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In the current Internet, senders are not accountable for the packets they send.

As a result, malicious users send unwanted traffic that wastes shared resources

and degrades network performance. Stopping such attacks requires identifying the

responsible principal and filtering any unwanted traffic it sends. However, senders

can obscure their identity: a packet identifies its sender only by the source address,

but the Internet Protocol does not enforce that this address be correct. Additionally,

affected destinations have no way to prevent the sender from continuing to cause

harm.

An accountable network binds sender identities to packets they send for the

purpose of holding senders responsible for their traffic. In this dissertation, I present

an accountable network-level architecture that strongly binds senders to packets

and gives receivers control over who can send traffic to them. Holding senders

accountable for their actions would prevent many of the attacks that disrupt the

Internet today.

Previous work in attack prevention proposes methods of binding packets to

senders, giving receivers control over who sends what to them, or both. However,

they all require trusted elements on the forwarding path, to either assist in identify-

ing the sender or to filter unwanted packets. These elements are often not under the



control of the receiver and may become corrupt. This dissertation shows that the

Internet architecture can be extended to allow receivers to block traffic from unwanted

senders, even in the presence of malicious devices in the forwarding path.

This dissertation validates this thesis with three contributions. The first con-

tribution is DNA, a network architecture that strongly binds packets to their sender,

allowing routers to reject unaccountable traffic and recipients to block traffic from

unwanted senders. Unlike prior work, which trusts on-path devices to behave cor-

rectly, the only trusted component in DNA is an identity certification authority. All

other entities may misbehave and are either blocked or evicted from the network.

The second contribution is NeighborhoodWatch, a secure, distributed, scalable

object store that is capable of withstanding misbehavior by its constituent nodes.

DNA uses NeighborhoodWatch to store receiver-specific requests block individual

senders.

The third contribution is VanGuard, an accountable capability architecture.

Capabilities are small, receiver-generated tokens that grant the sender permission

to send traffic to receiver. Existing capability architectures are not accountable,

assume a protected channel for obtaining capabilities, and allow on-path devices

to steal capabilities. VanGuard builds a capability architecture on top of DNA,

preventing capability theft and protecting the capability request channel by allowing

receivers to block senders that flood the channel. Once a sender obtains capabilities,

it no longer needs to sign traffic, thus allowing greater efficiency than DNA alone.

The DNA architecture demonstrates that it is possible to create an accountable

network architecture in which none of the devices on the forwarding path must be

trusted. DNA holds senders responsible for their traffic by allowing receivers to block

senders; to store this blocking state, DNA relies on the NeighborhoodWatch DHT.

VanGuard extends DNA and reduces its overhead by incorporating capabilities,

which gives destinations further control over the traffic that sources send to them.
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Chapter 1

Introduction

In the early 1970’s, computer networks were limited to isolated instances at aca-

demic and government sites. The Internet, as it is known today, began as an effort

to connect these networks with a single protocol [50]. At the time, threats to com-

munication were external to the network: protocols were designed provide a reliable

communication medium even in the case of gateway or network failure [26].

In the forty years since its creation, the Internet has grown exponentially.

Commercial networks, as opposed to academic, dominate. There are nearly two

billion users worldwide [42]. One of the reasons for this growth is the design decision

to make the Internet open: the Internet architecture provides a protocol, TCP/IP,

that connects endhosts, and any device or network that can speak that protocol

can join the Internet. Communication does not require prior approval; anyone may

communicate with anyone.

An open communication model suits the original Internet architecture’s goal

of providing efficient connectivity, assuming that hosts do not maliciously deviate

from protocol. This assumption may have been true when the Internet was designed,

but is not true today. As a result, the Internet is susceptible to internal attacks

by malicious hosts. Furthermore, hosts can send packets without divulging their

identity, allowing them to abuse the network with little consequence.

In this dissertation, I present protocols for an accountable network, DNA,

which prevents such abuse. An accountable network layer binds sender identities to

packets so that the receiver (or some other device) can take action based on the true
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identity of the sender. Strongly binding senders to packets supports many classes

of possible actions. The original impetus for providing accountability, according

to the designers of the Internet protocols, was to account for resource usage [26].

Accountability facilitates network auditing, by allowing administrators to determine

what principal was responsible for causing a certain action (such as causing a device

to fail). In this proposal, I examine the use of accountability to selectively filter

repeated unwanted, abusive, or non-compliant traffic from malicious sources on a

per-destination basis, while permitting traffic from others to proceed. The result is

that receivers can control who can send packets to them, and thus who can consume

their resources.

1.1 Lack of accountability facilitates abuse

The current Internet is not accountable. The Internet protocols were designed to

be resilient to external disruptions—faulty hardware and unreliable links—rather

than internal misbehavior. As such, they lack means to both identify senders and

hold them responsible. There is no strong identification mechanism built into the

Internet protocols. Senders can be identified by their IP address, yet there are no

requirements that this address be correct. Similarly, there are no rules that designate

what actions a sender can be held accountable for, or who should hold senders

responsible. The situation would improve if ISPs were to police their customers,

but often they do not have incentive to do so.

As a result, attacks on the Internet infrastructure—the hosts, links, and routers

that compose the network—are not only possible but common. Such attacks are

called denial of service (DoS) attacks. One example of a DoS attack is a bandwidth

flooding attack, in which the attacker (or, more commonly, attackers) sends packets

as quickly as it can towards the victim, without regard to how or if the victim re-

sponds. The goal is to consume all of the available bandwidth on the victim’s access

link, so that other, legitimate traffic cannot be delivered. However, even a small
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amount of attack traffic is sufficient to disrupt communication: TCP’s exponential

backoff mechanism will reduce throughput drastically when the packet loss rate is

above 5% [79].

Adding to the difficulty in preventing DoS attacks is the tendency of attackers

to spoof their source address. A victim that can identify an attacker by its IP

address could filter traffic from that address with a firewall. Attackers adapted by

spoofing their source address to avoid such filters. The result is that attackers are

unidentifiable to the destination and therefore cannot be held accountable for their

actions.

1.2 Accountability as a solution to DoS attacks

My approach to preventing DoS attacks is motivated by the belief that the victim

of the attack, and receivers in general, should have control over the packets they

receive. If a victim were able to stop unwanted packets before they arrived, it could

recover from the attack. Blocking unwanted packets while permitting desired traffic

requires distinguishing between the two, but it is possible that the only difference

between wanted and unwanted packets is their source. Currently, the only means to

identify senders are by temporal properties, such as IP address or network location.

Even if a mechanism to block senders did exist, attacker could evade blocks by

changing these properties.

Incorporating accountability into the network solves this problem. An account-

able architecture strongly identifies senders with persistent attributes and binds a

sender’s identity to its packets. Blocking attackers is more effective, as the attackers

cannot bypass blocks. Building a mechanism to block senders based on accountable

identities satisfies our goal of giving receivers control over the packets they receive,

thus mitigating DoS attacks.
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Trusted components

Existing proposals to extend the Internet to allow receivers control over the traffic

the receive share a common characteristic: they trust some component on the for-

warding path to not misbehave. This is undesirable, as these elements are often not

under the control of the receiver and may become corrupted. An ideal accountability

architecture would not place trust assumptions on any elements of the forwarding

path to achieve either identification or filtering. This dissertation proposes the fol-

lowing thesis: the Internet architecture can be extended to allow receivers to block

traffic from unwanted senders, even in the presence of malicious devices on the for-

warding path. I demonstrate this hypothesis by presenting the DNA and VanGuard

accountable architectures, showing how they maintains correctness if in-network de-

vices are corrupt, and evaluating their performance with an implementation and

simulations.

1.3 Goals of an accountability architecture

Incorporating accountability into the Internet is an immense task. All aspects of

the design need to be chosen properly so that the resulting architecture provides the

desired properties while incurring minimal overhead and change. Here I discuss the

goals we have for an accountability architecture and the reasons they are important.

Trust lies outside the forwarding path

Components of the Internet are operated and maintained by diverse organizations,

often with no mutual trust of each other. An accountable Internet architecture

should reflect this by trusting as few of the components as possible. DNA minimizes

this trust by depending upon only a trusted third party to issue identities and, when

necessary, resolve disputes.

If any part of the network deviates from the protocol, DNA defines measures

to filter, disconnect, or expunge the offending component. This is in stark contrast

4



to even the most recent DoS prevention techniques and accountability protocols [81,

53, 52, 3], which all rely on some component of the network to correctly enforce the

protocol.

Receivers can block senders

Receivers should have control over who sends to them. Accepting a packet from

the network consumes resources, and receivers should be able to control allocation

of their resources. To give receivers this control, an accountable architecture must

allow receivers to block senders. Blocking a sender should prevent any packets from

that sender from reaching the destination. By allowing receivers to express this

control, DNA gives them control over who consumes their network resources and

allows them to protect their networks from attack.

Senders may remain anonymous

Traditionally, accountability and anonymity have been mutually exclusive. Binding

senders to strong, persistent identifiers can compromise privacy, by making it easier

to track users across multiple connections. An accountable Internet architecture

should not provide privacy-compromising adversaries with more abilities than they

have today.

DNA uses temporary blinding keys to prevent traffic analysis; this comes at

the cost of requiring extra communication to map the temporary key to a permanent

key before placing a block. Existing techniques such as onion routing [36] can be

used to further mask communication patterns.

Sender identity is unforgeable

In order for blocks to be effective, they must unambiguously identify the entity to be

blocked. A sender must not be able to avoid a block because of an imprecise match.

Similarly, identities must be long-lived: blocks are ineffective if a principal can mint

a new, unblocked identify. DNA uses the strongest identification methods available,

namely cryptographic signatures, to provide unforgeable, long-lived identities to
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senders.

Every destination is protected

Currently, only high-profile sites are able to employ any form of DoS protection,

while many others are vulnerable. Some DoS-mitigation proposals also offer pro-

tection only to individual sites [23, 48, 4]. Our goal is to provide protection for

every host in the network. This motivates building accountability into the network.

Changing the fundamental nature of the Internet to provide accountability requires

changes at the underlying protocol levels.

Traffic is blocked near the source

There are three places in the network where unwanted traffic can be blocked: near

the destination, in the core, or near the sender. By the time the traffic has reached

the destination, it is too late: bottleneck links may already be congested.

Filtering traffic in the core is infeasible for several reasons. High-speed routers

can only perform cursory checks, router state is limited, and undesired traffic may

take many paths through the network, each requiring its own filter.

The only choice left is to block traffic near the source. Doing so not only

avoids the above problems, but by dropping packets early, does not waste network

resources on transmitting packets that will only be discarded later.

Incremental deployment

The growth of the Internet has led to an ossification of its core protocols. It is

no longer possible to coordinate global shifts from one protocol to the next; change

must occur gradually. The difficulties and delays encountered in the current attempt

to upgrade from IPv4 to IPv6 are an example of this phenomenon. Therefore, new

designs must be able to coexist with current protocols. DNA is designed to allow for

incremental deployment. Most changes happen at endhosts and in edge networks,

allowing for sites to upgrade at their own pace. Networks in the core of the Internet

do not have to upgrade simultaneously; accountable packets can be tunneled through
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non-accountable networks.

As the guarantees DNA offers (specifically, minimal trust assumptions and

strong sender identification) are very strong, it is not surprising that DNA incurs

costs (in terms of packet size, signature checking and verification, and additional

components in the network) greater than those in today’s Internet. However, DNA

makes design choices (such as using elliptic curve cryptography and the use of

waivers) to reduce these costs.

1.4 Thesis outline

In Chapter 2 I give a detailed survey of work related to DNA and VanGuard. I

describe previous attempts at preventing and mitigating DoS attacks and to what

extent they provide accountability of senders. I focuses on three approaches: capa-

bilities, which routers can use to prioritize packets that the destination has expressed

desire in; filters, which, like DNA, allow receivers to block packets from unwanted

senders; and alternate designs of an accountable architecture for the Internet. It

also discusses work that proposes uses of accountability in networking for purposes

other than preventing DoS attacks.

In Chapter 3 I present the design and evaluation of the DNA architecture. It

describes the protocol in detail and shows how DNA continues to be effective even

when devices on the forwarding path, including senders, routers, and the components

of DNA, are corrupted. DNA uses strong cryptography, rather than network-based

properties such as point of attachment, to identify senders. The result is that once

a sender is blocked, it cannot move or change properties of its network to bypass

a filter. DNA includes provisions for allowing senders to remain anonymous, yet

still be blockable. This chapter also proposes extensions to decrease the packet-

transmission overhead (waivers) and prevent replay attacks at the cost of router

state (Bloom filters in routers).

DNA provides the ability for destinations to block senders. These filters must
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be stored for as long as the destination desires and be readily available in order to

determine if a sender is attempting to contact a destination that has blocked it.

DNA stores filters in a globally-available distributed hash table (DHT). A DHT is a

structured overlay network with a put/get interface that scales efficiently with the

size of the network. As such, it is a natural design choice for storing such a large

amount of state. However, DHTs are vulnerable a variety of attacks. Chapter 4

presents the design of the NeighborhoodWatch DHT, which prevents known attacks

by relying on a trusted authority.

An accountable Internet architecture provides an accountable channel that can

be used as a building block for other systems. In Chapter 5 I present one such appli-

cation. VanGuard is a network architecture that incorporates both accountability

and capabilities, which are an efficient way of allowing destinations to tell routers

whether traffic is desired. VanGuard is built on DNA and uses it to hold senders

accountable for their traffic and allow receivers to block senders. VanGuard ties

capabilities to accountability information and treats them as secret values, meaning

senders (once they obtain capabilities) do not need to sign packets in order to be

held accountable. This allows VanGuard to provide the same benefits as DNA with

less overhead.

I conclude my dissertation in Chapter 6, in which I summarize my contribu-

tions and suggest areas of future work.
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Chapter 2

Related Work

This chapter presents a survey of work related to my thesis, with a focus on network-

based DoS protection mechanisms give some amount of control to the receiver. It be-

gins with early proposals based on overlay networks (Section 2.1) and router-placed

filters (Section 2.2). Passport, a building block for many later systems, follows (Sec-

tion 2.3). Capabilities, the approach which has been most-heavily explored in the

research literature, is presented in Section 2.4. Filtering systems, the family in which

DNA falls, are discussed in Section 2.5. Section 2.6 describes AIP, which shares many

of the same goals as DNA, and derivative work. Section 2.7 briefly presents other

related systems. I follow with a description of existing DoS-prevention techniques,

both Internet practices (Section 2.8) and commercial services (Section 2.9). Finally,

Section 2.10 presents other uses of accountability in networking.

Table 2.1 presents a comparison of the pieces of work discussed in this chapter

with DNA and VanGuard.

2.1 Overlay-based services

Overlay-based DoS-prevention services leverage a dedicated infrastructure that uses

a combination of tunneling and filtering to protect against DoS attacks. They do

not aim to solve the general DoS problem, but rather protect individual hosts or

services, such as emergency services. The two proposed systems discussed below,

SOS and Mayday, have two requirements that make them impractical for wide-area
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Senders
identified by

Destination
protection
mechanism

Mechanism
enforced by

Trusted
components

Notes

DNA Signatures Filtering near
source

LRep, source
gateway

TAP Blocks
enforced
regardless
of location

AIP [3] Self-certifying
addresses

Filtering at
source

Trusted
hardware

Sender
hardware,
routers,
source
networks

Requires re-
addressing
hosts

IPa+ [80] Passport None - DNSSEC,
secure BGP

Passport
does not
identify
senders

StopIt [52] Passport Filtering near
source

Source
gateway

StopIt
servers

Passport
does not
identify
senders

AITF [8] Path according
to record route

Filtering near
source

Source
gateway

Gateways

AS-based [72] IP address Filtering near
source

Source
gateway

Filter
request
servers

Relies on
ingress
filtering

TVA [82] Path identifier;
capabilities

Denying use
of privileged
channel

Routers Routers Fair-
queuing to
protect
request
channel

NetFence [53] Local address;
Passport

Rate-limiting Source
gateway

Source
gateway

CAT [22] Ability to receive
traffic at source
address

Routing
traffic
through
middlebox

Cookie
boxes

Cookie
boxes

Cookie
boxes
unprotected

Passport [55] Source AS None - BGP, to
establish
shared keys
between
ASes

Identifies
only the
source AS,
not the
sender

Pushback [58] - Rate-limiting Routers Routers
SOS [48],
Mayday [4]

Shared key Filtering at
overlay

SOAPs SOAPs,
secret
servlets,
beacons

Table 2.1: Summary of related work
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DoS protection. First, they require a large, dedicated infrastructure that can au-

thenticate and route a large number of packets on its own. Second, the participants

are limited to senders and receivers that exchange secret information before using

the overlay.

2.1.1 SOS

The Secure Overlay Service, or SOS, is the first overlay-based DoS-prevention ser-

vice [48]. SOS protects a single target from attack. Surrounded the target is a set of

filters, such a firewalls, that create a “filtered region” around the target consisting

only of authorized traffic. In order to pass through a filter, traffic must first be

routed through an overlay; SOS uses the Chord [75] overlay network.

There are three types of special nodes in the overlay:

1. SOAPs, which will verify senders with an authentication protocol such as IPsec

or TLS.

2. Secret servlets, which route traffic directly to the target through the filter.

Filters only allow traffic with an IP source address that is one of the secret

servlets. By keeping the secret servlets addresses secret, SOS limits the ability

of an attacker to spoof a source address that allows his traffic to traverse the

filter.

3. Beacons know the identity of secret servlets and route (authenticated) packets

towards them.

If any overlay node is attacked or otherwise fails, it simply leaves the overlay.

The Chord protocols ensure the overlay recovers. If a secret servlet is attacked or

discovered, the target simply selects another and only need inform the beacons of

the change.
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2.1.2 Mayday

Mayday [4] generalizes SOS by allowing for alternative overlay routing and client

authentication methods. The author presents a variety of probing and scanning

attacks that can be used to determine the secret values (such as secret servlet IP

addresses) used to protect the target. To protect against these attacks, Mayday

allows filters to authenticate secret servlets (egress nodes in Mayday parlance) by

one or more lightweight authenticators, such as a secret value for the destination

port or address. While it does solve some deployment issues and formalize the

design-space of overlay-based protection, Mayday does not (aim to) offer a service

that could be used to protect every end host.

2.2 Pushback

Pushback [58, 43] is a technique in which routers recognize that one of their out-

bound links are congested and take measures to reduce this congestion. Rather

than dropping packets randomly, Pushback attempts to discover an aggregate, or

well-defined subset of traffic, that is causing congestion. Pushback consists of two

mechanisms: a local mechanism, employed by the congested router to identify and

control the aggregates, and a pushback mechanism in which that router asks up-

stream routers to help control the aggregate. Pushback can be though of as a means

of aggregate-based congestion control, an intermediate between fine-grained per-flow

control and coarse per-packet control.

When a router begins to drop packets due to congestion, it passes relevant in-

formation from the dropped traffic to an aggregate congestion control (ACC) agent,

which uses clustering to find a small number of aggregates that are responsible for

the most congestion. Aggregates can be based on any available fields, such as desti-

nation address, source prefix, or port number. Once the router identifies the larger

aggregates, it determines the minimum number that must be rate-limited, and to
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what extent, in order for the over-all drop rate (not including rate limiting of select

aggregates) to fall below a threshold.

In order to further reduce congestion at the router, and to limit collateral

damage caused by benign traffic that matches the rate-limited aggregate, Pushback

propagates aggregates through the network. A router R that drops excessive traffic

due to rate limiting will request that its upstream neighbors limit the amount of

aggregate-matching traffic sent to R. These requests contain the aggregate and

the desired arrival rate for that aggregate. The original router only sends these

requests to routers that are responsible for a large amount of the traffic matching

the aggregate. Routers that receive pushback messages occasionally send a status

message back to the requesting router, so that the latter may decide whether to

let the pushback requests expire. Pushback has the advantage that, when high-

bandwidth traffic originates from a localized source, only nearby routers need to use

rate-limiting.

While Pushback can control flooding attacks in certain situations, it has sev-

eral drawbacks that prevent it from being an effective, general solution to the DoS

problem. First, while aggregation means that routers need to store fewer rules in

order to block traffic, this comes at the cost of accuracy. The greater the degree of

aggregation, the more benign packets are lost due to collateral damage. Second, as

the authors acknowledge, it may not be possible to always find an aggregate that

describes the high-bandwidth traffic. In this case, Pushback is no more effective

than randomly dropping packets, which is what occurs on congested links anyways.

Third, routers decide on their own when to start rate-limiting. Without an ex-

plicit (authenticated) notification mechanism, Pushback does not allow destination

to block unwanted but non-overwhelming traffic.
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2.3 Passport

In Passport [56, 55], ASes use shared secret keys to enable on-path ASes to determine

a packet’s source AS. Each AS uses routing announcements to share a secret key with

each other AS. When a packet is sent, the source AS uses these keys to create a series

of secure tokens, one for each AS through which a packet will be forwarded, and

places them in outgoing packets. The token created for AS A identifies the source

AS to A. Passport is used as a spoofing-prevention mechanism in several other

DoS-prevention architectures, including NetFence [53] (discussed in Section 2.4.6),

StopIt [52] (discussed in Section 2.5.3), and IPa+ [80] (discussed in Section 2.6.2).

Key exchange in Passport is accomplished via Diffie-Hellman key exchange [30],

piggybacked on top of BGP announcements. Passport assumes global parameters p,

a prime, and g, a generator mod p. Each ASi generates a random ri and computes

bi = gri mod p. ASi then includes bi in its BGP announcements. The shared secret

key between ASi and ASj is Ki,j = bri
j mod p = b

rj

i mod p. The security of Passport

key distribution is therefore tied to the security of the routing system.

When a packet P leaves its source AS AS1, a border router in that AS deter-

mines the sequence, or path, of ASes that P will pass through, using BGP routing

tables. For each ASj on this path, the border router finds (or computes) the secret

key K1,j and uses that key to create a token. The format of a token is:

t1,j = MACK1,j
(src, dst, len, IP ID, payload[0..7], ASk)

where src is the source address, dst is the destination address, len is the packet

length, IP ID is P ’s IP identifier, payload[0..7] is the first 8 bytes of P ’s pay-

load, and ASk is the AS preceding ASj in the AS path. The border router places

these tokens into the Passport header, a shim header between IP and the transport

protocol.

When P arrives at ASj along the path, a border router in ASj verifies the

corresponding MAC. It determines the source AS, and hence which shared key to
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use, by examining the source address of the packet and mapping that to an AS via

its routing tables. Having obtained the key, the border router computes the MAC

over the same fields. If the MACs are equal, the border router forwards the packet.

If the comparison fails, however, the source AS is possibly spoofed and the border

router performs one of two actions, depending on if ASj is the destination AS or

not. If ASj is the destination AS, it drops P . Otherwise, the router “demotes” P ,

that is, it gives a lower priority to forwarding P and sets a bit in P that tells other

ASes to do the same. The reason for not dropping P in the middle of the network

is that a (temporary) routing variation may have occurred, sending P along a valid

path that ASi did not correctly predict.

Security of key exchange

While relying on existing mechanisms to distribute keys may be efficient, the poten-

tial damage caused by routing system failures increases. Diffie-Hellman is vulnerable

to a man-in-the-middle attack [45]. An attacker that can replace the public value

of one participant in the key exchange protocol can later impersonate that party.

This implies that an AS can impersonate any of the ASes for which it provides con-

nectivity. Additionally, an attacker that hijacks a victim’s prefix can impersonate

the victim, by issuing a new DH value for that AS. This can increase the damage

caused by a prefix hijacking attack, which frequently occur today [14]. The only

known methods of securing Diffie-Hellman key exchange require either a PKI, which

Passport deliberately does not assume.

Trust assumptions

Passport trusts the routing system (in this case, BGP) to securely distribute Diffie-

Hellman key exchange values. Passport trusts ASes to police their networks to

prevent internal address spoofing. Passport places minimal trust in intermediate

routers as they have only a small role: they can forward traffic as normal or demote

traffic before forwarding it.
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Sender identification

Contrary to the authors’ claims that Passport allows routers to validate the source

address of packets, there are no provisions to prevent address spoofing inside an

AS, nor mechanisms to prove that an address is not spoofed. Therefore, Passport

allows the validation of only the source autonomous system. Because senders are

not identified, Passport does not provide a mechanism for receivers to control who

can send to them.

2.4 Capabilities

Capability-based architectures split traffic into multiple classes; in general, the two

predominant classes are traffic from senders whom the receiver has consented to

receive traffic from and traffic from senders whom the receiver has not consented to

receive traffic from. Consent is given in the form of a capability : a difficult-to-forge

token that is granted to a sender when the receiver responds to an initial request to

send traffic. Capabilities are usually created and checked by an in-network device.

2.4.1 Initial proposal

Anderson, Roscoe, and Wetherall [5] were the first to propose using capabilities

as a means of DoS prevention. They add two types of entities to the Internet

architecture: Request-To-Send (RTS) servers and verification points (VPs). RTS

servers help senders obtain capabilities and are co-located with BGP speakers. VPs

are deployed near RTSes at network choke points. BGP announcements are extended

to include a list of RTS servers along the path to a destination network. A sender

obtains tokens by sending a request to the first RTS server on the list, where it

is relayed along the list of RTS servers until it reaches the destination. The RTS

server overlay is used to prevent flooding: each RTS server rate limits the requests

it forward to any prefix.

Once a request arrives at the destination, it must decide whether to grant a
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capability. Capabilities allow a sender to send n packets in t seconds; these values are

system-wide parameters. The destination creates a capability (in fact, a sequence of

capabilities) using a reverse hash chain (see Section 2.4.5 for a description of reverse

hash chains). The last hash chain value is the first capability, and the destination

sends it to the sender through the RTS server overlay. Each RTS server observes

the capability and transmits it to its nearby VP, which stores it. The VP ensures

that each packet has a capability, that the capability has not been used for more

than n packets, or is older than t seconds; this requires that each VP store each

capability, its age, and the number of packets send with it. Destinations can issue

new capabilities by including the latest unreleased hash value in a response packet,

where it can be observed and verified by RTS servers/VPs.

2.4.2 SIFF

SIFF [79] shows how to use capabilities without requiring per-flow state on routers

and provides the basis for subsequent work in capabilities [81, 64, 23]. SIFF par-

titions traffic into two classes: privileged and unprivileged. Endhosts can establish

a channel of privileged traffic, which takes precedence over non-privileged packets

at routers. Privileged packets carry capabilities that are verified by routers en-

route. Routers drop packets that fail verification. Routers also prefer privileged

packets over unprivileged, so that floods of unprivileged packets do not affect priv-

ileged channels. SIFF gives receivers a simple mechanism to stop packets from an

unwanted sender: ceasing to forwarding packets to the sender, which causes the

privileged channel to eventually close.

To establish a privileged channel, a sender must obtain a capability from the

recipient through a handshake. The sender sends an explorer packet to the destina-

tion, and each (SIFF-enabled) router on the path inserts a marking. Each marking

is a keyed hash of the router’s incoming interface, the last-hop router’s outgoing

interface, and the source and destination IP addresses. The key is known only to
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the router.

When the sender’s explorer packet arrives at the destination, the receiver sends

its own explorer packet that includes the routers’ markings. When the original

sender receives this response packet, these markings serve as the capabilities that

allow the sender to establish a privileged channel. The TCP handshake can be

carried on top of the channel-establishment handshake.

Routers check privileged packets with the same computation used when creat-

ing markings: each router that forwards a (purportedly) privileged packet computes

the marking it would insert into the packet if it was an unprivileged, explorer packet.

The router forwards the packet if this marking matches the marking already present

in the packet; otherwise, the router drops the packet.

To prevent an attacker from obtaining a capability and using it to flood a re-

ceiver, routers change their private keys (and thus computed capabilities) frequently.

This does not affect normal communication, as these new capabilities are reflected

to the sender by the receiver. However, a receiver that wishes to no longer receive

traffic from a sender can stop relaying capabilities to the sender. The sender’s capa-

bilities will eventually expire and it will no longer be able to send privileged traffic

to the destination.

Trust assumptions

SIFF trusts that (SIFF-enabled) routers check the validity of capabilities in packets

and drop packets with invalid capabilities. Tacitly, SIFF also assumes that there is

at least one SIFF-enabled router near every source, so that valid capabilities cannot

be shared by many hosts behind their collective first-hop SIFF router.

In addition, SIFF makes the assumption that an explorer packet will eventually

arrive at its destination and be returned, even when the unprivileged channel is being

flooded with traffic.

Sender identification mechanism
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SIFF capabilities identify the sender as someone able to receive traffic at the source

address included in its packets. While this limits the number of spoofable addresses

that are available to an attacker, it does not prevent source spoofing nor uniquely

identify a sender. Namely, it does not offer protection against an attacker that

has a large network at their disposal, as they can obtain valid capabilities for many

senders. SIFF and other capability-based architectures define identification in terms

of network location [72]; VanGuard, presented in Chapter 5, is the first exception

to my knowledge.

2.4.3 TVA

TVA [81, 82] builds upon SIFF to allow destinations to express basic policies over

how senders can use capabilities and to protect the capability request channel. TVA

also makes minor improvements on SIFF, such as using larger, harder-to-forge capa-

bilities and allowing senders to replace a capability with a nonce if that capability’s

router caches the capability.

As in SIFF, senders request a capability by sending an unprivileged capability

request to the destination. TVA routers insert a pre-capability into capability-

request packets. The format of a pre-capability is:

timestamp || H(source IP, destination IP, timestamp, secret)

where timestamp is the router’s local time and secret is a value either known only

to the router or shared across the router’s trust domain.

Expressing policy in capabilities

To turn a pre-capability into a capability, a destination first selects values for T , the

lifetime of the capability, and N , the amount of bytes the source can send in that

time. The destination constructs the capability as:

timestamp || H(pre-capability, N, T )
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To verify a capability, a router re-constructs the capability (requiring two

hashes) and compares against the value in the packet. A router must also check

that its current time does not exceed timestamp + T .

Ensuring that a sender does not use a capability to send more than N bytes

requires storing state at the router. However, TVA makes assumptions that bound

this state. Routers only keep state for senders that send at a rate faster than N/T ,

and this state is kept only for LT
N

seconds, where L is the size of the packet. Thus,

when a sender’s rate drops below N/T , meaning it cannot send more than N bytes

over the lifetime of the capability, its state is eventually reclaimed. TVA imposes

a minimum value on N/T , (N/T )min. Thus each flow consuming state at a router

represents bandwidth greater than (N/T )min, of which there can only be C
(N/T )min

for

a link of capacity C. Thus TVA allows destinations to include rate limiting policies

in capabilities, at the cost of (bounded) router state.

Fair-queuing capability requests

To prevent attackers’ capability requests from overwhelming legitimate requests,

TVA approximates per-sender fair-queuing at each trust domain, e.g., AS. However,

because sender addresses may be spoofed (on the capability-request channel), TVA

routers use a path identifier similar to Pi [78] to tag packets according to their

incoming interface, which provides an approximate source identifier. Each network

places packets that share an identifier into a queue and uses fair-queuing across all

queues.

One consequence of this is that senders with the same path identifier share

fate. While this limits the rate at which an attacker’s capability requests reach the

destination, it also allows a malicious sender to starve other senders whose packets

map to the same queue. The authors of Portcullis [64] point out that, due to

“mixing” of legitimate traffic with attack traffic, the probability of successful packet

delivery drops exponentially in the number of hops along the path.

Because TVA does not allow receivers to block capability requests from un-
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wanted senders, it does not prevent attackers from overwhelming portions of the

capability request channel. Similarly, a large group of attackers (such as a botnet)

can cooperate to fill most or all queues at a given router.

2.4.4 Denial of Capability Attacks

While SIFF and TVA can protect established, privileged channels, their weakness is

that they cannot afford the same level of protection to channel establishment with

unprivileged packets. Argyraki and Cheriton [9] claim that the capability distri-

bution mechanism is the main deficiency of capability-based architectures. They

describe a “denial-of-capability” attack, in which attackers flood the capability re-

quest channel, preventing legitimate capability requests from succeeding. TVA’s

fair-queuing is not an effective solution because it restricts all interfaces to equal

connection rates, regardless of whether that rate is appropriate for (different) re-

ceivers. The underlying cause of this problem is that SIFF and TVA rely on the

ability to partition traffic into two classes: “wanted”, privileged traffic and “un-

wanted”, unprivileged traffic, whereas connection-setup requests cannot be correctly

classified as either wanted or unwanted.

More recent capability architectures take Argyraki and Cheriton’s arguments

into account. Portcullis (Section 2.4.5) responds to these observations by requiring

clients to solve a puzzle in order to request a capability. Flow-cookies (Section 2.4.7)

aims to protect only high-value targets and makes the assumption that all traffic

sent to and from this target passes through a middlebox.

2.4.5 Portcullis

Portcullis [64] uses computational proofs of work, i.e., puzzles, to enforce fair sharing

of the capability request channel. The authors of Portcullis take this approach

because they observe that sender identifiers are either spoofable (IP addresses) or too

course-grained (path identifiers) to provide adequate fairness. By tying a capability
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to an amount of work, Portcullis aims to improve sender fairness.

When a sender wishes to send a capability request, it generates a puzzle based

on a seed and solves it. Each solution has an associated puzzle level. The sender

includes the puzzle and solution in the capability request. Routers verify that the

puzzle was created with the latest seed and that the solution is correct, and give

priority to higher-level puzzles.

The trusted seed generator periodically releases a new seed to ensure that

puzzle solutions expire. Seeds need to be unpredictable yet easily verifiable. The

Portcullis seed generator uses a reverse hash chain by picking a random value h0

and computing hi+1 = H(hi||i). The seed generator signs the final hn value and

releases it. Every t minutes, the seed generator releases a new seed, which is the

predecessor of the previous seed in the hash chain; if the current seed is hi, the next

seed to be released will be hi−1. Thus seeds are easily verifiable: one can easily check

that hi == H(hi−1||i). Routers learn of new seeds by observing the seed value in

capability requests; if a router observes and verifies a new value, it assumes that is

the current seed.

A Portcullis puzzle has the form:

p = H(x||r||hi||destination IP||`)

where r is a random nonce, hi is the current seed, and x is the solution such that

the last ` bits of p are 0. ` is the level of the puzzle; solutions with a greater value

of ` receive priority over those with lesser values. The sender includes r, hi, `, and

x in the packet so that routers can verify the solution.

The authors of Portcullis prove that the best strategy for an attacker who

wishes to flood the capability-request channel is to solve puzzles at the highest

level at which it can keep the channel saturated. Solving puzzles of a greater level

means the attacker is not able to consume the entire bandwidth of the capability-

request channel. Solving puzzles of a lesser level means it is easier for requests

from legitimate senders to be given a higher priority at routers. Given this optimal
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attacker behavior, the authors show that a legitimate sender need only solve a puzzle

at a level slightly greater than the attacker’s chosen level to successfully transmit

a capability request with high probability. However, there is no guarantee that an

under-powered (compared to the attacker) sender will be able to solve a puzzle at

this level during the lifetime of a seed.

In order to prevent puzzle re-use and puzzle sharing, routers must store previously-

seen puzzles. Portcullis stores puzzles in Bloom filters [21]. This requires routers to

maintain a (bounded) amount of state. When the router encounters a new puzzle

with a valid solution, it adds the puzzle to the Bloom filter and inserts the request

into a priority queue based on its puzzle level.

Trust assumptions

Portcullis trusts the underlying capability architecture to correctly prevent (or limit)

unwanted communication. Portcullis requires a trusted seed distribution service, for

which they use DNS. The signing of the DNSSEC root [40] suggests that distribut-

ing seeds can be secured. However, Portcullis implicitly assumes that the seeds

themselves, implemented with a reverse hash chain, are secure. Determining an

“early” value in the hash chain would reveal all following values as well. An at-

tacker capable of finding such a value could solve puzzles using unreleased seeds

to trick routers into believing a new seed had been released. This would prevent

legitimate senders from being able to use valid puzzle solutions. Additionally, the

attacker could pre-compute and solve puzzles with a very high level, allowing him

to flood the capability-request channel with requests that always take priority over

legitimate requests. Even if H is preimage-resistant, the authors suggest that a hash

chain should be valid for one year, which gives attackers a long time to mount a

(massively parallel) attack.

Sender identification mechanism

Senders are differentiated based on what puzzles they solve, rather than by any
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identifier or network-based property.

2.4.6 NetFence

In NetFence [53], routers encode congestion information into packets using a variant

of capabilities, allowing congested routers to signal to first-hop routers that a sender

should be rate limited. The aim of NetFence is to guarantee each sender at least

an equal share of each bottleneck link. To do so, it moves the task of congestion

control from the the endhost, which NetFence does not trust, to the first-hop router,

which NetFence does (although it details provisions for handling malicious routers).

NetFence uses Passport [55] to establish shared keys between ASes and to prevent

source spoofing.

Like SIFF [79] and TVA [81], NetFence splits traffic into three categories:

request packets, regular packets, and legacy packets. Request and regular packets

carry “secure congestion policing feedback”, which first-hop routers use to rate limit

senders if necessary. There are three types of congestion feedback: nop, indicating

no rate limiting is required, L↓, indicating that link L is congested and the first-hop

router should rate limit traffic traversing L, and L↑, indicating that (so far) the

path is free of congested links. Each type of feedback is expressed as an unforge-

able marking in the packet. The capability-request channel is limited to 5% of the

bandwidth on any link. NetFence adopts a mechanism similar to Portcullis [64] to

protect the capability-request channel, although it is enforced only at the first-hop

router. In NetFence, senders assign a priority level to their packets. Packets at level

k are given priority over packets at level k − 1, but a rate limiter at the first-hop

router accepts level k packets at half the rate of level k − 1.

To initiate communication with a destination, a sender sends a request packet

to the destination. The sender’s first-hop router inserts the nop feedback into this

packet. The destination returns the feedback to the sender in its response. The

sender must include the returned feedback in its regular packets. In this sense,
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NetFence is a generalization of capabilities: if a destination does not want the sender

to be able to send regular packets, it does not return the congestion feedback.

A congested router, R, may update feedback in order to throttle a sender S

(similar to TCP explicit congestion notification [68]). If R detects a high loss rate on

one of its outgoing links L, which may be a symptom of an ongoing attack, it starts a

monitoring cycle. During a monitoring cycle, R stamps L↓ feedback into S’s packets

(unless a router preceding R has already stamped such feedback). R may modify

both request and regular packets. Congestion feedback includes a timestamp to

ensure freshness. R’s feedback will eventually reach S’s first-hop router, RS, which

creates a rate limiter for (S, L) if one does not already exist. So long as S’s feedback

is L↓, RS will decrease the rate at which S can send through L. To detect when

congestion is alleviated, RS resets the feedback on outgoing packets, changing L↓

to L↑. R updates this feedback only when it is experiencing congestion; if an L↑

feedback is returned, then RS increases the rate at which S can send through L. If

S’s packets do not cross a congested link, the returned feedback will be nop, RS will

not rate limit S, and RS will continue to stamp nop feedback in S’s packets.

A first-hop routers’ (S, L) rate limiter throttles S with an additive increase,

multiplicative decrease (AIMD) algorithm. Each rate limiter includes two variables:

one to track whether S has received L↑ feedback and the other to record start

time of the current control interval. S’s rate is adjusted only at the end of each

control interval. The default length of control intervals is two seconds. The only

way for a sender’s rate limit to increase is if it presents the first-hop router with

fresh L↑ feedback. Otherwise, if the sender presents L↓ feedback, presents feedback

from before the start of the control interval, or sends no packets, its rate limit will

decrease. This prevents S from hiding L↓ feedback or sending at a slow rate to

increase its rate limit. The first-hop router will terminate a rate limiter if it has not

received L↓ feedback, or discarded a packet, for “a few hours”. This rate limiting

guarantees that, in the long run, each sender will have at least a 1
N

share of the
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bandwidth of the congested link when there are N senders using the link.

To be effective, congestion feedback must be unforgeable; neither endhosts

nor routers should be able to modify existing feedback other than to replace nop

or L↑ with L↓. A congestion feedback has six fields: a mode (either nop or mon),

a link identifier (containing an IP address if mode is mon and invalid otherwise),

an action (↑ or ↓; valid if mode is mon), a timestamp indicating the time at the

first-hop router, and a token, which is a MAC of various fields. The format of the

MAC for a nop feedback, stamped by a first-hop router, is:

tokennop = MACK(src, dst, ts, null, nop)

where K is a key known only to the router, ts is a timestamp, and null is a link

identifier. A tokenL↑ contains the ↑ action but it otherwise similar to a tokennop. A

tokenL↓ , however, is created by a remote router. Its format is:

tokennop = MACK′(src, dst, ts, L,mon, ↓, tokennop)

where K ′ is the key shared between the source AS and the congested router’s AS,

as established by Passport [55].

When a first-hop router receives a regular packet from a local sender, the router

verifies the packet by re-computing the MAC and comparing it to the token in the

packet. If the MAC is incorrect, or the timestamp in the feedback is older than the

“feedback expiration time”, which defaults to four seconds, the router demotes the

packet to a request packet and applies the appropriate rate limiting.

The authors propose several possible remedies for handling a compromised

first-hop router, including per-AS queuing at each router, per-AS rate limiting at

each router, and heavy-hitter detection. Each approach relies on routers being

able to map a source address to an AS; NetFence uses Passport to prevent source

spoofing.

NetFence does permit at least one attack, though it is difficult to execute. If a

sender can collude with an on-path attacker, such as an upstream router, the router
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can observe the sender’s request packets with nop feedback and tunnel this feedback

to the sender. The sender can then successfully ignore L↓ feedback, which it can

replace with fresh, valid nop feedback. This attack also undermines NetFence’s

ability to allow destinations control over who sends to them: even if the destination

does not return any feedback, the sender will still obtain it. This attack does not

work in TVA [81] unless the colluding attacker is located in the destination’s network;

otherwise the sender will not be able to obtain the capabilities necessary to traverse

all routers along the path. The crucial difference is that in TVA, a router anywhere

on the path verifies the markings it places in a packet, whereas in NetFence, only

the first-hop router does so.

Sender identification

The majority of NetFence’s mechanisms do not require identification of a sender

by any entity other than the sender’s first-hop router; therefore identification is

a matter of securing the local network. Remote identification of senders occurs

only when a first-hop router is suspected of misbehavior. In this case, senders are

identified at the granularity of their AS; Passport enables this identification. Neither

routers nor destinations are able to identify the first-hop router that inserted initial

feedback into a packet; this is surprising given that this router is trusted to ensure

protocol compliance. While the authors suggest that a destination may refuse to

return feedback to a sender, presumably based on identifying the sender by their IP

address, Passport only identifies the AS from which a packet originated—it is not

guaranteed to prevent source spoofing.

Trust assumptions

NetFence trusts first-hop routers to correctly police their attached senders. If they

do not, NetFence must resort to secondary mechanisms that require thousands of

queues per router in the core and may harm legitimate senders.
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2.4.7 Flow-cookies and CAT

Flow-cookies [23] is a capability-based system that provides protection by routing all

traffic between senders and a target server through a third-party middlebox called

a cookie box. The cookie box has a high-speed connection to the Internet. Senders

wishing to initiate a TCP flow with the server first contact the cookie box. This is

accomplished by having the cookie box announce the routes to the protected server

and then communicating with the server through a private tunnel. The cookie box

uses SYN cookies [19] to ensure that the sender is not spoofing its address. Once

the connection is established, the cookie box hands the connection off to the server.

As in TVA [81], the sever consents to receiving traffic from the sender by sending a

response, which is routed through the cookie box.

Return packets from the server are routed through the cookie box, which adds

a flow-cookie. A flow-cookie is a MAC of a counter value and the connection 4-tuple,

keyed with a secret known only to the cookie box. The counter is used so that flow-

cookies expire. The cookies box places the flow-cookie in the TCP timestamp option

field; most TCP implementations copy timestamped values from received packets

into return packets. The cookie box then inspects non-SYN packets to ensure they

contain a valid flow-cookie. The server can tell the cookie box to block certain IP

addresses, which are stored in a blacklist at the cookie box. Flow-cookies cannot

be used to protect links on the path to the cookie box, which is why is must be

well-provisioned.

Because flow-cookies does not require modification of any existing protocols or

client applications, it is simple to deploy. It does not use heavy-weight cryptography,

and the authors’ implementation is able to process packets at a rate of 2.38 Gb/s

under idealized conditions.

CAT [22] extends flow-cookies to allow for a destination to employ multiple

cookie boxes in separate networks. Multiple cookie boxes, placed on high-bandwidth

links, are better able to handle high-volume flooding. By placing cookie boxes in
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or near Tier-1 networks, CAT reduces both the potential for bottlenecks and the

possibility that the destination can be reached through an unprotected link.

CAT places cookie boxes in networks on the trust boundary around the des-

tination’s network. The trust boundary is the (transitive closure of) networks that

have a commercial relationship with the destination’s network. CAT assumes that

these commercial relationships can be bootstrapped into trust relationships, which

can be used to determine which cookie box is responsible for establishing connec-

tions and filtering traffic. CAT includes modifications to BGP and routing tables

to allow networks to make these decisions.

Because CAT is a bolt-on solution, it can only provide protection for sites that

can route their traffic through a cookie box (notably, cookie boxes themselves can

not protected by CAT).

Trust assumptions

Flow-cookies trusts cookie boxes to not fail, maliciously or otherwise. If a cookie

box suffers a simple fail-stop failure, the destination is unreachable. CAT solves this

problem by incorporating multiple cookie boxes; however, a compromised cookie box

may still fail to block unwanted traffic. In addition, CAT trusts remote networks to

correctly determine whether or not they are responsible for filtering traffic.

Sender identification mechanism

A cookie box identifies senders at two different times. When a sender first establishes

a connection, the cookie box uses SYN cookies, and when a sender uses a previously-

established connection, the cookie box uses flow-cookies. Both types of cookie ensure

that the sender is able to receive traffic at the source address included in its packets.

Because cookies are hard to forge without knowing the MAC key, an attacker cannot

spoof an arbitrary address and flood the protected server using flow cookies that

are valid for that address.
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2.5 Filtering

Filter-based systems a complementary approach to that of capability-based systems.

In capability-based systems, routers by default provide a low level of service and a

receiver must explicitly allow traffic for it to receive a higher level of service, while

in filter-based systems, routers provide a high default level of service and a receiver

must explicitly block senders from whom it does not want to receive traffic.

Filter-based designs have their own set of trade-offs. By design, filter-based

systems require devices other than the receiver to store filter state. Unlike capability

systems, there is no capability-request channel to protect; however, there must be a

mechanism to identify senders to block and ensure that blocks are enforced.

2.5.1 AITF

In capability-based architectures like TVA [81], decisions on whether to grant capa-

bilities or not are made at the destination. In Pushback [58], rate-limiting aggregates

are created and stored at congested routers near the destination. Active Internet

Traffic Filtering, or AITF [8], pushes filtering decisions even further away from the

destination by placing them at the gateway of the blocked sender. Placing filters

near the sender increases the filtering capacity of the network as a whole, distribut-

ing the task of storing filters among the greatest number of devices. It also drops

unwanted traffic before it has had a chance to mix with other traffic or consume

excessive forwarding resources bandwidth.

In order to allows destinations to place filters at the source’s gateway, AITF

must first provide a way to identify the gateway in question and then dictate how a

destination can establish a filter at a remote device. To identify the source of packets,

AITF uses a variant of the IP Record Route option. Routers that participate in

AITF stamp their IP address and a keyed MAC (created with a key known only

to itself) of the packet’s destination into the packet, using a shim protocol between
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IP and the transport protocol. The destination thus receives an ordered (but likely

incomplete) list of routers through which the packet traversed. This path has the

form {S, Sgw, ..., Dgw, D} where S is the source, D is the destination, and Xgw is

X’s gateway.

When a destination D receives unwanted packets stamped with a path P , it

asks its gateway Dgw to filter packets with this path. Dgw then installs a short-lived

filter that blocks traffic with path P from arriving at D and sends a request to Sgw

to block traffic from S to D. This request takes the form of a three-way handshake,

to prevent an off-path attacker from installing a bogus filter at Sgw. However, the

handshake packets traverse the same links as the attack traffic, so they may be lost.

AITF does not offer protection against this possibility [52].

If the handshake is successful, Sgw installs a short-lived filter to block S to D

traffic and requests that S no longer send traffic to D for a fixed length of time.

If this fails to staunch the flow of traffic, e.g., if Sgw misbehaves, then the local

gateway can escalate the filtering request to the next router on the path (that is,

the router two hops away from S). This request is the same as the original request

to Sgw, only now Dgw asks that all traffic from Sgw to D be blocked. Escalation can

have negative side effects for both Sgw and Dgw; as such it can serve as a powerful

motivation for Sgw to behave, but may not always be a credible threat. Escalation

continues until either the traffic stops or Dgw installs a filter locally that blocks all

traffic from Sgw to D. As there on the order of tens of thousands of edge networks,

and assuming there is a unique border router per customer-provider connection, Dgw

can block arbitrarily many unwanted senders with only tens of thousands of filters.

If AITF is only partially deployed, it may be the case that there are no AITF-

enabled devices unique to the path from an attacker A to a destination D, i.e.,

devices that are not also on the path from a distinct sender S to D. This means

that A can spoof the path in its packets, essentially framing S and Sgw. The keyed

MAC is used to prevent this attack: when Sgw receives a request to block traffic
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that it did not forward, it responds with the correct MAC for packets destined to

D. However, a malicious Sgw could always respond in this way (as the key used

to create the MAC is known only to itself) and never be blamed for forwarding

malicious traffic.

Trust assumptions

AITF trusts nearly every element of the architecture. Routers must place the correct

markings in packets for blocking to be effective. While escalation protects against

certain malicious gateway behaviors, it is only possible after a sufficient number of

networks deploy AITF, and routers in the middle of the network may not have the

capacity to handle a large number of escalation requests.

Sender identification

A sender is identified by markings placed into its packets by AITF-enabled routers.

These markings do not identify a unique sender so much as a sequence of routers

that a packet traversed. Because identification is effectively at the granularity of a

subnet, senders can spoof the addresses of other hosts located behind the first-hop

AITF router.

2.5.2 AS-based Accountability

Simon et al. were the first to describe the role of accountability as a means of

DDoS defense [72]. They define accountability as the combination of accurate and

reliable source identification along with a mechanism for allowing receivers to block

traffic from any source. Their proposed system extends AITF with stronger sender

identification and hop-by-hop filtering requests, and the authors argue that imple-

menting accountability in this way is the most cost-effective method (compared to

over-provisioning and traffic scrubbing) of defending against DoS attacks.

In order for blocking to effective, identification must be in terms of a persis-

tent attribute, rather than some network-specific property. Otherwise, senders can

32



simply change their network properties to evade a block. In this system, a sender

is identified as a customer of an ISP, i.e., an entity that receives an allocation of

one or more IP addresses. A customer could be either a single user, a company, or

another ISP. Participating ISPs store records of which IP addresses they allocate

to each customer and at what time; this entails, for instance, retaining DHCP and

NAT logs. To ensure that source IP addresses can be traced to the sender, these

ISPs also deploy strict ingress filtering [32].

When a destination in a participating ISP wants to block traffic from a sender,

it sends a filter request to its local filter request server, or FRS. These devices process

and forwards filter requests, and each accountable ISP must operate at least one.

The FRS determines if the requesting customer is allowed to issue a filter request,

which is a matter of local policy. If the request is allowed, the FRS forwards the

request to the FRS in the neighboring ISP through which the offending traffic arrived

(as determined by BGP tables). This process repeats until the request arrives at

the FRS in the ISP from which the traffic originated. There, the FRS examines its

records to find the customer that was using the IP address specified in the request

and places the blocks necessary to prevent that customer from sending packets to

the destination.

Not all ISPs will implement accountability. This has several implications, the

foremost of which is that a packet originating from an unaccountable ISP may have

a forged source address. To address this issue, the accountability scheme uses an

“evil bit”—a one-bit field in each packet. A packet’s evil bit is initially set to 0, and

if the packet ever crosses a border from an unaccountable ISP to an accountable

one, the accountable ISP sets the packet’s evil bit to 1. The evil bit is otherwise

preserved. If a packet arrives at a destination (in an accountable ISP) with the evil

bit set to 0, then the destination knows (1) that the source address in the packet

is not spoofed (since it originated from an accountable ISP) and (2) that there is a

path of accountable ISPs from the source to the destination, which is required for
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filter requests forwarding. If offending traffic with the evil bit set to 1 arrives at a

destination, the only option is to rate-limit such traffic.

The evil bit has additional uses. An overwhelmed router should preferentially

drop traffic with the evil bit set. If a malicious sender garners an excessive number

of filter requests, its ISP can reclaim filter state by removing these filters and setting

the evil bit in that sender’s packets. An ISP that claims to be accountable when

it is not can be detected via out-of-band mechanisms, and its neighboring ISPs can

set the evil bit on its traffic. Finally, to prevent reflection attacks, in which a sender

issues a request from a spoofed source address to cause the response to be sent to

a third-party victim, the evil bit is preserved in all responses (as spoofing is only

possible from unaccountable ISPs, these evil bits will be set to 1).

Trust assumptions

This scheme trusts ISPs to accurately map traffic to customers. There is no mech-

anism to detect a misbehaving ISP that allows its customers to evade blocks by

changing their IP address. The scheme also trusts ISPs to correctly implement

ingress filtering. While not specifically a trust assumption, the filter request mecha-

nism requires a path of neighboring, accountable ISPs between sender and receiver.

Sender identification

In this scheme, sender identification is possibly only for traffic from accountable

domains. There, ingress filtering ensures that senders can use only the addresses

allocated to them, and ISP logs map these addresses to customer records. By

identifying senders by something other than IP address, this system is able to block

senders regardless of their network properties, so long as they remain in the same

ISP.
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2.5.3 StopIt

StopIt is a filtering system designed to address the deficiencies of AITF [8]. Its

design incorporates a device dedicated to handling filter requests, the StopIt server,

in every AS (similar to the FRS of Simon et al. [72]). StopIt server addresses are

published via BGP, so that any StopIt server can send a filter request to the StopIt

server in a given AS. The only devices allowed to contact a remote StopIt server are

other StopIt servers; filters configured with StopIt server addresses protect StopIt

servers from potentially malicious inter-domain traffic.

StopIt relies on Passport [55] to prevent source address spoofing. However,

Section 2.3 describes how Passport is insufficient for this task. Establishing a filter

that blocks traffic from S to D for a length of time t is a five-step process:

1. A destination D sends a StopIt request to its gateway Dgw, requesting to block

the flow (S, D) for time t.

2. Dgw confirms that S is sending traffic to D by looking at a log of recent packets,

installs a temporary filter blocking S, and sends a StopIt request directly to

S.

3. If S continues to send traffic to D, Dgw sends a StopIt request to its local

StopIt server, DSIS. DSIS forwards the StopIt request to the StopIt server in

S’s AS, SSIS. StopIt servers communicate on a closed channel: routers block

traffic destined to a local StopIt server that was not sent by a remote StopIt

server.

4. DSIS forwards the request to Sgw.

5. Sgw confirms that S is sending traffic to D, installs a filter blocking S to D

traffic, and sends an additional StopIt request to S.

StopIt improves upon AITF by incorporating defenses against several attacks

that AITF is vulnerable to. AITF’s primary weakness is that filter requests share
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link capacity with attack traffic. StopIt prioritizes inter-domain filter requests by

ensuring attack traffic does not reach StopIt servers. However, the method described

in the paper to enforce this property requires that border routers maintain a whitelist

of the addresses of 30,000+ remote StopIt servers and compare packets’ source

addresses against this list.

StopIt requires that S send traffic to D before D can block S. This prevents

a type of filter-exhaustion attack at S at the cost of keeping per-flow state at every

gateway: Dgw maintains a flow cache that logs each flow passing through Dgw over

the past several seconds. When D sends a StopIt request to Dgw, Dgw checks that

it has seen traffic from S to D before forwarding the request. Likewise, Sgw will

ensure that is has seen (S,D) traffic before blocking that flow.

Trust assumptions

StopIt relies on Passport [55] to prevent source spoofing and relies on the same trust

assumption (see Section 2.3). In addition, StopIt trusts StopIt servers to honor filter

requests from remote ASes.

Sender identification

Senders are identified using Passport.

2.6 AIP and IPa+

2.6.1 AIP

The Accountable Internet Protocol [3] (AIP) takes an innovative approach to provid-

ing accountability at the network layer: hierarchical addresses derived from public

keys. While this prohibits compatibility with IPv4 and IPv6, it allows verification

of source addresses with a level of certainty that no other scheme (other than DNA)

offers. AIP uses secure hardware in each endhost to allow destinations to block

unwanted traffic.
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In the AIP architecture, an accountability domain (AD) plays the role of to-

day’s network or AS. Each host has a globally-unique endpoint identifier (EID). The

full address of a host located in AD AD has the form AD :EID . AD names and EIDs

are self-certifying : they are hashes of self-generated public keys. As such, they are

flat identifiers that cannot be aggregated, and the current practice of routing based

on prefixes would no longer be possible. In AIP, inter-network routing protocols

operate at the granularity of ADs, and routers forward a packet using only the des-

tination AD until it reaches this AD. Within the destination AD, routers forward

the packet using only the EID.

The goal of using self-certifying addresses is to prevent source spoofing. The

notion of address spoofing in AIP is different than in today’s Internet. With IP,

interfaces are assigned IP addresses (either by an administrator or via DHCP), and a

spoofed packet is any packet leaving that interface with a different source address. In

AIP, a sender may create as many valid source addresses as they wish. The concern,

therefore, is not sending with a different address but with impersonation: sending

a packet using a source EID for which the sender does not know the corresponding

private key. To prevent impersonation, source address are verified in multiple places

in the network: at first-hop routers and when crossing AD boundaries. Within the

source AD, a first-hop router R1 verifies that a connected sender S is not using a

spoofed address. When S first sends a packet through R1 after not having sent a

packet for a given amount of time, R1 drops this packet and sends a verification

packet to S. S signs this packet with the private key corresponding to its EID and

forwards the signature to R1. If the signature is correct, R1 will forward packets for

S.

When a packet crosses the boundary from AD A to AD B, there are three

possible cases. If B trusts A to have verified the source address, then B forwards

the packet. Otherwise, B uses a variant of uRPF (discussed in Section 2.8.1) to

determine if the packet arrived on the same interface that offers the best path back
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to the packet’s source AD. If so, B forwards the packet. If both tests fail, B follows

the same verification procedure as a first-hop router and sends a verification packet

to the packet’s source address AD :EID . If the sender is able to correctly sign the

packet, the router in B creates an entry in its accept cache stating that it should

forward packets from AD :EID . This last check has the potential to create a large

amount of state at routers in B, but will only be used in the case of path asymmetry.

A destination that receives unwanted traffic can block the sender by sending

a shut-off packet (SOP) to the traffic source. AIP assumes that hosts (which are

operated by well-intentioned users) are equipped with a trusted network interface

card (“smart-NIC”). The smart-NIC receives the SOP and installs a filter blocking

further packets to the destination, for an amount of time specified in the SOP. Smart-

NICs require that SOPs include the hash of a packet recently sent by the NIC to

the destination; this prevents replay attacks and the spoofing-capable attackers from

blocking traffic between innocent hosts.

While novel, AIP’s blocking mechanism has drawbacks. First, the blocking

mechanism will not work for all endhosts. Destinations can block only hosts that

have a smart-NIC (and allow the smart-NIC to receive SOP packets). Second, there

is a mismatch between the entity that appears in packets (EID) and the entity

that can be blocked (a NIC). Blocking a NIC does not prevent a malicious user

from sending traffic from the same EID on a different host. Likewise, any NIC can

(legitimately) send from a given EID; blocking a NIC prevents all EIDs from sending

from that NIC. A more appropriate mechanism would be to block an EID, rather

than a NIC, from sending to a destination.

Trust assumptions

AIP relies on trusted hardware at the sender to enforce its blocking mechanism. AIP

also trusts a source AD to verify that a sender is not sending with a spoofed address;

while an upstream AD can also verify this, the process requires the AD to store state

on behalf of a remote sender and is therefore used only as a last resort. Source ADs
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are trusted to enforce a limit on the number of addresses a sender can use; no other

AD can enforce this. The authors of IPa+ [80] note that a compromised AD can

spoof the address of any host whose traffic is forwarded through the AD, because it

can pass the uRPF test.

Sender identification

Senders are identified by a hash of a self-generated public key. Source ADs are

trusted to enforce a limit on the number of keys (addresses) a sender can use.

2.6.2 IPa+

IPa+ [80] is an attempt to provide the same accountability guarantees as AIP [3]

while staying compatible with IP. IPa+ focuses on securing the Internet’s routing

infrastructure and resorts to existing mechanisms to provide source accountability

and stop unwanted traffic.

IPa+ adopts one of the addressing conventions of AIP—AS names are the

hashes of public keys—while eschewing the other—host addresses are IP addresses,

not flat hashes. As AS names are currently flat, this does not affect the scalability

of existing interdomain routing protocols, and it preserves the ability to aggregate

host addresses. IPa+ binds an IP address prefix to an AS’s public key and uses the

hash of the key as the AS’s BGP name. These bindings are stored as signed reverse

DNSSEC records. Specifically, the root Internet registry, IANA, signs records that

certify prefix allocations to individual RIRs, RIRs certify prefix allocations to ASes,

and ASes may sign allocations to customers. Each of these records is stored in

DNSSEC.

Given these secure bindings, IPa+ uses sBGP [46] or another secure routing

protocol to announce prefixes. Validation of announcements is done by querying the

appropriate DNSSEC records, assuming IANA’s root public key is globally known.

In order to retain the ability to aggregate IP addresses, IPa+ does not adopt

AIP’s concept of self-certifying host addresses. In fact, IPa+ claims that assigned,
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rather than self-generated, addresses are more accountable, as they limit “white-

washing” attacks in which attackers mint a new address or identifier after they

have been blocked. To provide source accountability, IPa+ uses Passport [55] (Sec-

tion 2.3). In the interest of facilitating deployment, IPa+ does not adopt AIP’s

trusted smart-NIC. Instead, the authors IPa+ suggest using StopIt [52], AITF [8],

or Portcullis [64] to allow destinations to stop unwanted traffic.

Trust assumptions

IPa+ relies on the correct deployment of many systems: DNSSEC, a secure BGP,

Passport, and a capability- or filter-based architecture. While securing the Inter-

net’s routing infrastructure may mitigate the risk of man-in-the-middle attacks on

Passport (Section 2.3), IPa+ trusts ASes to prevent spoofing in their own domains.

Sender identification

IPa+ uses Passport [55] to identify the sender’s AS.

2.7 Other schemes

This section contains proposed systems that are related to DNA, but have little in

common with previously-discussed work.

2.7.1 NUTSS

NUTSS is an alternative Internet architecture that incorporates policy into con-

nection establishment. When initiating a flow, a sender first forwards a signaling

message through an off-path overlay of “P-boxes”, which authenticate the sender

and apply policies such as access control. Signaling messages are routed by name:

an extension to DNS provides the path of P-box names from the sender to the

destination’s hostname. P-boxes insert tokens into this message, and the receiver

responds with both addressing information (its address and port) and the inserted

tokens.
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The sender can now send messages directly to the destination’s address. These

address-routed messages pass through on-path “M-boxes”: each P-box has one or

more corresponding M-boxes that lie on the data path. M-boxes enforce P-box

policy, by allowing traffic only if it contains a token granted by that P-box.

Applying policy during connection establishment allows receivers and networks

to prevent unwanted connections and to explicitly negotiate the use of middleboxes.

This allows NUTSS to provide partial DoS protection, but NUTSS relies on external

mechanisms to protect P-boxes and M-boxes from attacks. NUTSS does not depend

on specific authentication protocols; it suggests using standard mechanisms such as

public-key signatures and challenge-response protocols to identify senders.

2.7.2 Default-off

Default-off [13] allows hosts to declare to the network infrastructure what traffic it

wants routed to it. It changes the Internet’s open model, in which any host may

send to any other, into a network that is “off by default”: hosts that want un-

solicited traffic, such as servers and peers in P2P networks, must proactively say

so. Other hosts that do not want unsolicited traffic need not do anything. Public

servers publish these reachability constraints to their first-hop router, who propagate

them through the network, similar to, but separately from, routing advertisements.

Routers enforce reachability constraints at forwarding time, dropping packets des-

tined to unreachable destinations (unless they are responses to traffic initiated by

that destination). The network acts as a large, distributed firewall, enforcing hosts’

policies at various points in the network.

Default-off relies on routers to store reachability information, which may prove

prohibitive, as each destination can publish a list of IP addresses which are not

allowed to contact it. To save space, routers may aggregate reachability information,

at the cost of accuracy.
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2.7.3 Traceback

Related work discussed so far combats source spoofing by either authenticating traf-

fic based on shared knowledge rather than address or network information (over-

lays [48, 4] and capability-based architectures [5, 81, 79, 84]), recording the packet’s

path in the packet (AITF [8], Passport [55]), or using cryptographically-unforgeable

addresses (AIP [3]). An alternative approach, called traceback, is to modify IP to

allow a receiver to determine the origin of a (spoofed) packet. With traceback,

on-path routers assist the destination in determining the path that a packet takes.

Most proposals require the destination to receive many packets from a source, and

perform computation on those packets, before it is able to reconstruct the path.

Traceback schemes do not allow a single packet to unambiguously identify a sender,

nor do they incorporate blocking mechanisms.

Several different types of traceback have been proposed. Bellovin et al. detail

a scheme in which routers, upon receipt of a packet, will forward a special ICMP

message to the destination with very low probability. These messages contain the

router’s address and allow the destination to re-assemble the path that a packet

flood takes [16]. Savage et al. propose probabilistic edge sampling in which routers

will randomly encode link information in the IP ID field of a packet [71]. Pi [78]

modifies Savage’s scheme to use deterministic markings, so that destinations may

filter based on path information. SPIE [74] avoids packet modification, and instead

requires routers to store hashes of packets so that the destination may query them

to determine through which routers a packet has passed.

2.7.4 Reliable routing

The architecture presented in this thesis uses signatures on packets to show prove-

nance. One of the first appearances of digital signatures in network protocols is

Perlman’s Byzantine fault tolerant routing protocol [65], which uses digital signa-

tures to unforgeably identify senders so that routers can perform fair, per-source
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queuing.

2.8 Internet Practices

Two Internet practices are particularly relevant to this thesis: ingress filtering, which

aims to prevent source spoofing as it is used in DoS attacks, and IPsec, which, among

other things, enables mutual authentication at the network layer.

2.8.1 Ingress filtering

Network ingress filtering, as described in BCP 38 (also RFC 2827) [32], is a simple

measure that ISPs can take to ensure that they do no accept spoofed packets. If an

edge network announces a set of prefixes, then a router in that ISP that implements

ingress filtering will not accept packets that have a source address from a prefix

outside of those announced by the network. This ensures that a sender cannot

spoof arbitrary addresses, but does not prevent it from using other addresses in the

same prefix.

Unicast reverse path forwarding (uRPF) extends ingress filtering by requiring

routers to forward a packet only if it arrives on the interface which is the router’s

best route to the packet’s source address. BCP 38 claims that uRPF is not effective

due to route asymmetries. BCP 84 (RFC 3704) [12] describes possible relaxations

to uRPF that allow it to be effective in the presence of asymmetry and extends

ingress filtering to multihomed networks.

In order to be effective, network ingress filtering needs to be universally de-

ployed. A single ISP that does not implement ingress filtering allows hosts in that

network to spoof arbitrary addresses, rendering address-based filtering at the desti-

nation ineffective. As spoofed packets traverse networks, they mix with legitimate

packets, making ingress filtering impossible to implement in the core of the Internet.

Unfortunately, an ISP has little intrinsic incentive to deploy ingress filtering, as it

does not prevent spoofed traffic from other non-filtering ISPs from entering the ISP.
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2.8.2 IPsec

The Security Architecture for IP [47], or IPsec, defines various security services

for IP traffic, including encryption and authentication. It consists of two proto-

cols, Authenticated Header, which authenticates traffic, and Encapsulating Security

Payload, which encrypts and optionally authenticates traffic.

As one of the functions of authentication is to identify senders, IPsec could be

used to hold senders accountable. However, IPsec uses MACs, created with sym-

metric keys, to authenticate packets. In order to establish a shared key, a sender and

receiver must exchange a key out of band, or use the Internet Key Exchange pro-

tocol. To provide wide-area accountability, IPsec would require that every (sender,

receiver) pair establish a shared secret key, which is infeasible. Additionally, be-

cause the keys are symmetric, the sender is not accountable to anyone other than

the receiver.

2.9 Commercial services

Two types of commercial services are available to help servers survive DoS attacks:

traffic scrubbing and content distribution networks (CDNs).

Traffic scrubbing

An ISP that wishes to protect itself from DoS attacks can employ a traffic scrubbing

service, such as those offered by Arbor Networks [6] or Prolexic [66]. These services

typically use anomaly detection to determine when an attack is occurring and then

re-route traffic to a high-capacity network. This network “scrubs” the traffic by

removing packets that match a pattern of malicious traffic. The remaining packets

are then routed to their original destination.

Content distribution networks

CDNs such as Akamai [2], Limelight [51], and Coral [34] replicate a server’s (mostly
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static) content at multiple points throughout the Internet. Clients are directed

towards their nearest copy, usually with DNS-based routing, rather than to the

central server. CDNs protect against bottlenecks and flash crowds at the server,

but not malicious DoS attacks.

2.10 Other uses of accountability in networks

2.10.1 Accountability in distributed systems

Accountability in the Internet fits into the broader problem of accountability in

distributed systems, a topic which has been studied previously. Yumerefendi and

Chase [83] suggest accountability as a design goal of network services and propose a

framework towards that goal. They developed CATS [84], an accountable network

storage service, within this framework. PeerReview [37] provides accountability for

general distributed protocols through per-node, secure, consistent logs of (signed)

messages that node has sent and received. A detector module can detect Byzantine

faults by comparing message logs to a reference implementation of the protocol.

Each of these systems uses digital signatures to identify principals and prove au-

thenticity.

2.10.2 Service accountability

An Internet service provider that violates a service level agreement (SLA) may cause

an endhost to experience poor service, such as unacceptable levels of packet delay

or loss. The host may be unable to determine who is responsible, as a malicious

ISP can identify the sender’s diagnostic measurement probes and give them a higher

level of service, while still providing poor service to ordinary traffic. Several pieces of

work propose methods of holding ISPs accountable for providing the level of service

stipulated in their business agreements, allowing hosts to detect and react to SLA

violations.
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AudIt [10] argues that ISPs should collect statistics on traffic aggregates and

report to a separate ISP I the statistics of the traffic that originated from I. AudIt

is resilient to ISPs that produce false statistics: they are exposed to their peers.

Goldberg et al. [35] present secure sketching and secure sampling protocols

that can localize failures. The sender and receiver apply a shared psuedorandom

function to data packets to create a small set of probe packets, which the receiver

explicitly acknowledges. An adversarial ISP is unable to determine which packets

are probes ahead of time, and therefore must provide the same level of service to all

packets.
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Chapter 3

An Accountability Architecture for the Internet

Accountability in a network, defined as the ability to map packets in a network

back to the principals responsible for their transmission, coupled with the capacity

to block those principals, is vital to preventing misbehavior. Blocking malicious

traffic in routers requires filters to distinguish malicious from valid traffic far from

the victim. This architecture conflates the roles of ISPs as providers of connectivity

(the pipe) and of accountability (stopping abuse). We believe that ISPs need not

bear the responsibility for deciding the policy (whom to block) and implementing

the mechanism (filters) of network layer accountability.

Towards this end, this chapter presents DNA, an accountable Internet archi-

tecture. DNA assumes the existence of trusted identity authorities, the ability to

compute HMACs at intermediate routers and verify signatures at customer-edge

routers, and the availability of servers to act as partially-trusted storage devices

and representatives of an accountability provider.

With these features, DNA contains protocol mechanisms that allow high per-

formance verification of accountable traffic, traceback of unaccountable traffic, and

the revocation of permission to connect.

3.1 Introduction

Misbehavior in the Internet can be attributed to two major factors: first, that

attacks can be launched with relative anonymity through source spoofing or networks

This chapter is based on joint work with Rob Sherwood, Neil Spring, and Bobby Bhattacharjee.
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of compromised machines (botnets), and second, that it may not in a provider’s

interest to deny connectivity to a paying customer simply because some attack

traffic leaves the network. Packet traceback [71, 74, 78] and reverse-path filtering to

prevent spoofing [55, 72] attack the first problem, limiting the anonymity of attackers

and allowing an abused destination to reliably accuse a sender of misbehavior. In

each approach, however, the network providing connectivity to the source machine

is expected to disconnect it (perhaps completely) to protect a distant destination.

As profit-driven companies, Internet service providers are not impartial: each

has a financial interest in turning a blind eye to misbehavior by their own customers.1

Rogue ISPs such as Atrivo [11] actively prosper from hosting services that are widely

known to be malicious. for any protocol designed to find, block, and prevent network

abuse is to not rely on any ISP. Restated, providing connectivity must not imply

accepting responsibility.

DNA takes this principle one step further; that a sender’s ability to inject traffic

into the network should be decoupled from his point of attachment. The action

by a destination to block a misbehaving source should prevent that source from

obtaining a new address or spoofing a different address to send traffic to the same

destination. This suggests that identities, or more specifically blockable principals,

should be issued as public keys from a globally-known, trusted authority. This

trusted accountability provider (TAP) prevents arbitrary users from sending traffic

and, more importantly, bars blocked subscribers from sending under a pseudonym.

DNA supports the coexistence of many TAPs, each with its own set of policies and

underlying implementations, which agree on a protocol for validating packets in

transit. That is, DNA is designed for the tussle [27], not for a specific outcome.

This chapter presents the network components of DNA, a complete network

accountability system in which:

1. An accountability provider is the sole trusted entity; all other participants

1Protecting their customers from outside attack may be a separate service.
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(routers, accountability provider representatives, etc.) can be implicated if

they misbehave. The trusted entity’s services need not be implemented cen-

trally, allowing it to be made scalable and resilient to attack.

2. Endhosts can block principals from sending traffic to them. Blocked principals

cannot send traffic to the blocking destination regardless of their point of

attachment.

3. Long-term blocking filter state is not stored at any router; a combination of

Passport [55]-inspired tokens and distributed filter storage compels the source

network to check for blocks.

4. A privacy certificate authority (CA) [76] authenticates temporary keys, rather

than long-lived identifiers, for use in contacting destinations, preserving (some)

privacy. Machines near senders guard the sender’s long-lived identity, though

we do not explicitly anonymize clients or servers as in SOS [48].

5. What constitutes abuse is determined by a destination alone, it need not be

proven to an authority: if traffic is undesired, future traffic can be blocked.

The sender can continue to send to other destinations.

6. Cryptographic operations can be largely avoided along the fast path through

waivers, explicit statements that a server will not be implicated by a client,

and tokens that enable traceback.

To implement this network accountability system, we designed, implemented,

and evaluated protocol mechanisms for high-performance verification of accountable

traffic without all-pairs shared keys, traceback of unaccountable traffic (improperly

signed, but carried anyway) to a misbehaving inter-domain link, and revoking per-

mission to connect without a separate, protected control channel.

The rest of this chapter is structured as follows: we summarize related work

in Section 3.2. In Section 3.3 we present the design of DNA. We discuss attacks
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on DNA in Section 3.4 and DNA partial deployment approaches in Section 3.6. We

evaluate DNA overhead in Section 3.7 and conclude in Section 3.8.

3.2 Related work

DNA allows receivers to block specific senders. Several recent proposals achieve

similar goals using different mechanisms.

In TVA [81], senders initiate a connection by sending a capability request on

a dedicated channel; this request is marked by each router along the way. If the

traffic is desired by the receiver, the marked request is returned to the sender.

The sender then includes this returned capability in subsequent packets. During

an attack, packets without capabilities are preferentially dropped. Portcullis [64],

an extension to TVA, uses sender-solved puzzles to protect the capability request

channel. Unlike DNA, TVA and Portcullis both pin the network path between the

sender and the receiver (and require a symmetric path for optimal performance).

DNA relies on the TAP to issue global identities that enable receivers to block senders

regardless of their network point of attachment; such a facility does not exist in TVA

or Portcullis. Finally, DNA requires only the TAP nodes be correct and trusted; all

other entities may be corrupt. TVA and Portcullis require a trusted and correct

transit infrastructure.

AIP [3] binds self-certifying addresses with network interfaces and assume

that all interfaces have trusted hardware that obeys a “shut-off” packet sent by a

receiver. Using these primitives, AIP builds an accountability infrastructure that

receivers can use to stop abusive senders. Like DNA, AIP provides receivers fine-

grained control over which senders are blocked; unlike DNA, the blocks in AIP are

bound to network interfaces and not to packet-sending principals. DNA relies on

a trusted authority to certify network-layer-independent identities. In comparison,

AIP relies on a pervasive trusted hardware deployment at end hosts. DNA is designed

as a shim layer between network (IP) and transport (TCP) and is agnostic of the
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network protocol, whereas AIP requires a new addressing scheme at the network

layer.

Passport [55] is a system for cryptographically identifying a packet’s source

AS. This information can be used to track abusive senders. Passport relies on a

shared key between every pair of participating ASes (whether they are neighboring

ASes or not). These keys are used to create HMACs (like the tokens of DNA) that

can eventually be used to identify the source AS of any packet. Passport requires

the predetermination of AS paths for every end-to-end route. In previous work [18],

I show how Passport can be extended to identify and block individual senders.

The requirement of shared keys between every AS pair (Passport) vs. per-

vasive trusted hardware (AIP) vs. trusted identity authorities in DNA represent

explorations in three starkly different points in the design space for network-layer

accountability. DNA minimizes the number of trusted entities in the system (only

the TAP nodes are trusted) and is the only system that can withstand malicious

transit routers and ASes.

Simon et al. [72] present a system where receivers can identify the source of

traffic and block traffic from any source. Their scheme consists of per-customer

ingress filtering at ISPs, and a trusted Filter Request Server (FRS) located in each

ISP. To block a source, a receiver contacts the local FRS, which in turn contacts

the FRS in the source’s ISP. The source’s FRS is responsible for filtering traffic

from that source to the receiver. AITF [8] uses a mechanism similar to IP Record

Route to mark the provenance of packets. When a receiver wants to block traffic

that follows a certain path, the receiver asks its gateway to contact the sender’s

gateway, similar to how FRSes contact each other. In comparison to these systems,

DNA’s notion of blocks transcend the sending principal’s network point of attach-

ment. Perhaps more significantly, these schemes hold the sender’s AS responsible

for traffic from the AS and for blocking abusive senders. In fact, AITF includes a

provision for disconnecting an entire AS if blocks are not properly administered. In
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DNA, destinations block individual sending principals; once blocked, these senders

can no longer obtain necessary tokens to send packets to the blocked destination.

The source AS is unaware of specific blocks, and instead simply verifies that only

accountable packets depart its network.

Finally, IP traceback [71, 74, 78] is a mechanism that victims invoke to (par-

tially) trace back the path an attack packet traversed. Traceback mechanisms re-

quire minimal changes to hosts and can potentially be used as a building block for an

end-to-end accountability solution. The “accusation” protocol in DNA uses tokens

to traceback unaccountable packets. The DNA traceback mechanism always isolates

the malicious entity that sourced the attack packets.

3.3 DNA: Design

The primary goal of DNA is to ensure that only accountable packets may transit

networks to destinations that have not blocked the sender. Accountable packets

are those signed by a principal authorized by a trusted authority (waivered pack-

ets require no signatures, but carry proof that the destination expressly consented

to receiving such packets). I term “unaccountable” those packets with an invalid

signature and “legacy” those packets having no accountability material at all.

In DNA, principals send packets to hosts. Each packet contains sufficient infor-

mation for a destination host to block the sending principal (for any reason). DNA

provides the following property:

Packets are forwarded to a destination only if the destination has not

blocked the sending principal, regardless of the sender’s network point

of attachment.

Lesser goals that shape the design of DNA are as follows. Verifiable functions should

be distributed away from the trusted authority, to protect it from attack or over-

load with mundane requests; this leads to complexity but should provide resilience.
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Figure 3.1: Life cycle of accountable packets. SBS is the secure block storage
mechanism.

Computation cost in transit networks is limited by avoiding asymmetric cryptogra-

phy in transit; this leads to including network-by-network tokens in packets. DNA

avoids revealing user identifiers: even though IP addresses could be used to correlate

accesses by the same user, network-layer accountability should not require revealing

identity to destinations. Return traffic should be able to be sent cheaply; this allows

servers and high-volume connections to avoid much of the DNA overhead. Finally,

DNA must support many fine-grained blocks in the system, leading to a need to

distribute the blocks across many servers.

DNA divides time into epochs on the order of minutes. All participants are

synchronized to within an epoch; all certifications of public keys have an expiry

time expressed as the expiration epoch. The DNA implementation uses seconds

since midnight UTC, January 1, 1970, as returned by gettimeofday(), divided by

128, to provide an easily computed, uniform epoch in 32 bits.

A sender may be able to continue sending packets to a destination even after

the destination has blocked the sender. However, the “period of vulnerability” is

bounded by the epoch. A blocked sender may also be able to send packets if it can

find aid from a corrupt component; however, DNA will expose the corrupt entity to

keep principals blocked.
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3.3.1 Components Overview

The DNA architecture consists of five components which I describe in turn.

The TAP

The TAP is the trusted accountability provider. Its role in the architecture is to

certify and renew the keys of well-behaved, but untrusted, participants (each of

which is described below). It must be able to accept proofs that a component

misbehaved (signed statements that catch the component in a lie), deny certificate

renewal to those participants, and not reissue new certificates to the same. All

entities know the TAP’s public key and can verify TAP signatures.

The TAP is the only trusted entity in the system. DNA assumes that the TAP

never divulges its private key and always discharges its protocol obligations correctly.

The TAP may be implemented in a distributed manner with arbitrarily many repli-

cas. These replicas need to synchronize only the current TAP public/private key

pair and a list of principals whose keys are not to be renewed in the current epoch.

Packet-sending Principals (Users)

A principal (or a user) P in DNA is identified by a public key, Ppk, which the

TAP certifies (by signing) through an out-of-band mechanism. Section 3.6 describes

principals that forward legacy traffic (from existing machines, bearing no signatures)

into the accountable network, likely with limitations. These legacy gateways appear

to the architecture as ordinary users that can be blocked.

Autonomous Systems (ASes)

If the entire network were under the control of the same administrator, protecting

against misbehavior would be simpler. Although no part of DNA requires that the

trust domains be split along autonomous system boundaries, I use the term AS

because the idea connotes responsibility for routers and ownership of IP address

ranges for hosts. The terms of pairwise connections between ASes are encoded in
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service level agreements, similarly, these pairwise connections may represent different

levels of trust or different ways to address misbehavior.

Administrators of ASes have speaks-for keys, signed by the TAP, to express

that the administrator is permitted to place blocks on behalf of specific destination

addresses or to grant waivers that allow return traffic to be unsigned. These keys

may be delegated, restricting sub-keys to more-specific address prefixes. The TAP

binds a speaks-for key to a prefix by including the prefix its the signature of the key.

Neighboring ASes periodically exchange a symmetric key; border routers can

create and verify message authentication codes (as realized in tokens, described

below in Section 3.3.5) using this key.

An AS may permit hosts to exchange packets within the same AS without

verification; one might allow traffic to LReps, to diagnostic services, or to boot-

strapping (DHCP or DNS) servers, for example, without signatures. However, such

legacy traffic would likely not be accepted by neighboring ASes. An AS may choose

to transit, limit, or (likely with increased deployment) outright reject legacy traffic,

but must not transit unaccountable traffic—that is, packets with invalid signatures.

Routers in an AS may be malicious or be compromised; handling attacks by

routers is discussed in Section 3.4.3.

LReps

DNA local representatives (LReps) are servers, distributed in the network, that act

as a privacy CA by certifying short-lived blinding keys for legitimate principals and

generate initial tokens after checking for a block or validating a waiver. Blinding

keys “hide” principal keys to provide a measure of unlinkability across connections.

Tokens are an optimization that allow ASes to forgo asymmetric cryptographic

operations when accepting packets from (locally) trusted neighboring networks.

Each LRep has a key signed by the TAP. Each AS2 contains at least one LRep;

like neighboring ASes, LReps periodically exchange a symmetric key with its host

2As Section 3.6 shows, it is not strictly necessary for each AS to have an LRep.
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AS.

An LRep may be malicious or compromised.

Secure storage

The list of blocks—statements of the form “10.0/16 rejects packets from Principal

A”—is maintained in a distributed, secure block storage (SBS) mechanism. DNA

uses the NeighborhoodWatch secure DHT [17] (Chapter 4), which nicely dovetails

with the assumptions of DNA. The NeighborhoodWatch DHT (NWDHT) is resilient

to malicious nodes that drop or misroute queries. NWDHT provides security via a

centralized authority, which DNA already assumes (the TAP). Conversely, DNA can

be used to protect the NWDHT central authority, weakening NWDHT’s assumption

that the central authority be protected.

SBS nodes may be co-located with LReps or be independently provisioned.

Each SBS node has a key signed by the TAP authorizing it to act in that role.

3.3.2 An Accountable Packet

Accountable packets have a valid signature chain from the TAP to the packet: the

TAP’s signature of the LRep’s public key, the LRep’s signature of the blinding key,

and the blinding key’s signature of the packet contents. This chain make the packet

accountable to the sender by providing a means to identify and block the sender.

The sender is responsible for the packet, the LRep is responsible for verifying the

sender is not blocked, and the TAP is responsible for ensuring correct behavior of the

LRep. If the sender or LRep is not behaving according to protocol, the destination

can appeal to the next-highest authority present in the signature chain.

Verifying the entire signature chain of a packet in transit would be computa-

tionally infeasible. Thus, certain routers in every AS place tokens in the packet to

signify that they have checked the signatures, or trust someone that has. An initial

token, provided by the LRep, indicates that the destination has not blocked the

sender. The source AS is responsible for checking both the token and the signature
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chain. Subsequent tokens, added by each AS, indicate that the signatures verify—or

the packet was received from another AS that claimed the signatures verify.

To further reduce the computational overhead of sending traffic, waivered traf-

fic is exempted from signatures. If a sender S trusts return traffic from an intended

destination D, S may give D permission to send return traffic without inserting any

signatures into the packet. D’s LRep verifies that S has permitted unsigned return

traffic before issuing an initial token to D.

3.3.3 Process Overview

I next briefly outline how DNA operates in normal operation, with misbehavior

possible only by the principal that sources traffic. A detailed description of each

step follows.

Assume that Alice is a principal, with public key Ppk certified by the TAP,

who wishes to send packets to a host D with address Dip; in turn, D will wish to

block Alice from sending further messages. Figure 3.1 illustrates this process and

participants at a high level.

Registering a blinding key

1. Alice commits to a blinding key that she will later use to obtain tokens from

a nearby “source” LRep (sLRep) (Section 3.3.4).

Obtaining an initial token

1. Alice contacts sLRep with a registered blinding key and an intended destination

(Dip) (Section 3.3.5).

2. sLRep examines the SBS to find any block that the administrator of Dip’s AS

may have placed on Alice.

3. If there is no block, sLRep provides a token that enables Alice to send to Dip

during the current epoch (Section 3.3.5).

57



Constructing a waiver (optional)

1. Alice signs a message for the destination’s LRep that will instruct it to provide

tokens to the destination without a lookup into the SBS (Section 3.3.7).

Packet Transfer

1a. Alice signs her outgoing packets with her blinding key and includes the initial

token and the signature chain from the TAP to the LRep to her blinding key

in the packet. A router in her AS verifies all signatures and the token.

Or,

1b. For waivered packets, Alice applies a hash function to the waiver token and

the message.

2. An egress router in Alice’s AS places a token in the packet, indicating that

that AS has validated the packet. When the packet crosses a peering link to

a different AS, the ingress router checks the token and discard packets with

invalid tokens. When the packet leaves a network, the egress router inserts a

token for the next AS (Section 3.3.6). This occurs on each peering link.

Placing a block

1. D decides to block Alice. He persuades his AS administrator to place the

block and provides the packet signed by the blinding key. The administrator

signs a block request message, which includes Alice’s blinding key, with his

speaks-for key. It then sends the block request to sLRep. (Section 3.3.8).

2. sLRep places a block against Ppk (not the blinding key) into the SBS and

returns a receipt to the administrator (Section 3.3.8). sLRep places a tempo-

rary filter in its AS to block further packets from Alice until her initial token

expires.
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Tokens are valid for only a single epoch. Therefore Alice must receive new

tokens for every epoch in which she wishes to send. Once sLRep receives a request

to block Alice from sending to Dip, sLRep no longer gives new tokens to Alice

(for sending messages to Dip). Alice cannot send messages to Dip by changing her

network point-of-attachment since her (new) local LRep will find the block in the

SBS and not issue her an initial token.

In the rest of this section, I describe the messages exchanged for each of these

sub-protocols. I denote a principal A’s public and private key pair by Apk and

Ask respectively, a message m signed using key k by Signk (m) and a message m

encrypted using key k by Enck (m).

3.3.4 Registering a blinding key

Assume that Alice has generated a key pair (Ppk, Psk), that the TAP has certified

Ppk by signing it, and that Alice wants to send messages to Dip. Assume that sLRep

is within Alice’s AS (AS1) and that Alice’s host is pre-configured with sLRep’s

address. Alice generates a blinding key pair (Bpk, Bsk) and commits to it by signing

Bpk with Psk. The format of Alice’s commitment (CommitAlice) is CommitAlice =

SignPsk
(Bpk, νB) where νB is the epoch until when Alice proposes to use this blinding

key. The key registration process is as follows:

Alice 7→ sLRep : CommitAlice, SignTAP (Ppk) ; registration request

; sLRep checks that the TAP signed Ppk

; sLRep stores Bpk ↔ Ppk

sLRep 7→ Alice : SignsLRep (Bpk, νB) ; signed blinding key

Alice may register as many blinding keys as sLRep will allow.
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3.3.5 Obtaining an initial token

Initial tokens are bound to a blinding key, Bpk, a destination, Dip, the current epoch,

c, and an issuing LRep. Initial tokens make the statement “a valid Ppk registered

Bpk and Dip’s administrator has not blocked Ppk.” An initial token is required to

send packets to a different domain and is checked by routers in Alice’s domain.

When Alice wishes to communicate with Dip she obtains an initial token as

follows:

Alice 7→ sLRep : SignsLRep (Bpk, νB) , Dip ; token request

; sLRep verifies its signature on Bpk

; sLRep verifies that c ≤ νB
; sLRep retrieves Ppk and checks the SBS

; to ensure Alice has not been blocked by Dip

sLRep 7→ Alice : T0 ; initial token

The format of the initial token (T0) is:

H(K
sLRep↔AS1

,Bpk, Dip, c, sLReppk, sLRepip)

whereKA↔B is the shared symmetric key between A andB (A andB are neighboring

ASes or an LRep and the AS it is in). H(·) is a secure MAC, such as HMAC, where

the first parameter is the secret key.

A blocked sender will not be able to obtain an initial token. If Dip has blocked

Alice, then the sLRep will find such a block in the SBS, and not issue a token to

Alice.

3.3.6 Packet Transfer

With an initial token, Alice can send a packet to Dip. She signs her message with

her blinding key and includes her initial token in the packet. Figure 3.2 shows the
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IP Header 20
Version + Flags 2

Transport protocol 1
TAP index 2

sLRepip 4
sLReppk 14
Bpk 14

SignTAPsk

(
sLReppk, sLRepip, νsLRep

)
40

SignsLRep (Bpk, νB) 28
SignBsk

(m) 28
νsLRep 4
νB 4
c 4

T0 = H(KsLRep↔AS1
,Bpk, Dip, c, sLReppk, sLRepip) 4

T1 = H(KAS1↔AS2
,Bpk, Dip, c,H(m)) 4

T2 = H(KAS2↔AS3
,Bpk, Dip, c,H(m)) 4
· · ·

Tn−1 = H(KASn−1↔ASn
,Bpk, Dip, c,H(m)) 4

Transport (message m) var

Figure 3.2: Accountable packet format. The rightmost column represents the num-
ber of bytes required for each field, when using cryptographic primitives described
in Section 3.7.

fields Alice embeds.

Forwarding an accountable packet consists of first verifying the material within

the packet, and second, appending the next token that the subsequent AS will verify.

These two steps may be separated, so that packets are verified when they enter a

network and given tokens just before they exit.

The first gateway to see the packet must verify the embedded signature chain

from the TAP to the message: SignTAPsk

(
sLReppk, sLRepip, νsLRep

)
, SignsLRep (Bpk, νB),

and SignBsk
(m). It then verifies the initial token T0 by checking that (1) sLReppk and

sLRepip belong to the same sLRep (which is located in the same AS as the gateway),

(2) T0 was created for Bpk, and (3) the MAC computed with the K
sLRep↔AS1

that it

shares with sLRep is correct. If any check fails the packet is dropped. These steps are

unique to the first gateway because it is responsible for validating the entirety of the

packet; later gateways check only that the packet was validated by a (transitively)
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IP Header 20
Version + Flags 2

Transport protocol 1
HMACnonce(m) 4

T0 = H(H(KsLRep↔AS1
, Dip, c),m) 4

T1 = H(KAS1↔AS2
,Bpk, Dip, c,H(m)) 4

T2 = H(KAS2↔AS3
,Bpk, Dip, c,H(m)) 4
· · ·

Tn−1 = H(KASn−1↔ASn
,Bpk, Dip, c,H(m)) 4

Transport (message m) var

Figure 3.3: Waivered return packet format.

trusted neighbor.

Before the packet leaves the network, a router stamps the next token on the

packet. This token conveys that the packet is valid: that the signatures and previous

token have been checked and that the next domain should transit it, even if the

token’s creator has not directly verified the signatures in the packet. The format of

the next (and any subsequent) token is:

T1 = H(KAS1↔AS2
,Bpk, Dip, c,H(m))

The packet arrives at the destination with a chain of tokens that can be used to

diagnose in-network misbehavior (Section 3.4).

Tokens are significantly faster to verify than signatures, since they use only

symmetric key operations. The use of tokens does not require shared keys between

every AS pair or the predetermination of AS paths, as in Passport [55].

3.3.7 Waivers

High-volume servers and power-constrained devices may not be able to sign each

packet they transmit. DNA allows hosts to state with a waiver that unsigned return

traffic will not be blocked. Hosts must possess or have access to a valid speaks-for

keypair (SFpk, SFsk) delegated to their prefix; we expect the key to be delegated
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specifically for one address for a short duration, but a waiver may be generated by

a service, such as the LRep.

We assume that Alice can transmit a connection nonce n to Bob in secret;

perhaps by encrypting it using Bob’s well-known or stored public key, in-band in an

established secure transport protocol atop accountable packets, or by other means.

Alice then sends a waiver ω of the form:

SFpk, SignTAPpk
(SFsk) , Aliceip, e, SignSFsk

(H(n), Aliceip, e)

where e is the epoch until which any node possessing n may send waivered packets to

Aliceip. The waiver is only valid if SFpk is signed; if SFsk is delegated, the certificate

chain from the TAP is included in the waiver. Alice sends ω to Bob.

Bob verifies the signature of the hash of the nonce and forwards ω to its LRep.

The LRep verifies that Aliceip created a waiver allowing Bob to send to Alice and

grants a secret waiver token for sending to Aliceip without querying the SBS. The

format of a waiver token is H(K
sLRep↔AS1

, Aliceip, c). However, because this token

is not bound to a principal, only to the holder of a nonce, it could be abused if

eavesdropped. To keep this waiver token secret and prevent replay, LRep encrypts

it before transferring it to Bob. The waiver token is not included directly in the

packet, but hashed with the message.

Bob does not include any signatures in packets for Alice; instead, Bob includes

a HMAC of the packet computed using Alice’s nonce as the key. Bob’s AS allows

waivered packets from Bob to depart without alarm. The format of the waivered

packet is shown in Figure 3.3.

Figure 3.4 presents a state transition diagram showing how a sender transitions

to and from being able to send waivered traffic. The sender traverses the path

through obtaining an initial token to being able to send accountable packets. It

may receive a waiver to send outgoing packets, −→ω ; this causes it to obtain a waiver
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Figure 3.4: DNA sender states and transitions.

token from the LRep and then begin sending waivered packets. From either sending

state, the sender may add the ←−ω to permit unsigned incoming traffic. If a token or

waiver is not renewed, the sender reverts to a less-authorized state.

3.3.8 Placing a Block

Suppose the owner of Dip wishes to block Alice. He forwards one of Alice’s packets to

his administrator, D.admin. Given an accountable packet from Alice, D.admin can

extract sLRep’s address and Alice’s blinding key. Assume that D.admin possesses

the speaks-for key corresponding to the address block containing Dip (1.1/16).

D.admin places the block:

BlockReq1.1/16 = “1.1/16”, D.adminpk, Bpk, Dip, type,

SignTAPsk
(“1.1/16”, D.adminpk) , SignD.adminsk

(Bpk, Dip, type)
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where type ∈ {“new”, “republish”}, as follows:

D.admin 7→ sLRep : BlockReq1.1/16 ; block request

; sLRep retrieves Alice’s Ppk using Bpk and places a block in the SBS

; The SBS nodes return k signed storage receipts (ri).

sLRep 7→ D.admin : r1, ..., rk,EncLReppk
(CommitAlice) ; block receipt

The LRep in the destination network, dLRep, may grant tokens without con-

sulting the SBS for the purpose of sending block messages to other LReps. This

permits sending block requests while overloaded. dLRep must inspect the combi-

nation of the block request and the packet headers to ensure that the request is

not spurious: for example, that Bpk followed a chain from the TAP and that the

destination for the token is sLRepip.

Depending on the implementation, the SBS may not permanently store blocks.

A D.admin that insists upon permanent blocks may republish them before they

expire. To facilitate republishing, the sLRep returns an encrypted copy of Alice’s

commitment to her blinding key Bpk. A request to republish a block request includes

this encrypted commitment, so that sLRep can decrypt it to find Alice’s commit-

ment. After Alice’s original commitment expires, sLRep may expunge it; it is the

responsibility of D.admin to keep this state so the block can be republished.

To block further waivered traffic, the victim must both block the principal

used to solicit a waiver, if applicable, and refuse to renew the waiver.

3.3.9 Multiple TAPs

The description so far has focused on a single TAP. DNA in fact allows multiple

TAPs to be simultaneously deployed and for destinations to accept packets signed

with identities issued by TAPs of their choosing. We assume that each TAP has a

globally-unique index to be carried in all accountable packets and used to identify

TAPpk.
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Senders must know which TAPs a destination honors, and LReps issue tokens

to a sender only if the sender has a key signed by a TAP that the destination accepts.

DNA assumes DNS can be augmented to return, along with a list of IP addresses,

the indexes of one or more TAPs, in response to a lookup request. The current

effort to secure DNS with DNSSEC [40] prevents tampering with DNS requests and

responses. To avoid bootstrapping problems, DNA assumes DNS serves will accept

queries from identity keys certified by a well-known TAP, perhaps run by ICANN.

3.3.10 Discussion

This approach protocol has an additional benefit, beyond the goals at the opening

of this section. Accountable packets are locally verifiable: any entity along the path

can determine if a packet is accountable, by checking all signatures and that the

fields in the packet are consistent. Invalid packets are dropped near the source and

far from the destination. Misbehavior can be detected locally, either by neighbors

exchanging traffic, by a first hop router, or by the LRep in the source network.

Further, blocking decisions—deciding whether a source should be denied the right

to send to controlled destinations—can be made without proving harm. Because

the incremental cost of a block is small, they need no external justification.

3.4 Attacks

The previous sections have described the default operation of DNA, without failures

or node corruption. This section considers misbehavior by different components and

shows how DNA detects misbehavior and eventually evicts malicious nodes from the

system.

Attacks are classified into three categories based on how attackers are identi-

fied:

• DNA: The protocol messages in DNA include sufficient information to unam-
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Attack Description Resolution
Sources may
Flood destination? DNA: Victim places a block; tokens not granted
Change network point of at-

tachment
DNA: Block found in SBS from any location

Replay old tokens DNA: Tokens expire after one epoch
Use tokens to send to arbi-

trary destination
DNA: Tokens bound to destination addresses

Exhaust SBS storage by incur-
ring many blocks?

DNA: LRep rate-limits tokens to blocked senders

Falsely accuse waivered traffic
of being unaccountable

Local: Destination can prove waiver is valid and
accusation is false

LReps may
Fabricate blinding keys; issue

tokens to unregistered users?

DNA: LRep cannot produce a commitment from
a principal to that key; the SBS will not
return a receipt

Flood destination? TAP: Administrator can expose LRep to the TAP
Not place blocks; ignore block

request?

TAP: Victim LRep receives no receipt, redirects
request to the TAP

Not lookup blocks before issu-
ing tokens; issue tokens to a
blocked sender?

TAP: SBS does not return receipts, reports du-
plicate block to the TAP

Routers may
Not check signatures? Local: Tokens will lead back to this network
Flood using bogus tokens DNA: Neighbors will discard packets with invalid

tokens
Flood using bogus source Local: Cannot create accountable traffic; tokens

will lead back to this network
Replay packets? Local: Neighbors install Bloom filters
Fabricate upstream tokens? Local: Fabricator and neighbor network accuse

each other
Not check upstream tokens Local: If an invalid token is accepted, network will

not deflect blame

Table 3.1: DNA attacks and resolution. Items with a ? are explained in Section 3.4.

biguously implicate corrupt nodes.

• Local: The DNA protocol can resolve the misbehavior to two neighboring

entities, either of which may be corrupt. However, the “good” entity knows
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the corrupt neighbor and modify its trust policy accordingly.

• TAP: Some attacks require the assistance of a TAP node for resolution. Vic-

tims provide the messages that indicate a corrupt entity to the TAP, which

can verify the deceit, decide to not recertify the node for future epochs, and

communicate the decision to replica TAPs.

Table 3.1 matches the most prominent attacks DNA components may attempt

with the mechanism that would isolate the attacker. The rest of this section de-

scribes selected attack resolution mechanisms in detail.

3.4.1 Source-Generated Attacks

Source floods

DNA enables destinations to explicitly block source principals. If a source floods

a remote host with accountable traffic (i.e., packets with valid blinding and LRep

keys), the victim network can block the source. A block request message (from the

D.admin) fits into a single Internet MTU IP datagram and does not require an

acknowledgment for the block to be activated. Thus, the block protocol will be able

to block the source, even if the source can saturate the victim’s access link.

If the source sends unaccountable traffic (i.e. traffic with an invalid signature),

then the source’s domain—which is responsible for verifying each signature—will

discard the packet.

If the source sends legacy traffic (without an accountability header), then the

traffic may be forwarded or discarded as described in Section 3.6.

SBS storage exhaustion

A malicious sender may try to overload the SBS by attacking many destinations,

causing the SBS to hold a large amount of block information, generate many block

receipts, and cause its LRep to verify those DHT receipts.
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For every block than an LRep publishes, it has to verify the returned receipts.

An LRep will rate limit or stop issuing token to a sender that is blocked by multiple

senders, causing excessive work for the LRep to verify and return receipts.

Changing Network Attachment Point

After being blocked or banned, a principal may try to continue an attack by changing

their LRep or ISP (which would map the principal to a different LRep). However,

the block in the SBS would stop the source from receiving an initial token.

3.4.2 Corrupt LReps

Flooding

Like any sender, a corrupt LRep may try to flood a destination. If the LRep node

sends packets using a blinding key registered to LReppk, the blinding key would be

blocked as if it were a normal sender. If the misbehaving LRep does not honor

the block, the administrator who blocked the LRep does not receive receipts and

forwards the request to the TAP, who eventually evicts the LRep (as it would for

any LRep that did not respond to any block request). If the LRep does return

receipts, but continues to send traffic, the administrator presents the TAP with the

returned receipts and an example of the traffic that violates the receipts. This is

evidence of misbehavior and the TAP evicts the LRep.

An LRep is unable to send packets using a blinding key registered by another

user (without the corresponding secret key Bsk, it is unable to sign packets). Thus

a corrupt LRep can never implicate an honest user of misbehavior.

Ignoring block requests

If an LRep ignores block requests (or is unable to return the necessary number of

receipts), the victim administrator appeals to the TAP. The TAP challenges the

source LRep to place the blocks and return receipts, otherwise it will evict the LRep.

Skipping lookups or issuing tokens to a blocked sender
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A source and an LRep may collude. The LRep could issue a token allowing a sender

(using a different blinding key) to send packets to a destination that has previously

blocked the sender. LReps that skip SBS lookups may do the same. In this case,

the destination will presumably block the sender a second time.

The next course of action depends on whether the corrupt LRep publishes

this second block request or not. If it does publish the block requests, the SBS

will will observe that the destination has blocked Ppk twice—an indication that

the LRep misbehaved. The SBS will not return a receipt, and may alert the TAP.

If the LRep does not publish the request, the destination appeals to the TAP as

above. In addition, it also has the option of publishing a block request for the LRep

itself, which the LRep must honor as a request to not issue tokens to any sender

to contact the destination. This block request has the same format as a request to

block an sender’s Ppk, but includes the LRep’s public key (which is included in any

accountable packet that has an initial token from the offending LRep) instead of a

sender’s key. Any LRep can publish this block, as it does not require reversing a

sender’s commitment to a blinding key. Once the block is published, the LRep will

implicate himself of misbehavior if it continues to issue tokens to a destination that

has blocked the entire LRep. The destination can use this to appeal to the TAP,

without requiring the TAP to attempt to publish the block itself. Incorporating this

measure requires that an LRep make two lookups—one for the sender and one for

itself—before issuing an initial token.

It is possible that a victim administrator asks a TAP node to challenge a source

TAP because multiple principals are attacking a domain (but the source LReps are

not corrupt). That is, each block that is placed is being honored, but each attack

(with a new blinding key) corresponds to a new principal. In this case, all of the

suspected attack packets will map to different (unblocked) blinding keys, and the

source LReps will not be falsely implicated.
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3.4.3 Corrupt Routers

Corrupt routers may fabricate packets with (bogus) accountability headers, resulting

in packets with an invalid signature chain—preventing the destination from blocking

the sending principal—to arrive at a destination. Similarly, routers may not check

packet signatures, allowing unaccountable traffic to enter the network. Additionally,

a corrupt router may simply replay valid packets to flood the victim.

Generating or forwarding invalid packets (Accusation Protocol)

If a victim receives an unaccountable packet, it must rely on the tokens to isolate

the faulty node. The victim’s administrator inspects the last token in the packet

and determines which of its upstream ASes the packet came from (by determining

which shared key was used to check the token). The victim administrator then

“accuses” the upstream AS of sending an invalid packet. The upstream AS (say

AS1) verifies the last token, and tries to map the second-to-last token to one of its

upstream neighbors. If this process is successful (and the second-to-last token maps

to AS2), AS1 “accuses” AS2. This process recurses until the packet traverses the

last “good” AS (say ASg) into the AS that generated it (say ASb).

Note that all that is required to verify a token is the blinding key, destination

IP, epoch the packet was created, the hash of the packet contents, and the token it-

self. Thus accusation messages (containing the full token chain), like block requests,

fit into a single packet.

When the original packet was generated, the corrupt router in ASb may have

fabricated all upstream tokens, in which case the ASb administrator will have no

other upstream AS to blame. In the worst case, the ASb router may have been able

to add one “valid” upstream token, since it may know the secret shared with the

upstream AS.

In the first case, either the ASb administrator will locate and expunge the

corrupt router (and stop the attack), or the attacks will continue. If the attacks
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continue, each AS will continue to receive accusations from downstream routers and

ASg must apply some local policy. This policy could include technical solutions (e.g.

check signatures on incoming packets) or monetary remedies (e.g. the AS peering

SLA could state that the offending AS will pay a small sum for each unaccountable

packet that it transits).

Suppose the AS chooses to validate signatures if the accusations continue.

This will enable ASg to immediately isolate ASb (since ASg will immediately know

that ASb is transiting unaccountable packets). ASg will not forward these packets,

stopping the flow of accusations. If ASb continues to source unaccountable packets,

ASg may take further action.

If the SLA between ASg and ASb includes the monetary provision, then ASb

will have to pay for each unaccountable packet. ASg may have also had to pay its

downstream AS (after all, ASg did transit an unaccountable packet); however, in

this case, ASg recoups its cost because of the payment from ASb.

If the router in ASb added a “valid” token for a previous hop AS (since the

neighboring ASes share a secret key), ASb will be able to “blame” a good upstream

AS (say ASup). However, ASup will not be able to map the packet to any of its

upstream neighbors. If the ASup administrator can immediately assert that its

routers have not been corrupted, it can isolate ASb.

However, it is often difficult for a network administrator to certify that none

of the hosts or routers in its AS has been compromised. In this case, ASup’s ad-

ministrator can locally audit the router between itself and ASb, ensure it is not

compromised, and verify the signatures of all packets traversing the peering link.

If the accusations continue, then ASb is unambiguously implicated, and ASup may

choose to renegotiate the peering.

Verifying signatures on every packet may be prohibitively expensive on high

speed links. ASup can implicate ASb without verifying packet signatures. Once

the ASup administrator verifies that its peering router with ASb (say R) is not
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compromised, it generates a temporary symmetric key (k), and instructs R to add

two tokens on each outgoing packet. The first outgoing token is computed using k

(known only to R) and the second token is the regular token computed using the key

shared between ASup and ASb. If subsequent accusations from ASb includes a token

signed with k, then some host or router within ASup is compromised, and the ASup

administrator has to audit its internal routers. However, if ASup is not compromised,

then the accusation packets from ASb will not contain a token signed with k (since

ASb does not know k). However, all packets transited from ASup included a token

signed with k; this enables ASup to unambiguously implicate ASb.

Replaying valid packets

A router can replay a fixed packet only until the next epoch, when it will be dropped

by subsequent domains. However, this does not solve router replay in general. If

routers persist in replaying accountable packets, neighboring ASes can install Bloom

filters [21] on their routers. Passport [55] also uses Bloom filters to catch replayed

packets. Bloom filters are described in greater detail in Section 3.5.

When a router forwards a packet, it tests its Bloom filter to see if the packet

exists in the Bloom filter. Such a test is probabilistic and does not guarantee that

packet is an actual replay. Therefore, the router also stores a set of hashes of possible

duplicate packets. If a router suspects a packet is a duplicate because it appears in

the Bloom filter, it then hashes the packet and compares against the set of hashes,

and only rejects the packet if its hash appears in the set. If it does not, the router

adds the hash to the list and forwards the packet. If the packet does not match the

Bloom filter, the router forwards it and inserts a copy into the filter.

While this allows exactly two duplicate packets to be forwarded (the first,

original packet, and the second that matched the Bloom filter and whose hash was

stored), it prevents false positives when detecting duplicates and allows the router to

tune the size of its Bloom filter based on how many hashes it can store. The filters

and set of hashes can be refreshed every epoch, limiting the amount of storage

73



needed.

3.4.4 Attacks using waivered packets

Assume Alice sent a waiver allowing Bob to send unsigned packets to Alice. When

Alice receives an unsigned packet, she can use the HMAC to assert that she had

explicitly permitted the sender to send unsigned packets. If the HMAC in the

packet is corrupt (or not present), Alice may use the usual “accusation” protocol to

stop/isolate the sender.

If Alice were malicious, she may try to evict Bob (who is good) by initiating

the accusation protocol on packets that include a proper HMAC. The tokens in

the packet would eventually terminate at Bob, who can produce Alice’s waiver

explicitly allowing Bob to send unsigned packets. Bob does not have to reveal his

private key to decrypt the nonce in order to prove that Alice sent a waiver; he only

has to produce the nonce and show that Alice signed a hash of the nonce. Bob now

accuses Alice (tracing the packet tokens forward) of misbehavior. Bob’s accusation

includes Alice’s waiver, her accusation message, and the nonce in cleartext:

SFpk, SignTAPpk
(SFsk) , “accuse”, nonce

Each AS on the forward path can now independently check that (1) Alice did allow

Bob to send unsigned messages, (2) Alice signed the nonce, and (3) Bob had included

a proper HMAC on the return packet. This evidence is sufficient for Alice’s AS to

isolate Alice’s host (or for Alice’s upstream AS to isolate Alice’s AS).

Bob’s AS does not check signatures on waivered packets. However, this does

not allow any new attacks. If Bob sends malicious traffic to a destination that has

given a waiver to Bob, the victim domain will not renew Bob’s waiver, and the LRep

in Bob’s domain will stop issuing tokens to Bob when the waiver expires.
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3.5 Bloom filters: An alternative to tokens

When an accountable packet crosses an AS boundary, a router in the upstream

AS stamps a token into the packet. This token expresses that AS’s belief that

the packet is valid: the signatures verify and the sender is not blocked. In the

case of misbehavior, routers can use these tokens to the source of a packet. When

an unaccountable packet arrives at a destination, the destination can initiate the

accusation protocol, in which ASes use the tokens to find the principal that sent the

packet.

However, tokens consume space in the packet and require neighboring ASes to

share secret keys. This section explores an alternate method of traceback, similar to

Snoeren et al.’s Source Path Isolation Engine (SPIE) [74], that eliminates the need

for ASes to stamp tokens into packets. Unlike other traceback systems [78, 71],

which require the destination to collect multiple packets in order to reconstruct the

path, SPIE enables traceback of a single packet. SPIE also does not alter packet

contents. Instead, a SPIE router stores a log of packets in a Bloom filter, which

DNA already assumes exist in routers to detect replayed packets (Section 3.4.3).

In SPIE, each router maintains a log of the packets that it has recently for-

warded. The log is implemented with a Bloom filter. When a packet arrives at the

router, the router creates k different m-bit digests of the packet by hashing part of

the packet with k independent hash functions. The input to each hash is the first 24

invariant bytes of the packet (the IP TTL, checksum, and QoS can change during

transmission, so the router zeroes these fields before computing the digest). These

k values are then inserted into the Bloom filter, a bit-vector of 2m bits, by using the

m-bit results as indices and setting the bits at those indices to 1.

The SPIE log can be used for both traceback and detecting duplicate packets.

However, detecting duplicates based on a hash of only the first 24 bytes of a packet

produces false positives. To prevent this, routers hash the entire packet, which

incurs a marginally higher computing cost.
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The task of tracing a packet back to its source is handled by a SPIE Traceback

Manager (STM), a device in each AS responsible for querying routers in that net-

work and communicating with other STMs. When presented with an unaccountable

packet p, a destination D sends a request to its local STM to find the source of p.

The STM queries the routers in its AS to determine the path p took, called the attack

path. The STM starts with D’s first-hop router, then queries its neighbors to find

the preceding router in the path. One or more routers report that they forwarded

the packet; the STM then queries the upstream neighbors of these routers. The

STM continues this process of simulating reverse-path flooding until it reconstructs

the path of p, terminating at some inter-AS link. Having identified the previous AS

hop, the STM issues a request to the STM in that AS to do the same, until the

source is found.

Ideally, this process would terminate at the device that sent the packet. How-

ever, there are two ways in which (an honest) router’s answer could be incorrect.

The first is a false negative: if a router forwarded the packet in the previous epoch,

it may have refreshed its filter. To prevent this, routers archive their Bloom filters

for several epochs and examine each for p. A false positive can occur due to the

probabilistic nature of Bloom filters. This will cause a fork in the reconstructed

path. In most cases, forks are easy to detect because the false path will end quickly

(the probability a router produces a false positive is independent of the probability

of the same at other routers), while the true path will continue on to further hops.

However, this may not always occur. In order to minimize false positives and prune

the reconstructed path, the destination should forward each unaccountable packet

to the SPIE. Each additional packet reduces the probability of Bloom filter false

positives, and thus of forks in the reconstructed path, because the Bloom filter hash

functions are independent.

Using SPIE to find the source of an unaccountable packet is an alternative to

accumulating tokens in packets. The LReps in an AS would serve as the traceback
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manager, which local hosts would contact to initiate traceback of a packet. However,

the security model of SPIE is different than that of DNA. SPIE discusses how to limit

the effect of malicious routers that alter packets or duplicate packets to undetectably

amplify a flow, but not routers that attempt to subvert the traceback process. In

order to be a viable alternative to token, a SPIE-like traceback mechanism must be

resilient to such misbehavior.

A malicious router Rbad may subvert the traceback process by causing false

negatives or false positives. Fortunately, neither behavior allows the malicious router

to prevent reconstruction of the attack path. DNA handles a deliberate false posi-

tive in the same way as an accidental one: the probability that a router upstream

of Rbad also produces a false positive is low. This probability decreases for each

distinct packet provided by the destination during the traceback process. Thus, the

false branch of the reconstructed path terminates at Rbad and implicates Rbad in

misbehaving. A false negative will end the reconstructed path prematurely—but

again, immediately before Rbad. If the STM suspects a router is lying, it can query

that router’s upstream neighbors to see if any of them have the packet in their logs.

Additionally, the network operator can monitor the links between these routers for

misbehavior.

In addition to eliminating the need for tokens in packets, this method of trace-

back makes it easier to find a malicious router. The links in reconstructed SPIE

paths are between routers, whereas the DNA accusation protocol produces links be-

tween ASes. With SPIE, the source of an unaccountable packet is narrowed down

to a single device rather than a network. Network operators do not need to search

their networks for misbehaving devices. This benefit comes at the cost of requiring

all routers to store packet digest logs (to catch replays, it is sufficient that only one

router on the path between the attacker and victim detect replays).

Pretty Good Packet Authentication (PGPA) [38] uses a similar concept to

create a service that can determine whether or not a given host has sent a packet.
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In PGPA, edge ISPs deploy traffic monitors on their customer access links. Traffic

monitors store the SHA-1 hash of each packet, along with a timestamp, that is sent

by the ISPs customers and can be queried to verify whether a given packet was

recently sent by one of these customers. PGPA does not provide general traceback,

as no packets are logged outside of edge ISPs.

Performance

The size of a router’s Bloom filter determines its false positive rate. The larger the

filter, the lower this rate and greater the accuracy of the reconstructed packet paths,

but the higher the cost in terms of memory. The false-positive rate p of a Bloom

filter that uses k hash functions to store n packets in m bits is given by the equation

p ≈ (1− ekn/m
)k

The authors of SPIE suggest using k = 3 hash functions and a memory effi-

ciency factor (n/m) of 0.2, which gives a false-positive rate of 0.092 when storing

n items. To achieve the above false-positive rate, a router that forwards P packets

per second must use a Bloom filter with at least 5P bits (5 = 1/0.2). Assuming an

average packet size of 1000 bits, a 40 Gbit/s link requires 200 Mbit/s of memory. If

the average packet size is 3200 bits, a more realistic value [60], the requirement is

reduced to less than 64 Mbit/s.

Given the above false-positive rate of p, how accurate is the process of con-

structing the attack path? This depends on the length L of the path and the degree

d of each router. An analytic bound on the number of extra nodes in the attack

path due to false positives, assuming d is constant, is Lpd
1−pd

. This is not encouraging:

for d > 5, the reconstructed attack path will contain more than 50% false positive

edges. The authors of SPIE show that the number of false positives is much lower

in a real topology. Simulations of SPIE on a tier-one ISP topology show that the

average number of false positives is less than one, even for paths of 30 hops.
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3.6 Partial Deployment

DNA does not require global deployment. Partial deployment solutions depend

on whether the original sender is DNA-aware and whether there are legacy transit

domains between accountable domains. We assume that all senders and destinations

in an accountable domain are DNA-aware; however, DNA-aware principals may send

packets from legacy domains.

Two new entities interact with legacy ASes. An accountability gateway enables

DNA-aware senders in legacy domains to send traffic to accountable domains. A

legacy gateway forwards sanitized legacy traffic onto accountable domains.

Sending accountable traffic from legacy domains

Accountable senders in legacy domains may wish to send traffic to domains that only

accept accountable traffic. The sender’s traffic is routed through an accountability

gateway, LRepgw.

Accountability gateways have a TAP-signed LRep key that they use to issue

tokens to senders that have committed to a blinding key and have not been blocked,

much like a normal LRep. Unlike a normal LRep, accountability gateways issue

tokens to senders in legacy ASes; these senders must tunnel accountable packets to

the accountability gateway’s AS to use the token.

The blocking procedure is the same: should a receiver decide to block Alice,

it follows the standard blocking protocol by sending a block request to LRepgw, who

publishes the block in the SBS.

Transiting through legacy domains

Accountable ASes can tunnel over legacy ASes to extend the reach of deployed,

accountable “islands”, much like the MBone and 6Bone. The tunnel endpoints

exchange symmetric keys to create tokens. These tokens are bound to the tunneled

“link” between accountable ASes.

It may be the case that an egress router R in an accountable domain cannot
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forward an accountable packet to an accountable domain, for instance if it cannot

find a tunnel that reduces the distance to the packet’s destination or if R determines

that the destination is in an adjacent legacy domain. In this case, R removes the

accountability header from outgoing packets, changes the IP protocol field to the

protocol field in the accountability header, recomputes the IP header checksum, and

forwards the resultant legacy packet.

Legacy senders

Legacy gateways allow legacy senders to send packets to accountable ASes. A legacy

gateway (L) possesses a Ppk from the TAP. L accepts legacy traffic, creates and

commits to a blinding key corresponding to the source IP address, and forwards the

packets using the usual DNA protocol. In effect, L takes responsibility for the legacy

traffic by signing it. Destinations that block L no longer receive any legacy traffic

through this gateway. Like any user Ppk, if sufficient destinations block L, its key

may no longer be renewed by the TAP.

3.6.1 Distributing Keys to New Users

When a new user Alice joins an AS that implements DNA, or Alice’s AS first deploys

DNA, she may not have a valid principal key needed to commit to a blinding key.

Rather than distribute keys from the TAP out of band, new users can contact the

TAP using their local LRep as an accountability gateway. In this case, Alice must

authenticate to LRep via an out of band mechanism. Alice generates a (Bpk, Bsk)

for herself and registers Bpk with the LRep, who will let Alice contact only the TAP.

Alice uses Bpk to contact the TAP and then authenticates to the TAP with whatever

credentials are required. Alice generates her (Ppk, Psk) and gives Ppk to the TAP

to sign. This is done to prevent impersonation attacks: if the TAP generated the

key, it could send traffic as Alice. Finally, the TAP responds with a signature on the

public key, allowing Alice to send accountable packets.

If Alice uses the temporary key to abuse the TAP, the TAP will forward a
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Key Size Sign Verify
112 bits µ = 0.91, σ = 0.03 µ = 1.11, σ = 0.01
160 bits µ = 1.77, σ = 0.01 µ = 2.07, σ = 0.02

Table 3.2: Times in milliseconds to perform each operation on a 3.4 GHz Intel
Pentium 4 CPU. µ is average, σ is standard deviation.

normal block request to the LRep, who revokes Alice’s permission to authenticate.

3.7 Evaluation

This section evaluates the performance of DNA, based on an implementation of the

TAP and a DNA router, and wide-area simulations using ns-2.

3.7.1 Implementation and analysis

Here, I present microbenchmarks for each type of overhead from our implementation.

The TAP is implemented in Ruby, using SWIG wrappers to OpenSSL [63]. I have

augmented the Click router [49] to perform DNA token manipulations and signature

verification.

The implementation uses the OpenSSL implementation of ECDSA [54] for

signatures and SHA-1 HMAC for tokens. ECDSA affords short public keys and

signatures without expensive bi-linear pairing operations. DNA uses 160-bit keys

(“long” keys) for TAPpk, Ppk, and speaks-for keys, and 112-bit keys for LReppk and

Bpk keys (“short” keys). As LReppk and Bpk keys are refreshed relatively often; their

keylength can be shorter.

DNA overheads can be partitioned into five broad categories:

• Accountable traffic: Accountable traffic incurs processing overheads for sig-

natures and verifications, latency overheads for block lookups, storage over-

heads for storing commitments, and packet overheads for storing an account-

ability header.
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Table 3.3: Overhead of DNA sub-protocols. Header size reflects packets with five
tokens. but y in the worst case. All signatures and verifications for the same
operation can be performed in parallel.
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• Traffic with waivers: Once waivers are issued, DNA operations require no

asymmetric cryptography. The primary overhead is in constructing and check-

ing HMACs.

• LRep and gateway: LReps and legacy gateways must store blinding key

mappings, publish blocks to the SBS, and verify SBS receipts.

• Administrator: Administrators sign block requests, create waivers, and store

and verify SBS receipts.

• TAP node: TAP nodes sign keys for principals and LReps. They resolve

disputes and evict misbehaving LReps.

The primary computational overhead in DNA comes from signature creation,

signature verification and HMAC operations. The time required for the signature

computations on a typical workstation is shown in Table 3.2. The HMAC operations

require less than 0.02 ms for 1500 byte packets.

Table 3.3 shows the number of different cryptographic operations required

for DNA component protocols, the number of local and remote round trips each

protocol incurs, and the sizes of the protocol messages. Of note from Table 3.3 is

the following:

Line 2 One router in the source AS must verify two short signatures and one long

signature for accountable packets. These verifications can be parallelized and

two of them may be cached.

Line 3 Principals can pre-commit to blinding keys and use them as necessary.

There is no need to commit to a blinding key for each new connection.

Line 7 Creating a waiver requires two signature operations, only one of which must

be performed at connection setup time. The nonces can be generated and

signed offline.
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Line 11 Once a waiver is verified and a token obtained, no more asymmetric oper-

ations are required.

Line 12 If a packet can be verified (three verification operations) and the desti-

nation wishes to block the sender, it needs to create one signature with its

speaks-for key. Block requests fit in a single datagram.

Line 13-14 If a destination receives a packet with an invalid signature or an invalid

nonce, it invokes the accusation protocol. The accusation packets also fit

into a single datagram, and require no signatures beyond the accountability

header. Each successive upstream AS must check their token (one HMAC)

and then compare the previous token against all keys shared with their other

AS neighbors (one HMAC operation per neighbor).

The compilation of overheads in Table 3.3 suggests that DNA can be deployed

in the wide-area using current hardware. I now use the analysis in Table 3.3 the

microbenchmarks from our implementation to extrapolate the performance of a

hypothetical DNA deployment.

Generating a blinding key

For new connections, the sending principal must generate a blinding key. The over-

head of generating a blinding key is low. Blinding keys can be generated offline on

an as-needed basis. The sender implementation, when running on a 1.5 GHz CPU,

can generate a 112-bit ECDSA blinding key in 1.2 ms.

LRep initial connection processing

An LRep must verify commitments to blinding keys and generate initial tokens. Not

every connection requires commitment verification: a sender may elect to reuse a

blinding key to multiple destinations. Registering a blinding key requires verifying

one long and one short key, which takes approximately 3 ms (Table 3.2). Issuing

an initial token requires only one verification (of the SBS response) and one HMAC
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operation.

The LRep also stores the mapping between blinding keys and users. A blinding

key commitment consists of an Ppk (20 bytes), a Bpk (14 bytes), the expiration epoch

νB (4 bytes), and SignPsk
(Bpk, νB) (40 bytes—ECDSA signatures are twice as long

as the public key). This requires 78 bytes of storage per blinding key. An LRep can

store 13.7 million keys in 1 GB of storage.

Sending an accountable packet

Though three signatures are included in outgoing packets, senders need to create

only one per packet: the signature of m with Bsk. Our sender, running on a single-

threaded 1.5 GHz AMD XP CPU, is able to create 259 accountable packets, each

containing 1000 bytes of payload, per second.

As shown in Figure 3.2, the accountability header consists of 145 bytes plus 4

for every token. Assuming the average AS path length is four [57], for most packets

the tokens consume 20 bytes. Thus, the accountability header consumes 165 bytes.

Router processing

The first-hop router, implemented in Click and running on a 1.5 GHz CPU, is able

to verify an entire signature chain at a rate of 79 per second.

Each border router either checks a token or creates one in every packet it

forwards. The storage requirements on border routers are minimal: HMAC keys

are 16 bytes long. The above-mentioned host can create (or check) tokens for 1024-

byte packets at a rate of 80,000 per second. This corresponds to approximately 640

Mbps of throughput. Using dedicated hardware, such as the Intel IXP2855 network

processing chip [41], routers can achieve through-puts up to 10 Gbps.

Block request creation

Block requests include the blocked blinding key, the IP of the blocker, and a signature

of both. If the block request is treated as a packet, with the message consisting of

the blocked key and the IP, then the administrator can sign the message with its
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Figure 3.5: Simulation topology

speaks-for key and use that as the message signature in the accountable packet

header. This limits the additional overhead at the administrator to verifying the

signatures in the packet that it was requested to block.

The network administration at the University of Maryland Computer Science

Department manually blacklists IP addresses by installing a firewall rule for persis-

tent attackers. A trace collected between August 2007 and December 2007 shows

2,736 hosts were blacklisted (approximately 15 per day). The overhead of this level

of blacklisting is negligible.

3.7.2 Simulation

In this section, we evaluate the performance of a wide-scale deployment of DNA.

This deployment is simulated using ns-2. We first evaluate DNA’s basic functionality

to confirm that it performs as expected. We then show that performance is not sig-

nificantly affected when certain components become compromised. For comparison,

we consider TVA under the same scenario, and compare performance.

Topology
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We use a simple dumbbell topology, shown in Figure 3.5, in our simulations. The

sender networks are on the left-hand side of the dumbbell. Each network contains

one LRep, a number of senders, and a first-hop router that connects them. Each

network then feeds into a single node, whose outgoing link is the bottleneck. The

destination is connected to this link.

The bottleneck link capacity varies, depending on the experiment, from 1 to

10 Mbit/s. The capacity of all other links is 100 Mbit/s. The latency on all links is

10 ms, except as noted in Section 3.7.2.3.

There are two types of senders: attackers that flood the destination and honest

senders that attempt to transmit files to the destination over TCP. Attackers send

traffic at 1 Mbyte/s.

3.7.2.1 Blocking senders in honest networks

When a destination sends a block request to an LRep, the LRep publishes the block

in the DHT. It also places a temporary filter at the gateway, which drops packets

that contain the initial token that the LRep issued to the blocked sender. This filter

expires when the token expires. This simulation evaluates quickly a destination’s

block requests take effect if the sender’s network is honest, i.e., its gateway honors

these filters.

For these experiments, the bandwidth of the bottleneck link is set to 10 Mbit/s.

Each sender is an attacker and begins by first obtaining a token from the LRep. It

then sends at a constant bitrate until it is blocked. As soon as the destination

receives a packet from an attacker, it creates a block request and sends it to the

attacker’s LRep.

We ran two experiments with sender networks of different sizes. In the first

experiment, each LRep serves a single sender, that is, each network has one sender.

In the second, each sender network has 10 senders. In each experiment and the

number of attackers was varied from 1 to 500.
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Figure 3.6: Average time required to block each attacker in a dumbbell topology
network consisting solely of attackers. Each LRep installs a local filter that blocks
the source once it receives a block request.

Figures 3.6(a) (1 sender per network) and 3.6(b) (10 senders per network)

show the average time from when an attacker first sends a packet until when it is

blocked by the destination.

3.7.2.2 Multi-stage attacks

A second experiment models a more powerful adversary that can coordinate multiple

attacks against a destination using disjoint groups of nodes. This scenario models

a botnet, where a single adversary in control of many bots can command different

sets of bots to attack at different time.

TCP transfers

To measure the effect of such compromise, we emulate an experiment from the

evaluation of TVA [82]. Honest senders attempt to transfer files to the destination

using TCP. The files are 20 KBytes each, as in the evaluation of TVA. Senders

serially transmit a fixed number of files, but this number is set so that file transfers

are started throughout the series of attacks. In this experiment, there are 10 honest

senders and each transfers 20 files. We then observe how file transfer completion

time is affected at each state of the attack.
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Figure 3.7: Time to complete a 20 Kbyte file transfer in the presence of multi-
stage attack. Ten honest senders send ten files each. An attack stage starts every 20
seconds, indicated by the vertical bars. In each attack, 150 users flood at 1 Mbyte/s.

In all experiments that simulate file transfer via TCP, excessive packet loss

may cause the transfer to abort. Specifically, the sender will abort the transfer if

it does not receive a response to 8 SYN packets or if its retransmission timeout is

greater than 64 seconds. In this particular experiment, no transfers were aborted.

A transfer that times out due to excessive packet loss will be aborted; no

timeouts occurred in this experiment.

In this experiment, there are 750 adversaries, each sending at 1 Mbyte/s. They

are split into five waves of 150 attackers each. The first wave starts sending at time

20 seconds, and subsequent waves begin every 20 seconds after that.

The results of the experiment are shown in Figure 3.7. The x-coordinate of

each point is the time when the 20 Kbyte transfer started and the y-coordinate is the

time required to complete the transfer. The results show that while transfer times

increase when each wave begins, DNA recovers quickly and overall performance

is restored. The effects of each wave of attacks is not cumulative: the effect of

subsequent attacks is not worse than the earlier attacks.
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Figure 3.8: Bandwidth received at the destination from a single source sending at a
constant bit rate equal to half of the bottleneck link. Every 20 seconds, attacks of
increasing intensity begin.

Effect on bitrate

To measure the available bandwidth on a link during an attack, we performed a

similar experimet as the previous one. Instead of 10 TCP senders, we used a single

source sending at a constant rate, equal to the half of the capacity of the bottleneck

link. Also, the attacks increased in severity. At 20 seconds, one attacker begins

flooding the destination at a bandwidth equal to the bottleneck link. 20 seconds

later, two attackers begin; then four, and so on, up to attacks of 128 senders.

The results, shown in Figure 3.8, highlight the importance of blocking attackers

quickly. While smaller attacks have limited effect, the magnitude of larger attack

overwhelms the bottleneck link, forcing throughput close to zero, until all senders

are blocked.

3.7.2.3 Handling compromised routers

We performed a third experiment to determine how well the accusation protocol

allows DNA to recover from a compromised router in the middle of the network.

When compromised, the router begins sending unsigned, unaccountable packets to

the destination. It places correct tokens in its packets, and no downstream routers

perform signature checks, allowing the attack packets to reach the destination.
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(a) Attacking at 1 Mbyte/s
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(b) Attacking at 1.5 Mbyte/s
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(c) Attacking at 2 Mbyte/s
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(d) Attacking at 5 Mbyte/s
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(e) Attacking at 10 Mbyte/s
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(f) Attacking at 20 Mbyte/s

Figure 3.9: This figure shows the effect that a compromised router that allows
unaccountable packets into the network has on the time required for senders to
transfer a 20 Kbyte file. The y-axis is the ratio of time required to complete a
transfer compared to the time of the first transfer. The attack starts at 10 seconds,
indicated by the vertical line. Each LRep installs a local filter that blocks the source
once it receives a block request. The bottleneck link capacity is 1 Mbit/s.

This experiment uses a setting similar to the previous one: 10 senders send

10 copies of a 20 Kbyte file to the destination and we measure the effect of the

compromised router in terms of how it affects file transfer completion time.

The topology in this experiment is changed slightly from the previous one.
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The senders are attached as before (in this case, all senders are honest). However,

the compromised router is connected through a series of three additional routers.

Each of these represents a network that participates in the accusation protocol. As

the compromised router can drop arbitrary packets, we did not place any honest

senders behind that router. The bottleneck bandwidth in this experiment is set to

1 Mbit/s.

Because packets from the compromised router do not contain a valid LRep

signature, a block request will likely be ineffective. The destination instead immedi-

ately starts the accusation protocol. In an actual deployment of DNA, the execution

of the accusation protocol can vary depending on local policy. If the compromised

router is still active, honest networks can use NetFlow [25] or similar tools to detect

it. However, this may take some time. To emulate this, the simulation waits two

seconds before forwarding the accusation message to an upstream network. We be-

lieve this to be a middle ground between an actively-policed network that ensures

its routers are correct and a network that applies a more lax policy that may take

longer to detect malicious behavior.

Figure 3.9 shows the results of this simulation. The x-axis shows time, and the

y-axis shows the duration of transfers that started at that time. The router becomes

compromised at 10 seconds and begins flooding, resulting in a spike in transfer time.

However, as the accusation protocol executes, transfer time quickly returns to its

prior levels, regardless of the rate at which the attacker sends.

Comparison to TVA

We now examine TVA in the same scenario, in order to compare how TVA and

DNA perform under this type of attack. We used the TVA implementation made

available by the authors [1].

As before, this experiment consisted of honest senders transmitting a 20 Kbyte

file and a compromised router acting as an attacker. Each sender transfers files

sequentially. A transfer that times out due to excessive packet loss will be aborted.
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(c) Sending with 15 capabilities. 13 of 100 transfers are aborted.
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(d) Sending with 20 capabilities. 36 of 100 transfers are aborted.

Figure 3.10: This figure shows the effect that a compromised router that steals and
uses TVA capabilities has on the time required for senders to transfer a 20 Kbyte
file. The y-axis is the ratio of time required to complete a transfer compared to the
time of the first transfer. The attack starts at 10 seconds, indicated by the vertical
line. The bottleneck link capacity is 1 Mbit/s.

A separate set of senders lies behind the compromised router. These senders

obtain valid capabilities, which the router observes. The router then uses the ca-

pabilities to flood the destination with forged traffic. (Because of limitations in

ns-2, the senders were actually co-located on the same node, which acted as the

compromised router.)
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Each capability allows the router to send at 100 Kbytes per second. We varied

the number of capabilities the router obtains between 10 and 20. After 10 seconds,

the router begins its attack.

Figure 3.10 shows the results of the experiment. Unlike in the previous ex-

periment, the compromised router has a significant effect on file transfer completion

time. Once the router obtains 13 capabilities, allowing it to send at 1.3 Mbyte/s,

it is able to congest the network to the point that file transfers time out before

completion.

We can compare how well DNA and TVA withstand a compromised router

along two separate axes: (1) performance immediately after the attack vs. steady-

state performance, and (2) how performance changes with the intensity of the attack.

For lower-intensity attacks, i.e. attacks that just manage to saturate the bot-

tleneck link, TVA outperforms DNA immediately after the attack: transfer times in

Figure 3.10(a) are less than 35% above pre-attack levels, whereas transfers in DNA

(Figure 3.9(a)) take several times longer. However, once the compromised router is

discovered, transfer times in DNA return to pre-attack levels. In TVA, they remain

higher than before the attack.

As the power of the attack increases, the performance of TVA quickly deterio-

rates. Once the router is able to obtain 15 capabilities (Figure 3.10(c)), it is able to

congest the bottleneck link to a point where some transfers are aborted and those

that do finish take significantly longer. In comparison, Figure 3.9(b) shows how

DNA performs under an attack of equivalent bandwidth: transfer times are affected

nearly the same as in attacks at lesser bandwidths and no transfers are aborted.

Figures 3.10(d) and 3.9(c) show a similar comparison between the systems when

the attacker can flood at 20 Mbyte/s; 36% of file transfers are aborted with TVA,

compared to none for DNA.

These results show that DNA is able to recover from a router compromise,

while TVA is not. They also suggest that DNA performs similarly regardless of the
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power of the attacker, while increasingly powerful attacks have a drastic effect on

TVA’s performance.

3.8 Conclusion

DNA is a network-layer accountability architecture that explicitly decouples connec-

tivity from responsibility. DNA’s security is grounded in trusted identity certification

authorities (TAPs). DNA allows destinations to specify per-source principal blocks,

which apply regardless of the principal’s network attachment point. DNA does not

mandate local policy, e.g., each AS is free to choose how it classifies misbehavior,

and can withstand the corruption of all non-TAP components.

Extrapolated numbers from our implementation of DNA show that computa-

tionally, it is feasible to implement DNA with current hardware. We have strived to

make the trade-offs in DNA explicit and we expect the point in design space that

DNA explores to be both viable and important.
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Chapter 4

The NeighborhoodWatch DHT

In this chapter, I present the NeighborhoodWatch DHT, which DNA uses as its

scalable block storage service.

4.1 Introduction

A distributed hash table (DHT) is a decentralized, distributed system that exports

a put/get interface. Both of these functions are built on a lookup operation that

scales logarithmicly with the size of the system. A DHT thus is a natural choice

for DNA’s SBS. However, the sensitive nature of the SBS’s contents (namely, block

requests) invite malicious users to attack the SBS.

Traditional DHTs can withstand fail-stop failures, but malicious nodes may

provide incorrect routing information, refuse to return published items, or simply

ignore certain queries. Efforts to protect DHTs from these attacks hurt their scala-

bility. Specifically, the DHT of Castro et al. [24] relies on redundant routing, which

floods messages along multiple paths, while S-Chord [33] requires occasional flooding

of O(log2N) messages.

This chapter presents NeighborhoodWatch, a DHT that is resilient to malicious

nodes and does not require flooding. NeighborhoodWatch maintains the O(logN)

bounds on routing table size and expected lookup time. NeighborhoodWatch de-

pends on an on-line trusted authority that periodically contacts and issues signed

This chapter is based on the paper [17], which is joint work with Rob Sherwood, Derek Monner,
Nate Goergen, Neil Spring, and Bobby Bhattacharjee.
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certificates to each node. Nodes need a certificate to participate; honest nodes in

NeighborhoodWatch can detect malicious behavior and expel the responsible nodes

from the DHT. The DNA TAP fills the role of the on-line trusted authority, admin-

istering a large set of untrusted nodes that provide secure content delivery. This

design greatly increases the availability and capacity of the service without requiring

that every node be trusted.

NeighborhoodWatch makes one additional assumption: in the flat identifier-

space of the DHT, there is no sequence of k+1 consecutive nodes that are malicious,

where k is a system parameter chosen by the blacklist administrator. That is, at

least one in k + 1 consecutive nodes is alive and honest. A larger value of k means

that this assumption is more likely to hold, but also that load on the trusted nodes

increases (Section 4.4.1). NeighborhoodWatch maintains the logarithmic complexity

of original DHTs and is secure as long as the assumptions are maintained. Even

if the second assumption is violated, NeighborhoodWatch can provide many of its

security properties.

Using a relatively small trusted resource to secure a scalable infrastructure

is an important theme in distributed systems that makes several designs practical.

For instance, in cryptography, a public key infrastructure (PKI) can be established

by a single trusted keypair. Maheshwari et al. [59] present a system, TDB, which

uses a small amounted of trusted storage to build a trusted database on untrusted

hosts. NeighborhoodWatch employs a similar concept, in which few trusted hosts

enforce the correctness of a DHT consisting of many untrusted hosts. The ratio of

trusted hosts to untrusted hosts is only limited by the bandwidth and processing

power of the trusted hosts. The end result is a potential increase, by several orders

of magnitude, in the number of hosts responsible for content (in this case, blacklist)

distribution.

The rest of this section is organized as follows. Section 4.2 presents the se-

curity model for NeighborhoodWatch. The design of NeighborhoodWatch is given
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in Section 4.3. An analysis of NeighborhoodWatch appears in Section 4.4, and an

evaluation in Section 4.5. Section 4.6 presents related work, and Section 4.7 con-

cludes.

4.2 Security Model and Assumptions

Previous designs of secure DHTs [24, 33] are able to guarantee security when a 1
4

fraction of nodes are corrupt. NeighborhoodWatch adopt a similar model, in that

it allows for some fraction f of the nodes to be malicious, but does not place hard

bounds on f . Instead, NeighborhoodWatch assumes that for every sequence of k+1

consecutive nodes in the flat ID space of the DHT, at least one is alive and honest,

where k is a system parameter. This is the fundamental assumption. The insight

is that if nodes cannot choose where they are placed in the DHT (an assumption

justified momentarily), malicious nodes would have to corrupt a large fraction of the

N nodes in the DHT in order to obtain a long consecutive sequence of corrupted

nodes. By storing sequences of nodes in routing tables, honest nodes are guaranteed

to know of at least one other honest node that is “near” a given point in the DHT.

For a given value of f , a corresponding k can be chosen so that the fundamental

assumption holds with high probability. Section 4.4.1 analyzes how likely it is that

the fundamental assumption holds for given values of f , k, and N .

As the fraction of malicious nodes in the DHT increases, the likelihood that

the fundamental assumption holds decreases. If, however, malicious nodes could be

discovered and removed from the DHT, then the number of malicious nodes would

be kept at a manageable level. In order to remove nodes from the DHT, Neigh-

borhoodWatch assumes the existence of an on-line trusted authority, potentially

distributed, that periodically issues signed certificates to nodes. These certificates

are called neighborhood certificates, or nCerts, for reasons which are explained in

Section 4.3. nCerts have a relatively short expiration time compared to the average

lifetime of a node. Nodes need a current, valid nCert in order to participate in the
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system. In order to remove a malicious node, the authority simply refuses to sign a

fresh nCert for that node.

Maintaining security is then a matter of detecting malicious nodes. Neighbor-

hoodWatch introduces several mechanisms by which misbehavior can be detected

and proven. When a node is known (or strongly suspected) to be malicious, it is

expelled from the system. This ensures the correctness and efficiency of operations

on the DHT, by either enforcing that malicious nodes behave according to protocol,

or by increasing the likelihood that the fundamental assumption holds.

NeighborhoodWatch assumes that the adversary cannot place a corrupt node

anywhere it wishes in the DHT. This condition is enforced by requiring that nodes

obtain a signed public key before they are admitted into the DHT. This certificate

is distinct from a neighborhood certificate. Nodes use these certificates to sign re-

sponses to certain DHT messages. In addition, a node’s ID is taken to be the hash

of its public key. This prevents nodes from choosing their location in the DHT.

By making certificates expensive to acquire, as do Castro et al. [24], Neighborhood-

Watch combats the Sybil attack [31].

Public key certificates serve another purpose as well: when a node’s key cer-

tificate expires, it must obtain a fresh one. As a consequence, its ID will change,

and the node will be relocated to a new portion of the DHT. Although this is a

potentially expensive operation, it also limits the lifetime of a sequence of k + 1

corrupt nodes, as eventually they will be redistributed.

Additionally, NeighborhoodWatch requires all nodes to have loose clock syn-

chronization. If a node’s clock differs from the system clock, it may impair its

own ability to participate effectively in DHT operations, but it will not harm the

operation of other nodes.
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4.3 The NeighborhoodWatch DHT

This section presents the design of the NeighborhoodWatch DHT. The DHT sup-

ports three operations, all of which are reliable when the fundamental assumption

holds:

1. lookup(id), which takes an ID and returns a reference (nCert) to the node

responsible for storing items with the given ID

2. publish(id, item), which stores data item item in the DHT under ID id at the

node responsible for id as well as its k successors

3. retrieve(id), which returns either a data item published under the given ID

or a statement, signed by the node responsible for the ID, that no item was

published with that key.

NeighborhoodWatch is based on Chord [75], which routes queries through a

network of N nodes with only O(logN) messages while requiring each node to store

only O(logN) links to other nodes. These links are called a node’s finger table. The

ID space of Chord is the integers between 0 and 2m−1 from some integer m. Chord

orders IDs onto a ring modulo 2m. A node with ID x stores fingers to nodes with

ID x + 2i mod 2m for integers 0 ≤ i < m. The successor of n is the node whose

ID is immediately greater than n’s ID modulo 2m. Likewise, the predecessor of n is

the node whose ID is immediately less than n’s.

While NeighborhoodWatch will still operate correctly in most cases when the

fundamental assumption is violated, security is not guaranteed. Malicious nodes

can undetectably hide published items, prevent new nodes from joining, and cause

routing failures. This motivates the reliance on a trusted authority: when malicious

nodes misbehave, their behavior can be proven; upon witnessing proof of misbe-

havior, the trusted authority can remove malicious nodes from the DHT. Neighbor-

hoodWatch is designed so that any attempt by a node to lie about whether or not an
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item was published will implicate that node as faulty, and it will be expunged from

the system. Therefore, a corrupt node’s only course of action is to be maliciously

non-responsive.

4.3.1 Overview

Unlike S-Chord, which partitions nodes into disjoint neighborhoods, Neighborhood-

Watch assigns a neighborhood to each node. This neighborhood consists of the node

itself, its k successors, and k predecessors. A single node will therefore appear in

2k + 1 neighborhoods. NeighborhoodWatch requires 2k + 1 nodes to bootstrap.

NeighborhoodWatch employs an on-line trusted authority (the TAP) to sign

certificates attesting to the constituents of neighborhoods. The TAP has a globally-

known public key, TAPpk, and corresponding private key TAPsk. The TAP may be

replicated, and the state shared between TAP replicas is limited to a private key, a

list of malicious nodes, and a list of complaints of non-responsive nodes.

The TAP creates, signs (using a secure digital signature algorithm) and dis-

tributes neighborhood certificates, or nCerts, to each node. Nodes renew their

nCerts on a regular basis by contacting the TAP. Similarly, joining nodes receive

an initial nCert from the TAP. nCerts list the current membership of a neighbor-

hood, accounting for any recent changes in membership that may have occurred.

Using signed nCerts, NeighborhoodWatch is able to verify the set of nodes that are

responsible for storing an item with ID x.

Nodes maintain and update their finger tables as in Chord. For each of n’s

successors, predecessors, and finger table entries, node n stores a full nCert (instead

of only the node ID and IP address as in Chord). When queried as part of a lookup

operation, nodes return nCerts rather than information about a single node.
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4.3.2 Neighborhood Certificates

A node n has ID n.id, IP address n.ip, port n.port, public key n.pk (along with

a signed certificate from the CA), and private key n.sk. Let the info of node n

be defined as n̂ = {n.id, n.ip, n.port, n.pk}. The predecessor of n is p(n), the i’th

predecessor of p(n) is pi(n), and likewise n’s immediate successors are s(n), s2(n),

etc. The range of n is the integer interval (p(n).id, n.id]. Node n is said to be the

owner(x) for any ID x in the range of n.

Malicious nodes may try to subvert lookups by lying about their range. By

including p(n) in nCertn, NeighborhoodWatch allows any node to determine the

range of n given (a fresh copy of) nCertn. As new nCerts are issued periodically, it

is possible for a node to hold several nCerts at once. When queried, a malicious node

might present an old nCert in an attempt to hide a newly-joined node. Therefore

NeighborhoodWatch includes the entire neighborhood of n in nCertn to serve as

witnesses to the freshness of nCertn. Anyone can determine the accuracy of nCertn

by querying each member of the neighborhood and comparing the returned nCerts.

If at least one honest neighbor exists, its nCert will reveal any hidden nodes and

implicate malicious ones.

Epochs

nCerts cannot be explicitly revoked—once a certificate is distributed, it cannot be

“called back”, since using certificate revocation lists requires a publish and lookup

infrastructure very similar to the one we are trying to build. Therefore, to prevent

malicious nodes from persisting in the DHT, nCerts must expire periodically. To

facilitate this, NeighborhoodWatch divides time into sequentially-numbered epochs.

Certificate expiration is implemented by including a timestamp, indicating the last

epoch in which a key is valid, in the certificate.

Time is split into two kinds of epochs, join and renew, which alternate. New

nodes may join only in a join epoch; existing nodes may renew their nCerts only in
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a renew epoch. Nodes must renew their certificates once during each renew epoch to

remain in the DHT for subsequent epochs. The length of each is a system parameter,

though typical values would be on the order of tens of minutes. The epoch length is

a trade-off between the frequency of overhead incurred by the recertification process

and the length of time that a proven malicious node can remain in the DHT, since a

node can only be expelled by the TAP refusing its renew request. Epochs and epoch

lengths in NeighborhoodWatch need not correspond with those of DNA.

The current epoch is denoted by an integer which monotonically increases over

time. nCerts issued in a join epoch ej are valid through epoch ej + 1, i.e., the next

renew epoch. nCerts issued in renew epoch er are valid through epoch er + 2, i.e.,

the next renew epoch. A node who fails to renew its nCert before it expires has

effectively left the system, as other nodes simply ignore expired nCerts.

The reason for separating the periods in which a node can join from the periods

where nodes renew their nCerts is to prevent the following scenario: an honest node

n requests that a TAP replica renew nCertn. While this is in progress, a new

node j joins, perhaps through a different TAP replica, and an nCertn containing

j is issued to n. Afterward, the initial renew operation completes, and n receives

a new nCert without j. This would produce inconsistencies among the nodes in

n’s neighborhood, and could potentially lead to n being implicated as malicious.

By separating join and renew epochs, only nodes who are affected by a joining

node receive new certificates in a join epoch, and neighborhoods are stable (barring

removal of unresponsive nodes) throughout a renew epoch.

nCert Format

Let SignK (msg) = (msg, σK(msg)) denote the application of a secure digital signa-

ture algorithm to msg, where σK(msg) is the secure digital signature of msg with

103



key K. The format of nCertn is:

n̂ = {n.id, n.ip, n.port, n.pk}

nodes = p̂k(n), ..., p̂(n), n̂, ŝ(n), ..., ŝk(n)

nCertn = SignTAP.sk (nodes, e)

where e is the last epoch in which nCertn is valid.

4.3.3 Routing

NeighborhoodWatch uses iterative routing, meaning that a querier q searching for

owner(id) will contact each hop on the path to owner(id), rather than passing the

query off for another node to route. This allows q to recover from routing failures.

By using iterative routing, q can ensure that each step of the routing protocol makes

progress towards owner(id).

To execute lookup(id), a querier q that is a DHT node examines its finger

table to find the nCert of the closest known predecessor of id; call this node p. If

q is not a DHT node, it requests the nCert of any DHT node it knows about; in

this case, that node is called p. In either case, q requests that p provide the nCert

of its closest known predecessor of id. Let the nCert that p returns be nCertnext.

q examines nCertnext and determines if it is valid. Several criteria must be met for

nCertnext to be valid: clearly, it must be signed by the TAP and it must not have

expired. Also, next.id must be at least halfway between p and id, which will be the

case if p’s finger table is correct. If next does not allow q to progress at least half of

the distance to id, which may be the case if next’s finger table has not stabilized,

then q has the option of either querying a different node in any nCert it has or

continuing with a sub-optimal hop. If nCertnext is valid, q replaces p with next and

repeats the process, stopping when it receives a valid nCertowner(x).

If p responds with an invalid nCert, or simply doesn’t respond, q queries one
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Figure 4.1: The join process in the NeighborhoodWatch DHT. Here k = 3.

of the other nodes listed in nCertp. If any of these nodes is correct, q is able to make

progress towards id while querying at most 2k + 1 nodes. Each successful query

halves the remaining distance between p and id, resulting in at most (2k + 1) logN

messages per query.

A malicious node m that was previously owner(id), but has since relinquished

that range to a newly joined node j, may present an old but valid nCertm which

shows m as owner(id) instead of j. Note that this can only occur during the epoch

that j joins or the following recertify epoch; after that time, the nCertm showing m

as owner(id) will be expired. In this case, m cannot suppress the keys for which j

is now responsible, as will be shown in Section 4.3.7.

4.3.4 Join and Renew

To renew its nCert, a node n presents nCertn to an TAP replica. The TAP obtains

the nCert of each node in nCertn to check the validity of nCertn (i.e., to make

sure n is not presenting an old-but-unexpired nCert that does not contain a newly-

joined node). If nCertn matches the view of n’s neighborhood that the other nCerts

describe, the TAP issues a fresh nCert to n, containing the same neighborhood of

nodes, but with an expiration time of the next renew epoch.
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The process of joining the DHT is similar to that of renewing, but more nodes

need to be queried since more nCerts need to be issued. When a node n wishes

to join a NeighborhoodWatch instance, it finds nCertowner(n.id) and presents it to a

TAP replica. First the TAP ensures that n has a valid private key certificate from

the CA. Then the TAP uses the nCert to retrieve the nCerts of the k successors and

k predecessors of owner(n.id). The TAP then requests other nCerts as necessary

to obtain a full view of the neighborhoods of each node in nCertowner(n.id), so as

to verify the neighborhoods of each node that will receive a new nCert when n

joins. The TAP then creates new nCerts for n and each of the 2k + 1 nodes in

nCertowner(n.id) (owner(n.id) becomes s(n)), setting the expiration epoch for each

to the next (renew) epoch e, and sends each new nCert to the associated node. The

join process is shown in Figure 4.1.

Once n has joined the DHT, it fills in its finger tables by querying its neighbors

for the appropriate nCerts. It also stores the nCerts of all nodes in its neighborhood.

When a node n receives a new nCert, the TAP verifies n’s neighborhood.

The TAP contacts each node in nCertn. If a contacted node provides a conflicting

certificate, it is malicious; if it provides nothing, it is unresponsive. Such nodes are

not included in the new nCertn and are replaced by the appropriate neighbor. To

prevent inconsistencies in issued certificates, the TAP replicas must coordinate to

maintain a shared list of malicious and unresponsive nodes and refuse to insert these

nodes into any granted nCert.

4.3.5 Publishing

NeighborhoodWatch provides a publish(id, item) operation, which stores item in

the DHT under id. Let n = owner(id). When a node p wishes to publish item

to the DHT with key id, it first finds nCertn. Recall that the nodes in nCertn

include n, s(n), s2(n), ..., sk(n). Let these nodes be the publish nodes of nCertn. p

will contact each of the publish nodes and request that the node store item. This
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models the replication procedure in Chord, where the k nodes succeeding id store

copies of item.

Let d be a publish node that p contacts. If d decides to store the item, it

returns a signed receipt that it has stored the item. The format of a receipt is:

Rid,d = Signd.sk (id,Hash(item), d.id, e)

where e is the current epoch. This receipt is used to implicate d if it maliciously

refuses to return the item when requested to do so.

If d does not respond, then p considers d to be unresponsive and informs the

TAP. The consequences of this action are detailed further in Section 4.3.8.

Stored items are self-certifying [28], meaning that given the pair (id, item),

there exists a way to verify that the object published under ID id is in fact item.

One technique for self-certifying items is to set id = hash(item), for some collision-

resistant hash function. Another way to make items self-certifying is for the pub-

lisher to sign them, assuming anyone retrieving the item can locate the publisher’s

public key. By using self-certifying items, malicious nodes are prevented from re-

turning “fake” items in response to a retrieve request.

4.3.6 Receipt Storage and Retrieval

When a node p publishes a data item to the DHT, it receives (up to) k+ 1 receipts

from the nodes that store the item. In order to use receipts to expose nodes that

refuse to return published items, the receipts must be made available to anyone

that might observe a dishonest response to a retrieve request. One option is for p to

store the receipts for items it publishes and give copies to whomever requests such

a receipt. However, this introduces two problems: first, if p goes offline or crashes,

the receipts of all items p published become unavailable. Second, when looking for

an item published in an ID, a node must know who published that item in order to
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find the receipt. This is not feasible in the general case where the querier may not

know (or care) who published the item it seeks.

NeighborhoodWatch incorporates a mechanism by which receipts are stored

in the DHT itself. Of course, receipts must be stored at IDs independent of the

item being stored, so that with high probability a corrupted neighborhood does not

store all the receipts for items published to that neighborhood. NeighborhoodWatch

must also avoid the problem of storage explosion: the publish of a single item could

result in the storage of k + 1 receipts; if receipts of those publish operations result

in receipts stored in the DHT, another (k + 1)2 items would need to be stored, and

so on. NeighborhoodWatch imposes a limit on the receipt factor, RF , that dictates

how many levels of receipts are published to the DHT. In this chapter, RF = 1,

that is, receipts are stored in the DHT, but receipts-of-receipts are not stored.

When a publisher p receives a receipt Rid,d from d for an item published under

ID id, p publishes the receipt under the ID R.id = Hash(id||d.id) using the normal

publish protocol. Rid,d is then stored on the k+ 1 nodes following R.id in the DHT.

p receives receipts from these nodes to verify that the publish is successful, but does

not publish these receipts. A node requesting an item with ID item.id from d can

check if d has created a receipt R because that node knows both item.id and d.id,

and can thus determine R.id.

Assume d is malicious and returns negative responses to retrieve requests for

item i. For d to remain undiscovered, not only must the k + 1 nodes responsible

for storing i be corrupt, but all k + 1 copies of receipts for i must be unavailable.

For this last condition to be true, corrupt neighborhoods of k + 1 nodes must exist

around each of the receipts. This occurs with probability close to
(
pk+1

)k+1
, which

is extremely small even for large values of p and small values of k.
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4.3.7 Retrieving

Like the publish(id, item) operation, a node r executing retrieve(id) also begins

by using the lookup() operation to find nCertowner(id). r chooses a publish node d

from nCertowner(id) and requests item from d by sending id. If d responds with item

(which r can verify because items are self-certifying), retrieve(id) returns item and

terminates. If d responds saying that no such item exists, it may be the case that

item was never published, or it may be that d is trying to subvert r’s request. To

prevent subversion, all negative responses are signed by the responding node. r

stores d’s response and requests item from another publish node, until either item

is found or all publish nodes have returned a negative response.

If a node d that r contacts responded with a signed statement that it does

not have item, yet one of d’s neighbors did possess item, then r searches for Rid,d.

If it is able to find such a receipt, it presents the receipt and the signed negative

response to the TAP, who expels d from the DHT. Even if all nodes issue a negative

response, if r suspects that item was in fact published under id, then it may still

search for receipts. Collusion-resistant receipt storage is discussed in Section 4.3.6,

and the process of expelling nodes is discussed in Section 4.3.8.

A malicious node thus risks exposing itself if it issues a receipt when it intends

to not return items, returns a negative response when an item was published to it,

or returns an item that was not published. A malicious node can avoid exposure

only by not responding to any requests.

4.3.8 Removing malicious and unresponsive nodes

Previously in this section, we have shown that any attempt by a malicious node to

“lie” to an honest node, whether it be by refusing to return an item it stores or

returning an unpublished item, will cause the node to be expelled from the DHT

(as a result of the TAP not issuing a fresh nCert to the node). Thus it is in the best

interest of malicious nodes to be maliciously unresponsive, that is, to communicate
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with the TAP to ensure that it receives fresh nCerts, yet not respond to any messages

from peers. Here, we show how the system can evict such unresponsive nodes. This

property comes at the cost of storing state at the TAP. Specifically, the TAP records

the list of nodes that have “complained” about a given DHT node, as well as a list

of expelled nodes to prevent them from joining.

Whenever a node d fails to respond to a message from node n, n sends a

statement to the TAP to that effect. If the number of nodes that complain about

d crosses some threshold, the TAP then determines whether d is being maliciously

unresponsive. The TAP does this by finding random nodes in the DHT and asking

them to submit requests to d. These nodes report to the TAP whether or not d

responded. The TAP must do this so that d does not detect that it is being probed.

Therefore the requests should be distributed over time and come from a randomly

selected set of nodes.

The TAP requests m DHT nodes to make a request to d and observes the

results. Let θalive and θdead, θdead < θalive, be two parameters that the TAP uses in

determining whether d should be expelled:

• If more than θalive×m nodes report d as alive, the TAP takes no further action.

• If fewer than θdead ×m nodes report d as alive, the TAP expels d.

• If number of “alive” responses is between θdead ×m and θalive ×m, the TAP

re-runs the test at a later time.

θalive can be set fairly high, as even if d is not malicious but still fails to respond

to many requests, it should be removed from the DHT for better performance. θalive

should be selected so that the probability of selecting θalive × m malicious nodes,

when an f -fraction of the DHT is malicious, is low. This process is similar in spirit

to the send challenge of PeerReview [37].
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Figure 4.2: The number of corrupt neighborhoods as a function of the probability
that a node is bad. Here, N = 300.

4.4 Analysis

This section analyzes two aspects of NeighborhoodWatch: how likely the fundamen-

tal assumption (that each sequence of k+ 1 nodes contains at least one node which

is honest and alive) will hold as a function of the probability that a random node

is malicious, and the cost of storing an item and its receipts in the DHT. These

components, along with the certification process (evaluated in Section 4.5), are the

ways in which NeighborhoodWatch differs most from traditional DHTs.

4.4.1 Validity of fundamental assumption

If the fundamental assumption is violated, then NeighborhoodWatch cannot guar-

antee that a retrieve(id) operation will succeed, even if an item has been published

to the DHT under id. Note that lookup(id) operations will be successful as long as

there is no sequence of 2k + 1 nodes that are all malicious.

For a system with N nodes, there are N sequences of k+ 1 nodes. Let a node

be bad with probability f . Each sequence individually violates the assumption with

probability fk+1. However, the sequences are not independent of each other; the

expected number of bad sequence is not N × fk+1 (though this is a reasonable
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approximation for small f).

To examine the likelihood that the fundamental assumption holds, we simu-

lated an instance of the DHT and counted the number of sequences of length k + 1

that violate the assumption as a function of N (the number of nodes), k (the number

of successors stored in a certificate), and f (the probability that a randomly-chosen

node is malicious). Figure 4.2 shows the results of this simulation. Note that the

greater the value of N , the higher chance that there is a corrupt sequence. However,

even when f = 0.5, the number of expected bad sequences is small (below 1 when

k = 8). This gives an improvement over Castro et al.’s system [24] and S-Chord [33],

which are only secure when f < 0.25.

4.4.2 Cost of storing items in DHT

In order to store a B-byte item in NeighborhoodWatch, k + 1 copies of the item

are stored. Thus, B(k + 1) bytes are required for storing copies of the item. In

addition, k+1 receipts are stored in the DHT. Each receipt consists of two IDs, one

hash, one timestamp (4 bytes), and one signature. Assuming that IDs and hashes

are 20 bytes (the length of a SHA-1 hash) and that signatures are 40 bytes, receipts

consume 104 bytes.

Each publish results in k+1 receipts that are stored in the DHT. Each receipt

is stored by k+ 1 nodes. Thus storing an item in the DHT incurs an additional cost

of 104 ∗ (k + 1)2 bytes to store receipts, for a total cost of (k + 1)(B + 104(k + 1))

bytes required to reliably store a B-byte item.

4.5 Implementation and Evaluation

We developed and deployed an implementation of NeighborhoodWatch on approx-

imately 70 PlanetLab [15] nodes. The implementation is coded in 2400 lines of

Ruby. For digital signatures, we used the elliptic curve digital signature algorithm

(ECDSA) provided by OpenSSL. The ECDSA code is written in C++, with a wrap-
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Figure 4.3: Recertification times vs k. The certificate size is 2k + 1. Vertical bars
represent 95% confidence intervals.

per written in SWIG. The ECDSA keys in our implementation are 160 bits long,

resulting in signatures that are 320 bits long.

PlanetLab nodes were selected to create a large diversity of geographic node

locations, latencies, and response times. After deploying NeighborhoodWatch, we

then collected statistics of our secure DHT in operation, to better understand the

response times required by the routine mechanisms involved in building and main-

taining our secure DHT.

In Figure 4.3, we show the average time in seconds for a recertification op-

eration to complete. The average recertification time depends on the length of a

timeout. When the TAP requests node certificates from nodes, it will wait for up

to timeout seconds before requesting the node’s nCert again; if the node does not

respond to a second request, the TAP considers the node dead and replaces it with

another. If timeout is too low, churn is unnecessarily introduced, whereas if timeout

is too high, unresponsive nodes will have a greater effect on the average recertifica-

tion time. When running experiments on PlanetLab, we set timeout to 5 seconds.
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4.6 Related Work

Distributed hash tables (DHTs) were introduced as a method of organizing peer-to-

peer nodes to provide decentralized storage. The intent of the original DHT proto-

cols (such as Chord [75], CAN [69], and Pastry [70]) was to minimize both lookup

time and the amount of routing state stored at each node. For instance, Chord

requires nodes to store links to O(logN) other nodes and queries take O(logN)

messages for a DHT with N total nodes.

Sit and Morris [73] describe several ways in which adversarial nodes may at-

tempt to subvert a DHT. Malicious nodes might attempt to route requests to other

incorrect nodes, provide incorrect routing updates, prevent new nodes from joining

the system, and refuse to store or return items.

Castro et al. propose a system in which secure routing can be maintained

even when up to 1
4

of the nodes are malicious. Their system counters the Sybil

attack [31], in which a single malicious node joins the DHT in multiple locations,

by requiring each node to have a certificate that binds its ID to the node’s public

key. These certificates are provided by an off-line certificate authority, who limits

the number of certificates issued to a single entity. When a node detects that one

of its queries for owner(x) has resulted in a node that is unlikely to be owner(x), it

floods its request along multiple paths, potentially requiring a number of messages

that is polynomial in the number of nodes.

The concept of grouping consecutive nodes into neighborhoods has been a fea-

ture of several secure DHT designs. Fiat, Saia, and Young propose S-Chord, which

is also resilient to a 1
4

fraction of malicious nodes. S-Chord partitions consecutive

nodes into swarms, which act as the basic functional unit of the DHT. Lookups in

S-Chord take O(log2N) messages (compared to O(logN) in NeighborhoodWatch)

and each node stores O(log2N) links (compared to O(logN)). Myrmic [77] is a

secure DHT that makes similar system assumptions as NeighborhoodWatch, and

produce a similar solution. However, Myrmic does not consider securing the pub-
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lish operation and has no mechanism for removing malicious nodes from the DHT

when they are discovered. Morselli [62] proposes a method of ensuring that each

neighborhood has a 2
3
-majority of honest nodes and then uses Byzantine agreement

in each neighborhood to ensure correct behavior of each neighborhood. Bhattachar-

jee et al. [20] present a lookup primitive which can be verified through the use of

threshold cryptography.

4.7 Conclusion

In this chapter, I presented the NeighborhoodWatch DHT, which is secure against

a large fraction of malicious nodes. The system depends on a centralized (though

replicated) trusted authority which contacts each node on a regular basis, as well

as the assumption that sequences of consecutive corrupt nodes are not arbitrarily

long. NeighborhoodWatch consists of a small set of trusted hosts that manage a

large set of untrusted hosts, thereby allowing security guarantees to scale by orders

of magnitude. By using an innovative receipt-storing scheme and digital signatures,

NeighborhoodWatch is able to detect and prove malicious behavior; a corrupt node’s

only course of action is to be maliciously non-responsive. The centralized authority

can remove malicious and non-responsive nodes from the DHT, leaving only correct

peers.
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Chapter 5

VanGuard: Adding Accountability to Capabilities

This chapter presents VanGuard, a system that combines DNA with capability archi-

tectures. VanGuard provides the best of both worlds: senders are held accountable

and receivers can block senders, as in DNA, yet most packets do not require the use

of asymmetric-key cryptography, reducing the overhead of verifying a capability-

carrying packet to that of existing capability architectures.

5.1 Capabilities

Capabilities are a well-studied approach to mitigating the threat of DoS attacks [81,

82, 64, 5, 79]. Capability architectures allow receivers to inform routers that a

certain flow is desired, with the expectation that routers will prioritize desired flows

over potentially undesired flows. Capabilities themselves are light-weight, taking up

little space in a packet and are efficiently verifiable by routers.

Capability systems introduce two new categories of traffic: capability-endowed

privileged packets, and unprivileged request packets. Packet with valid capabilities

take priority at routers, so that traffic desired by the destination takes priority

over attack traffic. In order to obtain capabilities, a sender must first send an

unprivileged capability request to the destination. Routers insert capabilities (or,

in some cases, pre-capabilities) into request packets. Routers compute capability

values from information in the packet and local to the router, such as the source

and destination addresses, incoming and outgoing interfaces, the current time, or

a secret known only to the router. If it so desires, the destination returns the
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capabilities to the sender. In some cases, such as in TVA [82], the destination must

first transform the pre-capability into a capability by computing the hash of the

pre-capability, a number N of bytes that the capability allows the sender to send,

and a lifetime T of the capability.

The source sends a privileged packet by including the returned capabilities in

the packet. Each (capability-aware) router along the path computes the capability

that it would have inserted into the packet and compares this to the (appropriate)

capability present in the packet. If the values match, the router forwards the packet;

otherwise, it demotes the packet to un-privileged before forwarding, so that it will

be preferentially dropped if it is queued a congested router.

Capabilities work well to protect privileged channels, but additional mecha-

nisms must be used to help legitimate senders obtain capabilities. Argyraki and

Cheriton argue that the mechanism used to protect the request channel can also

be used to protect the privileged channel [9]. This is not entirely accurate, as the

authors of Portcullis point out when they “strongly disagree” with the claim [64].

Their insight is that only a single capability request needs to succeed in order to

bootstrap an arbitrarily large flow. However, the point remains: the request chan-

nel is vulnerable and needs to be protected. Previous capability architectures limit

the capability request channel to 5% of the bandwidth on any link and resort to

per-source [81] or per-path [82] fair-queuing, which requires a spoofing prevention

mechanism in the first case and a packet marking system (such as Pi [78]) combined

with hierarchical fair-queuing in the second. Portcullis [64] protects the capability

request channel by requiring senders to solve a computational puzzle in order to

send a request, but requires routers to prioritize requests by puzzle difficulty and an

infrastructure for distributing puzzle seeds. None of these approaches allow desti-

nations to block a sender from making capability requests; doing so would prevent

a malicious sender from affecting legitimate traffic flooding a link with unwanted

requests
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Existing capability systems face another limitation. Because they do not use

asymmetric cryptography, they are efficient compared to. However, this also limits

the application of capabilities. Capabilities are not bound to packets or to senders,

meaning they can be observed by on-path devices. Such a device can then use the

capability to impersonate the sender who was actually granted the capability.

This chapter presents VanGuard, which extends capability architectures to

incorporate accountability. The goal of VanGuard is to provide the strong account-

ability of DNA, including the ability of destinations to block senders, with the effi-

ciency of capabilities. Unlike previous work, which aims to limit the rate at which a

sender can request capabilities, VanGuard uses DNA to allow destinations to block

specific senders from issuing requests entirely. Destinations protect the capability

request channel by blocking malicious senders from sending requests, which we show

is more effective than fair-queuing on a bandwidth-limited channel. Another way

in which VanGuard differs from previous work is that VanGuard treats capabilities

as secret values. Senders do not include capabilities in privileged packets. Instead,

capabilities serve as the secret input to a keyed MAC of the packet contents. The

appropriate routers can derive the capability on demand to verify that the sender

has received a valid capability. This prevents on-path observers from stealing capa-

bilities.

5.2 VanGuard Overview

VanGuard is an accountable capability architecture. It is based on TVA [82], though

its mechanisms can be applied to other capability architectures as well. This sec-

tion gives an overview of how VanGuard operates and how it differs from TVA.

VanGuard assumes a full deployment of DNA and TVA and shows how the two

would inter-operate to provide sender accountability such that, once the sender ob-

tains capabilities, the per-packet overhead is equal to that of TVA.

Like TVA, VanGuard introduces two new classes of traffic: unprivileged capa-
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bility requests and regular, privileged packets. Routers give preference to privileged

packets and will always drop unprivileged traffic before privileged traffic. In order

to send privileged packets, a source needs capabilities, which it obtains by sending

a capability request to the destination. Figure 5.2
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Figure 5.1: The VanGuard capability request process

To send a capability request in VanGuard, a sender must create a fully ac-

countable packet by obtaining a token from a local LRep and signing the packet with
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its private key, in accordance with the DNA send protocol.

Along the way, each VanGuard router Ri stamps a pre-capability, pre-capi,

into the request packet. A pre-capability is a hash of the packet’s source address,

destination address, the local time, and a secret known only to the router.

Once a capability request arrives at the destination, it applies local policy to

determine how to respond. If the destination wants to allow the source to send priv-

ileged traffic, it transforms each pre-capability into a capability by hashing pre-capi

with the number of bytes (N) and time (T ) for which the capability is to be valid.

It then returns the list of capabilities, along with N and T , to the source. Because

the destination does not have capabilities to send to the source, it must return the

capabilities in an accountable request packet of its own.

On the other hand, if the destination is overwhelmed, it has two options. It

can ignore the request (or return a TCP RST without capabilities via an accountable

request packet) to the source, so that it can retry its request later. If the source

is persistently sending capability requests, the destination may block the source.

As the capability request is an accountable DNA packet, the destination creates a

DNA block request and sends it to the source’s LRep. Allowing destinations to block

sources from sending unwanted capability requests is more effective at preventing

“denial of capability” attacks [9] than rate-limiting, as it can prevent malicious

requests from ever interfering with legitimate requests.

Unlike TVA, VanGuard keeps receiver-generated capabilities secret. This is

to prevent on-path routers from observing capabilities, which would allow them to

send privileged traffic themselves. Before sending capabilities back to the sender,

the receiver encrypts them using a key provided by the sender.

Once a sender obtains capabilities, it can send privileged packets. To send

a privileged packet, the source creates a packet-capability for each capability it

received. A packet-capability is a hash of the capability and the invariant fields of

the packet, including the payload. packet-capabilities are tied to individual packets,
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not just source-destination pairs as in TVA. Given a packet and a valid packet-

capability, it is infeasible to determine the capability used to create the packet-

capability. Privileged packets are unsigned: VanGuard relies on the underlying

capability architecture to protect the network.

When a router receives a privileged packet, it verifies the corresponding packet-

capability. Verifying a packet-capability requires computing three hashes. The

router computes the pre-capability using the information from the packet and its

secret. It then computes the (secret) capability in the same way as the destination:

by hashing the pre-capability with N and T (which are included in the capability

header in the packet). The router finally computes the packet-capability by hashing

the capability with the invariant fields of the packet. If this matches the value in the

packet, the router forwards the packet, otherwise it demotes or drops the packet.

Despite not having to sign privileged packets, the sender is still accountable

for such packets. If it abuses the network, the destination can block the sender.

Capabilities are tied to a source-destination IP address pair and cannot be stolen by

third parties to send privileged packets. Thus capabilities unambiguously identify

the sender. By caching the sender’s LRep from its capability request, the receiver

can send a block request to the LRep at any time.

To protect requests from overwhelming privileged traffic, TVA limits requests

to 5% of the capacity each link. In VanGuard, this is not necessary, as receivers can

block senders that flood the network with capability requests.

The combination of DNA and capabilities provides an accountability architec-

ture with the same benefits of DNA (primarily, a destination can block a sender re-

gardless of network point of attachment) and the small overhead of capability-based

architectures (only request packets require signatures and multiple keys). VanGuard

flows are bootstrapped using accountable packets, then continued using more effi-

cient capabilities.
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5.3 Challenges of making capabilities accountable

VanGuard augments capability architectures with DNA, allowing destinations to

block traffic from unwanted senders. This effectively protects the capability request

channel, solving one of the main problems with capability architectures. However,

in order to ensure that the privileged channel is accountable as well, VanGuard

must solve two additional problems. First, capabilities are efficient partly because

they do not require asymmetric cryptography, but the strong accountability of DNA

does. How can capabilities provide accountability without signatures? Second,

malicious routers (or hosts near the sender or receiver) can observe capabilities in

packets. Because capabilities are not strongly bound to senders, nothing prevents

these malicious devices from sending packets with stolen capabilities.

5.3.1 Holding senders accountable with capabilities

DNA is able to hold senders accountable because every packet contains information

sufficient to unambiguously identify the sender and to block the sender’s packets

at the source. VanGuard capabilities must provide this same information. This re-

quires changes to the structure of capabilities and how they are transmitted. First,

to prevent anyone from impersonating the sender, VanGuard makes it impossible to

steal a sender’s capabilities, as described in Section 5.3.2. Second, when a receiver

returns capabilities in response to an accountable request packet, it caches the infor-

mation needed to block a sender for the duration of the flow. If the receiver wishes

to block a sender that is using capabilities to send privileged traffic, it examines its

cache to find the sender’s blinding key and the LRep that authorized the sender. It

then creates a block request for that LRep. The block takes effect as soon as the

LRep receives the request and installs a temporary filter at the sender’s first-hop

router. The LRep simultaneously publishes the block in the SBS, so that the sender

will not be able to obtain further tokens to request capabilities from the destination.
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Alternatively, capabilities could be bound to the blinding key and LRep as well,

but this would require additional space in the packet in order to provide sufficient

information for routers to verify the capability.

5.3.2 Preventing capability theft

In existing capability proposals, capabilities are only weakly bound to a sending

principal. Any entity that observed a capability could use it to send traffic of its

own, provided it was located on or near the path from sender to destination. Sec-

tion 3.7.2.3 demonstrates this effect by simulating an attack in which a compromised

router steals capabilities to impersonate legitimate senders.

Because it is easy to transform capabilities into packet-capabilities, and pre-

capabilities into capabilities, VanGuard must ensure that neither capabilities nor

pre-capabilities can be stolen by an on-path attacker. To prevent capability theft,

senders do not directly include returned capabilities in packets. A capability is

treated as a secret value, known only to the sender, the destination, and the router

that can verify it (a router RB located on the path between another router RA and

the destination can in fact observe pre-capabilities in request packets, but this will

not allow it to create a capability to send traffic to the destination, as described

in Section 5.5). The sender uses each capability to create a packet-capability, a

hash of the secret capability and the packet contents, to include in packets. A

router can verify the packet-capability created from the pre-capability it stamped

into the request packet by reconstructing the intermediate capability, but is not able

to determine the value of any other capabilities from inspecting the packet. Anyone

that observes a packet-capability cannot use it to send packets of its own.

To prevent eavesdroppers from observing capabilities as they are returned to

the sender, the sender encrypts a symmetric session key in its capability request,

using the destination’s public key obtained via DNS (Section 5.4.5). The destination

encrypts the capabilities with this key to preserve their secrecy. By preventing
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capability theft, VanGuard allows capabilities, instead of public-key signatures, to

prove ownership of packets.

5.4 VanGuard Architecture

This section describes the VanGuard architecture in detail.

5.4.1 Assumptions

Underlying capability architecture

VanGuard is an extension to generic capability architectures. For ease of expo-

sition, this chapter assumes the underlying architecture is TVA and presents its

contributions as modifications to the TVA protocol.

VanGuard can adopt any mechanisms used by the underlying capability ar-

chitecture. For instance, TVA incorporates measures to allow receivers to express

fine-grained policies on capabilities. Specifically, when a receiver returns a capability

to the sender, it restricts the capability to be valid for sending only N bytes in the

next T seconds. Routers enforce these conditions, at the cost of storing bounded,

temporary state. TVA also includes provisions for allowing senders to renew capa-

bilities with privileged packets (avoided the need to send another request packet in

order to continue sending packets), handling mid-flow route changes, and caching

capabilities to save space in packets. As such, VanGuard does not address these

concerns explicitly and relies on existing mechanisms for this functionality.

Like TVA, VanGuard assumes a globally known hash function H that can be

computed at line speed. One-way compression functions based on AES are a good

candidate, as specialized cores can perform AES encryption at up to 40 Gbit/s [39].

Deployment

Any subset of routers may implement VanGuard. Security increases with the size of

the deployment: every time a capability is checked, it lowers the probability that the
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sender is using forged capabilities. The probability of a path consisting of only faulty

routers that do not perform checks also decreases. However, the more VanGuard

routers there are on the path from sender to destination, the greater the overhead

of privileged packets. Only one correct router is needed to demote a packet with

an incorrect capability. Therefore, we assume capabilities are checked only when

a packet crosses a trust boundary, i.e., enters into a new network. This limits the

number of capabilities in the packet to the number of networks or ASes the packet

traverses, which, for most packets, is less than six [57].

5.4.2 Packet types

There are two types of VanGuard packets: unprivileged, but fully-accountable, ca-

pability requests and privileged packets that carry capabilities. Legacy traffic may
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also exist, but it receives the lowest priority at routers. All VanGuard contain a

capability header and a DNA header. These headers are shim headers between IP

and the transport protocol. Because routers can modify packets by inserting or

updating capabilities, the DNA sender’s signature of the packet contents must not

cover the capability header. Thus, the capability header precedes the DNA header.

Capability requests are fully accountable and carry a full DNA header. The

packet format is shown in Figure 5.2. Capability response packets are also account-

able (as they are requests for capabilities in the other direction) and thus have a full

DNA header and two capability headers (one to request pre-capabilities and one to
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return the encrypted capabilities). Their format is shown in Figure 5.4. Figure 5.3

shows the format of a privileged packet.

5.4.3 Capability types

There are three types of packet markings in VanGuard. Pre-capabilities, which are

stamped into request packets by routers, and capabilities, which the destination cre-

ates by hashing pre-capabilities and returning them to the sender, function almost

identically in VanGuard as they do in TVA. VanGuard uses a second transforma-

tion, this time by the sender, to turn capabilities into packet-capabilities. In TVA,

capabilities have two roles: they give the sender the ability to send privileged pack-

ets and they give routers the ability to verify that a packet is privileged. VanGuard

uses different types of marking for each role: capabilities to bestow permission to

the sender and packet-capabilities to allow routers to verify permission. This dis-

tinction is necessary to prevent unauthorized senders from being able to create valid

packet-capabilities.

To maintain sender accountability, VanGuard must ensure that a sender can

only create a packet-capability if it has received a capability from the destination.

Because it is easy to transform a capability into a packet-capability, satisfying this

requirement has two components: devices other than the sender and receiver must

not be able to observe a capability in transit and capabilities must be hard to forge.

VanGuard ensures the first component by using end-to-end encryption. The sec-

ond component also breaks down into two sub-components: no device (other than

routers in the destination’s network) can observe all of the pre-capabilities in transit

and pre-capabilities must themselves be hard to forge. The nature of packet forward-

ing trivially satisfies the first requirement, and VanGuard uses existing methods of

creating pre-capabilities to ensure the second.
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5.4.4 Capability formats

Pre-capabilities must be unforgeable. That is, a router R will accept a packet-

capability only if it was created with a pre-capability stamped by a router in R’s

network. To accomplish this, VanGuard uses pre-capabilities similar to those in

TVA. A VanGuard pre-capability is a hash of the sender’s public key, the destination

IP address, a local timestamp, and a secret known only to routers in the same

network. The pre-capability for network i is thus

pre-capi = ti||H(Spk, Dip, t, secreti)

where ti is the time in network i. All packet marking fields are the same size as in

TVA: an eight-bit timestamp and the last 56 bits of the output of H, creating a

64-bit value.

When a destination receives a request packet with a list of pre-capabilities, it

has several options (discussed in Section 5.4.7). If it chooses to return capabilities

to the sender, it transforms the pre-capabilities into capabilities. VanGuard is not

particular as to how this transformation happens. Assuming VanGuard is used with

TVA, the destination will create a list of capabilities that allows the sender to send

N bytes over T seconds by hashing each pre-capability with N and T :

capi = ti||H(N, T, pre-capi)

In TVA, senders include capabilities in privileged packets, and the capabilities

do not change during their lifetime. This enables capability theft. In contrast,

VanGuard packet-capabilities depend on the returned capability, but are unique

to every packet. To prevent others from stealing and using packet-capabilities,

VanGuard binds the value of a packet-capability to the contents of a packet, so that

they are valid only for that packet. Anyone that observes a packet-capability cannot

use it to create packet-capabilities of their own. Of course, nothing can prevent the

observer from sending an exact duplicate of the packet. For this, VanGuard uses

Bloom filters to detect such duplicates 3.5.
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A sender creates a packet-capability by hashing a capability with the contents

of the non-invariant fields of the packet, i.e., the entire IP packet except for the

TTL, QoS, and checksum:

post-capi = ti||H(capi, pkt)

5.4.5 Requesting capabilities

Request packets are unprivileged, but accountable. They have two components: a

capability header and a DNA header (Figure 5.2).

Sending a request packet requires knowing three pieces of information about

the destination: its IP address, its list of preferred TAPs, and a public key. The

public key is necessary to establish a shared symmetric key between the source and

destination. The sender obtains this information through DNS. (Senders make DNS

requests using accountable packets. A DNS server does not need to publish a public

key, as it does not return capabilities to any sender.) Because DNA already modifies

DNS records to include the list of TAPs a destination will accept, VanGuard assumes

that records also store a public key. A host h generates a public keypair (hV G
pk , h

V G
sk ),

separate from any DNA key, and publishes hV G
pk in its DNS record. To prevent hV G

pk

from being tampered with en-route, h’s administrator uses its speaks-for key to

certify the key; this certificate is also stored in h’s DNS record.

To send a request packet, a sender S first follows the DNA protocol to create

an accountable packet. First, S commits to a blinding key. It then requests a token

to talk to the destination, D, from its LRep. The LRep determines if D has blocked

S by examining its local cache and the SBS. This is when blocks by a destination

are enforced: if D has blocked S, the LRep will not return a token, preventing S’s

packets from leaving its network. Otherwise, the LRep returns a token, T0, to S.

S inserts its payload into the packet (if creating a TCP connection, the TCP SYN

is piggybacked into the capability request and the payload is the TCP header) and

signs it with its blinding key. S can now populate the fields of an accountable packet
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according to Figure 5.2.

S now fills out the capability header. It leaves space for routers to stamp

pre-capabilities (the default is six; if this is insufficient, a downstream router will

increase the space in the packet). S also generates a random symmetric key K.

The destination uses this key to encrypt the capabilities it returns to the sender, so

that they cannot be observed in transit. S encrypts K with DV G
pk and includes it in

the capability request. S then sends the packet, and its first-hop router verifies the

signature and T0before forwarding it.

5.4.6 Creating pre-capabilities

When a request packet crosses an AS boundary into ASi, the receiving router

checks the previous AS’s token (as described in Section 3.3.6). If the token is valid,

the router stamps the pre-capability for ASi into the packet. This pre-capability,

pre-capi is equal to ti||H(Spk, Dip, t, secreti), where ti is the time at ASi and secreti

is a secret known only to routers in ASi. VanGuard assumes loose clock synchro-

nization among routers in the same AS, which is already assumed by DNA. The

secret value periodically changes so that capabilities expire.

If the token is invalid, the router drops the packet. Unaccountable capability

requests must not be delivered to the destination. In this respect, VanGuard differs

from TVA, which will forward requests with best-effort service.

5.4.7 Returning capabilities

When the destination D receives a request packet, it decides whether or not to grant

capabilities to the sender. If not, it can ignore the request, or return a capability

request (as it has no capabilities to send privileged packets) with empty capabil-

ities and a TCP RST as the payload. Alternatively, if the sender is flooding the

destination with capability requests, the destination creates a block request, has it

signed with the administrator’s speaks-for key, and sends it to the LRep named in
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the request packet. This prevents the sender from sending any further packets to

D.

If the destination decides to grant capabilities, it first creates capabilities from

the pre-capabilities, decrypts the secret key in the request packet, encrypts the

capabilities with this key, and sends the capabilities in a request packet of its own

(so that it can obtain capabilities to send to the source).

To turn these into capabilities, D first chooses how many bytes (N) to allow

the sender to send and an interval in which to do so (T ). For example, a capability

may grant the sender the ability to send 100 Kbytes in 10 seconds. For each pre-

capability pre-capi in the request packet, D sets capi to be ti||H(pre-capi, N, T ).

Next, D usesDV G
sk to decrypt the symmetric keyK. D encrypts each capability

with K to prevent eavesdroppers from observing it in transit. D stores K, so that

it can decrypt the capabilities that S returns to it. D creates a capability request

packet and inserts each EncK (capi) into the packet. D makes the packet accountable

and sends it to S. This packet acquires pre-capabilities en route to S, which S

returns.

D also caches the value of S’s LRep, indexed by Spk, so that D can still block

S when it sends unsigned, privileged packets.

5.4.8 Sending privileged packets

Once S obtains (encrypted) capabilities from D, it can send privileged packets. It

first decrypts the capabilities using the shared secret key K it previously generated.

To send a packet P , S creates a packet-capability for each AS ASi along the path

to D, using capi. The packet-capability is a hash of the capability and the invariant

parts of the packet contents, including the payload and DNA header, but not the

capability header. Because privileged packets are not signed and do not require

tokens, the only value in the DNA header is Spk (see Figure 5.3). S computes

post-capi as ti||H(capi, P
′) where P ′ is P with the IP TTL, QoS, and checksum
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fields replaced with zeroes.

5.4.9 Verifying capabilities

When a router R in AS ASi receives a privileged packet, it validates the packet-

capability for that AS, post-capi. It finds post-capi by treating the packet-capability

pointer as an index into the list of packet-capabilities. R validates the packet-

capability by first computing the pre-capability it would have inserted into the

packet by hashing D’s IP address, S’s public key from the packet, the timestamp

t from the packet-capability, and its own secret. It then hashes this pre-capability

with N and T to produce the capability created by S. Finally, it hashes this value

with the invariant parts of the packet. If this value matches the packet-capability,

the the router determines the packet to be valid.

The router also performs whatever additional checks are required by the un-

derlying capability architecture. In the case of TVA, this includes verifying that

the packet-capability has not expired (ti is relatively fresh) and that the sender has

not sent more then N bytes in the past T seconds. This requires storing a bounded

amount of state for each sender. For a packet of B bytes, R creates a byte counter

and a timer with a TTL of BT/N seconds. The TTL decrements every second and

increases (along with the byte count) with every packet from S. If S sends less

than N bytes in T seconds, then the TTL will never increase beyond NT/N = T

seconds and will eventually reach zero. In this case, the state is reclaimed. If the

byte counter reaches N , R drops subsequent privileged packets from S until the

TTL expires.

If the packet passes all checks, then the router increments the packet-capability

index and forwards the packet. If a check fails, VanGuard again defaults to the

underlying capability architecture as to how to handle the packet. Typically, the

packet would be demoted to unprivileged legacy traffic before being forwarded to

the destination.
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TVA VanGuard

Request identifier Path identifiers Sender signatures
Bandwidth-

limited request
channel

Yes No

Request
channel

scheduling
policy

Hierarchical
fair-queuing

None

Privileged
channel

scheduling policy

Per-
destination
fair-queuing

None

Trust assumption All routers The TAP

Observing
capabilities allows

adversary to:

Send arbitrary
privileged

traffic
Replay traffic

Table 5.1: Summary of differences between TVA and VanGuard.

5.4.10 Blocking a privileged sender

To block a sender S, D needs S’s blinding key and the IP address of LRepS. Both

of these fields are present in request packets, so blocking S based on a request is

straightforward: D creates a block request and has the network administrator sign

it with its speaks-for key and forward it to LRepS. LRepS follows the DNA blocking

protocol and returns a receipt to D’s administrator. LRepS places a filter at S’s

first-hop router, blocking traffic to D.

Once S has capabilities, however, it no longer includes the DNA header in its

packets. When D issues capabilities to S it caches S’s blinding key and LRepS with

S’s address as they key. D can the blinding key and address in order to create a

block. S can reclaim this state when S’s capabilities expire.

5.4.11 Summary of differences between TVA and VanGuard

We now review the differences between TVA and VanGuard. The most fundamental

difference is that in TVA there is no notion of sender identity other than network

location. Only the path identifiers that routers insert into capability requests allow

133



the destination to distinguish between requests from different senders. On the other

hand, senders in VanGuard are uniquely identified by a public key. Malicious senders

cannot cause long-term collateral damage to other senders: block requests affect

only the guilty party, whereas in TVA, the attacker could continually force a nearby

honest sender to share the same queues in downstream routers.

To prevent unprivileged capability requests from overwhelming privileged traf-

fic, TVA limits requests to 5% of the bandwidth on any link. In VanGuard, requests

and privileged packets share the same bandwidth. VanGuard relies on destinations

to block the sources of packet floods.

As a result of using blocking to protect links, VanGuard does not need to use a

scheduling policy. In TVA, routers hierarchically fair-queue request packets based on

path identifiers. This prevents malicious senders from denying capabilities to honest

senders by consuming the entirety of the request channel bandwidth. To prevent

a malicious destination from granting capabilities to malicious senders, allowing

them to congest a link that the malicious destination shares with other hosts, TVA

uses per-destination fair-queuing on the privileged channel. While VanGuard could

implement per-destination or per-flow queuing, we consider this attack to be outside

of our threat model. There is no way to distinguish between the malicious behavior

described above and fair use of the shared link, and we do not want to deny legitimate

users their share of the network.

TVA and VanGuard differ in their architectural assumptions. VanGuard relies

on DNA, which requires the deployment of additional infrastructure: a TAP, an SBS,

LReps in networks, and modifying routers to support signature verifications and

token operations. However, this architecture is not trusted. TVA, however, trusts

all routers to not steal capabilities from privileged traffic: a malicious router can

flood a destination using any capability it observes. On the other hand, by encrypted

returned capabilities and binding packet-capabilities to packets, VanGuard prevents

capability theft.
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S R3 DR2R1

Figure 5.5: Router R2 can observe pre-capabilities stamped by R1 but not by R3.

This comparison is summarized in Table 5.1.

5.5 Attacks

Capability theft

In order for unsigned packets to be accountable, no one but an authorized sender be

able to create a valid packet-capability. One way capability theft can occur is if an

on-path router observes a pre-capability. It can then use it to create capabilities for

its own packets. While this is possible in VanGuard, it does not allow the router to

send privileged packets to any destination. To see why, consider Figure 5.5. R2 can

observe the pre-capability that R1 stamps into a request packet from S to D. If R2 is

malicious, it could turn that pre-capability into a packet-capability that would allow

any sender to send a privileged packet through R1 to D. However, R2 cannot see

the pre-capabilities that R3 inserts into the request packet. Without this knowledge,

any forged packet will be dropped (or, at best, demoted to legacy traffic) by R3. So

long as there is at least one honest router downstream of an on-path attacker, this

attack will fail. VanGuard assumes that at least one router in D’s network correctly

stamps and verifies capabilities, so that spoofed packets will be dropped before they

reach D. If routers in D’s network do not operate correctly, then there is little that

VanGuard can do to protect D.

The greater concern is when a router observes the full list of capabilities when

they are returned to the sender. In this scenario, an on-path adversary does obtain

the capabilities necessary to send spoofed traffic to D. TVA is vulnerable to this

attack, as shown in Section 3.7.2.3. To prevent this attack, D encrypts capabilities

before they are returned.
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5.6 Evaluation

To evaluate the performance of VanGuard, we developed a simulation of a large-scale

deployment of VanGuard using ns-2.

The biggest difference between VanGuard and TVA is in how they treat capa-

bility requests. In TVA, routers fair-queue requests using a series of path identifiers

stamped in the packet. When a capability request crosses an AS trust boundary, the

ingress router tags the request with a value that is unique among all ingress routers;

this tag identifies the upstream AS. Routers hierarchically fair-queue requests based

on path identifiers, which approximates per-source queuing. Even if a sender spoofs

their source address and prepends fake path IDs, the path identifiers inserted by

routers will be consistent across the sender’s packets.

In contrast, VanGuard requires that capability requests be signed by a certified

key and allows destinations to block requests from unwanted senders. Unsigned

packets without capabilities are dropped by the network. This section compares

the two methods of preventing unwanted capability requests from overwhelming

legitimate requests.

Simulations of TVA use code provided by the authors [1]. Simulations of Van-

Guard use the DNA code from Section 3.7.2 to implement the blocking functionality

and the above TVA code to obtain capabilities.

Topology

One of the goals of our simulations is to determine how quickly TVA senders can

obtain a capability in the presence of attackers. TVA routers fair-queue capability

requests based on path identifiers. Using a dumbbell topology, as in Chapter 3,

would not accurately model how TVA’s fair-queuing would perform on a topology

closer to that of the Internet (the capability request channel was not under attack in

the evaluation of TVA in Chapter 3, so the results are not topology-dependent). In-

stead, we use a tree-like topology, shown in Figure 5.6. The destination is connected

136



Senders

Destination

Bottleneck
link

Figure 5.6: Simulation topology

to the root of the tree by the bottleneck link. Each upstream router represents a

network and connects to two upstream devices: either routers or senders. Each

sender is eight hops away from the destination.

In the simulations of VanGuard, the LRep is connected to each sender’s first-

hop router and serves both senders attached to that router.

Parameters

In each experiment there are 20 honest senders transmitting files. Honest senders

attempt to transfer ten files of 20 Kbytes each to the destination using TCP.

Attackers flood the network with capability requests at a rate of 1000 per sec-

ond. We vary the number of attackers between 0 and 100. Senders and attackers are

placed in random locations. A first-hop router may serve two honest, two malicious,

or a one honest and one malicious senders. Nodes attached to the same first-hop

router and share TVA path IDs.

The bandwidth of all links except the bottleneck is 100 Mbit/s. The bottleneck

link is limited to 1 Mbit/s. The latency on each link is 10 ms.
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5.6.1 Experiments

We evaluated two aspects of each system: the time it takes for file transfers to

complete and the time it takes for a sender to obtain a capability.

5.6.1.1 File transfer time

VanGuard

We first evaluate how well VanGuard combats bandwidth flooding attacks.

Because VanGuard does not use a dedicated channel for capability requests,

requests from malicious senders compete with ongoing file transfers. This delays

those transfers, as shown in Figure 5.7, until the senders are blocked. Once this

occurs, file transfer time returns to pre-attack levels.

TVA

We then evaluate the performance of TVA on this topology. As both honest senders

and attackers may share the same path ID (as they would in Internet-like topologies),

we expect that requests from both will share the same queues, which will hamper

senders that request capabilities after the attack begins.

Figure 5.8 confirms this hypothesis. Once honest senders finally obtain a ca-

pability, their transfer times decrease, although they do not return to the baseline,

suggesting that senders sharing a first-hop router still have difficulty obtaining to-

kens.

Examining Figures 5.7 and Figures 5.8 closely to observe which transfers are

affected reveals an insight into the nature of the difference between TVA and Van-

Guard. With VanGuard, the affected transfers began before the attack (or before

the attackers were blocked): the attack traffic affects in-progress transfers. However,

with TVA, the affected (aborted) transfers began after the attack, when senders re-

quested capabilities; existing transfers were not affected.
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Figure 5.7: This figure shows how VanGuard performs under increasingly powerful
request flooding attacks. The y-axis is the ratio of the time required to transfer a
20 Kbyte to the victim compared to the time of the first transfer. The attack starts
at 10 seconds, indicated by the vertical line.

5.6.1.2 Time to obtain capabilities

Our next experiment focuses just on the ability of honest senders to obtain capa-

bilities. This experiment focuses closer on the main difference between VanGuard

and TVA, namely how each protects capability requests. Using the data from the

previous experiment, we plot how long each capability request takes in each archi-
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(c) 40 attackers. 13 transfers were
aborted.
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(d) 60 attackers. 20 transfers were
aborted.
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(e) 80 attackers. 18 transfers were
aborted.
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(f) 100 attackers. 20 transfers were
aborted.

Figure 5.8: This figure shows how TVA performs under increasingly powerful request
flooding attacks. The y-axis is the ratio of the time required to transfer a 20 Kbyte
to the victim compared to the time of the first transfer. The attack starts at 10
seconds, indicated by the vertical line.

tecture.

The results, presented in Figure 5.9, show that senders are able to obtain a

capability faster in VanGuard than in TVA, and that the difference between the two

increases with the number of attackers. The disparity in Figure 5.9(a) is due to the
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Figure 5.9: CDFs of the delay between sending a capability request and obtaining
a capability VanGuard and TVA.

delay imposed on VanGuard packets by signature verification.

5.7 Conclusion

This chapter presents VanGuard which combines DNA with capabilities to create

an accountable capability architecture.

Previous capability architectures include capabilities in the clear in packets.
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Routers and other devices that observe capabilities can use the same capabilities

to send privileged traffic. VanGuard solves this problem by introducing packet-

capabilities, which are bound to individual packets. An adversary that eavesdrops

a packet-capability can use the packet-capability to send only duplicates of the

observed packet.

VanGuard outperforms both TVA and DNA. By allowing destinations to block

malicious senders from sending capability requests, VanGuard protects legitimate

requests better than TVA, which fair-queuing requests on a bandwidth-limited chan-

nel. The cost of sending packets in VanGuard is less than that of DNA, because

VanGuard requires signatures only on request packets.

VanGuard can be thought of as a combination of both capabilities and filtering

architectures like AITF [8] and StopIt [52]. Based on their comparisons of both types

of DoS prevention approaches, the authors of StopIt conclude that filters outperform

capabilities in terms of effectiveness, until the magnitude of the attack is so great

that the destination cannot place filters at the source. By combining filters, a fail-

open design, with capabilities, a fail-closed design, VanGuard offers the best of both

approaches.
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Chapter 6

Conclusion

In this chapter, I summarize the contributions of this thesis and propose areas of

future work in network accountability.

6.1 Contributions

In this dissertation I support the following thesis: the Internet architecture can

be extended to allow receivers to block traffic from unwanted senders, even in the

presence of malicious devices in the forwarding path.

My approach to demonstrating this thesis is to incorporate accountability into

the network. An accountable network architecture binds sender identities to packets

and supports a set of actions based on those identities. The action I consider in my

thesis is blocking traffic at the source, upon request of the receiver.

The first contribution in this thesis is the DNA accountable Internet architec-

ture, in which every on-path component is held accountable for its actions. Malicious

devices are eventually found and evicted from the network, limiting their impact.

Determining if a packet should be blocked, based on the sender, requires identifying

the principal that sent it. Properly identifying the sender requires two conditions:

the packet is bound to a principal’s identity, and this identity belongs to the sending

principal.

DNA uses public-key cryptography for both tasks, as this is the only way we

know of to provide the strong guarantees that DNA requires. Senders are identified

by an asymmetric keypair. Senders sign outgoing packets with the private key.
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Requiring signatures on packets not only allows others to identify the source of

the packet, but also prevents innocent principals from being framed for malicious

actions.

In order to block traffic from unwanted senders, the attribute which identifies

senders (in this case, their keypair) must be long-lasting. Blocking a sender is

ineffective if the sender can use a new, unblocked identity. To prevent principals

from minting identities, DNA employs a centralized authority that certifies these

identities. This is the only trusted component of DNA.

One of the goals of DNA is to ensure that unwanted traffic is blocked at the

source, before it affects the network. To satisfy this, DNA stores block requests in a

globally available repository, so that devices in the sender’s network can determine

if the sender has been blocked by its intended destination. DNA uses the Neighbor-

hoodWatch distributed hash table, the second contribution of this thesis, to store

block requests; NeighborhoodWatch is a scalable, distributed data store. It makes

use of the trusted authority of DNA and is resilient to malicious activity by its con-

stituent nodes, so long as the malicious nodes are unable to occupy a sufficiently

long sequence of consecutive node IDs.

NeighborhoodWatch is based on Chord [75], which defines an efficient lookup

operation that serves as the basis for storing and retrieving items. In a network with

N nodes, a lookup takes a maximum of O(log(N)) steps to complete. A lookup in

NeighborhoodWatch is, at most, a small constant factor slower than in Chord.

The third contribution of this thesis is VanGuard, an accountable capability

architecture built on top of DNA. VanGuard addresses the weaknesses of prior ca-

pability architectures by allowing receivers to block senders from sending unwanted

capability requests, obviating the need to use fair-queuing over unreliable identifiers

to protect the capability request channel. VanGuard performs better than DNA

alone because capability-bearing packets need not be signed, as the capability is an

indication that the destination desires traffic from the sender and has cached the
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information necessary to block the sender if it so desires. This is an improvement

over DNA’s waivers, which neither allow a waivered sender to be blocked nor provide

the other benefits of capabilities such as fine-grained rate limiting [82].

These three pieces show an Internet architecture that identifies the senders of

packets, allows destinations to block traffic from unwanted senders near the source

even in the presence of malicious devices, and how to improve efficiency by using

capabilities instead of signatures in established connections. Together, they validate

my thesis.

6.2 Limitations and future work

One way to extend the work in this thesis is to to identify and remedy limitations of

DNA, NeighborhoodWatch, and VanGuard. I identify several limitations below and

suggest possible fixes. I also discuss two additional areas of future work: designing

accountability architectures under alternate trust models and uses of accountability

in networks beyond blocking unwanted senders.

6.2.1 Limitations

DNA

The major limitation of DNA is the cost of deployment. It requires significant

changes to the Internet’s architecture: the establishment of one or more TAPs,

certifying the keys of all senders, dedicating nodes to participate in the Neighbor-

hoodWatch SBS, deploying LReps in each AS, and modifying routers to support

signature verifications and token operations. The upside to these changes is that

they are mostly additions to the current Internet, as opposed to AIP [3], which

requires changes to routing protocols, host addresses, and host hardware. Mitigat-

ing or removing any of DNA’s deployment costs would produce a promising path

towards deployment.
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A second limitation of DNA a cost of a different type: the use of per-packet

asymmetric cryptography. While this allows DNA to hold senders accountable for

their packets, it is currently computationally infeasible to verify signatures at line

speeds. DNA amortizes this cost by verifying signatures near the ends of the network,

rather than in the middle. Of the three signatures in DNA packets, two (the signature

of the LRep’s key by the TAP and the signature of the sender’s blinding key by

the LRep) appear in multiple packets, allowing the first-hop router to cache valid

signatures. VanGuard further reduces the cost of signatures. However, this does

not eliminate the cost of requiring signatures on packets. It may be unrealistic to

expect low-power devices such as mobile phones to sign each outgoing packet, and

for first-hop routers to verify signatures on hundreds of thousands of packets per

second. How can these costs be reduced so that signing packets does not affect

transmission times? Can signatures be replaced with a different, more efficient

mechanism, without sacrificing the ability to bind a sender to its packets?

A related limitation is the size of the DNA packet header. Including public

keys and signatures in the packet header consumes a large amount of space, even

compared to the 40-byte IPv6 header. As previously mentioned, two of the three

signatures can be cached and replaced with smaller values. Can the need for these

signatures be eliminated entirely?

NeighborhoodWatch

In order to function properly, the NeighborhoodWatch DHT must ensure that an

adversary cannot control a sequence of k consecutive nodes in the identifier space,

where k is the replication factor. NeighborhoodWatch places nodes randomly and

evicts malicious nodes, which increase the likelihood that this condition holds but

does not guarantee it. Is there a way to guarantee that this condition holds, without

bounding the number of malicious nodes in the network?

Another limitation is the requirement that all nodes periodically contact the

TAP. This contravenes the distributed nature of a DHT: if the TAP fails, so may the
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DHT. Can the role of the TAP be fully decentralized? That is, can nodes generate

neighborhood certificates in a reliable, distributed manner? Applying techniques

from Morselli’s dissertation [62] may yield progress towards a fully-decentralized,

secure DHT.

VanGuard

Because it builds on DNA, VanGuard shares many of the same limitations, partic-

ularly the costs of deployment. VanGuard requires further changes to routers and

end hosts, but does not require changes to additional devices than a deployment of

DNA would.

In DNA, any device could verify is a packet was accountable or not. This is

not true with capabilities. Because VanGuard uses only capabilities to protect the

privileged channel, ASes may transit invalid traffic by, for instance, failing to drop

or demote packets with incorrect packet-capabilities.

Of course, DNA and VanGuard do not permit the simplest DoS attack by

a router: dropping packets destined to the victim. Both rely on correct routing

and DNS operation in order to provide connectivity. In Section 6.2.3 I discuss how

DNA can be used to secure routing protocols, and the deployment of DNSSEC [40]

suggests that secure DNS is a reasonable assumption.

6.2.2 Alternate trust assumptions

Trusting in-network devices

One direction for future work is to explore how a relaxation of DNA’s trust as-

sumptions can make an accountability architecture easier to deploy. By relaxing

the requirement that no devices involved in packet transmission be trusted, for in-

stance, we could assume a limited deployment of trusted devices, on the order of

several per network. Intuitively, this is a more reasonable assumption than requiring

trusted hardware in every end host (as in AIP [3]) or trusting on-path routers (as

in TVA [81]).
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This assumption suggests an alternative, simpler design of an Internet archi-

tecture that allows destinations to block senders. As in VanGuard, there are two

classes of traffic: accountable connection requests and packets in established con-

nections. The trusted devices, or T-boxes, form an overlay which routes connection

requests from the sender to the T-box near the destination. T-boxes ensure that

only accountable requests enter the overlay and store the block requests created by

hosts in their network.

Links in the trusted overlay are protected with cryptography. Two neighbor-

ing, accountable networks exchange a symmetric key that they use to authenticate

traffic between the T-boxes in their networks; traffic addressed to a T-box that does

not carry a MAC created with the correct key is dropped. Because the overlay trans-

mits only accountable traffic, there is no need to trace traffic back to its source—i.e.,

there is no need for DNA-style, hop-by-hop tokens in packets.

To establish a connection with a destination D, a sender S finds the trusted

device, TD, in D’s network via DNS, creates an accountable request to connect to D,

and sends the request to its local trusted device, TS. The request is then forwarded

through the T-box overlay, network by network, until it reaches TD. TD examines

its local state to see if D has blocked S. If not, TD returns a token to S that allows

(unsigned) traffic from S to enter D’s network.

Storing block requests on a device near the destination obviates the need for

globally available, secure storage for block requests. It also reduces connection

establishment latency, as there is no need to query the block storage. This efficiency

improvement comes at the cost of allowing requests from blocked senders to traverse

the overlay, only to be denied by the destination’s T-box.

Packets in established connections need not be accountable, but they must

carry a token generated by a T-box. Only the T-box that is responsible for storing

block requests created by a destination D will grant a token to establish a connection

to D. Therefore, a token does not need to indicate which specific T-box created it,
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only that it was created by a T-box. It is an open question whether this relaxation

affords a more efficient solution that using digital signatures.

Removing global trust

DNA has a single trusted component: the TAP, which certifies principals’ identity

keys. This trust can be distributed across different, competing TAP services. Is

it possible to distribute this trust further? As a point of comparison, senders in

AIP [3] generate their own keys, and networks are responsible for ensuring users do

not generate “too many” keys. There is no need for a central authority to certify

keys, though each network must be trusted to limit the number of keys a user creates.

In the T-box design described above, the TAP is not necessary: T-boxes can

authenticate local users and certify their keys. What other assumptions lead to

an accountable architecture that does not rely on a centralized trusted authority?

Could such an architecture be more resilient to attacks than DNA? Finding the

answers to these questions may lead to an accountability architecture that does not

rely on a set of authorities that dictate what is and is not a valid principal.

6.2.3 Using accountability for security

An accountable network is a building block that has many security-related uses.

This thesis shows two such uses: blocking unwanted senders and securing capability

systems. Here, I discusses several more uses that would serve as areas of future

research.

An obvious use of accountability is for network auditing. Because accountable

packets can be mapped to their sender, it is easy to determine who is responsible

for network events. This has applications ranging from improving the accuracy of

intrusion detection systems to preventing unauthorized users, such as worms, from

exploiting vulnerabilities.

Similarly, accountability can be used to dismantle botnets. Currently, bots

are hard to identify, because they often attack with spoofed source addresses. How-

149



ever, the compromised hosts themselves are not malicious; their owners are simply

unaware that they are participating in a botnet. Identifying the true source of at-

tacks and holding the sending host accountable (temporarily disconnecting it, for

instance) encourages users to properly maintain their machines.

Additionally, accountability can help shut down the botnet itself. Botnets

are often managed via a command and control (C&C) server [29]. By intercepting

traffic from the C&C server, perhaps with a honeypot [67], network operators can

identify and quarantine the source of commands. Similar events have occurred in

the past, such as the shutdown of the Atrivo network [11], though they are rare;

accountability will facilitate this process.

The final example I discuss is how accountability can be used to create a

secure inter-domain routing protocol. Route hijacking, when an AS announces a

prefix that it does not own [14], is a common occurrence in the Internet. There have

been several high-profile instances, most notably Pakistan’s hijack of YouTube [61].

To prevent these attacks, routers must accept only valid prefix announcements. A

router must know two facts to determine if an announcement is valid: the identity

of the sender, and if the sender is authorized to make the announcement. In an

accountable Internet, it is easy to answer the first question. To answer the second,

the routing protocol can use a slight modification of DNA’s speaks-for keys. In DNA,

the TAP certifies speaks-for keys for administrators of each prefix. To extend the

role of speaks-for keys to secure routing, the TAP can also include the AS name in

the certificate. This allows the administrator (or a BGP-speaking router) to prove

that they are the owner of the announced prefix.

6.3 Parting thoughts

I conclude my dissertation with one impression of the work contained within. What

strikes me most about the work I have presented here is how many areas is draws

from. DNA relies on the design of strong but efficient cryptographic protocols.
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NeighborhoodWatch is a contribution to secure distributed system design. Van-

Guard is based on work in filtering and capability architectures. In order to deter-

mine how quickly routers could perform certain computations, we examined speci-

fications of dedicated hardware. We used measurement data, collected both at our

university and from a global network security community, to guide some of our de-

sign choices. We motivated the conference publication of NeighborhoodWatch [17]

by showing how it could be used to fight spam; this required examining current

practices in sending and combating spam.

When I started this work, I did not expect that creating systems that prevented

denial of service attacks would require such broad knowledge and expose me to so

many areas. I take it as a positive sign that results from one area of networking

research can easily lend themselves to another. It is also interesting to me to see

how, as research in certain areas matures (DHTs, for instance), it is adopted into

work in other areas (mitigating DoS attacks).

On the other hand, one could argue that drawing from such a wide variety of

areas is the symptom of a negative aspect of my work: its complexity. Simplicity is

often cited as a design goal, that simple systems are easier to implement and reason

about. While this may be true, I think that at some point, “simple” systems will face

limitations on what they can accomplish, at least in regards to protecting resources

on the Internet. Evidence suggests that this time is rapidly approaching: botnets

are growing ever larger, due to host insecurity [7], subtle attacks on DNS accelerated

the adoption of DNSSEC [44], and current routing systems are vulnerable to prefix

hijacking. As the Internet grows, so must the complexity of the systems that run

it. In order to be resilient to current and future threats, the Internet community

needs to adopt secure systems like DNA and VanGuard, despite their complexity

and costs.
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