
 

ABSTRACT 
 

Title of document: Multi-Period Natural Gas Market Modeling 
Applications, Stochastic Extensions and Solution Approaches 

  
 Rudolf Gerardus Egging, Doctor of Philosophy 2010 
  
Directed by: Associate Professor Steven A. Gabriel, Department of Civil 

and Environmental Engineering 
 
This dissertation develops deterministic and stochastic multi-period mixed 

complementarity problems (MCP) for the global natural gas market, as well as solution 

approaches for large-scale stochastic MCP.  

 

The deterministic model is unique in the combination of the level of detail of the actors in 

the natural gas markets and the transport options, the detailed regional and global 

coverage, the multi-period approach with endogenous capacity expansions for 

transportation and storage infrastructure, the seasonal variation in demand and the 

representation of market power according to Nash-Cournot theory. The model is applied 

to several scenarios for the natural gas market that cover the formation of a cartel by the 

members of the Gas Exporting Countries Forum, a low availability of unconventional gas 

in the United States, and cost reductions in long-distance gas transportation.1 The results 

provide insights in how different regions are affected by various developments, in terms 

of production, consumption, traded volumes, prices and profits of market participants.  

 

The stochastic MCP is developed and applied to a global natural gas market problem with 

four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 

variables. The scenarios vary in the possibility of a gas market cartel formation and 

varying depletion rates of gas reserves in the major gas importing regions. Outcomes for 

hedging decisions of market participants show some significant shifts in the timing and 

location of infrastructure investments, thereby affecting local market situations. 

 

                                                 
1 www.gecforum.org  



  

A first application of Benders decomposition (BD) is presented to solve a large-scale 

stochastic MCP for the global gas market with many hundreds of first-stage capacity 

expansion variables and market players exerting various levels of market power. The 

largest problem solved successfully using BD contained 47,373 variables of which 763 

first-stage variables, however using BD did not result in shorter solution times relative to 

solving the extensive-forms. Larger problems, up to 117,481 variables, were solved in 

extensive-form, but not when applying BD due to numerical issues. It is discussed how 

BD could significantly reduce the solution time of large-scale stochastic models, but 

various challenges remain and more research is needed to assess the potential of Benders 

decomposition for solving large-scale stochastic MCP. 
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1 Background and Motivation 

1.1 The increasing role of natural gas in the energy supply 

Contemporary human societies depend heavily on the use of energy in any part of their 

daily activities. We need fuel for our cars to drive to the office in the morning, electricity 

to power lighting and our computers, and gas to heat our work spaces. Electricity is 

produced from sources such as coal and nuclear energy; renewable sources, such as solar, 

wind or hydropower and natural gas. 

 
According to (International Energy Agency, 2008) the world-wide daily energy 

consumption in 2006 amounted to an equivalent of 250 million barrels of oil (mboe).2 

Energy consumption is expected to continue to increase, induced by a growing world 

population and economic growth. The International Energy Agency (IEA) projects a 

growth in energy use of 45% between 2006 and 2030 to 363 mboe (Figure 1, left).  
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Figure 1: Development of total primary energy deman d (IEA, 2008) 

                                                 
2 mboe =  million barrels of oil equivalent 
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Fossil fuels are projected to grow 44%, renewable forms of energy (RES) 60% and 

nuclear energy 24%. Among the fossil fuels, growth rates vary considerably: coal (+61%) 

and natural gas (NG, +52%) grow more than total energy use, and oil (+27%) grows less. 

Thus, coal, gas and RES increase their market shares and the shares of oil and nuclear 

energy decrease (Figure 1, right). 

1.2 Globalizing natural gas markets 

Until recently, a global natural gas market was virtually non-existent. Several regional 

markets could be distinguished, based on geographical proximity of suppliers/exporters 

and consumers/importers. Most natural gas is transported through high-pressure pipelines 

onshore, a relatively small part via offshore pipelines or in ships in the form of liquefied 

natural gas (LNG).3 LNG has been shipped and traded for over fifty years, however due 

to its high costs large-scale LNG imports were limited to some rich countries with few 

alternative supply options, notably Japan and South Korea. For several reasons, such as 

locally depleting reserves and supply security considerations, long-distance international 

gas trade has increased rapidly over the last years. A larger volume of LNG spot trade is 

the cause for regional natural gas markets to gradually merge into one global market.  

 

The growth in international trade is illustrated by Figure 2 and 3. Figure 2 shows that 

between 2000 and 2009 global international pipeline and LNG trade increased rapidly, 

with 77% (from 389 to 634 bcm/y) and 63% (from 137 to 243 bcm/y) respectively. Both 

growth percentages are much larger than the 21% increase in worldwide gas consumption 

of (from 2435 to 2940 bcm/y)4 

 

                                                 
3 When natural gas is cooled to -260 degrees Fahrenheit it liquefies and becomes over 600 times denser 
(www.lngfacts.org, undated web references are dated early 2010.) The capital investments for a 
liquefaction facility are significant: the estimated investment costs are $900 million for a typical small plant 
with an output capacity of 4.8 bcm/y (Cayrade, 2004). On top of the high costs, there is a loss of about 12% 
of the natural gas used to power the liquefaction process. However, for transport over long distance, and/or 
when pipelines just cannot be built, LNG is a viable and competitive means to transport gas.   
4 bcm/y = billion cubic meters per year. 
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Figure 2: Global natural gas consumption and trade (BP various years) 

 

As Figure 3 below illustrates, international natural gas trade is projected to outpace 

consumption growth in the coming decades (International Energy Agency, 2008). The 

expected increase in trade between 2006 and 2030 is about +150% in 2030, relative to a 

total global gas consumption increase of +52% (Figure 1).  

 

 
Figure 3: projected global natural gas trade. Sourc e IEA 2008 

 

To better capture the recent changes in global market dynamics caused by the rapid 

increase in international gas trade, advances in modeling approaches are helpful to allow 

policy makers and businesses to adequately address the growing interdependency among 
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world regions and higher complexity of the structure and trade relations in the natural gas 

market.  

1.3 Supply security and market power 

Similar to the oil market, where a limited number of countries have the majority of 

proved reserves, gas resources are also unevenly spread among nations. The three 

countries with the biggest resources together have over half of all world reserves: Russia 

has 24%, Iran 16% and Qatar 14% (BP, 2010). And although the world’s reserve-to-

production ratio is about 60 years, the regional figures vary dramatically: from under ten 

years in Mexico and some European countries to over two centuries in the Middle East 

(BP, 2010). 5 

 

Many countries in North America, Europe and Asia have limited domestic reserves of 

natural gas, and are therefore dependent on imports from - sometimes nearby but often 

remote - production regions. For example, in recent years the United States imported over 

ten percent of its natural gas consumption from Canada (BP, 2010), and many European 

countries import gas from Russia, Norway and Algeria. The aggregate import shares of 

France, Germany and Italy from these three countries add up to 76%, 79% and 69% 

respectively (BP, 2010). 

 

The two main ways to transport gas from production regions to consumption regions are 

through pipelines and as LNG. In most regions there is only a limited number of nearby 

suppliers with abundant reserves; lead times and capital costs for transport capacity 

expansions are significant for both transport options. The situation is often best described 

by the term ‘natural monopoly’ because the limitations in transportation infrastructure 

greatly hinder market access and thereby create limits for competition. In several regional 

markets there are signs of strategic behavior by producers. The exertion of market power 

can result in higher prices for gas consumers downstream. In the literature, Haurie et al. 

(1987) and Mathiesen et al. (1987) were among the first to address and analyze this issue 

for the European market.  

                                                 
5 The reserve-to-production ratio indicates how many years of producing at current levels it would take to 
deplete current proved reserves. Section 3.2.2 in Chapter 3 discusses reserves and resources. 
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Several incidents in the past have shown the dependency of many European countries on 

Russia as a supplier. The consequences of one incident were severely felt in January of 

2006 when GazExport, the trading arm of the large Russian gas and oil company 

GazProm, shut down gas flowing to Ukraine as leverage in a contractual dispute (Stern, 

2006). Recently in January 2009 there was a very similar dispute with several countries - 

especially in Eastern Europe - experiencing serious problems in their gas supply 

situation.6 

 

The incidents described above could arguably be seen as bilateral issues between Russia 

and the Ukraine with unfortunate collateral consequences for some countries in Western 

and Central Europe. However, there are developments that could have a much larger 

scope. In 2001 the Gas Exporting Countries Forum (GECF) was established and has 

raised concerns about the possible forming of a cartel in the world natural gas markets. 

Since 2001 the GECF has developed into a formal organization with broadening 

membership.7 In December 2008, Russian prime-minister Putin was very explicit when 

he said that ‘the time of cheap energy resources, and cheap gas, is surely coming to an 

end’. 8 Other GECF participants stated objectives for the increased collaboration among 

GECF participants such as to coordinate investment plans, study ways to set global prices 

and represent the interests of producers and exporters on the international market. 

Although the recent downturn in the global economy and the consequently lower energy 

demand has undercut the market position for energy suppliers, the coordination among 

GECF members will likely increase in the long term. 

 

In general, the exertion of market power will result in tighter supply and higher prices for 

gas, which can have adverse effects on economies highly dependent on gas imports. To 

analyze the impact of enhanced collaboration among gas suppliers on the economies of 

importing countries in quantitative terms, there is a need for natural gas market models 

                                                 
6 NY Times 2009; http://topics.nytimes.com/top/news/business/companies/gazprom/index.html  
7 In 2008, the GECF comprised Algeria, Bolivia, Brunei, Egypt, Equatorial Guinea (observer), Indonesia, 
Islamic Republic of Iran, Libya, Malaysia, Nigeria, Norway (observer), Qatar, Russian Federation, Trinidad 
& Tobago, United Arab Emirates and Venezuela, www.gecforum.com.qa, (July 4, 2008).  
8 NY Times 2008; www.nytimes.com/2008/12/24/business/worldbusiness/24gas.html  
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with a global coverage and modeling approaches that take market power aspects into 

account.  

1.4 Liberalization and privatization 

In many countries the supply and distribution of natural gas to their end-users has been a 

state-organized effort. Some exceptions include the United States, Canada and the United 

Kingdom. In the United States both public and private companies have been part of the 

supply chain for many years and deregulation in the 1970s enhanced the possibilities to 

compete for customers.9 In the United Kingdom in the 1980s the administration of Prime 

Minister Thatcher included various market liberalizations which affected the energy 

sectors. A notable effect in the United Kingdom has been significantly lower gas prices 

than on the European mainland and the fast exploration of natural gas reserves in the 

years following the liberalization.10 In other European countries the natural gas market 

remained state-owned until the mid-nineties, when several legislative and infrastructural 

measures were taken by the European Commission (EC).11 These measures lead to legal 

unbundling - splitting of gas traders and network operators - and for mandatory Third 

Party Access (TPA) to transmission, distribution, storage and LNG regasification 

capacity.12 To enhance market access opportunities the EC created lists of infrastructure 

priority projects (EC, 2000b) containing a variety of projects to introduce natural gas into 

new regions, interconnect regional gas networks and increase transport capacities.13 

Many of these infrastructure priority projects have actually been implemented in the last 

few years, or are currently under construction, favoring a continuing growth of natural 

gas use in Europe.  

 

Since the European resources are limited, and the availability of natural gas to end-users 

must be secured, the dependence on external suppliers must be carefully managed. 

Supply diversification, buying the gas from several suppliers to reduce the dependence on 

a single supplier has always been one of the main means to mitigate risks. Supply 
                                                 
9 http://www.ferc.gov/students/whatisferc/history.htm  
10 J.R. Branston (2000), A counterfactual price analysis of British electricity privatisation, Utilities Policy 9 
11 The first European gas directive 98/30/EC. For an overview of energy-related directives, see: 
www.energy.eu/#directives, http://europa.eu/legislation_summaries/energy/index_en.htm and   
http://europa.eu/legislation_summaries/energy/internal_energy_market/l27077_en.htm 
12 European directive 2003/55/EC. http://www.energy.eu/directives/l_17620030715en00570078.pdf  
13 European Commission decision No 761/2000/EC 
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diversification, technological progress and cost reductions (Cayrade, 2004) lead to 

increasingly cheaper long-distance LNG transports and continuing high growth in LNG 

trade for decades to come (cf. Figure 3).14 This rise in LNG trade is creating one 

worldwide natural gas market in which the U.S. East Coast and Europe may be 

competing for LNG in the Atlantic Basin; the U.S. West Coast and India, China, South 

Korea and Japan may compete for South East Asian supplies; and the Middle East can act 

as a swing supplier between Europe and South East Asian LNG importers.  

1.5 Environmental considerations 

Besides security of supply and issues related to market liberalization there is another 

reason that natural gas has gained much attention in recent years. Regarding carbon, 

sulfur and nitrogen content it is the cleanest among fossil fuels. When burning natural 

gas, the emissions of carbon dioxide (CO2), sulfur dioxide and nitrogen oxides are 

relatively low, and therefore it is often a preferred alternative over coal and oil in the 

electric power generation sector.15 It is generally accepted that fossil fuels are necessary 

to meet a large part of the energy demand in the next couple of decades. However, shifts 

from coal and oil to gas can provide an intermediate step to reduce CO2 emissions. 

President Obama’s push for a cap-and-trade system in the United States and the yearly 

climate summits under the United Nations Framework Convention on Climate Change to 

negotiate follow-up agreements for the Kyoto Protocol are only two of the many major 

factors influencing the outlook for natural gas use from an environmental policy 

perspective.16 

1.6 Making decisions in an unpredictable world 

Although the upward trend in gas consumption has been very pronounced in the recent 

past, the future for the direction and magnitude of market developments are not clear at 

all. Globally, natural gas prices are much higher than they were in the 1990s. Figure 4 

shows how the average prices for imported LNG in Japan almost doubled, spot prices in 

the European Union (EU) more than doubled, and spot prices in the United States almost 

                                                 
14 Report:DOE/EIA-0637, December 2003, The Global Liquefied Natural Gas Market: Status and Outlook 
http://www.eia.doe.gov/oiaf/analysispaper/global/lngindustry.html  
15 www.naturalgas.org/environment/naturalgas.asp  
16 www.nytimes.com/2009/02/28/science/earth/28capntrade.html ;  http://unfccc.int/2860.php and 
http://unfccc.int/kyoto_protocol/items/2830.php   
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tripled. As previously discussed (see Figure 2), gas demand has continued to rise 

globally. However the price and demand trends vary among regions. 

$-

$50

$100

$150

$200

$250

Japan EU USA

N
at

ur
al

 G
as

 P
ric

e 
($

/k
cm

)

1990-1999

2000-2009

 
Figure 4: Average Gas Prices in the Last Two Decade s ($/kcm). (BP, 2010) 

 

In Japan the gas prices were relatively high but rather stable from 2000 to 2004 (not 

deviating more than 10% from an average $168/kcm) and then spiked in 2008 to peak 

prices of $450/kcm (details not in figure).17 The price trend in the EU between 2000 and 

2004 was gradually upward, more rapidly upward starting 2005 to peak at $412/kcm in 

2008. In the U.S.A. prices decreased in the first two years of this century, to rapidly 

increase to a peak of $313/kcm in 2005. In 2008 there was a second peak, at $316/kcm 

(BP, 2010). Due to the global economic downturn, prices in 2009 were considerably 

lower in all the regions. 

 

Another factor playing an important role is the need to reduce carbon dioxide emissions 

to address global climate change, resulting from the greenhouse effect. Although much 

cleaner than oil or coal, natural gas is a significant source of carbon dioxide and may not 

be a sustainable alternative fuel for power generation in the long run. For that reason gas 

consumption in several European countries is projected to start declining in only a few 

years from now (European Commission, 2008). 

 

Whereas the previously described uncertainties concern the demand side of the market, 

the supply side also exhibits some uncertainties, including the amount of recoverable gas 

                                                 
17 kcm = kilo cubic meter = 1000 m3. One m3 amounts to 35.31 cubic feet. 

$5/mcf  
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from the resource bases. Estimates for proved and probable reserves vary considerably. 

For instance, there are claims that under the Arctic resources as much as twenty years of 

total world demand are present, which could drastically increase global gas supply for a 

long period. Alternatively, some countries are notoriously unreliable and overstate when 

reporting on their domestic reserves, for example to gain leverage in negotiations about 

contracts or investments. On top of these long-run uncertainties that greatly affect the 

future trading volumes and prices, other factors (e.g., the weather, political disputes and 

activities of war) have large impacts on the daily market situation.  

1.7 Motivation for the current research 

Governments and companies alike have to deal with a rapidly changing uncertain 

environment. The use of quantitative tools can help them to make valid market 

assessments and support policy and business decisions.  

 

The EC continues its efforts to make the European markets, including energy markets, 

more competitive.18 Sometimes sub objectives to support the overarching aim of 

competitiveness are conflicting. The EC wants expansion of the gas transport network. It 

also pursues a market with more flexibility and fewer long term contracts. The EC also 

promotes TPA to available transport and storage capacities, so that no market player can 

limit competition by preventing other market players from market entry. All individual 

measures aim at enhancing competition, however side by side they may not lead to the 

desired outcome. For example, market participants who are willing to invest in additional 

capacity usually want guarantees that the capacity will be used at a high enough 

utilization rate to be profitable. For that reason the investors would prefer to either be 

able to claim the capacity for themselves, or sign contracts with other market agents that 

guarantee them a certain amount of revenues for an extended period of time. So to be 

willing to invest, they would either want to limit the TPA clauses, or have long-term 

contracts, thereby making the EC goal of network expansion conflicting with the goals 

for TPA and fewer long-term contracts.19  

 

                                                 
18 http://ec.europa.eu/growthandjobs/key/index_en.htm  
19 For a discussion on the instruments that can be used to provide for sufficient investments in electric 
power generation capacity in a competitive market see, e.g., (Oren, 2003) 
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Recognizing these conflicting sub objectives, the EC has developed legislation that 

allows for temporary exemption from TPA.20 Some concrete examples of projects that 

might not have come on-line are the new pipeline from the Netherlands to the United 

Kingdom and a new regasification terminal in the Netherlands.21 

 

Thus, exemptions can be made. But how should a regulator (e.g., FERC or the EC) 

decide whether to allow them? Or taking it from the other perspective: how should an 

investor balance and decide on the acceptable terms for him to invest in a project? Should 

he prefer a shorter TPA exemption period for 100% of capacity, or rather have a longer 

exemption period for a smaller fraction? Both the commission and the investor face 

difficult decision problems. In an uncertain and unpredictable world, they make decisions 

affecting millions of consumers and involving billions of dollars. Long-term demand and 

supply are uncertain, and will probably be affected by the capacity investment project 

under consideration. What both parties need to do is to make a good decision addressing 

the uncertainty, and hedge their positions so that a desirable outcome is reached whatever 

the future may bring.  

 

Given the complexity of the market, the many factors that come into play and the 

interdependency of these factors, a quantitative model representing the market will be 

very helpful in making decisions. An example of the insights that can be gained can be 

found in (Egging and Gabriel, 2006). They show how additional pipeline capacity from 

the continent into the United Kingdom reduces the ability of market players to exert 

market power in the U.K. market, with consequently lower market prices, higher 

consumption volumes and consumer surplus. 

 

Other factors and uncertainties that are highly relevant for decision makers in natural gas 

markets include the impact of price developments for carbon dioxide emission 

certificates in the European Emission Trading Scheme on gas demand. Another example 

is how the actual finalization date of the new huge Russia-Germany pipeline affects gas 

prices and desired gas storage levels in 2015, or how the ambitious expansion plans for 

                                                 
20 http://ec.europa.eu/energy/gas/infrastructure/exemptions_en.htm  
21 www.bblcompany.nl and www.gateterminal.com/en/  
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regasification and storage in the UK would influence the currently downward pointing 

EC demand projections (European Commission, 2008). 22 

 

In the past the modeling approach of preference has often been linear programming (LP), 

mainly due to its simplicity of application. Since the mid-nineties a shift can be observed 

to more advanced modeling approaches such as mixed complementarity problems 

(MCP).23 One reason for that shift is the possibility to explicitly include market power 

characteristics in an MCP framework that are in line with game theory and Nash Cournot 

equilibria; something that cannot be done in LP models.24 Therefore, the main models 

developed in this research are cast as MCP. 

 

The above has illustrated several important features of the natural gas markets: 

globalization, market power aspects and uncertainty. In the research that is described in 

this dissertation, these and other aspects are addressed. 

 

To illustrate the contribution of this research we will compare the characteristics of the 

developed World Gas Model with a number of state-of-the-art models.25  

1.7.1 The state of the art in natural gas models 

The National Energy Modeling System (NEMS) is a large-scale energy systems model 

developed by the Energy Information Administration of the U.S. Department of Energy.26 

NEMS provides a detailed bottom-up approach for supply and demand of energy in the 

U.S.A. for a time period of about 25 years. NEMS does not cover other regions of the 

world and has no provisions for the incorporation of market power à la Cournot for the 

                                                 
22 http://ec.europa.eu/environment/climat/emission/index_en.htm ; www.nord-stream.com/en/ and 
www.nationalgrid.com/uk/Gas/TYS/  
23 The EC sponsors energy market modeling efforts (see e.g. http://ec.europa.eu/research/fp7/index_en.cfm. 
GDF SUEZ, one of the European majors in the energy market is developing an MCP model for the natural 
gas market after discussing the results from a preliminary study (Gabriel et al., 2008), and the Danish 
network operator Energinet.dk has started developing efforts to improve their market models. 
24 In fact, linear programming models cannot model the demand responses to price changes directly. 
Quadratic programming models can have this feature. However both model types can only mimic market 
power behavior by assuming some price mark-ups for the marginal cost supply curve, which is, at best, a 
rough approximation of market power behavior. 
25 The World Gas Model will be described extensively in Chapter 3.  
26 www.eia.doe.gov/oiaf/aeo/overview/ (Accessed March 2010) 
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natural gas market as WGM provides. 27,28 FRISBEE is a partial equilibrium (PE) model 

developed by Statistics Norway.29 It covers the global natural gas market on a rather 

aggregate level. The Rice World Gas Trade Model (RWGTM) is a computational general 

equilibrium (CGE) model developed by RICE University.30  

 

Table 1: Overview of natural gas model characterist ics 
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NEMS LP USA+CAN No 15b 2030 Yearly 2 5c Endogenous 

WGM MCP World Yes 41 2030 Five years 2 3 Endogenous 

FRISBEE PE World No 13 2030 Yearly 1 3 Endogenous 

RWGTM CGE World No 460 2050 Five years 1 1 Endogenous 

GASMODd MCP Europe+LNG Yes 6 2025 Ten years 1 1 Endogenous 

GASTALE MCP Europe+LNG Yes 19 2030 Five years 3 3 Endogenous 

GRIDNET LP USA No 18000 operational Monthly 12 N/A Exogenous 

ICF GMM NLP USA No 114 several years Monthly 12 4 Exogenous 

a LP: linear program; MCP: mixed complementarity problem; PE: partial equilibrium; 
  CGE: computable general equilibrium.  

b United States twelve, Canada two and Mexico one. 
c Includes power generation, which is not considered as an end-use sector in NEMS. 
d The dynamic version of GASMOD. 
 

                                                 
27 Actually, for the oil market NEMS allows market power exertion à la Cournot.  
28 A recently developed optimization model, the International Natural Gas Model l(INGM), provides 
projections for the global natural gas market (including LNG trade), with relatively much detail for North 
America and emerging countries (such as Russia, China and India) but not so much for Europe. It provides 
the global context for the NGTDM in the NEMS. The model is a Linear Program and market power aspects 
are addressed by setting tighter limits for future capacity expansions. Sources: EIA 2010, Models Used To 
Generate the IEO2010 Projections, www.eia.doe.gov/oiaf/ieo/pdf/appl.pdf (Accessed Nov 11, 2010), 
Personal communication Dr. A. Kydes: INGM Basics.pptx. 
29 See (Aune et al., 2009) and (Rosendahl and Sagen, 2009) 
30 Hartley, Peter, Kenneth B. Medlock, III and Jill Nesbitt. 2004a. Rice University World Gas Trade Model. 
James A. Baker, III Institute of Public Policy, Rice University, Houston Texas (March). 
http://www.rice.edu/energy/publications/docs/GSP_WorldGasTradeModel_Part1_05_26_04.pdf (Accessed 
March 2010). ; Hartley, Peter, Kenneth B. Medlock, III and Jill Nesbitt. 2004b. Rice University World Gas 
Trade Model. James A. Baker, III Institute of Public Policy, Rice University, Houston Texas (December). 
http://www.forum.rice.edu/presentations/Forum04/Peter%20Hartley%20-%20Presentation%20-
%20An%20Economic%20Model%20of%20the%20Gas%20Industry.pdf  (Accessed March 2010). ; 
Hartley, Peter, Kenneth B. Medlock, III. 2005. The Baker Institute World Gas Trade Model. James A. 
Baker, III Institute of Public Policy, Rice University, Houston Texas. and 
www.rice.edu/energy/publications/docs/GAS_BIWGTM_March2005.pdf  (Accessed March 2010). 
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Among the models in the table, RWGTM represents the world with the most 

geographical detail, however it does not distinguish demand sectors within countries and 

also it has no capabilities of representing market power à la Cournot, both of which are 

features of the WGM. Relative to FRISBEE, the WGM offers three times the 

geographical detail and includes market power aspects. GASMOD, developed by DIW 

Berlin and GASTALE, developed by Energy Research Center of the Netherlands do 

implement MCP, thereby allowing an adequate representation of market power.31 Both 

models’ coverage is limited to the European natural gas market. In contrast, the WGM 

has global coverage and includes Europe in similar (GASTALE) or more detail 

(GASMOD) compared to these two models. The last two models in the table, GRIDNET 

and GMM provide much detail for the U.S. gas market.32 They are designed for decision 

support by natural gas businesses with a short to medium-term time-horizon. This type of 

short-term operational model cannot provide the type of market analysis for which the 

WGM was designed and do also not provide the global coverage desired. Table 1 

provides an overview with more information for all these models. 

1.7.2 Contributions of this research 

The models presented in this dissertation are large-scale game theoretic models that 

address both the increasing complexity and the increasing uncertainties in the natural gas 

market. The resulting model sizes potentially induce large calculation times, an issue that 

needs to be addressed.  

 

o The first contribution of this research is the development of a representative global 

natural gas market model that can satisfactorily address relevant policy issues. This 

model, the World Gas Model, is unique in the combination of: 

o The level of detail wherein market agents are incorporated. 

o The level of detail wherein the transport options are included. 

o The global coverage and depth of the regional coverage. 

o The multi-period approach with endogenous capacity expansions. 

                                                 
31  GASMOD: (Holz et al., 2008) and (Holz, 2009). GASTALE: (Lise and Hobbs, 2009) 
32 www.rbac.com, Brooks, Robert E. and C.P. Neill.2010. GRIDNET: Natural Gas Operations Optimizing 
System. http://rbac.com/Articles/GRIDNETNaturalGasOperationsOptimizingSystem/tabid/67/Default.aspx 
 (Accessed March 2010). ICF International. 2009. GMM, Model Overview. ICF International.2010. Gas 
Market Model http://www.icfi.com/markets/energy/doc_files/nangasweb.pdf  (Accessed March 2010). 
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o The inclusion of multiple seasons and storage facilities. 

o The representation of market power. 

o A second major contribution of this research is the development of a large-scale 

stochastic natural gas market model that can adequately address input parameter 

uncertainty and allow market agents to hedge their decisions. The stochastic model is 

applied to a problem with four scenarios for the global natural gas market for a time 

horizon until 2050. The problem contains nineteen geographical regions and includes 

78,768 variables. The largest stochastic MCP solved, contains eight scenarios for the 

period up to 2040, having 117,481 variables and solving in just under 5¼ hours on a 

dual core 2x1.2 GHz, 2GB computer. 

o A third major contribution is the application (i.e., the adjustment, extension and 

implementation) of a Benders decomposition approach for large-scale stochastic 

mixed complementarity models, thereby addressing the so-called curse of 

dimensionality. Computational issues prevented the successful solution of the largest 

problems tried. 

 

Chapters 2 through 4 discuss the first contribution, Chapters 5 through 7 the second and 

third contribution. Chapter 2 provides an overview of the literature relevant for natural 

gas market modeling. In Chapter 3 the various actors in the global natural gas market are 

introduced and discussed and the mathematical formulation of the WGM is presented. 

Chapter 4 provides the results of some numerical case studies with the WGM. Chapter 5 

provides another literature overview, addressing stochastic modeling approaches and 

solution approaches to large-scale problems. In Chapter 6 a stochastic natural gas market 

model is presented and applied to a stochastic problem and Chapter 7 presents a Benders 

decomposition approach for stochastic mixed complementarity problems.33  

 

The following chapter will provide an overview of existing literature for game theory and 

natural gas market modeling.  

                                                 
33 This work was supported in part by: NSF grants DMS0408943 and CNS0435206, German Institute for 
Economic Research DIW (Berlin, Germany), Department of Energy - Energy Information Agency 
(Washington D.C.), Resources for the Future (Washington D.C.), Statistics Norway (Oslo, Norway). 
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2 Literature Review 

In this section literature relevant for natural gas market modeling is presented. Some 

mathematical concepts and notation are introduced as well as concepts from game theory. 

In later chapters more literature relevant for specific sections is presented, and Chapter 5 

provides a literature overview specific to stochastic modeling. This chapter provides a 

background for the research proposed, and should provide a stepping stone to the 

description of a full-scale deterministic natural gas market model in the next chapter.  

2.1 Some mathematical concepts 

In an economic model with multiple goods{ }1 2, ,.., mq q q it is convenient to have a short 

notation. Vector notation provides this. A vector

1

2

...

m

q

q
q

q

 
 
 =
 
 
 

represents all the m goods. In 

text it is generally more convenient to use the transpose of a vector: { }1 2, ,..,T
mq q q q= . 

Then, for example to write the total revenues
1

m

i i
i

p q
=
∑ of a company selling m products qi 

at prices ip , the following vector multiplication provides the succinct expression: Tp q , 

which is often just written asTp qwhen it is clear that p and q are vectors. 

 

A matrix is an array of numbers. For example, to denote the prices for two goods in a 

three-period model, the following matrix with two rows and three columns can be used: 

11 12 13

21 22 23

p p p
P

p p p

 
=  
 

.  

 

Function : nf →ℝ ℝ  is linear, if ( ) ( ) ( ), , , :nx y f x y f x f yλ ρ λ ρ λ ρ∀ ∈ ∀ ∈ + = +ℝ ℝ . 

A function : ng →ℝ ℝ  is affine, if there are a linear function :nf →ℝ ℝ  and a vector 

b∈ℝ  such that: ( ) ( )g x f x b= + . A function : nf →ℝ ℝ  is convex if 
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 [ ], , 0,1nx y λ∀ ∈ ∈ℝ : ( )( ) ( ) ( ) ( )1 1f x y f x f yλ λ λ λ+ − ≤ + − .  

If ( ), , 0,1nx y λ∀ ∈ ∈ℝ : ( )( ) ( ) ( ) ( )1 1f x y f x f yλ λ λ λ+ − < + − , f  is strictly convex 

(Nash and Sofer, 1996). A function ( )f x  is concave, if and only if ( )f x−  is convex. A 

function that is both convex and concave is affine. 

 

A region or set S is convex if: for any two points x and y in S, any convex combination 

( ) [ ]1 , 0,1x yλ λ λ+ − ∈  is also in the set: [ ] ( )( ), , 0,1 1x S y S x y Sλ λ λ∀ ∈ ∈ ∈ ⇒ + − ∈  

(Nash and Sofer, 1996). A problem with a convex objective and a convex feasible region 

is a convex programming problem. 

 

An ε -neighborhood around a point x E∈  is the set ( ) { }:N x y x yε ε= − < . A point 

x S E∈ ⊂  is in the closure of S, x cl S∈ , if ( ) , 0S N xε ε∩ ≠ ∅ ∀ > . If S cl S= , then S  

is closed. If there is a ball with a large enough radius that can contain S , then S  is 

bounded. A set S that is closed and bounded is compact (Bazaraa et al., 1993). A set 

defined by a finite number of linear constraints is a polyhedral set, or a polyhedron (Nash 

and Sofer, 1996). A (square) matrix n nM ×∈ℝ  is positive semi-definite if 

0,T nx Mx x≥ ∀ ∈ℝ . If 0, \ {0}T nx Mx x> ∀ ∈ℝ , then M  is positive definite (Cottle et al., 

1992). 

 

The gradient (vector) of a real-valued function : nh →ℝ ℝ  is the vector of first order 

(partial) derivatives ( )

( )

( )

( )

1

2

m

h x

x

h x

x

h x

x

h x

∂
∂

∂
∂

∂
∂

 
 
 
 ∇ =
 
 
 
 

⋮

. A stationary point of a function is a point 

( )1 2, , ,..,
T

mx x x for which the gradient is 0: ( ) 0h x∇ =  (Nash and Sofer, 1996). 
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 A collection of real-valued functions 1 2, ,..., mh h h  can succinctly be written as a vector 

function h , whose kth component is kh . The Jacobian of h  is: ( )

( )
( )

( )

1

2

m

h x

h x
h x

h x

∇ 
 ∇ ∇ =
 
 
∇  

, a 

matrix whose rows contain the gradients of 1 2, ,..., mh h h  (Bazaraa et al., 1993). The 

Hessian ( )2h x∇  is the matrix of second order partial derivatives. Entries of this matrix 

can be written as: ( ) ( )2
2

k l

h x

x xkl
h x ∂

∂ ∂ ∇ =   (Bazaraa et al., 1993).  

 

Optimization is solving problems to find an optimum (minimum or maximum) of a 

function (the objective) for a specified set of allowed values, the feasible region. If there 

is just one point in the feasible region for which the objective function takes on its 

optimum, the problem is said to have a unique solution. It is also possible to have 

multiple optima or no optimum at al. There are several reasons for problems to not have a 

solution. The feasible region may be empty or not compact and some functional forms of 

the objective (e.g., 1
x
 or ( )ln x ) are not bounded on regions containing the value 0. 

Generally every optimization and many economic problems can be formulated as 

follows: ( )
0

min , n

x
h x x S

≥
∀ ∈ ⊂ ℝ , : nh →ℝ ℝ  convex and S  compact.34 If S ≠ ∅  (non-

empty) there is at least one optimal solution. If S ≠ ∅  and ( )h x is strictly convex, the 

problem has a unique solution. (Cf., necessary and sufficient optimality conditions in 

(Bazaraa et al., 1993)). If the objective function and equations (constraints) specifying the 

feasible region are all affine, the optimization problem is a linear program (LP). A 

problem with an objective of the form T Tc x x Mx+  is a quadratic program (QP).  

 

Every LP can be written in matrix notation as: 
0

min T

x
c x

≥
. s.t. 0Bx d− ≥  ( nx∈ℝ , nc∈ℝ , 

nxmB∈ℝ  and md ∈ℝ ). When an LP is optimally solved, beside the optimal values for x, 

and cTx, also a set of values related to the constraints is determined. These values are the 

                                                 

34 Maximization problem ( )
0

max
x

h x
≥

can be written equivalently as minimization problem ( )
0

min
x

h x
≥

− . 
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dual variables also known as dual prices, shadow prices or Lagrange multipliers. Every 

LP has an associated problem, the dual problem, with an objective function and feasible 

region stated in terms of the dual variables. The dual of the above LP can be written as: 

0
max T

y
d y

≥
s.t. 0TB y c− ≤ . To distinguish the original LP and the dual LP, the original LP 

is referred to as the primal.  

 

The solutions to the primal and the dual are very much related through the Weak and 

Strong Duality Theorems (Nash and Sofer, 1996) and the Complementarity Slackness 

Conditions (Bertsimas and Tsitsiklis, 1997). Weak duality is the characteristic that for 

any two feasible points x and y for the above primal and dual problems, T Tc x d y≤ . 

Strong duality is the characteristic that if one of the two of primal and dual problems has 

an optimal solution, so does the other, and ˆ ˆT Tc x d y=  for the optimal solution vectors x̂  

and ŷ . The Complementarity Slackness Conditions can be seen as a special case of the 

mixed complementarity problem (MCP), the approach implemented in this dissertation. 

The Complementarity Slackness Conditions state that if for some specific vectors x and y 

the following conditions are true: ( ) 0T Tx c B y− =  and ( ) 0Ty Bx d− =  for ,x y feasible 

( 0x ≥ , 0y ≥ , 0Bx d− ≥ and 0TB y c− ≤ ) then x and y are optimal solutions to the primal 

and dual problems. 

 

In economic problems the dual variables of constraints often have a very intuitive 

interpretation. For example, for resource constraints the shadow prices are the marginal 

values of the resources. If in an optimal solution the resource is not fully used (there is 

slack), the dual price is zero. But if it is fully used, and having more of the particular 

resource would allow for a better solution, the dual price indicates how much it would be 

worth to obtain more of that resource.  

 

For a problem min
x X∈

f(x) s.t. ( ) 0k x ≤  and ( ) 0l x =  ( nX ⊂ ℝ  and , : nk l →ℝ ℝ ) with v 

and w as dual variables, the Karush-Kuhn-Tucker (KKT) conditions are: 
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stationarity:35    ( ) ( ) ( )
1 1

0
n m

i i j j
i j

f x v k x w l x
= =

∇ + ∇ + ∇ =∑ ∑  

primal feasibility:    ( ) 0k x ≤  and ( ) 0l x =  

nonnegativity of multipliers:  0v ≥  

complementarity slackness:   ( ) 0Tv k x = .  

The combination of 0v ≥ , ( ) 0k x ≤  and ( ) 0Tv k x =  is usually abbreviated to 

( )0 0v k x≤ ⊥ ≤ .36  

 

For some types of problems, KKT conditions are necessary or sufficient for an optimal 

solution. Constraint qualifications (CQ) are mathematical properties to problems that 

guarantee that every KKT point provides an optimal solution. In (Bazaraa et al., 1993) 

several CQ are discussed that are useful for the type of models developed in this 

dissertation. The objective functions to be minimized by model agents are convex and 

twice differentiable. All feasible regions are polyhedral, specified by affine inequalities 

and linear equality conditions. For such problems, with a feasible region defined by linear 

constraints KKT are necessary for optimal solutions, independent of the functional form 

of the objective. For minimization problems with convex objectives and a feasible region 

defined by convex inequalities and affine equality conditions KKT points are sufficient 

for global optimality. Thus, KKT conditions are necessary and sufficient for optimal 

solutions for the models in this dissertation. 

 

A linear complementarity problem (LCP) for a vector b, matrix A and variables x  is to 

find xsuch that: 0 0x Ax b≤ ⊥ + ≥  (Cottle et al., 1992). In nonlinear complementarity 

problems (NCP) the expression Ax b+  can be replaced by nonlinear functions. MCP are 

a generalization of NCP, allowing for other than zero lower bounds ( : il l ∈ ∪ −∞ℝ ) as 

well as upper bounds (: iu u ∈ ∪ +∞ℝ ) to the decision variables. For an MCP with 

                                                 
35 Instead of stationarity, also dual feasibility is used. 
36 In this dissertation ( )0 0x k x≤ ⊥ − ≥  will be used since the modeling tool GAMS does not allow the ≤ 

variant and we prefer to have the code and the mathematical formulation consistent with each other. In 
some cases this affects how the sign of the free dual variable values should be interpreted. 
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(nonlinear) function : n nF →ℝ ℝ , a vector nx∈ℝ must be found for which for each 

element ix : 

( )
( )
( )

. 0

. 0

. 0

i i i

i i i i

i i i

a l x F x

b l x u F x

c x u F x

= ⇒ ≥
< < ⇒ =

= ⇒ ≤
 

Another generalization of the NCP is the variational inequality (VI). For a function 

: n nh →ℝ ℝ find x P∈ such that: ( ) ( ) 0,
T

h x p x p P− ≥ ∀ ∈ . When nP += ℝ , the 

nonnegative orthant of a Euclidean space, a solution to the VI is equivalent to the solution 

of the NCP ( )0 0x h x≤ ⊥ ≥ (Cottle et al., 1992). There are more combinations of 

functions and feasible regions for which the VI problem is identical to an NCP, for 

instance when h is affine and P is polyhedral (Cottle et al., 1992). The model presented in 

Chapter 3 is an MCP, since the market-clearing conditions cannot be included in an NCP 

without loss of generality.  

2.2 Game theory  

A game has three elements: players p P∈ , strategies of all players: p ps S∈ , and payoff 

functions ( ) ( ), : ,
p pp p pu s s S S− − → ℝ  that depend on the own strategy

p
s  and the strategies 

executed by the other players 
p

s−  (Fudenberg and Tirole, 1991). Players are the entities in 

the game that make decisions. They decide upon their optimal course of action, i.e., what 

strategy to execute. The payoff functions state for each player the benefit resulting from 

their strategy choice given the chosen strategies of all other players. In an economic 

context the players can include producers and consumers; and strategies the possible 

production and consumption levels. For instance, the payoff function for a producer is his 

profit level, the payoff function for the consumers is their consumer surplus. If the 

producers would decide to collaborate and maximize their aggregate profits, the resulting 

game would be a cooperative game; the game as previously described where all agents 

maximize their own payoff is non-cooperative. A game containing both cooperative and 

non-cooperative aspects is a hybrid game. 

 

In an economic market model equilibria are points where supply and demand are equal. 

The game concept does not apply to (micro)economics only, and there are various 
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equilibrium concepts for games. A concept often used in microeconomics is the Nash 

equilibrium. In a Nash equilibrium all players choose a strategy ˆps  that maximizes their 

payoff given the anticipated responses of all other players ps− . No player would benefit 

from changing his strategy unilaterally: ( ) ( )ˆ: , , ,p p p p p p pp P u s s u s s s− −∀ ∈ ≥ ∀  (Nash, 

1951). Often, perfect information is assumed in game-theoretic models, as well as 

rationality, two rather intuitive concepts, which allow for accurate forecasts for other 

players’ behavior. When all players communicate their (irreversible) decision at the same 

moment, the game is said to be a simultaneous game; otherwise it is a sequential game 

(e.g., the Stackelberg game, see the next section). A sequential game necessarily has 

more than one stage; however a simultaneous game can consist of multiple stages too. 

Games with several stages are dynamic games; one-period games are static games. There 

can be different information structures in dynamic games. In multi-stage games with a 

closed-loop information structure, or feedback strategies, at every stage, players consider 

former strategy decisions and outcomes when choosing a course of action. In contrast, in 

open-loop equilibria all decisions for all stages are set at the start of the game. Although 

the assumptions underlying the open-loop games are more restrictive than for closed-loop 

games, the resulting models are generally mathematically tractable. Therefore the open-

loop analysis is used very often in analyses of long-term equilibria and trends.  

 

In games, there may be no solutions, just one, or more than one (see (Nash, 1951), 

(Debreu, 1952), (Arrow and Debreu, 1954) and (Rosen, 1965)). Two well-known 

theorems that provide a basis for the existence of equilibria (e.g., for the World Gas 

Model) are the following. The Frank-Wolfe theorem: if 0h C∈  (continuous), 

: nh →ℝ ℝ , quadratic and bounded below on the polyhedral feasible region P ≠ ∅  

( nP∈ℝ ), then h  attains its minimum on P (Cottle et al., 1992). As is illustrated in the 

next section, an equilibrium in a perfectly competitive market with quadratic costs can be 

calculated by maximizing social welfare. As long as all constraints, such as production 

capacity and pipeline flow limitations are linear, we have a polyhedral feasible region and 

the Frank-Wolfe theorem warrants that there is at least one feasible solution point that is 

optimal. As long as there are no lower bounds other than zero included in the model, the 

feasible region will always contain the zero vector for all primal variables, and therefore 
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never be empty. Strict convexity of the (quadratic) social welfare function guarantees that 

the solution point is unique.  

 

Since in some of our models we apply a non-quadratic functional form for production 

costs, the Frank-Wolfe theorem cannot always be applied. The Weierstrass theorem 

applies to a broader class of functions. If 0h C∈ , : nh →ℝ ℝ , and P ≠ ∅  and compact, 

then the problem [ ( )min h x  s.t. x P∈ ] has a solution (Bazaraa et al., 1993). Note that 

this theorem guarantees the existence of a solution, but does not say anything about its 

uniqueness. 

2.3 Economic market modeling 

When designing economic market models various choices must be made regarding the 

market structure. The following picture is an adjusted version from (Shy, 1995).  

 

 
Figure 5: Market structures (Shy, 1995) 

 

It distinguishes features according to the type of interaction among players, the number of 

players, the order of decision making, and whether quantities or prices are set by the 
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suppliers. For example, an imperfectly competitive market, with multiple non-

cooperative suppliers, who decide simultaneously on output quantities, is an oligopoly à 

la Cournot. The potential monopoly profit is often larger than the sum of the profits of 

suppliers in a Cournot oligopoly (e.g., the following example, where the monopoly profit 

of 1
442  is more than the aggregate duopoly profit of 7 5

9 92 18 37× = ). Thus, there is an 

incentive for suppliers to collaborate and form a cartel.  

 

Another market structure that is often assumed in market models is perfect competition, a 

concept first described by Walras in the late 1800s, wherein all market agents are price 

takers and cannot manipulate the market prices (Walras, 1977). In a perfectly competitive 

market the market equilibrium can be found by maximizing social welfare: the sum of 

profits of all players plus the consumer surplus (Bergson 1938).  

Quantity

Inverse demand curve

Marginal supply cost curve

Consumer 

Surplus

Producer 

Profit

Production 

Costs

 
Figure 6: Social welfare components in a market equ ilibrium  

 

As an example of the concept of some of the relevant economic concepts, assume a 

producer who is selling some commodity q to a market with a demand curve q=15-p. 

Commonly, when plotting demand in a graph, the inverse demand curve is used: p=15-q. 

Production costs are $2 per unit. The consumer surplus can be expressed as ( )1
2 15 p q−  = 
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21
2 q . The social welfare is the sum of producer profit 2pq q−  = ( )13 q q−  = 213q q−  

and consumer surplus 21
2 q . To obtain a perfectly competitive market equilibrium the 

expression to be maximized is 213q q− + 21
2 q = 21

213q q− . Setting the derivative equal to 

zero 13 0q− = gives the optimal quantity: 13q = . 

  

Now assume that the producer realizes he is the only supplier to the market, and that his 

supply affects the market price. Hence, he is a monopolist, and ignores the consumer 

surplus when determining his optimal production level. The producer’s optimization 

problem is to choose a nonnegative value for q that maximizes the quadratic expression 

213q q− . Setting the derivative equal to zero, reveals that the optimal quantity is 1
26q = , 

exactly half of the perfectly competitive supply, and a profit of ( )1 1 1
2 2 415 2 6 6 42− − × = .  

 

For perfectly competitive and monopolistic market models with convex quadratic 

objective functions and affine, downward-sloping inverse demand curves the equilibrium 

can always be found through optimization. However for other types of markets, such as 

oligopolies, optimization cannot be used to adequately model them. The following is an 

example for modeling an oligopoly. In this case, the solution can be derived analytically, 

using symmetry of the market players.  

 

Assume that there are two producers, identical to the one in the previous example, who 

are competing à la Cournot. Each producer i chooses a quantity iq  that maximizes the 

quadratic expression 2i ipq q−  = ( )1 213 iq q q− − . To solve this for producer 1: 

( ) 2
2 1 1max 13 q q q − −  , set 

( ) 2
2 1 1

1

13
0

q q q

q

 ∂ − − 
∂ =  � 2 113 2 0q q− − =  � 213

1 2
qq −= .37 Using 

symmetry of the producers to determine the solution: 1
1 2 34q q= = , and each producer 

                                                 

37 We need to assert convexity of the minimization objective. Maximization of 2i ipq q−  is equivalent to 

minimization of 2 i iq pq− . Substituting in the inverse demand curve for p  and taking the first partial 

derivative with respect to 1q  results in 1 22 13q q+ − . The Hessian of 
2 1

1 2

 
 
 

 is positive definite, hence 

the objective function is strictly convex. 
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makes a profit of ( ) 71 1
3 3 915 2 2 4 4 18− − × × = . The expression 213

1 2
qq −= is known in the 

literature as the optimal response curve or (Cournot) reaction curve. It shows for each 

supply level of the competitor how much a firm should supply. For a duopoly of suppliers 

the optimal response curves can be drawn in a two-dimensional picture and used to derive 

the market equilibrium point, as is shown in Figure 7. 
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Figure 7: Duopoly market equilibrium using optimal response curves 

 

Adding more producers to the problem with identical supply costs leads to a quadratic 

optimization objective for every producer of the form: 2 13i i j i
j

pq q q q
 

− = − 
 

∑ . Setting 

the partial derivative equal to zero: 13 j i
j

q q− − =∑ 13 2 0j i
j i

q q
≠

− − =∑  results in the 

following expression for the optimal supply quantities in an n-firm oligopoly market: 

13
1 ,i nq i+= ∀ .  

 

We see that for this stylized example the market equilibrium can be determined 

analytically, and the outcomes are closed-form expressions. In a more general setting, 

such as the natural gas market model that we develop, with asymmetric costs, multiple 

supply and demand nodes, pipeline capacity restrictions and other complications, the 
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complete system of equations can generally not be solved analytically. Unlike in the 

perfectly competitive market structure that maximize social welfare minimize (supply) 

costs, the Cournot oligopoly solution generally does not minimize the supply costs. All 

competitors each maximize their own objective function, which cannot be aggregated and 

represented as one optimization objective; therefore a convex programming approach or 

any other optimization approach cannot be used to find the market equilibrium. For such 

markets where market power plays a role, complementarity problems provide a viable 

modeling approach. For example, the above duopoly can be cast as the following LCP, 

consisting of KKT conditions for the profit of the suppliers:38 

( )

( )

2
2 1 1

1

2
1 2 2

2

13

1

13

2

0 0

0 0

q q q

q

q q q

q

q

q

 ∂ − − 
∂

 ∂ − − 
∂

≤ ⊥ ≥

≤ ⊥ ≥
 � 1 2 1

2 1 2

0 13 2 0

0 13 2 0

q q q

q q q

≤ ⊥ − − ≥
≤ ⊥ − − ≥

 

or in matrix notation LCP(b,M) 

( )0 0Tq q b Mq≤ ⊥ + ≥ , with ( )13 13Tb =  and 
2 1

1 2
M

− − 
=  − − 

 

An equivalent variational inequality for this problem is to find ( ) 2
1 2,q q +∈ɶ ɶ ℝ  s.t. 

( ) 1 1
2 1 1 2

2 2

13 2 13 2 0 0
q q

q q q q
q q

− 
− − − − ≥ ≥ − 

ɶ

ɶ
 for all ( ) 2

1 2,q q +∈ℝ  

 

Some markets are characterized by a dominant player and a fringe of followers. For 

example, some references argue that the oil market operates this way, with OPEC as the 

dominant player (e.g., (Al-Qahtani et al., 2008)). This leader-follower market structure is 

known as a Stackelberg game. A characteristic of this market structure is the sequential 

nature. In the first stage the leader decides on his output level; whereas in the second 

stage the followers decide on theirs. The leader is assumed to have full insight in the 

followers’ willingness to supply and uses this information when setting his optimal 

output level. In the previous two-producer example, this information can be summarized 

in the optimal response curve. The following example shows the Stackelberg equilibrium 

where both leader and follower exert market power à la Cournot. Note that typically the 

                                                 
38 See footnote 37 for a short proof that the Hessian of –M is positive definite, asserting concavity of the 
individual players maximization problems.  
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leader would have another cost structure than the follower, but in this example the same 

data as before are used. 

 

In the first stage the leader maximizes the following expression: ( )1 2 113 q q q− − , 

anticipating the second stage response: 113
2 2

qq −= . Substituting in the anticipated response 

in the objective function gives the following: ( )113
1 1213 qq q−− −  � ( )13 3

1 12 2 q q− . Setting 

the first derivative equal to zero gives as the optimal supply quantity: 13 1
1 6 62q = = , and 

for the follower: 1 113 13 78 13 65 5
2 2 2 2 12 12 12 125q qq −= = − = − = = . The total supply to the market is: 

65 26 91 7
12 12 12 127+ = = , which is lower than the 238 in the previously shown duopoly results. 

 

In general this type of multi-stage models cannot be formulated as complementarity 

problems, and a whole class of more general problems has been developed to model 

them; the mathematical problems (or equilibrium problems) with equilibrium constraints 

(MPEC/EPEC). See, e.g., (Luo et al., 1996) or the next Section 2.4.  

2.4 Natural gas market modeling 

One of the main purposes for developing natural gas market models has been to analyze 

the impact of policy and infrastructure developments on markets and consumers. Stoner 

(1969) may have been the first to present work on modeling a natural gas system. The 

early 1980s energy market liberalization efforts in the United States and the United 

Kingdom required politicians and regulators to gather information and boosted the 

development of quantitative models. A second boost came when in the late 1980s the 

European Commission started privatization and liberalization policy of the electricity 

market, and in the 1990s the natural gas markets (EC, various years).  

 

The first market modeling efforts seem to have been executed by American researchers, 

for the North American natural gas market. Early work on natural gas market modeling 

with the direct objective to support policy development can be found in (O'Neill et al., 

1979). That work had as main objective to reassign available gas supply to consumers in 

case of emergencies. Their model was solved approximately, linearizing non-linear 
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equations and applying an iterative (modified Newton) method. Another model, the 

National Energy Modeling System (NEMS), and previous, related models from the U.S. 

Department of Energy contain a separate sub-system for modeling the U.S. natural gas 

market, the Natural Gas Transmission and Distribution Module (NGTDM) (Gabriel et al., 

2001), (International Energy Agency, 1994). The NGTDM consists of various modules, 

including some for demand sectors, the supply side and conversion/transmission. An 

iterative approach (nonlinear Gauss Seidel) is used to solve the NEMS. 

  

New developments in mathematical formulations and computer software have allowed 

for the representation of the specifics of actual markets in a single equilibrium 

framework. Developments and applications on the North American natural gas market 

include optimization-based equilibrium models (Gabriel et al., 2000, 2003) and mixed 

complementarity problems (Gabriel et al., 2005a, 2005b). A big advantage of the latter 

model types is assessing the impact of market power in a Nash–Cournot setting. 

 

Another market, for which several models have been developed over time, is the 

European market. Haurie et al. (1987) developed a stochastic Nash–Cournot model. 

Mathiesen et al. (1987) investigated market power on the selling side of the European 

natural gas market. Another modeling approach was taken in (De Wolf and Smeers, 

1997). They developed a two-stage stochastic Stackelberg game for the European gas 

market with one producer (Norway) as the leader and the others (Russia, Algeria, 

Netherlands and the U.K.) as followers. A stochastic approach was also developed by 

(Gürkan et al., 1999). They developed a Monte Carlo simulation based method to solve 

stochastic variational inequalities. Boots et al. (2004) constructed Gas mArket System for 

Trade Analysis in a Liberalizing Europe (GASTALE). That model, based in part on the 

work by (Golombek et al., 1995, 1998) used a successive oligopoly perspective. In 

further developments of GASTALE, Egging and Gabriel (2006) let go of the successive 

oligopoly approach. They added features like demand seasonality, a storage sector and 

transmission pipeline capacities. These extensions removed the possibility to have market 

power at two levels in the market, since the closed-form expressions needed to solve the 

model with double marginalization could not be derived anymore. The model agents in 

(Egging and Gabriel, 2006) included producers, a transmission system operator as well as 
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storage operators and allowed for market power exertion in the interaction between 

producers and demand sectors. Various cases were analyzed with a focus on market 

power exertion in the European gas market. Egging et al. (2008) presented a new MCP 

for the European gas market with more detail than GASTALE. The trader was separated 

from the producer and the LNG supply chain was represented as liquefiers, shipping and 

regasifiers. The case studies included two disruption cases to illustrate the dependencies 

of Europe on Russian and Algerian supplies. Egging et al. (2010) further developed the 

model to the first version of the World Gas Model (WGM-2008). This model covered the 

whole world, multiple periods, a detailed representation of the LNG supply chain and 

allowed endogenous infrastructure expansions. Egging et al. (2009) implemented the 

model to study the impact of the coming into existence of a global gas market cartel. Two 

cases were studied relative to a reference scenario. The first case mimicked a cartel 

according to GECF membership.39 In a second case, production capacities of cartel 

members were kept at 2005 levels throughout the time horizon, resulting in an about 50% 

decreased output by 2030 relative to the first cartel case. When implementing the cases 

some model limitations showed with regard to the representation of a cartel.40 These 

limitations have been addressed when developing the model in this research. Egging et al. 

(2009) was a contribution to a Special Issue of The Energy Journal Vol. 30 as an outcome 

of the Energy Modeling Forum (EMF) 23.41 Although with some limitations, among the 

participating models in EMF 23 the model version WGM-2008 in (Egging et al., 2009) 

and (Egging et al., 2010) was best suited to implement a global gas market cartel in a 

hybrid market setting with a fringe of Cournot and competitive players. 

 

Continued GASTALE development in (Lise et al., 2008) and (Lise and Hobbs, 2008) 

addressed capacity expansions in a multi-period model. Other recent models for the 

European market include NATGAS (Mulder and Zwart, 2006) and GASMOD (Holz et 

al., 2008) and (Holz, 2009). Gabriel and Smeers (2006) provided a broad overview of 

natural gas market equilibrium models and provide suggestions for further mathematical 

approaches to address relevant issues in the natural gas markets. Although 

complementarity problems have clear advantages to simulate market power for certain 

                                                 
39 Gas Exporting Countries Forum, gecforum.org. 
40 Due to the separate coordination of pipeline and LNG export.  
41 http://emf.stanford.edu/research/emf23/; http://emf.stanford.edu/files/pubs/22377/EMF23ReportWeb.pdf  
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types of analysis, optimization models may still be the method of choice. Tomasgard et 

al. (2007) in (Hasle et al., 2007) described optimization approach for various steps in the 

gas supply chain, and provide a stochastic modeling approach to address uncertainty. 

 

An important consideration in natural gas markets is the finiteness of the resource. Not 

only daily production capacities are limited, but also the total production over time. 

Hotelling (1931) discussed the optimal depletion paths of exhaustible resources. His key 

result was that an optimal depletion path induces prices that, corrected for discount rates, 

are constant over time. The rationale is that if prices would move differently, it would be 

worthwhile to shift production between periods. This result is known as the Hotelling 

rule. Several recent publications that address finiteness of resources include (De Joode, 

2003), who addressed depletion of gas reserves in the interaction between Russia and 

Europe. Benchekroun et al. (2006) analyzed different scenarios for how the threat of a 

forced break-up of a cartel impacts the extraction rate of the resource by the cartel in the 

cartel period. In honor of the 75th birthday of Hotelling’s paper, Gaudet (2007) discussed 

many implications of the Hotelling rule in the present world. Zwart (2008) elaborated on 

the interplay between market power exertion and natural gas depletion in the European 

natural gas market.  

 

The previous subsection (2.3) introduced the Stackelberg equilibrium in a two-stage 

game with market power. De Wolf and Smeers (1997) developed and applied a stochastic 

two-stage game for the European Gas Market with Norway as the leader and other 

suppliers as followers. Hobbs et al. (2000) developed an MPEC for an electricity market 

with a first stage wherein one or more individual firms decide on their supply bid curves; 

and in the second stage an integrated systems operator clears the electricity market 

through the profit maximization resulting from purchases from suppliers, deliveries to 

consumers, and prices.42 Gabriel and Leuthold (2010) presented a two-stage model with 

discrete first state variables and developed a general solution method that transforms the 

model into a larger, but more easily solved, mixed integer program. They presented 

computational results for a fifteen node network covering the Netherlands, Belgium, and 

the French and German border regions.  

                                                 
42 A bid curve is an upward sloping curve indicating the willingness to supply for each price level. 
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Several papers developed solution procedures for MPEC without specific applications. 

Some approaches have used penalization and relaxation strategies. Penalization 

approaches remove complementarity conditions 0xy =  from the model restrictions, and 

add a penalty term to the objective that accounts for how much xy deviates from zero. 

DeMiguel et al. (2006) developed a two-sided relaxation scheme. The starting point was 

to reformulate the MPEC as a standard nonlinear program (NLP) by replacing the 

complementarity conditions by a set of smooth constraints. Doing so, the feasible region 

of the resulting NLP has no strictly interior points and as a consequence constraint 

qualifications are violated, and thereby the means are lost to check if found stationary 

points are optimal. The authors referred to work of Scheel and Scholtes (2000) and gave 

optimality conditions for MPEC. To maintain the applicability of constraint 

qualifications, DeMiguel et al. developed a sequential NLP approximation approach to 

the MPEC, in such a way that the relaxed NLP have a strictly feasible interior, even in 

the limit. To solve the NLP they proposed the use of an interior point method, which is 

described in their paper. Gabriel et al. (2009) developed a Benders decomposition 

approach to solve two-stage problems with discrete constraints. The approach combines a 

Benders algorithm with a procedure to decompose the domain of the upper-level discrete 

variable to ensure that the otherwise possibly concave subproblems are convex.  

 

The above illustrates that there are many modeling approaches that allow the 

representation of market power à la Cournot. Still, many researchers use optimization 

approaches for their market models. Although optimization approaches are valid to 

analyze perfectly competitive markets, markets where market power can be expected are 

not well represented by them. MPEC are a more general class of models than what is 

needed in this research; for our purposes it is not necessary to implement these 

technically and computationally challenging modeling approaches that need considerably 

long calculation times to solve representative data sets. The main natural gas market 

models in this dissertation are market equilibrium approaches, in the form of mixed 

complementarity models.  
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Smeers (2008) discussed several major challenges that should be addressed by modelers 

to support the European Commission in the development of a regulatory framework for 

the European natural gas market. The three core objectives for the internal gas market 

are: i. to increase competition, ii. security and iii. sustainability of the energy supply. 

Smeers analyzed the contributions that existing models can make, consistencies and 

inconsistencies between model results and proposed legislation, and the potential for new 

models to provide insights. Smeers discussed various markets that can be distinguished 

related to natural gas: production, transportation, storage, trade (‘supply’ in (Smeers 

2008)) and the retail market. Some major shortcomings addressed by Smeers are: the 

simplicity of the demand representation, models that do not allow for fuel substitution, oil 

price linkage, vertical integration, not representing the entry-exit system for domestic gas 

networks, how market-power exertion in gas supply is represented, that market-power 

exertion in capacity markets is not represented at all, the use of congestion pricing for the 

use of infrastructure capacities and not addressing environmental policies and 

sustainability issues.  

 

Smeers (2008) posed many challenges and potentially defined a path of future research 

for many years to come. The models and methods presented in this dissertation do 

address representativeness of natural gas market models by scaling up the geographical 

region covered by a single model. Also, uncertainty in future developments is addressed, 

however most issues posed by Smeers remain untouched. 

 

The World Gas Model (WGM-2009) that is introduced next in Chapter 3 is an improved 

version of the one that was presented and applied in (Egging et al., 2009, 2010) and 

(Huppman et al., 2010). WGM-2009 is presented in a recently submitted paper (Gabriel 

et al., 2010) and used in studies for Resources For the Future and Statistics Norway as 

well as several conference papers. 
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3 A Multi-Period Natural Gas Market Model:  

The World Gas Model 

In this section the World Gas Model (WGM), a deterministic multi-period MCP for the 

global natural gas market is introduced. In the model various economic roles are 

distinguished by countries and geographical regions. Each such region can have a 

producer, trader, storage operator and a transmission system operator, which is 

responsible for managing all transport options. To provide a framework for the following 

discussion, Figure 8 below illustrates the interactions between the market participants that 

are represented in the model.  

 

 
Figure 8: Trade relations in the WGM 

 

Modeled market players are producers (P), traders (T), liquefiers (L), regasifiers (R), 

storage operators (S), marketers (M) and several consumption sectors (K1, K2, K3). 

Producers sell gas to traders. Traders ship gas to consumer markets, domestically via 

distribution networks, or internationally via high pressure pipeline networks or LNG 
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terminals, ships and regasifiers in other countries. Traders can make use of storage 

services to balance their flows among seasons. 

 

The WGM is unique in the combination of the level of detail wherein market agents and 

transport options are incorporated, the global coverage and depth of the regional 

coverage, the multi-period approach with endogenous capacity expansions for 

transportation and storage infrastructure, addressing seasonality in the demand sector and 

how market power is represented. 

 

We describe the players and some technical characteristics and economical roles in the 

natural gas market and how the characteristics and roles of the players are represented. 

The objective functions and constraints for the feasible regions are presented, as well as 

the Karush-Kuhn-Tucker (KKT) conditions, and the market-clearing constraints (mcc): 

the equations that tie the separate players’ problems together into one MCP.  

3.1 Introduction 

Natural gas consumption and production can be found in most world regions. There are 

big differences between the regions though. For example, North America and Europe 

have well-developed gas pipeline systems to transport the gas from suppliers to 

consumers, possibly crossing several country borders on the way. In other parts of the 

world pipeline transmission systems are much less developed, and domestic distribution 

networks may only cover parts of the countries. About 70% of natural gas is used in the 

same country as where it is produced (BP, 2010). Of the remaining 30% about 50% is 

shipped internationally over relatively short pipelines, about 25% over long international 

pipelines and about 25% by LNG tankers (International Energy Agency, 2008).  

 

The different aspects of the individual regions must be addressed when setting up a 

model. Infrastructure and market characteristics must be represented at an adequately 

detailed level to be able to draw useful conclusions. However much of the desired data is 

not (publicly) available, what puts limits to the level of detail that can be implemented.  
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Energy markets have many different types of agents and many possible interactions may 

occur among them. When formulating a model for an energy market many modeling 

decisions must be made regarding the representation of the actors and the technical and 

economical detail that can be represented. The focus in the modeling exercise presented 

in this chapter is on the market power aspects in the upstream market and the impact on 

production, consumption, traded volumes and prices. The emphasis in the model 

development is on the economic interactions prevalent in the natural gas market. Many 

technical aspects relevant for the natural gas market are addressed and discussed, 

however for tractability reasons many of them will not be incorporated in the actual 

model. 

 

Before introducing the economic roles of all the players we will first start with an 

introduction of the fossil fuel that is the subject of production, trade and consumption in 

this dissertation.  

3.2 Natural gas 

Natural gas is a hydrocarbon consisting mostly of methane (CH4), ethane (C2H6), some 

larger alkanes (CxH2x+2) and some components that are described in later sections. The 

existence and production of natural gas are linked to another hydrocarbon: oil, so 

describing the origins of natural gas means discussing hydrocarbons more generally. 

Most of the technical details are based on (Craft et al., 1991), however some web 

resources have been used as well.43 

3.2.1 Hydrocarbons 

Many million years ago dead organic material piled up on the bottom of the sea. Over 

time huge layers of sediments buried the organic material. Bacteria, pressure and heat 

degraded and decayed the organic material into fluid mixtures of hydrocarbons (CxHy). 

These mixtures of crude oil, natural gas and natural gas liquids (NGL) are nowadays 

denoted as petroleum.44  

                                                 
43 www.metu.edu.tr/~kok/pete443.html; www.eia.doe.gov/neic/infosheets/natgassupply.html; 
www.naturalgas.org; http://fossil.energy.gov/education/energylessons/coal/gen_howformed.html; 
www.energy4me.org and www.most.gov.mm/techuni/media/PE_04025_13.pdf 
44 The terms petroleum and hydrocarbons can be used interchangeably. We will use the term hydrocarbons. 
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Natural gas is the part of the mixture that is gaseous at ambient temperature and under 

atmospheric pressure. In natural circumstances, when separated from crude oil after 

flowing out of a reservoir, natural gas contains water vapor, hydrogen sulfide, carbon 

dioxide, helium, nitrogen, and dissolved NGL such as: propane and butane. 

 

Reservoirs with accumulated mixtures of hydrocarbons exist underground as subsurface 

porous sedimentary rocks, in and under the same sediments that buried them when the 

hydrocarbons were still organic material. These underground reservoirs of oil and gas are 

often connected to aquifers: porous rock systems containing water. 

 

Reservoirs can contain hydrocarbons that are liquids, gases or both. The terms gases and 

liquids refer to the state of the hydrocarbons under atmospheric pressure and ambient 

temperature. Due to high reservoir pressures gases may have a liquid state; in contrast, 

liquids can have a gaseous state when temperatures are high. Dependent on the pressure 

and temperature in a reservoir, the mixture of hydrocarbons can be in a single-phase 

(either gaseous or liquid) or the two-phase state. Thus, if the single phase is a liquid 

phase, there may be gases present, dissolved in the oil. Alternatively, if the single phase 

is gaseous, any oil and NGL in the reservoir are vaporized. Typically, if the state of the 

reservoir is two-phase, there is a gas cap on top, and there are liquids in the lower part of 

the reservoir: the oil zone. Due to these various phase and substance combinations there 

can exist up to four types of hydrocarbon reserves in a reservoir: free gas, dissolved gas, 

crude oil and NGL (Craft et al., 1991).  

 

The total content of a reservoir, the resource, is a fixed quantity. Generally not all 

contents can be recovered. How much can be, depends on the production methods used, 

the economic circumstances, and environmental and other governmental regulations.  

3.2.2 Reserves 

Due to the physical characteristics of hydrocarbon reservoirs, it is not easy to estimate the 

total volume of hydrocarbon contents in them. The volume-estimating activities to gauge 

reserves in an area where no production is taking place yet are called exploration. Over 

time, petroleum engineers have developed an advanced toolkit, including seismographic 
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data collection and computer simulations, to gauge the total of reserves in reservoirs. 

Seismology studies how seismic wave energy moves differently through various types of 

terrestrial surface and underground formations. Seismic waves are created artificially by 

machinery, and the behavior of these waves is measured using sensitive tools, called 

geophones. Other data gathering activities include measuring magnetic properties and the 

gravitational field of the Earth.  

 

Since there is a huge variation in the reliability of the assessments, and exploration 

activities may lead to drilling dry wells, but also to huge finds, various classifications of 

reserves estimates have been developed. The verbal indications of proved, probable and 

possible reserves are conceptually self-explanatory, however have varying meanings 

dependent on the institute that performed or reported the assessment, the assessment 

method used, and whether the assessment was deterministic or stochastic.  

 

The Society of Petroleum Engineers has made huge efforts to compare and standardize 

reserves likelihood methodologies (Society of Petroleum Engineers, 2005a, 2005b). 

Naming conventions for reserves include: 1P for proved reserves, or Low Estimate; 2P, 

for proved plus probable reserves, or Best Estimate and 3P, for proved plus probable plus 

possible reserves, or High Estimate. 

 

When stochastic assessments are performed, in terms of proved, probable and possible 

reserves, 1P is often taken equivalent to an at least 90% chance that eventually the 

recovered quantity will be the estimated amount; 2P to at least 50%, and 3P to at least a 

10% probability of eventual recovery. 

 

When other characteristics are taken into account, such as economic and technical 

recoverability, the (Society of Petroleum Engineers, 2005b) address that the reporting 

standards of many international agencies are rooted in the reporting methodology 

proposed by McKelvey (1974). 
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Figure 9: McKelvey Box in (Society of Petroleum Eng ineers, 2005b) 

 

As stated above, the actual volume of hydrocarbons in a reservoir is hard to assess. 

Whenever an exploration team decides that a site has good prospects to find 

hydrocarbons, the next step will be to drill an extraction well. Permits need to be 

arranged, leases and rights of land use as well as arrangements with local or federal 

authorities about royalty and tax regimes. If a newly drilled well hits a significant 

hydrocarbon deposit with development potential, it is further enhanced to become a 

production well. 

 

Dependent on how many cubic feet of gas are dissolved in the crude oil various types of 

reservoirs, or wells, are distinguished. Oil wells can have a dissolved gas content of up to 

a few 1000 cubic feet per barrel of crude oil. Gas-condensate reservoirs may have 

between five thousand and one hundred thousand cubic feet of gas per barrel of oil. 

Natural gas wells contain per one hundred thousand cubic feet of gas at most one barrel 

of condensate: mixtures of hydrocarbon liquids that are less dense than crude oil. Gas 

from condensate reservoirs is called wet gas, from gas reservoirs lean or dry gas. The 

various forms wherein gas can be present in different reservoirs have been given different 

names. Gas from oil wells is associated gas, which can be associated-free gas if it comes 

from the gas cap or associated-dissolved gas, or solution gas, if it was dissolved in the 

crude oil. Non-associated gas is gas from a reservoir that hardly contains any crude oil or 

condensates, with gas to oil ratios over one hundred thousand cubic feet of gas per barrel 

(Craft et al., 1991). 
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3.3 Production 

Once a well is drilled in a reservoir, pressure differences will cause oil and gas to flow 

through the pores in the sedimentary rock to the well. Water from connected aquifers 

may further push out some of the oil and gas. The outflow of hydrocarbons causes the 

pressure and temperature to decrease, changing the physical properties of the mixture of 

hydrocarbons in the reservoir. For example when the pressure gets lower in a two-phase 

reservoir, the gas saturation in the oil zone will increase. When it reaches the critical gas 

saturation point, gas will flow out of the oil, changing the oil/gas ratio and this free gas 

may start flowing to the production wells. 

 

The Schilthuis material balance equation (Craft et al., 1991) is helpful when analyzing 

shifts in those properties, pressure and temperature, when deciding on measures needed 

to prevent undesired changes. The material balance equation denotes a conservation of 

matter by accounting for volumes and quantities of fluids that were initially present, have 

been produced to date, have been injected into, and are still remaining in a reservoir. 

Essentially the equation presents a volumetric balance. Since the volume of a reservoir is 

constant, the sum of the volume changes of oil, free gas, water and rock must be zero.  

 

Dependent on the physical properties of the hydrocarbons mixture, various production 

methods can be used. In general the initial energy contained in the reservoir will be 

enough to just let the gas and oil flow for some time. The methods that use the reservoir 

energy are the primary production methods. The pressure of ground water and dissolved 

gas will push out gas and oil. A second primary production method is fluid displacement 

of oil and gas by water inflow from aquifers. A third primary method is capillary 

expulsion, the process of water creeping up narrow pores in the rocks while pushing out 

the oil. A fourth method, gravity drainage, happens when oil moves to wells in lower 

parts of the reservoir.  

 

Fluid displacement under the impact of injected water or gas is considered a secondary 

recovery method, as are other methods aiming at repressurizing the reservoir. Pumps can 

also be used to repressurize the reservoir. The injection of water is called water flooding, 

whereas the injection of natural gas is referred to as gas cycling. Injected gases can 
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usually be recovered at the end of the oil production phase. However when the eventual 

recovery is in the far future, the lost revenues will be significant and other gases can be 

injected instead. In particular, the injection of carbon dioxide is rather commonly applied. 

A third set of methods is called tertiary recovery, also referred to as improved or 

enhanced recovery. These methods aim at lower viscosity (stickiness) of the oil, and 

include the injection of chemicals or chemically treated water. Also steam can be injected 

to increase the temperature of the oil and thereby its viscosity. 45 

 

Since conventional methods on average only produce about one third of the initial 

hydrocarbons in place, enhanced recovery methods have a large potential regarding the 

total output of production wells. 

 

Besides production from natural gas from wells, there are also other sources of gas that 

add to the total natural gas supply. For example the Energy Information Administration 

(EIA) lists as supplemental gas supplies: blast furnace gas, refinery gas, propane-air 

mixtures, and synthetic natural gas manufactured from hydrocarbons or from coal. 

Although locally these supplies can be significant, they do not have huge impact on the 

global gas supply yet. In the future, biogas (e.g., from organic waste or manure) and 

gasification of coal possibly in combination with carbon sequestration and storage, could 

potentially play significant roles in the supply of natural gas. Biogas arises from the 

degeneration of organic material in the absence of oxygen.46 The potential for biogas is 

huge, for instance, any wastewater treatment facility, landfill or dairy farm can be 

equipped to harvest the outflow of biogas.47 The biogas can be used to produce heat and 

power in a Combined Heat and Power (CHP) plant, or distributed for use similar to 

natural gas. Due to the generally large shares of carbon dioxide, the calorific value is 

often too low for direct injection into the natural gas distribution grid. To do so the 

quality of the biogas must be upgraded. Mid 2008, biogas has become eligible in most 

U.S. states to fulfill the renewable energy targets laid out in their Renewable Portfolio 

                                                 
45 fossil.energy.gov/programs/oilgas/eor/  
46 http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/eng4447 (Accessed, Nov 8, 2010) ; 
http://www.iea-biogas.net/ (Accessed, Nov 8, 2010) 
47 http://www.epa.gov/chp/markets/wastewater.html (Accessed, Nov 8, 2010) 
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Standards (RPS). State’s renewable energy targets are up to 30% for electricity supply, 

and the share of biogas in the total energy supply will likely increase.48  

 

Similarly, in the EU directive 2009/28/EC has been adopted by the European Parliament 

to promote the use of renewable energy.49 By 2020, 20% of energy should come from 

renewable sources, including biomass and biogas. In the European Union, in 2007 the 

total amount of biogas used was about 36 mboe, most of which was produced in 

Germany and the United Kingdom.50 The huge potential for biogas and its status as a 

renewable energy source may affect the reserve base and R/P-ratios of natural gas, which 

is not accounted for in the case studies in this dissertation. 

 

Lastly, in recent years more deep hydrocarbon wells have been drilled. The not-so-deep 

reservoirs, the ‘low-hanging fruit’ among the oil and gas wells, have been harvested and 

there is a trend towards new wells being deeper and deeper. When drilling deeper wells 

more gas and condensates are found, as well as more solution gas in the oil due to higher 

pressures on greater depths.  

3.3.1 Processing 

Produced natural gas is referred to as raw natural gas. It can be wet: containing large 

amounts of condensate; and sour: containing sulfur dioxide and/or carbon dioxide. Sour 

gas can cause corrosion in the pipeline system; and generally furnaces and other gas 

using appliances can only operate safely or efficiently using gas within a specific range of 

burning characteristics. Therefore, gas usually needs processing before it can be 

transported to and used by the final consumers. 51  

 

Raw natural gas may contain all kinds of materials such as: water vapor, hydrogen 

sulfide, carbon dioxide, helium, nitrogen, and dissolved NGL: ethane, propane, butane, 

isobutane, pentane and natural gasoline. Further processing is needed to separate all 

                                                 
48 http://www.epa.gov/chp/state-policy/renewable_fs.html (Accessed, Nov 8, 2010);  
http://www.epa.gov/agstar/tools/funding/renewable.html (Accessed, Nov 8, 2010) 
49 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT (Accessed, Nov 
8, 2010) 
50 http://www.eurobserv-er.org/pdf/baro186_a.pdf (Accessed, Nov 8, 2010) 
51  www.naturalgas.org/naturalgas/processing_ng.asp  
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hydrocarbons and fluids from the pure natural gas to get dry natural gas: mostly methane 

and a small fraction of ethane. 

 

There are several steps in processing wet gas to dry gas. Some technically uncomplicated 

steps are performed close to the wellhead, whereas several more advanced steps are done 

in larger-scale facilities. The not-so-complicated steps include: 

o Scrubbing, to remove sand and other large particles. 

o Heating, to prevent too low a gas temperature which could induce gas hydrates (a solid 

ice-like substance) to form, accumulations of which could impede the flow through the 

pipeline network. 

o Removing oil and gas condensates. This can be as simple as having a closed tank 

through which the gas-oil mixture is lead and wherein gravity separates the gases from 

the liquids. Dependent on the wet gas characteristics more specialized equipment uses 

pressure and temperature differences to separate oil, condensates, gas and sometimes 

water. 

o Removing water. This can be done by separation (if the water is free and liquid), 

absorption or adsorption. For absorption a chemical agent with an affinity for water is 

used to absorb the water. Adsorption is cooling down the mixture and collecting the 

water vapor. 

Consecutive processing steps are more advanced and usually done in a centralized 

fashion: 

o Separating of NGL, including the extraction of NGL and fractionation of the various 

components. One method is absorption, similar to water removal, but with a different 

absorbing agent. Cryogenic expansion is cooling down the gas by rapidly expanding 

it. The drop in temperature makes all gases condense, except the methane. For the 

fractionation the different boiling points of different NGL are used to consecutively 

separate them from each other 

o Removing sulfur and carbon dioxide. Taking the sulfur out is called sweetening, a 

process similar to the absorption processes for removal of water and NGL. 

 

Due to limitations in model capabilities, but also data availability, not all steps and 

characteristics presented in the previous sections are included in our model. Before 
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presenting the mathematical formulation in the next section, we introduce the notation 

used.  

3.3.2 Nomenclature 

The notational conventions used in the model formulation are mostly self-explanatory. 

Generally, sets and market-player indices are the first letter of their full name. For 

example, the variable SALESX are the total sales of a market agent of type X (cf., 

P
pdmSALES  in Eq. (3.3.4)). Also, PURCHY are the purchases of an agent of type Y. The set 

N denotes model nodes; and for subsets of nodes where a player x is present, we use N(x). 

52 To refer to individual nodes in this set, we write n(x). Similarly, to denote the subset of 

agents X present at node n, we use: X(n), (e.g. T(n) are the traders with access to node n); 

and to refer to individual set elements of this set, we write x(n). All market prices, i.e., 

dual variables to market-clearing conditions, are represented by the Greek letter π with 

appropriate subscripts and superscripts; and shadow prices of constraints are denoted as 

lower-case Greek symbols (e.g., α, β, γ for capacity constraints; φ  for mass balance 

constraints and ρ for capacity expansion limitations). For completeness a full list of 

symbols used is shown below before the model formulation. Most costs and price-related 

data are in thousands of dollars per million cubic meters (k$/mcm); the unit of 

measurement for volume and flow data is million cubic meters per day (mcm/d). 

3.3.2.1 Sets 

a A∈   Gas transportation arcs, e.g., {NNED_GER, LNOR_FRA, RGER_GER}53 

d D∈   Demand seasons, e.g., {low, high} 

p P∈   Producers, e.g., {P_NOR, P_RUW, P_RUE } 

m M∈  Years, e.g., {2005, 2010, 2015, 2020} 
                                                 
52 Model nodes represent geographical regions in the world. They can be defined flexibly in the model data 
set. Due to the limited relevance and impact of countries that only produce and consume small amounts, 
several countries have been grouped with neighboring ones and are represented in the model data set on an 
aggregate level. For some countries the opposite is true: their consumption or production is so high, and the 
geographical distances so large, that a division of the countries in several regions is warranted. The regions 
used in the numerical analyses are introduced at the start of Chapter 4. 
53 The first letter indicates the type of arc, combinations of three letters denote the region of country name. 
NNED_GER represtents a pipeline from the Netherlands to Germany; LNOR_FRA an LNG shipping arc 
from the Norwegian liquefaction node to the regasification node of France and RGER_GER the arc from 
the German regasification node to the German country node. NNIG_LNG would denote the arc from the 
country node Nigeria to the Nigeriaion liquefaction node. 
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n N∈   Region nodes, e.g., {N_NOR, N_RUW} 

s S∈   Storage facilities, e.g., {S_NED, S_GER} 

t T∈   Traders, e.g., {T_NOR, T_RUS} 

( )a n+   Inward arcs into node n 

( )a n−   Outward arcs from node n 

3.3.2.2 Constants/Input parameters 

A
amb   Arc capacity expansion costs (k$/mcm/d) 

SI
smb   Storage injection capacity expansion costs (k$/mcm) 

SX
smb   Storage extraction capacity expansion costs (k$/mcm) 

SW
smb   Storage working gas capacity expansion costs (k$/mcm) 

(.)P
pmc   Production costs (k$/mcm) 

A
amCAP   Arc capacity (mcm/d)54 

SI
smCAP   Storage injection capacity (mcm/d)54 

SX
smCAP  Storage extraction capacity (mcm/d)54 

T
tadmCON  Contractual supply obligation (mcm/d) 

C
tnδ   Level of market power exerted by trader in a market, [ ]0,1C

tnδ ∈  

  0 is perfectly competitive, 1 is fully Cournot. 

ddays   Number of days in season 

A
am∆   Upper bound of arc capacity expansion (mcm/d) 

SI
sm∆   Upper bound of storage injection capacity expansion (mcm/d) 

SX
sm∆   Upper bound of storage extraction capacity expansion (mcm/d) 

SW
sm∆   Upper bound of storage working gas capacity expansion (mcm) 

mγ   Discount rate in year, ( ]0,1mγ ∈  

W
ndmINT   Intercept of inverse demand curve (mcm/d) 

                                                 
54 Sub-script m is to account for expansions approved or under construction. 
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aloss   Loss rate of gas in transport arc, [ )0,1al ∈  

sloss    Loss rate of gas storage injection, [ )0,1sl ∈  

P
pmPR   Production capacity (mcm/d) 

P
pPH   Total accessible reserves in time horizon (mcm) 

W
ndmSLP   Slope of inverse demand curve (mcm/d/k$) 

,A reg
admτ   Regulated fee for arc usage (k$/mcm) 

,SI reg
sdmτ   Regulated fee for storage injection (k$/mcm) 

S
smWG   Storage working gas capacity (mcm)55 

3.3.2.3 Variables 

A
am∆   Arc capacity expansion (mcm/d) 

SI
snm∆   Storage injection capacity expansion (mcm/d) 

SX
snm∆   Storage extraction capacity expansion (mcm/d) 

SW
snm∆   Storage working gas capacity expansion (mcm/d) 

T
tadmFLOW  Arc flow by trader (mcm/d) 

T
tndmINJ  Quantity injected to storage by trader (mcm/d) 

T
tndmPURCH  Quantity bought from producer by trader (mcm/d) 

A
admSALES  Pipeline capacity assigned to trader (mcm/d) 

P
pdmSALES  Quantity sold by producer to traders (mcm/d) 

SI
sdmSALES  Storage injection capacity assigned for use to traders (mcm/d)  

SX
sdmSALES  Storage extraction capacity assigned for use to traders (mcm/d) 

T
tndmSALES  Quantity sold to end-user markets by trader (mcm/d) 

T
tndmXTR  Quantity extracted from storage by trader (mcm/d) 

 

                                                 
55 Sub-script m is to account for expansions approved or under construction. 
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When presenting restrictions in the formulations below, Greek symbols in parentheses 

represent the dual variables used in the KKT derivation.  

, 0α β ≥  dual variables to capacity restrictions 

freeϕ   dual variables to mass balance constraints 

0ρ ≥   dual variables to capacity expansion limitations 

freeπ   duals to market-clearing conditions for sold and bought quantities 

freeτ   duals to market-clearing conditions for capacity assignment and usage. 

 

In what follows, we describe the representation of the producer and other players. 

3.3.3 Producers 

Some companies involved in natural gas production are Exxon-Mobil, British Petroleum, 

Shell, Statoil, Gazprom and Sonatrach. A main difference between the first three and the 

second three companies is that the first three operate globally and the second three mostly 

regionally. In many countries the production of gas is nationalized, especially in the 

countries that would potentially participate in a global gas cartel. Much of the company 

data for global firms is either not available, or would take more time to collect than can 

be justified for an academic study. For the type of studies performed with the model as 

part of this dissertation, focusing on upstream market power, a country-based 

representation is adequate to provide insight into the market developments. 

 

In reality, natural gas production rates and costs will vary by reservoir and over time, and 

the costs for and success rates of drilling new reservoirs must be accounted for. However, 

data for costs and reserves of individual reservoirs are not publicly available or very hard 

to obtain. Also, the level of detail might have a potentially unmanageable impact on the 

model size of the resulting MCP. Therefore, in our model we limit the representation of 

the production side of the natural gas market to the economically most relevant aspects. 

We assume that all technical characteristics can be summarized into a supply cost curve, 

a limit to daily production and a bound to the total over the time horizon economically 

recoverable reserves. In the model there is one production quantity for every producer in 

every season and every year, which must be interpreted as the seasonal average 

production level. Summarizing all (marginal) supply costs into one curve is a 
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simplification, but very common in the literature, and representative enough in the 

perspective of a long-term equilibrium model.  

3.3.3.1 Assumptions 

The model type used, MCP, requires that feasible regions and minimization objective 

functions are convex. Additionally, there are limits to data covered in publicly available 

sources. Also, the inclusion of many characteristics and much detail will lead to large 

models and possibly a large computational effort to solve the model. To develop a 

representative MCP that is computationally tractable, the assumptions must be made for 

the producer and other players. Hence, producers are assumed to: 

o maximize their discounted profits over all periods 

o have perfect information 

o have exogenously given production cost functions, daily capacities and reserves 

o have strictly increasing convex production costs, which include other relevant costs 

such as processing of the gas 

o only sell gas to one given trader (which could be considered to be their trading arm) 

o be price-takers with respect to their selling price and not exert market power. 

3.3.3.2 Producer problem 

A producer p is modeled as maximizing his discounted profits, which are the result of 

revenues from sales P

pdm
SALES  minus production costs. Cash flows in year m are 

discounted with a factormγ . Since sales rates are per day and may differ by season, the 

sales rates are multiplied by the number of days in the season d: ddays . 

 ( )max ( )
P
pdm

P P P P
m d n p dm pdm pm pdm

SALES m M d D

days SALES c SALESγ π
∈ ∈

 − ∑ ∑  
(3.3.1) 

The sales rate is restricted by a production capacity 
P
pmPR  (that can vary by year):  

 ( ). . ,
PP P
pmpdm pdms t SALES PR d m α≤ ∀  (3.3.2) 

Due to reserve limitations or governmental restrictions the aggregate production over all 

years in a time period is restricted by a production ceiling 
P
pPH . 
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 ( )PP P
pd pdm p

m M d D

days SALES PH m β
∈ ∈

≤ ∀∑ ∑  (3.3.3) 

Lastly, the sales-rate must be nonnegative: 

 0 ,P
pdmSALES d m≥ ∀  (3.3.4) 

 

Note that all market-clearing conditions are shown at the end of this chapter. Also, the 

KKT conditions for the producer and all other agents can be found in Appendix 3.13. The 

market player that we describe in the following section is the trader. 

3.4 Trade 

Most natural gas trading companies also perform other activities than buying and selling 

of gas. Often gas trading companies have some vertical or horizontal integration, and the 

integrated companies can be active in all aspects of the natural gas market, from 

production and trade, to liquefaction, regasification, LNG transport, pipeline operation 

and storage. Examples of traders in today’s natural gas marketplace include Gazexport, 

the trading arm for Gazprom (Russia) and GasTerra BV, the trading arm for NAM 

(Nederlandse Aardolie Maatschappij). A company that is active in Washington D.C. and 

Virginia is Washington Gas, and companies that are active in various southern U.S. states 

include San Diego Gas & Electric and Southern California Gas Co. Before discussing the 

role of the trader in the WGM, we elaborate on some aspects relevant for gas trade. 

3.4.1 Market power  

The Organization of Economic Co-operation and Development (OECD)56 defines market 

power as: ‘the ability of a firm (or group of firms) to raise and maintain price above the 

level that would prevail under competition is referred to as market or monopoly power. 

The exercise of market power leads to reduced output and loss of economic welfare.’ 

Generally, the exertion of market power by particular market agents is hard to prove. 

Sometimes internal company memos are made public by angry ex-employees, but usually 

the information stays hidden. Typically one would want to show that prevailing market 

prices are higher than would be the case in a perfectly competitive market. To that end, 

we would need an adequately representative model and data set and show that price and 

                                                 
56 http://stats.oecd.org/glossary/detail.asp?ID=3256  



 49 

output values in a perfectly competitive market are lower than prevailing market prices. 

We would need to show that finite resource considerations (e.g., (Hotelling, 1931) and 

(De Joode, 2003)) and restrictions in production and transport capacity are not 

responsible for the difference between marginal supply costs and prevailing market 

prices. Proving the point this way is nearly impossible, however some past events have 

provided empirical evidence for market power exertion. In 1980, Algeria cut off supplies 

to American and European customers trying to force the acceptance of unilateral changes 

in contractual terms (International Energy Agency, 2004). More recently, Russia has 

disrupted supplies to the Ukraine and other CIS countries57 as leverage in contract 

negotiations (Stern, 2006). The recent announcements around and developments of the 

Gas Exporting Countries Forum (GECF) are also an indication that market power 

exertion exists, or at the very least is contemplated by some gas exporting countries (see 

Chapter 1.) 

 

Market power has been ignored for a long time in modeling energy markets. One reason 

is that a typical Cournot oligopoly cannot be represented as a linear or quadratic program 

which makes it a computationally challenging endeavor. Smeers (2008) provides an 

extensive discussion on alternative ways to model market power. Smeers argues that 

linear and quadratic programs can sufficiently capture market power aspects. He states 

that adding a mark-up to the pure competition price suffices, arguing that an exogenous 

mark-up is equally arbitrary as a conjectural variation or conjectured response approach, 

for instance as implemented in (Mulder and Zwart, 2006), (Boots et al., 2004) or (Egging 

and Gabriel, 2006). According to (Smeers, 2008), mark-ups can be easily interpreted and 

compared to market observations. However a mark-up approach fails to capture one 

important aspect of market power: the incentive for market power players to 

geographically diversify their supplies. This effect was illustrated and explained for the 

European gas market in (Egging and Gabriel, 2006). The explanation is along the 

following lines. In a perfectly market, wherein transport costs are minimized, most 

supplies are shipped to domestic and neighboring markets. When exerting market power, 

suppliers are inclined to supply lower amounts to the domestic and neighboring markets 

to drive up prices. However, the higher prices create opportunities for other suppliers, 

                                                 
57 Commonwealth of Independent States: the countries within the former Sovjet Union 
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which can result in gas being shipped over longer distances in an imperfect market, 

relative to a perfectly competitive market. To illustrate this effect we have included an 

example at the end of this chapter. 

3.4.2 Levels of market power58 

There are many papers that develop, use or test for (concepts of) oligopolistic market 

power somewhere between perfectly competitive and Nash-Cournot oligopoly in markets 

as varying as agriculture, supermarkets and the airline industry. Some terms that have 

been used to indicate market power levels: the market power parameter (βmp in (Raper et 

al., 1998); variable λ in (Steen and Salvanes, 1999), the conduct parameter, and 

conjectural elasticity (Taylor and Kilmer, 1988), (Weerahewa, 2003), conjectural 

variation (Garcia-Alcalde et al., 2002), and the numbers of equivalent Cournot firms (cf., 

the value of n in 13
1i n

q +=  in Section 3 of Chapter 2), the Lerner index (Lerner, 1934) and 

the Hirschman - Herfindahl index (HHI). In our work we apply a mixed conjectural 

variation approach. We define a market power parameter for the traders , [0,1]C
t nδ ∈ , 

which is implicitly defined as follows: ( )
,

T M
tndm

t T n

T M
tndm

SALES
C
t n SALES

δ
→

∈

→

∂

∂

∑
= , the partial derivative of the 

total supply with respect to a firms own supply. A value of , 0C
t nδ =  means no market 

power: the conjecture is that a change in own supply will not induce a change in total 

supply (and thus in market price); a value of , 1C
t nδ =  means that the trader is a full 

Cournot player. As a full Cournot player the conjectured variation in supply by the other 

players is 0 (i.e., other players will not change their output volumes in response to a 

change in the market price induced by this player’s changing output volume). Positive 

values lower than one indicate that we assume that some market power is exerted by the 

trader, but diluted relative to Cournot competition. This implies that the model as 

implemented is not a strict Cournot model, but rather a heuristic way to deal with varying 

degrees of market power and to calibrate the model. Long-term market share 

considerations and government policies are two of the factors that may not completely 

prevent, but may to some extend limit the exertion of market power. 

                                                 
58 This discussion on market-power parameters is a slightly adjusted version of the discussion in (Egging et 
al., 2008). Special thanks to Energy Policy for the permission to reuse some of the work in this dissertation. 
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In the model presented in this chapter, the market power is with the traders, both 

representing the pipeline and the LNG deliveries. This differs from (Egging et al., 2010) 

wherein both traders and regasifiers could exert market power. The latter formulation was 

not able to adequately represent cartel types of collusion. This is corrected by the current 

formulation wherein traders coordinate both pipeline and LNG flows originating from the 

same country.  

3.4.3 Contracts 

The subject of long-term contracts was briefly addressed in Chapter 1 as a means for 

market participants to secure a return on investments on expensive transportation 

infrastructure and a mechanism to allocate risk along the natural gas supply chain. 

Although decreasing in relative volume, long-term contracts are still a very important 

factor in natural gas markets. In the year 2007, 82.2% of global LNG (GIIGNL, 2008) 

was traded via long-term contracts, and a large part of the remaining 17.8% via short-

term contracts.59 

 

Most long-term contracts in the LNG market contain the Take-Or-Pay (TOP) clause: the 

buyer agrees to pay for a specific quantity of delivered LNG, even if he would not 

actually take it. A second option, the flexibility clause, allows the buyer to purchase an 

extra volume of LNG (often up to 50% of the minimum supplied amount) at the 

contractually agreed price. A third common contract term is the destination clause, which 

entails that the buyer cannot resell the gas to another party without permission of the 

supplier. The destination clause effectively segments the market, thereby hindering 

competition and market liquidity. It is one of the issues that has been heavily debated by 

European regulatory authorities, for example in the context of Russia’s dominant supply 

situation (Finon and Locatelli, 2008).  

 
                                                 
59 For pipeline gas it was not possible to find any references that indicate the share of (long-term) contracts. 
For instance, (International Energy Agency, 2008) quotes GIINGL for the LNG contract shares, but gives 
no pipeline contracts share. To give some indication: in the United Kingdom, the earliest and most open 
market in Europe, about 70% of the produced gas was sold under long-term contracts, about 15% under 
short-term contracts, and about 15% on the spot market (International Energy Agency, 2004). In Belgium, 
which is completely import-dependent, long-term contracts for LNG and pipeline gas fulfill about 95% of 
domestic demand. 
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Recently there have been some developments in the structure and pricing of long-term 

gas supply contracts (International Energy Agency, 2004, 2006a). These developments 

include decreasing contract periods, smaller contract volumes and more flexibility in 

TOP obligations and diversion of the destination. Another development has been the 

decreasing share of long-term contracts relative to the total traded natural gas volumes, as 

discussed in (International Energy Agency, 2004) and (Neumann and Von Hirschhausen, 

2004).  

 

In the EU, a main reason for the decreasing share of contracts are the market 

liberalization efforts. The interdependence between market liberalization in the EU and 

decrease in the market share of contracts goes two ways. The regulatory framework has 

discouraged long-term contracts with little flexibility as they hinder competition. 

Alternatively, the liberalization has brought more players to the market, providing more 

alternative options and reducing the need to secure supplies from a specific source.  

 

(Neuhoff and Von Hirschhausen, 2005) discussed the impact of long-term contracts on 

producer profits and consumer surplus in the context of the liberalizing European gas 

market. They argue that producers benefit from the risk-hedging aspects, while 

consumers benefit from lower prices resulting from spot market behavior of the 

producers given that the contractually delivered amounts and prices have been set. When 

long-term demand elasticities are significantly larger than short-term elasticity, the lower 

prices due to the spot deliveries induce higher gas consumption in the long run and higher 

profits for the producers than when no spot deliveries would be made. 60  

 

Allaz and Vila (1993) discussed the impact of contracts on market efficiency in a multi-

stage multi-period duopoly and showed that contracts reduce the ability of market players 

to exert market power. The duopoly setting allows for an analytic approach using closed-

form expressions based on optimal response curves (Figure 7 in Section 2.3). Calcagno 

and Sadrieh (2004) extended the results to storable products and risk-averse traders under 

demand uncertainty and Su (2007) addressed asymmetry in cost functions at the supply 

                                                 
60 (Neuhoff and Von Hirschhausen, 2005) show for a stylized symmetric duopoly that an order of 
magnitude difference in short and long-term demand elasticities of five would be sufficiently large to 
induce the described effects. 
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side. Zhuang (2005) included contracts in an extensive-form two-stage stochastic 

duopoly cast as an MCP. 

 

The important role of contracts in natural gas markets must be considered for the World 

Gas Model. However, including contracts poses several challenges. Some aspects have to 

do with the mathematical formulation, which can be overcome; other aspects are of a 

more practical nature. One major practical consideration is that it is difficult to obtain 

information on contract volumes and terms. This is more so for pipeline trade than for 

LNG. For LNG contracts most information in terms of prices and quantities is publicly 

available (GIIGNL, 2009), but this is not the case for pipeline contracts.  

 

To adequately model the contracting process, we would need a multi-stage model, with 

contracting and spot-market phases (Neuhoff and Von Hirschhausen, 2005), (Zhuang, 

2005). However, in a deterministic one-stage MCP with risk-neutral players, players are 

indifferent between contracted volumes and spot market sales. Since there is no 

uncertainty, there is no need to hedge decisions and forward and spot market prices in a 

deterministic model, the two sets of prices will be the same. Zhuang (2005) showed that 

in a stochastic duopoly setting, when supplied quantities are positive, the forward prices 

equal the expected spot market prices. 

 

Another consideration when including contracts is that they typically contain a price and 

volume component, and that delivered prices are often indexed to crude oil prices. In an 

MCP we cannot set both the delivered prices and the delivered volumes. Setting both 

delivered prices and volumes to fixed values will likely cause infeasibility of the model 

due to inconsistency of these values with any feasible solution of the whole model. 

Instead we will only consider the contract as a lower bound to supplied amounts, and 

allow the delivered prices to be determined endogenously by the model. 

 

Many actual gas deliveries that are done to meet contractual obligations would probably 

also have occurred if there had been no contracts in place, but only a spot market would 

have existed (e.g., contractually supplied volumes from Russia, Norway and Algeria to 

European countries). Therefore, many of these contractual trade flows will be captured by 
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a long-run equilibrium model (c.f., (Holz, 2009) p. 73). What would not be captured by 

excluding contracts is explicit diversification of supplies by importing countries, and 

restrictions to redirecting of gas flows in disruption scenarios. The diversification aspect 

is more of an issue in the LNG market than in the pipeline market, since pipelines allow 

much fewer alternative destinations than LNG ships. The limitations caused by the 

destination clause are becoming less important, given the trend in loosening terms for 

reselling gas (c.f., IP/07/1074, the agreement between the EC and Algeria to drop 

territorial restrictions from all contracts). 61 It is not uncommon these days to redirect 

LNG supplies from their contractual destinations to some other market with higher spot 

prices, and the supplier and buyer sharing the benefits. Contractual terms are increasingly 

flexible relative to the destination of the gas. Also unilateral agreements among groups of 

countries (such as the European Union) to support each other in crisis situations reduce 

the impact of fixed contract volumes. Flexibility from one source can compensate for the 

rigidity of another, and even a relatively small fraction of non-fixed-destination gas and 

swing supply suffices to reallocate flows. A last consideration is that most models in the 

literature lack the inclusion of contracts (see Chapter 2). In conclusion, we forgo 

including pipeline contracts, but include LNG contracts when the appropriate data are 

present.  

 

The traders in the WGM have a simplified role. They buy gas from one or more 

producers, and sell gas to one or more final consumption markets. This modeling 

approach can both represent a vertically integrated production and trading company 

(separate parts of the same overall organization with perfectly-competitive internal 

accounting prices) as well as an independent trader that purchases gas from one or several 

producers and who markets the gas to various consumer markets. In the WGM we 

distinguish two types of traders: 

o Traders operating only at the domestic node of the producer, in case it is a small 

producer that does not export any gas. This applies to countries such as Germany and 

Italy that only produce about 16% and 10% respectively of domestic consumption. 

o Traders that can operate at any consumption node that can be reached via the LNG 

supply chain or via pipelines through transit nodes from their own producer’s node. 

                                                 
61 http://europa.eu/rapid/pressReleasesAction.do?reference=IP/07/1074 
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An example is the Netherlands, both a gas producing and exporting country. The 

trader associated with the Dutch producer is present in European consuming countries 

such as the United Kingdom, Belgium, France, Germany, Poland, Austria, Italy, etc., 

but not in countries like: 

o Algeria, because Algeria does not have incoming pipelines from the 

European Continent; 

o South Korea, because South Korea cannot be reached by pipeline from the 

Netherlands and the Netherlands do not have any liquefaction facilities. 

Modeling traders as separate participants is also consistent with legal requirements 

forcing unbundling of production and trade operations that have been pushed by the U.S. 

Federal Energy Regulatory Commission (FERC) and the European Commission 

(European Commission, 2003).62  

3.4.3.1 Assumptions 

The role of the trader in the WGM is completely disintegrated from other activities and 

does not surpass the trade of natural gas. In the WGM, traders only buy and sell gas and 

vertical nor horizontal integration is addressed and infrastructure services needed for 

transportation and storage of natural gas are purchased from other model players. Hence, 

traders are assumed to: 

o maximize their discounted profits over all periods 

o have perfect information 

o only purchase gas from a specific set of producers 

o only sell gas to markets in countries that are accessible via pipelines or the LNG 

supply chain 

o not own any infrastructure (neither pipelines, LNG export or import terminals, vessels, 

storage facilities) 

o be price-takers with regard to purchases from producers, as well as the usage of 

services from infrastructure operators 

o exert market power to the consumer markets by strategically withholding part of the 

supplies according to a pre-specified market power parameter value 

                                                 
62 www.eia.doe.gov, www.ferc.gov/industries/gas.asp (e.g., FERC order 636). 
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3.4.3.2 Trader problem  

The trader is modeled as maximizing the profits resulting from selling gas to marketers 

( T
tndmSALES ), net of the gas purchasing costs and other costs: a regulated fee A,reg

admτ  plus a 

congestion fee A
admτ , to transport the gas ( T

tadmFLOW ) over high pressure pipelines a. The 

parameter [ ]0,1C
tnδ ∈  indicates the level of market power exerted by a trader at a 

consumption node, with 0 representing perfect competitive behavior and 1 representing 

perfect Nash-Cournot oligopolistic behavior. The expression ( )( )(1 )C W C W
tn ndm tn ndmδ δ πΠ ⋅ + −  

can be viewed as a weighted average of market prices resulting from the inverse demand 

function ( )W
ndmΠ ⋅  (Eq. (3.10.1)) and a perfectly competitive market-clearing wholesale 

price W
ndmπ . The trader also decides how much gas to inject in and extract from storage. 

Costs for injection are a regulated fee and a congestion rate; costs for extraction are a 

congestion rate only. Thus, trader t is modeled as solving the following optimization 

problem: 
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 (3.4.1) 

Mass balance at every node n in every season d of every year m:63 

s.t. ( )
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(3.4.2) 

There is no carry over of gas stored to following years. Thus, over the storage cycle in 

each year the total extracted volumes must equal the loss-corrected injection volumes. 

                                                 
63 Pipeline losses are accounted for in this mass-balance equation; in contrast, the storage loss rate is 
accounted for in the storage cycle constraint, equation (3.4.3). 
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 ( ) ( )( ) ( )1 , , ,T T S
s d tsdm d tsdm tsdm

d D d D

loss days INJ days XTR n s S N t d mϕ
∈ ∈

− = ∀ ∈∑ ∑  (3.4.3) 

Contractual arrangements to supply a minimum amount to a market n in a season d, and 

year m via a transport connection (arc) a provide lower bounds to some flows:  

 ( ), ,T T T
tadm tadm tadmFLOW CON a d m ε≥ ∀  (3.4.4) 

All other constraints are nonnegativity of variables: 

 0 , ,T
tndmSALES n d m≥ ∀  (3.4.5) 

 0 , ,T
tndmPURCH n d m≥ ∀  (3.4.6) 

 0 , ,T
tadmFLOW a d m≥ ∀  (3.4.7) 

 0 , ,T
tndmINJ n d m≥ ∀  (3.4.8) 

 0 , ,T
tndmXTR n d m≥ ∀  (3.4.9) 

 
The inverse demand curve ( )W

ndmΠ ⋅ is presented in the marketer section, 3.10. The 

following section presents the aspects relevant for natural gas liquefaction.  

3.5 Liquefaction 

Some of the major players in liquefied natural gas are Shell, GDF Suez and British Gas.64 

All of them are present in several LNG exporting countries and involved in other 

activities as well, such as production and marketing. The following picture characterizes 

the main elements of the LNG supply chain.  

 
Figure 10: LNG supply chain. Source: Panhandle Ener gy 65 

 

On the supply side there is gas production and liquefaction, then the liquefied gas is 

shipped overseas. In the consuming region an importing facility re-gasifies the gas and 

pumps it into the local pipeline system. 

                                                 
64 www.shell.com/lng;  
 www.gdfsuez.com/en/activities/our-energies/natural-gas-and-lng/natural-gas-and-lng/ and 
www.bg-group.com/OurBusiness/BusinessSegments/Documents/BG_LNGfactsheets2008.pdf 
65 www.panhandleenergy.com/images/content/lng_term_chain.jpg 
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3.5.1 Engineering considerations 

The liquefaction of natural gas is a capital-intensive and technologically-advanced 

process. Differences in the constituents of gas in various production fields and the 

requirements in the importing markets need to be overcome. Local circumstances can 

drastically impact the construction of facilities as well as operational characteristics. For 

instance, arctic conditions in the Norwegian northern North Sea, the Russian Barents Sea 

and the Sakhalin island may impede the development of LNG infrastructure and the 

accessibility of the facilities by ships. However the much colder sea water as compared to 

the Middle Eastern countries, (e.g., Qatar), allow for significantly lower natural gas 

losses in the actual liquefaction process in the arctic regions. 

 

Impurities and non-combustible components (such as carbon dioxide) do not add any 

value to the end-users and are removed from the gas to transport more energy content in 

the available shipping capacity. Other necessary steps in the LNG supply chain are:  

o Sweetening: processing the gas to take out the acidic fractions such as water and 

carbon dioxide to prevent rusting of pipelines and containers. 

o Separation: removing most of the heavier hydrocarbons (such as NGL). 

o Compression and heat exchange: cooling and pressurizing the natural gas.  

o Expansion: bringing the liquefied gas to atmospheric pressure. 

o Storage: storing the gas between the liquefaction and the loading of the ship.  

o Loading: bringing the liquefied gas on the ship. 

Many technical aspects of the liquefaction process potentially cause non-linearities and 

non-convexities when representing them in a mathematical model. This can be 

problematic, since non-convex feasible regions undermine the assumptions underlying 

the mathematical approaches to find equilibrium solutions (c.f., Chapter 2). Capacity 

expansions are typically integer-valued, and carry economies of scale; integers cannot 

easily be incorporated in an MCP and representing economies of scale – decreasing 

marginal costs – induces concavity of minimization objectives. Linear approximations of 

non-linear technical characteristics might preserve the convexity required for solving the 

WGM, but are beyond the scope of this dissertation. The liquefaction of gas is modeled 

as capacity bounds, a loss rate, a regulated fee, and possibly a congestion charge.  
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For more details on the design of liquefaction plants, see for example the technical 

briefing (Denton and Barclay, 2005) that discusses some of the considerations and issues 

for the design of – relatively small scale – offshore LNG plants. For more pictures and 

extensive descriptions of LNG liquefaction technology (e.g., (Spilsbury et al., 2005). 

Note that there is no separate mathematical formulation for natural gas liquefaction. The 

relevant aspects are represented in the trader and the transmission system operator 

problems.  

3.6 Regasification 

When an LNG shipment arrives at its destination, the vessel must be unloaded and the 

gas must be brought back into a gaseous state to distribute it into the gas grid. Some 

players that are active in regasification are: GDF Suez, British Gas, Cheniere and 

Fluxys.66 For an overview of all regasification terminals, see (GIIGNL, 2008). Similar to 

other players, regasifiers are represented in a simplified way in the WGM. For instance 

one of the aspects that is not captured is the following. Recently, some LNG receiving 

terminals have installed loading facilities. Liquefied gas that was unloaded and stored but 

not yet vaporized, can be loaded back onto ships and shipped to other destinations.67 This 

loading equipment allows market players to benefit from short-term arbitrage 

opportunities, but could potentially provide swing supply in some markets. Due to the 

likely near-term excess of regasification capacity on the U.S. Gulf Coast, some analysts 

consider it likely that U.S. terminals may be equipped with loading facilities and possibly 

more storage tanks as well.68 Terminals equipped as such could provide seasonal swing 

flexibility in the Atlantic Basin and enhance the security of supply situation on both sides 

of the ocean. The WGM will not incorporate these LNG storage and re-exportation 

capabilities of regasification terminals are not incorporated. The setting of a long-term 

equilibrium model with just a few demand seasons in a year does not capture short-term 

price-hikes that could provide the incentives for reloading LNG onto ships. Rather, the 

long-term seasonal average prices let LNG exporting traders decide where to direct their 
                                                 
66 www.gdfsuez.com/en/activities/our-energies/natural-gas-and-lng/natural-gas-and-lng/ ; 
www.bg-group.com/OurBusiness/BusinessSegments/Documents/BG_LNGfactsheets2008.pdf ; 
www.cheniere.com/default.shtml and  
www.fluxys.com/en/Services/LNGTerminalling/LNGTerminalling.aspx  
67 www.fluxyslng.net/media/pdf/2008/PB_Fluxys_080731_EN.pdf  
68 www.cheniereenergypartners.com/liquefaction_project/liquefaction_project.shtml (Accessed Nov 15, 
2010) 
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LNG vessels dependent on seasonal demand patterns. Dependent on other variables not 

capturing this LNG reloading option in the model may result in lower future 

regasification capacities on the East Coast of the U.S. and higher regasification capacities 

and storage working gas in (Western) Europe in the model outcomes. However, we 

expect that the model results, especially the trends in long-term developments, will not be 

affected much by this modeling choice. 

 

Contrary to liquefiers, we allow for more than one regasifier in a country. This choice 

allows countries like Spain, France and Mexico to have and expand import capacity on 

their respective east and west coasts. That choice is made as it could provide interesting 

insights in developments in the various basins.  

3.6.1 Engineering considerations 

The infrastructure for the regasification of gas is less capital-intensive than for 

liquefaction. Naturally when LNG is exposed to ambient temperature and atmospheric 

pressure it will return to a gaseous state. To speed up this process, heat exchangers can be 

used. Often sea water is used as the heat source. Sometimes the sea water is heated by 

boilers, using some of the gas that is regasified. The main steps in the regasification 

process are the following:69  

o Unloading of the LNG shipping vessel. 

o Vaporization of the liquefied gas to bring it back to a gaseous state. 

o Storing the gas to allow for quick unloading of the vessel while not immediately 

bringing the gas into the pipeline system. 

o Processing: sometimes some components must be added to decrease the calorific value 

to meet local requirements. 

o Bringing gas into the pipeline system, the final step to distribute the gas from the 

terminal to the end-users. 

 

The regasification of gas is modeled as capacity bounds, a loss rate, a regulated fee and 

an endogenously determined congestion charge (identical to liquefaction and pipeline 

                                                 
69 www.cheniere.com/lng_terminals/terminals.shtml; www.canaportlng.com/faqs.php;  
 www.fluxyslng.net and www.gate.nl/index.php?fotoalbum_id=&taal_id=2  
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infrastructure). There is no separate mathematical formulation for natural gas 

regasification. Instead, the relevant aspects are represented in the trader and the 

transmission system operator problems. 

3.7 LNG shipment 

The bulk of LNG is transported in dedicated LNG shipping vessels. In a few countries, 

such as Belgium, LNG is transported by trucks on a relatively small scale. 70 In the WGM 

the local truck distribution of LNG is ignored, as is done with all domestic distribution of 

natural gas. Also, the possible capacity restrictions resulting from a limited number of 

LNG shipping vessels is not included. Note that LNG shipment is not included as an 

independent player. Rather, it is represented by a shipping cost and gas loss rate in the 

trader problem.  

  

The following section describes the storage operations. 

3.8 Storage 

Natural gas storage is used for a variety of reasons, including daily balancing and 

speculation, seasonal balancing and as a strategic backup supply to overcome temporary 

supply disruptions or to meet peak demand on extremely cold winter days. Examples of 

two companies involved in gas storage are Royal Dutch Shell and E.ON.71 

3.8.1 Engineering considerations 

The Energy Information Administration provides information regarding the storage of 

natural gas on their website.72 There are various types of gas storage: depleted reservoirs 

in oil and gas fields, aquifers, and salt caverns. Each of them has different characteristics 

relative to the amount of gas that can be stored and the speed with which the gas can be 

injected or extracted. A specific amount of gas in the storage, called cushion gas, is never 

extracted to maintain a high enough pressure level. This cushion gas can take up to 80% 

of the available space in the storage. The amount of gas available for operation is the 

                                                 
70 www.fluxys.com/en/Services/LNGTerminalling/TruckLoading/TruckLoading.aspx  
71 www.shell.com/static/nam-en/downloads/Brochure_Underground_Gas_Storage.pdf and  
  www.eon-uk.com/generation/gas_storage.aspx 
72 www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/storagebasics/storagebasics.pdf  
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working gas. Typically gas installations have minimum and maximum injection and 

extraction rates. To be able to inject the gas into storage compressors are used to increase 

pressure. These compressors use some of the gas as their energy source, therefore there is 

a loss rate. Many storage facilities are owned by other players in the gas market, such as 

gas producers, traders, and pipeline network owners. Other storage facilities provide a 

service. They inject, store and extract gas for a third party, and the storage operators 

never own the (non-cushion) gas stored in their facilities. In the WGM the storage 

operators are modeled as regulated players. This is different from (Egging et al., 2008) 

and (Egging et al., 2010)) where storage operators provided seasonal swing services by 

executing seasonal arbitrage. Having regulated players appears to be a better 

representation for most of the storage operators in the market. Also in former versions of 

the WGM we observed price-undercutting behavior in the high and peak demand seasons 

by storage operators. The price undercutting was due to storage operators buying at 

perfectly competitive prices in the low demand season, and selling at non-strategic, 

perfectly competitive prices to the marketer in the high and peak demand seasons, 

thereby undermining the position of traders exerting market power relative to these 

marketers. In the version of WGM that we present in this chapter, the traders coordinate 

the injection and extraction volumes, and the undercutting of prices in the high and peak 

demand seasons cannot occur.  

3.8.2 Assumptions 

There are several roles in the natural gas market executed by storage operators. In the 

WGM, storage is assumed to be a price-taking service provider and storage operators are 

assumed to: 

o maximize discounted profits 

o be regulated players 

o allocate scarce capacities for injection, extraction and working gas, implemented 

through the maximization of congestion charges for capacity usage 

o have perfect information 

o not withhold existing capacities from the market to manipulate congestion charges 

o be able to inject and extract gas in any season 

o be able to inject and extract gas at any rate lower than the respective capacities 

o not discriminate among traders (c.f., TPA). 
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o have linear injection and extraction restrictions, that do not depend on stored volumes 

3.8.3 Storage operator problem  

The storage operator provides an economic mechanism to efficiently allocate storage 

capacity to traders (cf., (Hobbs, 2001), (Egging and Gabriel, 2006) and (Egging et al. 

2008, 2010)). The storage and transmission operators are both modeled using congestion-

charge approaches. Smeers (2008) addressed some shortcomings of congestion-pricing 

approaches for allocating infrastructure capacities. For the USA, assuming a profit 

incentive for infrastructure operators does in itself not represent legislation as 

implemented by FERC. In the EU, member states can implement regulated or negotiated 

access regimes.73 Representing the actual regulatory frameworks and allocation 

mechanisms for infrastructure capacity would pose large challenges with regard to 

modeling activities as well as data collection, which is not done yet for the WGM. 

Instead, the storage operator maximizes the discounted profit resulting from selling 

injection capacity SI
sdmSALES  and extraction capacity to traders SX

sdmSALES . In equilibrium 

the capacity sales rates SI
sdmSALES  and SX

sdmSALES  are equal to the aggregate injection and 

extraction rates. Generally, regulators set maximum infrastructure usage charges based on 

the long-term marginal costs, i.e. the operating and maintenance costs plus a margin to 

earn a return on investment.74 Our simplified assumption is that the regulated fees 

collected from the traders equal the costs and therefore in the model the profit margin is 

equal to the congestion fees for injection SI
sdmτ  and extraction SX

sdmτ . Note that these 

congestion fees are not paid in actuality, cf. the pipeline congestion fees. Besides the 

regulated tariffs for injection and extraction, costs may be accrued to expand capacities 

for injection, extraction and total working gas: SI SI SX SX SW SW
sm sm sm sm sm smb b b∆ + ∆ + ∆ . 

                                                 
73 
http://ec.europa.eu/energy/gas_electricity/interpretative_notes/doc/implementation_notes/2010_01_21_thir
d-party_access_to_storage_facilities.pdf (Accessed Nov 8, 2010) ; 
http://ec.europa.eu/energy/electricity/legislation/doc/notes_for_implementation_2004/exemptions_tpa_en.p
df  (Accessed Nov 8, 2010) 
74 For instance, refer to FERC www.ferc.gov/industries/gas.asp , EC directive 2009/73/EC or 
www.naturalgas.org/regulation/regulation.asp  
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 ,

,

, ,

max
SI
sdm

SX
sdm

SI SX SW
sm sm sm

SI SI SX SX
sdm sdm sdm sdm

m d SI SI SX SX SW SWSALES m M d D sm sm sm sm sm sm
SALES

SALES SALES
days

b b b

τ τ
γ

∈ ∈

∆ ∆ ∆

 + 
 

− ∆ − ∆ − ∆  
∑ ∑  

(3.8.1) 

As discussed in the introduction of this subsection the compressors that are used to inject 

the gas have a limited capacity. The aggregate injection rate in any season is restricted by 

the injection capacity. Since capacities can be expanded, the total capacity in a year is the 

sum of the initial capacity 
S
sINJ and the aggregate previous yearly expansions '

'

SI
sm

m m<

∆∑ . 

The modeling of storage is limited in both the number of seasons represented in the 

model, as well as not addressing the dependence of maximum injection and extraction   

rates on the amount of natural gas actually in storage. This will impact model results, and 

likely underestimate the use of storage and capacity additions. However, relative to a 

Base Case, results of other cases are still illustrative for long-term developments. Eq. 

(3.8.2) provides the limits to extraction from storage and Eq. (3.8.3) represents the 

working gas limitations. 

s.t.  ( )'
'

,
SISI SI SI
ssdm sm sdm

m m

SALES CAP m d α
<

≤ + ∆ ∀∑  (3.8.2) 

  ( )'
'

,
SXSX SX SX
ssdm sm sdm

m m

SALES CAP m d α
<

≤ + ∆ ∀∑  (3.8.3) 

 ( )'
'

SSX SW SW
sd sdm sm sm

d D m m

days SALES WG m α
∈ <

≤ + ∆ ∀∑ ∑  (3.8.4) 

Limitations to allowable capacity expansions: 

 ( )SI SI SI
sm sm smm ρ∆ ≤ ∆ ∀  (3.8.5) 

 ( )SX SX SX
sm sm smm ρ∆ ≤ ∆ ∀  (3.8.6) 

 ( )SW SW SW
sm sm smm ρ∆ ≤ ∆ ∀  (3.8.7) 

Also, all variables are nonnegative: 

 0 ,SI
sdmSALES m d≥ ∀  (3.8.8) 

 0 ,SX
sdmSALES m d≥ ∀  (3.8.9) 

 0SI
sm m∆ ≥ ∀  (3.8.10) 

 0SX
sm m∆ ≥ ∀  (3.8.11) 
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 0SW
sm m∆ ≥ ∀  (3.8.12) 

Note that mass balance for each storage facility (the storage cycle constraint), including 

accounting for losses, is dealt with for each separate trader, in Eq. (3.4.3).  

 

The next section describes the Transmission System Operator, who is responsible for 

assigning available capacities of international transportation infrastructure to the traders; 

as well as for expansions of the transportation infrastructure. 

3.9  The pipeline network 

Ownership, management and operation of the pipeline network is done differently in 

various countries. In the past it was very common that pipeline owners also traded the 

gas. However regulatory authorities have recognized that the ownership of a pipeline 

provides the owner with a monopoly position in the transport of the gas, and too much 

leverage in negotiations. In the 1980s and 1990s, the U.S. energy regulator FERC took 

measures to enhance the access to transport infrastructure for third parties (Third Party 

Access, TPA) by forcing an unbundling of pipeline ownership and gas trade. 75 In Europe, 

the EC started to take similar actions in the late 1990s; however the process is not 

complete yet (International Energy Agency, 2006b).76 To clarify some of the data 

assumptions regarding pipelines, see Figure 11 that shows part of the international high 

pressure pipelines in Western Europe.  

 

                                                 
75 www.ferc.gov and 
www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/regulatory.html  
76 http://ec.europa.eu/competition/sectors/energy/inquiry/index.html; 
 http://ec.europa.eu/news/energy/081010_1_en.htm and 
 http://europa.eu/legislation_summaries/energy/internal_energy_market/l27077_en.htm 
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Figure 11: High-pressure pipelines in Western Europ e – detail. Source: GTE 77 

 
In Figure 11 we can see a pipeline (BBL, 19) connecting the Netherlands with the United 

Kingdom, a pipeline connecting Belgium and the United Kingdom (Interconnector, 1) 

several pipelines (2-6) connecting the Netherlands and Belgium, and a number of 

pipelines (14-18) connecting the Netherlands and Germany.  

 

What cannot be seen from the picture is that several of these numbers represent 

aggregated pipelines in reality, and also that there are pipeline networks for two different 

calorific values.78 The WGM ignores the distinction between low and high calorific value 

gas as the relevance is limited in the context of a global natural gas market. Also, there is 

at most one pipeline going from one country to another, representing the aggregate 

pipeline capacities in one direction. This means for example that in the model there are 

two pipelines between the Netherlands and Germany, one in each direction, representing 

the five (groups of) pipelines in Figure 11 above.  
                                                 
77 http://gie.waxinteractive3.com/maps_data/capacity.html (Accessed June 9, 2009) 
78 http://gie.waxinteractive3.com/maps_data/downloads/GTE_CAP_DATA_April2009.xls  
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3.9.1 Engineering considerations 

It is necessary to address pipeline capacities in an economic natural gas market model, 

since they limit the supplied volumes from producers to end-users. A big issue is that 

pipeline capacities depend on flows and pressure differences in neighboring pipelines and 

that these dependencies are non-linear.  

 

There are various equations that relate pipeline diameter, length and pressure, such as 

Weymouth (Midthun, 2007) and Colebrook and White (More, 2006), and provide 

theoretically obtainable pipe flow rates in a pipeline network. The equations provide non-

linear relations that cannot be directly included in an MCP. It would be possible to 

include linearized approximations, however at the expense of a significant increase in the 

number of equations and variables, and possibly very long solution times. Two recent 

dissertations have shed some light on how to address pipeline capacities in a modeling 

framework, both by using linearization techniques. Van Der Hoeven (2004) takes a 

simulation perspective and Midthun (2007) an optimization one. 

 

Van Der Hoeven (2004) provided extensive details on gas quality, gas flow and pipeline 

network properties as well as various linearization approaches. His models included gas 

supply points, pipelines, compressor and pressure reduction stations, gas quality 

conversion stations and offtake points. He also addressed a distinguishing feature of the 

Dutch high pressure network of two somewhat linked networks, one for high and one for 

low calorific value natural gas.79 This is due to the main production field in the 

Netherlands, the Groningen field, having much lower calorific value gas than most other 

fields in the Netherlands (and the rest of the world).  

 

Midthun (2007) designed an optimization model for natural gas transportation, applied to 

the Norwegian continental shelf. His model includes the production fields, processing 

                                                 
79 Gross (Net) Calorific Value (GCV, NCV) = Upper (Lower) Wobbe index. The reason for having two 
different values is that not all heat from burning gas becomes available. Natural gas contains hydrogen 
atoms. When burning the gas the hydrogen atoms react with oxygen and form water vapor. The difference 
between GCV and NCV is the amount of energy needed to vaporize the water: the NCV excludes this 
energy. For natural gas the GCV is about 10% higher than the NCV. GCVs typically range from about 38 
to 42 MJ/m3, dependent on the local circumstances. Sources: www.iea.org, IEA 2006 Key World Energy 
Statistics p. 59, http://chp.defra.gov.uk/cms/fuel-calorific-value/  
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plants and delivery points to consumer markets. He addressed differences in calorific 

value and gas constituents from gas produced in different fields, as well as how pressure 

differences in one part of the pipeline system affect the transport capacity of other parts 

of the network. His objectives included minimizing deviations from producer’s 

production schedules, minimizing the power usage in compressors and maximizing 

profits and consumer surplus while needing to meet contractual requirements for 

pressure, quality and volumes. The model was also equipped to manage disruptions (e.g., 

in pipelines) by deciding which production fields should provide swing in order to meet 

demand requirements. 

 

Midthun refrained from the time-state, transitioning transient analysis and limited himself 

to steady-state analysis of pipeline flows, arguing that for planning purposes this 

limitation is minor.80 However even the mathematical models for steady-state pipeline 

flows are non-linear and non-convex. He used linearization techniques to convexivy the 

feasible region and the objective functions. Midthun gave examples, such as how 

increasing a flow at some pipeline reduces the overall network capacity and how adding a 

pipeline at some place in the network requires additional compression at another part of 

the network to maintain flow capacities. In his last chapter he presented a two-stage 

stochastic MCP to model the booking process of pipeline capacity. From the perspective 

of the network operator three maximization objectives were compared: the aggregate 

flow, the aggregate value of the flows, and a social surplus measure with regard to the 

producers booking the transport capacities. He illustrated the approach with some small 

numerical examples. 

 

Midthun et al. (2009)81 discussed that ignoring the physical characteristics gas flows in a 

pipeline network will often lead to wrong conclusions regarding the maximum flows that 

can be transported through the network. The WGM does not explicitly contain the 

pipeline networks from production fields to the on-land off-take points. Only the onshore 

network is explicitly represented, although at an aggregate level. This differs from 

(Midthun, 2007) where the offshore pipelines are the main part of the network. Offshore 

                                                 
80 Some publications that have addressed transient analysis are: (More, 2006) and (Schroeder, Jr., 2001). 
81 Chapter 3 in Midthun (2007) 
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the production fields provide the pressure since no compressor stations can be put under 

water. However onshore, compressor stations can be used to increase pressure levels 

(although at the expense of some gas loss). It would be possible to use the approach 

developed by Midthun (2007) to represent physical pipeline characteristics in the model. 

This would significantly increase the number of equations and variables and require more 

computational effort to solve. Typically pipelines are designed to bear significantly 

higher pressures than the nominal ones, implying that maximum capacities are actually 

higher as well. Linepack, temporarily increasing the amount of gas and hence the 

pressure in part of the network is also a means of operational flexibility. As a result, 

actual capacities are not overstated by the nominal capacities in the dataset.  

 

The demand variation in the model is aggregated to two seasons each year, and the 

operational consequences of daily and hourly changing flows are averaged out over these 

seasons. Given these considerations and the aggregation level of the pipelines in the data 

sets, the nominal values used for pipeline capacities are assumed to be representative for 

the actual pipeline capacities. 

 

Some natural gas pipelines are bidirectional. In the WMG these pipelines are included as 

two separate capacities. Similar to (Mulder and Zwart, 2006), (Lise and Hobbs, 2009) 

and (Holz, 2009) there is no netting of flows. This will have no impact in a perfect 

competition setting, since in an optimal solution (assuming strictly positive costs or 

losses) at most one pipeline of the pair representing the bidirectional pipeline will be 

used. However traders exerting market power have an incentive to supply to other 

markets, what can result in congested pipelines in both directions. See Section 3.14. 

3.9.2 Capacity expansions 

There are limitations to how capacity investments and expansions can be modeled in an 

MCP. For example, at some point when designing an LNG plant, a decision about the gas 

turbines that power the compressors needs to be made. The used LNG processing 

equipment does not come in an unlimited variety of sizes (Spilsbury et al., 2005). Putting 

in a second turbine, or a bigger one, will generally results in a significant increase in both 

costs and capacity. This type of expansion is integer-valued, a characteristic that cannot 
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be accommodated easily in an MCP. To preserve convexity, in our model we assume that 

any size of expansion can be made, i.e., all expansion variables are continuous.  

 

If the integrality restrictions would be taken into account at the same time as the MCP, 

the resulting problem is difficult to solve and in some cases there may not be a solution. 

Several examples that do combine these two aspects of market equilibria include the 

work of (García-Bertrand et al., 2005, 2006), (Gabriel et al., 2006) and (Gabriel and 

Leuthold, 2010) in which electric power markets are modeled with the ability to turn 

certain power generating facilities on or off based on market conditions. 

 

In practice, researchers often either fixed the level of investments exogenously or take a 

continuous relaxation of the integer restrictions but mostly in the context of solving an 

optimization problem and not an MCP. In the WGM we will adopt the relaxation 

approach. Zwart (2008) adopted a similar approach. Lise and Hobbs (2009) used a 

dynamic approach with a separate capacity expansion routine that was executed between 

periods in a forward-rolling single-period framework.  

 

The WGM does not consider depreciation of existing infrastructure capacities, but 

assumes that the regulated fees or operational costs cover the needed investments for 

maintaining capacity levels. To see how capacity depreciation can be addressed in an 

MCP, see (Mulder and Zwart, 2006).  

 

Since the capacity expansions are decided upon for all periods at once, the suggested 

modeling approach for capacity expansions entails an open-loop approach. 

 

The number of gas transmission companies varies by country. In some countries, there is 

one organization responsible for the entire gas network, for instance in the Netherlands 

this is Gas Transport Services. In other countries, such as Denmark and the United 

Kingdom, there is one organization responsible for both the electricity and the natural gas 

grid.82 In other countries there are several companies responsible for different parts of the 

gas transport network: for example, in Germany, there are sixteen companies and in the 

                                                 
82 In Denmark this is Energinet.dk and in the United Kingdom: National Grid. 
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United States about two hundred. The model actor that manages the transportation 

network is the transmission system operators (TSO). Since the WGM is a sector model 

and in anticipation of a further unbundling of network ownership and trade, the TSO is a 

regulated player responsible for the gas transportation network only. 

3.9.3 Assumptions 

In reality, there is a large variation in gas transportation options. In the WGM, all 

transportation options are represented through a combination of capacity constraints, loss 

rates and transportation fees. The network is assumed to be managed by one operator, the 

TSO, which is assumed to: 

o maximize discounted profits 

o be a regulated player 

o allocate scarce capacities for injection, extraction and working gas, implemented 

through the maximization of congestion charges for capacity usage 

o have perfect information 

o not withhold existing capacities from the market to manipulate congestion charges 

o not discriminate among traders (c.f., TPA). 

3.9.4 Transmission system operator problem 

The TSO provides an economic mechanism to efficiently allocate transport capacity to 

traders.83 As discussed in previous Subsection 3.8.3, Smeers (2008) addressed some 

shortcomings of congestion pricing approaches for allocating infrastructure capacities.  A 

somewhat more enhanced approach would split the pipeline fees into a reservation and a 

usage charge. For instance, the reservation charge would have to be paid for the whole 

year over the maximum flow among the seasons, and usage charges for the seasonal 

flows. This approach would induce that in the model the traders would balance their 

flows more among seasons, and there would be an additional incentive to make use of 

storage. However, implementing such an approach would require significant additional 

effort in terms of modeling, data collection and computational power which is not done 

yet for the WGM. Instead, the TSO maximizes the discounted profit resulting from 

                                                 
83 Note that the three parts in the LNG supply chain – liquefaction, shipment and regasification – are also 
represented as arcs, with appropriate costs, losses and capacities; and its management is also performed by 
the TSO. The underlying assumption is that all transportation infrastructure agents are regulated players. 
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selling arc capacity to traders A
admSALES  minus investment costs for capacity 

expansions A
am∆ . Similarly as for the storage operator, we take as a starting point that the 

regulator sets a maximum capacity usage fee based on the long-term marginal costs. In 

the WGM the assumption is made that the regulated fees collected from the traders equal 

the costs; therefore the profit margin is equal to the congestion fee Aadmτ .84 Note that these 

congestion fees are not paid in actuality, but merely facilitate the efficient allocation of 

scarce capacity in the model. However, if the capacities would be auctioned, the 

congestion rates could be interpreted as the market-equilibrating bid price for capacity. 

This approach is not in conflict with the TSO (and storage operator) being regulated 

players. 

 max
A
adm

A
am

A A A A
m d adm adm am am

SALES m M d D a a

days SALES bγ τ
∈ ∈

∆

 − ∆ 
 

∑ ∑ ∑ ∑  
(3.9.1) 

The assigned capacity can be at most the available capacity. Available capacity at an arc 

a is the sum of the initial capacity 
A
amCAP  and expansions in the previous years '

'

A
am

m m<

∆∑ : 

 ( )'
'

, ,
AA A A
amadm am adm

m m

SALES CAP a d m α
<

≤ + ∆ ∀∑  (3.9.2) 

There may be budgetary or other limits to possible yearly capacity expansions: 

 ( ),A A A
am am ama m ρ∆ ≤ ∆ ∀  (3.9.3) 

Lastly, all variables are nonnegative: 

 0A
admSALES ≥  (3.9.4) 

 0A
am∆ ≥  (3.9.5) 

 
The above sections have presented the optimization problems for all market agents that 

are incorporated in the WGM. Some other market agents are only incorporated implicitly. 

The main one being the final consumption sectors that are represented via an aggregation 

of the sector-level inverse demand functions, which in turn represents the marketer.  

                                                 
84 For instance, refer to FERC www.ferc.gov/industries/gas.asp, EC directive 2009/73/EC or 
www.naturalgas.org/regulation/regulation.asp 
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3.10  Marketer, distribution and consumption sectors  

The last step in the natural gas supply chain is the distribution to final consumers. In 

Europe, marketing and distribution companies include RWE and GDF-Suez which are 

active in several countries. In the United States examples include San Diego Gas & 

Electric and the Southern California Gas Co which are active in some of the Southern 

U.S. States; and Baltimore Gas and Electric Company and Washington Gas who market 

their gas in Maryland and Washington DC. Often there is some vertical integration with 

producers, and horizontal integration, e.g., when utilities also sell electricity.  

 

There are various sectors using natural gas. Mostly natural gas is used as a source of 

energy; however there are also non-energy uses, such as the production of fertilizers. The 

International Energy Agency provides detailed information for the natural gas use in most 

countries. Table 2 shows the sources and uses for natural gas in the USA in 2006 in 

Trillion cubic feet (Tcf) and billion cubic meters (bcm).85  

 
Table 2: Natural gas supply and use in the USA in 2 006. Source IEA. 

Category Tcf Bcm 
Production 18.5 523.6 
From Other Sources 0.1 1.4 
Imports 4.2 117.9 
Exports -0.7 -20.1 
Stock Changes -0.4 -12.3 
Domestic Supply 21.6 610.5 
Statistical Differences 0.1 2.7 
Total Transformation  7.0 198.0 
Electricity Plants 5.1 144.7 
Combined Heat & Power Plants 1.9 53.3 
Energy Sector 1.8 51.6 
Total Final Consumption 12.8 363.5 
Industry 4.5 126.6 
Transport 0.6 17.3 
Residential 4.4 123.7 
Commercial and Public Services 2.8 78.9 
Non-Energy Use 0.6 17.0 
- of which Petrochemical Feedstocks 0.6 15.9 

 
                                                 
85 www.iea.org/Textbase/stats/gasdata.asp?COUNTRY_CODE=US, gross calorific values, conversion of 
Terajoules to Tcf using factor 1.085, and Tcf to bcm using factor (1000/35.31). Definitions of categeries 
can be found at  www.iea.org/Textbase/stats/defs/defs.htm 
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For the level and type of analysis of the world gas market for which the WGM is used, it 

would not help much to include all different sectors and/or different marketers in each 

country. Having fewer variables in the model will likely reduce the solution time needed . 

Therefore only the main sectors are selected and aggregated to form a representative and 

manageable data set. The equations representing the consumption are the inverse demand 

curves: 

( )( ) ( ), ,M M M M T M
ndm ndm ndm ndm tndm ndm

t

INT SLP SALES n d mπ πΠ ⋅ = = + ⋅ ∀∑  (3.10.1) 

As such, the marketer is not incorporated as a profit-maximizing agent in the WGM. 

Although the inverse demand curves are on a country-level, the model has been 

calibrated by sector level, and after solving the model all sector consumptions can be 

inferred from a solution.86 

3.11  Market-clearing conditions 

There are four types of market-clearing conditions (mcc) tying the various optimization 

problems together into one market-equilibrium problem. Market clearing of produced 

volumes between producers and traders, and the market-clearing price ( )
P
n p dmπ : 

( )
( )( )( ) , ,P T P

pdm tn p dm n p dm
t p

SALES PURCH p d mπ= ∀∑  (3.11.1) 

Market clearing for injection capacities and volumes: 

 
( )( )

( ), ,SI T SI
sdm tsdm sdm

t T N s

SALES INJ s d m τ
∈

= ∀∑  (3.11.2) 

Market clearing for extraction capacities and volumes: 

 
( )( )

( ), ,SX T SX
sdm tsdm sdm

t T N s

SALES XTR s d m τ
∈

= ∀∑  (3.11.3) 

Market clearing between the TSO and the traders for arc capacities and flows: 

 ( ), ,A T A
adm tadm adm

t

SALES FLOW a d m τ= ∀∑  (3.11.4) 

 

                                                 
86 As long as market prices are higher than the slopes of the inverse demand curves of individual sectors, 
the results when using aggregate or non-aggregate inverse demand curves will be the same. This will is 
illustrated with an example in section 2.6 of Chapter 4. 
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3.12  Summary 

This chapter has provided a discussion and considerations for the development of the 

World Gas Model. The following agents are represented in the WGM. 

 
Table 3: Represented market participants in WGM 

Agent Role Comment 
Producer Produces and sells natural gas. See Section 3.3 
Trader Buys gas from producers as well as, 

transportation and storage services from the 
TSO and storage operator and sells gas to 
marketers. 

See Section 3.4 

Liquefier Provides liquefaction services to traders.  See Section 3.5 
LNG vessels Provide LNG shipment services to traders. Represented by 

distance-dependent 
costs and losses. 

Regasifier Provides regasification services to traders. See Section 3.6 
Storage 
Operator 

Provides injection, storage and extraction 
services for the trader.  

See Section 3.8 

Transmission 
System 
Operator 

Assigns arc capacities to traders who need to 
transport gas from one country to another; and 
is responsible for transportation network 
expansions. 

See Section 3.9 

Marketer Buys natural gas from traders and distributes it 
to end-users 

See Section 3.10 

End-users The three consumption sectors: power 
generation, industry and residential/commercial 

See Section 3.10 

 

For all players in the WGM, we have provided an explanation of their economic role; 

discussed engineering aspects related to hydrocarbon reservoirs, transportation and 

storage infrastructure; and presented a mathematical formulation for the optimization 

problems and market-clearing conditions.  

 

The actual MCP consists of the KKT derived from the optimization problems and the 

market-clearing conditions described next.  

3.13  Karush-Kuhn-Tucker conditions 

We have introduced the symbols used below in Section 3.3.2. In the KKT the left-hand 

sides (relative to the ⊥ -sign) are the equations, the right-hand sides the variables. Primal 

variables are English words in capitals, and dual variables are written as Greek symbols. 
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3.13.1 KKT conditions for the producer’s problem 

( )( )

( )0 0, ,
P P
pm pdm

P
pdm

c SALESP P P P
m d n p dm pdm d p pdmSALES
days days SALES d mγ π α β∂

∂
≤ − + + + ⊥ ≥ ∀  (3.13.1)

0 0, ,
P P P
pm pdm pdmPR SALES d mα≤ − ⊥ ≥ ∀  (3.13.2)

0 0P P
p d pdm p

m M d D

PH days SALES β
∈ ∈

≤ − ⊥ ≥∑ ∑  (3.13.3)

3.13.2 KKT conditions for the trader’s problem 
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,

, ,
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0 0, ( ( )), ,P T T
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0 0, , ,T T T
tadm tadm tadmFLOW CON a d mε≤ − ⊥ ≥ ∀  (3.13.11) 

3.13.3 KKT conditions for storage operator’s problem 

0 0, ,SI SI SI
d m sdm sdm sdmdays SALES d mγ τ α≤ − + ⊥ ≥ ∀  (3.13.12)

0 0, ,SX SX SW SX
d m sdm sdm d sm sdmdays days SALES d mγ τ α α≤ − + + ⊥ ≥ ∀  (3.13.13)
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'
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≤ − + ⊥ ∆ ≥ ∀∑ ∑  (3.13.15)

'
'

0 0,SW SW SW SW
m sm sm sm sm

d D m m

b mγ α ρ
∈ >

≤ − + ⊥ ∆ ≥ ∀∑ ∑  (3.13.16)

'
'

0   0 ,
SI SI SI SI
sm sm sdm sdm

m m

CAP SALES m dα
<

≤ + ∆ − ⊥ ≥ ∀∑  (3.13.17)

'
'

0   0 ,
SX SX SX SX
sm sm sdm sdm

m m

CAP SALES m dα
<

≤ + ∆ − ⊥ ≥ ∀∑  (3.13.18)

'
'

0   0
S SW SX SW
s sm d sdm sm

m m d D

WG days SALES mα
< ∈

≤ + ∆ − ⊥ ≥ ∀∑ ∑  (3.13.19)

0 0SI SI SI
sm sm sm mρ≤ ∆ − ∆ ⊥ ≥ ∀  (3.13.20)

0 0SX SX SX
sm sm sm mρ≤ ∆ − ∆ ⊥ ≥ ∀  (3.13.21)

0 0SW SW SW
sm sm sm mρ≤ ∆ − ∆ ⊥ ≥ ∀  (3.13.22)

3.13.4 KKT conditions for the transmission system operator’s problem 

0 0 , ,A A A
d m adm adm admdays SALES a d mγ τ α≤ − + ⊥ ≥ ∀  (3.13.23)

'
'

0 0 , ,
A A A A
am am adm adm

m m

CAP SALES a d mα
<

≤ + ∆ − ⊥ ≥ ∀∑  (3.13.24)

'
'

0 0 ,A A A A
m am adm am am

d D m m

b a mγ α ρ
∈ >

≤ − + ⊥ ∆ ≥ ∀∑ ∑  (3.13.25)

0 0 ,A A A
am am am a mρ≤ ∆ − ∆ ⊥ ≥ ∀  (3.13.26)

3.13.5 Market clearing between producer and trader 

( ) ( )
( ) ( )0 , , ,P T P

pdm t n n p dm pdm
t n T p

SALES PURCH free p d mπ
∈

= − ∀∑  (3.13.27)

3.13.6 Market clearing for pipeline flows 

0 , , ,A T A
adm tadm adm

t

SALES FLOW free a d mτ= − ∀∑  (3.13.28)

3.13.7 Market clearing for injection and extraction volumes 

( )( )
0 , , ,SI T SI

sdm tsdm sdm
t T N s

SALES INJ free s d mτ
∈

= − ∀∑  (3.13.29)
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( )( )
0 , , ,SX T SX

sdm tsdm sdm
t T N s

SALES XTR free s d mτ
∈

= − ∀∑  (3.13.30)

3.13.8  The inverse demand curve 

( )

0 , , ,W M M T W
ndm ndm ndm tndm ndm

t T n

INT SLP SALES free n d mπ π
∈

 
= − − ⋅ ∀ 

 
∑  (3.13.31)

The combination of all the Karush-Kuhn-Tucker conditions, the market-clearing 

conditions and inverse demand curves form the MCP. All profit functions are concave 

and differentiable, all cost functions are convex and differentiable and all feasible regions 

are polyhedral, thus, the KKT points for this system are necessary and sufficient for 

optimal solutions.87  

 

Some market-clearing conditions can be specified and implemented as inequalities. 

Personal experience indicates that using inequality conditions results in somewhat shorter 

solution times relative to equality conditions. 

3.14  Example: market-power players diversify supplies 

Assume two suppliers at neighboring nodes A and B, each with a supply cost function: 

( ) ( ) , for ,X XA XB XA XB
X Xc s c s s s s S A B= + = + = . There is consumption at both nodes 

with demand functions for Aq , and Bq  depending on the price Xp : 

( ) 10 , for ,X X Xq p p X A B= − = Xp . Figure 12 below shows the market structure for this 

example. 

                                                 
87 Since we are minimizing the negative of a concave profit function, we are effectively minimizing a 
convex function. See (Bazaraa et al., 1993) or Chapter 2 for more details on necessary and sufficient 
conditions. 
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Figure 12: Market structure for example 

 

The transport costs between the nodes is 1 per unit. There are no limitations to 

transported amounts. Let XYq  denote the supply from supplier at node X to the consumer 

at node Y. Also, XX XY Xq q s+ = . First assume that the suppliers operate perfectly 

competitive. Then the profit for SA:  

( ),A AA ABq qΠ = ( ) ( )1 1AA AA AB AB AA AB ABp q p q q q q+ − + −  (due to symmetry, the profit 

function for SB is identical). Because the marginal supply costs at both nodes are 

constant, we can completely separate the profit functions by node: 

( ) ( ) ( ),A AA AB AA AA AB ABq q q qΠ = Π + Π , wherein:  

( ) 1AA AA A AA AAq p q qΠ = −  and ( ) 2AB AB B AB ABq p q qΠ = − . Taking the partial derivatives 

and setting them to zero: ( ) 1 0
AA

AA

AA

q A
q

p
∂Π

∂ = − =  and ( ) 2 0
BA

BA

BA

q B
q

p
∂Π

∂ = − =  gives us the 

prices pA=1 and pB=2. At these prices, SA will only supply to node A since his costs to 

supply to node B are 2 per unit. Similarly, SB will only to node B. Thus 

9A AA B BBq q q q= = = = , 0AB BAq q= = .  

 

Now assume that the suppliers compete à la Cournot. We first derive the optimal 

response curves. (Again, due to symmetry, they are identical). The profits for SA contain 

the revenues from both nodes, and the production and transport costs:  
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( ),A AA ABq qΠ = ( ) ( )1 1AA AA AB AB AA AB ABp q p q q q q+ − + −  = 

( ) ( ) ( ) ( )10 10 1 1AA BA AA AB BB AB AA AB ABq q q q q q q q q− − + − − − + − . 

As before, we can completely separate the profit functions and optimal response curves 

for the players by node. For the profit functions we get:  

( ) ( )10 1AA AA AA BA AA AAq q q q qΠ = − − −  and ( ) ( )10 2AB AB AB BB AB ABq q q q qΠ = − − − . 

To find the market equilibrium at node A we need to solve the first order conditions (cf., 

Section 2.3 in Chapter 2). 

( )
9 2 0

AA AA

AA

q BA AA

q
q q

∂Π

∂
= − − = , which gives an optimal response curve of 9

2

BAqAAq −= ; and 

( )
8 2 0

AB AB

AB

q BB AB

q
q q

∂Π

∂
= − − = , which gives an optimal response curve of 8

2

BBqBAq −= . 

Some algebra reveals: 10
3

AA BBq q= = , 7
3

AB BAq q= =  and a market price at both nodes of 

13
3 . We see that the resulting market price is 10

3  higher than the perfectly competitive 

equilibrium price.  

 

When we want to use the mark-up approach suggested by (Smeers, 2008), we would use 

a mark-up to the marginal supply costs of 10
3 , the difference between the perfectly 

competitive price of 1 and the observed price of 13
3 . The marginal supply function would 

look like: ( ) ( )10 13
3 31c q q q= + = . Calculating the perfectly competitive equilibrium using 

the adjusted supply cost functions results in 17
3

AA BBq q= = , 0AB BAq q= = . Indeed, the 

consumed quantities and prices are identical to the previous duopoly example, however 

there is no trade, since due to the assumption of perfect competition overall transport 

costs are minimized.  

 

Generally using the mark-up approach will result in fewer and lower trader flows and no 

counter flows. To better represent these characteristics of the natural gas market, we think 

that it is important to model market power based on Cournot oligopoly theory, and not 

merely use mark-ups on supply cost functions. 
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4 World Gas Model Scenario Results 

The World Gas Model (WGM) is a multi-period, mixed complementarity problem for the 

global natural gas market. The model represents the main economic agents in the natural 

gas markets and their interactions, addressing seasonal variation in consumption and 

allowing for endogenous capacity expansions in transportation and storage.  

 

The consumers are represented via their aggregate inverse demand function. All other 

market players are modeled via their respective profit maximization problems under 

some player-specific operational and technical constraints. The implementation of the 

model is done in GAMS (Brook et al., 1988), and following good software development 

practices, the data files and model formulation are completely separate, to have maximum 

flexibility when developing scenarios or needing the use of alternative data sets.  

 

The first part of this chapter will discuss the compilation of the data set and the 

development of a reference baseline scenario. The second part of the chapter will 

illustrate the insights that can be obtained from running the model on different scenarios. 

Beside the calibrated Base Case, three other cases are discussed. The investigated issues 

concern the formation of a global gas market cartel, the potential impact of much lower 

production of unconventional natural gas in the United States and the impact of lower 

transport costs (relative to the Base Case). The model outputs give insight in the impact 

of various developments on wholesale prices, profits of traders and consumer surplus in 

different countries and regions. Some more specific analyses will support that there is an 

economic rationale for LNG import terminals in the Netherlands, but that the 

construction of pipelines from the Caspian region to Europe via Turkey needs other than 

economic motivations. The analysis illustrates the strengths of the model: the 

combination of a representation of upstream market power and the level of detail and 

dependencies within and among continental regions. The results illustrate the added value 

of the modeling approach and the relevance for policy makers and business analysts. 
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4.1 Introduction 

Figure 13 shows an overview of the forty countries and regions that are incorporated as 

nodes in the WGM.88  

 
Figure 13: Model nodes in the WGM 

 

The numbers in parentheses indicate the number nodes in that region in the model. Due to 

the limited relevance and impact of countries that produce and/or consume only small 

amounts of natural gas, several have been grouped with neighboring countries and are 

represented in the model on an aggregate level. For instance, the neighboring countries 

Belgium, Luxembourg and France are aggregated into one node since they all have 

negligible production and depend on imports to fulfill domestic consumption. For other 

countries the opposite is true: their consumption or production is so high, and the 

geographical distances so large, that a division of the countries into several regions is 

warranted. For example, as can be seen in Figure 14, the United States consists of ten 

model nodes. Having two nodes for Canada and one for Mexico, the average 

consumption of North American nodes in 2005 is 53 bcm/y and of European nodes 55 

bcm/y.89 This illustrates why the United States is split and in Europe most countries are 

aggregated into model nodes. 

                                                 
88 Sources for the blank maps in this chapter: http://en.wikipedia.org/wiki/Wikipedia:Blank_maps  
89 bcm/y = billion cubic meter per year 
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Figure 14: Ten model nodes for USA (incl. Alaska) 

 
See Figure 15 for the aggregation level of the model nodes in Europe.  

 
Figure 15: Ten model nodes in Europe plus Western R ussia 

 

A full list of model nodes countries can be found in Section 4.6 at the end of this chapter. 
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When compiling the model data set, the goal was to be thorough, representative and to 

cover virtually all production, consumption and trade in the present and near-future 

global natural gas market. The annual issues of Natural Gas Information (e.g., 

(International Energy Agency, 2009)) and Statistical Review of World Energy (e.g., (BP, 

2009)) have been very helpful in the data collection process. The following will address 

the data sources used and some of the challenges when compiling the data sets for the 

various market agents.90  

4.2 Data collection  

In the data set usually one player is included of every type at every model node. For 

instance, at the node Netherlands, there is one producer, one trader, one marketer and one 

 storage facility. However to facilitate the implementation of scenarios some other levels 

of detail were sometimes more appropriate. For example, in some case studies the impact 

of availability of unconventional natural gas was investigated (Gabriel et al., 2010) and 

therefore in the United States model nodes have two production entities: one for 

conventional and one for unconventional gas. In most other countries – except for Canada 

– unconventional gas either hardly contributes to total gas supply, or the data are simply 

not available to be able to distinguish conventional and unconventional gas production in 

the data set.91 Consequently, most model nodes have just one production entity. In 

contrast to having multiple producers for U.S. nodes, there is only one trader in the 

United States that represents all producers. Having just one trader will limit the number 

of model variables drastically and will not affect the outcomes due to the assumed 

perfectly competitive nature of the upstream gas market in North America.92 In contrast, 

all three Russian producers will operate through one shared trader allowing GazProm to 

coordinate all exports and potentially exert market power.  

 

                                                 
90 Dr. Franziska Holz contributed greatly to the data descriptions in (Egging et al., 2010). 
91 See, e.g., the website of the Canadian National Energy Board, www.neb-one.gc.ca  
92 Reducing the number of traders results in fewer variables for flows, storage injection, storage extraction, 
sales to end-users and various dual prices. The reduction in flow variables is the most significant. Having 
one instead of ten traders in the United States for eight periods, two seasons and 38 arcs results in  

( )8 2 10 1 38 5472× × − × = fewer variables. Including reductions in other variables the total reduction is 

more than 12,000. Eventually the model as ran for the Base Case included 43,560 variables. 
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The WGM is a multi-period long term equilibrium model. A yearly representation of the 

market would be computationally challenging. In that regard it was necessary to define 

periods rather than years. The model data set includes every fifth year in the time horizon 

2005 through 2030, with two added periods 2035 and 2040 to minimize distortions of 

endogenous capacity expansions in the last reporting year. The initial data set is built up 

for the year 2005; however known capacity expansions between 2005 and 2008 (time of 

data base construction) of pipelines, liquefiers, regasifiers and storage were exogenously 

included in the model year 2010. In future years the model allows for completely new 

pipelines and LNG capacities based on profit maximizing decisions of players in the 

model.  

 

A 10% discount rate is used in the multi-period optimization decisions.93 In general, the 

data are per day, distinguished by season (low and high demand) where applicable.94 On 

the supply side, capacity constraints limit the amounts that can be produced and 

transported. Starting in 2010, there can be endogenous investments in transport and 

storage infrastructure. In order to maintain an MCP, capacity expansions need to be 

continuous. The expansions are limited in each period; where available project 

information is used to determine these limits, otherwise own assessments have been 

made. 

4.2.1 Production data 

The model formulation presented in Chapter 3 assumes convex production costs in order 

to make the Karush-Kuhn-Tucker conditions sufficient for optimality (e.g., (Bazaraa et 

al., 1993), or Chapter 2 of this thesis). Similar to (Boots et al., 2004), (Egging and 

Gabriel, 2006) and (Egging et al., 2008, 2010) to model the production costs the 

functional form proposed by (Golombek et al., 1995) is used. The production costs can be 

                                                 
93 The discount rate of 10% is a real discount rate including a risk-adder. All $-values in the model are in $ 
of 2005. The value of 10% is chosen in the range of values used by other models. For instance, depending 
on the analysis, the EIA uses varying discount rates to evaluate the cost-effectiveness of different 
investments. Low discount rates (3-4 percent) are generally used to capture a “societal” cost or benefit of a 
particular investment, while high rates (10-15 percent) are used to discount purchases by the typical 
consumer, paid for on credit. (http://www.eia.doe.gov/oiaf/servicerpt/eff/aircond.html, Accessed Nov 10, 
2010) Commercial Another paper comparing various papers, presents values in the range of 5-12.5 percent 
(Table 1 in http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.9206 (Accessed Nov 10, 2010). 
94 The low-demand season is defined as the period from April through October. The high-demand season is 
the other half of the year. 
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expressed as ( ) ( ) ( )21
2( ) ln Q q

Q
C q q q Q qα γ β γ −= − + + − : 0q q Q∀ ≤ < . Q is the 

production capacity, 0α >  is the minimum marginal unit cost term, 0β ≥  is the per unit 

linearly-increasing cost term, and 0γ ≤  is a term that induces high marginal costs when 

production is close to full capacity. The marginal supply cost curve for this expression is: 

( ) ( )' ln Q q

Q
C q qα β γ −= + + . Figure 16 illustrates the shape of this curve for parameter 

values 10α = , 40 10 30mmQ

Q Q Q

αβ − −== =  and 80
6.90776 6.90776= = 11.58mmQ mmGγ − −= − .95  
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Figure 16: Example of a marginal production cost cu rve 

 

Short-run production costs are similar to (Egging et al., 2010). The parameters for the 

cost functions were originally derived from (Observatoire Méditerranéen de l’Energie, 

2003) and have been updated. Production capacity data originate from forecasts and 

information in the technical literature (e.g., (International Energy Agency, 2008), Oil and 

Gas Journal). Production capacity is determined exogenously for all model periods, thus 

there is no endogenous investment in production capacity expansions. As explained in 

Chapter 3, the data needed for modeling this part of the supply side of the natural gas 

market is not publicly available. Therefore, future production capacities are based on 

projections of the PRIMES model for Europe (European Commission, 2006, 2008), EIA 

                                                 
95 When developing the data set we defined parameters mmQ and mmG (see righthand side in Figure 16).  
β and γ are calculated based on α, mmQ and mmG. 
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projections for North America (Energy Information Administration, 2009) and the World 

Energy Outlook (International Energy Agency, 2008) for the rest of the world.  

 

EIA, BP, IEA and other data sources generally report gross production, trade and 

consumption volumes. Not all information accounts for the fact that in the supply chain 

that brings gas from the production wells to the end-users, there are several steps that 

induce losses. There are also usage categories, such as gas injection for enhanced oil 

recovery, that are not represented in the WGM. The production capacities and volumes in 

the WGM are net production volumes, i.e., the volumes destined to a number of 

consumption sectors (see Section 4.2.6). To deduce the net from the gross production 

values, values are used from the IEA website. 96 

4.2.2 Trade 

The traders in the model execute all midstream activities to bring the gas from the 

upstream producers to the downstream consumers. The WGM provides much detail in 

the representation of the trade and transport options and allows for modeling of Cournot 

market power. Additionally, this market power is especially relevant in light of the Gas 

Exporting Countries Forum (GECF) formed in May 2001 and when representing a 

potential gas cartel.97 When Russia hosted the GECF annual ministerial meeting 

December 2008 the foundation of an organization was announced that according to 

Premier Vladimir Putin of Russia: ‘will study ways to set global prices and represent 

interests of producers and exporters on the international market’.98 He also announced 

that ‘the time of cheap energy resources and cheap gas is surely coming to an end.’ 

 

Since in the WGM the trader does not own infrastructure but purchases services from 

infrastructure owners, most parameters relevant for the trader are collected in other 

player’s data sets. Contract data is described in Section 4.2.3. Determining the values for 

the market power parameter was a challenging exercise. (Section 3.4.1 and 3.4.2) As 

discussed in Chapter 3 it is very hard to prove market power exertion. If one would have 

an objective procedure to assess the level of market power, the information needed would 

                                                 
96 www.iea.org/Textbase/stats/gasdata.asp and www.iea.org/Textbase/stats/defs/defs.asp 
97 www.gecforum.org and www.eia.doe.gov  
98 www.nytimes.com/2008/12/24/business/worldbusiness/24gas.html  
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not be publicly available. The values were set as a result of discussions between co-

authors of (Egging et al., 2009), based on market shares, potential dominant positions and 

market expertise. To streamline the discussion the choices were limited to values in 

{ }31 1
4 2 40, , , ,1 . 

4.2.3 Liquefaction, regasification and LNG shipment 

The LNG transport value chain contains liquefaction, shipment and regasification. 

Liquefaction and regasification capacity data for 2005 and 2008 are from (International 

Energy Agency, 2006, 2009). For capacity expansion limits, including for new terminals, 

technical literature such as the Oil and Gas Journal, has been used. Anticipating the 

expiration of the Alaskan LNG export license in 2011 the capacity is left out completely 

starting for the model period 2015.99 The WGM takes into account LNG contracts known 

as of 2008.100 The contracting process is not included in the model and – somewhat 

arbitrarily – the choice could be made to extend contract periods to the end of the model 

time horizon. However, in the perspective of a shift towards shorter contract periods and 

more spot trades (see Section 3.4.3) contracts are phased out based on their currently 

known end dates and almost all LNG trade flows in later periods result from spot market 

trade. For the downstream actor in the LNG chain, the regasifier, (International Energy 

Agency, 2006, 2009) and the website of Gas Infrastructure Europe have provided the 

capacities.101 

 

LNG shipment is optimized by the trader, given the distance-based transport costs. 

Distances (in sea miles) between each pair of liquefier node and regasifier node are 

obtained for the approximate location of the terminals.102 There is no restriction on the 

trading pairs, so countries currently not maintaining diplomatic relations with each other 

can trade LNG. There are no limits on the LNG shipment capacity.  

 

                                                 
99 www.eia.doe.gov/oiaf/aeo/assumption/nat_gas.html (Accessed June 5, 2009) 
100 We thank Sophia Rüster and Anne Neumann from TU Dresden for sharing the contract information 
from their data base. See also (GIIGNL, 2010) 
101 www.gie.eu.com/maps_data/lng.html  
102 www.distances.com  
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The three steps in the LNG supply chain are modeled as arcs in the WGM (see Section 

4.2.5). In the absence of detailed data for liquefaction and regasification costs, the same 

values are used for all countries. Shipment costs and losses are distance-based, $8 per 

kcm and 0.3%  of the volume transported, both per one thousand sea miles.103 

4.2.4 Storage 

Storage is modeled as a regulated service provider, providing injection, extraction and 

storage services. In the data set there is at most one storage operator at a model node, for 

which a working gas capacity and a per unit injection cost value are needed as input. 

Storage capacities are obtained from (International Energy Agency, 2006, 2009). Storage 

costs were based on (International Energy Agency, 2006). Based on company 

information and dependent on local characteristics, storage losses are between 1% and 

1.5%.104 The storage operator is responsible for investment decisions, for which input 

parameter details are discussed in Section 4.2.7. 

4.2.5 Pipeline and arc network 

The minimum transport costs for pipelines are set by a regulated tariff. Additionally, an 

endogenously determined congestion fee ensures that the scarce pipeline capacities are 

allocated optimally. International pipeline transport is limited at the cross-border points. 

When there are several cross-border points between two adjacent model nodes, the 

capacities are aggregated to provide a single pipeline bound. Capacity data are obtained 

from Gas Infrastructure Europe for intra-European transport.105 Data on pipeline 

capacities between the North American nodes were obtained from the Energy 

Information Administration.106 For all other pipelines, company reports, an Excel file 

provided by the Energy Information Administration in July 2007, various websites as 

                                                 
103 See www.bg-group.com/OurBusiness/BusinessSegments/Documents/BG_LNGfactsheets2008.pdf  
104 See DONG, www.dongenergy.dk, dongstoragetariffspermay_tcm5-11450.pdf; Fluxys 
http://www.fluxys.com/en/Services/Storage/Storage.aspx, 20060101Tarieven_Stock_2006_E.pdf and 
Alkmaar Gas Storage: www.alkmaargasstorage.nl/Gas_Storage_Services_%20Agreement_2008-2010.pdf . 
Note that not all files are available online anymore, however newer versions are, e.g., 
www.dongenergy.dk/SiteCollectionDocuments/Doc_distribution/Storage/Tariffer/Storage%20Tariffs%202009-
2010.pdf 
105 Formerly www.gie.eu.com/maps_data/capacity.html , currently www.entsog.eu/mapsdata.html 
106 ‘Interstate Pipeline Capacity on a State-to-State level’ Release date 9/1/2008, downloaded from  
www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/usage.html, 
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well as technical literature were used.107 For new Greenfield pipeline projects that are 

planned but do not exist yet, e.g., the Nabucco pipeline (see Section 4.4.4), the model 

includes a zero capacity in the base year and allows for positive capacity expansions in 

later periods (with the exact periods depending on the project specifics). 

 

Short-term transport costs per pipeline (regulated fees) and pipeline losses are linear 

functions of the transported amounts, related to the length of the pipeline and whether the 

pipeline is onshore or offshore. Royalties are not incorporated as such, but implicitly 

assumed to be included in the fees. By default a lowest regulated fee of $10/kcm was 

chosen, cf., (Egging and Gabriel, 2006). As in (Egging et al., 2008, 2010), dependent on 

the pipeline characteristics (length, onshore/offshore), most regulated fees are between 

ten and thirty $/kcm, but some are higher (e.g., for the possible pipeline from Nigeria to 

Algeria). Most loss rates are between one percent and four percent, with higher values for 

extremely long pipelines.108 

 

4.2.6 Consumption 

The demand for natural gas is obtained from aggregating sector-specific consumption 

levels for each country. In its Monthly Natural Gas Survey, the International Energy 

Agency reports monthly consumption levels for the power generation, industrial and 

residential sectors as well as several other categories.109 These data are aggregated by 

season (low and high demand)to determine a parameter value reflecting the intensity of 

seasonal variation of demand. For each sector-specific demand, a different price elasticity 

is assumed (between -0.25 and -0.75). For the construction of demand functions, 

reference prices are needed. With respect to price projections the outlooks varied 

dramatically. In (Energy Information Administration, 2009) the gas prices vary somewhat 

over time, but stay relatively stable. In (International Energy Agency, 2008) prices 

roughly quadruple in 4½ decades, a yearly average increase of 3.1%. An inflationary 

                                                 
107 See, e.g., www.eia.doe.gov/cabs/ 
108 Estimates are based on the value 0.22% per 100 km mentioned on page 78 of GTE 2003 European TPA 
Transmission Tariff Comparison 2003,www.gie.eu.com/adminmod/show.asp?wat=Tariff_Comp_V3.pdf 
109  www.iea.org/stats/surveys/archives.asp 
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trend is assumed in costs and consumer’s willingness to pay of 1.5% so that prices 

gradually increase over the next decades. 

 

To limit the number of variables in the model, the total demand for each model node is an 

aggregated function of the linear functions for each sector. Figure 17 below illustrates the 

aggregation of two inverse demand curves as a representative example of what is done in 

the WGM (and, e.g., in (Boots et al. 2004)). The line aggreg shows the actual aggregate 

demand curve consisting of two linear pieces (i.e., the curve is piecewise linear). 

However in the model single linear demand curves are used. Curve model is the curve 

how it would appear in the WGM. This curve is completely identical to curve aggreg for 

prices lower than six, however underestimates demand for prices higher than six. 
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Figure 17: Inverse demand curve aggregation 

 

More generally the linear aggregate curve represents the actual aggregate curve at price 

levels at which all sectors have nonnegative consumption. By calculating the 

consumption values of all sectors after finding a solution, using the disaggregate inverse 

demand curves, and checking that all sector consumptions are nonnegative, it is 

guaranteed that the single curve model results in the same consumption and price levels 

as separate curves would have given. 
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4.2.7 Capacity expansions 

The WGM uses linear cost functions for the construction of incremental capacity of 

transport and storage: expansion levels are multiplied by a constant per unit cost. For 

pipelines, an investment cost of $50 million is used per mcm/d of new capacity.110 If a 

pipeline is completely new the costs are doubled, if a pipeline is an offshore pipeline, the 

costs are also doubled, and for long pipelines the costs are doubled or tripled. These 

values are estimates based on reported project costs in technical literature such as the Oil 

and Gas Journal and company information. In the LNG value chain, the parameter values 

reflect that infrastructure for regasification is less capital intensive than for 

liquefaction.111 Regasification expansions are as costly as the cheapest pipeline 

expansions and liquefaction expansions cost three times as much per unit of capacity: 

$150/mcm/d. 

 

Storage expansions comprise expansion of injection, extraction and working gas capacity. 

Extra injection capacity is costlier ($3 million/mcm/d) than extraction capacity 

($500,000/mcm/d). For working gas the investment costs are $150 million/bcm.  

4.2.8 Model calibration 

It is not possible to verify the outcomes of the type of natural gas market models 

presented in Chapter 3, that make projections about the future. Rather, model outcomes 

are compared to results of outside sources (e.g., the Energy Information Agency, or the 

Energy Information Administration) that are generally believed to present a reasonable, 

defendable outlook on the future natural gas market. The data inputs and modeling 

assumptions used, but also the transparency of the modeling approach support that model 

outcomes are representative and provide an insight. Typically, when a model is run on the 

data set initially compiled, the model outcomes do not compare very closely to these 

outside sources. Then, assuming that the model has been tested and corrected previously 

to eliminate mathematical and programming errors, some adjustments of the input data 

values are necessary so that the model outcomes do represent an outlook on the future 

that is believed to be reasonable. Typically, one should adjust the most unreliable input 

                                                 
110 mcm/d = million cubic meters/day; 1 cubic meter (m3) = 35.31 cubic feet. 
111 See www.bg-group.com/OurBusiness/BusinessSegments/Documents/BG_LNGfactsheets2008.pdf 
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data first, and other input parameters should be kept as close as possible to collected data 

values. This process of input parameter adjustment is called ‘model calibration’. Since 

needed changes in the model outcomes can usually by obtained by various kinds of 

adjustments (e.g., lower consumption levels can be obtained by higher production costs, 

higher transportation costs, shifting down the inverse demand curve, etc.) the calibrated 

model is not a unique outcome of a scientific formalized procedure. There are some 

judgment calls involved in this process, which require a thorough understanding of the 

model as well as natural gas market expertise. 

 

The following section presents the case studies and discusses the results.  

4.3 Description of cases 

The cases presented in this section have been motivated by recent and actual 

developments in the natural gas market. Beside the Base Case, a business-as-usual 

scenario that provides a reference for comparison, another three case studies were 

developed. Two cases investigate a tighter supply of gas and one a less tight supply. The 

tighter supply is either induced by cartelization of the gas market (Cartel Case) or much 

lower availability of unconventional gas in the United States (Unconv Case). The less 

tight supply situation would be induced by a decrease in future transport costs (Transp 

Case).112  

 
Table 4: Cases 

Case name Abbreviation Description 
Base Case Base Case Reference case 
Cartel Case Cartel Case Cartel along the lines of GECF membership 
Unconventional Gas Case Unconv Case Lower availability of unconventional gas in USA 
Low Transport Cost Case Transp Case Lower transport costs 

 

How countries are affected by different scenarios depends largely on their trade balance 

(in a business-as-usual situation). In the discussion of the case results there will be 

emphasis on an exporting country: the Netherlands, a transit country: Turkey and an 

                                                 
112 The cases presented focus on structural changes in the future natural gas market relative to the Base 
Case. Another type of case can focus on short-term developments, e.g., sudden disruptions in supplies, for 
example the recent interruptions from Russian supplies (see Sections 1.3 and 3.4.1). Egging and Gabriel 
(2006) and Egging et al. (2008) discuss various disruption scenarios relevant for the European gas market. 
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importing region: United Kingdom and Ireland. To assess the profit potential for GECF 

members the profits and supplies by the (potential) cartel members is discussed. 

4.3.1 Base Case 

The Base Case is the reference for comparison. The model outcomes have been calibrated 

to closely match the state of the natural gas market in 2005 and the projections for the 

coming decades provided by the Annual Energy Outlook (Energy Information 

Administration, 2009), Natural Gas Information (International Energy Agency, 2009), 

European Energy and Transport: Trends to 2030 (European Commission, 2006, 2008) 

and the World Energy Outlook (International Energy Agency, 2008). Since none of these 

sources could provide us with the desired level of detail, multiple sources had to be used. 

Due to different modeling starting points, and some variations in the projections, the Base 

Case results differ slightly from each of the aforementioned projections. However, the 

results have a similar trend in terms of production and consumption growth. A notable 

point affecting the outcomes is the upwards revision of unconventional gas availability in 

the United States in the Annual Energy Outlook of 2009 (Energy Information 

Administration, 2009), resulting in much higher U.S. gas production in the longer term 

that were not accounted for yet in other projections. Naturally the higher U.S. gas 

production and lower imports affect LNG trade, regional trade balances, production and 

consumption globally.  

4.3.2 Cartel Case 

Market power is a significant issue in the global natural gas market. A major concern of 

gas importing countries is the potential for a cartelization of the gas market, comparable 

to the position of OPEC in the oil market. In the Cartel Case (Cartel) the member 

countries of the GECF will collude as a cartel.113 In this case the GECF countries will 

collaborate and enforce market power by operating through a single trading entity. The 

model does not consider agreements about production quota or profit or revenue sharing 

agreements among the members (e.g., (Ikonnikova, 2007)). Instead, the cartel trader will 

                                                 
113 See www.gecforum.com.qa/gecf/web.nsf/web/members. Member countries are taken as of mid 2009. 
The representation of this cartel in the WGM  includes the following model nodes: North Africa, West 
Africa, Indonesia, North South America, Qatar and Russia. See Section 4.6 for the countries included in 
these model nodes. Note that there have been some shifts in the membership of the GECF after the WGM 
results were generated. 
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obtain the amounts of gas from each cartel producer so as to maximize aggregate profits 

for the cartel. 

 
Figure 18 below shows a simplified representation of the traders in the Base Case: each 

trader buys from one producer.   

 
Figure 18 Standard trader representation: non-coope rative competition 

 

In contrast, Figure 19 shows how in the Cartel Case one trader coordinates the supplies 

from various producers. 

 

 
Figure 19 Cartel representation: cooperative compet ition in hybrid market setting 

 
 

The anticipated results for the Cartel Case are that countries participating in the cartel 

will produce lower amounts of natural gas (relative to the Base Case) to drive up market 

prices. Countries highly dependent on gas imports to fulfill domestic consumption will 
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see severely lower supplies and consequently much higher prices. It is likely that high-

cost producers within the cartel give up more market share than low-cost producers. 

Exporting countries that do not participate in the cartel will reap the benefits from higher 

market prices by increasing their output and export levels. 

4.3.3 Limited U.S. Unconventional Production: Unconv Case 

Between 2008 and 2009 the Energy Information Administration significantly increased 

the U.S. production projections for unconventional gas, especially for shale gas. 

Although the resources are in place and can be produced economically in expected 

market circumstances, there is a potential problem in the form of the negative impact on 

the environment due to chemicals and water that are used in unconventional gas 

production.114 To limit environmental damage, the government could develop policy to 

limit the production of unconventional gas. 

 

This case addresses lower availability of unconventional gas in the United States. The 

production capacities of unconventional gas are reduced by 75% for all unconventional 

gas production entities in the United States. Because this reduction is applied to all 

unconventional gas, not only to shale, this case presents a very harsh scenario which 

could be seen as a worst case for the supply situation of the United States. 

 

Lower U.S. domestic unconventional production rates will result in higher market prices, 

higher production in Alaska, and higher imports from Canadian pipeline gas and LNG 

from overseas. It is interesting to see how this “pull” of gas by the United States affects 

the world market in terms of trade and market prices. 

4.3.4 Lower long-distance transportation costs: Transp Case 

Gas transport costs have decreased due to technological progress and economies of scale 

and there is more potential for cost improvements (Cayrade, 2004), (Van Oostvoorn et 

                                                 
114 See, e.g.,  http://www.huntergasactiongroup.com.au/hgfracc.html ; www.energyindepth.org/frac-
fluid.pdf; Federation of American Scientists: www.fas.org/sgp/crs/misc/R40894.pdf ; 
http://yosemite.epa.gov/opa/admpress.nsf/0/5ab7fab1665a0d698525774600606afe?OpenDocument ; 
www.propublica.org/article/frack-fluid-spill-in-dimock-contaminates-stream-killing-fish-921 ; 
www.propublica.org/article/gas-drilling-vs-drinking-water-new-york-city-fight-with-albany ; 
www.shalegaswiki.com ;  
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al., 2003). This fourth case will provide a sensitivity analysis on transport costs. 

Investments in new pipelines and liquefaction and regasification capacity are assumed to 

be 20% cheaper than in the Base Case, and operational costs and regulated fees for all 

transport options stay at present levels instead of increasing with an inflationary trend of 

1.5% per year.  

Since lower transportation costs make longer distance transports more attractive this 

scenario will result in a comparative advantage for suppliers further away from the 

importing markets. LNG exports will likely increase, as should long-distance pipeline 

exports from various regions.  

 

The following sections discuss results illustrating some global and local effects on the 

natural gas market of the case assumptions. 

4.4  Numerical results 

The first subsection discusses and compares various aggregate results for the three cases 

and the Base Case, in terms of global and regional prices and production levels. Prices 

and production levels are discussed for the most mature gas markets: North America, 

Europe and Japan & South Korea. Subsequent sections present detailed results for an 

exporting country, a transit country, an importing country and the (potential) cartel 

members. Highlighted are: i. the Dutch trade balance, ii. pipeline transits through Turkey, 

iii. the breakdown of supplies to the United Kingdom & Ireland in the high-demand 

season, iv: production and profit levels of the cartel members and v. changes in consumer 

surplus in importing regions. Detailed results, also for other countries and regions, can be 

found in Section 4.7 and in (Gabriel et al., 2010). 

4.4.1 Development of wholesale prices 

In the Base Case, the worldwide volume-weighted average wholesale prices in 2015 in 

2005$/kcm will be $194 ($5.50/mcf) and $240 ($6.81/mcf) in 2030.115 In North America 

the prices in 2015 and 2030 will be $230 ($6.52/mcf) and $291 ($8.24/mcf) respectively, 

in Europe $283 and $368 and in Japan & South Korea $327/kcm and $398/kcm.  

 

                                                 
115 kcm=kilo cubic meter = 1000 m3 ; mcf: thousand cubic feet = 1000 ft3 ; 1 kcm = 35.31 mcf 
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Due to the nature of markets and market models, changes in assumptions affecting the 

supply will affect the demand situation, and will also impact the end-user prices. The 

regions that are likely to be most affected are regions that are – to some extent – 

dependent on imports to meet their domestic consumption. In the Base Case, North 

America will stay nearly self-sufficient throughout the model horizon, Europe will import 

58% and 68% of total consumption in 2015 and 2030 respectively and Japan & South 

Korean will import about 98% throughout the time horizon. Figure 20 shows for all three 

cases the differences relative to the Base Case in volume-weighted average wholesale 

prices for the whole world, North America, Europe and Japan & South Korea.  
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Figure 20: Volume-weighted average wholesale prices  - Differences relative to Base Case 

 

In the Cartel Case, Europe and Japan are affected quite harshly, with average prices 

between 12% and 24% higher than in the Base Case. North America, however, would 

hardly be affected. The lack of dependency on overseas external supplies shields North 

America from the impact of the cartelization. The global average impact of a cartel in 

terms of prices is quite modest, smoothed out by the negligible impact on the large North 

American market and lower prices in all countries participating in the cartel (not shown 

in the Figure 20).  
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Much lower unconventional production in the United States would have the largest 

impact on prices globally. In North America prices would be 44% higher than in the Base 

Case in 2015 and 35% higher in 2030. Canadian and Alaskan supplies could not make up 

completely for the lower unconventional resources and LNG imports from overseas 

would be significantly higher to cover domestic demand in the United States; actually 

drawing some LNG that in the Base Case would have been supplied to other LNG 

importing regions. Alaskan supplies would be higher, and the pipeline would eventually 

be expanded to 60.7 bcm/y of capacity in Unconv, about 7 bcm/y higher than in the Base 

Case. (Details not shown in Figure 20.) The pipeline from the Canadian Mackenzie 

region into Western Canada would be 46.8 bcm/y by 2030 vs. 41.2 in the Base Case and  

Eastern Canada would expand its regasification more, to 4.6 bcm/y by 2030 vs. 0.9 in the 

Base Case. The total regasification capacity in the United States in 2010 of 121.1 bcm/y 

(exogenously included) will not be expanded more in any of the cases. The much higher 

prices shown in Figure 20 for North America result from the tight external supply 

situation and higher marginal supply costs. Also, the overseas suppliers are assumed to 

exert market power in the North American market, which causes prices to increase 

relatively sharply when domestic supplies are tight. In Europe and Japan & South Korea 

the impact would be relatively small and prices would be at most 4% higher. Note that 

Case Unconv is the only case where market prices in European would be lower than in 

North America. 

 

In the Transp Case the supply costs are lower for all regions importing gas. 

Consequently, all importing regions would benefit from lower prices. In North America 

the transports from Alaska and Canadian exports to the U.S. Lower 48 states would be 

somewhat cheaper than in the Base Case and imports from overseas would be more 

attractive too. Europe and Japan & South Korea, which depend on larger import amounts, 

would benefit more, with prices up to 9% lower in 2030 relative to the Base Case. 

 

The next results to be discussed are the production levels. 

4.4.2 Development of production 

In the Base Case, global production in 2015 will amount to 2987 bcm, in 2030 global 

output will be 3846. Figure 21 shows production levels in 2015 and 2030; for the whole 
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world, Europe and North America. Since domestic production in Japan & South Korea 

fulfills less than three percent of domestic consumption it will be neglected in this 

discussion. 
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Figure 21: Production levels relative to the Base C ase 

 

Differences in global production levels among cases are relatively modest, varying at 

most 5% relative to the Base Case. However, the regional effects vary. Russian and 

European production are most affected by the Cartel Case assumptions. As one of the 

cartel members, Russia would produce significantly less than in the Base Case. In 

response to lower external supplies European countries would produce more 

domestically.  

 

The lower availability of unconventional gas in the Unconv Case would result in about 

25% lower production in North America compared to the Base Case in both periods. In 

absolute terms North American production would be 175 bcm less than the 684 of the 

Base Case in 2015, and 212 bcm less than the Base Case value of 821 in 2030. The much 

lower output of unconventional gas would have various consequences. North American 

market prices would significantly increase, which would reduce consumption levels and 

also trigger higher LNG imports and higher production in Canada and Alaska. Production 

in the Canadian Mackenzie Delta would be much higher earlier in the time horizon (32 
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vs. 18 bcm in 2015), and exports though the Alaskan pipeline would be larger than in the 

Base Case (65 vs. 54 bcm in 2030, not in the Figure).  

 

The higher LNG imports to North America would reduce availability of LNG for other 

importing regions. Notably Europe would face higher LNG import prices, and 

consequently European production would be a few bcm per year higher. Since European 

countries are producing already close to capacity in the Base Case, these higher output 

levels can be considered to come from marginal fields, which in the business-as-usual 

situation would not be profitable. Russian would export slightly more than in the Base 

Case, both as LNG and via pipelines. 

4.4.3 Focus on the Netherlands: supply, consumption and trade 

From the early 1960s until 1994 the Netherlands was the biggest gas producer and 

exporter among the (current 27) members of the European Union, accounting for between 

25% and 40% of total gas production. From 1995 until 2009 the United Kingdom has 

been the largest producer in the EU, however in 2009, due to declining reserves in the 

United Kingdom, the Netherlands was again the biggest gas producer among the EU 

countries (BP, 2010).  

 
Figure 22: The Netherlands in Western Europe 
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The Dutch Groningen field is the largest onshore gas field on the European mainland and 

among the ten largest gas fields in the world. It has supplied more than half of all gas 

ever produced in the Netherlands. The rest of the Dutch gas production has originated 

from several smaller fields onshore and offshore. Due to its high pressure, the Groningen 

field has been used as a source of swing supply, allowing to meet short-term as well as 

seasonal fluctuations in the demand. Swing supply is an asset and since reducing 

production rates would maintain higher pressure levels, Dutch governments have 

provided tax incentives for the exploration and production from smaller gas fields, the so-

called small-field policy.116 Another measure has been to set production ceilings limiting 

the production from the Groningen field, e.g., for the ten-year period from 2006-2015 the 

production ceiling is 425 bcm, the ten-year period allowing for some variation in the 

yearly production rates. In spite of the measures after half a century the pressure in the 

Groningen gas field has dropped significantly, up to the point that compressors have been 

installed to produce gas from the field. 

 

It is not clear how long the Netherlands will be able to export significant amounts of gas 

and the companies involved in the Dutch gas market are considering their options for the 

future, given the infrastructure in place and the expertise that has been gained in fifty 

years involvement in the gas business There are many pipelines from the Netherlands 

into the rest of Europe (see Figure 4 in Section 3.9), an LNG import terminal is being 

built, several storage facilities are under construction, and a Dutch company is 

shareholder in Nord Stream, the big new pipeline from Russia to Germany.117  

 
Figure 23 shows the Dutch supply, demand and trade (LNG imports as well as net 

pipeline exports) in 2015 and 2030 for all four cases.  The most-left bar presents the 

categories included in the graph: domestic production and LNG imports in the upper part 

and consumption and net pipeline exports in the bottom part (with negative values due to 

the structure of the graph). The figure shows that the Dutch production levels are hardly 

affected by the various case assumptions. 

                                                 
116 See e.g., www.rijksoverheid.nl/onderwerpen/gas/gasexploratie-en-productie/groningenveld (Dutch) 
117 www.alkmaargasstorage.nl ; www.gate.nl and www.nord-stream.com/our-company/shareholders 
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Figure 23: Supply and trade breakdown for the Nethe rlands (bcm/y) 

 

In 2015 the Base Case production would amount to about 66 bcm, and in 2030 to just 

under 50 bcm. Consumption and trade are much more affected by the case assumptions. 

In both years in the Cartel Case, the supply of LNG would be lower due to the cartel 

members withholding supplies and the Dutch pipeline exports would increase due to 

higher market prices in surrounding countries. As a consequence, the consumption would 

be more than 5% lower in 2015 (39.1 instead of 41.3 bcm), and almost 8% lower in 2030 

(37.9 instead of 41.2 bcm). Note that the 8% lower consumption in 2030 is an aggregate 

over all sectors and the various demand sectors have different price elasticities. For 

instance, the power sector is much more price-sensitive than the residential sector, and 

the higher prices of gas might significantly affect the fuel mix in the power generation 

sector. 
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Lower unconventional gas production in the United States (the Unconv Case) would be 

felt through lower LNG imports. They would be 1.6 bcm lower in both years. Dutch 

production would hardly change. Pipeline exports would be about 1 bcm lower in both 

years, and consumption 0.3 and 0.6 bcm lower, respectively. 

 

A general decline in long-distance transport costs (Case Transp) would harm the 

competitive position of the Netherlands as an exporter to its neighboring countries in 

Europe. In 2015 the pipeline exports would be about 1.1 bcm lower than the 31.7 bcm in 

the Base Case. The lower pipeline exports would allow for higher consumption (0.9 bcm) 

and some imports would push out domestic production (0.3 bcm). In contrast, in 2030 

there is an increase in pipeline exports of 2 bcm relative to the 22.7 in the Base Case. 

LNG imports would be so much cheaper, that they would be 3.8 bcm higher (18.2 vs. 

14.4 bcm). This would allow a 1.7 bcm higher consumption as well as the observed 

higher pipeline exports.  

 

These results show how a self-sufficient and gas exporting country such as the 

Netherlands would be affected by global developments as a consequence of the integrated 

nature of the global natural gas market. Domestic production levels would not vary much 

among the cases (which could be a consequence of the low production costs of the 

Groningen field in combination with the production ceiling). However different 

developments in the global market significantly affect the ability to draw LNG imports 

and the competitiveness of the Dutch pipeline exports.  

 

The following subsection discusses the development of the role of Turkey in transiting 

exports from the Caspian region and the Middle East to Europe. 

4.4.4 Focus on Turkey: Pipeline transits to Europe 

In the past decades Russia, Algeria and Libya have exported large amounts of natural gas 

to Europe via pipelines. Other countries that potentially could export gas to Europe via 

pipelines are located in the Middle East and the Caspian region. This would allow these 

countries to monetize their reserves and could be interesting from a European perspective 

wanting to diversify supply sources. For various reasons pipelines from the Caspian 

regions would preferably avoid Russian territory and for Middle Eastern countries the 
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shortest route to Europe is via Turkey. Therefore, Turkey is likely to become a major 

country for transiting gas from these regions to Europe. 

 

The European Commission is supporting the construction of Nabucco, a major pipeline 

that should bring gas from Caspian countries to Europe. Mid 2009 the Nabucco 

Intergovernmental Agreement was signed between four Central and Eastern European 

EU members and Turkey.118 Another pipeline, the Persian (Pars) pipeline would also pass 

through Turkey, but would have Middle Eastern countries as its supply source and target 

another part of the EU market, including Western Europe.119  

 

Figure 24 shows the location of Turkey, between Asia and Europe, as well as several 

pipeline routes.  

 
Figure 24: Transit country Turkey and various (prop osed) pipeline routes  

 

The pipeline routes depicted are at various stages of their development. Pars and South 

Stream are being discussed, Nabucco has political support, Nord Stream is being built 

                                                 
118 EU members: Bulgaria, Romania, Hungary and Austria,  
(ISEC/09/85: http://ec.europa.eu/unitedkingdom/press/press_releases/2009/pr0985_en.htm, 13 July 2009 ) 
119 EU members: Italy, Switzerland, Austria, Germany, 
(http://english.farsnews.com/newstext.php?nn=8707051084, 26 September 2008) 
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and Blue Stream has been in place since 2003. In 2011 27.5 bcm of Nord Stream capacity 

should become available and in 2012 its size should be doubled.120 Political 

considerations often seem to play an important role in the decisions about new pipelines, 

leading to investments that are not necessarily the economically most viable ones. Our 

results show that the pipelines being built and expanded in the model, purely based on 

profit-maximization decisions, differ from the ones that are built in reality. This supports 

the idea that other – political – factors play a role in the decisions about major gas 

pipeline routes.  

 

Although in today’s reality the pipelines through Turkey are not being constructed yet, 

the gas market outlooks project such a huge supply gap for Europe by 2030 that much 

extra LNG and pipeline import capacity will be needed. In the Base Case the net imports 

to Europe will be 390 bcm in 2015, i.e., 100 bcm more than in 2005. In 2030, another 126 

bcm will be added to the yearly imported amount, to bring the total to 516 bcm. In the 

Base Case the total pipeline capacity and exports into Europe from Russia, the Caspian 

region and the Middle East will increase significantly over time. It is interesting to see 

how the case assumptions would affect the expansions of the various pipeline capacities. 

 

Figure 25 shows results for gas supply to and through Turkey. Each bar contains three 

categories: sales from (potential) cartel members to Turkey (Sales GECF), sales from the 

Caspian Region to Turkey and transits from (potential) cartel members via Turkey to the 

rest of Europe (Transits GECF). Total pipeline flows into Turkey would be significant, 

between 38 and 45 bcm in 2015 and between 67 and 86 bcm in 2030. but most of these 

supplies would stay in the country. Somewhat surprisingly the amount of gas transiting 

through Turkey would be very modest in all cases. None of these transits would originate 

from the Caspian region.  

 

In the Cartel Case all transits are zero, in other cases the transit volumes (from Iran) 

would be at most 6 bcm. Naturally, in the Cartel Case the supplies to Turkey by cartel 

members would be lower than in the Base Case (e.g., -11 in 2015). Consequently, the 

supplies by the Caspian region would be higher (e.g., +7 in 2015. As Figure 26 below 

                                                 
120 www.nord-stream.com/en/the-pipeline.html ; bcm = billion cubic meter. 
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shows, the total pipeline exports to Europe from Russia and the Caspian region would 

add up to large amounts.  
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Figure 25: Pipeline exports to and transits through  Turkey (bcm/y) 

 

In the Cartel Case, total pipeline supplies to Europe by GECF countries in 2015 would be 

61 bcm (36%) lower than in the Base Case and 72 bcm (33%) lower in 2030. Supplies by 

the Caspian region would be 23 resp. 25 bcm higher in these two years. In the other two 

cases pipeline supplies to Europe would be higher than in the Base Case. 
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Figure 26: Pipeline exports to Europe from and via Western Russia (bcm/y) 
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In the Unconv Case the supplies would compensate for LNG drawn to the North America 

that in the Base Case is destined for Europe. In the Transp Case the higher pipeline 

supplies are due to the improved competitiveness of long-distance gas transports. In all 

cases in both years add up to at least 200 bcm, but as seen previously in Figure 25, the 

supplies to Europe would not be routed via Turkey. The Caspian region exports to 

Europe are sent through Western Russia and the Ukraine. Russia does not need to export 

to Europe via Turkey, but routes gas through the Ukraine. The Blue Stream pipeline 

would be used to supply Turkey and the Nord Stream pipeline would not be built. These 

results seem to contradict actual current developments. Various multi-billion dollar 

projects are under consideration or under construction to meet the increasing supply gap, 

but the model does not have them built.  

 

Here some limitations of the model show up and a consequence of not having pipeline 

contract data incorporated into the model as well as only addressing economic factors in 

the investment decisions. Political considerations could only be addressed implicitly. 

That the Russian government wants to divert gas flows from the Ukraine and Belarus is 

not addressed in the model. It would have been possible to reduce the investment costs 

for the Nord Stream pipeline, or include part of its capacity exogenously, however that 

was not done.121 Similarly, in the model all Caspian exports to Europe flow through 

Russia. In the Cartel Case the Caspian gas transiting through Russia would even be 

higher, when the Caspian region would fill up some of the pipeline capacity from Russia 

and the Ukraine to Europe that would be available due to the cartel withholding supplies. 

In contrast, the Nabucco pipeline will be built to be less dependent on the Russian transit 

route and especially in a cartel situation it would not be very likely that Russia would 

accommodate high amounts of gas transiting to Europe through their territory 

undercutting their own market position. Thus, interpretation of the model outcomes 

should be done carefully. Although the model does not have the Nabucco pipeline built, 

Caspian supplies to Europe in 2030 of 80 bcm in the Base Case and almost 105 bcm in 

the Cartel Case actually support the need for this pipeline, and in the long run for 

possibly much higher capacities than currently being discussed. 

 

                                                 
121 Note that in 2008, the time of data base construction, Nord Stream was in a planning stage only.   
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In conclusion, the transits through Turkey are surprisingly modest in all cases, which 

does not seem to support the case for major pipeline projects such as Nabucco. But when 

considering the model outcomes in a political context and looking at export volumes 

between 80 and 105 bcm from the Caspian region to Europe in 2030, supply security 

considerations do provide a rationale for having the Nabucco pipeline built.  

 

The next subsection presents and discusses results for the supply situation of the United 

Kingdom and Ireland in the high demand season. 

4.4.5 Focus on the U.K. & Ireland: supply in the high demand season 

From 1994 until 2008 the United Kingdom was the largest gas producer in the European 

Union.122 After peaking at 108 bcm in 2000, production has declined to slightly below 60 

bcm in 2009.  

 
Figure 27: United Kingdom and Ireland 

 

Since 2005 the United Kingdom has had to import gas to meet domestic demand. In 2009 

the net import share of the United Kingdom was about 30%. Gross imports amounted to 

                                                 
122 Ireland is part of the node UK. Irish production is negligible and consumption just under 5 bcm in 2009.  
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about 41 bcm and the (re-)exports added up to 12 bcm. About 60% of the imports 

originated from Norway, 25% was imported as LNG and 15% came from the 

Netherlands. Almost half of the exports of the United Kingdom went to Ireland (BP, 

2010). 

 

Domestic production in the United Kingdom was booming in the 1990s, rapidly depleting 

the reserves. Companies involved in the U.K. gas market realized that the situation would 

change radically in the next decade and several new import pipelines and regasification 

terminals were developed. As a result, the added LNG regasification capacity at the Isle 

of Grain and Milford Haven since 2005 will total 47 bcm by 2011. In that same period 

two new pipelines (Langeled from Norway and the BBL from the Netherlands) and 

allowing flow reversal on a third one (the Interconnector from Belgium) add 70 bcm of 

import capacity and bring yearly U.K. import capacity to over 140 bcm/y by 2010.123 

 

 
Figure 28: Pipelines into the United Kingdom 

 

The U.K. network operator National Grid projects that by 2018 domestic production will 

have declined to something between 20 and 40 bcm per year. Combined with a demand 

                                                 
123 Tampen Link, Vesterled, Langeled www.gie.eu.com and 
www.gassco.no/wps/wcm/connect/gassco-en/gassco/home/norsk-gass/gas-transport-system 
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projection of about 100 bcm this would imply net imports of 60 to 80 bcm.124 These 

projections would imply that not all import capacity will be used at full capacity all the 

time. However, gas usage is not the same every day and slack capacity and storage are 

needed to provide daily and seasonal swing and to deal with supply interruptions. 

According to National Grid the typical peak winter day demand in the United Kingdom 

in the last decade has been about four hundred mcm/d: an annualized 146 bcm.125  

 

In the short run there seems to be overcapacity for importing gas in the U.K. market. 

Given the various options that the United Kingdom have to fulfill the domestic demand, 

how will case assumptions affect what options will be used to which extend? 

Seasonality representation in the WGM is limited to two seasons and the high demand 

season includes the period October through March. Thus, the very cold winter peak 

demand period is smoothed out somewhat by the demand characteristics of the late 

autumn and early spring months. In the WGM daily consumption in the cold half of the 

year is slightly more than 50% higher than daily demand in the warmer half. 

 

In the Base Case, production of the United Kingdom and Ireland in 2015 would be a bit 

more than 32 bcm, and slightly below 17 bcm in 2030. Consumption in both years is 

projected to be just under 90 bcm. Domestic production levels do not depend much on the 

season or the case assumptions, however the consumption volumes do. Consumption in 

the high demand period would be around 55 bcm, or an annualized 110 bcm.  

 

Since the seasonal swing of domestic production is very limited and building pipelines is 

expensive, storage and LNG imports are generally the cheaper options to meet variations 

in seasonal demand. However it is possible that when the supply of LNG is rather tight 

(as in the Cartel Case and the Unconv Case), or pipeline investment costs relatively low 

(as in the Transp Case), that different sources supply more or less than in a business as 

usual situation. Figure 29 below shows in the four cases how much domestic production, 

pipeline imports, LNG imports and withdrawals from storage are needed to cover winter 

demand in the United Kingdom and Ireland in the years 2015 and 2030. 

                                                 
124 http://www.nationalgrid.com/uk/Gas/TYS/ ;  
125 400 mcm/day times 365 days � 0.4 bcm/d *365 days =146 bcm/y 
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Figure 29: Supply in the high demand season United Kingdom and Ireland (bcm) 

 

In all cases the variation in seasonal demand is very similar, with 39% of yearly demand 

falling in the low demand period, and 61% of demand in the high demand period (not 

shown in figure). The United Kingdom and Ireland would be affected more by a 

cartelization of the gas market than to much lower unconventional gas availability in the 

United States. In a cartel situation, the yearly consumption would be about 5 bcm lower 

in 2015, and 7 bcm lower in 2030. In contrast, in the Unconv Case, consumption would 

be just about 1 bcm lower in both years. Lower transport costs (Transp Case) would 

allow consumption to be about 2½ and 5 bcm higher in 2015 and 2030 respectively.  

 

In the Cartel Case the pipeline supplies are significantly lower than in the Base Case. 

Supplies from Norway and the Netherlands that in the Base Case were destined for the 

United Kingdom are drawn to Central, Eastern and Southern Europe to fill the supply gap 

resulting from cartel members withholding supplies. The resulting much higher prices in 

the U.K. market would make it more attractive for LNG suppliers. In the Cartel Case, the 

LNG imports would even be a little bit higher than in the Base Case. 
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When the United States would have lower domestic production (Unconv Case) some of 

the LNG that otherwise could have been directed to the United Kingdom would go to 

North America. As a consequence, the U.K. LNG imports would be a little lower and 

pipeline supplies would increase slightly to compensate part of the redirected LNG flows. 

 

Lower long-distance transport costs (Transp Case) would benefit the competitive position 

of LNG supplies, allowing for somewhat higher LNG imports. In 2015 LNG would even 

push out some pipeline supplies (-0.3 bcm, not visible in the figure), but by 2030 also the 

pipeline supplies would be slightly higher than in the Base Case (+0.1 bcm). 

 

In 2015 the use of storage would be just under 4 bcm in all cases except the Cartel Case. 

In the Cartel Case it would be 2 bcm higher, due to a larger seasonal price difference 

resulting from withheld supplies by cartel countries. For 2030 the results are very similar, 

only in the Transp Case there would be a higher use of storage of almost 1 bcm relative to 

the Base Case. The use of storage in the model seems very low relative to the capacity 

expected to be available. Current working gas capacity in the United Kingdom & Ireland 

is about 4½ bcm, and there are plans for an additional 20 bcm.126 Recall that in the WGM 

just two seasons are distinguished. In the model the annualized daily consumption in the 

high demand season is about 110 bcm/y. Compared to an annualized peak winter day 

demand of 146 bcm/y (see start of this section) and adding the need to deal with supply 

interruptions, more storage will be needed than what the model outcome indicates. 

 

Table 5 below shows that in 2015 the seasonal price differential in the United Kingdom 

and Ireland is larger in the Cartel Case than in the other cases, even with the higher 

storage capacity used in the Cartel Case relative to the other cases. In 2030 the price 

differences among the cases are negligible, however with lower working gas available the 

price difference in the Cartel Case would have been larger.  

 

                                                 
126 http://www.gie.eu.com/maps_data/GSE/database/index.html  
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Table 5: Seasonal price differences in the United K ingdom and Ireland ($2005/kcm) 
Year Base Cartel Unconv Transp 

2015 $ 41 $ 47 $ 37 $ 39 
2030 $ 58 $ 59 $ 58 $ 59 

 

In this section a breakdown of the supply to the United Kingdom and Ireland in the high 

demand season was discussed. Due to depleting domestic reserves the countries will have 

to rely on imports to fulfill domestic demand throughout the year, and additional imports 

as well as storage to provide swing supply. Our results show that all supply options will 

be used to meet high season demand and that the supply mix is relatively independent of 

the case assumptions, except for significantly lower pipeline supplies in a cartel situation. 

A cartel would induce larger use of storage, due to a larger higher seasonal price 

difference. With the anticipated slack in pipeline and regasification capacities as well as 

the available storage working gas the United Kingdom seems well-prepared to deal with 

daily and seasonal variations in the demand. 

 

Previous sections have discussed several effects of a cartelization of the gas market. In 

the following section the profitability of a cartelization of the gas market for the potential 

cartel members is discussed. 

4.4.6 Focus on cartel members: cartelization profits 

The idea behind a cartel exerting market power is that withholding supplies will drive up 

market prices and profits of the cartel members. However, the higher market prices will 

trigger higher supplies from non-cartel members, partly undercutting the intentions of the 

cartel members. Figure 30 shows the total net exports to Europe (incl. Turkey) by the 

main suppliers potentially participating in the cartel and the Caspian region in all cases.  

 
The total net supplies to Europe in 2015 by a cartel would be 101 bcm (33%) lower than 

the aggregate supplies of the individual members in the Base Case, and 143 bcm (36%) 

lower in 2030. Higher Caspian supplies would fill part of the gap, with supplies to 

Europe being 26 bcm higher in 2015 and 27 bcm in 2030, relative to the Base Case. In 

the Unconv Case the LNG exporters among the GECF members would direct more 

supplies to North America, hence the lower supplies to Europe, which would induce 
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slightly higher supplies by the Caspian region. In the Trans Case all long-distance 

supplies to Europe would increase.  
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 Figure 30: Net exports to Europe by cartel members  and the Caspian Region (bcm/y) 

 

In a cartel, the market prices in importing regions would be up to 24% higher in 2030 

(Figure 20). How would the lower supplies to Europe and other regions in combination 

with the higher prices affect the profits of the potential cartel members? Figure 31 

presents a breakdown of yearly trader profits in three groups: potential cartel members 

(GECF), the Caspian Region, and all other traders. 

 

The trader profits are highest in the Cartel Case as would be expected. In 2015, the profits 

of the cartel members would be about 8% higher than the aggregate profits of the 

members in the Base Case. A result that is described more often in the literature (e.g., 

Farrell and Shapiro (1990, 1991), Salant et al. (1983)) is that the cartel profits in later 

periods are lower than without collaboration: in 2030 the aggregate profits of the cartel 

members would be almost $3 billion lower than in the Base Case. 
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Figure 31: Aggregate profits of traders (billion $2 005) 

 

The explanation is that the cartel members maximize their discounted profits over the 

whole time horizon. The further into the future cash flows occur, the more they will be 

discounted and thus less influential in model decisions. Table 6 shows the discounted 

yearly profits of the cartel members. As it turns out, the yearly profits of the cartel 

members would be higher in the Cartel Case than in the Base Case until 2025, but lower 

in the rest of the time horizon.127 

 
Table 6: Aggregate discounted yearly profits of car tel members (billion $2005) 

Year Base Case Cartel Case Relative 
Difference 

2010 $ 20.9 $ 24.0 15.0% 
2015 $ 17.6 $ 19.0 7.9% 
2020 $ 13.5 $ 14.2 4.9% 
2025 $ 10.3 $ 10.4 1.5% 
2030 $   8.2 $ 7.9 -2.9% 

 

A back-of-the-envelope estimate for the aggregate discounted cartel profits would be 

$35-40 billion over the model period, about half of which would fall in the first five 

                                                 
127 For completeness, the discounted aggregate profits in the Base and Cartel cases are in 2005: $24.8 vs. 
$29.5, in 2035 $5.4 vs. $5.3 and in 2040 $3.6 vs. $3.5. 
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years.128 In the short run, a cartel along the lines of the GECF would withhold supplies 

and drive market prices up to significantly increase trader’s profits. In the longer run, 

other suppliers such as the Caspian Region, Australia and Middle Eastern countries not 

taking part in the GECF would have time to expand supply capacities and export much 

higher volumes to importing markets, eventually at the expense of the cartel profits. 

Some caution when interpreting these results is recommended, since they do not account 

for the depletion of reserves and the possibility to change strategies over time. 

Alternatively, cartels with a broader membership could be considered. Gabriel et al. 

(2010) looks into such alternative cartels and also combines case assumptions to see how 

lower transport cost or lower North American unconventional gas production interacts 

with a cartelization of the gas market. 

4.4.7 Focus on consumer surplus 

Table 7 presents changes in consumer surplus based on differences in prices and 

consumption levels in the various cases. In the Cartel Case and the Unconv Case, the 

lower consumption levels and higher prices induce losses in consumer surplus of dozens 

of billion dollars. In contrast, consumer surplus in the Transp Case is much higher, due to 

higher consumption and lower prices. 

 

Table 7: Changes in consumer surplus (billion $2005 ) 

  Change in consumer surplus 

Region 
Case

Year Cartel Unconv Transp 

World  2015 -27.6 -71.4 12.3 
 2030 -62.6 -92.8 36.6 

2015 -0.6 -63.7 3.4 
North America  2030 -0.2 -76.8 11.9 
Europe 2015 -22.6 -2.7 7.9 
 2030 -38.9 -5.8 21.6 

2015 -6.8 -1.3 1.6 
Japan & South Korea 2030 -11.7 -1.9 5.1 
 

In North America the lost consumer surplus is largest in the Unconv Case, totaling almost 

$64 billion in 2015 and close to $77 billion in 2030. In Europe and Japan & South Korea 

the Cartel Case has the most impact on consumer surplus, in 2030 Europe would gain 
                                                 
128 The estimate is based on an interpolation for years that are not included in the model. 
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almost $39 billion and Japan & South Korea would gain $11.7. The higher the impact of 

case assumptions on the consumption, the larger the loss in consumer surplus.  

4.5 Summary and conclusions 

This chapter starts with a discussion of the input data collection and the development of a 

reference scenario for the global natural gas market in the WGM. In the second part of 

this chapter the results of three case studies are presented and discussed. The first case 

studies the impact of a gas cartel, a second case a lower availability of unconventional 

gas in the United States and a third case the impact of lower future transport costs.  

 

A cartelization of the global gas market would severely impact the import dependent 

countries. In Europe the average prices would be between 12% and 15% higher, and in 

and Japan & South Korea between 19% and 24% higher than in the Base Case, and 

consumption levels would drop 6% to 8% in Europe, and 12% to 15% in Japan & South 

Korea. North America would hardly be affected, due to self-sufficiency of the region. In 

terms of consumer surplus, Europe and Japan would account for the majority of the 

losses, with among the two regions almost $30 billion lost in 2015 and $50 billion in 

2030.  

 

In contrast, much lower availability of unconventional gas in the United States would 

have a large impact on North America. North American prices would be up to 35% to 

44% higher than in the Base Case, but the impact on other regions would be modest, with 

European, Japanese & South Korean prices not more than 4% higher. In this case the 

United States would be responsible for most of the loss in consumer surplus, losing 

almost $64 in 2015 and $77 billion in 2030. 

 

Subsequent sections discuss detailed results for an exporting country (Netherlands), a 

transit country (Turkey) and an importing region (United Kingdom and Ireland), and the 

profit potential for GECF members were they to form a cartel. Highlighted are the 

impacts of the various case assumptions on the Dutch trade balance, the pipeline transits 

through Turkey destined for Europe, the breakdown of supply the to the United Kingdom 
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and Ireland in the high demand season and the profits and supplies by the (potential) 

cartel members.  

 

In the Netherlands, the domestic production levels do not vary much among the cases. 

However different developments in the global market significantly affect the ability to 

draw LNG imports and the competitiveness of the Dutch pipeline exports. The results 

support the development of LNG regasification capacity in the Netherlands as LNG 

imports are significant in all cases and periods.  

 

The amounts of gas transiting through Turkey are surprisingly small in all cases, which 

does not seem to support the development of major pipeline projects such as Nabucco. 

Flows into Turkey would be significant in all cases, but with Turkey as their final 

destination. Exporters use other routes for shipping their gas into Europe. However, when 

considering the model outcomes for the various cases in a political context, and looking 

at a value of 80 to 105 bcm of Caspian exports to Europe in 2030 transited through 

Russia, clearly more pipeline capacity is needed. Supply security considerations could 

provide the rationale to not transit these exports through Russia, but indeed use the route 

through Turkey considered for Nabucco.  

 

Next, the supply situation for the United Kingdom and Ireland in the high demand season 

is discussed. Anticipating the depletion of domestic reserves, the capacities of import 

pipelines, regasification capacity and storage working gas has been, and is being, 

expanded with large amounts. All supply options are used in all the cases considered, 

although there seems to be quite some slack in the import capacity that would only be 

used in the peak winter periods and to cope with disruptions. A cartel would induce larger 

use of storage, possibly due to a larger higher seasonal price difference. 

 

Lastly, the production and profit developments of (potential) cartel members showed that 

non-cartel members would benefit most from the formation of a cartel. Non-cartel 

members benefit from the higher market prices induced by lower supplies from cartel 

countries, and raise their output levels. The cartel would benefit in the early part of the 

time horizon, but would give up so much market share in later years that in the long run 
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yearly profits would be lower than in the Base Case. Over a thirty-year time horizon the 

total discounted profits for the cartel members would be about $35-40 billion higher than 

in the Base Case. 

 

The case results illustrate that the increasing role of LNG trade in the global gas market 

has consequences for how local developments affect the global market. Changing 

domestic supply in one region causes shifts in LNG flows, which changes trade balances, 

prices and pipeline flows all over the globe. This ripple effect, or smoothing-out effect, is 

also discussed in (Nesbitt and Scotcher, 2009) and (Hartley and Medlock III, 2009). 

 

This section concludes the discussion of the deterministic WGM. The following Chapters 

will introduce and discuss the stochastic version of the model and decomposition 

approaches to solve a large-scale stochastic version of the model. 
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4.6  Appendix 

Region Node Countries 
ALG Algeria, Egypt, Libya, Morocco, Tunisia  Africa 
NIG Nigeria, Angola, Equatorial Guinea, Mozambique, South Africa 
AUS Australia, New Zealand  
CHN Burma, China, Singapore, Taiwan, Thailand  
IDA India, Pakistan  
IDO Indonesia, Brunei, Malaysia  

Asia 
Pacific 

JAP Japan, South Korea  
Caspian KZK Kazakhstan, Azerbaijan, Turkmenistan, Uzbekistan, Armenia, Georgia 

FRA France, Belgium & Luxembourg 
GER Austria, Czech Republic, Denmark, Germany, Switzerland 
ITA Italy, Slovenia  
NED Netherlands  
NOR Norway 
POL Poland, Sweden, Baltic Region, Finland, Slovak Republic  
ROM Romania, Bulgaria, Greece, Hungary  
SPA Spain, Portugal 
TRK Turkey  
 UK United Kingdom, Ireland  

Europe 

UKR Ukraine, Belarus  
QAT Qatar, Iran  Middle 

East YMN Kuwait, Oman, Saudi Arabia, UAE, Yemen  
CAE Canada-East 
CAW Canada-West, Mackenzie Delta  
MEX Mexico 
US1 USA Census Region 1: New England129 
US2 USA Census Region 2:Middle Atlantic 
US3 USA Census Region 3:East North Central 
US4 USA Census Region 4:West North Central 
US5 USA Census Region 5:South Atlantic 
US6 USA Census Region 6:East South Central 
US7 USA Census Region 7:West South Central 
US8 USA Census Region 8:Mountain 
US9 USA Census Region 9: Pacific, except Alaska 

North 
America 

USL USA Alaska 
RUE Russia-East 
RUL Russia-Sakhalin 

Russia 

RUW Russia-West, Russia-Volga-Uralsk 
BRA Brazil, Argentina  
CHL Chile, Ecuador, Peru  

South 
America 

TRI Trinidad & Tobago, Bolivia, Venezuela  

                                                 
129 http://www.census.gov/geo/www/us_regdiv.pdf  
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4.7 Detailed case-study results 

Table 8: Volume-weighted average wholesale prices ( $2005/kcm) 

Year Case North 
America Europe Asia 

Pacific 
South 

America 
Middle 

East Africa  Caspian 
Region Russia World  

2010 Base $  206 $  252 $ 191 $ 233 $   94 $  84 $   72 $  79 $ 178 
 Cartel $  206 $  286 $ 198 $ 224 $   97 $  70 $   85 $  73 $ 184 
 Unconv $  302 $  257 $ 197 $ 237 $   96 $  89 $   72 $  80 $ 201 
 Transp $  204 $  247 $ 190 $ 230 $   95 $  85 $   73 $  80 $ 177 

2015 Base $  230 $  283 $ 200 $ 273 $ 102 $  86 $   80 $  86 $ 194 
 Cartel $  231 $  318 $ 208 $ 263 $ 109 $  72 $   94 $  79 $ 201 
 Unconv $  331 $  287 $ 204 $ 281 $ 105 $  91 $   81 $  87 $ 217 
 Transp $  226 $  271 $ 196 $ 268 $ 105 $  91 $   85 $  86 $ 191 

2020 Base $  245 $  305 $ 205 $ 269 $ 105 $  89 $   86 $  92 $ 203 
 Cartel $  247 $  343 $ 216 $ 268 $ 114 $  74 $ 103 $  84 $ 211 
 Unconv $  340 $  309 $ 209 $ 272 $ 108 $ 104 $   87 $  93 $ 224 
 Transp $  238 $  288 $ 198 $ 262 $ 108 $  97 $   92 $  93 $ 198 

2025 Base $  261 $  332 $ 229 $ 272 $ 111 $  90 $ 101 $ 108 $ 218 
 Cartel $  262 $  376 $ 247 $ 279 $ 120 $  77 $ 126 $  97 $ 228 
 Unconv $  351 $  337 $ 233 $ 276 $ 114 $ 103 $ 103 $ 109 $ 238 
 Transp $  250 $  310 $ 220 $ 265 $ 115 $  97 $ 108 $ 109 $ 212 

2030 Base $  291 $  368 $ 261 $ 282 $ 125 $  91 $ 112 $ 121 $ 240 
 Cartel $  291 $  421 $ 281 $ 309 $ 134 $  80 $ 143 $ 107 $ 253 
 Unconv $  393 $  375 $ 267 $ 293 $ 129 $ 102 $ 115 $ 122 $ 264 
 Transp $  277 $  340 $ 250 $ 279 $ 130 $  98 $ 124 $ 121 $ 233 

 

Table 9: Production, consumption and net trade – Eu rope (bcm) 
Year Data Case NOR NED UKD FRA GER ITA  ROM SPA POL TRK  UKR EUR 
2010 Base 92 68 67 0 26 12 13 0 3 1 19 302 

 Cartel 98 69 68 0 26 12 13 0 3 1 19 310 
 Unconv 93 69 67 0 26 12 13 0 3 1 19 304 
 P

ro
du

ct
io

n 

Transp 91 68 67 0 26 12 13 0 3 1 19 301 
 Base -7 0 10 34 0 16 3 34 0 5 0 96 
 Cartel -7 0 16 27 0 17 2 36 0 5 0 95 
 Unconv -7 0 6 29 0 12 1 33 0 5 0 79 
 

LN
G

 
im

po
rt

s 

Transp -7 0 10 35 0 17 3 35 0 5 0 98 
 Base -84 -29 14 31 90 62 20 8 31 29 73 246 
 Cartel -90 -32 4 35 84 54 19 2 30 25 63 194 
 Unconv -86 -30 17 36 89 64 21 9 31 29 72 253 
 

P
ip

el
in

e 
im

po
rt

s 

Transp -83 -28 15 31 91 62 20 8 32 30 73 249 
 Base 1 39 91 65 116 90 36 43 35 36 91 643 
 Cartel 1 37 87 62 110 83 34 38 33 32 82 599 
 Unconv 1 39 90 64 115 89 36 42 34 35 91 636 
 C

on
su

m
p

tio
n 

Transp 1 40 92 66 117 91 37 43 35 36 92 648 

 



 123 

Table 9: Production, consumption and net trade – Europe (bcm) continued 
Year Data Case NOR NED UKD FRA GER ITA  ROM SPA POL TRK  UKR EUR 
2015 Base 111 66 32 0 21 11 14 0 3 1 19 279 

 Cartel 124 66 32 0 21 11 14 0 3 1 19 293 
 Unconv 113 66 32 0 21 11 14 0 3 1 19 281 
 P

ro
du

ct
io

n 

Transp 108 65 32 0 21 11 14 0 3 1 19 276 
 Base -7 7 14 28 4 20 4 38 2 5 0 114 
 Cartel -7 7 18 23 2 17 2 37 1 5 0 106 
 Unconv -7 6 11 25 4 17 2 37 2 5 0 100 
 

LN
G

 
im

po
rt

s 

Transp -7 7 17 28 4 22 4 40 2 5 0 122 
 Base -103 -32 43 37 93 62 21 12 34 37 72 277 
 Cartel -116 -34 33 38 90 58 21 5 33 33 67 227 
 Unconv -105 -31 45 40 93 64 23 12 34 37 71 284 
 

P
ip

el
in

e 
im

po
rt

s 

Transp -100 -31 43 38 96 62 22 10 35 38 73 286 
 Base 1 41 89 65 118 93 39 49 39 43 90 669 
 Cartel 1 39 84 62 113 86 36 42 38 39 86 625 
 Unconv 1 41 88 65 117 92 38 48 39 43 90 664 
 C

on
su

m
p

tio
n 

Transp 1 42 92 67 120 95 39 50 40 44 92 683 

 
Year Data Case NOR NED UKD FRA GER ITA  ROM SPA POL TRK  UKR EUR 
2020 Base 122 64 26 0 18 9 14 0 3 1 19 276 

 Cartel 139 64 26 0 18 9 14 0 3 1 19 293 
 Unconv 125 64 26 0 18 9 14 0 3 1 19 279 
 P

ro
du

ct
io

n 

Transp 119 64 26 0 18 9 14 0 3 1 19 271 
 Base -7 10 20 31 5 23 4 35 4 3 0 129 
 Cartel -7 11 21 25 4 18 2 32 2 1 0 110 
 Unconv -7 9 16 26 5 22 3 34 4 2 0 115 
 

LN
G

 
im

po
rt

s 

Transp -7 11 22 34 5 27 5 38 4 4 0 143 
 Base -114 -32 45 37 100 70 24 12 37 50 75 303 
 Cartel -132 -36 38 39 96 67 24 8 37 46 71 258 
 Unconv -117 -31 48 41 99 70 25 12 37 50 75 309 
 

P
ip

el
in

e 
im

po
rt

s 

Transp -111 -31 46 36 103 69 25 10 38 50 78 313 
 Base 1 42 91 68 123 101 42 47 44 54 94 707 
 Cartel 1 39 86 64 117 93 40 40 42 49 89 661 
 Unconv 1 41 90 68 122 100 42 46 43 54 94 702 
 C

on
su

m
p

tio
n 

Transp 1 43 94 70 127 105 44 48 45 55 96 727 
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Table 9: Production, consumption and net trade – Europe (bcm) continued 
Year Data Case NOR NED UKD FRA GER ITA  ROM SPA POL TRK  UKR EUR 
2025 Base 125 59 20 0 17 9 13 0 3 1 19 267 

 Cartel 141 59 20 0 18 9 13 0 3 1 19 283 
 Unconv 128 59 20 0 17 9 13 0 3 1 19 270 
 P

ro
du

ct
io

n 

Transp 120 59 20 0 17 9 13 0 3 1 19 262 
 Base -5 14 24 36 7 30 5 35 5 4 0 156 
 Cartel -7 14 26 26 6 20 3 28 3 1 0 120 
 Unconv -7 12 22 32 7 27 4 34 5 2 0 139 
 

LN
G

 
im

po
rt

s 

Transp -7 15 28 39 7 34 5 39 5 7 0 172 
 Base -119 -30 46 35 103 68 27 13 38 59 79 320 
 Cartel -133 -33 40 41 97 68 27 13 38 56 74 287 
 Unconv -120 -29 48 39 101 70 29 13 38 60 79 328 
 

P
ip

el
in

e 
im

po
rt

s 

Transp -113 -29 47 35 106 68 29 11 39 58 82 334 
 Base 1 43 90 72 127 107 45 48 46 65 98 742 
 Cartel 1 40 85 67 120 97 43 41 44 58 92 689 
 Unconv 1 43 90 71 126 105 45 47 46 64 97 736 
 C

on
su

m
p

tio
n 

Transp 1 45 94 74 131 111 47 50 48 66 101 768 

 
Year Data Case NOR NED UKD FRA GER ITA  ROM SPA POL TRK  UKR EUR 
2030 Base 120 49 17 0 15 9 12 0 3 1 19 246 

 Cartel 132 50 17 0 15 9 12 0 3 1 19 258 
 Unconv 123 50 17 0 15 9 12 0 3 1 19 249 
 P

ro
du

ct
io

n 

Transp 116 49 17 0 15 9 12 0 3 1 19 241 
 Base -4 14 28 38 9 32 6 30 7 6 0 167 
 Cartel -4 14 29 28 7 21 3 23 4 3 0 129 
 Unconv -7 13 26 35 9 29 4 29 7 4 0 149 
 

LN
G

 
im

po
rt

s 

Transp -4 18 31 44 9 37 6 34 7 8 0 191 
 Base -115 -23 45 33 105 69 30 13 38 73 82 350 
 Cartel -127 -26 37 38 99 69 29 14 38 67 75 314 
 Unconv -115 -22 46 36 104 70 31 13 37 75 81 357 
 

P
ip

el
in

e 
im

po
rt

s 

Transp -110 -25 47 31 110 69 32 12 39 73 85 362 
 Base 1 41 90 72 129 110 47 43 48 80 100 762 
 Cartel 1 38 83 66 121 99 44 37 45 72 94 700 
 Unconv 1 41 89 71 128 108 47 42 48 80 100 753 
 C

on
su

m
p

tio
n 

Transp 1 43 95 75 134 115 50 46 50 83 103 793 
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Table 10: Production, consumption and net trade – A mericas (bcm) 

Year Data Case USA Of which 
Alaska CAN Of which 

Mackenzie MEX  North 
America BRA TRI  CHL  South 

America 
2010 Base 514 4 144 0 38 696 46 79 6 131 

 Cartel 515 4 145 0 38 697 46 72 6 124 
 Unconv 340 4 147 0 38 526 46 79 6 132 
 P

ro
du

ct
i

on
 

Transp 515 4 145 0 38 697 46 79 6 131 
 Base 28 -2 0 0 5 33 5 -22 0 -17 
 Cartel 25 -2 2 0 5 32 4 -13 0 -9 
 Unconv 51 -2 9 0 7 67 4 -23 0 -19 
 

LN
G

 
im

po
rt

s 

Transp 29 -2 0 0 5 34 5 -21 0 -17 
 Base 35 0 -56 0 3 -18 9 -13 3 -1 
 Cartel 37 0 -58 0 3 -18 9 -13 3 -1 
 Unconv 78 0 -85 0 -8 -14 9 -13 3 -1 
 P

ip
el

in
e 

im
po

rt
s 

Transp 35 0 -56 0 3 -18 9 -14 4 -1 
 Base 576 2 89 0 46 710 60 44 9 113 
 Cartel 575 2 89 0 46 710 59 46 9 114 
 Unconv 469 2 72 0 38 579 59 44 9 112 
 C

on
su

m
pt

io
n 

Transp 577 2 89 0 46 712 60 44 10 114 
 

Year Data Case USA Of which 
Alaska CAN Of which 

Mackenzie MEX  North 
America BRA TRI  CHL  South 

America 
2015 Base 508 2 129 18 47 684 50 79 9 137 

 Cartel 509 2 129 18 47 685 50 76 9 135 
 Unconv 317 2 144 32 47 509 50 79 9 138 
 P

ro
du

ct
i

on
 

Transp 507 2 133 22 47 687 50 79 9 137 
 Base 35 0 0 0 5 40 9 -19 0 -10 
 Cartel 31 0 2 0 5 38 7 -13 0 -6 
 Unconv 63 0 10 0 8 81 8 -20 0 -12 
 

LN
G

 
im

po
rt

s 

Transp 37 0 1 0 5 43 9 -19 0 -9 
 Base 14 0 -36 -18 5 -17 9 -12 3 -1 
 Cartel 16 0 -38 -18 5 -17 10 -13 3 -1 
 Unconv 73 0 -79 -32 -8 -13 9 -12 3 -1 
 P

ip
el

in
e 

im
po

rt
s 

Transp 18 0 -40 -22 5 -17 9 -13 3 -1 
 Base 557 2 93 0 57 706 68 47 11 126 
 Cartel 556 2 93 0 56 705 67 50 11 128 
 Unconv 453 2 75 0 48 576 67 46 11 125 
 C

on
su

m
pt

io
n 

Transp 561 2 93 0 57 712 69 47 12 127 
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Table 10: Production, consumption and net trade – Americas (bcm) continued 

Year Data Case USA Of which 
Alaska CAN Of which 

Mackenzie MEX  North 
America BRA TRI  CHL  South 

America 
2020 Base 545 46 123 40 58 726 54 98 11 163 

 Cartel 547 47 123 41 58 728 54 85 11 151 
 Unconv 360 53 133 51 59 552 54 99 11 164 
 P

ro
du

ct
i

on
 

Transp 548 52 126 44 58 732 54 98 11 163 
 Base 33 0 0 0 5 38 12 -23 0 -11 
 Cartel 27 0 3 0 5 35 10 -9 0 2 
 Unconv 69 0 11 0 9 89 11 -23 0 -12 
 

LN
G

 
im

po
rt

s 

Transp 36 0 1 0 5 42 13 -22 0 -8 
 Base -5 -44 -22 -40 8 -20 15 -19 3 -1 
 Cartel -3 -44 -24 -41 7 -20 14 -18 3 -1 
 Unconv 48 -50 -57 -51 -8 -16 15 -19 3 -1 
 P

ip
el

in
e 

im
po

rt
s 

Transp -4 -49 -24 -44 9 -20 15 -20 3 -1 
 Base 572 2 102 0 71 744 81 56 14 151 
 Cartel 571 2 101 0 70 743 78 59 14 151 
 Unconv 477 2 88 0 60 625 81 56 14 151 
 C

on
su

m
pt

io
n 

Transp 579 2 103 0 72 753 82 56 14 153 
 

Year Data Case USA Of which 
Alaska CAN Of which 

Mackenzie MEX  North 
America BRA TRI  CHL  South 

America 
2025 Base 588 56 128 41 70 786 59 105 17 182 

 Cartel 591 56 128 41 70 789 60 87 17 163 
 Unconv 398 67 138 51 71 607 59 106 17 183 
 P

ro
du

ct
i

on
 

Transp 593 63 130 44 69 793 59 105 17 182 
 Base 25 0 1 0 5 31 16 -23 0 -7 
 Cartel 17 0 4 0 6 26 13 -4 0 9 
 Unconv 73 0 11 0 9 93 15 -24 0 -9 
 

LN
G

 
im

po
rt

s 

Transp 29 0 3 0 5 37 17 -23 0 -6 
 Base -6 -54 -20 -41 8 -18 19 -21 1 -1 
 Cartel -2 -54 -23 -41 6 -19 16 -18 1 -1 
 Unconv 46 -65 -53 -51 -8 -15 19 -21 1 -1 
 P

ip
el

in
e 

im
po

rt
s 

Transp -6 -61 -23 -44 10 -19 19 -21 1 -1 
 Base 607 2 108 0 83 799 94 61 18 173 
 Cartel 606 2 108 0 82 796 89 64 18 171 
 Unconv 516 2 96 0 72 685 93 61 18 173 
 C

on
su

m
pt

io
n 

Transp 616 2 111 0 84 811 95 61 18 175 
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Table 10: Production, consumption and net trade – Americas (bcm) continued 

Year Data Case USA Of which 
Alaska CAN Of which 

Mackenzie MEX  North 
America BRA TRI  CHL  South 

America 
2030 Base 619 56 127 41 75 821 65 112 22 199 

 Cartel 620 56 127 41 75 822 65 102 23 190 
 Unconv 396 67 137 52 76 609 65 118 22 205 
 P

ro
du

ct
i

on
 

Transp 623 63 130 45 75 828 65 114 22 201 
 Base 23 0 1 0 0 24 19 -23 0 -4 
 Cartel 13 0 4 0 7 24 14 -17 0 -3 
 Unconv 83 0 16 0 7 106 18 -31 0 -13 
 

LN
G

 
im

po
rt

s 

Transp 29 0 4 0 0 34 21 -26 0 -5 
 Base -28 -54 -13 -41 23 -19 25 -24 -2 -2 
 Cartel -19 -54 -16 -41 16 -19 22 -19 -4 -1 
 Unconv 38 -65 -53 -52 0 -15 24 -23 -3 -2 
 P

ip
el

in
e 

im
po

rt
s 

Transp -26 -61 -18 -45 25 -19 24 -23 -2 -2 
 Base 614 2 114 0 98 826 109 65 20 194 
 Cartel 614 2 114 0 97 825 102 66 19 186 
 Unconv 517 2 100 0 83 700 108 64 19 191 
 C

on
su

m
pt

io
n 

Transp 625 2 117 0 100 842 110 65 20 194 
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5 Stochastic Market Modeling and Solution Approache s 

There are many uncertain factors affecting the developments in the global natural gas 

market. Ignoring this uncertainty in modeling approaches leads to sub-optimal solutions. 

To address the uncertainty different perspectives can be taken and over the years many 

concepts have been developed. Before presenting an overview of various stochastic 

modeling methods, some terminology and definitions will be introduced that will prove 

helpful later in the chapter. As discussed in Chapter 2 some market-equilibrium models 

have equivalent optimization problems; therefore stochastic optimization approaches are 

not just a stepping stone, but also an option for methods to be implemented. After 

introducing stochastic optimization, several modeling and solution approaches for 

stochastic market-equilibrium problems will be introduced and illustrated. Along the way 

various methods will be presented addressing the computational challenges arising when 

solving large-scale stochastic models, including decomposition, relaxation, scenario 

reduction and sampling methods. 

5.1 Introduction 

Many factors in the demand side and the supply side of the natural gas market are 

inherently uncertain. The nature and the underlying factors driving the uncertainty vary. 

Uncertainty can be induced by human behavior or natural circumstances, and differ in 

characteristics such as the time-scale and the magnitude of the impact. For example, a 

factor with a large impact that changes on a daily basis is the weather. When 

temperatures are low, houses and offices need to be heated, directly increasing demand 

for gas, but also indirectly when electricity is used for space heating. In contrast, when 

temperatures are high, work and living spaces need to be cooled, as must perishable 

products. Air conditioning and refrigerators need power to run, and a higher demand for 

electricity will result in higher natural gas use in power generation.  

 

Factors with a large impact on future natural gas demand are for instance the measures 

taken to mitigate global warming. When natural gas is burned CO2 is emitted into the 

atmosphere, albeit in lower amounts per produced kilowatt hour than when burning oil or 

coal. Still, the CO2 emissions are significant and natural gas may not be a sustainable fuel 

in the long run. How quickly will countries adopt policies to reduce fossil fuel usage? 
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Will natural gas be banned relatively quickly, or be used as a bridging fuel in the process 

of increasing the use of renewable energy sources? Will coal-fired power plants that 

capture and store emitted CO2 be competitive with natural gas? The answers to these and 

other questions will have great impact on the future demand for natural gas. 

 

Another uncertain factor is the actual natural gas reserve base. How much gas is still 

remaining in the production fields, and how much gas fields are yet undiscovered? Will 

there be as much unconventional gas in other world regions as in the United States? Will 

the Arctic and the North Pole be opened up for exploration and production of fossil fuels? 

Factors such as these influence matters like the profitability of investments, and the need 

for exploring alternative supply sources to be able to meet energy demand in the long run.  

 

Policy makers and managers in companies have to make decisions facing many uncertain 

factors, often assigning multi-billion dollar budgets for years to come. As will be 

illustrated later, not addressing the uncertainty in quantitative modeling tools can lead to 

sub-optimal decisions. Although the underlying phenomena driving the uncertainty of the 

weather, the political playing field and the gas reserves estimates vary a lot, all can be 

addressed using stochastic modeling. Most energy market models developed in the past 

have not addressed uncertainty. Generally, input parameters are assumed to be known in 

advance and a deterministic model is solved. Sometimes low and high demand scenarios 

are analyzed to get some insight into the sensitivity of the model results regarding 

changing input assumptions.130 The actual behavior and decisions of market players are 

not well addressed in such a scenario-analysis approach. In reality, market players hedge 

their decisions, taking into account the risks induced by possible variations in future 

developments. In contrast, in a single scenario specific circumstances prevail. Not having 

to address the different possible outcomes at once, induces that model agents make 

myopic decisions in the separate scenarios, only well-suited for that specific scenario but 

possibly bad in others. Averaging the profits over all scenarios will generally not be an 

adequate estimate of the expected profits, not to mention that using the average values of 

decision variables may not be a feasible solution. As for example shown in (Birge and 

                                                 
130 Scenario: a combination of outcomes for random events that outlines one of the possible futures.  
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Louveaux, 1997) stochastic optimization is a necessity to address the behavior of market 

agents under uncertainty and to represent typical hedging behavior.  

 

The first stochastic energy market models appeared in the literature more than twenty 

years ago (e.g., (Haurie et al., 1987, 1990)). Still, many researchers and policy makers 

use deterministic modeling approaches. Presumably, the need and benefits of stochastic 

modeling are not recognized by everybody, or there may be a – not completely 

unwarranted – fear for the mathematical and computational complexity, which restricts 

the size of models that can be solved within calculation time restrictions. Hopefully, this 

dissertation can contribute to a wider application of stochastic energy market models. 

 

In the remainder of this chapter several stochastic modeling approaches will be presented 

and illustrated using a stochastic version of the problem introduced in Chapter 2. 

5.2 Uncertainty, risk and stochastic models – some terminology 

5.2.1 Optimization under uncertainty, risk attitudes and hedging 

Optimization under uncertainty implies that the actual outcome may be better or worse 

than the expected outcome. There may be upward and downward potential (risk) for 

revenues, costs or profits. A risk-neutral decision maker doesn’t care about possible 

asymmetric consequences of upward and downward variance in the outcomes and will 

take expected value maximization as the objective. However, often the consequences of 

high losses (e.g., bankruptcy) are unacceptable or at least undesirable, which makes it 

important to limit the consequences of lower than expected outcomes. A risk-averse 

decision maker is willing to give up some of the potential (future) benefits to limit the 

consequences of unfavorable outcomes. Thus, the sensitivity of a decision maker to the 

upward and downward outcomes affects what objective should be optimized and 

modeling approaches do not necessarily optimize expected value, but may have an 

alternative focus such as minimizing the maximum loss. Generally there are not only 

downward or upward potentials to be considered, but a combination of both. Balancing 

the upward and downward potential in such a way that an on average desirable position is 

achieved is called hedging. Hedging does not imply robustness against the actual 

outcomes of random events per se, but if the concept is broadened to include, for 
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example, diversification as a means for hedging financial investments, robustness against 

the actual movements in the markets is a result of the hedging decisions. 

 

Value-at-risk (VaR, e.g., (Duffie and Pan, 1997)) and conditional value-at-risk (CVaR) 

(Rockafellar and Uryasev, 2000) are metrics developed to measure risk exposure. VaRγ  

is the maximum loss over a time period at a confidence (probability) level γ  and 

CVaRγ is the expected value of the losses exceeding the VaRγ :131 

VaRγ : ( ){ }min :x Loss x γ∈ Ρ ≥ ≥ℝ  (5.2.1)

CVaRγ : { } ( )1 1
1 1:Loss

l VaR

Loss Loss VaR l Loss l
γ

γγ γ− −
≥

Ε ≥ = × Ρ =∑  (5.2.2)

Confidence levels and expectations involve probability distributions for earnings and 

since earnings on investment show interdependencies, covariances are needed when 

calculating VaR and CVaR. Since investment portfolios of financial institutions typically 

contain tens of thousands of different investments, potentially millions of covariances 

must be calculated, posing a heavy computational burden. When the VaR or CVaR of a 

portfolio of financial assets not just need to be calculated but actually optimized for 

investment portfolios, approximations are needed. Although for instance Pang and 

Leyffer (2004) developed an approach for minimizing VaR and Künzi-Bay and Mayer 

(2006) developed a two-stage recourse problem for minimizing CVaR, all numerical 

examples in their work are of limited sizes. Kannan et al. (2009) developed a CVaR 

approach for bidding in forward and spot electricity markets while addressing the risks 

due to uncertainty in intermittent renewable energy sources. Besides providing a novel, 

risk-addressing framework, they developed several mathematical results, proposed and 

implemented a decomposition approach to address scalability issues. Cabero et al. (2010) 

developed a large-scale stochastic electricity market model, using CVaR for acceptable 

risk-levels in an oligopolistic setting among the producers. The model is solved using 

Benders decomposition and the paper is discussed in further detail in Section 5.4.3. 

 

                                                 
131 The equations assume discrete probability distributions. Typically, γ is value close to but lower than 1. 
E.g., 0.95 or 0.99. 
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Most approaches to address uncertainty have their limitations. However, ignoring 

uncertainty and risk may lead to myopic and sub-optimal behavior. Addressing 

uncertainty is a necessity, but there is a cost involved: the additional investment in time 

and money to develop a more complicated model. To show the benefits of the additional 

modeling effort it is helpful to assess the gain of addressing uncertainty. The value of the 

stochastic solution provides a means to quantify this gain. 

5.2.2 The value of the stochastic solution 

Birge (1982) introduced the concept of the value of the stochastic solution (VSS) in 

stochastic optimization programs. The VSS is a measure for the added value of explicitly 

considering the stochasticity of uncertain aspects in a model instead of using expected 

values. Consider a situation where part of the decisions have to be taken immediately 

(here-and-now) and some (wait-and-see) decisions only after the uncertain outcomes are 

known. Such a problem is called a two-stage recourse problem, where the second-stage 

variables are the recourse variables. For instance, here-and-now decision could be how 

much should be invested in production capacity and the wait-and-see decision (to be 

taken after the uncertain demand has become known), how much to produce and sell. The 

condition that emphasizes the lack of knowledge about the future when deciding about 

the first-stage variables is called non-anticipativity (Wets, 1974). 

 

Define a stochastic program with random outcomesχ , first-stage (here-and-now) 

decision variables x , second-stage decision variables y  and objective function 

( )( ),Ta x z y xχ+ . The recourse problem (RP) is defined as (5.2.3) and its solution is the 

stochastic solution (SS). The problem with expected values for uncertain outcomes 

χχ χ= Ε  is the expected value problem (EVP): 

RP: ( )( )( )
,

min ,T

x y
ESS a x z y xχ χ= Ε +  (5.2.3)

EVP: ( )( )( )
,

min ,T

x y
EV a x z y xχ= +  (5.2.4)

Typically, the objective value EV does not represent what the myopic EVP solution 

variables would achieve in the stochastic setting. Calculating the objective value of the 

EVP in the stochastic setting gives the expected value of the EVP solution (EEV). 
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Intuitively, since the RP solution addresses the uncertainty which the EVP ignores, the 

RP should be better than the EV. For optimization problems this intuition is formalized 

and proved in (Birge and Louveaux, 1997):132 

( )( )( ) ( )( )( )
, ,

min , min , 0T T

x y x y
VSS ESS EEV a x z y x a x z y xχ χχ χ= − = Ε + − Ε + ≥  (5.2.5)

In contrast to optimization problems, there have been instances of complementarity 

problems for which some of the players had: 0VSS<  (E.g., (Zhuang, 2005) and (Genc et 

al., 2007)). Since convex problems for perfectly competitive markets and monopoly 

markets can be cast as optimization problems, negative VSS can only be observed for 

models with several players exerting market power. 

 

Another useful concept is the value of perfect information. It represents how much one 

should be willing to pay a clairvoyant to get insight in future events relevant to the 

optimization problem. It can be calculated beforehand how much the information is 

expected to be worth. For all possible outcomes for random events χ , it can be 

determined what the best course of action would be and what the profits would be for 

each outcome. Weighting the profits for each scenario with the probability of the scenario 

pχ  gives the expected profits when having perfect information (EPI). The Value of 

Perfect Information (VPI, (Birge and Louveaux, 1997)) can then be calculated as the 

difference between EPI and ESS (Eq. (5.2.3) above). Eq. (5.2.6) provides the EVPI for 

discrete probability distributions.  

( )( )( ) ( )( )( )
, ,

min , min ,T T

x y x y
EVPI EPI ESS p a x z y x a x z y xχ χ

χ
χ χ= − = + − Ε +∑  (5.2.6)

A similar approach could be used to determine the value of (imperfect) information 

obtainable from industry experts, using conditional probabilities to assess the confidence 

in their expertise.  

 

Sürücü (2005) provided an accessible introduction to modeling approaches for addressing 

risk management in energy markets. The work included a literature overview and a 

mathematical description of methods, but no numerical examples were given. Hu (2009) 

analyzed the impact of uncertainty in several energy markets. In a first case the value of 

                                                 
132 Section 5.3.3.1 will present an example of a stochastic (two-stage recourse) cost minimization problem.  
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information for the United States was determined for demand load, natural gas prices and 

greenhouse gas policies (see also (Hu and Hobbs, 2010)). A second case addressed 

consistent over-estimation of consumer surplus due to uncertainty in technology costs for 

North West Europe. A third case analyzed the impact of different assumptions for the 

response of demand to price changes on the capacity-market outcomes for the 

Pennsylvania-New Jersey-Maryland (PJM) Electricity Market.  

 

In the following sections more background will be provided on stochastic formulations 

and solution approaches for stochastic models. Along the way it will become clear what 

approach could be a good choice for modeling and solving the stochastic WGM. 

5.3 Stochastic optimization 

In Section 5.2 the case was made that the EV solution is generally sub-optimal. To 

illustrate this, a stochastic variant of the example introduced in Chapter 2 will be 

presented. Further in the chapter the same example will be used to illustrate various other 

stochastic modeling approaches. 

5.3.1 Optimization with expected values of random outcomes 

In the following example the small stochastic investment problem from Chapter 2 is 

extended to contain two scenarios: a low-demand scenario and a high-demand scenario. 

The investment decision will be the here-and-now decision and the sold quantities the 

recourse decisions that can vary by scenario. 

5.3.1.1 Simple stochastic investment problem 

Assume a producer is selling some commodity q in a two-period model. His production 

costs are negligible. Due to restrictions in his supply chain he can only sell five units of q 

in a time period; if he wants to sell more, he should invest in more capacity, I≥0, at a cost 

of $2 per unit. The investment decision is to be made in the first period, and the sales will 

occur in the second period. Demand for q is stochastic, with two possible outcomes, q1 

and q2. Prices are denoted by pi and there is 50% chance that the inverse demand function 

is p1=10-q1 and 50% chance that it is p2=20-q2. How much should the producer invest to 

maximize his expected profits? To illustrate the (myopic) EV approach, the expected 

values of all random outcomes are taken, and the resulting deterministic model is solved. 
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The expected value for the random outcomes would here be the average of the low and 

high scenario inverse demand curves. 

5.3.1.2 Solving with expected values for random outcomes 

The average of both inverse demand curves is given by: p=15-q. The optimization 

problem then becomes: 

 

( )
,

max 15 2
q I

q q I− −  

 s.t. 5q I≤ +  

0q ≥  

0I ≥  

(5.3.1) 

There are two possibilities. Either 5q ≤  and 0I =  or 5q >  and since investment costs 

are positive, the capacity must be binding in an optimal solution: 5I q= − . 0I =  implies 

that the objective would be ( )max 15
q

q q− . Taking the derivative and setting it equal to 

zero: 15 2 0q− = , or 15 1
2 27 5q = = > , what contradicts with 0I = . Thus, 5q >  and 

5I q= − . Substituting this into the objective (Eq. (5.3.1)), gives ( ) ( )max 15 2 5
q

q q q− − −  

= ( )max 13 10
q

q q− + . Setting the first-order derivative equal to zero ( )13 2 0q− =  leads 

to an optimal quantity of 1
26q = , an optimal investment of 1

21I =  an objective value of 

$52¼.133 This objective value is the EV, and at the end of the next subsection the EEV is 

determined. 

 

An alternative approach is to solve all scenarios independently and average the outcomes: 

the scenario approach.  

5.3.1.3 Solving scenarios and taking averages  

In the low demand scenario: p1=10-q1, and the optimization problem for the producer is: 

 ( )
,

max 10 2
q I

q q I− −   (5.3.2) 

                                                 
133 Note that for the quadratic maximization objective function in this and all other examples in this chapter, 
the second-order derivative is negative (e.g., here it is -2), and therefore the stationary point found by 
setting the first-order derivative equal to zero is indeed a maximum. 
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s.t. 5q I≤ +  

0q ≥  

0I ≥  

This can be pictured as follows: 

 

Inverse demand 

Marginal supply cost

Marginal revenues

10

100

0

q

p

5q=

5p=

 
Figure 32: Low-demand scenario equilibrium 

 

Following the same approach as in the former example, either 5q ≤  and 0I =  or 5q >  

and 5I q= − . 0I =  implies that the objective would be problem would be: 

( ){ }
1

1 1max 10
q

q q− . Setting the derivate equal to zero 110 2 0q− =  gives the optimal 

quantity 1 5q = . Hence, 1 5q =  is the optimal quantity to the unconstrained problem, no 

investment is necessary and the profit would be $25.  

 

In the high demand scenario the inverse-demand curve is p2=20-q2 and the optimization 

problem for the producer is:  

 
( )

,
max 20 2

q I
q q I− −   

s.t.  5q I≤ +  

(5.3.3) 
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0q ≥  

0I ≥  

This can be pictured as: 

Inverse demand 

Marginal supply cost

Marginal revenues

20

200

0

q

p

9q=

11p=

  
Figure 33: High-demand scenario equilibrium 

 

Using the same approach as before, the optimal quantity for the unconstrained problem 

( )
2

2 2max 20
q

q q−  is found as 2 10q = . This implies that for positive investment costs the 

optimal quantity will be at most ten and the optimal investment at most five. Assuming 

positive investments, the objective function becomes 2
210 18q q+ − , for which the 

optimal quantity is 2 9q = , 4I =  with a profit of $91. Combining both scenarios, the 

average investment would be two and the average profit 25 91
2
+ = $58. This profit level 

compares favorably to the $52¼ of the EVP solution. Unfortunately the $58 outcome 

misrepresents the actual expected profits. To see that, the actual expected profit for an 

investment of two units must be calculated. In case of low demand the optimal quantity 

would be five and the total profit after subtracting investment costs for two units 25-4= 

$21. In case of high demand and maximizing ( )max 20
q

q q−  s.t. 7q ≤ , the optimal 

quantity is seven and the total profit: 13 7 4× − =  $87. The expected profit of the scenario 
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approach solution is therefore: 21 87
2
+ = $54 which is lower than the previously calculated 

average of $58. This shows that the average outcome of scenarios will generally not 

provide us with a reliable solution. (Actually, $58 is the EPI objective value.) 

Thus, the scenario approach does not provide a valid outcome. What about the EV 

solution calculated in Section 5.3.1.2? The optimal decision in the EV was to invest in 

1
21I = units of additional capacity, at a cost of $3. In the low-demand scenario the profit 

would be ( ) ( )1
210 5 5 2 1− × − × = $22 and in the high demand scenario the profit would be 

( ) ( )1 1 1
2 2 220 6 6 2 1− × − × = 1 1

2 213 6 3× − = $84¾. Thus the expected profit (EEV) is: 

3
4

22 84

2

+ = $ 3
853 , actually higher than the EV of $52¼, but lower than the $54 of the 

scenario approach. Although one might hope that scenario analysis would provide a 

better outcome, it depends on the situation whether scenario analysis or the EV approach 

gives a better outcome. However, generally both are not good approaches to model 

decisions under uncertainty, as is illustrated in a later example in Section 5.3.3.1. 

 

Before continuing with general stochastic modeling approaches, some models will be 

discussed that have been developed for capacity expansion problems addressing 

uncertainty and gaming aspects. 

5.3.2 Pipelines and other investment games under uncertainty 

Murto and Keppo (2002) developed a game-theoretic investment decision model using 

real option theory. They analyzed how actions of competing investors affect each other’s 

investment opportunities under different assumptions on the information that firms have 

about each other’s project valuations. The existence of Nash equilibria was proved under 

different informational assumptions and it was shown that optimal strategies depend very 

much on the information availability. An illustration was given for setting up a 

telecommunications network given uncertainty in spot market prices for capacity usage. 

 

Klaassen et al. (2004) developed a gas pipeline gaming model and applied it to a case 

study for the Caspian region. They developed a very detailed dynamical game model, 

cast as a dynamic nonzero-sum game with investment scenarios aiming to optimize the 

commercialization times of pipelines while addressing regulation of gas supply and 
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formation of gas prices. Model players balanced between having the first-mover 

advantage (pushing out the other suppliers for a while) on the one hand and the 

possibility to wait and allow gas demand to grow as well as benefiting from potential 

technical innovations that could decrease investment costs, on the other hand. Their case 

study addressed the competition between the planned and proposed gas pipelines from 

Russia, Turkmenistan and Iran through the Caspian region. The net present values of the 

pipeline projects over time were projected for different scenarios. Interestingly they 

found that the Russian-built BlueStream, that was put in place several years ago, would 

never operate on full capacity, thereby supporting stubborn rumors that that pipeline was 

not built for commercial but rather political reasons.  

 

Krey and Minullin (2005) extended the work of (Klaassen et al., 2004) using a mixed 

complementarity problem (MCP) setting. They developed two separate models, one for 

the natural gas supply game and another for the pipeline timing game. The supply game 

was modeled as an equilibrium problem and the timing game – using discrete time-steps 

– as a finite n-person game in normal form. To limit calculation times they restricted 

themselves to five market participants at most. They presented an application for 

different natural gas pipeline projects from various CIS countries to China.134  

 

Tomasgard et al. (in Hasle et al. (2007)) presented an approach to manage and optimize 

the various parts of the natural gas supply chain from production to sales from the 

perspective of a Norwegian natural gas producer. Their paper took an integrated 

operational and financial perspective, taking into account uncertainty in both demand and 

prices in a two-stage recourse approach.  

 

Kalashnikov et al. (2010) developed a bi-level approach for capacity booking in a 

pipeline network addressing the policy-induced separation of network ownership 

(network operator) and network usage (gas trader). The upper-level problem was formed 

by the gas trading company deciding on the capacities to be booked to maximize 

expected profits given uncertain demand. In the lower-level problem the network 

                                                 
134 CIS: Commonwealth of Independent States 
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operator balanced capacity usage by charging penalties or providing bonuses with the aim 

to minimize the absolute value of the net penalties or bonuses.  

 

The detailed game-theoretic approach developed in (Klaassen et al., 2004) and (Krey and 

Minullin, 2005) is very suitable for analyzing a limited number of investment options in a 

specific geographical region under uncertainty of prices and competitors’ timing, but 

would be to computationally challenging for a model covering the global gas market. The 

same is true for the models in (Tomasgard et al., 2007). The added insight provided by 

the operational detail in (Kalashnikov et al. 2010) would not outweigh the extra time 

needed to solve a stochastic gas market model with global coverage. The WGM is an 

MCP with many players and periods and continuous capacity expansions. Developing a 

stochastic version with discrete variables is not an easy option, since KKT cannot 

accommodate discrete variables. Alternatively, a completely other stochastic modeling 

approach allowing for discrete variables could be considered. However, such approaches 

have limitations relative to the model size and computational tractability. The game-

theoretic approaches in the former section are more suitable for games with fewer players 

and more detailed considerations for individual market agents. The modeling approach 

for the stochastic WGM should be scalable to deal with a large number of players. The 

approach must be able to address uncertainty in a multi-period setting, where the 

stochastic aspects are fully incorporated in the model. The first-stage decisions will 

balance the exposure to upward and downward risk while later-stage (recourse) decisions 

mitigate the consequences of varying outcomes of the random parameters. An approach 

providing those characteristics is the extensive-form stochastic model. 

5.3.3 Extensive–form stochastic models with recourse 

Extensive-form stochastic problem formulations include all considered futures 

(scenarios) explicitly and assign probabilities to all uncertain outcomes (Birge and 

Louveaux (1997)). A scenario tree can be drawn to represent the information structure 

(see Figure 34 below, showing the scenario tree for the two-stage extensive-form 

stochastic program with two scenarios used in the examples in this chapter.) Players with 

recourse options, i.e., players that are able to make other future decisions based on 

different outcomes, will have different decision variables for all future scenario-tree 
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nodes. This ‘extensive’ way to define variables is the rationale for the name of this 

approach.  

 

In the following risk neutrality is assumed and therefore expected values can be 

optimized. Continuing the small investment example: what would be the best course of 

actions for the producer when incorporating both low and high-demand scenarios in one 

framework and allowing him to hedge his decisions? 

5.3.3.1 Solving the extensive-form stochastic problem 

The scenario tree for the producer’s problem would have three scenario nodes. Let 0m be 

the node in the first stage that represents the decision moment of the investment. Nodes 

1m and 2m represent the low and the high demand scenarios. Then the tree can be depicted 

as follows: 

 
Figure 34: Scenario tree for small two-stage invest ment problem 

 

The extensive-form formulation for the problem that needs to be solved is the following:  

 

( ) ( ){ }
1 2

1 1
1 1 2 22 2, ,

max 10 20 2
q q I

q q q q I− + − −  

 s.t.  1 5q I≤ +  

       2 5q I≤ +  

1 0q ≥  

2 0q ≥  

0I ≥  

(5.3.4) 
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The calculations in Section 5.3.1.3 provided that regardless of the investment level, 

1 5q =  and 2 5q I= + . Using this information, the objective function in (5.3.4) can be 

rewritten as 21 1
2 22 222 8q q+ − , for which the optimal quantity is2 8q =  and the optimal 

investment is 3I = . The expected profits are ( ) ( )1 1
2 210 5 5 20 8 8 2 3− + − − ×  = $54½. 

This outcome is called the stochastic solution. Naturally the expected profit of this 

outcome is lower than $58, the – myopic and not attainable – average of the separate low 

and high demand scenario outcomes. However, it is higher than either of the other – 

feasible – expected profits that were calculated before in Section 5.3.1.3. The VSS turns 

out to be 54½ - 52¼ = 2¼, or almost 5%. 

 

Explicitly enumerating all uncertain futures in one framework allows the market agents to 

hedge their decisions. A disadvantage is scalability: the model can grow quickly beyond 

sizes that can be solved in an acceptable amount of time. Large-scale models can often 

not be solved as a whole in their original form. Relaxation and decomposition are two of 

the approaches developed to solve large-scale problems. By iteratively adjusting the 

problem and improving the approximate solutions found, good eventual solutions can be 

obtained. The issue is how quickly the methods will converge to a true optimal solution. 

5.3.4 Relaxation approaches to stochastic optimization  

Relaxation approaches (e.g., (Nash and Sofer, 1996) or (Wolsey, 1998)) leave out some 

part of the problem, usually difficult constraints, to obtain an easier problem that can be 

solved quickly. Carøe and Schultz (1999) proposed a dual decomposition scheme to solve 

stochastic multi-stage integer programs with recourse. They implemented a 

decomposition scheme using branch and bound and Lagrangian relaxation (LR) with 

respect to the non-anticipativity condition (see Section 5.2.2). The original problem was 

decomposed in subproblems (SP) by scenario and each subproblem includes all first-

stage variables. In the proposed LR procedure the differences among the first-stage 

variable values (that given the non-anticipativity condition have to be zero) are penalized 

using Lagrangian multipliers.  

 

The Lagrangian dual of the problem was still a mixed integer program (MIP), however 

much smaller since it did not include the recourse variables and therefore the dual solved 
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much quicker than the original problem. As the original problem was an MIP, the dual 

solution value could show a difference with the primal solution, the so-called duality gap. 

However, any optimal solution to LR provides an upper bound for the original 

(maximization) problem and for any relaxed solution feasible to the original problem, the 

duality gap is zero and the solution is optimal (Wolsey, 1998). The authors provided a 

small example showing that sometimes the duality gap was strictly positive. To find good 

feasible solutions they proposed a branch-and-bound procedure, wherein upper bounds 

were obtained from LR and lower bounds from feasible solutions. The authors reported 

great improvements in calculation times of their approach versus CPLEX MIP 4.0.135 

 

Another LR approach was developed by (Nowak and Römisch, 2000) for the optimal 

scheduling of power-generation units under uncertainty. Their aim was to solve a huge 

large-scale mixed-integer problem with up to several hundred thousands of binary 

variables. Decisions included the generation loads and pumping cycles in terms of which 

units to turn on or off and the output and pumping levels. The problem was decomposed 

and solved using a relaxation scheme somewhat similar to (Carøe and Schultz, 1999) 

discussed above. To deal with the sheer size of the problem, different SP and algorithms 

for the different subproblems were applied, such as: 

1. A linear-time descent algorithm for the stochastic hydro storage problems.  

2. A stochastic dynamic program to select the output levels of the generation units.  

3. A proximal bundle method to solve the decomposed dual problems. 136 

4. A Lagrangian heuristic to create a feasible schedule based on load and reserve 

expectations. The heuristic used the information from all former steps. Step 3 

provided lower bounds on the production costs, since typically the coupling 

constraints for output and storage levels were violated.  

5. Another descent algorithm adjusting the output levels to minimize costs for the 

schedule determined in step 4.  

 

Their results showed a high computational efficiency relative to other methods and 

commercial solvers as well as duality gaps smaller than 1%. 

                                                 
135 www.ibm.com/software/integration/optimization/cplex-optimizer/  
136 The bundle method is a variant of sub gradient methods. See (Nowak and Römisch, 2000). 
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5.3.5 Decomposition approaches  

Dantzig-Wolfe (DW) and Benders decomposition (BD) are two approaches developed in 

the early 1960s for solving linear programs (LP) with specific challenges. DW handles 

complexities due to complicating constraints and BD can be applied to solve problems 

with complicating variables. 

5.3.5.1 Dantzig-Wolfe decomposition  

Dantzig and Wolfe (1960) developed a decomposition scheme for linear programs. 

Dantzig-Wolfe decomposition (DW) is a delayed column-generation approach, also 

referred to as inner linearization. It uses the fact that every solution of an LP can be 

expressed as a convex combination of the extreme points and extreme rays of the feasible 

region. DW can be a good decomposition approach when the constraints can be divided 

in a complicating and a non-complicating set. For instance, the complicating constraints 

can be coupling constraints, through which decision variables in multiple periods are 

connected. The algorithm starts by restating the objective function in terms of some of 

the extreme points and extreme rays, resulting in the so-called restricted master problem. 

That problem is solved, and then a set of subproblems is checked to see whether the 

solution is optimal or to identify an extreme point or extreme ray that should be added to 

form a new restricted master problem. This identification process is often called the 

pricing problem.  

5.3.5.2 Benders decomposition 

Benders (1962) proposed two iterative cutting-plane procedures for solving mixed integer 

programs.137 He called the procedures partitioning approaches, but later literature referred 

to the methods as Benders decomposition (BD). It is a delayed constraint-generation 

approach. BD uses the fact that in an optimal solution to an LP typically only a small 

subset of the constraints is binding. It can be applied when there is a subset of 

complicating variables that prevents a solution of the problem by blocks.138 When applied 

to (stochastic) multi-stage problems it is often called the L-shaped method (Birge and 

Louveaux, 1997). 

                                                 
137 The two partitioning procedures differ in whether the SP itself is solved or the dual of the SP. 
138 For example, when the problem matrix is block angular.  
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Define a minimization problem wherein x  represent the complicating variables: 

Original problem ( ) ( ){ }
,

min
n

T

y x K
c y f x Ay B x b

+∈ ∈
+ + ≥

ℝ

 (5.3.5) 

Problem (5.3.5) can be transformed into (5.3.6) to facilitate the partitioning procedure:  

Equivalent problem ( ) ( ){ }{ }min min
n

T

x K y
f x c y Ay b B x

+∈ ∈
+ ≥ −

ℝ

 (5.3.6) 

BD starts with solving a simplified version of the original LP, the master problem (MP), 

in which the objective only contains the complicating variables and a new variableα that 

replaces all other terms and approximates the optimal value function ( )xα  = 

( ){ }min
n

T

y
c y Ay b B x

+∈
≥ −

ℝ

. The value ofα is adjusted iteratively using outer linearization: 

an approximation from below (when the objective is to be minimized) using hyperplanes. 

The MP is a general programming problem that may be non-linear or discrete. 

Initial master problem ( ){ }min
x K

f x α
∈

+  (5.3.7) 

Generally, there are three groups of constraints in the MP: the constraints in which only 

complicating variables appear (setK ), the feasibility cuts and the optimality cuts. 

Feasibility cuts are bounds on the complicating variables that prevent infeasible solutions. 

Optimality cuts are linear approximations for the optimal value function ( )xα  at a 

particular point. The sets of feasibility and optimality are extended iteratively during the 

procedure. 

 

The SP are parameterized in the decision variables of the MP and must be linear. 

Primal subproblem: ( ){ }ˆmin
n

T

y
c y Ay b B x

+∈
≥ −

ℝ

 (5.3.8) 

The procedure repetitively solves MP and SP, withŷ (the MP solution) updated in the SP 

in every iteration. Typically the combined solution for SP and MP is not optimal to the 

original problem. In each iteration, when the SP is solved an optimality cut is generated 

and added to the MP to cut off parts of the feasible region. Some MP solutions may result 

in an infeasible SP, in which case feasibility cuts are generated and added to the MP. MP 

solutions provide lower bounds and SP solutions provide upper bounds for the optimal 
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solution of the original minimization problem. The procedure continues until the lower 

and upper bound are close enough (or an iteration limit is reached).  

 

Benders (1962) showed that the procedure converges to the optimal solution of the 

original problem in a finite number of steps. However, in later years complexity theory 

(e.g., Goldreich (2010)) showed that a finite number of steps does not necessarily means 

within practical time limits.  

 

Geoffrion (1972) generalized BD to apply to mixed integer non-linear programs. In the 

following section Geoffrion’s generalized BD will be applied to the small investment 

problem.139 

5.3.5.3 Generalized Benders for small investment problem 

When fixing the value for investment level I  in the small investment problem, the 

problem decomposes in two quadratic SP, one for each scenario.140 Naturally, when 

applying BD the first-stage decision variable would be I . Below, variable α  is used as 

the optimal value function and ( )qΠ  = ( ) ( )1 2
1 2q qΠ + Π  = ( ) ( )1 1

1 1 2 22 210 20q q q q− + −  

represents the revenues. The original quadratic programming problem, Eq. (5.3.4), can be 

written succinctly as: 

Original problem: ( )
2

1

, 0
2

1 0 1 5
max 2

0 1 1 5q I

q
I q I

q+∈ ≥

 −       − + Π + ≤       −        ℝ

 (5.3.9) 

In terms of the equivalent problem, Eq. (5.3.6), this would transform into:  

Equivalent problem: ( )
2

1

0
2

1 0 5 1
max 2 max

0 1 5 1I q

q
I q I

q+≥ ∈

          − + Π ≤ +        
          

ℝ

 (5.3.10) 

Decomposing this problem would result in a linear MP and two quadratic SP.  

MP1: { }
0

max 2
I

I α
≥

− +  (5.3.11) 

SPi: ( ){ }
0

max 5
i

i
i i

q
q q I

≥
Π ≤ +  { }1,2i ∈  (5.3.12) 

                                                 
139 Generalized Benders decomposition will also be abbreviated with BD. 
140 Benders introduced the procedure with one MP and one SP. However, later on it was recognized that the 
SP can be split in parts, when constraints and variables form completely disjunctive problems. 
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The Benders procedure iteratively solves the MP and both SP. For numerical 

convenience constraint 10I ≤  is added.141 Solving MP1 results in 1 0I =  and 1α = +∞ . 

Solving both subproblems (5.3.12) with 0I =  results in the optimal quantities 

1 2 5q q= = , with objective value 25 75
2
+ =$50 and shadow prices 11 0λ =  and 1

2 5λ = for the 

subproblem constraints 5iq I≤ + . For 0I = , the investment costs are zero, and a first 

feasible solution is obtained with objective value 1Z =  $50. Next, a cut is added to the 

MP. The cut is a linear approximation of how the SP objective values change when 

changing the first stage decision variable I . Using the SP shadow prices 11 0λ =  and 

1
2 5λ =  and investment level 1 0I =  the first cut is defined as an upper bound on the 

optimal value function: ( ) ( )1 1
1 1 1 2 1Z I I I Iα λ λ≤ + − + −  = 50 5I+ . Thus, the second 

master problem (MP2) is defined as follows: 

MP2: { }
0

max 2
I

I α
≥

− +  

s.t.  10I ≤  

50 5Iα ≤ +  

(5.3.13) 

Solving MP2 results in 2 10I = , and 2 100α = , providing an upper bound of 2 22I α− +  = 

20 100− +  = 80. Next, solving SP1 and SP2 with 10I =  results in optimal quantities 

1 5q =  and 2 10q =  with objective values $25 and $100, an aggregate SP objective 

25 100
2 2Z += =$62½ and shadow prices 2 2

1 2 0λ λ= = . The objective value of the second 

feasible solution is 2 22Z I− = $42½. The difference between the last value for 

α : 2 100α =  and the best feasible objective value 1Z =$50 is the convergence gap: $100 -

$50 = $50. The second cut ( ) ( )2 1
2 1 2 2 2Z I I I Iα λ λ≤ + − + − = ( ) ( )1

262 0 10 0 10I I+ − + −  

is added to the MP, to form MP3: 

 MP3: { }
0

max 2
I

I α
′≥

′− +  

s.t.  10I ≤  

50 5Iα ≤ +  
1
262α ≤  

(5.3.14) 

                                                 
141 This will prevent an unbounded MP solution I = +∞  in the second iteration. 



 148 

The solution to MP3 is 1
3 22I = , 1

3 262α =  and the new upper bound is $57½. The results 

for consecutive iterations are presented in Table 11. Convergence (up to three digits) is 

reached in the ninth iteration. 

Table 11: Convergence results for small investment problem 

k  kI  kZ  1
kq  2

kq  1
kλ  1

kλ  UB LB 

1 0.000 50.000 5 5.000 0 5.000 ∞  50.000 
2 10.000 62.500 5 10.000 0 0.000 80.000 42.500 
3 2.500 59.375 5 7.5.00 0 5.000 57.500 54.375 
4 3.125 60.742 5 8.125 0 1.875 56.250 54.492 
5 2.563 59.531 5 7.563 0 2.437 54.563 54.405 
6 2.844 60.176 5 7.844 0 2.156 54.527 54.488 
7 2.985 60.470 5 7.985 0 2.015 54.510 54.500 
8 3.055 60.609 5 8.055 0 1.945 54.501 54.498 
9 3.020 60.540 5 8.020 0 1.980 54.500 54.500 

 

After this illustration of generalized Benders decomposition, the next subsection will 

present an alternative for decomposition approaches.  

5.3.6 Scenario reduction 

Scenario reduction methods reduce the number of scenarios in a model by aggregating 

scenarios with very similar characteristics. This aggregation process can be 

computationally challenging in itself and heuristic procedures have been developed (e.g., 

(Dupačová et al., 2003)). The resulting model sizes should be small enough to apply the 

usual solution algorithms and find solutions in acceptably short calculation times. 

Morales et al. (2009) applied scenario reduction to multi-period electricity markets and 

Gabriel et al. (2009) to natural gas market models (see Section 5.4.2). 

 

A stochastic optimization variant of the World Gas Model (without market power) can be 

viewed as a multistage convex program with recourse. The first stage would encompass 

the minimization of capacity expansion costs and the second stage the maximization of 

social welfare. Clearly, for such an optimization model the techniques introduced in the 

previous sections could be applied. The following sections will elaborate on approaches 

for stochastic market-equilibrium problems that cannot be cast as optimization problems.  
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5.4 Stochastic market models and algorithms  

Market-equilibrium models can be classified in various ways. One distinction among 

them is whether all decisions are taken at the same time, or that some decisions are taken 

before others, as in leader-follower games. Some games have optimization equivalents, 

others cannot even be represented as a complementarity problem (see Section 2.3). In the 

following sections stochastic variants of both game types are presented.  

5.4.1 Gaming problems under uncertainty in energy markets 

Haurie et al. (1987) were among the first to develop a stochastic market model 

incorporating market power aspects. The uncertainty was associated with the oil prices. 

They described the European gas market as an oligopoly and developed a stochastic 

nonlinear complementarity problem which was solved using a sequence of quadratic 

programs. They analyzed the main characteristics of long-term natural gas contracts and 

the market power aspects of producers vs. transmission companies, while addressing 

price escalation, oil price linkage as well as take-or-pay obligations. Contracts had 

recourse aspects, allowing different price-quantity combinations dependent on the 

prevailing oil prices. 

 

Gürkan et al. (1999) set up a stochastic variational inequality and showed an application 

to the European gas market. They used an approximative sampling method to gain 

information about the second-stage objective values. Rather than solving the actual 

stochastic problem, the solution approach was deterministic and approximated the 

expected value solution (see Section 5.2.2). 

 

Chen and Fukushima (2005) extended the expected residual minimization concept in (Lin 

and Fukushima, 2003) focusing on solving stochastic linear complementarity problems. 

An iterative solution method using a Monte Carlo sampling method was used to solve 

expected-value types of model approximations. By minimizing an error measure they 

provided better approximations than the expected value solution. 

  

Genc et al. (2007) researched investment decisions in multi-period oligopoly problems 

with uncertainty. One of their main results was the occurrence of negative values of 
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information (VI) for all players involved. The authors claimed that the result was due to 

the multi-player setting. However, the multi-player setting in itself cannot be the 

explanation, the gaming aspects are important as well (c.f., (Zhuang, 2005)). To clarify 

that the multi-player setting cannot be the full explanation, observe the following. Take a 

number of producers with identical characteristics (such as production costs) in a 

perfectly-competitive market. This problem can be modeled as an optimization problem, 

hence the value of the stochastic solution must be nonnegative (see Section 5.2.2). Since 

all producers are identical, all must have a nonnegative VSS. Genc et al. (2007) linked 

their result for the negative value of information to the prisoners’ dilemma: individually 

dominant strategies resulting in a worse overall equilibrium than would be possible with 

coordination. Another interesting result was that higher price volatility induced higher 

expected profits. An alternative, hybrid game was proposed wherein each individual 

player solved a stochastic model assuming that all others use an expected value approach. 

In that setting the expected profits were higher. They concluded with an application of 

their model to the electricity market in Ontario. 

 

(Zhuang, 2005) and (Zhuang and Gabriel, 2008) developed an extensive-form stochastic 

complementarity problem and provided a small-scale natural gas market implementation 

and various existence and uniqueness results. The authors showed that the value of 

information can be negative for market players not having market power. 

 

In the following section methods are described for solving stochastic problems that 

cannot be cast as optimization problems: stochastic MCP.  

5.4.2 Scenario reduction for stochastic MCP 

Gabriel et al. (2009) applied the scenario reduction method of (Dupačová et al., 2003) to 

solve extensive-form stochastic natural gas market models. They applied the method 

using the GAMS scenario reduction package to a duopoly problem based on the North 

American gas market and a hybrid market problem based on the European gas market.142 

A main contribution of this paper was that theoretical convergence bounds were 

developed and proved. Some benchmarking was done to investigate how many scenarios 

                                                 
142 www.gams.com/docs/contributed/financial/ngk_scenred.pdf  
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should be kept in a reduced scenario tree to still have appropriate representation of the 

original stochastic model. Monitoring functions were introduced to facilitate the 

benchmarking. These functions provided metrics showing how close the solution of a 

reduced scenario tree was to an optimal solution for the whole tree. In this experimental 

setting, the solutions could be determined for the models using the complete scenario 

trees; however generally for very large models this information would not be available. 

The results were encouraging, showing that rather large reductions in the number of 

scenarios can still provide good approximate solutions to the original problems. 

5.4.3 Benders decomposition for stochastic MCP 

Cabero et al. (2010) developed a Benders approach for linear complementarity problems 

(LCP). Their work took a risk-management perspective for companies operating in the 

Spanish electricity market. The risk measure used was conditional value at risk (see 

Section 5.2.1). The uncertainties considered include data for demand, fuel prices and the 

water inflow in reservoirs. Cabero et al. (2010) provided a large-scale implementation of 

Benders for LCP using realistic data and large first-stage problems. The MP were LCP 

that determined output quantities and acceptable risk-levels (CVaR) in an oligopolistic 

setting among the producers. The SP minimized cost for each producer to produce the 

output levels set by the MP. An initial set of 1,000 scenarios was clustered into a set of 

sixteen scenarios. The model contained close to 78,000 variables and the authors reported 

that direct solution with PATH (Dirkse and Ferris, 1995) was not possible. BD was 

applied for three hundred iterations, which took about twenty hours.143 A first feasible 

solution was found after approximately one hundred iterations. The MP solution times 

grew from less than a minute for the initial iterations to about twelve minutes at the end. 

Consequently, the progress became very slow. The solution after three hundred iterations 

was given as a starting point for PATH. After almost another half hour the final solution 

was found.144  

 

                                                 
143 On a Pentium IV, 3 GHz, 1 GB RAM 
144 Optimality is not clear. ’With this starting point PATH provides a better solution in 1,786 seconds’ 
Given this remark, it is not clear whether the final solution was optimal, or why the extensive-form problem 
would not solve in PATH.   
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Gabriel and Fuller (2010) developed a decomposition method for general stochastic MCP 

and applied it to an electricity market model with stochastic demand. In contrast to 

(Cabero et al., 2010) the mathematical approach developed has a general – not problem 

specific – nature and the market power aspects were addressed in the subproblems. 

Therefore, the SP were complementarity problems that could not be cast as optimization 

problems, preventing the straight-forward application of BD. Gabriel and Fuller (2010) 

extended previous work by Fuller and Chung (2005), who developed a column-

generation approach to solve variational inequalities and Fuller and Chung (2008) who 

developed a Benders decomposition approach for variational inequalities. The stochastic 

electricity model solved by (Gabriel and Fuller, 2010) was based on a deterministic 

model presented in (Hobbs, 2001). Model agents included power generators and 

electricity grid owners. The model consisted of two stages, with demand uncertainty in 

the second stage. In the first-stage the power generators decided on how much (low-cost) 

slow-ramping generation capacity should be brought online, while in the second stage 

decisions were made about (expensive) rapid-ramping capacity. Gabriel and Fuller 

(2010) developed theory for applying the Benders decomposition approach to stochastic 

MCP and established several convergence results. The method showed great reductions 

in calculation times and solved most problems in less than ten iterations. The most 

encouraging result was finding a solution within twenty minutes for a problem that in 

extensive form had several hundred thousands of variables and would not solve in four 

days of run time.  

 

Mathematical programs with equilibrium constraints (MPEC) are a more general class of 

problems than MCP. For completeness, some solution approaches to stochastic MPEC 

are discussed next.  

5.4.4 Stochastic mathematical programs with equilibrium constraints 

De Wolf and Smeers (1997) presented a stochastic Stackelberg model. In their set-up the 

leader set his output level when future demand was still uncertain. After the demand 

value became known, the followers competed à la Cournot given the residual demand 

curve. De Wolf and Smeers (1997) showed that under reasonable assumptions there 
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exists a unique equilibrium.145 They addressed the possible non-convexity of the leader 

problem by using a piecewise-linear approximation of the aggregate response curve and 

solving the leader problem for all piecewise parts.  

 

Lin et al. (2007) developed a not-exact approach for solving Stochastic MPEC by 

extending the expected residual minimization concept (see (Lin and Fukushima, 2003) 

and (Chen and Fukushima, 2005)). Essentially an expected value problem was solved, 

but by minimizing an error measure a better approximation was provided for the 

stochastic problem than the expected value solution. Birbil et al. (2004) developed a 

sampling approach to solve stochastic mathematical programs with complementarity 

constraints (SMPCC). Similar to the aforementioned paper by (Lin et al., 2007) an 

expected value problem is solved to approximate the stochastic solution. In consecutive 

iterations a deterministic problem is solved, in which the expected values are 

approximated using the average of simulated outcomes.  

 

Patriksson and Wynter (1999) establish several convexity, differentiability and existence 

results for solutions of stochastic MPEC. The authors outline various parallel iterative 

solution methods, including sub-gradient methods and penalty approaches. Shapiro and 

Xu (2008) presented a less general SMPEC formulation than presented in (Patriksson and 

Wynter, 1999). In (Shapiro and Xu, 2008) the random outcomes affected the objective 

function values in both stages, but the first-stage decision did not affect the feasible 

region for the second-stage variables, as was the case in (Patriksson and Wynter, 1999). 

Shapiro and Xu (2008) developed a heuristic approach, incorporating a sample of the 

scenarios when considering the second-stage problems. Convergence properties for the 

approximations are shown and some benchmarking calculation time results are presented.  

 

DeMiguel et al. (2006) developed an iterative relaxation scheme for MPEC that could 

possibly be adjusted to solve SMPEC as well (see Chapter 2). Lastly, Gabriel et al. 

(2009) developed a Benders decomposition approach for MPEC that could possible be 

extended for S-MPEC (see Chapter 2). 

                                                 
145  For instance, their results hold when production costs are convex and twice differentiable, inverse-
demand curves are concave, decreasing and twice differentiable and the aggregate marginal supply costs of 
the followers intersect with any of the possible future inverse-demand curves. 



 154 

5.5 Summary and conclusions  

In this chapter some motivation was provided for the need of stochastic modeling to 

adequately address input parameter uncertainties. As a stepping stone to stochastic 

market-equilibrium models an overview was given of stochastic optimization approaches. 

Next, more general stochastic equilibrium modeling approaches were discussed. Along 

the chapter illustrations were provided based on the small two-stage investment problem 

that was introduced in chapter 2.  

 

Extensive-form stochastic MCP provide a means to address various types of uncertainty 

in the natural gas market. Possibly, the resulting problems will become very large, 

inducing long calculation times to solve them. A way to address calculation time 

restrictions is provided by the VI-based Benders decomposition approach developed in 

(Gabriel and Fuller, 2010) . 
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6 A Stochastic Multi-period Global Gas Market Model  

The previous chapter provided a rationale why stochastic modeling is needed to address 

uncertainty in the natural gas market and provided an overview of stochastic modeling 

approaches. Stochastic modeling allows market agents to hedge their decisions 

anticipating uncertain future developments. In this chapter an extensive-form stochastic 

version of the World Gas Model (WGM) is presented and applied to a problem with four 

scenarios. These scenarios contain two uncertain events, the first in 2010 and the second 

in 2025. In 2010, a gas market cartel may come into existence and in 2025 production 

capacities in some importing countries may decrease significantly faster than in a 

business-as-usual situation. The combinations of the two events form four scenarios that 

are represented in a scenario tree, which is used as input for the model. Next, the input 

data is described and the model regions aggregation level used in the application is 

clarified. In the results section, various outcomes are presented, which at a first glance 

seem to show that on aggregate the impact of stochasticity is modest. However, when 

looking into detailed results various hedged decisions show that stochasticity affects both 

the timing as well as the sizes of capacity expansions as well as the development of 

production, consumption, trade volumes and prices over time. 

  

This chapter provides the second major contribution of this dissertation in the 

development of a large-scale stochastic natural gas market model that can adequately 

address input parameter uncertainty and allow market agents to hedge their decisions. 

The stochastic model is applied to a problem with four scenarios for the global natural 

gas market for a time horizon until 2050. The problem contains nineteen geographical 

regions and includes 78,768 variables. Relative to Zhuang (2005) this application has 

more periods, uses a realistic data set for the global market and is about twelve times as 

large in terms of number of variables.  

6.1 Introduction 

This chapter analyzes the impact on model results due to the uncertainty of input 

parameters. Analyzing various scenarios separately (scenario analysis) can provide some 

insight into the consequences of different possible developments. However, to fully 

address the unpredictability of the future developments in the global natural gas market, 
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the uncertainty should be addressed explicitly in the modeling approach. Thus, a 

stochastic version of the WGM has been developed. Aspects in the natural gas market 

that are uncertain include the development of demand, prices, reserves, production 

capacities and a possible cartelization. In the stochastic case, uncertainty is considered in 

two of these aspects. The first event, that may occur in 2010, is the establishment of a gas 

market cartel and the second event, that may occur in 2025, is a faster depletion of natural 

gas reserves and hence lower production in some major gas importing regions.146 The 

combination of these events leads to four (in earlier periods overlapping) scenarios, that 

each are assumed to have an equal probability to realize. The following section briefly 

elaborates on the concept of a scenario tree that visualizes the extensive-form modeling 

approach. 

6.1.1 Stochastic Scenario Tree 

Figure 35 shows the scenario tree that is implemented for the stochastic case run. The 

scenario tree contains 31 nodes.  
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Figure 35: Scenario tree with four scenarios 
 

The first node, node 1, represents the first year and is the common starting point for all 

scenarios. In years 2010 through 2020 there are two scenario nodes for each year. Each 

                                                 
146 The cartel is formed by members of the Gas Exporting Countries Forum in 2009. (www.gecforum.org) 
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year after 2020 is represented by four different scenario nodes. All market players are 

assumed to be risk-neutral, maximizing their expected profits while having perfect 

information about all scenarios. Decisions in any scenario node m, notably investment 

levels, will be optimal ‘on average’ among the different scenarios of which the specific 

scenario node m is a part. Thus, in periods before 2025, the optimal decisions hedge 

against the outcomes of different futures. Any investment will result in additional 

capacity becoming available in the next period. In stochastic modeling terms, the 

investment in 2005 is a here-and-now decision. In any period all produced, consumed, 

traded and stored volumes are wait-and-see (recourse) decisions. Capacity expansions in 

later years have a mixed role. Relative to the capacity expansions in earlier years, 

capacity expansions are recourse decisions. However, relative to later years they are here-

and-now decisions. 

 

Decisions taken in 2005 have consequences for all future periods. In contrast, a decision 

taken in any scenario node in 2025 will only have consequences for its successor nodes in 

the remaining part of scenario STO-base, e.g., for node 8: nodes: 12, 16, 20, 24 and 28.  

 

In the extensive-form approach, each scenario node has its own set of input parameters. 

In the case study, these scenario-specific input parameters differ in market power 

assumptions and production capacities. Each scenario node has its own set of decision 

variables and the outcomes for a variable in a certain year depend on the specific scenario 

that is playing out. For example, the investment level in a pipeline in 2035 depends on the 

scenario and may assume different levels among nodes 16, 17, 18 and 19. Similarly as for 

the deterministic model (see Chapter 4) two periods are added beyond the reporting 

period, to limit the distortion of the capacity expansion outcomes due to the end of the 

time horizon.  

 

In a deterministic scenario tree, all probabilities equal one and the following model 

formulation would reduce to the one presented in Chapter 3, except for some differences 
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in functionality.147 In the next section the extensive-form stochastic market-equilibrium 

model is presented.  

6.2 Formulating the stochastic global gas market model 

The players involved in the natural gas market as well as the underlying assumptions and 

simplifications have been extensively described in Chapter 3. A general additional 

assumption for the stochastic model described next is risk-neutrality, so that players can 

be assumed to maximize expected profits. In the model, all volumes and capacities are in 

millions of cubic meters per day (mcm/d) except for storage working gas capacity which 

is in mcm. All operational costs and prices are in USD of 2005 per thousand cubic meters 

($/kcm) and capital expansion costs are in USD per thousand cubic meter per day 

($/mcm/d). All cost functions are convex. An overview of symbol names can be found in 

Appendix 6.6. The first player for which the stochastic optimization problem is given, is 

the producer. 

6.2.1 Producer 

Rather than optimizing over all years as in the deterministic problem, a producer p 

optimizes over all scenario tree nodes, weighting the individual node results with their 

respective probabilities. A producer p maximizes his expected profits (6.2.1) subject to a 

capacity constraint (6.2.2). The objective function (6.2.1) is a discounted, probability-

weighted sum of revenues minus production costs, for all model nodes n , demand 

seasonsd and random outcomesm . Production capacities are scenario-dependent, hence 

the values for P
pnmCAP  in Eq. (6.2.2) can vary by scenario node.148 

 ( )( )
, ,

max
P T
pndm

p P T P P T
m m d ndm pndm pndm pndm

q n d m

p d q c qγ π
→

→ →−∑  (6.2.1)

s.t. P T
pndmq → ≤  P

pnmCAP  ( )p
pndmα  , ,n d m∀  (6.2.2)

All primal variables are nonnegative. Greek symbols in parentheses (such as ppndmα  in Eq. 

(6.2.2)) are the dual variables in the Karush-Kuhn-Tucker (KKT) conditions. Appendix 

                                                 
147 The stochastic model is developed based on a previous version of the WGM where the storage operator 
was an arbitrageur and not a regulated service provider. 
148 Note that the production reserves constraint is not included in this formulation. Because no reliable data 
could be found for reserves, and using proved reserves would not be meaningful for most countries, the 
reserves constriction was not used.  
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6.7 presents the KKT conditions for the producer and all other players. Next, the trader 

problem is presented. 

6.2.2 Trader 

Traders face inverse demand curves ( ) W W T W S W
ndm ndm tndm sndm

t s

INT SLP q q→ → Π ⋅ = − + 
 
∑ ∑  that 

may vary by scenario. Both the intercept and the slope are scenario dependent. The trader 

optimizes over all scenario tree nodes, weighting the individual node results with their 

respective probabilities. The level of market power MP
tnmδ  exerted by a trader at the nodes 

is scenario dependent. Thus, a trader t maximizes expected profits Eq. (6.2.3), resulting 

from sales to marketers and storage operators, minus purchase costs from producers and 

fees for using arcs. Arcs can be regular pipelines or represent parts of the LNG supply 

chain. Contractual supply obligations are incorporated through Eq. (6.2.4). Mass-balance 

Eq. (6.2.5) states that the sum of gas purchased and imported must equal the sum of gas 

sold to marketers, exported and sold to storage operators.  

( ) ( )( )

( )
( )

1

, ,

1
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P T P
m m d ndm tndm

n d m
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adm ndm tadm nd m tndm

a a n

q

p d q

f q

δ δ π

γ π

τ τ π
+

→

←

→

∈

 
 Π ⋅ + −
 
 −
 
 − + + 
 

∑

∑

 (6.2.3)

s.t. A
tadmf ≥  A

tamCON  ( )T
tadmε  , ,a d m∀  (6.2.4)

( )
( )

1T P A A
tndm a tadm

a a n

q l f
+

←

∈

+ − =∑  
( )

T W A T S
tndm tadm tndm

a a n

q f q
−

→ →

∈

+ +∑  ( )T
tndmϕ  , ,n d m∀  (6.2.5)

Next, the transmission system operator, who manages the transport network, is described. 

6.2.3 Transmission system operator 

The transmission system operator (TSO) is one of the two players making decisions 

directly affecting the future market, through making investment decisions in capacity 

additions and expansions. (The other player that makes investment decisions is the 

storage operator.) Being modeled as a regulated player and a price-taker, the TSO 

balances the investments in such a way that in expectation the revenues collected from 

capacity-congestion charges on additional capacities cover the investment costs. Thus, 
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the TSO maximizes expected profits (6.2.6) resulting from congestion revenues minus 

arc expansion costs. Arc flows are subject to capacity constraints (6.2.7), which include 

capacity expansions in predecessor nodes: 
( )

'
A
am

m pred m′∈
∆∑ . Arc capacity expansions, i.e., 

pipeline, liquefaction and regasification expansions, are subject to limitations (6.2.8). 

 ( )max A A T A A
m m d adm adm a am

am d

p d q cγ τ → ∆ − ∆ 
 

∑ ∑   (6.2.6)

s.t. A T
admq → ≤  

( )
'

A A
am am

m pred m

CAP
′∈

+ ∆∑  ( )A
admα  , ,a d m∀  (6.2.7)

 A
am∆ ≤  A

am∆  ( )A
amρ  ,a m∀  (6.2.8)

The next section presents the storage operator. 

6.2.4 Storage operator 

Storage operators execute seasonal arbitrage and make capacity expansion decisions. 

They maximize expected profit, Eq. (6.2.9) resulting from buying and selling gas and 

investment costs. They buy gas in the low-demand, low-price season and sell gas in the 

higher-priced high and peak-demand seasons.149 Loss-corrected injections must equal the 

extractions in each year: Eq. (6.2.10). There are limitations on the injection rate, Eq.  

(6.2.11), extraction rate, Eq. (6.2.12) and availability of working gas: Eq. (6.2.13). The 

right-hand sides in the capacity constraints include the capacity expansions in 

predecessor nodes, e.g., 
( )

I
nm

m pred m
′

′∈
∆∑  for the injection capacities. Lastly, expansions are 

limited: Eq. (6.2.14)-(6.2.16). 
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149 There are one injection and two extraction seasons. 
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 S W
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SX SX
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snm∆  ( )SI
snmρ  ,n m∀  (6.2.14)

 SX
snm∆ ≤  SX

snm∆  ( )SX
snmρ  ,n m∀  (6.2.15)

 SW
snm∆ ≤  SW

snm∆  ( )SW
snmρ  ,n m∀  (6.2.16)

Lastly, the downstream part of the natural gas market is represented in the inverse-

demand curve. 

6.2.5 Consumption 

The inverse demand curve, Eq. (6.2.17) clears the market between the gas-selling traders 

and storage operators and the end-users.  

W W W T W S W
ndm ndm ndm tndm sndm

t s

INT SLP q qπ → → = − + 
 
∑ ∑  ( )W

ndmπ  , ,n d m∀  (6.2.17)

The conditions that tie the problems of the various players together to form one market-

equilibrium problem are the market-clearing conditions. 

6.2.6 Market-clearing conditions 

Eq. (6.2.18) represents market clearing between producers and traders at every node. 

 P T
pndm

p

q → =∑  T P
tndm

t

q ←∑  ( )P
ndmπ  , ,n d m∀  (6.2.18)

 

Market clearing condition (6.2.19) enforces equality of the total assigned arc capacity by 

the TSO and the aggregate arc flows by traders. 

 A T
admq → =  A

tadm
t

f∑  ( )A
admτ  , ,a d m∀  (6.2.19)

Since the storage operator is not a service provider but rather a profit optimizing 

arbitrageur there is no market clearing for injection or extraction volumes. Instead, there 

is market clearing between trader and storage operators in the low demand season:  

 
1
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q → =∑  
1
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snd m

s

q ←∑  ( )
1

TS
nd mπ  ,n m∀  (6.2.20)

All maximization objectives in the problem specifications above are concave. All 

restrictions are linear, which implies that all feasible regions are polyhedral. Hence, the 
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KKT conditions are necessary and sufficient for optimal solutions. The KKT conditions 

can be found in Section 6.7. 

6.3 Input data 

The stochastic model has been applied on a data set with fewer model regions than in 

Chapter 4. This was done because otherwise it would have taken a very long time for the 

model to solve. Running the original eighty-node data set with the eight-period 

determinist WGM takes about 3½ hours of run time.150 Empirically we have seen that a 

doubling of the model-size induces a five to tenfold increase in run time. The ten-period 

model with the tree with four scenarios in Figure 35 has 31 nodes which implies an about 

fourfold increase in model size relative to the eight-period deterministic model. An 

estimate for the run time can be calculated as 25 to 100 times 3½ hours, or roughly 

between 3½ days and two weeks. Since this chapter aims at discussing consequences of 

stochasticity rather than solving large-scale models, the model size has been reduced by 

aggregating the data set to contain nineteen geographical regions only. This way, the 

number of variables is about four times smaller, and the resulting model size roughly the 

same as for the eighty-node deterministic model. Figure 36 shows the model regions 

included in the stochastic case. The countries included in all regions can be found in 

Appendix 6.8. 

 

In the figure, the blue or darker shaded boxes are regions that can export LNG and the 

yellow or lighter shaded boxes are regions that can import LNG. Only the Caspian region 

is not involved in LNG trade. Arrows represent existing or optional pipelines. Regions 

that have their name underlined would take part in the cartel if it comes into existence.  

 

The higher aggregation level has consequences for the results and some detailed insights 

may be lost. For instance, pipelines between regions that are grouped in the same model 

node will cease to exist in the model data set, so for the same projections for future 

demand and supply, an aggregated data set will show lower aggregate pipeline capacity 

expansions. Also, the characteristics of pipelines remaining in the model need to be 

                                                 
150 GAMS (Brook et al., 1988) and solver PATH ((Dirkse and Ferris, 1995), (Ferris and Munson, 2000)). 
GAMS version 22.7.2, Computer specifications: 32-bit, 2GB dual core 2x 1.2 GHz 
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adjusted, since they run over longer distances and the losses and operating and 

expansions costs should be higher in a more aggregated data set. When demand and 

supply are for larger regions, seasonal price differentials will be smoothed out, and 

possibly storage will be used and expanded less.  

 

 
Figure 36: Regions represented in the stochastic ga s market model 

 
The input parameters used are an aggregation of the data used in Chapter 4. The reference 

scenario of the model has been calibrated to projections of the future natural gas demand 

and supply, namely PRIMES forecasts for Europe (European Commission, 2006a, 2008) 

and POLES forecasts for the rest of the world (European Commission, 2006b) The latter 

was published before the U.S. unconventional gas resources were revised and as a 

consequence in this model large imports of LNG by the United States are foreseen by 

2030 and beyond.  

 

The POLES projections reflect a worldwide increase in natural gas production and 

consumption of 70% in 2030 relative to 2005. In accordance with POLES projections, an 

average yearly price increase of 3% is used. The model output for global consumption in 

2005 is 2362 bcm and for global production 2422 bcm, at an average wholesale price of 
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$165/kcm.151 For regions for which the data sources did not provide values beyond the 

year 2030, the same production capacities and reference demand levels have been 

assumed as for the year 2030. For infrastructure capacities, project and company 

information from various sources (e.g., Oil and Gas Journal, Gas Transmission Europe, 

and the Energy Information Administration) has been employed. See Chapter 4 for an 

extensive description of the data sources used.  

6.4 Results and discussion 

A stochastic problem with four scenarios will be analyzed in this section. The scenarios 

vary in that in 2010 a global gas cartel may come into existence and in 2025 production 

capacities may start to decrease significantly faster than in the base situation in a number 

of importing countries. Table 12 summarizes the main assumptions. 

 
Table 12: Main case and scenario assumptions 
 Base Decline Cartel Combi 
Market 
Power 

In all periods: North 
America: 0, all other 
regions 0.25  

Same as base Starting 2010 cartel 
trader full market 
power 

Same as Cartel 

Production 
Capacities 

Aggregates based on 
WGM 

Starting 2025 
lower for major 
importers 

Same as Base Same as Decline 

 
To evaluate the stochastic model outcomes, the results are compared with four 

deterministic cases. The deterministic cases are: 

o DET-base, the Base Case, is the calibrated reference case.  

o DET-decline, the Decline Case that assumes faster depletion of gas reserves in North 

America, Europe and some Asian import countries from 2025 onwards.152  

o DET-cartel, the Cartel Case that assumes a gas market cartelization in 2010. 

o DET-combi, a case combining the assumptions for the Cartel and Decline Cases. 
 
The terms deterministic counterpart and stochastic counterpart are used to refer to those 

cases/scenarios with identical input parameter values (compare Figure 35 in the 

introduction of this chapter and Figure 37 below). 
                                                 
151 kcm: 1000 m³; bcm: billion cubic meter; bcm/y: bcm per year. Note that the difference between 

production and consumption is due to losses in liquefaction, regasification, storage and pipelines. 
152 Implemented by assuming a linear decrease from the original 2020 values in 2020 to zero in 2070 for 
regions (see Figure 36): Asia1, Asia2, EURN, EURCE, EURSW, CAN and USA/MEX. The original 
production capacity is taken when that value is lower than the result of the aforementioned calculation.  
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Figure 37: Deterministic counterparts of the stocha stic scenarios 

 
Each stochastic scenario has exactly the same input parameter values as one of the 

deterministic cases. For example, the deterministic counterpart of the uppermost scenario 

STO-base in Figure 35 is DET-base in Figure 37, the Base Case.  

 
The regions that would take part in the cartel are: Russia, North and West Africa, the part 

of the Middle East with Iran and Qatar, the LNG exporters in South Asia (such as 

Indonesia) and the LNG exporters in South America (e.g., Trinidad and Tobago). 

 

The following sections discuss several stochastic model outcomes and compare them 

with the deterministic case results. Since the impact of a possible cartelization is one of 

our main interests, the discussion will often contrast results for the cartel members and 

the importing regions.  

 

Relative to the business-as-usual situation all other cases imply a tighter gas supply to the 

importing regions, however induced by different assumptions. Generally, the main means 

of a cartel to influence prices is by withholding supplies from the importing markets. 

Therefore, an anticipated effect of a cartelization would be lower production and export 

levels by members of the cartel. In contrast, suppliers that do not take part in the cartel 

may respond to higher market prices by bringing more gas to the markets, and reaping 

high benefits. A cartel would only harm regions that depend to some extent on imports to 

meet domestic demand, but lower domestic production capacities can harm countries that 
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in the business-as-usual situation are self-sufficient. As such, lower domestic production 

is more likely to be compensated in a somewhat competitive market than in a cartel 

situation. The results presented include regional trade balances, production levels, 

liquefaction, regasification and pipeline capacity expansions, LNG trade and market 

prices. Tables in Section 6.9 present detailed results.  

 

The first section discusses how production is affected by the various case assumptions. 

Production developments are compared for the group of cartel members and the other 

countries. 

6.4.1 Production 

The aggregate global production in 2005 is 2422 bcm in the (deterministic) Base Case 

DET-base and will steadily increase over time to reach 3828 bcm in 2040. Initially, 

production in non-GECF countries will grow quite fast, from 1389 bcm in 2005 to 1725 

bcm in 2010. However the increase in later periods is modest and production will plateau 

at around 1800 bcm/y for the remainder of the time horizon. In 2005 the group of GECF 

countries produces 1033 bcm, a share of 43% of global production. After a slight dip in 

2010 the share of GECF countries will grow to 54% by 2040 (just over 2000 bcm/y). 

 

Figure 38 shows the differences in production levels among the different deterministic 

cases relative to the Base Case, aggregated by GECF and non-GECF countries. The 

production levels in the different cases vary considerably. Generally, a cartelization 

would induce lower production in GECF countries and higher production in others. In 

contrast, declining production rates in the major importing regions would induce higher 

production in all other countries, with the largest impact in both cartel cases. 

 

In the cartel cases (DET-cartel and DET-combi), the output of GECF countries would be 

significantly lower than in DET-base, ranging from 69 bcm (5%) lower to 219 bcm 

(11%) lower in 2040. 
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Figure 38: Differences in Production Levels relativ e to the Base Case 

 

Figure 39 shows production differences in all scenarios and cases relative to the DET-

base. In every period, the first, third, fifth and seventh bars present stochastic results.  
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Figure 39: Production levels in all cases and scena rios 
 

Generally, in the scenarios the aggregate production volumes are close to the volumes in 

their deterministic counterparts. In 2010, when the non-cartel scenarios STO-base and 

STO-decline still overlap completely (node 2 in Figure 35), the GECF countries produce 
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slightly less than in the deterministic counterparts (-4 bcm, 1252 vs. 1256), whereas the 

other countries produce a bit more (+9 bcm, 1734 vs. 1725). In the cartel scenarios it is 

the other way around (GEFC countries 1193 vs. 1187 bcm, other 1750 vs. 1760 bcm). 

These modest shifts are a consequence of the hedging decisions in the first period. The 

hedged capacities expansions in the stochastic scenarios in 2005 generally lie between the 

minimum and maximum expansions among the four deterministic cases. The hedged 

capacity expansions in 2005 by cartel members are higher than in the deterministic 

counterpart DET-cartel and DET-combi, but lower than in DET-base and DET-decline. 

Clearly, capacities not added cannot be used, however once capacities are in place, they 

will likely be used. Hence, GECF members capacities will be more restrictive in 2010 in 

the STO-base (and STO-decline) than in the DET-base (and DET-decline) and less 

restrictive in the cartel scenarios relative to the deterministic counterpart cases.  

Cartelization and depletion of domestic reserves in importing regions are two aspects 

affecting the developments in international gas trade. LNG trade is and will be 

responsible for an increasing share of long-distance international gas trade (see Chapter 

1). The following section discusses the liquefaction capacity expansions. 

6.4.2 Liquefaction capacities 

International Energy Agency (2008) projected total LNG trade to be around 700 bcm/y 

by 2030, an increase by a factor of 3.5 relative to 2006. The model projects LNG exports 

of 437 bcm by 2030 in DET-base. Part of the difference between the projections is due to 

the aggregation level. For instance, some LNG flows occurring in reality do show up as 

pipeline flows in the model, e.g., from Norway to Belgium and France, or from Trinidad 

and Tobago to Brazil and Argentina. Another example is that the model allows for a 

pipeline from Russia-East (Sakhalin) towards Japan, which pushes out some of the LNG 

trade in later periods. Lastly, the model does not consider supply diversification motives, 

which favor LNG imports over pipeline supplies in some situations. However, the model 

does project a large increase in LNG trade, varying in the deterministic cases from 391 to 

467 bcm. How do model assumptions and stochasticity affect the model outcomes? 

 

There are nine LNG-exporting regions in the model, seven of which are potential cartel 

members. In the DET-base, the aggregate global LNG capacity expansions in 2040 add 

up to 291 bcm. In the non-cartel cases the expansions are equally divided between GECF 
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and other countries, but in the cartel cases the non GECF countries add about double the 

amount of the cartel members. MEA2 and AUS are the only LNG exporters that would 

not participate in a cartel (see Figure 36). Figure 40 shows LNG capacity expansions by 

GECF countries in the deterministic cases. The total added capacity by GECF members 

in 2040 will range from 89 bcm in DET-cartel to 187 bcm in DET-decline. In all cases, 

most capacity is added in the three periods from 2015 through 2025. In DET-decline 

higher additions to liquefaction capacities occur to allow countries with lower domestic 

production to import more natural gas. As a consequence, in DET-decline the LNG 

capacity additions would be 32 bcm higher than in DET-base. In contrast, in DET-cartel 

when cartel members withhold supplies, the expansions by GECF members would total 

89 bcm only, 40% less than in the DET-base. In DET-combi, both effects would occur 

and the aggregate LNG capacity expansions would be 115 bcm. 
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Figure 40: LNG Expansions in GECF countries in the Deterministic Scenarios 

 

Figure 41 shows the LNG capacity expansions in the non-GECF countries: Australia and 

part of the Middle East. 
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Figure 41: LNG Expansions in Non-GECF countries in the Deterministic Scenarios 

 

The aggregate added capacities would range from 135 bcm/y in DET-base to 229 bcm/y 

in DET-combi. The non-cartel countries would add more export capacity to allow higher 

LNG exports so that importing regions could compensate lower domestic production as 

well as lower supplies by the cartel countries.  

 

Australia started construction of its first LNG exporting facilities in 1985.153 Four years 

later the first LNG cargos were shipped to Japan. At present, Australia has over 25 bcm/y 

of LNG export capacity, divided over two projects: the North West Shelf and Darwin.154 

August 2009 plans were announced for a floating liquefaction facility.155 More 

developments are expected in the coming years.156 Next, Australian expansions in the 

stochastic results are discussed in more detail. Figure 42 shows the expansions in the first 

two periods in all cases and stochastic scenarios.  

 

                                                 
153 www.nwsalng.com  
154 www.darwinlng.com, GIIGNL (2009) 
155 www.gdfsuez.com  
156 www.ret.gov.au  
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Figure 42: LNG Expansions in Australia in 2005 and 2010 (bcm/y) 

 
In the stochastic model the first-period expansion is 27.20 bcm. Hedging for the various 

futures, the added capacity is just above the average of the added capacities in the 

deterministic counterparts. In the second period, when it has become clear whether or not 

a cartel will exist for the remainder of the time horizon, the added capacity in the STO-

base and STO-decline is much lower than in the STO-cartel and STO-combi. As it turns 

out, once the uncertainty has disappeared, the additional capacity is such that the 

aggregate added capacity in the first two periods is very close to what would have been 

added in the deterministic counterparts.  

 

Supposedly, the Australia liquefier has some characteristics that lead to a ‘close to 

averages’ hedging decision. It is a relatively small player, assumed to exert no market 

power, and therefore it has a modest impact on market prices. Also, in 2010 the next 

uncertain event will only materialize happen after 15 years, hence much of the 

uncertainty is discounted away.  

 

Figure 43 shows that after 2020, when the second stochastic event about a decline in 

production capacities has become known, and there is no uncertainty about the future 

anymore, all aggregate expansions converge to their deterministic counterparts. 
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Figure 43: LNG Expansions in Australia 

 

Some general observations should be noted. First of all, only at two moments an 

uncertain event may happen. Since future cash flows are discounted at 10%, events that 

are more than fifteen years in the future have a small impact on decisions. Secondly, risk-

neutrality is assumed for all players. This can lead to hedging behavior similar to taking 

averages of the deterministic counterparts. In reality, such decisions may not be realistic, 

since overcapacity in liquefaction is very expensive and risk-conscious agents may be 

more conservative in their decisions to avoid bankruptcy if a pessimistic scenario 

occurred. Thirdly, contracting aspects are not captured that could ensure usage of 

constructed LNG capacity. LNG importers could - for the sake of supply diversification – 

prefer to contract LNG from supply sources such as Australia. Thus, the LNG capacity 

constructed in anticipation of a possible cartel would be used regardless whether a cartel 

would come into existence.  

 

Additional liquefaction capacity will only be constructed when there would be enough 

capacity in place to regasify the LNG at the receiving end of the supply chain.  

 

The ‘close to average’ hedging decisions seem to bear some similarities with the result in 

(Zhuang, 2005) that when supplied quantities are positive, the forward prices equal the 

expected spot market prices. However, those results were obtained within one model, 
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whereas the outcomes discussed here result from comparing stochastic with deterministic 

models. Likely, the assumption of risk neutrality that the models share, is an explanation. 

 

Next the developments in regasification capacities will be discussed.  

6.4.3 Regasification capacities 

Isolated countries lacking domestic reserves, such as Japan and South Korea, have 

imported large amounts of fossil fuels, including LNG, to fulfill their energy 

consumption. In contrast, a country such as the United Kingdom has imported significant 

volumes of LNG in the past, but due to boosting domestic production the regasification 

terminals could be mothballed. Due to depleting domestic reserves, in recent years the 

United Kingdom has been importing LNG again and depleting reserves and growing 

energy demand in other countries have boosted the interest in importing LNG all over the 

world. As a result, many countries have started the planning and construction of LNG 

import and regasification terminals (see Chapters 1 and 4, and (GIIGNL, 2009)). 

 

Figure 44 shows the aggregate global expansions in regasification capacities. The 

aggregate added capacities in the deterministic cases vary from 252 bcm in DET-base to 

333 in the DET-Combi. In the stochastic scenarios the range of aggregate values is 

similar. In earlier periods, until 2020, the expansions in the non-cartel scenarios and cases 

(base and decline) are largest, however in later periods, after 2025, the expansions are 

largest when there is no cartel. As discussed in the previous section, cartel members 

would hardly add LNG capacity. Therefore, in a cartelized market there would be much 

less supply of LNG and hence less reason to build additional regasification capacity. In 

DET-decline and DET-combi more capacity would be added in later periods than in 

DET-base, to compensate lower domestic production with higher LNG imports. In 2005 

regasification expansions are low among all deterministic cases and in the stochastic 

problem. Developments in the rest of the time horizon are somewhat similar as what was 

observed for LNG capacities. 
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Figure 44: Global Regasification Expansions 

 

The hedging decisions are quite close to the averages of the deterministic counterparts, 

and once an uncertain aspect has become known, the next (recourse) expansion decisions 

are such that the aggregate added capacity over the past periods is about the same as in 

the deterministic counterpart. 

 

In a previous section major differences were found among the cases and scenarios 

regarding the countries that would expand LNG export capacities. This implies that the 

LNG trade patterns must also vary significantly among the cases and scenarios. The next 

section discusses LNG trade for region ASIA2, consisting of Japan and South Korea.  

6.4.4 LNG imports Japan and South Korea 

In 2000 Japan and South Korea were the first and second largest importers of LNG. Japan 

imported 72 bcm, which at the time was more than half of the global total LNG amount. 

Together with South Korea, that imported 20 bcm, they accounted for slightly over 2/3 of 

the global LNG imports (BP, 2001). In 2009, twenty-two countries imported LNG, 

twelve more than in 2000. Japan and South Korea were still the two largest LNG 

importers in the world. Japan imported 86 bcm of LNG and South Korea 34 bcm (BP, 
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2010). Together they imported half of the global LNG amount. Figure 45 shows the 

regions and supplied LNG volumes to Japan and South Korea in the stochastic model 

results. 
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Figure 45: LNG Exports to Japan and South Korea 
 

Two general observations are that the LNG imports by Japan and South Korea decrease 

over time in all of the scenarios and that the decrease is more pronounced in the cartel 

scenarios STO-cartel and STO-combi. Supplies by Australia are projected to grow from 

around 40 bcm in 2010 to around 50 bcm in the middle of the time horizon, but level off 

to around 40 bcm by 2040. Supplies by the non-GECF part of the Middle East are 

projected to grow from 20 bcm in 2010 to between 30 to 40 bcm in 2025 and then stay 

around those levels. The LNG supply that varies most among the scenarios, is that 

originating from the GECF countries. LNG supplies are projected to decrease over time, 

less in case of declining domestic production in ASIA2, but more harshly when a 

cartelization would happen. What is not shown in the figure is that in 2020 Russian 

pipeline exports from Sakhalin would start, growing from 18 bcm to 55 to 57 bcm/y by 

2035. In the STO-cartel and STO-combi the Sakhalin pipeline would supply up to about 

80% of the total GECF supplies. Due to the pipeline, the total supply to the ASIA2 region 

is impacted less by the varying case assumptions than other importing regions. Another 

explanation may be the already high prices in the ASIA2 region in the DET-base, making 

it a more beneficial export market than others. 
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The result tables in Section 6.9 show that there is a large variation in the net import and 

export values over time and among the cases and scenarios. The North American and 

European imports will grow significantly. By 2040, North American imports vary from 

164 to 237 bcm/y and European imports would add up to an amount ranging from 430 to 

528 bcm/y among the cases. The variation in the imports by the Asia Pacific region will 

vary less, with values ranging from 400 to 437 bcm/y. The impact for that region is 

reduced by the presence of cartel members as well as Japan and South Korea, as 

discussed in the previous section. 

 

The following sections will provide more detailed insight on the pipeline trade from the 

Caspian region. 

6.4.4.1 Caspian exports 

In 2009 the Caspian region export 46 bcm. Of the exports 32 bcm had Russia as its 

destination, about 6 bcm went to Iran, about 5 bcm to Turkey and a few bcm to Eastern 

European countries (BP, 2010). The Caspian production and exports are projected to 

increase much over the next years, which means that additional transport capacities will 

be needed. In Chapter 4 the Nabucco pipeline (See Figure 24 in Section 4.4.4) was 

discussed from the Caspian region to Europe. The planned capacity for Nabucco is 31 

bcm/y.157 According to the Energy Information Administration, Kazakhstan, 

Turkmenistan and Russia have agreed to expand the pipeline capacities from the Caspian 

Region into and through Russia with about 20 bcm/y.158 Between the Caspian countries 

and China there is agreement about a pipeline with a capacity of 40 bcm/y.158 The three 

projects sum up to 91 bcm/y of additional Caspian export capacity compared to the 

current situation. One conclusion of Chapter 4 was that some of the pipelines that Russia 

has built recently and is building, seem motivated by political rather than economic 

reasons. A surprising result in Chapter 4 was that the model would not have Nabucco 

built, however in the analysis it was discussed that for reasons of supply diversification it 

could still be preferred over other options. As it turns out, in the stochastic model 

Nabucco would be built. This is possibly due to the different aggregation level of the 

                                                 
157 www.nabucco-pipeline.com  
158 www.eia.doe.gov/cabs/Kazakhstan/NaturalGas.html  
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model regions and clearly gives a somewhat different perspective on the natural gas 

market developments in the coming decades than previously obtained from the 

deterministic WGM.  

 

Figure 46 shows the pipeline exports from the Caspian region to Europe and Asia, 

including the exports via Russia and the Middle East in the DET-base.159  

 

 
Figure 46: Pipeline exports from the Caspian region  bcm/y DET-base 
 

For 2010 the model projected 18 bcm of flows directly to Europe, 55 bcm via Russia and 

8 bcm through the Middle East.160 The Caspian pipeline exports add up to 81 bcm. This 

model result, based on projections of a few years ago, seems quite high in comparison 

with the actual exports in 2009 of 46 bcm, unless the exports would jump significantly 

between 2009 and 2010. A possible explanation is that due to the global economic 

downturn the demand for natural gas in 2009 has fallen instead of grown and in the last 

few years some pipeline construction projects have been postponed.  

 

                                                 
159 Differences between inflows and outflows in Russia and the Middle East are due to pipeline losses.  
160 Note that Belarus, Turkey and Ukraine are part of EURSW, see Figure 36. 
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Figure 47 shows for the deterministic cases the additional export flows relative to DET-

base in 2040.  

 
Figure 47: Pipeline exports from the Caspian region  in 2040 bcm/y relative to DET-base 
 

The direct exports to Asia and Europe are not affected by the case assumptions. Already 

in the DET-base in all periods the added capacities to the (lower-cost) direct pipelines are 

restricted by the expansion limits set (see Eq. (6.2.8)) and only pipelines in the other 

routes can be expanded more. That makes sense, since only when a cheaper option is 

fully used, a more expensive alternative should be considered. Additional exports vary 

from eight bcm (four via Russia and four via the Middle East) in DET-decline, to an 

additional 69 bcm (35 resp. 34) in the DET-combi case. In the latter case, total Caspian 

exports would add up to 369 bcm in 2040. The production levels needed to maintain such 

large export volumes would be more than double the actual 2005 levels and deplete the 

proved reserves of 13,000 bcm (BP, 2010) in 45 to 50 years. However, large areas in the 

region are still unexplored and more reserves will likely be found.161 Except for reserves 

considerations, it is questionable whether the economic and political environment in the 

region can provide a sound basis for the enormous investments needed to construct so 

                                                 
161 fpc.state.gov/documents/organization/9652.pdf   
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much additional pipeline capacity. Note that these high projected pipeline exports are part 

of the explanation for the low business-as-usual projections for global LNG trade. 

 

In the following section the developments in the North American imports are discussed. 

6.4.4.2 North American imports 

The combined net natural gas imports by United States and Mexico in 2005 were 110 

bcm, of which 94 bcm were pipeline imports from Canada (BP, 2006). In the DET-base 

in 2005, the combined region USA/MEX imported 109 bcm: 82 bcm from Canada and 

another 27 bcm as LNG. Only a few years ago the United States were expected to 

become major importers of LNG in the near future. Based on these projections by 2025 

the imports from Canada will have dropped to 50 bcm and LNG imports will have risen 

to 164 bcm adding up to 214 bcm of total imports, almost twice the imported amount in 

2005. Over time, the import dependency as a percentage of domestic consumption would 

grow from 19% in 2005 to 41% in 2040.  

 

Figure 48 presents a breakdown by origin of the supply to the United States and Mexico 

in the stochastic scenarios. 
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Figure 48: Exports to United States and Mexico 
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In 2010 the differences among scenario results are small. In the longer term, the 

development of the imports for the USA/MEX region are mostly determined by the cartel 

members. In cartel scenarios the GECF members would withhold LNG supplies (relative 

to the STO-base), which would be compensated partly by other LNG exporters and some 

pipeline supplies from Canada. In 2010 Canada will supply about 2/3 of total imports. 

Over time, the Canadian supplies decrease (in all scenarios), more harshly in the decline 

cases STO-decline and STO-combi when Canada also suffers from lower faster depleting 

reserves and production rates. LNG supplies from non-cartel regions would only come on 

stream in later periods. Only in the STO-combi case in 2040 the non-cartel LNG supplies 

would be larger than Canadian pipeline supplies. The GECF countries would provide 

between 25% and 35% of consumption and 64% to 80% of the imports by 2040. 

 

The results show that the United States and Mexico could become very dependent on 

LNG imports from potential cartel member countries. Unlike Europe that is surrounded 

by several countries with huge gas reserves, USA/MEX only have Canada as a nearby 

source of pipeline supplies. However, the results are based on not up-to-date projections 

and the technological advances in unconventional natural gas production in recent years 

have changed the picture dramatically. Recent projections (EIA, 2009) foresee that the 

United States will be nearly self-sufficient for several decades and that North American 

LNG imports will be modest. 

 

Next, the price developments in three major importing regions will be analyzed. 

6.4.5 Prices 

In 2005 Japanese LNG import prices were on average about $6/mcf, or slightly over 

$200/kcm (BP, 2010).162 Prices in the EU were a few percent lower. Average spot-market 

prices in North America were much higher: $256/kcm in Canada and $310/kcm in the 

United States. In 2009, prices in Japan and the EU were over $300/kcm, much higher 

than in 2005. In contrast, in the United States and in Canada prices were lower in 2010 at 

$137/kcm resp. $119/kcm. Natural gas prices do not vary just as a result of demand and 

supply, but also due to factors such as price developments of substitute fuels (notably oil) 

                                                 
162 mcf=1000 cubic feet; 1 kcm = 35.31 mcf 
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and speculation. Sector models, such as the ones developed in this dissertation, cannot 

capture all these aspects. Instead, the price paths will be smoother and not account for 

short-term price hikes. The model has been calibrated to have a gradual increase in prices 

over the time horizon. In the DET-base, volume-weighted global average prices rise from 

$165/kcm in 2005 to $479 in 2040. How the case assumptions and stochasticity affect the 

price developments is analyzed for three of the main importing regions: Central Europe, 

Unites States & Mexico and Japan & South Korea. Section 6.9 provides tables with the 

volume-weighted average prices for the whole world and the three regions. 

  

Figure 49 shows the developments of the average wholesale prices in Central Europe 

relative to the DET-base. 
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Figure 49: Development of prices in Central Europe,  relative to DET-base 

 

In the DET-base, prices in Central Europe in 2005 are $189/kcm, steadily rising to 

$520/kcm by 2040 (Table 23). The average prices in Central Europe in the scenarios 

match the prices in their deterministic counterparts rather closely. In 2010, when the 

cartelization may take place, the stochastic price results would deviate more noticeably 
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from their deterministic counterparts, but in 2015 the deviations would all but disappear. 

In 2025, when the second uncertain event becomes known, price deviations would be 

more noticeable again, except in the STO-base scenario. From 2030 the STO-combi 

prices would be virtually identical to the DET-combi prices too. In the other two 

scenarios, STO-decline and STO-cartel, prices would stay somewhat lower than in their 

respective deterministic counterparts. When looking at the other regions in the next two 

graphs, the relatively large impact in Central Europe of the case assumptions can possibly 

be explained by the modest prices in the DET-base. Even in the harshest case and 

scenario DET-combi and STO-combi, the Central European prices would still be lower 

than the price levels in DET-base in USA/MEX and ASIA2.  

 

Figure 50 shows the development of average prices in the United States and Mexico.  
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Figure 50: Development of Prices in United States a nd Mexico, relative to the DET-Base 

 

In DET-base, prices in 2005 are $206/kcm, increasing to $746/kcm in 2040 (Table 24). 

The impact on prices in North America due to the cartel establishment and the declining 

production rates is modest relative to other importing regions, although it increases 

somewhat over time. The modest impact may be somewhat surprising, given the 
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increasing dependency on cartel members for LNG supplies. However, already in the 

DET-base price levels in USA/MEX in 2040 will be much higher than they would be in 

the harshest case (DET-combi) in Central Europe, providing the financial incentive to 

exporters to supply to the USA/MEX market.  

 

Figure 51 shows the price developments in Japan and South Korea.  
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Figure 51: Development of Prices in Japan and South  Korea, relative to the Base Case 

 

In 2005 the average prices were $282/kcm, growing to $763/kcm in 2040 (Table 25). In 

the cartel cases there is a major price spike in the second period. In the long run the 

introduction of the pipeline from Sakhalin and additional supplies from Australia and the 

non-cartel part of the Middle East relieve the pressure on the gas market. In 2010 the 

prices in the STO-base and STO-decline drop below the DET-base levels. As discussed 

in Section 6.4.2 the non-cartel countries add more capacity in 2005 in the stochastic 

scenarios than in the non-cartel deterministic scenarios. When in the stochastic model the 

cartel is not formed, the potential cartel members have more capacity in place than in the 

deterministic counterpart cases and once in place, capacity would be used to export. From 
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2015 – except for 2025, when the other uncertain event becomes known – the stochastic 

price paths are virtually identical to the prices in the deterministic counterparts. 

6.4.6 Expected profits and the value of the stochastic solution 

Table 13 below presents the expected profits in the stochastic problem for the traders that 

make a positive profit in at least one of the periods.163 The cartel countries account for 

most of the profits, especially in early periods (e.g., in 2005 the $19.23 billion is about 

75% of the total of $25.72 billion. The share of the cartel countries in the yearly 

aggregate profits decreases gradually to 56% in 2040. In contrast, the share in the total 

profits of the Caspian region increases significantly from just over 9% in 2005 to 35% in 

2040 ($111 billion of $317 billion). 

 

Table 13: Expected profits for stochastic problem ( undiscounted billion $ 2005) 
 2005 2010 2015 2020 2025 2030 2035 2040 
Cartel countries 19.23 31.75 51.80 78.65 107.05 143.58 161.75 178.95 
Australia 0.09 3.03 4.78 4.81 5.45 6.12 6.68 7.59 
South America 2 0.03 0.01 0.01      
Canada 0.76        
Caspian region 2.38 8.06 17.85 27.11 44.22 69.00 88.85 111.43 
Netherlands & Norway 3.07 4.48 6.19 7.55 7.32 7.41 7.36 7.26 
Middle East 2 0.17 0.81 1.66 2.62 4.65 9.35 10.75 12.02 
Total 25.72 48.15 82.28 120.74 168.69 235.46 275.39 317.25 
 

To determine the value of the stochastic solution (VSS, see Section 5.2.2) an additional 

deterministic case was run. In this additional case, the cartel exerts a market power level 

of 0.625 (the average of 0.25 in the Base Case and 1 in the Cartel Case) and the importing 

countries face only half of the additional decline of production capacities relative to the 

Base Case as in the Decline Case. The capacity results of this myopic deterministic case 

(EVP) were used to fix the capacities in a new run with the stochastic model, to 

determine the profit levels of the various traders (the EEV) and calculate the VSS.  

 

This section focuses on VSS results for traders only, since the traders play a key role in 

the model and are the agents that exert market power. The VSS for other players are not 

discussed.  

                                                 
163 Traders are assumed to not exert market power on their respective domestic nodes and therefore traders 
in the major importing regions do not make profits. 
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Table 14 below shows the differences in discounted expected yearly profits, and the 

yearly average difference in discounted profit between the EEV. It turns out that the 

trader ‘Middle East 2’, that would not take part in the cartel, has a negative VSS, while 

all other traders have a positive VSS.164 This contrasts with results in Zhuang (2005) and 

(Genc et al., 2007) where negative VSS were found for all players of a specific type.  

 

Table 14: VSS results for stochastic problem (disco unted billion $2005) 
 2010 2015 2020 2025 2030 2035 2040 Average 
Cartel countries -0.28 0.13 0.28 0.19 0.09 -0.09 -0.06 0.033 
Australia 0.05 -0.09 0.00 0.02 0.01 0.02 0.00 0.001 
Caspian 0.01 0.15 0.05 0.02 0.04 0.07 -0.02 0.041 
Netherlands & Norway 0.00 0.01 0.02 0.01 0.02 0.00 0.00 0.007 
Middle East other 0.01 0.05 0.00 -0.04 -0.03 -0.03 -0.03 -0.008 
Total -0.21 0.26 0.35 0.20 0.13 -0.03 -0.10 0.074 
 

A possible explanation is that in those two papers the players exerting market power were 

more similar to each other – in terms of cost and capacity parameters – and in the 

numerical case in this chapter the characteristics of the players are very diverse. It must 

be noted that the magnitudes of the relative VSS are quite small, between -1.5% of the 

expected profit values for the Middle East other and +0.8% for the Caspian region.  

6.5 Summary and conclusions 

In this chapter a stochastic mixed complementarity problem for the global natural gas 

market has been presented. The model was applied to solve a stochastic problem with 

four scenarios. In the scenarios different assumptions applied for the market power 

exertion by members of the Gas Exporting Countries Forum (GECF), as well as for the 

domestic production capacities of some regions that rely on imports to cover significant 

parts of their domestic natural gas demand. Results of the stochastic problem were 

compared to the outcomes of four deterministic (counterpart) cases that each had exactly 

the same input parameter values as one of the stochastic scenarios. Results were 

discussed for production levels, regional trade balances, capacity expansions, LNG trade 

and wholesale prices. Special attention was given to the development of pipeline exports 

                                                 
164 Note that all traders with an expected profit of zero in the stochastic problem have a VSS=0. 



 186 

from the Caspian region to Europe, the development of Australian liquefaction capacity 

over time and supplies to and price developments in various importing regions. 

 

On an aggregate level the consequences of the stochastic modeling approach seemed 

rather modest. However, when looking into the details several interesting results were 

found. Hedging behavior affected the timing and magnitude of capacity expansions, 

significantly affecting local market situations and prices. For example, for the Australian 

liquefier the shifts over time in capacity expansions were discussed; for North America 

the sources of imported supplies and the wholesale prices in Japan and South Korea.  

Probably due to assumed risk-neutral behavior of all players, the hedging lead often to 

capacity expansion decisions close to – but not equal to – the average decisions in the 

deterministic counterparts. 

  

Only two uncertain events were included in the stochastic problem and after the first 

uncertain event would become known, the second would only happen after 15 years. As 

such, much of the future uncertainty was ‘discounted away’ when the recourse expansion 

decisions were taken. Also, once all uncertain events were known, the scenario results 

tended to converge in later years to the results of the deterministic counterparts. Hedging 

behavior was most pronounced in the period immediately before an uncertain event 

would occur, and recourse behavior most pronounced in the periods directly after. The 

effects were more clearly visible in the capacity additions, and less so in market prices. 

For the traders the values of the stochastic solutions were calculated and found to be 

relatively small, again likely due to the limited number of uncertain events (just two, 

leading to four scenarios) in the stochastic model.  

 

Rather than concluding that stochastic modeling has limited impact only, the power of 

stochastic modeling would be more pronounced when more uncertain aspects are 

included in the problems, in all periods instead of just two. Also, other assumptions 

relative to risk-attitudes would likely have large impact, what will be briefly addressed in 

the future work section at the end of Chapter 7.  
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6.6 Nomenclature 

6.6.1 Sets 

A  Gas transportation arcs a 

D  Demand seasons d 

M  Scenario nodes m, m' 

N  Country nodes n, n' 

P  Producers p 

S  Storage operators s 

T  Traders t , t' 

W  Wholesale markets w 

( )a n+   Inward arcs into node n 

( )a n−   Outward arcs from node n 

( )n a+   End node of arc a 

( )n a−   Start node of arc a 

( )pred m  Predecessor nodes of scenario node m 

( )succ m  Successor nodes of scenario node m 

6.6.2 Constants/Input Parameters 

mp   Probability for scenario node 

mγ   Discount rate for scenario node 

dd   Number of days in season 

MP
tnmδ   Market power indicator  

W
ndmINT   Intercept of inverse demand curve 

W
ndmSLP   Slope of inverse demand curve  

( )P
pnmc  Production costs of producer 

( )SI
snmc  Storage injection costs of storage 
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A
amc∆   Expansions costs for arc 

SI
snmc∆   Expansions costs for storage injection 

SX
snmc∆   Expansions costs for storage extraction 

SW
snmc∆   Expansions costs for storage working gas 

A
amCAP   Initial capacity for arc 

P
pnmCAP   Initial capacity for producer 

SI
snmCAP   Initial storage injection capacity 

SX
snmCAP   Initial storage extraction capacity 

SW
snmCAP   Initial storage working gas capacity 

A
am∆   Limit to arc expansion  

SI
snm∆   Limit to storage injection capacity expansion  

SX
snm∆   Limit to storage extraction gas capacity expansion  

SW
snm∆   Limit to storage working gas capacity expansion  

A
al   Loss rate for shipments over arc 

S
snl   Loss rate for storage injection 

reg
admτ   Regulated tariff for shipments over arc 

6.6.3 Primal variables 

A
tadmf   Pipeline capacity purchased, i.e. flow, by trader t over arc a 

A
admq   Total pipeline capacity assigned for arc a 

P T
pndmq →   Quantity sold by producer p at node n in season d of scenario node m 

S T
sndmq ←   Gas purchased, i.e., injection rate, by storage operator s 

S W
sndmq →   Storage extraction rate at node n in season d of scenario node m 

T P
tndmq ←   Total amount purchased by trader t from producers at node n 

T W
tndmq →   Total sold amount by trader t to consumers at node n 

A
am∆   Capacity expansion of arc a, in scenario node m 
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SI
snm∆   Capacity expansion of storage injection 

SX
snm∆   Capacity expansion of storage extraction 

SW
snm∆   Capacity expansion of storage working gas 

6.6.4 Dual variables 

A
admα   Dual to arc capacity limitation 

p
pndmα   Dual to production capacity limitation for producer p 

SI
sndmα   Dual to injection capacity limitation 

SX
sndmα   Dual to extraction capacity limitation 

SW
sndmα   Dual to working gas capacity limitation 

T
tadmε   Dual to supply contract obligation 

T
tndmϕ   Dual to mass balance for trader 

P
ndmπ   Market-clearing price between producers and traders 

TS
ndmπ   Market-clearing price for sales to storage 

W
ndmπ   Wholesale market price 

A
amρ ∆   Dual to expansion limitation for arc 

SI
sndmρ   Dual to expansion limitation for injection capacity 

SX
sndmρ   Dual to expansion limitation for extraction capacity  

SW
sndmρ   Dual to expansion limitation for working gas capacity  

A
admτ   Congestion rate for arc 

6.7 Karush Kuhn-Tucker conditions 

6.7.1 KKT conditions producer 

Eq. (6.7.1) is stationarity with regard to the production volumes. Eq. (6.7.2) represents 

the production capacity constraint. 

, , :n d m∀  0 P T
pndmq →≤ ⊥  

( )
0

P
pndm

P T
pndm

c p p
m m d pndm m m d ndmq

p d p dγ α γ π→

∂ ⋅

∂
+ − ≥  (6.7.1)
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, , :n d m∀  0 P
pndmα≤ ⊥  0P P T

pnm pndmCAP q →− ≥  (6.7.2)

6.7.2 KKT conditions trader 

Eq. (6.7.3) and (6.7.4) are the stationarity conditions for the trader with respect to sales to 

the end-user and storage market. Eq. (6.7.5) is the stationarity condition with respect to 

purchases from producers. Eq. (6.7.6) gives the mass flow balance, (6.7.7) is the 

stationarity condition with respect to arc flows for arc ( ),a aa n n− += and (6.7.8) represents 

the lower bound to supplies resulting from contractual obligations. 

, , :n d m∀  0 T W
tndmq →≤ ⊥  0MP W T W T W

m m d tnm ndm tndm tndm m m d ndmp d SLP q p dγ δ ϕ γ π→ + − ≥  (6.7.3)

, , :n d m∀  0 T S
tndmq →≤ ⊥  0T TS

tndm m m d ndmp dϕ γ π− ≥  (6.7.4)

, , :n d m∀  0 T P
tndmq ←≤ ⊥  0p T

m m d ndm tndmp dγ π ϕ− ≥  (6.7.5)

, , :a d m∀  0 A
tadmf≤ ⊥  ( )

( )

( ) ( )1
0

reg A A T
m m d adm adm a n a dm

T A
tn a dm tadm

p d lγ τ τ ϕ

ϕ ε

+

−

   + −
   − ≥

  + +  

 

(6.7.6)

, , :n d m∀  ,T
tndm freeϕ  

( )
( ) ( )

01

T P T W T S
tndm tndm tndm

AA A
tadma tadm

a a na a n

q q q

fl f
−+

← → ←

∈∈

   + +
   − =+−     

  
∑∑  

(6.7.7)

, , :a d m∀  0 T
tadmε≤ ⊥  0A A

tadm tamf CON− ≥  (6.7.8)

6.7.3 KKT conditions TSO 

Eq. (6.7.9) is stationarity for sales of pipeline capacity, and (6.7.10) for pipeline 

expansions. Eq. (6.7.11) provides the arc capacity limitation to aggregate flows; and 

(6.7.12) provides the limitation to capacity expansions. 

, , :a d m∀  0 A T
admq →≤ ⊥  0A A

adm m m d admp dα γ τ− ≥  (6.7.9) 

, :a m∀  0 A
am≤ ∆ ⊥  

( ),

0A A A
m m am am adm

d m succ m

p cγ ρ α∆
′

′∈
+ − ≥∑  (6.7.10)

, , :a d m∀  0 A
admα≤ ⊥  

( )
0A A A T

am am adm
m pred m

CAP q →
′

′∈
+ ∆ − ≥∑  (6.7.11)

, :a m∀  0 A
amρ≤ ⊥  0A A

am am∆ − ∆ ≥  (6.7.12)
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6.7.4 KKT conditions storage operator 

Eq. (6.7.13) is the stationarity condition for gas injection, Eq. (6.7.14) for gas extraction. 

For every year, Eq. (6.7.15) is the gas cycle condition. The capacity restrictions for 

injection is provided by Eq. (6.7.16) and for extraction by Eq. (6.7.17). Eq. (6.7.18) is the 

working gas restriction. The stationarity conditions for and limitations to capacity 

expansions are very similar. For injection, extraction or working gas: stationarity of 

expansions Eq. (6.7.19) - (6.7.21) and the expansion limitations Eq. (6.7.22) - (6.7.24). 

, 1, :n d m∀ =  0 S T
sndmq ←≤ ⊥  ( )( ) ( )1 0

SI
sndm

S T
sndm

cTS SI S S
m m d ndm sndm sn d ndmq

p d l dγ π α ϕ←

∂

∂
+ + − − ≥  

(6.7.13)

, 2,3, :n d m∀ =  0 S W
sndmq →≤ ⊥  0SX SW W

sndm d sndm m m d ndmd p dα α γ π+ − ≥  (6.7.14)

, :n m∀  ,S
snm freeϕ  ( )

11
2,3

1 0S S T S W
sn snd m d sndm

d

l d q d q← →

=

− − =∑  (6.7.15)

, 1, :n d m∀ =  0 SI
sndmα≤ ⊥  

( )
'

'

0SI SI S T
snm sndm sndm

m pred m

CAP q ←

∈
+ ∆ − ≥∑  (6.7.16)

, 2,3, :n d m∀ =  0 SX
sndmα≤ ⊥  

( )
'

'

0SX SX S W
snm sndm sndm

m pred m

CAP q →

∈
+ ∆ − ≥∑  (6.7.17)

, :n m∀  0 SW
snmα≤ ⊥  

( )
'

' 2,3

0SW SW S W
snm ndm d sndm

m pred m d

CAP d q →

∈ =
+ ∆ − ≥∑ ∑  (6.7.18)

, :n m∀  0 SI
snm≤ ∆ ⊥  

( )
1

0SI SI SI
m m snm snm snd m

m succ m

p cγ ρ α∆
′

′∈
+ − ≥∑  (6.7.19)

, :n m∀  0 SX
snm≤ ∆ ⊥  

( )
2,3

0SX SX SX
m m snm snm sndm

m succ m
d

p cγ ρ α∆
′

′∈
=

+ − ≥∑  (6.7.20)

, :n m∀  0 SW
snm≤ ∆ ⊥  

( )
0SW SW SW

m m snm snm sndm
m succ m

p cγ ρ α∆
′

′∈
+ − ≥∑  (6.7.21)

, :n m∀  0 SI
snmρ≤ ⊥  0SI SI

snm snm∆ − ∆ ≥  (6.7.22)

, :n m∀  0 SX
snmρ≤ ⊥  0SX SX

snm snm∆ − ∆ ≥  (6.7.23)

, :n m∀  0 SW
snmρ≤ ⊥  0SW SW

snm snm∆ − ∆ ≥  (6.7.24)

6.7.5 Market-clearing conditions 

There are four market-clearing conditions: for produced volumes, Eq. (6.7.25), for 

assigned arc capacities, Eq. (6.7.26), for storage injection volumes Eq. (6.7.27) and the 

inverse demand curve Eq. (6.7.28): 
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, , :n d m∀  ,p
ndm freeπ  0P T T P

pndm tndm
p t

q q→ ←− =∑ ∑  (6.7.25)

, , :a d m∀  ,A
adm freeτ  0A T A

adm tadm
t

q f→ − =∑  (6.7.26)

, , :n d m∀  ,TS
ndm freeπ  

1 1
0T S S T

tnd m snd m
t s

q q→ ←− =∑ ∑  (6.7.27)

, , :n d m∀  ,W
ndm freeπ  0W W W T W S W

ndm ndm ndm tndm sndm
t s

INT SLP q qπ → →  − − + =  
  
∑ ∑  (6.7.28)

6.8 Model regions 

Region Node Countries 

CAN Canada North 

America USA/MEX Mexico, United States 

SAM1 Bolivia, Trinidad & Tobago, Venezuela 

SAM2 Argentina, Brazil 

South 

America 
SAM3 Chile, Ecuador, Peru 

Africa AFRN Algeria, Egypt, Libya, Morocco, Tunisia 

 AFRW Angola, Equatorial Guinea, Nigeria 

EURCE Austria, Belarus, Belgium, Bulgaria, Czech Republic, Denmark, 

Estonia, Finland, Germany, Greece, Hungary, Latvia, Lithuania, 

Poland, Romania, Slovak Republic, Slovenia, Sweden, Switzerland, 

Turkey, Ukraine 

EURN Netherlands, Norway 

Europe 

EURSW France, Ireland, Italy, Portugal, Spain, United Kingdom 

MEA1 Iran, Qatar Middle 

East MEA2 Kuwait, Oman, Saudi Arabia, UAE ,Yemen 

Caspian CAS Armenia, Azerbaijan, Georgia, Kazakhstan, Turkmenistan, Uzbekistan 

ASIA1 Burma, China, India, Pakistan, Singapore, Taiwan, Thailand 

ASIA2 Japan, South Korea 

ASIA3 Brunei, Indonesia, Malaysia 

AUS Australia 

RUE Russia-East, Russia-Sakhalin 

Asia 

Pacific 

RUW Russia-Volga-Uralsk, Russia-West 
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6.9 Detailed results 

Table 15: Production, consumption and net trade 201 0 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 238 419 166 314 355 748 591 149 2980
STO-base 238 427 166 313 355 750 588 148 2985

DET-decline 238 419 166 314 355 748 591 149 2980
STO-decline 238 427 166 313 355 750 588 148 2985
DET-cartel 228 431 166 329 336 750 558 148 2946
STO-cartel 230 425 166 329 338 748 560 148 2944
DET-combi 228 431 166 329 336 750 558 148 2946

P
ro

du
ct

io
n 

STO-combi 230 425 166 329 338 748 560 148 2944
DET-base -67 50 0 2 -58 57 -2 -20 
STO-base -67 46 0 6 -57 53 0 -20 

DET-decline -67 50 0 2 -58 57 -2 -20 
STO-decline -67 46 0 6 -57 53 0 -20 
DET-cartel -56 13 0 11 -35 53 0 -20 
STO-cartel -58 17 0 8 -36 57 0 -20 
DET-combi -56 13 0 11 -35 53 0 -20 N

et
 L

N
G

 im
po

rt
s 

STO-combi -58 17 0 8 -36 57 0 -20 
DET-base -76 0 -81 317 -3 -5 -187 -1 
STO-base -76 0 -81 315 -3 -5 -185 -1 

DET-decline -76 0 -81 317 -3 -5 -188 -1 
STO-decline -76 0 -81 315 -3 -5 -185 -1 
DET-cartel -76 0 -81 265 -3 -5 -132 -1 
STO-cartel -76 0 -81 267 -3 -5 -134 -1 
DET-combi -76 0 -81 265 -3 -5 -132 -1 

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -76 0 -81 267 -3 -5 -134 -1 
DET-base 95 469 86 632 295 799 401 128 2905
STO-base 95 473 86 633 295 798 403 127 2910

DET-decline 95 469 86 632 295 800 401 128 2906
STO-decline 95 473 86 633 295 798 403 127 2910
DET-cartel 95 444 86 604 299 798 426 127 2879
STO-cartel 95 441 86 602 299 799 425 127 2874
DET-combi 95 444 86 604 299 798 426 127 2879

C
on

su
m

pt
io

n 

STO-combi 95 441 86 602 299 799 425 127 2874
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Table 16: Production, consumption and net trade 201 5 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 303 484 210 293 420 691 597 178 3176
STO-base 302 484 210 293 420 692 596 178 3175

DET-decline 303 484 210 293 420 691 597 178 3176
STO-decline 302 484 210 293 420 692 596 178 3175
DET-cartel 290 483 225 310 421 695 554 173 3151
STO-cartel 290 483 225 310 421 695 554 173 3151
DET-combi 290 483 225 310 421 695 554 173 3151

P
ro

du
ct

io
n 

STO-combi 290 483 225 310 421 695 554 173 3151
DET-base -82 32 0 0 -58 86 -2 -20
STO-base -81 34 0 0 -58 85 -1 -20

DET-decline -82 33 0 0 -58 87 -2 -20
STO-decline -81 34 0 0 -58 85 -1 -20
DET-cartel -69 31 0 2 -61 76 0 -20
STO-cartel -69 32 0 1 -61 76 0 -20
DET-combi -69 31 0 2 -61 76 0 -20N

et
 L

N
G

 im
po

rt
s 

STO-combi -69 32 0 1 -61 76 0 -20
DET-base -115 31 -124 369 -14 -5 -183 -1
STO-base -115 31 -124 368 -14 -5 -182 -1

DET-decline -115 31 -124 369 -14 -5 -183 -1
STO-decline -115 31 -124 368 -14 -5 -182 -1
DET-cartel -115 31 -139 315 -14 -5 -113 -1
STO-cartel -115 31 -140 316 -14 -5 -113 -1
DET-combi -115 31 -139 315 -14 -5 -113 -1

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -115 31 -140 316 -14 -5 -113 -1
DET-base 106 547 86 661 348 773 412 156 3089
STO-base 106 548 86 661 348 772 412 156 3089

DET-decline 106 547 86 661 348 773 412 156 3089
STO-decline 106 548 86 661 348 772 412 156 3089
DET-cartel 106 545 86 625 347 766 441 152 3068
STO-cartel 106 545 86 625 347 766 441 152 3068
DET-combi 106 545 86 625 347 766 441 152 3068

C
on

su
m

pt
io

n 

STO-combi 106 545 86 625 347 766 441 152 3068

 



 195 

Table 17: Production, consumption and net trade 202 0 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 383 504 252 282 503 628 668 228 3448
STO-base 383 504 252 282 502 628 667 228 3446

DET-decline 383 504 252 282 503 628 668 228 3448
STO-decline 383 504 252 282 502 628 667 228 3446
DET-cartel 353 493 270 302 516 633 610 209 3386
STO-cartel 353 493 271 302 516 633 609 209 3386

DET-combi 353 493 270 302 516 633 610 209 3386

P
ro

du
ct

io
n 

STO-combi 353 493 271 302 516 633 609 209 3386

DET-base -118 33 0 0 -58 133 -2 -38
STO-base -117 32 0 0 -58 133 -1 -38

DET-decline -118 33 0 0 -58 134 -2 -38
STO-decline -117 32 0 0 -58 133 -1 -38
DET-cartel -93 37 0 2 -79 113 0 -23
STO-cartel -93 37 0 2 -79 113 0 -23

DET-combi -93 37 0 2 -79 113 0 -23N
et

 L
N

G
 im

po
rt

s 

STO-combi -93 37 0 2 -79 113 0 -23

DET-base -148 129 -164 419 -47 -4 -232 -1

STO-base -148 129 -165 418 -46 -4 -232 -1
DET-decline -148 129 -164 419 -47 -4 -232 -1
STO-decline -148 129 -165 418 -46 -4 -232 -1
DET-cartel -143 120 -183 356 -43 -4 -150 -1

STO-cartel -143 120 -184 356 -43 -4 -149 -1
DET-combi -143 120 -183 356 -43 -4 -150 -1

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -143 120 -184 356 -43 -4 -149 -1

DET-base 117 665 87 699 398 757 434 189 3346

STO-base 117 666 87 699 399 757 434 189 3348
DET-decline 117 665 87 699 398 758 434 189 3347
STO-decline 117 666 87 699 399 757 434 189 3348

DET-cartel 118 650 87 659 394 742 460 185 3295
STO-cartel 118 650 87 659 394 742 460 185 3295
DET-combi 118 650 87 659 394 742 460 185 3295

C
on

su
m

pt
io

n 

STO-combi 118 650 87 659 394 742 460 185 3295
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Table 18: Production, consumption and net trade 202 5 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 444 499 288 263 594 569 686 243 3586
STO-base 444 498 288 263 597 569 685 245 3589

DET-decline 444 488 288 256 600 559 688 248 3571
STO-decline 444 489 288 259 597 566 687 245 3575
DET-cartel 397 489 308 282 614 575 630 220 3515
STO-cartel 397 489 312 282 615 575 629 220 3519

DET-combi 398 479 319 272 618 565 630 222 3503

P
ro

du
ct

io
n 

STO-combi 398 479 312 276 616 572 630 220 3503

DET-base -148 53 0 0 -81 164 -1 -41
STO-base -147 56 0 0 -85 166 -1 -43

DET-decline -148 60 0 0 -89 169 -1 -48
STO-decline -147 56 0 0 -85 166 -1 -43
DET-cartel -115 51 0 11 -113 140 0 -24
STO-cartel -116 52 0 11 -114 141 0 -24

DET-combi -117 53 0 11 -118 146 0 -26N
et

 L
N

G
 im

po
rt

s 

STO-combi -116 53 0 12 -115 141 0 -24

DET-base -170 188 -201 459 -76 -3 -248 -2

STO-base -170 189 -201 459 -76 -3 -249 -2
DET-decline -170 189 -201 462 -76 -3 -252 -2
STO-decline -170 189 -201 461 -76 -3 -251 -2
DET-cartel -153 183 -222 386 -72 -3 -168 -1

STO-cartel -153 184 -226 388 -72 -3 -168 -1
DET-combi -153 184 -233 395 -72 -3 -168 -1

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -154 184 -226 390 -72 -3 -169 -1

DET-base 127 740 87 721 436 730 436 200 3477

STO-base 127 744 87 721 436 731 436 200 3482
DET-decline 127 737 87 717 435 726 435 199 3463
STO-decline 127 734 87 719 436 728 435 200 3466

DET-cartel 128 724 86 678 429 712 461 195 3413
STO-cartel 128 725 86 679 429 713 462 195 3417
DET-combi 128 716 86 676 428 707 461 195 3397

C
on

su
m

pt
io

n 

STO-combi 128 715 86 675 428 709 461 195 3397
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Table 19: Production, consumption and net trade 203 0 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 489 497 324 249 708 524 699 254 3744
STO-base 488 497 324 249 709 523 698 256 3744

DET-decline 489 476 326 233 729 503 704 259 3719
STO-decline 489 477 326 236 727 505 702 258 3720
DET-cartel 429 493 346 267 721 530 641 230 3657
STO-cartel 429 493 349 267 722 530 640 230 3660
DET-combi 433 473 357 247 733 509 641 233 3626

P
ro

du
ct

io
n 

STO-combi 433 474 355 250 731 511 642 233 3629
DET-base -178 104 0 0 -136 189 -1 -41
STO-base -177 104 0 0 -137 189 -1 -43

DET-decline -178 118 0 0 -163 203 -1 -48
STO-decline -177 117 0 0 -161 201 -1 -46
DET-cartel -133 89 0 12 -161 159 0 -24
STO-cartel -133 90 0 12 -161 159 0 -24
DET-combi -137 95 0 13 -176 172 0 -27N

et
 L

N
G

 im
po

rt
s 

STO-combi -137 95 0 13 -175 172 0 -27
DET-base -173 242 -238 487 -104 -3 -264 -2
STO-base -173 243 -238 487 -104 -3 -265 -2

DET-decline -173 242 -241 494 -102 -2 -272 -2
STO-decline -173 242 -240 493 -102 -2 -270 -2
DET-cartel -155 239 -260 410 -100 -3 -183 -1
STO-cartel -155 239 -264 411 -101 -3 -181 -1
DET-combi -156 240 -272 421 -100 -3 -183 -1

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -156 240 -270 419 -99 -3 -184 -1
DET-base 138 843 86 734 468 709 433 211 3622
STO-base 138 844 86 734 468 710 433 210 3623

DET-decline 138 837 86 725 464 704 430 209 3593
STO-decline 138 836 86 728 464 703 431 210 3596
DET-cartel 140 821 85 687 460 686 458 205 3542
STO-cartel 140 822 85 688 460 686 458 205 3544
DET-combi 140 808 85 679 456 679 458 204 3509

C
on

su
m

pt
io

n 

STO-combi 140 808 85 679 457 679 458 204 3510
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Table 20: Production, consumption and net trade 203 5 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 510 471 355 240 788 475 698 254 3791
STO-base 509 471 355 240 788 475 698 256 3792

DET-decline 519 454 357 205 814 439 706 259 3753
STO-decline 519 454 357 210 812 442 705 258 3757
DET-cartel 443 466 389 264 788 482 638 230 3700
STO-cartel 443 466 391 263 788 482 637 230 3700
DET-combi 452 450 402 217 809 446 643 234 3653

P
ro

du
ct

io
n 

STO-combi 452 450 400 221 808 448 644 234 3657
DET-base -178 100 0 0 -136 195 -1 -41
STO-base -178 100 0 0 -137 196 -1 -43

DET-decline -188 112 0 0 -169 224 -1 -48
STO-decline -187 111 0 0 -166 221 -1 -46
DET-cartel -134 82 0 6 -153 166 0 -24
STO-cartel -134 82 0 6 -152 166 0 -24
DET-combi -141 85 0 15 -184 191 0 -29N

et
 L

N
G

 im
po

rt
s 

STO-combi -141 85 0 15 -183 189 0 -29
DET-base -177 294 -273 496 -131 -2 -265 -2
STO-base -177 294 -273 496 -131 -2 -265 -2

DET-decline -177 294 -274 511 -131 -2 -277 -2
STO-decline -177 294 -274 509 -131 -2 -275 -2
DET-cartel -151 291 -307 418 -119 -2 -185 -2
STO-cartel -151 290 -308 419 -121 -2 -184 -2
DET-combi -153 291 -320 437 -118 -2 -191 -1

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -153 291 -318 435 -117 -2 -192 -1
DET-base 154 865 83 735 521 668 432 211 3669
STO-base 155 865 83 735 521 668 432 210 3669

DET-decline 154 859 83 714 514 661 428 209 3622
STO-decline 154 859 83 718 515 661 428 210 3628
DET-cartel 158 839 82 686 515 645 453 204 3582
STO-cartel 158 839 82 686 515 645 453 204 3582
DET-combi 158 826 82 668 507 634 452 204 3531

C
on

su
m

pt
io

n 

STO-combi 158 827 82 668 507 634 452 204 3532
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Table 21: Production, consumption and net trade 204 0 (bcm/y) 

Data Case Africa Asia 
Pacific 

Caspian 
Region Europe Middle 

East 
North 

America Russia South 
America Total

DET-base 529 448 379 231 871 434 683 254 3829
STO-base 528 447 379 231 871 434 683 255 3828

DET-decline 542 436 387 174 892 377 698 260 3766
STO-decline 542 436 385 182 892 381 695 259 3772
DET-cartel 455 444 431 257 853 442 628 229 3739
STO-cartel 454 444 433 256 854 442 627 229 3739
DET-combi 465 434 447 186 870 382 637 239 3660

P
ro

du
ct

io
n 

STO-combi 464 434 445 190 868 385 638 239 3663
DET-base -178 101 0 0 -136 193 -1 -41
STO-base -178 102 0 0 -137 194 -1 -43

DET-decline -189 101 0 0 -169 237 -1 -50
STO-decline -188 100 0 0 -166 234 -1 -49
DET-cartel -130 79 0 1 -146 164 0 -24
STO-cartel -130 79 0 0 -145 164 0 -24
DET-combi -135 66 0 13 -179 207 0 -36N

et
 L

N
G

 im
po

rt
s 

STO-combi -135 67 0 12 -178 205 0 -35
DET-base -177 335 -299 499 -160 -2 -255 -2
STO-base -177 336 -299 499 -160 -2 -255 -2

DET-decline -180 336 -308 528 -156 -1 -276 -2
STO-decline -180 336 -306 524 -158 -1 -272 -2
DET-cartel -146 332 -352 429 -135 -2 -186 -2
STO-cartel -146 332 -354 431 -136 -2 -185 -2
DET-combi -151 334 -369 454 -128 -2 -197 -1

ne
t p

ip
el

in
e 

im
po

rt
s 

STO-combi -151 334 -367 452 -126 -2 -198 -1
DET-base 174 884 79 729 575 625 427 210 3703
STO-base 174 885 79 729 575 626 427 209 3704

DET-decline 173 872 79 701 567 612 421 208 3633
STO-decline 173 872 79 705 568 613 422 208 3640
DET-cartel 179 855 78 685 573 602 442 204 3618
STO-cartel 179 855 78 686 573 602 442 204 3619
DET-combi 179 833 78 651 564 587 440 202 3534

C
on

su
m

pt
io

n 

STO-combi 179 834 78 653 564 587 440 202 3537
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 Table 22: Volume-weighted average wholesale prices . World ($2005/kcm) 
Case 2005 2010 2015 2020 2025 2030 2035 2040 
DET-base $ 165  $ 195   $ 234   $ 270   $ 317   $ 374   $ 421   $ 479  
DET-combi $ 165  $ 198   $ 239   $ 280   $ 331   $ 395   $ 453   $ 525  
DET-decline $ 165  $ 195   $ 234   $ 270   $ 320   $ 380   $ 434   $ 502  
DET-cartel $ 165  $ 198   $ 239   $ 280   $ 328   $ 389   $ 440   $ 501  
STO-combi $ 165  $ 198   $ 239   $ 280   $ 331   $ 395   $ 453   $ 524  
STO-cartel $ 165  $ 198   $ 239   $ 280   $ 328   $ 389   $ 440   $ 500  
STO-decline $ 165  $ 194   $ 234   $ 270   $ 319   $ 379   $ 433   $ 500  
STO-base $ 165  $ 194   $ 234   $ 270   $ 316   $ 373   $ 421   $ 479  
 

Table 23: Volume-weighted average wholesale prices in Central Europe ($2005/kcm) 
Case 2005 2010 2015 2020 2025 2030 2035 2040 
DET-base $ 189 $ 228 $ 272 $ 311 $ 364 $ 429 $ 473 $ 520 
DET-combi $ 189 $ 255 $ 308 $ 359 $ 421 $ 511 $ 589 $ 678 
DET-decline $ 189 $ 228 $ 272 $ 311 $ 369 $ 443 $ 508 $ 579 
DET-cartel $ 189 $ 255 $ 308 $ 359 $ 419 $ 499 $ 554 $ 603 
STO-combi $ 189 $ 258 $ 308 $ 359 $ 423 $ 510 $ 587 $ 675 
STO-cartel $ 189 $ 258 $ 308 $ 359 $ 418 $ 498 $ 552 $ 600 
STO-decline $ 189 $ 227 $ 273 $ 312 $ 367 $ 439 $ 503 $ 571 
STO-base $ 189 $ 227 $ 273 $ 312 $ 364 $ 429 $ 473 $ 520 
 

Table 24: Volume-weighted average wholesale prices in United States & Mexico 
($2005/kcm) 
Case 2005 2010 2015 2020 2025 2030 2035 2040 
DET-base $ 206 $ 257 $ 334 $ 416 $ 484 $ 562 $ 647 $ 746 
DET-combi $ 206 $ 258 $ 339 $ 431 $ 510 $ 604 $ 706 $ 830 
DET-decline $ 206 $ 257 $ 333 $ 416 $ 489 $ 570 $ 659 $ 775 
DET-cartel $ 206 $ 258 $ 339 $ 431 $ 505 $ 593 $ 686 $ 796 
STO-combi $ 206 $ 257 $ 339 $ 431 $ 508 $ 604 $ 705 $ 829 
STO-cartel $ 206 $ 257 $ 339 $ 431 $ 504 $ 593 $ 686 $ 796 
STO-decline $ 206 $ 258 $ 335 $ 416 $ 486 $ 570 $ 658 $ 774 
STO-base $ 206 $ 258 $ 335 $ 416 $ 482 $ 561 $ 645 $ 745 
 

Table 25: Volume-weighted average wholesale prices in Japan & South Korea ($2005/kcm) 
Case 2005 2010 2015 2020 2025 2030 2035 2040 
DET-base $ 282 $ 319 $ 375 $ 415 $ 481 $ 572 $ 658 $ 763 
DET-combi $ 282 $ 366 $ 397 $ 446 $ 517 $ 613 $ 707 $ 831 
DET-decline $ 282 $ 319 $ 375 $ 415 $ 483 $ 577 $ 662 $ 775 
DET-cartel $ 282 $ 366 $ 397 $ 446 $ 514 $ 603 $ 697 $ 809 
STO-combi $ 282 $ 374 $ 396 $ 446 $ 517 $ 612 $ 707 $ 830 
STO-cartel $ 282 $ 374 $ 396 $ 446 $ 513 $ 603 $ 697 $ 809 
STO-decline $ 282 $ 311 $ 375 $ 415 $ 484 $ 576 $ 661 $ 773 
STO-base $ 282 $ 311 $ 375 $ 415 $ 479 $ 572 $ 658 $ 763 
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7 Benders Decomposition for Large-Scale Stochastic 

Mixed Complementarity Problems 

In this chapter a Benders decomposition (BD) approach for large-scale stochastic mixed 

complementarity problems (MCP) is presented. Convergence characteristics for the 

specialized method are compared with solution times of full-scale extensive-form MCP 

as well as convex optimization problems. Small-scale implementations are analyzed to 

show that small numerical deviations occur. These numerical deviations are the likely 

explanation for the problems encountered when trying to solve some of the large-scale 

problems. 

 

In Chapter 6, a stochastic complementarity model was developed and applied to a natural 

gas market case with four stochastic scenarios. The calculation time to solve this four-

scenario problem was a few hours and therefore short enough for most realistic 

applications such as policy or market analysis. However, analysts or regulators may be 

interested in including more scenarios or a less aggregated data set, which would likely 

result in much higher calculation times. To address the potential calculation time 

problems, in this chapter a Benders decomposition approach for large-scale stochastic 

mixed complementarity problems (MCP) is developed and applied. It will be clarified 

that there are two alternative routes to formulate the master and subproblems. The more 

difficult route follows the VI-based approach developed in (Gabriel and Fuller, 2010) and 

the easier route takes the generalized Benders approach in (Geoffrion, 1972) as its 

starting point. As a result, a number of master and subproblem variants are developed and 

applied, and are compared on their merits regarding calculation times and number of 

iterations needed to obtain a solution. Along the way it will become clear why in the 

implemented approach no feasibility cuts are needed, and that only optimality cuts are 

added in each iteration of the decomposition approaches. Some of the main findings in 

this chapter include that the approach developed in (Gabriel and Fuller, 2010) performs 

better on optimization problems in terms of the time needed to converge and solution 

accuracy relative to optimization-based approaches, based on (Geoffrion, 1972).  

 

This chapter presents the third major contribution of this dissertation in the form of the 

application (i.e., the adjustment, extension and implementation) of a BD approach for 
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large-scale stochastic MCP. No models are actually solved quicker using the 

decomposition method relative to solving the full-scale extensive-form models, but it is 

argued that implementing a parallel processing approach and using other software would 

make the decomposition method faster. Numerical computational problems prevented the 

successful solution of the largest problems tried. The largest stochastic MCP (problem B) 

solved with the BD approach contained 47,373 and solved in 13,684  seconds (wall-clock 

time) or 2,036 seconds of CPU time. Solving this problem in extensive-form took 16 

minutes and 45 seconds. The largest stochastic MCP (problem E) solved in extensive-

form contained 117,481 variables and solved in 18,679 seconds. 

 

Due to the numerical difficulties the scalability of the approach was not proved, however 

the results support that the decomposition method has a good potential to significantly 

reduce solution times of large-scale stochastic MCP. 

7.1 Introduction 
A main objective of the research presented in this dissertation was to develop a method to 

solve large-scale stochastic mixed complementarity problems (MCP) that would address 

the memory and calculation time issues arising when setting up and solving full-scale 

extensive-form stochastic models. Chapter 5 discussed various methods to do so. The 

starting point for the approach are the methods developed by Benders (1962), which he 

called partitioning procedures, but which have later been referred to as Benders 

Decomposition.165 Benders developed the decomposition method for linear optimization 

problems. Geoffrion (1972) extended the method to convex mixed-integer non-linear 

programming problems (NLP). Perfectly competitive and monopolistic markets can be 

modeled as convex NLP (see Chapter 2) and Geoffrion’s approach is applied to a 

stochastic multi-period optimization model. However, markets with imperfect 

competition where more than one player exerts market power, such as the global natural 

gas market, cannot be modeled as optimization problems (Chapter 2). To represent the 

competition characteristics in these imperfect markets other model variants, such as MCP 

or variational inequalities (VI) are needed. Among the MP and SP variants developed in 

                                                 
165 The article was reprinted as (Benders, 2005). 



 203 

this chapter, only the MP-LCP, SP-MCP using the VI-based cuts can be applied to the 

stochastic MCP under consideration. 

 

Fuller and Chung (2005) developed a Dantzig-Wolfe (DW, Dantzig and Wolfe (1960)) 

decomposition approach for VI, which in a later paper was used as the foundation for a 

Benders decomposition (BD) approach (Fuller and Chung, 2008). Gabriel and Fuller 

(2010) extended the Benders decomposition approach to be applicable to stochastic MCP. 

They provided mathematical details, proofs and several numerical examples. The 

numerical examples contained eight first-stage variables and up to 20,000 scenarios. 

Model agents include power generators and electricity grid owners. The model has two 

stages in which power generators face stochastic inverse demand curves in the second 

stage. The first-stage decision for the power generators is to decide on how much (low-

cost) slow-ramping generation capacity to bring online, while in the second stage a 

decision is made about (expensive) rapid-ramping capacity.  

 

In this chapter the Benders decomposition approach developed by Gabriel and Fuller is 

extended and applied to multi-period natural gas market problems. The problems will 

include more and different types of model agents, multiple future periods and a 

separation of first-stage capacity and second-stage quantity decisions. Generalized 

Benders decomposition for convex programming (Geoffrion 1972) is applied to profit 

and welfare maximization problems, for which under the assumptions of linear capacity 

investment costs, the master problems (MP) are linear programs (LP) and the 

subproblems (SP) convex non-linear optimization programs (NLP).166 The mathematical 

formulations are derived and applied to numerical examples containing the aspects 

relevant for the natural gas market as modeled in the WGM (see Chapter 3). Next, the 

Karush-Kuhn-Tucker (KKT) conditions (e.g., (Cottle et al., 1992)) are derived for the 

linear MP and the convex SP. The KKT conditions of the MP and SP are used as 

alternative model formulations in a BD approach to investigate the impact on calculation 

times of using different model types and solvers. 

 

                                                 
166 SP is used to abbreviate the singular and plural words. Similarly for other abbreviations such as MCP, 
NLP and VI. 
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The decomposition method developed in (Gabriel and Fuller, 2010) is summarized. In an 

appendix to this chapter the groups of variables and equations in the natural gas market 

model are identified and matched with the variables and equations in the former papers 

(see Table 42 in Section 7.9 at the end of this chapter). Interestingly, except for the KKT 

conditions for the Benders cuts, the KKT conditions derived using the VI-based approach 

(Gabriel and Fuller, 2010) are identical to the KKT conditions derived from MP and SP 

following (Geoffrion, 1972). This is not a surprise, since in the generalized Benders 

decomposition approach, the economic considerations by the individual market agents 

are identical and represented accurately, however the optimality cuts in that approach 

misrepresent the obtainable SP solution values in hybrid and Cournot market structures 

and this is corrected by the optimality cut developed in (Gabriel and Fuller, 2010). 167  

 

Figure 52 below illustrates the alternative routes to derive the MP and SP developed in 

(Gabriel and Fuller, 2010). The starting point, in the left-upper corner are nonlinear 

programs (NLP) for which Geoffrion (1972) generalized Benders decomposition. The 

NLP formulation is presented in Appendix 7.8, and the MP and SP in Section 7.2. The 

KKT conditions derived from these MP and SP are presented in Section 7.3. The 

approach developed in (Gabriel and Fuller, 2010) is the second derivation route, clarified 

in Section 7.4.168 As illustrated in the right part of Figure 52 both approaches result in the 

same KKT conditions systems (MP-LCP and SP-MCP), except for the optimality cuts. 

 

                                                 
167 A hybrid market involves players exert varying levels of market power.  
168 The foundation for the decomposition approach developed in this chapter comes from (Fuller and 
Chung, 2005), (Fuller and Chung, 2008) and (Gabriel and Fuller, 2010). Fuller and Chung (2005) develop a 
Dantzig-Wolfe (DW) approach for VI. Using duality theory (see Chapter 2) (Fuller and Chung, 2008) 
developed a Benders decomposition (BD) approach for VI. Gabriel and Fuller (2010) extended the latter to 
be applicable to stochastic MCP. 
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Figure 52: Alternative routes for deriving the VI-b ased master and subproblems 

 

In the numerical experiments section the optimization problems for perfectly competitive 

and monopolistic markets are solved using all variants of MP and SP. Using various 

combinations the needed calculation times, numbers of iterations needed and 

convergence speed are compared. An interesting result is that the VI-based approaches 

needed fewer iterations and less calculation time than the optimization-based 

decomposition approaches, including the KKT variants. Next the computational results 

for a number of large-scale stochastic problems are presented. The chapter will conclude 

with a discussion of various implementation issues.  

 

While performing this research several issues arose with the used software: GAMS 

(Brook et al., 1988) and solver PATH ((Dirkse and Ferris, 1995), (Ferris and Munson, 

2000)). In the appendix at the end of this chapter limitations and workarounds necessary 

to implement the Benders approach in GAMS are discussed. Also, an extension to the 

approach is discussed that guarantees the feasibility of subproblems by setting minimum 

limits for aggregate capacity expansions in case of existing supply contracts with future 

start dates for which the current capacities do not suffice.169  

 

                                                 
169 For problems without contracts, the zero vector is always feasible to the SP. 
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In the numerical sections of this chapter various alternatives for solving stochastic MCP 

are compared. There are two full-scale extensive stochastic model versions, one based on 

a stochastic social welfare maximization approach and one based on an MCP.  

 

There are three alternative master problems:  

1. a linear program (LP) 

2. a linear complementarity problem based on generalized BD (Geoffrion, 1972) (LCP) 

3. an LCP based on the VI approach of (Gabriel and Fuller, 2010). 

 

Also, there are two alternative subproblem formulations:  

1. a non-linear program (NLP) 

2. a mixed complementarity problem (MCP).  

 

The final goal of this chapter is to solve large-scale stochastic MCP. However, many 

interesting problems can be cast as optimization problems, and much insight can be 

obtained from analyzing and comparing related implementations. To solve stochastic 

optimization problems all MP and SP variants can be combined, resulting in six 

alternative ways to apply the decomposition approach for solving perfectly competitive 

and monopolistic markets. Tables 1 and 2 summarize the various solution approaches.  

 
Table 26: Full-scale extensive-form solution approa ches 
Market forms Approach Abbreviation 
Perfectly competitive and monopolistic markets  Surplus maximization FullOPT 
All markets, including Cournot and hybrid Complementarity FullMCP 
 

Table 27: Decomposition approaches 
Market forms Sub 

Master 
SP-NLP SP-MCP 

Perfectly competitive MP-LP LP-NLP LP-MCP 
and monopolistic markets MP-LCP LCP-NLP LCP-MCP 
 MP-VI VI-NLP  
All markets, including Cournot and hybrid MP-VI  VI-MCP 
 
The results of the various implementations show that the decomposition approaches need 

relatively much time to solve small-scale problems due to the overhead added (such as 

file-IO), but when problem sizes grow the calculation times increase much less compared 
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to solving the full-scale extensive-form models. Interestingly, the (more general) 

decomposition approach based on (Gabriel and Fuller, 2010) outperforms other methods, 

needing fewer iterations and less calculation time to reach convergence. As a prelude to 

numerical challenges, some convergence results are discussed in detail, showing that 

even very small problems can have noticeable deviations in converged results. When 

solving bigger problems various numerical issues turned up (see Section 7.11). For some 

issues good work-around were found, however for implementing the approach on very 

large-scale problems it is recommended to use an alternative software platform and 

implement parallel processing (see Section 7.7).170 

 

The first section will start with the optimization-based decomposition approaches. 

7.2 Benders decomposition for convex non-linear programming 

Benders decomposition was discussed in Chapter 5, including some numerical 

illustrations. Benders decomposition separates the problem at hand into various parts. 

One part is called the master problem (MP), the other part (or parts) the subproblem(s) 

(SP). The MP contains the ‘complicating variables’ that make the original problem 

difficult to solve, whereas the SP is relatively easy to solve. The MP and SP are solved 

iteratively. In each iteration, the MP determines a solution for the complicating variables 

and the SP is solved to determine the best solution possible, given the MP results.  

 

The MP contains a variableα which approximates the optimal value function of the SP 

(Conejo et al., 2006). Information from the SP solutions in the form of dual prices, is 

used in the MP to improve the value of α . Every iteration provides a lower bound and an 

upper bound to the objective value of the original problem. Iteratively the MP and SP are 

solved, until the lower bound and upper bound are equal (or very close to each other) in 

which case the solution has converged.  

  

To implement Benders decomposition the complicating variables must be identified. In 

multi-period, stochastic models the complicating variables are usually the variables that 

in some way link periods to each other, thereby preventing the solution of the original 

                                                 
170 The decomposition approach was implemented using GAMS (Brook et al., 1988). 
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problem by blocks (see Chapter 5, L-shaped method). Once the complicating variables 

are set to fixed values, the original problem decomposes into blocks: subproblems for all 

scenario tree nodes. See Figure 53 below for an example of a scenario tree. 

 
Figure 53: Scenario tree with four scenarios 

 

In the WGM presented in Chapter 3 the complicating variables are the capacity 

expansions. The capacity expansions are complicating, since once capacity is in place it 

is available in all future periods.171 Figure 54 shows four capacity constraints for a 

stylized problem. VariablesiQ are capacity-constrained quantities, and CAP is the initial 

capacity. The left-most large gray part are the capacity expansion variables (with a one-

period time lag for expansions to become available). 

 

   - 1Q     CAP≥ −  

1∆     - 2Q    CAP≥ −  

1∆  + 2∆     - 3Q   CAP≥ −  

1∆  + 2∆  + 3∆     - 4Q  CAP≥ −  
Figure 54: Block structure for capacity expansions 

 

                                                 
171 The model introduced in Chapter 3 also includes complicating constraints for the gas reserves.  To deal 
with this complicating aspect a DW approach could be considered. However, the gas reserves constraints 
are not used in the implementations due to unavailability of input data (see Chapter 4) and in this chapter 
the focus is on the capacity expansions as the complicating variables. If the gas reserves constraint would 
be used in implementations, the approach discussed in this chapter would have to be adjusted to 
accommodate incorporation. DW could be used, or some form of Lagrangian relaxation. Alternatively, the 
quantities produced could be included in the MP. This would, however, result in other challenges and 
possibly induce the need for feasibility cuts as well. See (Cabero et al., 2010). 
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Once the capacity expansions are taken out of the problem (or fixed to a value) the 

problem decomposes into blocks (Figure 55 below). Each of these blocks is a single-

period market-equilibrium problem that can be solved separately. 

 

- 1Q  CAP≥ −  

 - 2Q    CAP≥ − - 1∆  

  - 3Q   CAP≥ − - 1∆ - 2∆  

   - 4Q  CAP≥ − - 1∆ - 2∆ - 3∆  
Figure 55: Problem separation by block 

 

Beside computational measures to reduce the calculation time, there are also options to 

reduce the model size and thereby the calculation time. For example, the storage operator 

problem can be modeled with fewer equations in a two-season data set, since not all three 

of the injection, extraction and working gas capacity restriction for each storage facility 

are needed. In a two-season data set, only injection, or extraction, or working gas can be 

limiting.172 The working gas constraint can be used to represent all limitations to storage 

capacities. To do so, the working gas capacity data must be adjusted using the following 

equation: ( ){ }min , 1 ,
S S S S

ss s ss L HWG WG loss days INJ days XTR= − . Also the expansion 

costs for working gas need to be adjusted to represent the costs for injection and 

extraction capacity expansions as well.  

 

The market equilibrium in perfectly competitive markets can be found by maximizing 

social welfare (Walras, 1977). The market equilibrium in monopolistic markets can be 

found by maximizing the aggregate profit of the monopoly supplier and all other price-

taking model agents. In Section 7.8 the mathematical formulation of a model to maximize 

expected social welfare is presented. In Section 7.8.1 the notation used throughout this 

chapter is introduced. 

 

                                                 
172 Theoretically, there can be more than one binding constraint at the same time, but that does not affect 
the possibility to reduce the number of equations as discussed. Generally, there will be one restriction that 
is the most limiting, which makes the others redundant. 
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The generalized Benders decomposition developed in (Geoffrion, 1972) can be applied to 

optimization problems. Given the linear capacity expansion costs, the MP are LP and the 

SP are convex NLP. In the following, the master problem formulation for the 

decomposition method is presented based on the model formulation in Section 7.8. 

7.2.1 MP for the multi-period optimization problem: MP-LP  

The capacity expansions are considered the complicating variables, so they are included 

in the master problem, as well as the upper limits to capacity expansions. All other 

variables and equations are part of the subproblems. Following the Benders approach, a 

variable α  is included in the MP as an approximation of the SP objective function values 

(Chapter 5, (Conejo et al., 2006)). To facilitate the derivation of the KKT conditions and 

the comparability of results, the MP and SP are written as minimization problems. Hence, 

the MP can be written as the minimization of the probability-weighted and discounted 

investment costs for capacity expansions plus α :  

 
, ,

min
A S
am sm

A A S S
m m am am sm sm

m a s

p c c
α

γ α∆ ∆

∆ ∆

 ∆ + ∆ + 
 

∑ ∑ ∑  (7.2.1) 

To address limitations to capacity expansions Eq. (7.8.6) and (7.8.8) are included:  

 ( ),A A A
am am ama m ρ∆ ≤ ∆ ∀  (7.2.2) 

 ( ),S S S
sm sm sms m ρ∆ ≤ ∆ ∀  (7.2.3) 

The Benders optimality cuts approximate how varying the capacity expansions relative to 

former MP solutions will change the aggregate objective function value of the SP. In 

every iteration an optimality cut is added to the MP, containing the values of capacity 

expansions of the previous MP, the aggregate objective value and the dual prices to 

capacities from the previous SP and the decision variables of the current MP.  

 

The following symbols are used in the cuts, for iteration it: 

,A it
am∆  MP solution value for arc capacity expansions in (mcm/d) 

,S it
sm∆  MP solution value for storage working gas capacity expansions (mcm) 

,A it
admλ  SP solution value for dual price of arc capacity constraint (7.8.5) (k$/mcm/d) 

,S it
smλ  SP solution value for dual price of storage capacity constraint (7.8.7) (k$/mcm/d) 
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SP
itZ  The probability-weighted discounted sum of SP objective values (k$) 

 

In iteration it+1  the it th cut is added to the MP. The set of cuts is written as: 173 

( ) ( )

( ) ( )

( )
, ,

, ' '

, , , ,

, ' '

A it A S it S
m m adm am sm sm

m a d m succ m s m succ m
it

SP A it A it S it S it
it m m adm am sm sm

m a d m succ m s m succ m

p

it

Z p

α γ λ λ

θ
γ λ λ

∈ ∈

∈ ∈

 
+ ∆ + ∆  

  ∀
 

≥ + ∆ + ∆  
 

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

 (7.2.4) 

Lastly, a brief note on feasibility cuts, the other type of cuts commonly found in Benders 

decomposition approaches (see Chapter 5). When looking at the model presented in 

Section 7.8 and more specifically the subproblem definition, it is immediately clear that 

the zero vector, the vector where all (primal) decision variables are zero, is a feasible 

solution, regardless of the values for the capacity expansions. Hence, no infeasible SP 

will be encountered and no feasibility cuts are necessary in the implementation of the 

decomposition approach.  

 

Next, the subproblem formulation is presented. 

7.2.2 SP for the multi-period optimization problem: SP-NLP 

The capacity expansions are determined in the MP, and enter the SP as fixed variables 

and the investment costs are not included in the SP objective. If all scenario nodes are 

combined into one large SP, the expected social welfare function to be maximized can be 

written as follows: 

( )

( ) ( )

( ) ( ) ( )

2

1
2

max

( )

W T W
ndm tndm

t T n

T W W W T W
m m d tndm ndm ndm tndm

m M n N d D t T n t T n

P P T A A T I S T
pm pdm adm adm sdm sdm

p P n s S na a n

SLP Q

p d Q INT SLP Q

c Q c Q c Q

γ

+

→

∈

→ →

∈ ∈ ∈ ∈ ∈

→ → →

∈ ∈∈

  
     
 

  
+ −   
  
 − − − 
 
 

∑

∑ ∑∑ ∑ ∑

∑ ∑ ∑

 (7.2.5) 

                                                 

173 The weighting of the dual prices Aadmλ  and S
smλ with m mp γ  are addressed in the following paragraph. 
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Besides calculation time problems, another issue to be addressed by using decomposition 

techniques is size reduction of potentially large models that otherwise may not fit into a 

computer memory. Decomposition of the SP in smaller parts, for instance by separate 

scenario tree node, can facilitate separate or parallel processing of the SP with potentially 

large reductions in run times.174 Therefore, the SP are decomposed by separate scenario 

node. To write the models and notation more succinctly, the probabilities and discount 

rates are left out of the subproblems. Doing so will not alter the obtained market 

equilibria in terms of produced, traded, and consumed volumes; however it will affect the 

scaling of the dual prices.175 The SP for a scenario node m can be written as: 

( ) ( ) ( )

( ) ( ) ( )

2

1
2

max

( )

W T W T W W W T W
ndm tndm tnd ndm ndm tnd

t T n t T n t T n
d

n N d D P P T A A T I S T
pm pd ad ad sd sd

p P n s S na a n

SLP Q Q INT SLP Q
d

c Q c Q c Q
+

→ → →

∈ ∈ ∈

∈ ∈ → → →

∈ ∈∈

    
 + −           
 − − −
 
 

∑ ∑ ∑
∑∑

∑ ∑ ∑
 (7.2.6) 

For simplicity and as a prelude to the implementation of the decomposition approach, in 

the parameters the index m is maintained, but not in the variables. The same is true for 

the restrictions presented below. This indicates that the model size of each SP according 

to Eq. (7.2.6) is an order of magnitude m smaller than the aggregate SP according to Eq. 

(7.2.5).  

 

The SP for each scenario tree node m includes the production capacity restrictions (7.2.7), 

the nodal mass-balance Eq. (7.2.8) and the storage-cycle constraints (7.2.9): 

 ( ),
PP T P
pmpd pdQ CAP p d α→ ≤ ∀  

(7.2.7) 

( )
( ) ( )

( )1 , ,T P T T T W T T T
tnd a tad tnd tnd tad tnd tnd

a a n a a n

Q l F X Q F I t n d ϕ
+ −

← →

∈ ∈

+ − + = + + ∀∑ ∑  (7.2.8) 

 ( ) ( )1 ,T T S
sn d tnd d tnd tn

d D d D

l d I d X t n ϕ
∈ ∈

− = ∀∑ ∑  (7.2.9) 

In the arc capacity restriction, the arc capacities added, are fixed to the last MP solution 

values ,
'

A it
am∆ : 

                                                 
174 Run time: time elapsed, or total wall clock time needed to solve a problem. Run time includes all time 
needed for reading and processing data, generating models, file-I/O, communication with the solvers, and 
the net calculation time. Net calculation time: net CPU time consumed by the solvers. Gross calculation 
time: net calculation time plus communication time with the solvers. 
175 The scaling is done in the cuts, see equation (7.2.4). 



 213 

 
( )

( ),
'

'

,
AA T A it A
amad am ad

m pred m

Q CAP a d λ→

∈

≤ + ∆ ∀∑  
(7.2.10) 

Similarly, in the storage capacity restriction the added working gas capacities are fixed to 

the MP solutions ,
'

S it
sm∆ : 

( )
( )

( ),
'

'

1
SS T S it S
smsn d sd sm s

d D m pred m

l d Q CAP s λ→

∈ ∈
− ≤ + ∆ ∀∑ ∑  

(7.2.11) 

Lastly, the three market-clearing conditions: between the producer and traders (7.2.12), 

for arc capacities between the TSO and the traders (7.2.13) and for storage (7.2.14): 

( )
( )( )( ) ,P T T P P

pd tn p d n p d
t T p

Q Q p d π→ ←

∈

= ∀∑  (7.2.12) 

( ),A T T A
ad tad ad

t

Q F a d τ→ = ∀∑  (7.2.13) 

( )( )
( ),S T T S

sd tnd sd
t T n s

Q I n d τ→

∈

= ∀∑  (7.2.14) 

In each SP the objective function value for a single scenario tree node is determined. To 

determine the aggregate value for SP
itZ  that is used in the Benders cuts (Eq. (7.2.4)) the 

probability-weighted discounted sum of all SP objective function values is calculated. 

The weighting of the dual prices Aadλ  and S
sλ  obtained from the SP is done in the cuts 

(Eq. (7.2.4)). 

7.2.3 Bounds 

Every iteration of the Benders method provides bounds to the objective value. In the 

minimization problem, expression Eq. (7.2.1) provides lower bounds, the theoretically 

best obtainable values:  

, ,it A A it S S it it
m m am am sm sm

m a s

LB p c cγ α∆ ∆ = ∆ + ∆ + 
 

∑ ∑ ∑  (7.2.15) 

These lower bounds monotonically increase, 1it itLB LB −≥ , hence the last one provides the 

tightest ((Benders, 1962), (Conejo et al., 2006)). Upper bounds are obtained from feasible 

solutions. They are not monotonically increasing and are determined through: 

1 , ,min ,it it A A it S S it SP
m m am am sm sm it

m a s

UB UB p c c Zγ− ∆ ∆  = ∆ + ∆ +  
  

∑ ∑ ∑  (7.2.16) 
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and 0UB = +∞ . itUB is also referred to as the best feasible solution. The convergence gap 

is defined as it itUB LB− and convergence is assumed when this value is lower than a 

predefined threshold value. 

 

The decomposition approach consisting of the MP (Eq. (7.2.1)-(7.2.4)), SP (Eq. (7.2.6)-

(7.2.14)) and bounds (7.2.15)-(7.2.16) are applied to several numerical examples for the 

natural gas market. Before presenting numerical results, the KKT conditions for the MP 

and SP are derived. These KKT conditions are used in a complementarity model 

alternative for the optimization-based approach in this section. Using alternative 

formulations allows for trying different solvers and investigating the differences in 

calculation times and other convergence characteristics.  

7.3 Complementarity variant of Benders for optimization 

Optimization problems can be cast as a complementarity problem (e.g., (Nash and Sofer, 

1996) or Chapter 2). Under some common assumptions, such as convexity of objective 

functions and of the feasible region, the equivalence of the solutions often can be proved 

(see Chapter 2). For solving optimization problems and complementarity problems, 

different methods are needed, with different solution times dependent on the model 

structure and data characteristics. Since reducing calculation times is one of the research 

objectives, it is worthwhile to investigate solution times of various modeling and solution 

approaches.  

7.3.1 KKT conditions for the MP of the optimization probl em: MP-LCP 

Deriving the KKT conditions for the linear optimization problem MP-LP results in six 

complementarity conditions that form the MP-LCP.176 Eq. (7.3.1) represents the 

stationarity condition for arc capacity expansions; Eq. (7.3.2) is the limit to arc capacity 

expansions. Similarly Eq. (7.3.3) is stationarity for storage capacity expansions and 

(7.3.4) restricts the storage expansions. Eq. (7.3.5) provides the Benders cuts. The last 

condition, Eq. (7.3.6), results from the variable α . 

0 A
am≤ ∆ ⊥  

( )

,
' ' '

'

0A A it A it
m m am am m m adm

it m succ m d

p c pγ ρ θ γ λ∆

∈
+ − ≥∑ ∑ ∑  ,a m∀  (7.3.1) 

                                                 
176 For the notation used see Section 7.8.1 
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0 A
amρ≤ ⊥  0A A

am am∆ − ∆ ≥  ,a m∀  (7.3.2) 

0 S
sm≤ ∆ ⊥  

( )

,
' ' '

'

0S S it S it
m m sm sm m m sm

it m succ m

p c pγ ρ θ γ λ∆

∈
+ − ≥∑ ∑  ,s m∀  (7.3.3) 

0 S
smρ≤ ⊥  0S S

sm sm∆ − ∆ ≥  ,s m∀  (7.3.4) 

0 itθ≤ ⊥  

( ) ( )

( ) ( )

, ,

, ' '

, , , ,

, ' '

0

A it A S it S
m m adm am sm sm

m a d m succ m s m succ m

SP A it A it S it S it
it m m adm am sm sm

m a d m succ m s m succ m

p

Z p

α γ λ λ

γ λ λ

∈ ∈

∈ ∈

 
+ ∆ + ∆ −  

 

 
− ∆ + ∆  

 

≥

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑  
it∀  (7.3.5) 

,freeα  1 0it

it

θ − =∑   (7.3.6) 

The next sub section presents the KKT conditions for the subproblems. 

7.3.2 KKT conditions for the SP of the optimization problem: SP-MCP 

For clarity and consistency with previous chapters, the KKT conditions of the SP are 

presented grouped by player.177 

7.3.2.1 KKT conditions for the producer problem 

The SP-MCP contains two complementarity conditions for each producer. Eq. (7.3.7) is 

the stationarity condition for production by producer p and Eq. (7.3.8) provides the upper 

bound to the daily production rate.178 

0 P T
pdQ →≤ ⊥  ( )( )

( ) 0
P P T
pm pd

P T
pd

c QP P
d n p d pdQ

d π λ
→

→

∂

∂
− + + ≥  d∀  (7.3.7) 

0 P
pdλ≤ ⊥  0

P P
pm pdCAP Q− ≥  d∀  (7.3.8) 

7.3.2.2 KKT conditions for the trader problem 

For each trader t there are five stationarity conditions and two mass-balance conditions. 

Eq. (7.3.9) shows the stationarity condition for purchases from producers. Eq. (7.3.10) 

                                                 
177 One interesting fact to point out is that the KKT conditions based on the social welfare maximization 
approach are identical to the KKT conditions derived from a equilibrium modeling approach where 
different players are modeled as separate profit-maximizing entities. 
178 Note that the value forP

pdλ in (7.3.7) is implicitly scaled with the number of days in the season dd, but 

not with the probability or discount rate of the scenario.  



 216 

and (7.3.11) are stationarity for storage injections and extractions respectively. Eq. 

(7.3.12) is stationarity of arc flows, where arc a  starts at node n−  and ends in node n+ . 

Eq. (7.3.13) is stationarity of sales to end-users. In here, in optimization problems all 

Cournot coefficientsT
tnmδ =0, except when a monopoly is modeled. In that case, there is 

only one trader and the value for all T
tnδ =1. Lastly, Eq. (7.3.14) provides mass balance by 

node and Eq. (7.3.15) is the storage cycle constraint. 

0 T P
tndQ ←≤ ⊥  0P T

d nd tndd π φ− ≥  ,n d∀  (7.3.9) 

0 T
tndI≤ ⊥  ( ) ( )1 0S S T S

d nd nd tnd sn d tnd c l dτ φ φ+ + − − ≥  ,n d∀  (7.3.10) 

0 T
tndX≤ ⊥  0S T

d tn tndd φ φ− ≥   ,n d∀  (7.3.11) 

0 T
adF≤ ⊥  ( ) ( ) ( )

A (1 ) 0A T T
d ad ad atn a d tn a d

d c lτ φ φ− ++ + − − ≥  ,a d∀  (7.3.12) 

0 T W
tndQ →≤ ⊥  '

'

0T W W T W T T W
tnd d ndm ndm t nd tn tnd

t T

d INT SLP Q Qφ δ→ →

∈

  − − + ≥  
  
∑  ,n d∀  (7.3.13) 

T
tnd freeϕ  

( )
( )

( )

1

0

T P T T
tnd a tad tnd

a a n

T W T T
tnd tad tnd

a a n

Q l F X

Q F I

+

−

←

∈

→

∈

 + − +
 

≥ 
− − − 

 

∑

∑
 ,n d∀  (7.3.14) 

S
ts freeϕ  ( )1 0T T

sn d tsd d tsd
d d

l d I d X− − =∑ ∑  s∀  (7.3.15) 

7.3.2.3 KKT conditions for the TSO 

For the TSO Eq. (7.3.16) denotes the stationarity of arc capacities assigned and (7.3.17) 

the capacity limitation resulting from the initial capacity and the last MP solution: 

0 A
adQ≤ ⊥  0A A

ad d addλ τ− ≥  d∀  (7.3.16)

0 A
adλ≤ ⊥  

( )

,
'

'

0
A A it A
am am ad

m pred m

CAP Q
∈

+ ∆ − ≥∑  d∀  (7.3.17)

7.3.2.4 KKT conditions for the storage operator 

For the storage operator Eq. (7.3.18) denotes the stationarity of sold injection capacity, 

and Eq. (7.3.19) the restriction on total injections due to limited working gas capacity, 

resulting from the initial capacity and the last MP solution: 
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0 S T
sdQ →≤ ⊥  ( )1 0S S

sn d s d sdl d dλ τ− − ≥  d∀  (7.3.18)

0 S
snλ≤ ⊥  

( )
( ),

'
'

1 0
S S it S T
s sm sn d sd

m pred m d D

CAP l d Q →

∈ ∈
+ ∆ − − ≥∑ ∑   (7.3.19)

7.3.2.5 Market clearing 

The market clearing of produced volumes between the producers and the traders is given 

by Eq. (7.3.20). The market clearing of arc capacities assigned and used between the TSO 

and the traders is given by (7.3.21). The market clearing for storage injection capacities is 

given by (7.3.22).179 

P
nd freeπ  ( )

( )
0P T T P

tndp n d
t T n

Q Q→ ←

∈
− =∑  ,n d∀  (7.3.20)

A
ad freeτ  0A T T

adm tadm
t

Q F→ − =∑  ,a d∀  (7.3.21)

S
sd freeτ  ( )

( )
0S T T

tndms n dm
t T n

Q I→

∈
− =∑  ,n d∀  (7.3.22)

This concludes the presentation of the KKT conditions derived from the master and 

subproblems for the optimization models. When the MP-LCP (with Benders cuts, Eq. 

(7.3.5)) and SP-MCP are used instead of the original optimization problems, this will be 

referred to as the complementarity variant. Note that the complementarity variant is only 

applied to optimization problems and that the same objective values and bounds (Section 

7.2.3) can be calculated as for the original optimization-based problems: MP-LP and SP-

NLP. 

 

The following section provides more details about the VI-based decomposition approach.  

7.4 VI-based decomposition for stochastic MCP 

The foundation for the decomposition approach developed in this chapter comes from 

(Fuller and Chung, 2005), (Fuller and Chung, 2008) and (Gabriel and Fuller, 2010). 

Fuller and Chung (2005) develop a Dantzig-Wolfe (DW) approach for VI. Using duality 

theory (see Chapter 2) (Fuller and Chung, 2008) developed a Benders decomposition 

                                                 
179 Note: the inclusion of the inverse demand curve as a separate market clearing condition is not necessary. 
Wherever the wholesale market-clearing price would show up after deriving the KKT conditions, the 
inverse demand curve can be substituted into its place. (After deriving the KKT conditions, since doing the 
substitution before deriving the KKT conditions would result in a Cournot Oligopoly formulation.) 
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(BD) approach for VI. Gabriel and Fuller (2010) extended the latter to be applicable to 

stochastic MCP. First, some key results of the BD approach in (Gabriel and Fuller, 2010) 

are summarized. 

7.4.1 Benders decomposition for stochastic MCP – summary 

To facilitate transparency in the development of the BD for stochastic MCP method, 

(Gabriel and Fuller, 2010) distinguish several categories of equations and variables. 

There are four types of variables, and three types of equations, presented in the following 

two lists. The symbols in parentheses are the notation used in the following paragraphs. 

 

The four types of variables include:  

(a.) the complicating, first-stage variables ( )∆ , 

(b.) second-stage variables with a non-constant gradient ( )q , 

(c.) second-stage variables that are free in sign, with a constant gradient ( )y , 

(d.) second-stage variables that are nonnegative, with a constant gradient ( )f .  

 

The three types of equations include:  

(i.) equations that apply to first-stage variables only,  

(ii.) inequality conditions applying to second and possibly first-stage variables, 

(iii.)  equality conditions applying to second and possibly first-stage variables. 

 

Eq. (7.4.1)-(7.4.3) show the equations and variables, as well as the coefficient matrices 

and the dual variable vectors that are used in the following sections. 

 A∆     b≥  ( )0ρ ≥  (7.4.1)

 A∆  Bq+  Cy+  Df+  b≥  ( )0λ ≥  (7.4.2)

 Â∆  B̂q+  Ĉy+  D̂f+  b̂=  ( )freeϕ  (7.4.3)
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In DW, the SP solutions are stored in a matrix: it
SPX . To enhance transparency Gabriel 

and Fuller (2010) split it
SPX in three parts to distinguish the solution values for different 

variable types: 

1 2
,

1 2
,

1 2
,

...

...

...

it it
SP SP SP SP

it it it
SP SP SP SP SP

it it
SP SP SP k SP

X

X X

k k k X

λ

ϕ

λ λ λ
ϕ ϕ ϕ
   
   = =   
   
   

. 

Here, the vectors itSPk  contain the values of a new vector introduced in (Fuller and Chung, 

2005). This vector is introduced to represent ( )F q , the gradient for variables where it is 

non-constant. It facilitates the derivation of the MP and SP for the VI variant, but is 

eventually substituted out of the formulation before implementing the method. By using 

the results from the previous papers, introduction of the vector can be skipped, and 

below ( )F q  is used. Write the SP solutions matrix: 

( )

it

it

it it
SP

it
F q

X

X X

X

λ

ϕ

 
 

=  
 
  

. 

Introduce θ  as the multiplier to the Benders cuts (7.4.6) and α as the dual to the 

convexity constraint (7.4.7).180 Then the KKT conditions of the MP derived in (Gabriel 

and Fuller, 2010) form the following system. Eq. (7.4.4) is the stationarity condition for 

the first-stage variables. Eq. (7.4.5) provides the bounds to the first-stage variables. The 

Benders cuts are included by Eq. (7.4.6). Lastly (7.4.7) provides the convexity constraint. 

Here, eis the unit vector with length it. 

0 ≤ ∆ ⊥  ˆ 0T T it T itd A A X A Xλ ϕρ θ θ− − − ≥   (7.4.4)

0 ρ≤ ⊥  0A b∆ − ≥   (7.4.5)

0 θ≤ ⊥  ( ) ( ) ( ) ( ) ( )( ) ( )( )1ˆˆ 0
TT Tit it it it

F s F sX A b X A b X F Xλ ϕ θ α−∆ − + ∆ − + + ≥   (7.4.6)

0 α≤ ⊥  1 0Teθ − =   (7.4.7)

Details for the coefficient matrices used above and a mapping of the equations and 

variables in this chapter on the ones used in (Gabriel and Fuller, 2010) are presented in 

Appendix 7.9.  

                                                 
180 Initially it may seem confusing to use variable α  here again, however it turns out to have the same role 
as in the previous formulations when applying the method for solving optimization models cast as 
complementarity problems. 
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7.4.2 Benders decomposition for stochastic MCP – formulation 

The former section showed the MP formulation. Gabriel and Fuller did provide the dual 

VI formulation for the SP, but did not present the KKT conditions. For the model 

presented in this chapter the KKT conditions for the SP-VI are identical to the system SP-

MCP derived in Section 7.3.2.  

 

Next, the derivations are made following Gabriel and Fuller to obtain the MP-VI. 

Conditions (7.4.4) result in the stationarity conditions (7.3.1) and (7.3.3) that were 

derived previously for the MP-LCP (see Section 7.3.1). Conditions (7.4.5) give the 

capacity restrictions Eq. (7.3.2) and (7.3.4) in the MP-LCP. The third condition (7.4.7) is 

the convexity constraint Eq. (7.3.6). Only when deriving the Benders cuts (7.4.6) there is 

a distinction with the cuts in MP-LCP given by Eq. (7.3.5), see the following section.  

7.4.3 VI-based cuts 

The cuts given by Eq. (7.3.5) in the MP-LCP (Section 7.3.1) contain variable: α , the 

aggregate SP objective: SP
itZ  and a with the capacity expansions weighted aggregate of 

the capacity shadow prices. The MP-VI cuts given by Eq. (7.4.6) (Section 7.4.1) contain 

similar elements, but differ in some major details. Variable α  is present, and so are the 

shadow prices for added capacities. However in the MP-VI cuts, the aggregate SP 

objective is replaced by terms representing the objective function values of model agents 

that have an objective with a non-linear gradient: in this model the trader and the 

producer only (see group (b.) in Section 7.4.1), and shadow prices for capacities are also 

multiplied by the already existing capacities, not only by the additions.  

 

Concretely, the VI-based cuts are as follows:  it∀  
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 (7.4.8) 

 

The former sections have discussed that the SP-VI and SP-MCP are identical, and 

between MP-VI and MP-LCP only the optimality cuts differ. Table 28 illustrates how the 

MP-LCP and SP-MCP (derived following the generalized Benders approach and taking 

KKT conditions) and the MP-VI and SP-VI (derived following (Gabriel and Fuller, 

2010)) compare.  

 

Table 28: Comparing problem parts for Generalized B enders vs. (Gabriel and Fuller, 2010) 
Problem part Geoffrion and KKT Gabriel and Fuller 
MP stationarity and feasibility MP-LCP (Section 7.3.1) MP-VI (Section 7.3.1) 
Master problem optimality cuts Eq. (7.3.5) Eq. (7.4.8) 
Subproblem SP-MCP (Section 7.3.2) SP-VI (Section 7.3.2) 
 

In the above sections the master and subproblems of the VI-based decomposition method 

have been given. Since the decomposition method is an iterative method, a stopping 

criterion is needed. The stopping criterion developed in (Fuller and Chung, 2005) is a 

convergence gap, which is presented in the following subsection.  

7.4.4 Convergence gap 

Fuller and Chung (2005) defined the following convergence gap:  

( ) ( ) ( )1
2 2, 2 2, 2, 2,

T
it it T it it it it

MP MP SP MPCG H x q x x xγ + = − ∇ −  . 
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They showed that 0itCG ≤  and that when values 0itCG <  (strictly), the addition of the 

last SP solution to the SP-solution matrix itSPX  still enlarges the feasible region of the 

MP. And as long as the feasible region for the MP is enlarged by adding the last SP-

solution, the MP may find another solution compared to the former iteration, and 

consequently the next SP-solution may also alter. Fuller and Chung (2005) proved that 

under mild assumptions for 0itCG =  a solution to the problem is found.  

 

For the model presented in this chapter, the following describes the convergence gap: 
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Here, the production cost curve proposed by (Golombek et al., 1995) is used: 
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P qc ≥  the per unit linearly increasing cost 

term and , ,
, 0p d m

P gc ≤ a term that induces high marginal costs when production is close to full 

capacity ,
P
p mCAP . The marginal supply cost curve for this expression is: 
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Since several terms cancel out, the convergence gap can be simplified to the following: 
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(7.4.9) 

For this convergence gap to provide reliable information, the function F in the problem 

VI(K,F) must be strictly monotone (Fuller and Chung, 2005). For optimization problems 

this function F consists of the gradients of the subproblem objective functions. 

Unfortunately, in the numerical experiments the function F was not always strictly 

monotonic and this turned out to be a problem. Hence, alternative convergence criteria 

had to be used. 

7.4.5 Convergence criteria 

Three convergence criteria have been implemented. The first two criteria applied to 

optimization problems only. The first criterion was a threshold (10-4) for the absolute 

difference between the lower bound and best upper bound lower than a specific threshold 

(AbsTol), see Eq. (7.2.15) and (7.2.16). The second criterion was a threshold (10-9) for 

the relative difference between these lower and best upper bounds (RelTol). The third 

criterion, used for both optimization and hybrid market structure problems, was that the 

largest capacity expansion weighted with the square root of probability and discount rate 
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1it it

m m
p γ −∆ − ∆  was lower than a threshold (10-2) (Expans).181 Once any of the criteria 

applicable for a model type was met, the decomposition run would be aborted.182 

  

In the following section the various combinations of master and subproblems are 

implemented and compared to investigate what combination is the most promising 

regarding convergence speed and solution time. 

 

The analysis shows, that the among the decomposition approaches, the MP-VI 

approaches need significantly fewer iterations and less time than the MP-LP and MP-

LCP approaches. For the numerical cases solved the extensive-form solutions methods 

need less calculation than decomposition approaches.183 However, the calculation times 

needed by decomposition approaches grow much less when increasing the size of the 

problems than calculation times of the full-scale extensive-form solution approaches. 

This is an indication that the decomposition approaches perform better on larger 

problems in terms of calculation time needed to solve the problems.  

7.5 Decomposition approaches – numerical results 

As previously discussed there are six ways of combining master and subproblems that 

can be applied to solve stochastic optimization models and MCP. Table 29 shows all 

combinations and the abbreviations that will be used to refer to them. 

 
Table 29: Decomposition solution approaches 

SP 
MP 

SP-NLP SP-MCP 

Optimization: MP-LP LP-NLP LP-MCP 
Optimization: MP-LCP LCP-NLP LCP-MCP 
Complementarity: MP-VI VI-NLP VI-MCP 
 

                                                 
181 The reason for taking the square root is that when there are many scenarios or periods in the far future, 

the weight 
m m

p γ would become very small, potentially allowing for large deviations in future expansions 

relative to optimal solutions.  
182 The threshold values have been tuned during the numerical experiments to provide useful information 
regarding the convergence of the algorithms. 
183 One exception for which VI-MCP decomposition was faster but that is not presented in the subsection, 
is for a stochastic model with four identical scenarios.  
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All combinations are applied to several data sets and for varying market structures, but 

only VI-MCP can be used to solve problems where more than one player exercises 

market power. 

 

The steps in the decomposition algorithms can be summarized as follows: 

7.5.1 Algorithm steps 

Read data set 

Read scenario tree definition and probabilities 

Define MP model 

Define SP model 

Iteration counter = 1 

Loop:  

 If (Iteration > 1) 

Solve MP 

 Else   

  Set all MP expansion variables equal to zero. 

 Loop (scenario tree nodes m): 

  Set parameters for SP(m) 

Solve SP(m) 

 End Loop 

 If (Iteration > 1)   

Calculate convergence metrics 

 If (a convergence criterion is met)  

STOP 

 Else 

IterationIteration+1 

End Loop 

 

Next, some remarks relevant for the implementation in GAMS are given. 
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7.5.2 Implementation remarks 

The solvers used are XPRESS for LP problems, PATH for MCP problems and CONOPT 

and MINOS for NLP.184 In some numerical cases infeasibilities were encountered for 

theoretically feasible problems. Also, some runs resulted in deviating converged solutions 

for decomposed problems and even for full-scale optimization, accompanied by GAMS 

warning messages. Thus, algorithm termination did not always indicate that an actual 

solution was found to the problem and further checks had to be made. Appendix 7.11 

discusses tricks and workarounds that have been used to solve some of these problems. 

7.5.3 Stochastic non-linear optimization problems – results 

The problems solved in this section are all small enough to be solved in extensive-form in 

a relatively short amount of time. Applying decomposition approaches to such modestly-

sized problems will generally increase the needed calculation times. However, analyzing 

the convergence characteristics should help to provide insights into what decomposition 

approach is best suited for solving large-scale problems, in terms of convergence speed 

and solution accuracy.  

 

For perfectly competitive and monopolistic markets, all variants of master problem and 

subproblem approaches have been applied. Calculation times, numbers of iterations 

needed and convergence speed using various combinations of master problems and 

subproblems are compared. 

7.5.3.1 Small-scale problems 

The convergence analysis presented in this subsection illustrates what many numerical 

experiments in this research have shown regarding varying solution paths leading to 

different convergence characteristics and small differences in converged results. For 

small-scale optimization problems the decomposition approaches need more time to solve 

them then solving the original larger problems in one piece. Among the decomposition 

                                                 
184 CONOPT: CONOPT3. MINOS was only available in the final stage of the dissertation. The obtained 
performance improvement with MINOS for the NLP problems is large. According to GAMS 
documentation, MINOS is more suitable for NLP with linear constraints and CONOPT for NLP with non-
linear constraints. Indeed, the problems in this chapter only have linear constraints.  
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approaches, the VI-based approaches need fewer iterations and less time than the LP and 

LCP approaches.  

7.5.3.1.1 Convergence analysis for a seven-node problem 

The first numerical comparisons are for a small data set, see Figure 56. This data set 

contains seven nodes, of which five are country nodes; one is a liquefaction node and one 

a regasification node. Three countries have production (NO, NL and FR); three have 

consumption (BE, DE and FR) and two have storage facilities (FR and DE). There are 

eight arcs, of which five represent pipelines and three a liquefaction shipping route. 
 

 
Figure 56: Nodes and arcs in small-scale problem 

 

There are two or four model periods and two demand seasons in each period. The 

stochastic scenario tree splits after the first and after the second model period, resulting in 

1+2=3 scenario tree nodes for the two period problems and in 1+2+4+4=11 for the four-

period problems.185 Table 30 presents the sizes of these problems.  

                                                 
185 Compare with Figure 53 in the beginning of this chapter, the only difference is that in the numerical 
examples there are four scenarios instead of eight in the tree.  
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Table 30: Problem sizes in number of variables 

Problem Method 
Total number 
of variables 

Total number of 
expansion variables 

Two-period monopoly MCP 390 9 
Two-period monopoly OPT 190 9 

Two-period perfect competition MCP 493 9 
Two-period perfect competition OPT 260 9 

Four-period monopoly MCP 1506 63 
Four-period monopoly OPT 740 63 

Four-period perfect competition MCP 1905 63 
Four-period perfect competition OPT 1018 63 

Note that the monopoly problems contain fewer variables than the perfectly competitive 

variants as all separate traders are replaced by one monopoly trader. 

 

The following four tables present metrics for evaluating algorithm convergence: number 

of iterations needed (Num Iter), and seconds of calculation time used (Calc Time). Also 

output values are presented. From left to right: probability-weighted aggregate capacity 

expansions (mcm/d) for pipelines, liquefiers, regasifiers and storage working gas, 

investment costs, trader and producer profits and consumer surplus (k$).  

 

Table 31 shows that the VI-based approaches need fewer iterations and less time to solve 

the small-scale two-period monopolistic problem than the other decomposition 

approaches. Even for this small problem some of the aggregate converged results deviate 

in the second digit. The VI-based decomposition methods give more precise results.186 

                                                 
186 There are limits to the precision with which algorithms (solvers) can calculate solutions. Many solution 
methods go through repetitive calculation steps (iterations) and termination criteria for these steps usually 
allow for some minor deviations. When these deviations are smaller than a preset tolerance, they are 
acceptable. Usually, these tolerances are very small, e.g. 10-6 or 10-8, and the deviations should be small 
enough so that for practical purposes the solution can be considered optimal. However, sometimes these 
small deviations do have an impact, as the results in this subsection clearly show.  
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Table 31: Convergence analysis for small two-period  monopoly 

Method 
Conver
gence 

Num 
Iter  

Calc 
Time 

Pipe-
lines 

Liquef
ier 

Regasi
fier  

Storag
e 

Inv 
Cost 

Trad 
Profit  

Prod 
Profit  

Cons 
Surp 

Full MCP   <0.1 0.0 2.18 0.66 2.00 3.84 121.53 32.65 49.05 
Full OPT  ̂  <0.1 0.0 2.18 0.66 2.00 3.84 121.53 32.65 49.05 
VI-MCP Expans 10 2.9 0.0 2.18 0.66 2.00 3.84 121.53 32.65 49.05 
VI-NLP^ Expans 10 1.6 0.0 2.18 0.66 2.00 3.84 121.53 32.65 49.05 
LCP-MCP AbsTol 18 5.8 0.0 2.18 0.65 2.00 3.84 121.53 32.65 49.04 
LCP-NLP  ̂AbsTol 18 4.0 0.0 2.18 0.65 2.00 3.84 121.53 32.65 49.04 
LP-NLP  ̂ AbsTol 18 3.7 0.0 2.18 0.65 2.00 3.84 121.53 32.65 49.04 
LP-MCP AbsTol 18 6.0 0.0 2.18 0.65 2.00 3.84 121.53 32.65 49.04 

^Calculation times for NLP in this and the following three tables are obtained using CONOPT3 

 

Table 32: Convergence analysis for small four-perio d monopoly 

Method 
Conver
gence 

Num 
Iter  

Calc 
Time 

Pipe-
lines 

Liquef
ier 

Regasi
fier  

Storag
e 

Inv 
Cost 

Trad 
Profit  

Prod 
Profit  

Cons 
Surp 

Full MCP   0.3 1.80 3.82 2.29 3.12 9.45 268.00 74.45 118.46 
Full OPT  ̂  1.2 1.80 3.82 2.29 3.12 9.45 268.00 74.45 118.46 
VI-MCP Expans 36 28.2 1.81 3.82 2.29 3.13 9.44 268.00 74.45 118.46 
VI-NLP^ Expans 36 32.9 1.81 3.82 2.29 3.13 9.44 268.00 74.45 118.46 
LCP-MCP Expans 205 194.8 1.81 3.82 2.28 3.12 9.45 268.00 74.46 118.47 
LCP-NLP  ̂AbsTol 214 187.4 1.80 3.83 2.29 3.12 9.45 268.01 74.45 118.47 
LP-NLP  ̂ Expans 212 194.1 1.80 3.82 2.28 3.13 9.44 268.00 74.45 118.45 
LP-MCP Expans 213 206.9 1.81 3.83 2.29 3.11 9.45 268.00 74.46 118.46 

 

Table 33: Convergence analysis for small two-period  perfectly competitive problem 

Method 
Conver
gence 

Num 
Iter  

Calc 
Time 

Pipe-
lines 

Liquef
ier 

Regasi
fier  

Storag
e 

Inv 
Cost 

Trad 
Profit  

Prod 
Profit  

Cons 
Surp 

Full MCP   0.2 4.53 3.00 1.47 3.00 15.02 63.73 75.27 97.75 
Full OPT   <0.1 4.53 3.00 1.47 3.00 15.02 63.73 75.27 97.75 
VI-NLP^ Expans 8 1.7 4.53 3.00 1.47 3.00 15.02 63.73 75.27 97.75 
VI-MCP Expans 8 2.5 4.53 3.00 1.47 3.00 15.02 63.73 75.27 97.75 

LCP-MCP AbsTol 15 4.5 4.52 3.00 1.47 3.00 15.01 63.75 75.26 97.73 
LCP-NLP  ̂AbsTol 15 3.9 4.52 3.00 1.47 3.00 15.01 63.74 75.26 97.73 
LP-MCP AbsTol 15 5.2 4.52 3.00 1.47 3.00 15.01 63.75 75.26 97.73 
LP-NLP  ̂ AbsTol 15 4.3 4.52 3.00 1.47 3.00 15.01 63.74 75.26 97.73 
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Table 34: Convergence analysis for small four-perio d perfectly competitive problem 

Method 
Conver
gence 

Num 
Iter  

Calc 
Time 

Pipe-
lines 

Liquef
ier 

Regasi
fier  

Storag
e 

Inv 
Cost 

Trad 
Profit  

Prod 
Profit  

Cons 
Surp 

Full MCP   0.4 8.76 7.76 6.20 7.02 -26.51 108.65 174.25 250.54 
Full OPT  ̂  0.2 8.76 7.76 6.20 7.02 -26.51 108.65 174.25 250.54 
VI-MCP Expans 55 41.7 8.76 7.77 6.20 7.02 -26.51 108.66 174.24 250.52 
VI-NLP^ Expans 55 58.9 8.76 7.77 6.20 7.02 -26.51 108.66 174.25 250.53 

LCP-NLP  ̂Expans 350 336.2 8.76 7.77 6.20 7.03 -26.51 108.63 174.25 250.55 
LCP-MCP Expans 349 308.3 8.77 7.76 6.20 7.03 -26.52 108.62 174.26 250.56 
LP-NLP  ̂ Expans 323 247.1 8.76 7.76 6.20 7.02 -26.51 108.62 174.26 250.56 
LP-MCP Expans 340 303.4 8.77 7.77 6.20 7.03 -26.52 108.61 174.26 250.57 

 

Note that the solution time for a monopoly problem is generally shorter than for the 

perfectly competitive variants since it contains many fewer variables as all separate 

traders are replaced by one monopoly trader. Column ‘Calc Time’ shows that the 

decomposition approaches need significantly more time to solve these small problems 

than solving the original full-scale models in extensive-form.187 Compared to solving the 

whole problem at once, which takes up to 1.2 seconds only, calculation times are 

sometimes several hundred times as long. The added overhead (e.g., file management) 

and processing steps of the decomposition approaches need relatively much time for 

these smaller problems.  

 

Among the decomposition approaches, the VI-based approaches need significantly fewer 

iterations and less time than the LP and LCP approaches. For instance to solve the four-

period monopoly the optimization-based approaches need about six times as many 

iterations (205-214 vs. 36) and also about six times as much time (187-207 seconds vs. 

28-33). The LP and LCP approaches do not differ much among each other in number of 

iterations and calculation time needed to solve the problems. Deviations in the final 

solutions, in terms of aggregate expansions and welfare measures are small, only visible 

in the second digit. One might expect that the same sequence of master and subproblems 

is solved, what would result in the same solution path: the same optimal expansions, the 

                                                 
187 Calculation times are the GAMS model attribute ‘resusd’. This is the CPU time used by solvers. 
Another time measure is the TimeElapsed, which represents the total duration of the GAMS run. 
TimeElapsed and Resusd are affected by the number of processes running on the computer. It is possible to 
run several models at the same time. In such cases the processes are competing for potentially scarce 
processing time, and the time measures may vary up to 20%.  
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same optimal quantities and prices, and the same shadow prices in all iterations. However 

this is not true, as the data in columns ‘Num Iter’ show. For the two VI approaches it is 

true for these four problems, but not in general as other numerical experiments have 

shown. Among LP and LCP approaches the number of iterations all differ somewhat for 

both four-period problems, deviations depend on both the master problem and the 

subproblem types. The explanation is that due to the possibility of multiple optimal 

solutions in some master problems (see the upcoming discussion and Table 35 and Table 

36 below) and small numerical deviations due to solver tolerances, small differences in 

intermediate solutions occur that result in varying solution paths and different numbers of 

iterations needed to converge and deviations in the final solutions. 

To illustrate these effects, some numerical data are presented for the coefficient values in 

the Benders cuts resulting from the SP and optimal capacity expansions as calculated by 

the MP.  

7.5.3.1.2 Non-unique dual prices and solution paths in a five-node problem 

To limit the amount of data presented, the illustration will use data from a smaller 

problem than before, which relative the former problems leaves out the two nodes BE 

and FR (see Figure 56). Table 35 below presents the discounted probability-weighted 

shadow prices of the infrastructure expansions: ,A it
m m admp γ λ  and ,S it

m m smp γ λ , the coefficients 

in the Benders cuts, Eq. (7.2.4). 

 

In this deterministic two-period problem there is a pipeline from NED to GER, and an 

LNG shipping route from NOR to GER (see Figure 57), consisting of a liquefaction arc 

(NNOR_LNG), a shipping arc (assumed to have infinite capacity), and a regasification 

arc (RGER_GER). The expansion decisions are made in period 01, and the results are 

discussed for period 02, after the expansions are put in place. 

 
Figure 57: Three arcs in the LNG supply chain 
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The initial capacities are chosen the same for all three arcs. Eq. (7.3.17) for the flow 

restrictions 
( )

,
'

'

0
A A it A
am am ad

m pred m

CAP Q
∈

+ ∆ − ≥∑  reduces to 1
,0222 0A

adQ− ≥  for all three and in 

the first iteration of the Benders method, when all expansions are zero, all arcs are fully 

used (bottlenecks): a A∀ ∈ :
( )

,
'

'

AA A it
amad am

m pred m

Q CAP
∈

= + ∆∑ , more specifically: 1
,02 22A

adQ = . 

 

Table 35 shows that the dual prices for NNOR_LNG,02
Aλ  and RGER_GER,02

Aλ  differ between the SP 

types. In the MCP subproblemNNOR_LNG,02
Aλ  = 8.1291, whereas in the NLP subproblem 

NNOR_LNG,02
Aλ = 0.2876 and RGER_GER,02

Aλ = 7.8415. That these values differ may seem strange, 

however 0.2876 + 7.8415 = 8.1291, see column ‘LNG Chain’.  

 

Table 35: Coefficients of capacity expansions and r ight-hand sides in Benders cuts 

MP SP Iter  
NNOR_LNG 
(k$/mcm/d) 

RGER_GER 
(k$/mcm/d) 

LNG Chain 
(sum left) 

NNED_GER 
(k$/mcm/d)

STOR_GER 
(k$/mcm/d) 

RHS 
(k$) 

LCP MCP 1 0.2876 7.8415 8.1291 8.1291 5.8764 -83.0048 

LP MCP 1 0.2876 7.8415 8.1291 8.1291 5.8764 -83.0048 

LCP NLP 1 8.1291   8.1291 8.1291 5.8764 -83.0048 

LP NLP 1 8.1291   8.1291 8.1291 5.8764 -83.0048 

LCP MCP 2 0.9032   0.9032    -104.5994 

LP MCP 2 0.9032   0.9032    -104.5994 

LCP NLP 2   0.9032 0.9032    -104.5994 

LP NLP 2   0.9032 0.9032    -104.5994 

LCP MCP 3 2.6651 5.4640 8.1291 8.1291   -85.7594 

LP MCP 3 2.6651 5.4640 8.1291 8.1291   -85.7594 

LCP NLP 3 8.1291   8.1291 8.1291   -85.7594 

LP NLP 3 8.1291   8.1291 8.1291   -85.7594 

LCP MCP 4 8.1291   8.1291 8.1291 5.8764 -83.0048 

LP MCP 4 8.1291   8.1291 8.1291 5.8764 -83.0048 

LCP NLP 4   8.1291 8.1291 8.1291 4.4073 -82.1440 

LP NLP 4   8.1291 8.1291 8.1291 4.4073 -82.1440 
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The explanation is that since both arcs in the LNG shipping route are bottlenecks, there 

are infinitely many solutions for the dual prices of the two arcs, as long as the sum of the 

dual prices equals 8.1291. The following illustrates that dual prices in LNG shipping 

routes are not always uniquely determined by the model. 

 

Define the set of arcs in the LNG shipping route, consisting of the liquefaction arc, the 

LNG shipping arc, and the regasification arc: 

{ }_ , _ , _LRA NNOR LNG LNG REG RGER GER= . Observe that the dual price for the 

trader’s mass-balance constraint Eq. (7.3.14) for the production node NOR at the supply 

side of the LNG supply chain is determined by the production costs. With Eq. (7.3.7) and 

(7.3.9), 0T P
tndQ ← >  and production capacity not restrictive ( 0P

pdλ = ):  

( ) ( )

( )

P P T P P T
pm pd pm pd

P T P T
pd pd

c Q c QT P P
tndm d n p dm d pd dQ Q

d d dφ π λ
→ →

→ →

∂ ∂

∂ ∂
= = + =  

(7.5.1) 

The dual price for the mass-balance constraint Eq. (7.3.14) for the demand node GER at 

the receiving end of the LNG supply chain is determined by the wholesale market price 

and the exerted market power level. With Eq. (7.3.13) and 0T W
tndQ → > :  

'
'

T W W T W T T W
tnd d ndm ndm t nd tn tnd

t T

d INT SLP Q Qφ δ→ →

∈

  = − +  
  
∑  (7.5.2) 

As follows from Eq. (7.3.12) the differences between the dual prices of mass-balance 

constraints for neighboring nodes define the shadow prices of the arcs. With 0T
adF >  

LRa A∀ ∈ , Eq. (7.3.16) and for convenience 1dd =  (this only affects the scaling):  

( )A A
,02 ,02 _ ,02 _ ,02 ,02 _ ,02 _ ,02

T T A T A
GER REG d RGER GER RGER GER REG RGER GER RGER GERd c cϕ ϕ τ ϕ λ= + + = + + , 

A
,02 ,02 _ ,02 _ ,02

T T A
REG LNG LNG REG LNG REGcϕ ϕ λ= + +  and 

A
,02 ,02 _ ,02 _ ,02

T T A
LNG NOR NNOR LNG NNOR LNGcϕ ϕ λ= + + .  

By combining the three expressions the value of ,02
T
GERϕ  is linked to the value of ,02

T
NORϕ  

as follows: ,02
T
GERϕ =  

( ) ( )A A A
,02 _ ,02 _ ,02 _ ,02 _ ,02 _ ,02 _ ,02

T A A A
NOR NNOR LNG LNG REG RGER GER LNOR LNG LNG REG RGER GERc c cϕ λ λ λ+ + + + + +
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= ( )A
,02 ,02 ,02

LR

T A
NOR a a

a A

cϕ λ
∈

+ +∑ . 

Rearranging terms, and substituting in (7.5.1) and (7.5.2) gives: 

A
,02

LR
a

a A

λ
∈
∑ = ,02 ,02 ,02

LR

T T A
GER NOR a

a A

cϕ ϕ
∈

− − ∑  

= ( ) ( )
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P P T
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c QW W T T W A
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a A

INT SLP Q cδ
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→

∂→
∂

∈

− + − − ∑  

Hence: A
,02

LR
a

a A

λ
∈
∑  = ( ) ( )

,02 ,02 ,02 ,02 ,021
P P T
pm pd

P T
pd LR

c QW W T T W A
GER GER GER GER aQ

a A

INT SLP Q cδ
→

→

∂→
∂

∈

− + − − ∑ , where 

all the terms on the right-hand side are determined individually, but the value for the left-

hand-side term is determined on aggregate only. 

 

Obviously, when in SP solutions the dual prices of the liquefaction and the regasification 

arc have other values (see Table 35), the Benders cuts, Eq. (7.2.4), will be different and 

this affects the solution for the capacity expansions determined by MP in the next 

iteration (see Table 36 below). In the second iteration the MP with the MCP subproblems 

expand the regasification arc, whereas the MP with the NLP subproblems expand the 

liquefaction arc to their maximum values (see Eq. (7.3.2)).  

 

Table 36: Optimal expansions (mcm/d) for first five  iterations of small-scale problem 
Infrastructure MP SP Iter 1  Iter 2 Iter 3 Iter 4 Iter 5 
Arc NNOR_LNG LCP MCP     2.61 
  NLP  10.00  2.32 2.63 
 LP MCP     2.61 
  NLP  10.00  2.32 2.32 
Arc RGER_GER LCP MCP  10.00  3.45 2.61 
  NLP     2.82 
 LP MCP  10.00  3.45 2.61 
  NLP      
Arc NNED_GER LCP MCP  10.00    
  NLP  10.00    
 LP MCP  10.00    
  NLP  10.00    
Storage SGER LCP MCP  10.00 3.68  0.47 
  NLP  10.00 3.68 0.47 0.47 
 LP MCP  10.00 3.68  0.47 
  NLP  10.00 3.68 0.47 5.10 
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When solving the SP in the second iteration the arc not expanded is the (only) bottleneck 

and has a positive dual price of 0.9032, see Table 35 on page 232. 

 

In the third iteration only the storage capacity is expanded by all approaches and in the 

fourth iteration the optimal capacity expansions by the master problems start to deviate, 

and consequently so do the solution paths and the bounds for optimal solutions. The 

varying solution paths result in a different number of iterations needed to converge as 

well as slightly different converged solutions. Table 37 summarizes the convergence 

results for the four different MP SP combinations. The columns present the total number 

of iterations until convergence (‘#iter’), the iteration in which the best feasible solution 

was achieved (‘Best’), total investment costs and the best objective value.188  

 
Table 37: Summarized convergence results 

MP SP #iter Best Investment Costs Final objective value189 
LCP MCP 28 26 10.052 -92.555 

 NLP 28 27 10.194 -92.548 
LP MCP 41 41 10.092 -92.564 

 NLP 39 31 10.058 -92.562 
 

The LCP-NLP and LCP-MCP converged after 28 iterations. After the same number of 

iterations the best feasible solutions of both other methods are very close to optimal (not 

shown in table), however the convergence gaps are still too large and several more 

iterations are needed to reach convergence.  

 

An interesting observation is that the investment costs in the converged solutions vary 

noticeably. The highest and lowest values in column ‘Investment Costs’ differ 10.194 

-10.052 = 0.142 (1.4%), but the corresponding objective values differ 0.007 only 

(-92.548 -92.555 = 0.007). Naturally, higher expansions are more expensive, but also 

allow for larger trade volumes, higher consumption surplus and possibly higher profits, 

that largely offset the higher costs in the overall objective value. Note that this does not 

mean that the solution is not unique, it merely shows that there are many feasible 

solutions with an objective value very close to optimal objective value. This 

                                                 
188 Convergence criterion used for these runs is a gap smaller than 10-3. 
189 The complementarity variants MP-LCP and SP-MCP are only applied to optimization problems. Hence, 
the same objective values and bounds can be calculated as for the original optimization problems. 
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characteristic could also be observed in the small example with one producer and one 

consumer in the previous chapter (Section 6.3.5.2.1) of generalized Benders 

decomposition. In that example, convergence was reached for an expansion of 3.020 

units, 0.02 higher than the optimal solution of exactly 3 and the objective value for the 

best feasible solution 54.500 was identical to the optimal objective value up to three 

digits. 

 

In the next subsection calculation times are compared for various problem sizes. 

7.5.3.2 Medium-scale optimization problems – calculation times 

For the experiments in this section a data set with forty model nodes is used. There are 

twenty country nodes. All countries have production and consumption. Nine countries 

have liquefaction, the other eleven have regasification, adding twenty model nodes to the 

data set. Nine countries have storage facilities. There are in total 144 arcs, of which 

twenty five represent pipelines, ninety-nine arcs represent a liquefaction shipping route 

and the remaining twenty arcs represent nine liquefaction and eleven regasification arcs. 

There are two demand seasons in each year. Three deterministic four-period cases are 

run: one for a perfectly competitive market, one for a monopolistic market and one for a 

hybrid market. 

 

Compared to the previously presented results for small-scale data sets, the decomposition 

approaches do relatively better on these larger problems in terms of calculation time 

needed to solve the problems. This is an indication that the calculation times needed by 

decomposition approaches grow much less when increasing the size of the problems than 

calculation times of the full-scale solution approaches. Table 38 summarizes the ranking 

in the order of calculation times for the problems in the current and the previous section. 

The problems are from left to right increasing in problem size. The last problem cannot 

be cast as an optimization problem and is solved only in extensive form and using VI-

MCP. 
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Table 38: Ranking in solution times for optimizatio n problems 

Data set Former section: 6 nodes This section: 40 nodes 
Market structure * mono perf mono perf perf perf&  mono hybrid  
Number variables 390 493 1506 1905 9924 9924 11,192 20,000 

Full MCP 1 2 1 2 1 2 1 1 
Full OPT^  1 1 2 1 3 1 3 N/A 
VI-MCP 4 4 3 3 2 4 2 2 
VI-NLP^ 3 3 4 4 6 3 5 N/A 

LCP-MCP 7 7 7 7 4 7 4 N/A 
LCP-NLP^ 6 5 5 8 8 5 8 N/A 
LP-MCP 8 8 8 6 5 8 6 N/A S

ol
ut

io
n 

M
et

ho
d 

LP-NLP^ 5 6 6 5 7 6 7 N/A 
* mono: monopolistic market, perf: perfectly competitive market 
^ NLP results are obtained with CONOPT, except for &  
& The second perfectly competitive run for the 40 nodes set used MINOS instead of CONOPT 
 
The ranking based on calculation times and numbers of iterations needed by the 

decomposition approaches to solve the medium-sized problems is similar to the ranking 

for the small problems. Full-scale MCP is the quickest (unless the MINOS solver is 

available, more details in a later subsection) and the VI-based decomposition approaches 

are generally quicker than the optimization-based decomposition approaches. The only 

difference between the VI-MCP and the LCP-MCP approaches, is the definition of the 

Benders optimality cuts and it was not expected in advance that the different cut 

definition would have such a large impact on the number of iterations and the calculation 

times needed. Between the MCP and the optimization problems, generally PATH solves 

the MCP much faster than CONOPT solves the equivalent optimization problems. 

However, the availability of MINOS reduces the calculation times needed for NLP 

subproblems so much that using SP-NLP is faster than approaches using SP-MCP. 

However, the MP-VI needs fewer iterations and less calculation time than the MP-LP and 

MP-LCP approaches. 

 

Next, Figure 58 shows the calculation times (in seconds, on the left vertical axis) and the 

ratio between the calculation times needed (on the right axis) for the four cases discussed 

in the previous section and the three new runs.  
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Figure 58: Calculation times (‘resusd’) for increas ing problem sizes 

 

The figure shows that for all these problems the calculation times for the extensive-form 

model solutions (Full MCP) are lower than the calculation times using decomposition 

approach VI-MCP. However, the ratio between the two is much smaller for the larger 

problems. This is another indication that the decomposition approaches perform 

relatively better on larger problems. 

 

Table 39 shows for the medium-sized deterministic eight-period monopoly with 11,192 

variables the CPU times and total run times needed. The MCP solver PATH is faster than 

MINOS for this full-scale problem, but among the decomposition approaches the 

availability of MINOS for solving SP-NLP would make VI-NLP the fastest solution 

approach.190 

                                                 
190 Under the license used GAMS allows up to five runs to be executed at the same time on one computer. 
Calculation times (resusd) of larger models are affected by running them in parallel, hence calculation 
times vary somewhat when solving models multiple times. 
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Table 39: Impact of solvers on calculation time for  deterministic eight-period problem 

Method Solver CPU (s) Total time (s) 
Full MCP Path  3.1  
Full OPT MINOS  9.2  
Full OPT CONOPT  72.2  
VI-NLP Path MINOS 13.6 91.2 
VI-MCP Path Path 42.0 132.4 
VI-NLP Path CONOPT 104.1 234.5 

LP-NLP XPRESS MINOS 43.1 262.9 
LP-MCP XPRESS Path 144.7 455 

LP-NLP XPRESS CONOPT 293.3 517.2 

LCP-NLP Path MINOS 46.1 302.2 
LCP-MCP Path Path 100.3 348.5 
LCP-NLP Path CONOPT 339.5 674.5 

 

Some other comparisons of calculation times for large-scale deterministic problems 

indicated that MINOS was up to twenty-five times faster than CONOPT. Another 

advantage encountered in the numerical experiments was that when using MINOS for 

solving the NLP subproblems many fewer infeasible subproblems were encountered.191 

 

In conclusion, for the medium-sized convex optimization problems, with a polyhedral 

feasible regions introduced in this chapter to find the equilibrium for perfectly completive 

or monopolistic markets, the VI-NLP decomposition outperforms the other 

decomposition approaches.  

 

The next sub section will show results for some large-scale implementations. 

7.5.4 Large-scale stochastic hybrid market-equilibrium problem – results 

The data set used is the same as the one used in previous Section 7.5.3.2. There are forty 

model nodes in total, half of which are consumption and production nodes. The other half 

consists of liquefaction and regasification nodes. There are in total 144 arcs, of which 

forty-five represent arcs with capacities that may be expanded; the other ninety-nine are 

shipping routes. There are two demand seasons in each year. The market structure is 

                                                 
191 That a particular solver cannot solve a problem does not mean that the problem is infeasible. According 
to the GAMS documentation both CONOPT and MINOS cannot solve 14 out of a specific set of 169 test 
problems. However, only four of the fourteen cannot be solved by both. See also Footnote 184. 
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hybrid with traders exerting various levels of market power on different markets. The 

model runs contain four, six or eight periods and for or eight scenarios. Table 40 presents 

convergence results for five runs, of which only the first two succeeded.  

  
Table 40: Convergence results large-scale hybrid pr oblems (all times in seconds) 
 A B C (*) D (*) E (*) 
Model periods 4 6 6 8 8 
Scenarios 4 4 8 4 8 
Scenario nodes 11 19 31 27 47 
Num capacity expansion variables 339 763 1,187 1,187 2,035 
Total num variables 27,221 47,373 77,177 67,525 117,481 

Full MCP calc time 263 1,005 13,853 3,005 18,679 
VI-MCP Net calc time 267 2,036 5,572 5,222 5,013 
Num iterations 46 188 316 325 179 
VI-MCP Gross calc time 521 13,684 52,272 51,207 32,502 

feasible MP calc time&  4 129 502 550 333 
infeasible MP calc time% 4 60 122 96 301 
feasible SP calc time&  259 1,847 4,934 4,576 4,373 
infeasible SP calc time% 0 0 7 0 6 

VI-MCP calc time^ 267 2036 5,572 5,222 5,013 
Num infeasible MP 7 18 14 8 7 
Num infeasible SP 0 0 1 0 1 
Convergence criterion Expans Expans MP infeas MP infeas MP infeas 
(*) Run terminated due to the MP in the last iteration being infeasible for seven times192 
& Time needed (resusd) for solving feasible problems 
% Time needed (resusd) for solving infeasible problems 
^ Time needed to solve all MP and SP until convergence was reached or the run terminated. 
 
The results of the first two runs, A and B, are promising with regard to net calculation 

times needed when taking into account the possibility for parallel processing. In contrast, 

when solving larger problems in the other three runs (C, D and E) the decomposition 

approaches did do not succeed in due to repetitively infeasible MP.192 Run B shows that 

encountering a few infeasible MP does not necessarily prevent the solution to converge. 

Often an infeasible MP solves after slightly relaxing the optimality tolerance and the 

iterative procedure could continue (see Appendix 7.11.4 at the end of this chapter). 

Before eventually converging in the 188th iteration, between the 176th and 185th iteration 

                                                 
192 The GAMS code was adjusted to not immediately terminate when encountering an infeasible MP, but to 
change the solver option for the optimality tolerance and try again, for at most six times. If a later attempt 
to solve an MP succeeded, the optimality tolerance was set back to the initial (default) value. 
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a total of eighteen additional attempts were needed to solve MP with a relaxed 

tolerance.193 

 

Why do the larger problems not solve? In the implementation phase of the decomposition 

approach many experiments have been done. Various tricks and workarounds have been 

implemented (see Appendix 7.11) with various degrees of success and, as run B shows, 

temporarily relaxing the solver optimality tolerance sometimes helps. Possible 

explanations for the infeasibility of larger problems are the impact of deviations caused 

by the solver and feasibility tolerances and the binary representation of real numbers in 

computer memory. The Benders cuts given by Eq. (7.4.8) contain many terms, the 

number of non-zeros in the MP-VI of problems C, D and E grows into the several 

hundred thousands. Complementarity induces that in various binding cuts (Eq. (7.4.8)) 

differently weighted summations of the same terms (capacity expansions and quantities 

produced and traded) have to add up to zero. Maybe the aggregate impact of all the small 

deviations is too large. 

 

Problems C, D and E contain the exact same mathematical formulas and are implemented 

using the exact same GAMS code as problems A and B. Problems C, D and E only 

contain more first-stage variables and more subproblems. Extensive testing and the fact 

that A and B converge to the solutions of the full-scale extensive stochastic solutions is a 

strong reason to believe that the approach works and is implemented correctly. 

 

Lastly, due to the long run times, time is an issue when trying alternative workarounds to 

resolve the infeasible MP. Parallel processing could potentially speed up the run times 

(although it would not resolve the MP infeasibility issues). This is addressed in Future 

Work Section 7.7.4. 

7.6 Summary 

This chapter discussed decomposition approaches to solve large-scale stochastic mixed 

complementarity problems (MCP). Various generalized Benders methods have been 

presented that can be used for solving large-scale stochastic optimization models, 

                                                 
193 Iteration: number of restarts, 176: 1, 179: 1, 181:4, 182:4, 183:3 and 185: 5 
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including social welfare maximization and monopoly market models. For the master 

problems, linear programs and linear complementarity problems were implemented and 

for the subproblems, non-linear programs and mixed complementarity problems. The 

convergence characteristics in terms of number of iterations and solution times of several 

numerical experiments have been discussed.  

 

The Benders decomposition for stochastic optimization approaches provided a stepping 

stone for the approach to solve stochastic MCP. This approach implements the 

variational-inequality (VI) based decomposition approach developed in (Gabriel & Fuller 

2010). This implementation is the first application of a decomposition approach to solve a 

large-scale stochastic multi-period natural gas market model with many hundreds of first-

stage capacity expansion variables and traders exerting various levels of market power. 

Beside these characteristics, another difference compared to implementations in (Gabriel 

and Fuller, 2010) is that the first-stage decisions are not the quantities supplied, but 

capacity expansions setting upper limits to later period quantities. The complexity of the 

problems solved is illustrated by the numbers of iterations needed to solve them.  

 

The results indicate that for solving the large-scale stochastic convex optimization 

problems with polyhedral feasible regions a VI-NLP decomposition should be 

implemented, with the master problems cast as MCP derived according to (Gabriel & 

Fuller 2010) and the subproblems cast as nonlinear programs.  

 

For stochastic MCP the VI-MCP decomposition approach has the potential to greatly 

reduce the solution time of large-scale stochastic MCP. Due to numerical complications 

the size of the models in the numerical experiments was relatively modest. New 

implementations should use software that allows the minimization of times needed for 

file processing and model generation. 

7.7 Future research 

7.7.1 Functional extensions 

The production reserves constraint was ignored in the implementation, and addressing 

this in a decomposition approach would be a valuable extension (see Footnote 171).  
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A start was made with the implementation of minimum expansions needed to guarantee 

feasibility of the SP in case of future contracts. See Appendix 7.10. 

 

The WGM and stochastic models presented in this dissertation ignore most of the 

engineering aspects, for example relative to pipeline pressures and capacities and natural 

gas well production characteristics. Some of these aspects have been addressed in the 

literature (e.g., (Midthun, 2007), (Van Der Hoeven ,2004)) and could be included in the 

modeling framework. Other engineering aspects, involving non-convex characteristics, or 

that cannot be described mathematically in closed form, would need other, possibly 

heuristic approaches. For market equilibrium models that provide more detail in the 

periods, e.g., with a daily or weekly granularity, the engineering aspects and operational 

consequences of more and greater fluctuations in quantities and flows, will possibly have 

more impact and cannot be ignored. 

 

As was discussed in Section 3.6 LNG regasification terminals may be equipped with 

loading facilities. The current WGM does neither explicitly include the availability of 

storage at LNG facilities nor the possibility to re-export LNG. Such a model extension 

might be relevant in light of the recent large upward revisions of unconventional natural 

gas reserves in the United States. 

 

Risk neutrality is an assumption that does not well represent risk attitudes observed in 

reality. Cabero et al. (2010) addressed this, by developing and solving a stochastic 

electricity market model with players using CVAR as a risk metric instead. Other 

alternative assumptions regarding risk attitudes would address asymmetric information 

and differences in future beliefs. In our stochastic models it would be relatively easy to 

let probabilities vary by model agent and hence it seems possible to address differences in 

future beliefs in the modeling approach. Fan et al. (2010) address risk aversion when 

making investments in the power sector relative to the uncertainty in future CO2 

regulation. Ralph and Smeers (2010) considered a perfectly-competitive two-stage 

equilibrium game. The first stage encompassed investments in electricity generation by 
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risk-averse producers and allowed for trade in financial instruments to hedge against 

rising future fuel costs.  

 

In Section 3.9.4 two-part tariffs were discussed, distinguishing a reservation and usage 

charge for pipeline flows by traders. For an industry project I have implemented such a 

two-part tariff, which resulted in an increase in the number of equations and longer 

calculation times. As mentioned before, for models with a more operational orientation 

such an extension could be warranted. 

 

An alternative approach for modeling investments uses a rolling horizon rather than 

perfect foresight, e.g., GASTALE (Lise and Hobbs, 2008) or NEMS. Such an approach 

offers another representation of investment decisions that will impact the timing and 

magnitude of expansions.  

 

Smeers (2008) discussed that environmental issues are not well-addressed in models so 

far. Cap-and-trade systems (such as the ETS in the EU, RGGI for the U.S. East Coast and 

as discussed by the Obama administration) affect absolute and relative prices of fuels and 

hence induce substitution among fuels.194 A multi-sector/multi-fuel model including 

restrictions on emissions and CO2 pricing could provide a meaningful extension to the 

current state-of-the-art natural gas market models, including the WGM. 

7.7.2 Using previous solutions as starting points 

Solution times for an MP are generally less than two seconds, for each separate SP less 

than a second. Still, since so many thousands of them are solved, it could be worthwhile 

to use solutions from former iterations to provide good starting points for the solvers. 

7.7.3 Other methods 

In many operations research areas Lagrangian relaxation is applied successfully to solve 

difficult large-scale problems, possibly it could also be applied to stochastic MCP. 

                                                 
194 ETS = (greenhouse gas) emission trading system, http://ec.europa.eu/clima/policies/ets/index_en.htm 
(Accessed Nov 12, 2010.) RGGI = Regional Greenhouse Gas Initiative  http://www.rggi.org/ (Accessed 
Nov 12, 2010.) 
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7.7.4 Potential gain of parallel processing and using other software 

GAMS may not be the most viable tool to implement large-scale decomposition 

approaches. Compiled languages, such as C++ or FORTAN, might be better suited. 

 

An analysis was made to see what could potentially be the gain of parallel processing. 

Table 41 below presents the shares in run time used for the main processing steps in the 

model run to solve problem A with a hybrid market structure, four periods, four-scenarios 

and eleven scenario nodes (see Table 40 above). The problem took forty-six iterations to 

solve, and the run time was 521 seconds of which 267 seconds were used by the solvers. 

An MP-VI was solved fifty three times, including seven restarts due to intermediate 

infeasibility. A total of 506 SP were solved (11 SP * 46 iter). 

 
Table 41: Shares in processing times – Own calculat ions based on GAMS log files 

 Total Run Time Data Processing Model Generation Model Solution 
MP 35% 17% 16% 2% 
SP 65% 8% 6% 51% 

 100% 25% 22% 53% 
 

As the data in the first column show, although almost ten times fewer master than 

subproblems were solved, the MP run times make up 1/3 of the total time. Also, just over 

half of the total run time is used for solving models. A quarter of the run time is used for 

data processing and a little less than a quart for generating the models.  

 

It would be possible to solve several subproblems in parallel. When applying parallel, 

processing the number of processors available would determine how many subproblems 

could be solved at the same time. To make a ballpark estimate for the gain in run time, 

assume that there are eight processors available. Then eight SP can be solved in parallel. 

Just dividing the total SP run time by eight would be the maximum potential gain, and the 

total run time would be: MP time + SP time/Number processors = 35% + [65%/8] = 43%, 

a reduction of 57%.  

 

This is an overly optimistic value. Only eight processes can be started in parallel, which 

means that three processors have to solve two SP after another. Taking the average of SP 
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run times, the total needed time would be: 35% + [65% * 2/11] = 47%, a reduction of 

53%.  

 

Lastly, a conservative estimate is calculated, based on maximum instead of average SP 

run times. For this model the maximum SP solution time in every iteration was on 

average 40% higher than the average SP solution time, or 1.4 times as long:  

35% + [(8%+6%) * 2/11]+ [51% * 2/11*1.4] = 51%, or a reduction of 49%.  

 

Based on these three values, parallel processing could cut the needed total run times 

roughly in half for this problem. This is a significant but not great improvement. The 

potential improvement becomes even smaller when considering that the MP grows with 

every iteration. For example, in problem E (see Table 40 above) after 180 iterations the 

data processing and model generation of the MP consume about 90% of the run time.195 

More specifically, every time an MP is generated it takes more than 2½ minutes and the 

other steps combined less than a ½ minute.196 For every infeasible MP this time is added 

again to regenerate the model.  

 

GAMS provides a utility for grid computing. When using this utility on some of the 

smaller problems the added overhead due to file-I/O took so much time, that total run 

times were not shorter. GAMS has a lot to support research and modeling when it comes 

to the user interface, availability of solvers and technical support. GAMS is an interpreted 

language, which means that when the program starts, the program processes the code line 

by line and executes the instructions. As such, it is not optimized for speed of data 

processing or model generation. An issue with the decomposition approach is that many 

times data need to be processed and models need to be generated. For the largest 

stochastic problem (E), in every iteration for an MP and forty-seven SP models need to 

be generated and data need to be processed. When there are several hundreds of iterations 

needed to reach convergence, many thousands of data processing and model generation 

steps are done. These overhead parts of the decomposition procedure should be done as 

efficiently as possible. Other programming languages, such as C++ and FORTRAN, are 

                                                 
195 Due to a cut-clearing procedure after 180 iterations the MP size stays roughly constant. See Section 
7.11.5 
196 This limits the number of iterations per hour to about twenty, less when some MP are infeasible. 
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compiled languages, and are able to process repetitive steps much quicker. Potentially the 

data processing and model generation time would vanish. A ballpark estimate for the run 

time of problem A would be 2% for the MP and [51% * 2/11*1.4]=11% for the SP. Total 

time would be 13%, a reduction of 87% or about eight times as quick. This could be 

promising, however trying other software is beyond the scope of this dissertation. 

7.8 A stochastic multi-period energy market optimization model 

7.8.1 Nomenclature 

7.8.1.1 Sets 

a A∈   Gas transportation arcs, e.g., {NNED_GER, LNOR_FRA, RGER_GER} 

d D∈   Demand seasons, e.g., {low, high} 

p P∈   Producers, e.g., {P_NOR, P_RUW, P_RUE } 

m M∈  Scenario tree nodes, e.g., {01, 02, 03, 04, 05} 

n N∈   Country nodes, e.g., {N_NOR, N_RUW} 

s S∈   Storage facilities, e.g., {S_NED, S_GER} 

t T∈   Traders, e.g., {T_NOR, T_RUS} 

( )a n−   Outward arcs from node n 

( )a n+   Inward arcs into node n 

( )n a+   End node of arc a 

( )n a−   Start node of arc a 

( )pred m  Predecessor nodes in the scenario tree, e.g., pred(08) = {01, 02, 04}197 

( )succ m  Successor nodes in the scenario tree, e.g., succ(04) = {08, 09, 16, 17}198 

( )n s   Node where storage s is located 

( )P n   Producers present at node n 

( )S n   Storage facilities at node n 

                                                 
197 See Figure 35 in Chapter 6 or Figure 53 in this chapter. 
198 See Figure 35 in Chapter 6. 
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( )T n   Traders present at node n 

( )T p   Traders that can buy from producer p 

 

7.8.1.2 Constants/Input parameters 

A
admc   Regulated fee for arc usage (k$/mcm)199 

I
sdmc   Regulated fee for storage injection usage (k$/mcm) 

(.)P
pmc   Production costs (k$/mcm) 

A
amc∆   Arc capacity expansion costs (k$/mcm/d) 

S
smc∆   Storage working gas capacity expansion costs (k$/mcm) 

P
pmCAP  Production capacity (mcm/d) 

A
amCAP   Arc capacity (mcm/d)200 

S
smCAP   Storage working gas capacity (mcm/d)200  

dd   Number of days in season. 183lowd =  and 182highd =  

T
tnmδ   Market-power indicator, [ ]0,1T

tnmδ ∈   

A
am∆   Upper bound of arc capacity expansion (mcm/d) 

S
sm∆   Upper bound of storage working gas capacity expansion (mcm) 

mγ   Discount rate for scenario tree node, ( ]0,1mγ ∈  

W
ndmINT   Intercept of inverse demand curve (mcm/d) 

al   Loss rate of gas in transport arc, [ )0,1al ∈  

snl    Loss rate of gas storage injection, [ )0,1snl ∈  

mp   Probability of scenario tree node m, [ ]0,1mp ∈  

W
ndmSLP   Slope of inverse demand curve (mcm/d/k$) 

                                                 
199 Units of measurement: k$: 1000 USD; mcm: million cubic meter; mcm/d: mcm per day. In applications 
costs are in the range of 10-100 k$/mcm; typical market prices are in the range of 100-800 k$/mcm. 
Typical quantities and flows are up to a few hundred mcm/d.  
200 The subscript m is to account for expansions under construction that are exogenously included. 
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7.8.1.3 Variables 

All primal variables are nonnegative. 

A
am∆    Arc capacity expansion (mcm/d) 

S
sm∆   Storage working gas capacity expansion (mcm/d) 

T
tadmF   Arc flow by trader (mcm/d)201 

T
tndmI   Injection rate into storage by trader (mcm/d) 

A T
admQ →   Arc capacity assigned by TSO to trader (mcm/d)202 

P T
pdmQ →   Quantity sold by producer to traders (mcm/d) 

S T
sdmQ →   Storage injection capacity assigned to trader (mcm/d) 

T P
tndmQ ←   Quantity bought by trader from producer (mcm/d) 

T W
tndmQ →   Quantity sold by trader to consumers (mcm/d) 

T
tndmX   Extraction rate from storage by trader (mcm/d) 

 

Greek symbols in parentheses with appropriate sub and superscripts refer to dual 

variables to associated constraints in the KKT conditions. 

0P
pdmλ ≥  dual variables to production capacity restrictions 

0A
admλ ≥  dual variables to arc capacity restrictions 

0S
smλ ≥  dual variables to storage capacity restrictions 

T
tndm freeϕ  dual variables to the trader’s nodal mass balance constraint 

S
tnm freeϕ  dual variables to the trader’s storage cycle constraint 

0A
amρ ≥  dual variables to arc capacity expansion limitations 

0S
smρ ≥  dual variables to storage capacity expansion limitations 

P
ndm freeπ  dual variables to market clearing conditions for produced quantities 

A
adm freeτ  dual variables to market clearing conditions for arc capacity 

                                                 
201 Arc flow is identical to arc capacity used. 
202 TSO: Transmission system operator. Arc capacity assigned must equal the arc capacities used by 
traders, see market-clearing conditions in Section 7.3.2.5. 
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S
sdm freeτ  dual variables to market clearing conditions for storage working gas. 

7.8.2 Model formulation 

The social welfare ((Bergson, 1938), (Walras, 1977)) is the sum of consumer surplus and 

trader profits minus production costs and regulated fees and expansion costs for storage 

and transportation infrastructure.203 Hence, the expression for the expected social welfare 

that is to be maximized is the following: 

( )

( ) ( )

( )

( ) ( )

( )

2

1
2

max

( )

W T W
ndm tndm

t T n

A A
am amT W W W T W

a a ntndm ndm ndm tndm
t T n t T nm m d S

d D sm sP P T
pm pdm

p P n

A A T I S T
adm adm sdm sdm

s S na a n

SLP Q

c
Q INT SLP Q

p d
c

c Q

c Q c Q

γ
+

+

→

∈

∆
→ →

∈
∈ ∈ ∆

∈
→

∈

→ →

∈∈

  
     
 

− ∆  
+ −      − ∆ 
− 
 
 − −
 
 

∑

∑
∑ ∑∑
∑

∑ ∑

( )

S
m M n N m

s S n

∈ ∈
∈

 
 
 
 
 
 
 
 
 
 
 
  

∑ ∑
∑

 (7.8.1)

The decision variables are limited by several restrictions. The production capacity limits 

the daily production: 

 ( ), ,
PP T P
pmpdm pdmQ CAP p d m λ→ ≤ ∀  (7.8.2) 

The trader needs to preserve mass balance at every node n in every season d of every year 

m. Thus, the total quantity bought from producers plus the net import and the extraction 

from storage must equal the total quantity sold to consumers, the exports and the 

injection into storage:204 

( )
( ) ( )

( )1 , , ,T P T T T W T T T
tndm a tadm tndm tndm tadm tndm tndm

a a n a a n

Q l F X Q F I t n d m ϕ
+ −

← →

∈ ∈

+ − + = + + ∀∑ ∑  
(7.8.3) 

In each year the total extracted volumes must equal the loss-corrected injected volumes:  

 ( ) ( )1 , ,T T S
sn d tndm d tndm tnm

d D d D

l d I d X t n m ϕ
∈ ∈

− = ∀∑ ∑  
(7.8.4) 

                                                 
203 Several terms cancel out since revenues of many players are costs for another. For instance, congestion 
charges for infrastructure are profits for the system operators, but costs for the traders. 
204 Note that the arc losses are included in this mass-balance equation, but that storage losses are accounted 
for in the storage cycle constraint: (7.8.4).  
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The assigned arc capacity A T
admQ → is limited by the available capacity, which is the sum of 

the initial capacity 
A
amCAP  and the expansions in previous years

( )
'

'

A
am

m pred m∈
∆∑ : 

 
( )

( )'
'

, ,
AA T A A
amadm am adm

m pred m

Q CAP a d m λ→

∈

≤ + ∆ ∀∑  
(7.8.5) 

There may be budgetary or other limits restricting the arc capacity expansions. 

 ( ),A A A
am am ama m ρ∆ ≤ ∆ ∀  (7.8.6) 

The assigned storage injection capacity S T
sdmQ →  is restricted by the available working gas, 

which is the sum of the initial working gas and the expansions in former years: 

 ( )
( )

( )'
'

1 ,
SS T S S
smsn d sdm sm sm

d D m pred m

l d Q CAP s m λ→

∈ ∈
− ≤ + ∆ ∀∑ ∑  

(7.8.7) 

There may be budgetary or other limits restricting the storage working gas expansions: 

 ( ),S S S
sm sm sms m ρ∆ ≤ ∆ ∀  (7.8.8) 

The market-clearing condition between the producers’ sales and the traders’ purchases is 

as follows: 

( )
( )( )( ) , ,P T T P P

pdm tn p dm n p dm
t T p

Q Q p d m π→ ←

∈

= ∀∑  (7.8.9) 

The market clearing of assigned arc capacities between the TSO and the traders: 

 ( ), ,A T T A
adm tadm adm

t

Q F a d m τ→ = ∀∑  (7.8.10) 

Market clearing for assigned storage injection capacities: 

 
( )( )

( ), ,S T T S
sdm tndm sdm

t T n s

Q I s d m τ→

∈

= ∀∑  (7.8.11) 

 

The market-clearing conditions could be used to substitute out some decision variables. 

Instead, they are included explicitly to provide a stepping stone to the MCP formulation 

presented in the chapter. 

 

Together, objective function (7.8.1), restrictions (7.8.2) - (7.8.8) and market-clearing 

conditions (7.8.9) - (7.8.11) provide the mathematical formulation of the optimization 

problem for maximizing expected social welfare for some general commodity that can be 

stored and transported, and for which capacity limitations apply. The applications in this 
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dissertation are limited to natural gas markets; however the same model can be applied to 

other markets for energy carriers or commodities that can be produced, traded, 

transported and stored. 

7.9 Matching equations with Gabriel and Fuller (2010) 

In this section the groups of variables and equations in the model introduced in this 

chapter are matched with the variables and equations in (Gabriel and Fuller, 2010); Table 

42 presents the mapping. The first column describes the equation group, the second 

indicates the equation numbers in (Gabriel and Fuller, 2010), the third column gives the 

equations from Sections 7.3.1 and 7.3.2 and the fourth provides the match with the 

variables and equations in Section 7.4.1. 

 
Table 42: Matching equations groups 

Group of equations Gabriel & 
Fuller*  

Sections 
7.3.1 & 7.3.2 

Section 
7.4.1 

(7.3.1)^ Stationarity of expansions (8a) 
(7.3.3)^ 

(a.) 

(7.3.7) Stationarity of production and trader sales (8b) 
(7.3.13) 

(b.) 

(7.3.9) 
(7.3.10) 
(7.3.11) 
(7.3.12) 

Stationarity of other decision variables (8d) 

(7.3.16) 

(d.) 

(7.3.2) Expansion limits (8e) 
(7.3.4) 

(i.) 

(7.3.8) 
(7.3.17) 

Capacity restrictions (8f) 

(7.3.18) 

(ii.) 

(7.3.14) Mass balances 
(7.3.15) 
(7.3.20) 
(7.3.21) 

Market clearing 

(8g) 

(7.3.22) 

(iii.)  

*Note that model in this chapter does not contain any decision variables that are free in sign and 

therefore no equation group matching (8c) in (Gabriel and Fuller, 2010) exists.  

^Eq. (7.3.1) is stationarity of arc expansions as part of the MP, which differs from the condition 

in the original problem: 
( )

'
'

0A A A
m m am am adm

m succ m d

p cγ ρ λ∆

∈
+ − ≥∑ ∑ . Similarly, regarding (7.3.3) the 

reference should be to: 
( )

'
'

0S S S
m m sm sm sm

m succ m

p cγ ρ λ∆

∈
+ − ≥∑ . 
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Next, the details are provided for the coefficient matrices in Eq. (7.4.1)-(7.4.3). Since 

there are no decision variables that are free in sign, matrices C  and Ĉ  are empty. Also, 

capacity expansions are not part of market-clearing or mass-balance Eq., and therefore 

the matrix Â  is empty too.205 Thirdly, all equality conditions have zero right hand sides, 

implying that b̂  is the zero vector.  

 

Thus, in Eq. (7.4.1)A b∆ ≥ , the limits to capacity expansions, matrix [ ]A I= −  and vector 

b  = −∆  , the negative of the capacity expansion limitation values. 

 

The second set of Eq. (7.4.2) A Bq Df b∆ + + ≥ , provide the capacity restrictions to 

production, pipeline flows and storage injection volume variables in the SP. Here, matrix 

A  provides the coefficients for the additions to capacities. Matrices B and D  provide the 

coefficients of the capacity-restricted variables. Vector b  contains the negatives of the 

initial capacities. For instance, if there is an arc with capacity Acap , that can be expanded 

A+∆  restricting flow A Tq →  and a production capacity Pcap  restricting production Pq : 

  
1 1

1

A A T A

P P

q cap

q cap

→+ ⋅∆ − ⋅ ≥ −
− ⋅ ≥ −

 

the matrices are:  
1

0
A

+ 
=  
 

,
0 0

1 0
B

 
=  − 

,
0 0 1

0 0 0
D

− 
=  
 

 and 
A

P

cap
b

cap

 −
=  − 

 

 

The third group of Eq. (7.4.3), ̂ ˆ 0Bq Df+ =  provides the mass balances and market-

clearing conditions. Herein, matrices B̂  and D̂  provide the coefficients of the variables 

that are balanced; as clarified previously their right-hand sides are zero. For instance, for 

the following Eq., including mass balance between producer and trader: P T T Pq q→ ←= , 

nodal mass balance for the trader: T W T P T Aq q f→ ← ←= +  and equality of flow with 

purchased arc capacity: T A A Tf q← →=  : 

                                                 
205 In (Gabriel and Fuller, 2010) the first-stage variables are not upper limits, but the actual values for the 
sold quantities. Hence, in their formulation first-stage variables appear in the market-clearing conditions.  
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1 1 0

1 1 1 0

1 1 0

P T T P

T W T P T

T T A

q q

q q f

f q

→ ←

→ ←

←

+ ⋅ − ⋅ =
− ⋅ + ⋅ + ⋅ =

− ⋅ + ⋅ =
 

the matrices would look as follows: 

1 0
ˆ 0 1

0 0

B

+ 
 = − 
  

,      

1 0 0
ˆ 1 1 0

0 1 1

D

− 
 = + + 
 − + 

 and  ˆ 0b = . 

7.10  Extension to guarantee solutions in case of future contracts 

Incorporating supply contracts could potentially cause the feasible region to the 

equilibrium problem to be empty. Without contracts, the feasible region always contains 

at least one point corresponding to the zero vector for all primal variables. Obviously, just 

setting all quantities and flows equal to zero provides a feasible solution. In a full-scale 

extensive-form stochastic model, providing high enough upper bounds (arc expansions 

limits) to capacity expansions will automatically let the model put in high enough 

capacity expansions to accommodate all future contracts. However, in the decomposition 

approaches discussed in this chapter contracts could be part of the SP.206 The information 

about contracts would not automatically be available in the MP, so that must be provided 

for.  

 

In this section an adjustment to the approach is presented that should generally guarantee 

the feasibility of the SP by setting minima for capacity expansions in case of supply 

contracts with future start dates for which the current capacities do not suffice.  

 

Due to losses in preceding arcs that need to be accounted for, accommodating LNG 

contracts is more complicated than pipeline contracts. Hence, the LNG contracts are 

discussed. These contracts provide a minimum bound to trader’s flows from liquefaction 

to regasification nodes. Thus, the liquefaction capacities must be large enough to satisfy 

the contractual amounts, as must production capacities on the nodes feeding into the 

liquefaction node and at the receiving end of the contractual flow: the regasification 

                                                 
206 Contracts could also be included as part of the MP, but a disadvantage is that the number of first-stage 
variables is a major determinant in the number of iterations and run time needed. 
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capacities. Production capacities are exogenous to the model, and need to be set 

exogenously to high enough values.  

 

Observe the following market structure (Figure 59). Initial liquefaction capacity at node 

C is twelve (mcm/d), at node D eight and regasification capacity at node E is fifteen. Let 

there be two traders who each have to meet a contract in the next model period. Both 

contracts amount to nine (18 in total). Further, assume that liquefaction losses amount to 

10% and that LNG shipment losses are 2% from C to E, and 3% from D to E. 

 
Figure 59: Two LNG supply routes  

 

What expansions are needed to meet the contractual obligations? 

 

First, new notation is introduced to facilitate writing up some equations. 

 

Parameter and sets for contracts 
T
tadmCON  Contractual supply obligation (mcm/d) 

( )n a−   Start node of arc a 

( )n a+   End node of arc a 

( )a n−   Outward arcs from node n 

( )a n+   Inward arcs from node n 

T
tadmε   Dual to contractual obligation (k$/mcm/d) 

A
amη   Dual to minimum expansion (k$/mcm/d) 

 

The contractual minimum supply obligation for a trader to the marketer: 
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T T
tadm tadmFLOW CON≥   (7.10.1) 

LNG contracts provide a lower bound to the flows from liquefiers to regasifiers, i.e., from 

node C to E and from node D to E. These flows are from the perspective of the liquefiers. 

The output of both liquefiers must be at least nine (mcm/d). The arc capacities in the 

model restrict the input flows. Since the losses are 10%, the input capacities must be at 

least: 9
1 10% 10− =  mcm/d. Liquefier C has a capacity of 12, large enough, but the capacity 

of liquefier D of 8 must be expanded with at least 2 mcm/d. 

 

The two contracts add up to 18 mcm/d. However, due to the shipment losses, the 

contractual amount arriving in the regasification node is somewhat lower: 

9(1 2%) 9(1 3%) 17.55− + − =  mcm/d. Hence, given the current capacity of 15, the 

minimum expansion for the regasifier is 2.55 mcm/d.  

 

More generally, the minimum expansions for liquefiers are defined through: 

( ) ( )

1
' '1

' ': '
a

A A T
am am ta dml

m m ta n a n a

CAP CON
− +

−
< =

+ ∆ ≥∑ ∑ ∑   (7.10.2) 

And for regasifiers the minimum expansions are defined through: 

( )
( ) ( )

' ' '
' ': '

1
A A T
am am a ta dm

m m ta n a n a

CAP l CON
+ −< =

+ ∆ ≥ −∑ ∑ ∑   (7.10.3) 

In general, the inclusion in the model of supply contracts will affect the feasible region. 

Specifically, contractual lower bounds that turn out to be binding in an optimal solution, 

will have made the feasible region smaller. The minimum expansion constraints defined 

through (7.10.2) and (7.10.3) are redundant to the full extensive-form stochastic model 

and will not affect the feasible region or the optimal solution. However, adding them is 

the stepping stone for deriving the new MP that addresses the minimum capacity 

expansions ensuring feasibility of the SP. 

 

To extend MP-LP (as defined in Section 7.2.1) so that expansions are large enough to 

accommodate future contracts, Eq. (7.10.1) and (7.10.2) must be added. The SP-NLP (as 

defined in Section 7.2.2) must be extended with Eq. (7.10.3).  
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Deriving the MP-LCP and SP-MCP is quite straightforward. To allow for a succinct 

formulation an additional parameter is defined and calculated: 

 

Parameter for minimum expansion constraints 

( ) ( )

( )
( ) ( )

1
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': '

'
': '

,max 0, for liquefaction arcs
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a

AT
amta dml

ta n a n a
A
am

AT
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+ −
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=

=
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The MP-LCP in Section 7.3.1 needs to be extended with the following equation to ensure 

that the capacity expansions are large enough to accommodate the contracts: 

0 A
amη≤ ⊥ '

'

0A A
am am

m m<

∆ − ∆ ≥∑  , 1a m∀ >  (7.10.4)

In addition, Eq. (7.3.1) (the stationarity condition for arc expansions) changes with a term 

representing the dual variables of future minimum expansion limits:
( )

'
'

A
am

m succ m

η
∈
∑ , to: 

0 A
am≤ ∆ ⊥  

( )

,
' ' ' '

'

0A A it A it A
m m am am m m adm am

m succ m it d

p c pγ ρ γ θ λ η∆

∈

 + − + ≥ 
 

∑ ∑ ∑  ,a m∀  (7.10.5) 

In the SP-MCP as defined in Section 7.3.2.2 the condition for the contractual supply 

obligations must be included: 

0 T
tadmε≤ ⊥  0T T

tadm tadmFLOW CON− ≥   (7.10.6) 

Also, the stationarity condition for flows (7.3.12) would change to include the dual price 

for the contracts Ttadmε :  

0 T
andF≤ ⊥  ( )A (1 ) 0A T T T

d ad ad a tadmtn d tn d
d c lτ φ φ ε− ++ + − − − ≥  ,a d∀  (7.10.7) 

Numerical evidence shows that for the optimization-based approaches binding contracts 

make the model find the solution quicker, i.e., needing fewer iterations. 

7.11  Implementation issues 

In this appendix several issues are discussed that may not have strong academic merits, 

but can be very useful and save a lot of time when coding up and implementing 

decomposition approaches similar to the ones described in this chapter. 
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7.11.1 Zero capacities 

In some cases when initial arc capacities are zero their dual prices in optimization 

problems are not uniquely defined (this issue is somewhat comparable with the issue in 

Section 7.5.3.1). In MCP the duals are explicitly incorporated into the stationarity 

conditions and therefore much more often than in optimization problems uniquely 

defined. This can be confusing when testing the GAMS implementations and especially 

when comparing the outcomes of the SP-NLP and the SP-MCP decomposition 

approaches. Different dual prices induce different choices for what capacities to expand 

(see Section 7.5.3.1.) To improve the testing process the choice was made to include a 

small positive value for all arcs and storages with zero initial capacity. Minimum arc 

capacities were 10-5 and minimum storage capacities equal to (10-3 times the number of 

days) in an injection season. With the unit of measurement in mcm/day and most results 

only being reported up to two digits, the reported results in terms of capacity expansions 

and volumes and market prices were not affected. However the small positive initial 

capacities forced dual prices in optimization and complementarity subproblems to be 

equal and for several iterations the master problems would provide the same answers for 

expansions. This greatly facilitated the testing process of the implemented decomposition 

approaches. 

7.11.2 The SP loop and initial starting points 

In the decomposition approaches the SP are solved in a for-loop. At the start of the 

program the SP problem is defined in GAMS. Every time an SP is solved, the same 

problem structure is used, however with input data representing that particular SP. In 

GAMS, when the same problem is used, the starting point for the solver are the values for 

the last found solution. That is sometimes problematic, for example when some formerly 

optimal flows are larger than capacities of arcs in the current problem or when formerly 

optimal production quantities are larger than production capacities in the current problem. 

Therefore, after solving each SP and storing the output data, some of the variable values 

are initialized to zero. 
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7.11.3 Solver tolerances 

The convergence gap for the VI-based approach contains terms: , , '
, ' ,

'

P T it P T it
pdm MP it pdm SP

it it

Q Qθ→ →

<

= ∑  

(see Eq. (7.4.9) in Section 7.4.4). The produced quantities for the MP solution are 

calculated as the with itθ  weighted quantities in the SP solutions. Theoretically: with 

, '
,

PP T it
pmpdm SPQ CAP→ ≤  and 1it

it

θ =∑  � , , '
, ' ,

'

PP T it P T it
pmpdm MP it pdm SP

it it

Q Q CAPθ→ →

<
= ≤∑  (see Section 

7.4.4).207 However, in the GAMS implementation there were several instances where 

,
,

PP T it
pmpdm MPQ CAP→ ≥ , causing infeasibilities due to log zero (( )ln 0 ) or even log of negative 

values in the production cost function. The workaround was to test 

, 8
, 10

PP T it
pmpdm MPQ CAP→ −≥ −  and if so, to set , 8

, : 10
PP T it
pmpdm MPQ CAP→ −= − . To illustrate the 

adjustments made below a sample from a log file of the GAMS implementation. For 

instance, the first line in the report shows that in iteration 16 the quantity 121.36986393 

was adjusted downward to 121.36986311, implying that before the adjustment the value 

was 8.1.10-7 larger than the capacity. 

 
Figure 60: Log file sample 

7.11.4 Optimality tolerances 

When doing the research many numerical data instances have been solved with the 

various full-scale and decomposition methods developed in this chapter. Somewhat 

surprisingly, sometimes the results varied. Sometimes the solutions were just not unique. 

More often there were many solutions with objective function values (for optimization 

problems) that were so close to the optimal value that they were within the optimality 

                                                 

207 Actually, the functional form of the production costs would induce ( )ln 0  for , '
,

PP T it
pmpdm SPQ CAP→ =  so 

theoretically it is even strictly smaller than. 

 

Iter 16 Adjust qps_MP outcome to prevent LOG error N_BRA L 01 121.36986393 121.36986311 

Iter 16 Adjust qps_MP outcome to prevent LOG error N_CHL L 02 27.39726048 27.39726037 

Iter 18 Adjust qps_MP outcome to prevent LOG error N_BRA L 01 121.36986338 121.36986311 

Iter 19 Adjust qps_MP outcome to prevent LOG error N_BRA L 01 121.36986407 121.36986311 

Iter 19 Adjust qps_MP outcome to prevent LOG error N_CHL L 02 27.39726051 27.39726037 

Iter 21 Adjust qps_MP outcome to prevent LOG error N_BRA L 01 121.36986328 121.36986311 

Iter 22 Adjust qps_MP outcome to prevent LOG error N_BRA L 01 121.36986336 121.36986311 
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tolerance. For example, in large-scale models when in an optimal solution two arcs are 

expanded with a large capacity, expanding one of them a little bit more and the other a 

little bit less or moving small part of a capacity expansion one period later, has very little 

impact on the total profits. Surprisingly, also for smaller test problems deviations were 

noticeable (e.g., Table 37 in Section 7.5.3.1). The solution would seem simple: just set 

the solution tolerances tighter. However, tighter solution tolerances sometimes caused 

infeasibilities. Thus, either some feasible problems do not solve because of too tight 

optimality tolerances, or some solutions will not be optimal. A workaround for the 

decomposition approaches was to not immediately terminate the whole program when 

encountering an infeasibility, but to stepwise temporarily increase the optimality 

tolerance and try to solve again. Increasing the tolerance was usually done in sequences 

like 10-6, 3.10-6, 10-5, etc. This approach was quite successful in that intermediate 

infeasibilities were often overcome and the algorithm would converge, sometimes many 

iterations later (see Section 7.5.4 and Table 40). Unfortunately, in other occasions the 

solutions found deviated too much from optimal solutions. For the optimization-based 

MP this could pose a problem when the value found forα would be too low, affecting the 

calculated convergence gap and inducing the algorithm to terminate prematurely. 

Deviating dual prices in found SP solutions would induce cuts being specified wrongly, 

which can induce early program terminations due to cuts being too restrictive. 

7.11.5 Increasing MP solution times  

Generally, in the first iterations the time to generate and solve the MP is short, even for 

MP with thousands of variables this takes just a few seconds. However, the size of the 

MP grows with every cut added and when several hundred iterations have been executed, 

the number of variables has grown significantly and more time is needed to generate and 

solve the model, growing into several minutes per iteration. After making investigations, 

it turned out that many of the added cuts are only binding for some of the iterations, and 

at some point become redundant. To reduce the model sizes a procedure was created to 

remove all cuts that had not been binding for fifty iterations. The result of this was that 

MP solution times more or less stabilized and overall calculation times for large runs 

were cut dramatically.  
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Note: this cut removing procedure might accidentally remove a cut that would have been 

binding in a later iteration. However, that would not be a problem. In such a situation, the 

MP would find a solution violating this removed cut. When that solution would be 

suggested to the SP, the SP results would result in a new cut providing the necessary 

bounds to the MP.  

7.11.6 Production costs and dual prices at full capacity 

When solving an MCP with the Golombek functional form for production costs, some 

optimal production quantities may equal capacities. Then when calculating the 

production costs for the producers ex-post, GAMS will give an error message due to 

( )ln 0 . Storing the solution and using it as a starting point in a new run, will cause 

GAMS terminate due to a function domain error. The work-around for this has been to 

slightly increase the capacity value that is used in the production cost calculations, but 

maintain the original value for the production capacity in the capacity restriction. This 

implies that the calculated (marginal) production costs are a bit too small, but the impact 

is negligible for a small enough adjustment. The value used is 10-5. 

7.11.7 Convex combination of binding constraints 

Eq. (7.3.6) provides an equality condition: 1it

it

θ =∑ . It is written as: 1 0it

it

θ − =∑ , 

however when implementing it in GAMS, it does not solve. What does solve is: 

1 0it

it

θ− =∑ . The explanation is that GAMS requires consistency for how stationarity 

conditions are specified. The value 1 comes from the coefficient of α  in the objective 

function of the MP-LP: (7.2.1), and the 1−  for all itθ  comes from the coefficient of α  in 

the Benders cuts, Eq. (7.2.4), when specified as a less than or equal to zero constraint: 

0 (other terms)α≥ − + . Therefore: 1 0it

it

θ− =∑  is correct and should be used. 
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8 Summary 

This dissertation develops deterministic and stochastic multi-period mixed 

complementarity problems (MCP) for the global natural gas market, as well as solution 

approaches for large-scale stochastic MCP. The contributions include the development of 

a detailed representative model for the global natural gas market, the development of a 

representative stochastic model for the global natural gas market and implementing and 

solving stochastic MCP with up to 117 thousand variables, and the application of a 

Benders decomposition approach for stochastic MCP. 

 

Contemporary societies depend heavily on the use of energy. Currently, natural gas 

provides slightly over one-fifth of energy used worldwide. Projections show a growth in 

gas demand of 52% between 2006 and 2030, inducing a slight increase of the share of 

natural gas in the global primary energy supply (International Energy Agency, 2008).  

 

Chapter 1 provides an introduction into the significant role of natural gas in the energy 

supply. Long-distance transport of liquefied natural gas has grown significantly in recent 

decades, and regional markets are gradually integrating into one global gas market. The 

importance of natural gas in the energy supply of many countries and the dependencies 

resulting from major gas imports have leaded to supply security considerations. Russia, 

Qatar and Iran hold over 50% of proved global natural gas reserves and their membership 

of the Gas Exporting Countries Forum gives rise to worries about market power exertion 

(BP, 2010). 

  

Governments and companies have realized a need for good quantitative models to 

support policy development and businesses strategies. Other market developments that 

stimulated the development of quantitative models include policy for the liberalization 

and privatization of national energy markets in the United States and in the European 

Union and increasing concerns about the impact of greenhouse gases such as carbon 

dioxide on nature and the environment.  

 

The three major contributions of this dissertation are  
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o The development of a multi-period global gas market model that can adequately 

represent market power and other main issues arising in policy development. 

o The development of an extensive-form stochastic natural gas market model that can 

adequately address market uncertainties by allowing players to hedge decisions. 

o The extension and application of a decomposition approach to solve large-scale 

stochastic natural gas market models. 

 

Chapter 2 presents literature relevant for natural gas market modeling. Some 

mathematical and game theoretical concepts and notation are introduced. The advantages 

and disadvantages of various approaches are discussed, as well as the considerations to 

choose for mixed complementarity problems for modeling. 

 

Chapter 3 gives an extensive overview of the various parts of the natural gas supply 

chain. Several simplifications and assumptions are necessary to develop a 

computationally tractable model representative for the global natural gas market. The 

resulting model, the World Gas Model (WGM), is described in detail in terms of the 

optimization problems, operational constraints and market-clearing conditions. The 

Karush-Kuhn-Tucker conditions are derived and the WGM is cast as a mixed 

complementarity problem. 

 

Chapter 4 presents and discusses a number of cases analyzed with the World Gas Model. 

The first case is the Base Case which represents a business-as-usual scenario. The Base 

Case is calibrated so that the model outcomes closely match the state of the world and the 

projections provided by the institutions such as the International Energy Agency and the 

Energy Information Administration. Three alternative cases provide insight in how 

various regions are affected by different market developments, due to characteristics such 

as geographical location and the availability of domestic gas resources. 

 

In the Cartel Case (the second case), the member countries of the Gas Exporting 

Countries Forum collude as a cartel.208 The cartel enforces maximum market power by 

operating through a single trading entity. The lower supplies to importing regions such as 

                                                 
208 www.gecforum.org  
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Europe and Japan and South Korea induce much higher market prices and higher profits 

for all gas traders. Non-cartel members enjoy the largest profit increases and by the end 

of the time horizon annual profits of cartel members are lower than in the Base Case. The 

impact of a gas market cartelization on self-sufficient regions such as North America is 

negligible. 

 

The third case, the Unconv Case, addresses lower availability of unconventional gas in 

the United States. This case is inspired by the significant environmental concerns related 

to unconventional gas production and the possible consequences of strict environmental 

legislation. This case investigates the impact of a large reduction of unconventional gas 

production capacities in the United States. Relative to the Base Case North American 

prices would be dramatically higher, inducing large liquefied natural gas imports. 

Consequently there would be less liquefied natural gas available for other regions, 

resulting in slightly higher prices and pipeline trade in those other regions. Generally the 

impact in terms of market prices and consumed volumes would be relatively modest in 

most parts of the world except for North America.  

 

The fourth case, the Transp Case, provides a sensitivity analysis on lower future transport 

costs. Investment costs in new infrastructure and the costs for infrastructure usage are 

reduced, thereby increasing the competitiveness of supply regions farther away from the 

importing markets. As a result global production and consumption would be higher than 

in the Base Case. The local effects vary. Supplies by most exporters increase, however 

some supplies from high-cost producers that trade most or all of their gas regionally, such 

as Norway and the Netherlands, are pushed out by the cheaper long-distance supplies.  

 

Chapter 5 discusses various modeling approaches developed in the literature to address 

the effects of input parameter uncertainty on the optimal decisions of model agents. 

Stochastic modeling approaches are presented for several types of optimization and 

equilibrium models. Stochastic models can contain large numbers of variables and for 

many model types such large models can have very long calculation times. 

Decomposition methods can provide (approximate) solutions for such stochastic models 

in times short enough for practical applications. Several decomposition methods are 
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discussed and some arguments are provided for the application of a Benders 

decomposition approach to solve a large-scale version of the World Gas Model. 

 

Chapter 6 illustrates the consequences of implementing a stochastic approach for the 

natural gas market. A model with four scenarios is analyzed. The scenarios vary in the 

possible coming into existence of a natural gas market cartel in the second model period 

and a faster depletion of natural gas reserves in the major gas importing regions starting 

in the fifth model period.  

 

The stochastic results show that on an aggregate level the effects of the stochastic 

modeling approach seem rather modest. The timing of investments in capacity 

expansions is affected, but once a random market characteristic has played out, model 

results seem to converge to the results of deterministic models. However, when looking 

into the details several interesting results can be found and significant shifts in the actual 

location of infrastructure investments are present, affecting local market situations.  

 

Chapter 7 discusses two types of decomposition approaches. Various generalized 

Benders methods are presented that can be used for solving large-scale stochastic 

optimization models, including perfectly-competitive welfare-maximization market 

models. For several numerical experiments the convergence characteristics in terms of 

number of iterations and solution times are discussed. Next, the variational-inequality 

based decomposition approach developed in (Gabriel & Fuller 2010) is implemented but 

specialized to the setting of a stochastic multi-period natural gas market and applied to 

problems with many first-stage (complicating) decision variables.  

 

This implementation is the first application of a decomposition approach to solve a large-

scale stochastic natural gas market model with several hundreds of first-stage capacity 

expansion variables and market players exerting various levels of market power.209 The 

results show that the decomposition approach has the potential to greatly reduce the 

                                                 
209 An implementation of Benders decomposition for large-scale electricity market models is Cabero et al. 
(2010). They handle the complexities induced by market power exertion in the master problems. Their 
approach needs a hundred iterations before a first feasible solution is determined. A major advantage of the 
approach developed by Gabriel and Fuller (2010) is that all solutions are feasible. 
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solution time of large-scale stochastic models. An unanticipated research outcome is that 

the decomposition approach based on (Gabriel & Fuller 2010) greatly reduced calculation 

times for optimization models cast as MCP, compared to Benders decomposition 

approaches.  

 

Numerical issues and some characteristics of the software and solvers used pose 

challenges and have limited the size of models solved successfully in the numerical 

experiments. Several numerical challenges have been addressed and more research is 

needed to assess the potential of Benders decomposition for solving large-scale stochastic 

MCP.  
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