched 
chicks. Poult Sci 60:1314-1320 

 
267. Fu X, Nishimura S, Porter TE 2004 Evidence that lactotrophs do not 

differentiate directly from somatotrophs during chick embryonic development. J 
Endocrinol 183:417-425 

 
268. Drouin J, Nemer M, Charron J, Gagner JP, Jeannotte L, Sun YL, Therrien 

M, Tremblay Y 1989 Tissue-specific activity of the pro-opiomelanocortin 
(POMC) gene and repression by glucocorticoids. Genome 31:510-519 

 
269. Ermakova GV, Alexandrova EM, Kazanskaya OV, Vasiliev OL, Smith MW, 

Zaraisky AG 1999 The homeobox gene, Xanf-1, can control both neural 



 214

differentiation and patterning in the presumptive anterior neurectoderm of the 
Xenopus laevis embryo. Development 126:4513-4523 

 
270. Carre W, Wang X, Porter TE, Nys Y, Tang J, Bernberg E, Morgan R, 

Burnside J, Aggrey SE, Simon J, Cogburn LA 2006 Chicken genomics 
resource: sequencing and annotation of 35,407 ESTs from single and multiple 
tissue cDNA libraries and CAP3 assembly of a chicken gene index. Physiol 
Genomics 25:514-524 

 
271. Cogburn LA, Wang X, Carre W, Rejto L, Aggrey SE, Duclos MJ, Simon J, 

Porter TE 2004 Functional genomics in chickens: development of integrated-
systems microarrays for transcriptional profiling and discovery of regulatory 
pathways. Comp Funct Genomics 5:253–261 

 
272. Sambrook J, Fritsch EF, Maniatis T 1989 Molecular Cloning: A Laboratory 

Manual, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY, USA 
 
273. Tereshina MB, Belousov VV, Zaraisky AG 2007 Study of the mechanism of 

Ras-dva small GTPase intracellular localization. Bioorg Khim 33:534-536 
 
274. Latour MA, Peebles ED, Boyle CR, Brake JD, Kellogg TF 1995 Changes in 

serum lipid, lipoprotein and corticosterone concentrations during neonatal chick 
development. Biol Neonate 67:381-386 

 
275. Andersen B, Rosenfeld MG 1994 Pit-1 determines cell types during 

development of the anterior pituitary gland: a model for transcriptional regulation 
of cell phenotypes in mammalian organogenesis. J Biol Chem 269:29335-29338 

 
276. Pogoda H-M, Hammerschmidt M 2007 Molecular genetics of pituitary 

development in zebrafish. Semin Cell Dev Biol 18:543-558 
 
277. Pogoda H-M, Hammerschmidt M 2009 How to make a teleost 

adenohypophysis: Molecular pathways of pituitary development in zebrafish. Mol 
Cell Endocrinol 312:2-13 

 
278. Revollo JR, Cidlowski JA 2009 Mechanisms generating diversity in 

glucocorticoid receptor signaling. Ann N Y Acad Sci 1179:167-178 
 
279. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin Jr AS 1995 

Characterization of mechanisms involved in transrepression of NF-κB by 
activated glucocorticoid receptors. Mol Cell Biol 15:943-953 

 
280. Baird A, Mormede P, Ying SY, Wehrenberg WB, Ueno N, Ling N, Guillemin 

R 1985 A nonmitogenic pituitary function of fibroblast growth factor: regulation 
of thyrotropin and prolactin secretion. Proc Natl Acad Sci U S A 82:5545-5549 



 215

281. Hentges S, Boyadjieva N, Sarkar DK 2000 Transforming growth factor-βeta 
stimulates lactotrope cell growth by increasing basic fibroblast growth factor from 
folliculostellate cells. Endocrinology 141:859-867 

 
282. Vlotides G, Chen YH, Eigler T, Ren SG, Melmed S 2009 Fibroblast growth 

factor-2 autofeedback regulation in pituitary folliculostellate TtT/GF cells. 
Endocrinology 150:3252-3258 

 
283. Erdmann G, Schütz G, Berger S 2008 Loss of glucocorticoid receptor function 

in the pituitary results in early postnatal lethality. Endocrinology 149:3446-3451 
 
284. Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM, Nahreini 

TS, Resing KA, Ahn NG 2000 Identification of novel MAP kinase pathway 
signaling targets by functional proteomics and mass spectometry. Mol Cell 
6:1343-1354 

 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


