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The analysis of human activities is a fundamental problem in computer vision.

Though complex, interactions between people and their environment often exhibit a

spatio-temporal structure that can be exploited during analysis. This structure can

be leveraged to mitigate the effects of missing or noisy visual observations caused,

for example, by sensor noise, inaccurate models, or occlusion. Trajectories of people

and their hands and feet, often sufficient for recognition of human activities, lead to

a natural qualitative spatio-temporal description of these interactions.

This work introduces the following contributions to the task of human ac-

tivity understanding: 1) a framework that efficiently detects and tracks multiple

interacting people and their limbs, 2) an event recognition approach that integrates

both logical and probabilistic reasoning in analyzing the spatio-temporal structure

of multi-agent scenarios, and 3) an effective computational model of the visibility

constraints imposed on humans as they navigate through their environment. The

tracking framework mixes probabilistic models with deterministic constraints and



uses AND/OR search and lazy evaluation to efficiently obtain the globally optimal

solution in each frame. Our high-level reasoning framework efficiently and robustly

interprets noisy visual observations to deduce the events comprising structured sce-

narios. This is accomplished by combining First-Order Logic, Allen’s Interval Logic,

and Markov Logic Networks with an event hypothesis generation process that re-

duces the size of the ground Markov network. When applied to outdoor one-on-one

basketball videos, our framework tracks the players and, guided by the game rules,

analyzes their interactions with each other and the ball, annotating the videos with

the relevant basketball events that occurred. Finally, motivated by studies of spatial

behavior, we use a set of features from visibility analysis to represent spatial context

in the interpretation of human spatial activities. We demonstrate the effectiveness

of our representation on trajectories generated by humans in a virtual environment.
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Chapter 1

Introduction

The analysis of human activities is a fundamental problem in computer vision.

Though complex, interactions between people and their environment often exhibit a

spatio-temporal structure that can be exploited during analysis. This structure can

be leveraged to mitigate the effects of missing or noisy visual observations caused,

for example, by sensor noise, inaccurate models, or occlusion. Trajectories of people

and their hands and feet, often sufficient for recognition of human activities, lead to

a natural qualitative spatio-temporal description of these interactions.

To provide a motivating example, figure 1.1 illustrates the analysis of one-on-

one basketball, a scenario in which the rules of the game impose a strong spatio-

temporal structure on the events that occur. In this example, the task is to annotate

the basketball events that occurred (e.g., check, dribble series, shot) and their effects

on properties of the game (e.g., possession). In order to produce the final result, a

trajectory-based approach involves the following intermediate tasks. First, locations

of people and objects are obtained from the video. Based on these trajectories,

relationships between people and objects can be obtained. For example, in the

basketball scenario, it is useful to know that a player (or the player’s hand) is near

the ball. Relationships between people and objects to their environment are also

obtained from trajectories. In the motivating example, it may be useful to know

1



HoopHoop

Player1 near ball
Player2  farthest from hoop

HoopHoopHoopHoop

BallBallBallBallBallBall

Player 1Player 1 Player 2Player 2Player 1Player 1 Player 2Player 2Player 1Player 1 Player 2Player 2

2  point region2  point region2  point region2  point region2  point region2  point region

clear(P1)
dribble_series(P1)
shot(P1)

rebound(P1)

check(P1)

shot(P2)

possession(P1)
possession(P2)

. . .

. . .

time

Figure 1.1: Sample structured scenario analysis task, with intermediate and final
results. Intermediate results include observed trajectories of people and objects,
relationships between people and objects, and relationships between people and ob-
jects to the scene (e.g., court and hoop). The final result, an annotation of high-level
events and properties, can be obtained by modeling spatio-temporal relationships
between events, properties, and observations.

which player is farthest from the hoop, if players are in the two point region, or if the

ball is near the hoop. Finally, the framework needs to model the spatio-temporal

structure of high-level events and properties, as well as observed relationships. For

example, the check event must occur after each shot made or out of bounds events.

This spatio-temporal structure can overcome observation deficiencies, so if a shot

made event is observed because the ball appears directly under the hoop, but it is not

followed by an observed check event, then it is possible that the shot was missed and

the ball appeared to be under the hoop only due to depth ambiguity. These tasks

2



are not specific to the one-on-one basketball scenario and can generally facilitate

the analysis of most scenarios involving interactions between people, objects, and

their environment.

This work introduces the following contributions to the task of human activity

understanding, each related to one of the intermediate tasks described above: 1) a

framework that efficiently detects and tracks multiple interacting people and their

limbs, 2) an event recognition approach that integrates both logical and probabilistic

reasoning in analyzing the spatio-temporal structure of multi-agent scenarios, and

3) an effective computational model of the visibility constraints imposed on humans

as they navigate through their environment.1

1.1 Tracking people and their limbs

First, we describe a framework that leverages mixed probabilistic and determin-

istic networks and their AND/OR search space to efficiently find and track the

hands and feet of multiple interacting humans in 2D from a single camera view.

Our framework detects and tracks multiple people’s heads, hands, and feet through

partial or full occlusion; requires few constraints (does not require multiple views,

high image resolution, knowledge of performed activities, or large training sets);

and makes use of constraints and AND/OR Branch-and-Bound with lazy evalua-

tion and carefully computed bounds to efficiently solve the complex network that

results from the consideration of inter-person occlusion. Our main contributions are

1The work on visibility has been published in [40].
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1) a multi-person part-based formulation that emphasizes extremities and allows for

the globally optimal solution to be obtained in each frame, and 2) an efficient and

exact optimization scheme that relies on AND/OR Branch-and-Bound, lazy factor

evaluation, and factor cost sensitive bottom-up bound computation.

We demonstrate our approach on three datasets: the public single person Hu-

manEva dataset, outdoor sequences where multiple people interact in a group meet-

ing scenario, and outdoor one-on-one basketball videos. The first dataset demon-

strates that our framework achieves state-of-the-art performance in the single person

setting, while the last two demonstrate robustness in the presence of partial and full

occlusion and fast non-trivial motion.

1.2 Multi-agent event recognition in structured scenarios

We then present a framework for the automatic recognition of complex multi-agent

events in structured settings, where structure is imposed by rules that agents must

follow while performing activities. Given semantic descriptions of what generally

happens (i.e., rules, meaning of relevant events), and based on video analysis, we

determine the events that occurred. Applied to one-on-one basketball, our frame-

work detects and tracks players, their hands and feet, and the ball, combining these

trajectories with spatio-temporal relations to generate event observations. Knowl-

edge about spatio-temporal structure is encoded using first-order logic using an

approach based on Allen’s Interval Logic, and robustness to low-level observation

uncertainty is provided by Markov Logic Networks (MLN). We demonstrate our

4



approach on 1hr (100,000 frames) of outdoor basketball videos.

1.3 Representing visibility for human activity analysis

Visibility in architectural layouts affects human navigation, so a suitable represen-

tation of visibility context is useful in understanding human activity. Motivated

by studies of spatial behavior, we use a set of features from visibility analysis to

represent spatial context in the interpretation of human activity. An agent’s goal,

belief about the world, trajectory and visible layout are considered to be random

variables that evolve with time during the agent’s movement, and are modeled in a

Bayesian framework. We design a search-based task in a sprite-world, and compare

the results of our framework to those of human subject experiments. Our findings

confirm that knowledge of spatial layout improves human interpretations of the tra-

jectories (implying that visibility context is useful in this task). Since our framework

demonstrates performance close to that of human subjects with knowledge of spatial

layout, our findings confirm that our model makes adequate use of visibility con-

text. In addition, the representation we use for visibility context allows our model

to generalize well when presented with new scenes.

1.4 Organization

We begin by introducing our tracking framework in chapter 2 that produces tra-

jectories of people and their limbs for further high-level analysis. In chapter 3,

we propose a high-level reasoning approach that makes use of noisy low-level in-

5



put trajectories produced by our tracker to annotate events observed in multi-agent

scenarios that exhibit spatio-temporal structure. In chapter 4, we describe a com-

putational approach that captures the effects of visibility imposed on agents during

spatial behavior. Finally, in chapter 5, we provide our concluding remarks.
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Chapter 2

Tracking people’s hands and feet using mixed network AND/OR

search

2.1 Overview

The difficult problem of tracking people’s hands and feet has been widely studied,

as its solution is often required for higher-level reasoning about human activities.

Even in the single person, known activity case, ambiguities are introduced by sub-

stantial appearance variations and possible self-occlusions. Reasoning about the

hands and feet of multiple interacting people is more difficult due to inter-person

occlusion, particularly without the simplifying assumption that the space of poses

and movements is constrained by a set of known activities.

Our goal is to track people’s hands and feet efficiently and reliably, without

strong assumptions on pose or activity space. Hand and foot trajectories provide

sufficient information for reasoning about many scenarios (e.g. people interacting

with people, people interacting with objects, etc). We reason about inner joints

(knees, elbows, neck and waist) only to ensure that the solution matches the image

and satisfies physical constraints; however, we do not track them over time, to

reduce computational complexity. Thus, we first detect and track people, obtain a

set of extremity detections separately for each person, and extend them to tracks to

7



fill in periods where extremities are not detected. These tracks become extremity

candidates, which are subsequently labeled as people’s hands and feet.

We formulate the extremity candidate to person assignment problem using

mixed probabilistic and deterministic networks. The probabilistic network is an

undirected graphical model which evaluates the image likelihood given a body con-

figuration by decomposing the overall likelihood into a product of factors. These fac-

tors measure image likelihoods of individual body parts or of pairwise relationships

between them. The deterministic network enforces hard constraints (i.e., probabili-

ties of 0 or 1) which ensure that body segments have bounded length, or that two

overlapping extremity candidates can only be assigned simultaneously to two limbs

if they are observed to occlude each other. To ensure temporal consistency, we add

a temporal transition model between hand/foot assignments in consecutive frames.

To solve the assignment problem, we perform AND/OR search on our mixed

deterministic and probabilistic network[11, 38].1 In the presence of determinism,

AND/OR search has been shown to reduce search space (and complexity) by check-

ing hard constraints during the search process to prune inconsistent paths early.

Moreover, given suitable bounds on the optimal solution, AND/OR Branch-and-

Bound [36] can provide a dramatic additional reduction of the search space while

1Note that in [38], the authors use the term mixed networks to denote the case where a belief

network and a constraint network are mixed. In our case, we use an undirected graphical model

to represent the (non-deterministic) probability of a configuration, and use the term mixed net-

work because we are combining this probabilistic graphical model with a deterministic constraint

network.
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still ensuring that the globally optimal solution is found. An important aspect of

our approach is that it reduces image likelihood evaluations during search by com-

puting factor entries on-demand; this requires careful computation of bounds for

Branch-and-Bound, since a naive approach tends to touch all factor entries. We

believe that our lazy factor evaluation approach, coupled with factor cost sensitive

bounds computation, is generally applicable to other machine learning tasks where

the computation of factors dominates total inference times.

The resulting framework has the following desirable properties: 1) it detects

and tracks multiple people’s heads, hands, and feet through partial or full occlusion;

2) it requires few constraints (does not require multiple views, high image resolution,

knowledge of performed activities, or large training sets); and 3) it exploits deter-

minism during AND/OR search, and reduces the number of likelihood evaluations

through lazy factor evaluation and cost sensitive bound computation, while still ob-

taining the exact solution to the complex loopy network generated by considering

inter-person occlusion.

Our main contributions are 1) a multi-person part-based formulation that em-

phasizes extremities and allows for the globally optimal solution to be obtained

in each frame, and 2) an efficient and exact optimization scheme that relies on

AND/OR Branch-and-Bound, lazy factor evaluation, and factor cost sensitive bottom-

up bound computation. The first contribution is important because few approaches

currently exist that deal with the difficulties of pose estimation for multiple inter-

acting people. The novelty in the second contribution lies in our bottom-up bound

computation approach that focuses on evaluating as few factor entries (i.e. image

9



Step 1: Track people Step 2: Track extremity candidates Step 3: Detect overlap/occlusion

Step 4: Create graph Step 5: Obtain assignment

Figure 2.1: Framework overview. Assignments are also tracked temporally (not
shown).

likelihoods) as possible.

2.1.1 Related Work

Several approaches to body part tracking deal with self-occlusion and appearance

variations by mapping a set of high-dimensional features computed from a person’s

image region to low dimensional coordinates, such as joint locations, angles, or some

other latent variable [33, 66]. These approaches can obtain good results, but either

restrict the activity and require cyclic behavior [33], or require very large training

sets [66] for activity independence. Additionally, they rely on global shape or image

features which become unreliable when multiple people occlude each other.

Part-based approaches reduce the reliance on large training sets and activity

constraints by modeling the human body as a set of articulating body parts. Gen-

erally, these approaches detect a set of candidates for each body part and assemble

10



them according to an articulated model that imposes local constraints between body

parts. To handle occlusion, some maintain a tree structure by applying dynamic

programming in stages (detecting the first arm/leg, and then searching for a second,

given the first) [15, 48]. Others use loopy graphs to directly incorporate part self-

occlusion, and resort to approximate inference methods such as Belief Propagation

(BP) [63, 59, 20]. Recently, Jiang and Martin [27] used a nontree model with hard

mutual exclusion constraints to deal with occlusion, whose globally optimal solution

is approximated by the relaxation of an integer linear program (ILP). To incorpo-

rate arbitrary pairwise constraints, Ren et al . [49] approximately solve an integer

quadratic program (IQP) by a linear relaxation and subsequent gradient descent

step. Hua et al . [24] employ a Belief Propagation Monte Carlo approach, which

detects a small set of part candidates and uses them to construct an importance

sampling distribution for non-parametric message passing.

Like many of these approaches, ours uses an articulated model to factorize the

overall score into a product of local part scores; however, our variables represent

part endpoints, instead of part candidates. This allows us to detect only extremity

endpoints (head, hands, feet) cheaply, constrain the remaining endpoints (neck,

waist, knees, elbows) using length constraints, and evaluate part likelihoods on-

demand (instead of searching for all parts independently over the whole image).

We reason about self-occlusion and inter-person occlusion at the extremity level by

dynamically adding hard constraints between extremities, and instead of resorting

to approximate methods, we obtain the globally optimal solution to the resulting

loopy network using AND/OR Branch-and-Bound [36].

11



Recent approaches to tracking multiple people simplify the problem by as-

suming a small set of activities, such as walking, running, etc. [2, 17, 70]. Once

each person is localized, these approaches generally infer each person’s pose in-

dependently, using strong motion and pose assumptions to deal with inter-person

occlusion. Park and Aggarwal [43] track interacting humans and their body parts

without this assumption by using a hierarchical blob-based approach; however, they

deal with only two interacting people and depend on body parts to have different

colors. Though we still require that people are first localized, hands and feet are

assigned globally, considering inter-person occlusion constraints. The idea of dy-

namically adding constraints between person tracks has been explored in [69]; here,

we dynamically add constraints between pairs of potentially occluding extremities.

More recently, Eichner and Ferrari [13] introduce an occlusion predictor and mutual

exclusion terms between body parts of different people to jointly model poses of

interacting people. The model includes only upper body pose and requires approx-

imate inference due to the resulting model complexity. In contrast, our proposed

approach models both upper and lower body pose and is able to obtain the glob-

ally optimal solution in each frame. Although our approach currently employs hard

mutual exclusion occlusion constraints, it can be extended to use a probabilistic

occlusion model as proposed in [13].

Zhu et al . [72] also employed AND/OR graphs for determining human pose,

but only to compactly represent the pose space learned during training. They man-

ually create the structure of AND/OR graphs, and automatically learn parameters

of potentials defined on the graph. In our work, AND/OR graphs are used for ef-
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Figure 2.2: Probabilistic and deterministic graphical models.

ficient search of graphical models that are dynamically created in each frame; the

AND/OR graph is not explicitly created, but is implicitly searched. Since computer

vision problems have large search spaces and image operations are costly, Branch-

and-Bound can drastically reduce computations, and has been employed for object

detection and segmentation [32, 34]. One of the main advantages of Branch-and-

Bound on AND/OR graphs is that we can also greatly reduce image evaluations by

only computing factor entries when necessary.
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2.2 Probabilistic and deterministic graphical models

In this section we describe our mixed probabilistic and deterministic graphical model

that inherently handles multiple people. In order to construct our graphical model,

we assume that bounding boxes have been obtained for each person, and that each

person track has a set of extremity candidate tracklets. Additionally, we require a

set of functions that evaluate image likelihoods given body segment configurations.

Since various detection/tracking and image likelihood approaches exist, and our

graphical model does not depend on the particular approach, we first describe our

general model, and then provide implementation details in section 2.4.

2.2.1 Probabilistic graphical model

We use an undirected graphical model P = (X,D, F ) to represent the image likeli-

hood of a configuration. The nodes X = {Xp
i |i = h, a1, a2, f1, f2, n, e1, e2, w, k1, k2},

are the locations of the head (h), hands (a1, a2), feet (f1, f2), neck (n), elbows

(e1, e2), waist (w), and knees (k1, k2), of each person (indexed by p). Note that

each X
p
i denotes the endpoint of one or more body segments in the articulated

model, e.g., Xp
k1

and X
p
f1

are endpoints of a lower leg segment. The discrete do-

main D
p
i ∈ D of each variable, is a set of candidate locations plus the unknown

value. Candidates for head, hands, and feet are the tracks described in section

2.4.1; candidates for the remaining inner joints, are obtained as described in section

2.2.4. The unknown value allows for missed detections, when true hands and feet

are not present among the choices, and false positives, when extremity candidates
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are not actually hands and feet. Finally, F is a set containing three types of factors:

(1) fskel(xi, xj, I, θ) takes two endpoints of a skeletal body segment and measures

how well the segment is explained by the image (by edges, segmentation, etc); (2)

fapp(xi, xj, I, θ) takes two endpoints of symmetric body parts (hands and feet), and

enforces appearance similarity; and (3) funk(xi) is a constant penalty cunk if xi is un-

known, and 1 otherwise. Here, I and θ are the image and external parameters (such

as body segment widths), respectively. We maximize the posterior distribution,

P (X|I, θ) ∝ P (I|X, θ)P (X|θ), such that

P (I|X, θ) ∝
∏

p

∏

(Xp

i
,X

p

j
)∈E

fij(X
p
i , X

p
j , I, θ)

and

P (X|θ) ∝
∏

p

∏

i

funk(X
p
i )

∏

(Xp
i
,X

p
j
)∈Eskel

fij(X
p
i , X

p
j , θ)

where E is the set of edges in model, fij = fskel if nodes i and j define a body

segment, and fij = fapp if nodes i and j are symmetric endpoints; skeletal and

symmetric edges are solid and dotted in figure 2.2a, respectively. See section 2.4 for

additional details on factors. Instead of precomputing the factors fij (which is costly,

as we will show), we employ a lazy evaluation scheme, evaluating each factor entry

the first time that it is needed during search. The prior P (X|θ) penalizes unknown

locations and can include other priors on nodes, e.g., pairwise length priors.

2.2.2 Deterministic constraints

A deterministic network R = (X,D,C) encodes length and occlusion constraints.

Variables X and their domains D are the same as in the previous section.
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2.2.2.1 Length constraints

Length constraints, depicted in figure 2.2b, ensure that a body segment defined by

two endpoints has bounded length. The motivation for hard length constraints is

that body segment length is bounded in 3D as a ratio of height, and will be bounded

even after projection to 2D under mild assumptions (i.e., camera is not pointed down

toward people’s heads). As long as length constraints are satisfied, we do not prefer

one length over another since the same pose rotated with respect to the camera can

yield segment lengths of zero due to foreshortening (so we use uniform length priors

in 2.2.1). Minimum lengths can also be imposed for practical reasons, e.g., to avoid

the degenerate case of zero-length segments.

2.2.2.2 Occlusion constraints

Intra- and inter-person occlusion constraints are added only between extremities

(not inner joints), as we are interested mainly in tracking them. As figure 2.3

shows, two extremity tracklets can overlap either due to occlusion (first row) or

due to detector false positives (second and third rows). In the former case, each

tracklet corresponds to a real extremity, so both should be assigned; in the latter,

only one tracklet should be assigned to a person. To be conservative, when two

candidates overlap (as in figures 2.1 and 2.3), they can be assigned simultaneously

only if there is visual evidence that they occlude each other; here, visual evidence

for occlusion consists of observing two initially non-overlapping candidates move

toward each other and partially overlap. If two candidates v ∈ D
p
i and v′ ∈ D

q
j
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Figure 2.3: Occlusion constraints: simultaneous assignment of overlapping candi-
dates is disallowed if there is no evidence that the overlap is caused by occlusion.
When there is visual evidence of occlusion, the disallowed assignment pairs list is
empty, and two overlapping detections can be simultaneously assigned. When there
is no visual evidence of occlusion, the disallowed assignment pairs list ensures that
only one of the overlapping detections is assigned. In this figure, disallowed pairs
included by an assignment are highlighted in yellow.
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Figure 2.4: Occlusion evidence over time. Partial overlap: if a period of no over-
lap (between tracklet pairs) occurs immediately before or after a period of partial
overlap, then this is counted as evidence of occlusion for the partial overlap period,
and simultaneous assignment is allowed. Full overlap: during periods of full over-
lap, the track of the occluded part is assumed to be unreliable and only one of the
overlapping tracks can be assigned. No overlap: simultaneous assignment is always
allowed during periods of no overlap.
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overlap for a period of time but no evidence of occlusion is observed, then mutual

exclusion constraints are automatically added between Xp
i and Xq

j during that time

period, preventing v and v′ from being simultaneously assigned.

We use a two threshold approach for determining whether occlusion evidence

can be used to allow simultaneous assignment of overlapping tracklets. Our approach

is based on the following assumptions: 1) low-level trackers can generally track

extremities through partial occlusion if they were at some point observed in isolation,

and 2) low-level trackers generally fail for extremities that become fully occluded.

Using these assumptions, we use two thresholds on the area of overlap between two

tracked extremities to create three types of relationships between extremity pairs:

full overlap, partial overlap, and no overlap. During a period of partial overlap, we

allow two tracklets to be simultaneously assigned to two body parts only if there is

a period of no overlap immediately before or after the partial overlap period (due

to first assumption). During a period of full overlap, tracklets are not allowed to

be simultaneously assigned, due to our second assumption. During periods of no

overlap we allow simultaneous assignment. See figure 2.4 for an illustration of the

two threshold approach.

Both intra- and inter-person occlusion are treated the same (in the former

case, p = q). Figures 2.2c and 2.2d show intra- and inter-person constraints, respec-

tively. Note that in the former we show the worst case scenario (all extremity pairs

have occlusion constraints), but in the latter we show the case where only some

pairs have overlapping domains. A graph with fully connected extremities is very

unlikely, because length constraints cause domains to be spatially localized; thus,
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hand candidates generally do not overlap foot candidates, and a person only has

constraints between immediate neighbors.

2.2.3 Temporal assignment tracking

Temporal tracking of assignments is performed by introducing pairwise factors be-

tween corresponding extremities of people who appear in consecutive frames. Fig-

ure 2.2e shows the edges introduced by these factors. These factors, ftrans(x
t−1
i , xt

i),

enforce assignment consistency between consecutive frames (see section 2.4 for the

specific factors used in our experiments).

Structural changes over time can result in a complex overall graph, so we

approximate the solution for a sequence as follows. First, we obtain the exact top

k solutions in each frame using AND/OR Branch-and-Bound on the mixed network

defined by P and R (ignoring temporal factors). The transition probability between

two frames is the product of all temporal factors between extremity nodes that

appear in both frames,

ftrans(X
t−1, X t) =

∏

p

∏

i

ftrans(X
p,t−1
i , X

p,t
i ).

Given the top k solutions for each frame, we obtain the best assignment sequence

using dynamic programming.

2.2.4 Node domains

Recall that for extremities, Xp
e = {Xp

i |i = h, a1, a2, f1, f2}, domains contain the

extremity candidates described in section 2.4.1, plus the unknown state. However,
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(a) (b) (c) (d) (e) (f)

Figure 2.5: Example of how inner joint domains are obtained. Fixed head and hand
locations each constrain the location of the elbow, (a) and (b), respectively, and
the elbow must lie in their intersection (c). The resulting domain for each inner
joint (color-coded) can be obtained this way given all extremities (d). If we have a
silhouette (e), we can further constrain locations (f).

we do not explicitly detect internal joints. One advantage of our formulation is

that we can use the extremity candidates and hard length constraints to obtain

compact regions of feasibility for each internal joint. For example, assume that we

fix an extremity assignment; then, given an extremity location, any internal joint

must lie inside of a circular region centered at that extremity, with radius equal

to the maximum allowable distance imposed by the length constraints. To satisfy

all constraints, an internal joint must lie in the intersection of the feasible regions

given each fixed extremity. If Dp
ij(X

p
j ) denotes the feasible domain of inner joint Xp

i

given extremity Xp
j , then the domain of the inner joint is Dp

i =
⋂

j, s.t.xj∈X
p
e
D

p
ij(xj).

Figure 2.5 depicts this process. To obtain internal joint domains without fixing

any one set of extremities, we first take the union of all feasible joint regions given

each possible assignment for an extremity, and then take the intersection over all

extremities: D
p
i =

⋂

j, s.t.xj∈X
p
e

(

⋃

v∈D
p
j
D

p
ij(v)

)

. In our implementation, we create

the discrete domains for the inner joints by discretizing the region into a uniform

grid and selecting feasible grid points as the domains.
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2.3 AND/OR search with costly factors

Consider the problem as described in section 2.2.1, where the waist and neck joints,

together with a width parameter, define the torso segment of the body. If there are

Nw candidate locations for the waist point, and Nn locations for the neck point,

then there are NwNn candidate configurations for the torso segment. Thus, the

factor that evaluates local image likelihoods of torso configurations would need to

be evaluated NwNn times to precompute all factor entries before processing. If Nw

and Nn values are high enough relative to the treewidth of the graphical model (as

they are in our experiments), the process of precomputing factor entries can be more

time-consuming than the subsequent optimization problem. Since informed search

(e.g. Branch-and-Bound) avoids a large part of the search space, lazy evaluation can

be employed to avoid image evaluations. However, a straightforward computation of

the upper bounds needed to guide the search (e.g., via MBE [36]) would result in the

evaluation of all factor entries. By using the careful bound computation approach

we describe below, AND/OR search spaces can be used to reduce evaluation cost

while obtaining the exact global solution to the optimization problem. Unlike other

approaches, such as Belief Propagation, whose performance degrades as determinism

(probabilities close or equal to 0 or 1) is introduced, AND/OR Branch-and-Bound

is able to leverage determinism present in the network.

We will first briefly summarize AND/OR search spaces [11], mixed networks

[38], and AND/OR Branch-and-Bound [36]. We will then describe our proposed

approach to efficiently compute upper bounds directly from the data while evaluating
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few costly factor entries.

2.3.1 AND/OR search spaces

A graphical model P = (X,D, F ) is defined by a set of variables X = {x1, . . . xn},

the domain Di ∈ D of each variable, and a set of functions (or factors) F defined

on subsets of X. Given such a graphical model, its primal graph is the undirected

graph G = (V,E) whose nodes V are the variables, X, and whose edge set E is

formed by connecting any two nodes if their corresponding variables appear together

as arguments in one or more of the factors in F (see Fig 2.6a). A pseudo tree

T = (V,E ′), is a directed rooted tree defined on all of the graph nodes; any arc of

G which is not included in E ′ is a back-arc (see Fig 2.6b). Given this pseudo tree,

the associated AND/OR search tree has alternating levels of OR and AND nodes,

labeled Xi and 〈Xi, xi〉, respectively, where Xi is one of the variables in X, and xi

is a value from Di. The root of the search tree is an OR node labeled with the root

of T . Each child of an OR node Xi, labeled 〈Xi, xi〉, represents an instantiation of

Xi with a value xi. The children of each OR node 〈Xi, xi〉 are the children of Xi in

the pseudo tree T . Thus, depth first traversal of the AND/OR search space begins

with the root node, and alternates between choosing from possible assignments for a

variable at OR nodes and decomposing the search into independent sub-problems at

AND nodes. A solution is a subtree T ⊆ T , and is defined as follows: (1) it contains

the root node, (2) each OR node in T must have exactly one of its successors in T ,

and (3) each non-terminal AND node in T must have all of its successors in T (see
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Figure 2.6: Sample AND/OR search space: (a) network description and primal
graph, (b) pseudo-tree (with the parent set used for defining OR context in square
brackets), (c) AND/OR search tree, with solution highlighted, (d) AND/OR search
graph after merging nodes using OR context.

Fig 2.6c).

Each node Xi of the pseudo tree has an associated bucket BT (Xi) containing

each factor in F whose scope includes Xi and is fully contained along the path from

the root down to Xi. During the search process, at each AND node n = 〈Xi, xi〉, the

factors in BT (Xi) can be evaluated, as all their arguments have been instantiated

along the path from the root to node n. During depth first traversal of the graph,

factors in a node’s bucket are evaluated when the node is first opened. After a node’s

subtree has been evaluated, the partial solution of that subtree is propagated to its

predecessor. For a max-product task such as ours, where we maximize the product

of the factors in F , the value at an OR node is the maximum of its children, and the

value at each AND node is the product of the values of its children and the values

of factors in its bucket BT (Xi).
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The AND/OR search graph can be implicitly searched by caching solutions at

OR nodes. A node n is cached based on values assigned to its parent set, which

is defined as the union of all ancestors of n in the pseudo-tree connected by an

edge in the primal graph to n or its descendants in the pseudo-tree. The graph

size and search complexity are determined by the maximum parent set size in the

graph. Letting the maximum parent set size be the induced width (or treewidth)

and denoting it by w, graph size and hence search complexity are O(nkw), where

k = maxi |Di| is the maximum domain size. Parent sets are directly affected by

the ordering of nodes in the search pseudo-tree, so it is important to choose an

ordering which yields the smallest possible parent sets. This can only be done

efficiently by greedy approximation algorithms such as Min-Fill [36]. Figures 2.6b

and 2.6d respectively show the parent sets in square brackets for each variable, and

the implicit AND/OR graph that results.

2.3.2 Mixed networks

Given a constraint network R = (X,D,C), where X and D are defined as above,

and C is a set of deterministic constraints defined on subsets of X which allow or

disallow certain tuples of variable assignments, AND/OR search can be modified

to check constraints of R while maximizing P . This can be done by replacing the

primal graph described above with the union of the primal graphs of P and R.

During the search process, constraints (and constraint processing techniques) can

be applied to prune inconsistent paths early (see [38] for details). In our case, it
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is beneficial to avoid exploring portions of the search tree which have no solutions

by performing backtrack free search. This can be done by preprocessing constraints

using Bucket Elimination (BE) [10]; in cases where BE is infeasible, Mini-bucket

Elimination (MBE) [28] can be used to reduce the amount of explored dead ends.

2.3.3 Branch-and-Bound

Branch-and-Bound [36] can further reduce the search space and complexity required

to obtain the optimal solution. Branch-and-Bound search involves updating the

lower bound on the best solutions each time a solution sub-tree is traversed. The

lower bound, coupled with upper bounds on best extensions of a partial solution can

be used to prune the search space. In particular, a node is opened only if the upper

bound on extensions of the current partial solution is greater than the current lower

bound. Unlike the lower bound, which is computed during search, the upper bound

on the value of a subtree is obtained from the graphical model before search, using

the process of Mini-Bucket Elimination (MBE) [28, 36], which partitions buckets

with large parent sets into smaller mini-buckets. This partitioning ensures that the

approximate best solution has a score greater than or equal to that of the original

best solution, but is less expensive to compute.

2.3.4 Branch-and-Bound with costly factors

A disadvantage of Mini-Bucket Elimination is that it evaluates most if not all factor

entries. This is usually acceptable, but in our case accessing the value of a factor
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Algorithm 1 AND/OR Branch-And-Bound with Lazy Evaluation of Costly Factors

Inputs:

(1) probabilistic and constraint networks, R = (X,D,C) and P = (X,D, F ),
respectively

(2) factor entry evaluation costs, αj for each fj ∈ F

(3) upper bound cost ratio, r

Outputs: Top k assignments x1, . . . , xk, ranked by P such that xi ∈ R.

1: compute variable ordering and pseudo tree T using Min-fill heuristics
2: process constraints, C ′ ← process(C, T )
3: Fub ← F , β ← ∑

j βj =
∑

j αj

∏

Xi∈scope(fj) |Di|
4: while

∑

j,s.t. fj∈Fub
βj > rβ do

5: fj ← arg maxfj∈Fub
βj

6: Fub ← Fub \ fj

7: end while
8: compute upper bounds, U ← bounds(C ′, Fub), by MBE or AND/OR traversal
9: perform AND/OR Branch-and-Bound on R and P using constraints C ′ and

bounds U
10: return top k assignments

entry is an expensive operation. If the cost of evaluating one entry of factor fj ∈

F is αj for j = 1, . . . ,m, then the cost of evaluating all entries of fj is βj =

αj

∏

Xi∈scope(fj) |Di|. To avoid evaluating all entries, we first sort factors by βj, and

then iteratively remove the largest factors until the total remaining evaluation cost

is below some ratio r. To ensure that any solution of the resulting graphical model

bounds the original from above, we must replace each removed factor by a constant

that bounds all of its entries. By construction, the factors described hereafter are

always bounded by 1, so upper bounds obtained by MBE on the reduced problem

can be used to obtain the exact global solution, while ensuring that few entries need

to be evaluated in the process.

Our lazy evaluation approach to dealing with costly factors is summarized by
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Algorithm 1. The first step is to compute the variable ordering which is used to

construct the pseudo tree T . Constraint processing is then performed to yield a

new set of constraint factors C ′. Note that in our case, constraint processing yields

a new set of constraints that are consistent with the initial pseudo tree T . In the

next steps, a subset of factors Fub ⊆ F is chosen for upper bound computation to

ensure that most factor entries are not evaluated in computing the upper bounds U .

Finally, AND/OR Branch-and-Bound is performed on the mixed network, using the

processed constraints C ′ and the upper bound U . The constraint processing step

may be redundant if it is performed using MBE and upper bounds are also computed

by MBE using the same mini-buckets. However, it is not redundant if upper bounds

are computed by AND/OR traversal, as constraint processing will allow AND/OR

traversal to encounter dead ends earlier. Similarly, it is not redundant if MBE is

optimized to the binary nature of constraints to reduce memory and computational

requirements, enabling MBE to perform less approximation (by using larger mini-

buckets). Also, note that upper bounds, which are computed using MBE in [36] can

also be computed by traversal of the AND/OR search space of the reduced problem.

The traversal is more computationally intensive than MBE, but touches fewer of the

entries in factors from Fub , leading to an overall gain in efficiency.

2.4 Implementation details

In the previous sections, we have described our general formulation for a multi-

person part-based hand and foot tracker, as well as an AND/OR Branch-and-Bound
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approach for obtaining the exact solution efficiently while reducing image likelihood

evaluations via lazy evaluation. Because the novelty of our work does not lie in

low-level feature design for individual body part or body segment detection and

tracking, we left these details out of the general formulation. Various approaches

can be used to detect person, hand, and foot candidates [24, 2, 43, 22, 52, 55], or link

them into tracklets [22, 25, 14, 35]. Similarly, various approaches exist for evaluating

body segment image likelihoods [48, 15, 52, 58]. For simplicity and to demonstrate

the effectiveness of our approach, we use silhouette-based approaches that require

little training or parameter tuning; we base our approach on [43, 22] for person and

extremity detection, [25, 14] for tracking, and [15] for image likelihood evaluation.

2.4.1 Candidate tracklets

Before we construct the mixed network for assigning extremity candidates to people,

we must first track people and obtain a set of extremity candidate tracklets for each

person. We take the common approach of initially tracking the bounding boxes of

people, and then tracking smaller body parts ([17, 22]). Videos are preprocessed

by first computing optical flow [42] and then detecting moving foreground pixels

using background subtraction [30]. Once foreground pixels are obtained, we detect

potential head tracklets using a data association approach based on [25]. Head

tracks provide us with an estimated height, which in turn allows us to search for

potential hands and feet at the appropriate scale for each person. These hand and

foot detections are also linked into tracklets in a way similar to the heads. We first
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describe the detection association approach, assuming that a set of detections is

provided. We then provide a brief overview of the detection and post-processing

steps performed for each part of interest.

2.4.1.1 Tracking by association

The algorithm presented in [25] consists of three stages, each of which involves link-

ing the tail of one tracklet (a sequence of already linked detections) to the head of

another tracklet. Our scenes have no static occluders and entries/exits are not of

interest; consequently, we use a simplified approach, iteratively applying the Hungar-

ian algorithm and considering longer time gaps between tracklets at each iteration.

We avoid using motion based features that assume constant velocity since their per-

formance suffers when people change directions often (as they would in a basketball

game); we instead use optical flow based features for linking probabilities. We model

each detection as a tuple D = (c, R,X), containing the center c, a neighborhood R

around c, and a set of pairs X = {(xi, di)}. Here, xi is a 2D image location inside R

at distance di from the center c. To compare two detections D1 and D2 in frames t1

and t2, respectively, we propagate the xi locations of the earlier detection D1 using

flow as xt
i ← xt−1

i + ut−1,t(x
t−1
i ), until we reach frame t2, where ut−1,t(x

t−1
i ) is the

flow vector at location xt−1
i from frame t − 1 to frame t. The linking probability

Plink is given by

Plink(D1, D2) ∝
1

N1,2

∑

x
t2
i
∈R2

exp

(

−(di − d(xt2
i , c2))

2

2σ2

)

.
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The sum is over all pixels fromD1 propagated to frame t2 whose propagated locations

xt2
i are inside region R2, and N1,2 is the size of the union of the propagated pixels

from D1 and the pixels of D2. The intuition behind this measure is that if D1 and

D2 are the same detection, when propagated from t1 to t2, pixels inside R1 will move

to R2 and their distance from the center will remain the same, leading to a value of 1

for the above equation. The exponential term penalizes pixels that change distance

from the detection center while providing some rotational invariance.

2.4.1.2 Person tracklets

Person detections are obtained from silhouette contour peaks, similar to [22], though

we do not perform silhouette-based tracking. The neighborhood region R used for

association consists of pixels whose pathlength (or inner distance) from the contour

head point through the foreground mask is less than .15h, where h is the person’s

height approximated from the contour points below the head. Tracklets are formed

iteratively by flow-based linking with tracklet gaps of {1, 8, 16, 40} frames. Gaps in

tracklets are filled by the mean location of the pixels propagated from region R1 of

one tracklet’s tail to region R2 of the other tracklet’s head. To handle longer gaps,

we perform another iteration allowing gaps up to 160 frames, but flow becomes

unreliable for long gaps, so the linking probability is based on the χ2 distance mea-

sure between the two RGB histograms accumulated for each tracklet. We fill gaps

between linked tracklets by meanshift tracking [8], keeping approximated locations

only if meanshift tracking reaches one tracklet from the other (either forward or
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backward in time).

2.4.1.3 Extremity tracklets

Hands and feet are represented as circular regions at high curvature locations on

silhouette or skin blob contours (for hands only), within some distance from the

head. The centers are near the wrist and ankle, with radii given as a fixed fraction

of the person height (rhand = h
30

, rfoot = h
15

). Curvature is approximated by the

angle between the two segments formed by a contour point and its two neighbors

of equal distance δ forward and backward along the contour. After non-maximal

suppression, high curvature points are binned into hand and foot detections based on

distance from the head, and centers are set to the centroid of pixels within distance

2r of the contour point, where r is the hand/foot radius. Detections are linked into

tracklets using maximum gaps of {1, 8, 16, 40} frames, filling in gaps using pixels

from region R1 of the tail propagated to region R2 of the head.

2.4.2 Image likelihoods and priors

2.4.2.1 Body segment likelihood

Our body segment likelihoods are based on those described by Felzenszwalb et al .

[15]. Given two end-points of a body segment and a width parameter, we can define

a rectangular region representing that body segment that roughly represents the

body part and its nearby neighborhood. The rectangular region is divided into

multiple sub-regions Rr ([15] used two sub-regions). The likelihood of a body part
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Figure 2.7: Body segment likelihoods are split into four regions, defined by their
distance from the body segment.

given the two end-points is then

fskel(xi, xj, I, θ) =
∏

r

qcr

r (1− qr)(ar−cr),

where qr is the foreground pixel probability for region Rr, ar is the area of region

Rr, and cr is the foreground pixel count in region Rr. We use up to four regions for

all body segments, defined by the distance from the center axis of a body segment,

with manually selected parameters q1 = .99, q2 = .9, q3 = .5, and q4 = .3 (ordered

from center-most to outer-most regions; see figure 2.7); for upper arm, lower arm,

and head segments, which are smaller, we use only regions R2 and R4.

2.4.2.2 Appearance similarity

Appearance similarity factors represented by dotted lines in figure 2.2a are computed

as fapp(xi, xj, I, θ) = exp(−cappdKL) where dKL(xi, xj) is the symmetric Kullback-

Leibler divergence between appearance models of xi and xj. Appearance models

are represented by points sampled around the extremity locations, and divergence
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is computed efficiently using Kernel Density Estimation and a fast Gaussian sum-

mation approach [41].

2.4.2.3 Temporal motion consistency

The temporal consistency factors are defined based on the tracklet linking probabil-

ity Plink described above, modified to consider transitions to and from the unknown

state and to allow for more flexibility for cases where flow fails (e.g., very fast mo-

tions). For the case where both xt−1
i and xt

i are actual candidates (i.e., not unknown)

the factor is defined as

ftrans(x
t−1
i , xt

i) =

max

(

cswitch ,
Nlost

N1,2

e−
||ct−1

i
−ct

i
||2

2σ2 + Plink(x
t−1
i , xt

i)

)

where cti is the center of xi at time t, and Nlost is the number of pixels for which

flow could not estimated (in [42], this occurs when forward and backward flow do

not match, usually due to fast motion or occlusion). We truncate the factor to have

a minimum value of cswitch to make large jumps equally likely. The switch from a

known candidate to the unknown state or vice versa is given a cost of
√
cswitch , so

a large jump can be seen as a switch from the tracklet of xt−1
i to unknown followed

by a switch to the tracklet of xt
i.

2.4.2.4 Priors

Our approach does not use strong pose priors, to avoid becoming pose or activity

specific. In particular, we assume a uniform distribution on body segment length
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(as a proportion of height) as long as hard length constraints are satisfied. We do,

however, impose simple priors on the torso and head. The torso prior penalizes torso

segments that deviate much from vertical position (the types of people we can detect

and track are generally close to standing position). The head prior penalizes acute

neck angles to coincide with physical constraints; this prior involves three joints

(head, neck, and waist), but since we have a single head location in our approach,

the prior is effectively a pair-wise prior on the neck and waist variables.

2.5 Experiments

We demonstrate our approach quantitatively on three datasets: outdoor scenes con-

taining a group of three to five interacting people; one-on-one basketball in outdoor

scenes; and part of the publicly available HumanEva I dataset [60], which contains

single person sequences. While our focus is on tracking extremities of multiple peo-

ple efficiently, we use the single person HumanEva I dataset to show that our model

performs comparably to state-of-the-art approaches, observing only a small perfor-

mance drop in the absence of large training sets or activity models. The following

subsections define our performance measures, describe dataset details, evaluate infer-

ence approach computational cost, and compare our occlusion reasoning framework

to alternatives. Table 2.1 provides dataset statistics and figure 2.8 shows sample

qualitative results.
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2.5.1 Performance measures

We measure system performance in two ways: average pixel error and precision-

recall measures. Both measures require that detected people and their extremities

are associated to ground truth people and extremities. We do this hierarchically, first

fixing associations between detected and ground truth people, and then computing

extremity associations. A one-to-one matching between detected person bounding

boxes and ground truth person tracks is chosen such that it minimizes average

distance between head locations. Because our framework does not differentiate

between left and right hands or feet, average pixel errors are computed from the

maximum matching between detected and ground truth extremities that minimizes

average error. The average pixel errors for each dataset are visually displayed in

figure 2.9. Precision and recall is computed in a similar way, but we also allow

detected hands (or feet) of a detected person to match the ground truth hands (or

feet) of other ground truth people in addition to those belonging to the ground truth

person associated at the bounding box level. This approach is more strict since a

detected hand (or foot) that matches the ground truth hand (or foot) of a wrong

ground truth person (according to the bounding box matching) will be counted as a

false positive. A detected hand or foot is considered a false positive if the distance

to its matching ground truth location is greater than one-tenth of the ground truth

person height. If a detected person does not match a ground truth person, all

detected extremities will be counted as false positives; similarly, if a ground truth

person is not matched to a detected person, all ground truth extremities will be
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Table 2.1: Datasets
Mean±std Annot. People/

Frames Height People frame
HumanEva I 5533 292 ± 34 4029 1
Group 1429 128 ± 14 5497 3-5
Basketball 101933 133 ± 27 2499 2

Table 2.2: Average pixel error on HumanEva I
Overall Hands Feet

Avg over all errors 12.65 13.64 11.66
Fully and part. vis. only 10.86 11.17 10.55
Fully visible only 10.28 10.39 10.18

Table 2.3: Average pixel error on group dataset
Overall Hands Feet

Avg err (pix) 2.87 2.34 3.17
Unknown, fully visible 8.0% 10.2% 5.9%
Unknown, part. visible 7.1% 10.0% 4.2%
Unknown, not visible 23.4% 35.6% 11.4%

Table 2.4: Average pixel error on basketball dataset
Overall Hands Feet

Avg err (pix) 7.42 8.56 6.68
Unknown, fully visible 15.5% 20.6% 10.4%
Unknown, part. visible 6.4% 7.6% 5.2%
Unknown, not visible 11.2% 19.0% 3.5%

counted as false negatives. In addition, we report three types of recall measures.

The first measure penalizes all missed hands/feet, counting them as false negatives

regardless of their visibility (Rnv); the second discards false negatives if the missed

ground truth extremity is marked not visible (Rpv); finally, the third counts only

false negatives if the ground truth extremity is marked fully visible (Rv). The F1

measure (harmonic mean between precision and recall) is computed for each pair of

precision and recall values.

36



Table 2.5: Precision-recall evaluation of candidate tracklets, single- and multi-frame
assignments

hands
P Rnv Rpv Rv F1nv F1pv F1v

HumanEva I
candidates 0.69 0.75 0.91 0.96 0.72 0.78 0.80
assign., single-frame 0.96 0.74 0.90 0.95 0.84 0.93 0.96
assign., multi-frame 0.96 0.74 0.90 0.95 0.84 0.93 0.96
group
candidates 0.51 0.42 0.67 0.80 0.46 0.58 0.62
assign., single-frame 0.90 0.40 0.64 0.77 0.56 0.75 0.83
assign., multi-frame 0.92 0.41 0.65 0.79 0.57 0.76 0.85
basketball,automatic
candidates 0.51 0.36 0.46 0.53 0.42 0.49 0.52
assign., single-frame 0.74 0.33 0.43 0.50 0.46 0.55 0.59
assign., multi-frame 0.74 0.34 0.44 0.50 0.46 0.55 0.60
basketball,interactive
candidates 0.58 0.43 0.55 0.63 0.50 0.57 0.61
assign., single-frame 0.80 0.42 0.53 0.61 0.55 0.64 0.69
assign., multi-frame 0.81 0.42 0.54 0.61 0.55 0.65 0.70

feet
P Rnv Rpv Rv F1nv F1pv F1v

HumanEva I
candidates 1.00 0.77 0.91 0.95 0.87 0.95 0.97
assign., single-frame 1.00 0.76 0.90 0.94 0.86 0.95 0.97
assign., multi-frame 1.00 0.76 0.90 0.94 0.86 0.94 0.97
group
candidates 0.49 0.80 0.88 0.93 0.61 0.63 0.64
assign., single-frame 0.97 0.76 0.85 0.90 0.85 0.91 0.93
assign., multi-frame 0.98 0.77 0.85 0.90 0.86 0.91 0.94
basketball,automatic
candidates 0.68 0.68 0.72 0.78 0.68 0.70 0.73
assign., single-frame 0.85 0.62 0.65 0.71 0.72 0.74 0.77
assign., multi-frame 0.85 0.62 0.65 0.71 0.72 0.74 0.78
basketball,interactive
candidates 0.75 0.76 0.80 0.86 0.76 0.77 0.80
assign., single-frame 0.89 0.71 0.74 0.81 0.79 0.81 0.85
assign., multi-frame 0.90 0.72 0.75 0.82 0.80 0.82 0.86
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Figure 2.8: Sample results for datasets with multiple people. Heads, hands, and feet
are indicated by large, small, and medium sized circles, respectively. The radius is
a fixed proportion of person height determined by the type of extremity. Color
indicates the person to which each extremity belongs.
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BasketballHumanEva Group

radius=average error

Figure 2.9: Average errors from tables 2.2, 2.3, and 2.4, drawn in context.

2.5.2 Datasets

2.5.2.1 HumanEva I dataset

We processed all frames of S2 Gestures 1, S2 Box 1, S2 Walking 1, S3 Gestures 1,

S3 Box 1, and S3 Walking 1 (700 to 1100 frames per sequence), all from camera 2.

The video resolution is 640 by 480 and people are on average 292 pixels tall. Errors

are computed from the ground truth motion capture data projected onto the single

camera image. To compare to previously reported average error measurements, we

automatically filled in unknown hand and foot locations as a post-processing step

using one of two approaches: for short periods where hands/feet are not known,

we interpolate between known locations using cubic spline interpolation; for long

periods, we set the location to a standard position for the unknown part along

the vertical axis of the person’s bounding box (.5h and 2rfoot from the bottom of

bounding box for hands and feet, respectively). Table 2.2 reports the results on the

videos in their original size of 640 x 480. The errors are competitive with the state-of-

the-art techniques tabulated by Martinez et al . in [37], where the authors themselves

report average error rates of 13.2 pixels using bipedal motion constraints for the legs.

The best results were obtained by [33] which were estimated by Martinez et al . from

39



the 3D errors to be about 5 to 7 pixels in 2D. This approach was activity specific

and assumed cyclic motion. Other approaches had errors between 10 and 14 pixels

[45, 23], and all were activity (and sometimes even view) specific. Our approach was

not trained on the HumanEva I dataset, nor on any activity or view, but was still

able to obtain comparable results (average errors for legs are 11.66 pixels). Since our

algorithm does not train on poses and is not activity specific, we do not expect it

to accurately hallucinate positions of occluded extremities. To evaluate the penalty

incurred by guessing occluded extremity locations, we augmented the HumanEva

I ground truth by labeling hands and feet with one of three labels: fully visible,

partially visible, and not visible (fully occluded). Table 2.2 shows average errors

for all ground truth extremities including fully occluded ones (first row), for fully

and partially visible ground truth extremities (second row), and for fully visible

ground truth extremities (third row). As expected, our system performs best when

the actual body parts are not occluded, but the error introduced by interpolation is

relatively small.

2.5.2.2 Outdoor group dataset

The outdoor dataset of multiple interacting people includes actions such as hand-

shakes, drinking from mugs, and gestures, and contains periods of partial and full

inter-person occlusion. The video resolution is 480 by 270 at a frame-rate of 30fps,

with an average of 128 pixels of vertical resolution for each person. In most of

the sequences, people wore similar clothing, making the task particularly difficult

40



in the presence of inter-person occlusion. Based on 1324 frames annotated with

ground truth (5497 pose instances), the detected locations had an average error

of approximately 3 pixels, as shown in table 2.3. For these videos, we do not

interpolate or guess unknown hand/foot locations, but we instead report how often

(as a percentage) parts are declared unknown by our system. As table 2.3 indicates,

most unknown extremities are missed because they were fully occluded. Hands are

occluded more often than feet (e.g., hands in pockets, hands are occluded by torso),

so they are declared unknown more often than feet. Also, since they are much

smaller, they are missed more often even when they are visible.

2.5.2.3 Outdoor one-on-one basketball dataset

The one-on-one basketball dataset contains videos of roughly 100,000 frames of

960 by 540 video at 30fps (about 1hr). These videos contain a large variety of

natural poses that occur during a game, and include rapid motions and severe

occlusion as the defensive player often maintains close proximity to the offensive

player. Players are on average 132 pixels tall. Hands are more difficult to detect

in these videos due to their small size and relatively fast motions. Because some

of the sequences are longer than 25,000 frames, automatic head tracking fails a

number of times. For this reason, we report results with both fully automatic

and partially annotated bounding box tracking. Partially annotated results are

obtained by allowing the user to provide input during the person bounding box

tracking step to remove player track merges/switches. This does not require the user
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to add missing detections, i.e., person bounding boxes are automatically detected

by the person detector, and manual interaction involves only the association of

a player identity to these detections to correct tracker mistakes. The amount of

user interaction is minimal: for the seven sequences of roughly 100,000 frames, a

total of 168 tracklets were obtained using the fully automatic approach, whereas

manual intervention ensures that only 14 tracks are obtained. For evaluation, every

100th frame of each sequence is manually annotated with ground truth extremity

locations. Hand and foot average errors (with user interaction) are shown in table

2.4; the performance hit caused by incorrectly associating tracklets is small, as can

be seen in table 2.5.

2.5.3 Inference approach

We evaluate our lazy evaluation inference approach by performing inference using

(Loopy) Belief Propagation (BP), Variable (or Bucket) Elimination (VE) [10], and

AND/OR Branch-and-Bound (AO). For BP, we implemented a C/C++ version of

the code provided by [68]; we also used the open source library libDAI [39] and ob-

tained similar results. We also evaluate various ways in which hard constraints are

handled before evaluating probabilistic factor entries. Constraints are either ignored

(only in the BP case), partially considered (P), or fully processed (F). In the first

case, constraints are ignored by evaluating all factor entries during a preprocess-

ing step that populates all factor tables with entries. In the second case, they are

partially considered by first checking any immediate constraints before evaluating
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a probabilistic factor (by immediate, we mean any constraint functions defined on

the same variable subset as the factor in question, and in the AND/OR case any

other constraints instantiated along the search). Finally, in the third case, they are

fully processed by some constraint processing approach as described in section 2.3.

For AND/OR search, we compare three approaches to dealing with upper bounds,

which are computed before search from the factors (lower bounds are obtained dy-

namically during search). The straightforward approach is to assume a constant

upper bound (C) based on knowledge of how factors are constructed; in our case no

factor has a value greater than 1, so we can assume this upper bound without actu-

ally evaluating any factor entries. We also compare Mini-bucket Elimination (MBE)

[28, 36] to a full traversal of the reduced AND/OR search space (AO); in both of

these cases, the most costly factors are removed before bounds computation as deter-

mined by the parameter r. Thus the methods that we compare are (BP), (BP,P),

(VE,P), (AO,P,C), (AO,P,MBE), (AO,F,C), and (AO,F,AO). The naming

pattern uses (method,constraint,bounds) triplets to describe the general infer-

ence, constraint handling, and upper bound approaches, respectively. We omit the

constraint and bounds parts of the triplets when they are ignored. Also, note that

because our full constraint processing consists of performing MBE on the constraints

only (a bottom-up approach, with respect to the pseudo tree), (AO,P,MBE) and

(AO,F,MBE) are equivalent to each other; however, other constraint processing

techniques (such as propagating constraints top-down with respect to the pseudo

tree) may be appropriate for the case where upper bounds are computed with MBE.

Note that all of the inference approaches listed above except for BP and BP,P ob-
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tain the exact globally optimal solution to the optimization problem in each frame.

Because we are dealing with loopy graphical models, Belief Propagation is not guar-

anteed to converge, and the determinism (zeros and ones as probabilities) in our

problems further reduces the convergence rate. In our experiments, the BP-based

approaches often did not converge, leading to solutions which did not satisfy the

hard constraints or attain the globally optimal solution. The reason that exact ap-

proaches work in our case is because we apply occlusion constraints at the extremity

level, not between internal nodes, sufficiently reducing the overall treewidth to allow

for exact inference. We report our inference approach experiments using only the

group dataset, as it contains the most complex interactions.

2.5.3.1 Inference vs. evaluation

Figure 2.10 shows the average time spent evaluating image likelihoods (red) and

average time performing inference (blue) for each method. For our problem, it is

evident that most of the time spent assigning hands/feet is spent on evaluating

image likelihoods relative to the time spent performing inference to find the best

assignment. Because the inference time is so small relative to factor evaluation time,

it is less useful to speed up inference itself, and more useful to avoid image likeli-

hood evaluations by consulting constraints before evaluation and by performing lazy

evaluation. Figures 2.11 and 2.12 show the total number of evaluated factor entries

and speedup, respectively, as problem size varies (measured by total possible image

evaluations). Two results become evident: (1) methods that leverage constraints
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in this case, the time saved by not evaluating any entries to compute upper bounds

was greater than the time saved by having more informative upper bounds as given

by MBE.

2.5.3.4 Parameters

Finally, we evaluate the performance of our approach as parameters k and r are

varied. Figure 2.13 shows that there is a trade-off between the quality of the upper

bounds and number of evaluated entries to give better upper bounds. For high

values of r (meaning more factors are kept for upper bound computation), upper

bounds are more accurate, but too much time is spent evaluating upper bounds.

If r decreases too much, upper bounds become uninformative, decreasing overall

performance. The optimal value of r is around .10; a desirable result from the

graph of time vs r is that total time does not change much for deviations from the

optimal value of r. The second graph, shows total time as k, the number of solutions

per connected component in the primal graph, is varied. From this graph, we see

that the total time scales well with larger values of k.

2.5.4 Inter-person occlusion

We also performed experiments that compare our joint inter-person occlusion rea-

soning approach with two alternative approaches: (1) computing the best assign-

ment for each person individually by ignoring assignments of other people, and (2)

computing the best joint assignment iteratively by fixing the assignment of the best
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Figure 2.13: Inference parameters: average time per frame by varying k (number of
top solutions) and r (ratio for upper bound computation).

scoring person that is consistent with the already-fixed set. Also, since our cur-

rent implementation obtains the head location from people’s bounding boxes and

does not allow it to change during the assignment process, we can enforce occlu-

sion constraints between the head and other body parts as a pre-processing step by

removing from consideration any assignments that violate a head-limb constraint.

Table 2.6 shows hand and foot detection results on the group dataset for various

occlusion approaches, in terms of precision, recall (computed only when extremities

are at least partially visible), and F1 measures. The first row shows the result of

finding the best assignment for each person individually, without head constraint

pre-processing (thus, skin blobs corresponding to people’s faces are incorrectly as-

signed as hands). The second and third rows show the individual and iterative

approaches, both with head constraint pre-processing. Finally, the last two rows

show the results of our approach, with and without temporal assignment track-

ing. Note that the single-frame results are single-frame only in the sense that we

are reporting the best solution found per frame; candidates are still obtained from
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Table 2.6: Comparison of inter-person occlusion approaches
hands feet

occlusion approach P R F1 P R F1
individual 0.69 0.66 0.67 0.84 0.82 0.83
individual, pre-proc. 0.82 0.66 0.73 0.86 0.83 0.84
iterative, pre-proc. 0.87 0.62 0.72 0.91 0.78 0.84
joint, single-frame 0.90 0.64 0.75 0.97 0.85 0.91
joint, multi-frame 0.92 0.65 0.76 0.98 0.85 0.91

candidate tracklets obtained from multiple frames. Table 2.6 shows that as we in-

crease the complexity of occlusion reasoning, performance increases. The only case

in which F1 remains fixed or is lower is when comparing the individual and itera-

tive occlusion handling approaches; in this case, obtaining joint solutions iteratively

increases precision significantly, but also lowers recall. Our joint approach increases

both precision and recall over the iterative approach, and obtains the highest F1

scores. A comparison between multi-frame and single-frame joint methods shows

that our temporal transition factors improve results, but very little; this might be

explained by the fact that some temporal information is included during low-level

tracklet formation.
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Chapter 3

Multi-agent event recognition in structured scenarios

3.1 Overview

The automated analysis of multi-agent activity is difficult due to interactions that

lead to large state spaces and complicate the already uncertain low-level process-

ing. Often, activities must satisfy rules that impose a spatio-temporal structure.

This structure can be leveraged to disambiguate amongst complex activities. For

example, in the case of one-on-one basketball, offensive and defensive rebounds are

often ambiguous, since both players are near each other as they reach for the ball.

However, the rules of half-court basketball can reduce this ambiguity by relating

the rebound event to other less ambiguous events; e.g., if the ball were shot shortly

after the rebound without any of the players running back to the three-point line,

then an offensive rebound must have occurred, since a defensive rebound requires

the ball to be cleared first (i.e., taken to the three-point line).

Our goal is to create a framework that, given a semantic description of what

generally happens (i.e., rules, meaning of relevant events), determines the events

that occurred. We test our framework on one-on-one basketball games, in which

only two players interact, but event structure is non-trivial, and visual recognition

is hampered by players frequently occluding each other. We do not use human anno-

tations such as text, camera movement, shot-changes, or overlaid statistics (unlike
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[21, 71]), which are typically used to analyze sports videos, as we seek a frame-

work that can analyze broader classes of human/object interactions. The stationary

camera simplifies image to court registration, but it also removes important infor-

mation that a human operated camera provides; e.g, camera movement can reveal

possession, and shot-changes provide a partial temporal segmentation.

We analyze single camera videos of one-on-one basketball in the context of

court annotations (i.e., hoop and points on the court plane), and spatio-temporal

relations describing the rules and events of interest. We automatically detect and

track players, their hands and feet, and the ball, generating a set of trajectories which

are used in conjunction with spatio-temporal relations to generate event observa-

tions. Knowledge about spatio-temporal event structure is expressed in first-order

logic using a principled and extensible approach based on Allen’s Interval Logic [1].

Robustness to low-level observation uncertainty is provided by Markov Logic Net-

works (MLN) [12], which attach weights to first-order logic formulas and dynamically

construct Markov networks representing hypothesized events, spatio-temporal rela-

tionships, and low-level observations. Inference on this Markov network determines

the high-level basketball events (e.g., check, dribble series, shot) that occurred.

Our main contribution is a system that efficiently and robustly recognizes

events in structured scenarios from noisy visual observations by combining (1) visual

analysis of people and object movements, (2) a powerful and natural event reasoning

representation based on Allen’s Interval Logic, (3) probabilistic logical inference via

MLNs, and (4) efficient bottom-up event hypothesis generation.
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Figure 3.1: Framework overview.

3.2 Related Work

Hidden Markov Models (HMMs) [46] have been successfully applied to action recog-

nition tasks, but their performance degrades as the state size increases (much more

data is needed to train an accurate model); this is a problem, since multi-agent

interaction models generally require a large state space. To deal with this complex-

ity in highly coupled T’ai Chi hand movements, Brand et al . [6] presented coupled

HMMs, which factorize the joint transition table into two smaller transition tables.

Shi et al . [57] used Propagation Nets (P-Net), an extension of Dynamic Bayesian

Networks (DBNs) that models duration and can represent complex activities in-

cluding concurrent events, but requires manual specification of state connectivity.
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Unfortunately, HMM and DBN extensions generally assume fixed number of actors

and objects, do not handle missing observations well, and require large training sets

to learn structure that a human could easily describe.

Expert domain knowledge has also been leveraged to create models of multi-

agent activities. Intille and Bobick [26] recognize football plays by using temporal

constraints to dynamically construct complex action Bayes nets from smaller man-

ually specified Bayes nets that relate agent goals to visual evidence. Perse et al .

[44] analyze team activities in basketball games by transforming trajectories into

a sequence of semantically meaningful symbols and comparing them to sequence

templates provided by domain experts. Ryoo and Aggarwal [53] model two per-

son interactions by a context-free grammar (CFG), where high-level interactions are

defined hierarchically using logical spatial and temporal predicates on sub-actions.

Their atomic actions are detected using HMMs, but CFG parsing is not proba-

bilistic and can be sensitive to low-level failures. Similarly, Store Totally/Partially

Recognized Scenario (STRS/SPRS) [18, 64] approaches efficiently recognize multi-

agent scenarios, but are symbolic and do not account for low level uncertainty. To

introduce robustness to inconsistent first-order logic knowledge-bases (e.g., due to

low-level errors, or imperfect rules), Tran and Davis [65] used Markov Logic Net-

works (MLN) [12] to analyze simple person-person and person-vehicle interactions.

Similarly, Sadilek and Kautz [54] analyzed multi-agent interactions from GPS data,

using MLNs to jointly denoise low-level data and incorporate temporally distant

events. Their rules focus on a single event, capture, in the game of capture the flag.

Multi-agent activities have also been analyzed with little or no supervision.
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Gupta et al . [21] use label data loosely associated with videos during training to

automatically learn the spatio-temporal structure of baseball plays. Siracusa and

Fisher [61] infer the interaction dependency structure in basketball games using a

directed temporal interaction model and a latent variable to allow interaction de-

pendency structures to change over time. While the latent variable state sequence is

sampled by Markov Chain Monte Carlo (MCMC), given a state sequence, the pos-

terior over dependency structures is obtained efficiently by exact inference. Sridhar

et al . [62] perform unsupervised learning of events by modeling interactions between

tracks as a relational graph structure that captures spatio-temporal relationships,

clustering events by MCMC. These methods can be useful in learning multi-agent

event patterns, but require large training sets to learn constraints.

Our approach leverages expert domain knowledge, expressed in first-order

logic, and uses a powerful and natural representation based on Allen’s Interval

Logic to reason about complex relationships between multiple properties, events,

and observations. By performing logical inference probabilistically using MLNs, our

approach is robust to mistakes and knowledge base inconsistencies. A theoretical ad-

vantage of MLNs is that they can represent (and augment) popular formalisms such

as BNs, HMMs, DBNs, and CFGs. Because of the expressiveness of our approach,

we do not require large training sets; in fact, in our experiments, all knowledge is

provided manually via rules, though probabilistic observations can be incorporated

as in [65].
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Figure 3.2: Trajectory extraction.

3.3 Trajectory Extraction

The low-level part of our system detects and tracks the basketball, players, and

their hands and feet, providing their trajectories to the high-level component (see

figure 3.2). Videos are preprocessed by first computing optical flow [42] and then

detecting moving foreground pixels using background subtraction [30]. To handle

slow outdoor lighting changes caused by clouds and changes in relative position of

the sun, we split videos into smaller segments and use the same segment for training

and testing, using flow to mask out moving pixels during the training phase. Once

foreground pixels are obtained, we detect and track player heads, hands, and feet

as in chapter 2, and deal with the ball similarly, first detecting candidates and then

linking them into tracklets using a data association approach.
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The ball is modeled as a circular object, so initial detections are found by

fitting ellipses to foreground blobs and keeping only roughly circular blobs. As the

ball is often in the air during a basketball game, this is a good way to learn its

appearance. Detections, normalized to the same size, are clustered using k-center

clustering [19] of color rank vectors (r′, g′, b′) stacked to create a vector of size 3N

for the N pixels belonging to the ball. Color rank provides some invariance to

illumination changes and is computed by replacing each channel value with the

percentage of pixels in the ball mask that have lower values for that channel. K-

center clustering minimizes the maximum cluster radius, so outliers are placed in

small clusters and can be removed. Remaining detections are extended forward and

backward in time by template matching until the template no longer overlaps with

the foreground mask or is sufficiently close to an existing detection. The resulting

detections are linked into tracklets (with max frame gap of 1), keeping for each

frame only the tracklet that contains the largest number of initial detections that

were detected by ellipse fitting.

3.4 Event reasoning

Given the ball and player trajectories, court homography, and hoop location, we

use the rules of basketball to generate and evaluate hypothesized events. The rules

of the game are expressed using first order logic following the example of Allen

et al . [1], and describe events by modeling their interactions with properties of

the world (see table 3.1). Observations computed from the trajectory and court

57



annotations are incorporated into the knowledge base using a set of soft rules. To

avoid computational complexity, instead of considering all O(T 2) possible intervals

for each event, our system uses the rules themselves to generate bottom-up event

hypotheses from observations, aiming for a high recall ratio, while avoiding events

that are unlikely given our rules (e.g., if the rules say that for a shot to occur, the

ball must be in the air, then a hypothetical shot event is generated only when the

ball is observed in the air). This bottom-up process may not always generate events

that are consistent with the rules (the ball being in the air does not necessarily

mean that a shot was attempted), so we use a probabilistic inference approach to

determine which set of hypothesized event candidates most likely occurred, given

the observations and the rules. See figure 3.1 for an illustration of this process.

3.4.1 Interval logic representation

The rules of basketball are non-trivial, even for the one-on-one case, so we need

a principled approach to representing the rules and how they relate both to the

state of the game and to visual observations. For this purpose, we adopt a frame-

work similar to that proposed by Allen et al . [1], where predicates are grouped into

three categories: properties, events, and actions. Temporal relationships between

these predicates, which are defined on time intervals, are expressed using the fol-

lowing base binary relations and their inverses: before, meets, overlaps, starts,

during, finishes, and equals. Properties describe the relevant parts of the state

of the world; events change these properties when they occur, as long as prerequisite
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properties hold before the event’s occurrence; finally, actions are programs that an

agent (such as a robot) executes in order to cause events to occur. This last cate-

gory makes use of a Try predicate which indicates that an agent attempts to perform

an action, which if successful, brings about one or more events. In our case, the

system is a passive observer, so it cannot perform actions to bring about changes;

thus, we ignore the action category described in [1]. Instead, we explicitly model

observations with rules that generally hold true (but not always, due to mistakes in

visual analysis, or because these rules are rules-of-thumb). Below we describe the

categories of predicates and related axioms.

3.4.1.1 Properties

Properties describe the state of the world. In one-on-one basketball, the relevant

properties are possession(p, i), last touched hoop(i), can dribble(i),

must clear(i), and must check(i) (see table 3.1 for descriptions).

3.4.1.2 Events

An event is defined by the prerequisite values of relevant properties prior to, during,

and after its occurrence. The occurrence of an event could also imply that a related

event occurred or that other events could not have occurred. Allen et al . [1] group

event related axioms into event definition, event generation, action definition, and

event explanation closure categories. We adopt these categories, excluding action

definition, and add another category, event mutual exclusion. The event definition
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Properties
possession(p, i) player p has possession during interval i; mutually exclu-

sive and exhaustive between players
last touched hoop(i) no player touched the ball since it last hit the hoop
can dribble(i) once dribble series ends, ball cannot be dribbled again

until after a rebound, check, or steal
must clear(i) after a defensive rebound, ball handler must clear the ball

by taking it to three-point line
must check(i) ball must be checked to player who has possession after

a shot is made or ball goes out of bounds
Events
shot {∗}(p, i) the shot events, shot made and shot missed

dribble series(p, i) complete series of continuous ball bounces performed by
player p during interval i

check(p, i) sequence of passes to/from offensive player p, who is out-
side three-point line; last pass to p resumes play

rebound(p, i) begins when ball falls from hoop (after a missed shot),
and ends when player p obtains ball

clear(p, i) after a defensive rebound player p clears ball by taking
it to the three-point line

steal(p, i) player p steals ball from other player, not by a rebound

or out of bounds event
out of bounds(p, i) starts when ball is out of bounds and ends when the ball

is brought back on the court
Observations
obs in air(i) ball is in the air; implies that someone took a shot
obs possession(p, i) implies possession(p, i) with weight prop. to # frames

ball is nearest p and p is farthest from hoop
obs shot made(p, i) ball seen in air, obs possession(p, i−) is true before

shot, obs near hoop(i+) is true at end of shot
obs shot missed(p, i) ball seen in air, obs possession(p, i−) is true before

shot, obs near hoop(i+) is not true at end of shot
obs check(p, i) sequence of passes with ball ending near p (pass observed

by switches in obs nearest ball(p, i))
obs dribble(p, i) at least one bounce near p was observed

Table 3.1: Property and event predicates are used as queries. Observation predicates
used as evidence in observation rules are shown; others such as obs near hoop,
obs near ball, etc., are not listed.
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axioms are of the form event(i)∧φ⇒ ψ, where φ and ψ are expressions that contain

temporal constraints between the event and relevant properties. For the rebound

event,

rebound(p, i)⇒ ∃i−, i+same end(i, i−) ∧ meets(i, i+)∧
last touched hoop(i−) ∧ ¬last touched hoop(i+)∧
can dribble(i+) ∧ possession(p, i+)∧
(possession(p, i−) ∨ must clear(i+))

is an event definition axiom which states that for the rebound event to occur over

interval i, person p first touches the ball at the end of the rebound event, and can

then dribble the ball; p has possession after the rebound, and if p did not initially

have possession, then the ball must be cleared. The event generation axioms are of

the form event(i) ∧ φ ⇒ ∃i′event′(i′) ∧ ψ. In the basketball scenario, such a rule

might say that if a shot event occurs, either a jump-shot, layup, or set-shot occurs.

The event explanation closure axioms encode the assumption that only known events

change properties, so if a property changed, an event affecting this property must

have occurred. For example,

can dribble(i′)∧ ¬can dribble(i) ∧ meets(i′, i)⇒
∃p, i′′dribble series(p, i′′) ∧ meets(i′′, i)

states that for can dribble to change from true to false, a dribble event must have

occurred, after which the property transitions from true to false. Finally, event

mutual exclusion axioms (not explicitly included in [1]) encode the constraint that

some events cannot occur simultaneously.

intersects(i1, i2)∧ dribble series(p1, i1) ∧ (i1 6= i2 ∨ p1 6= p2)⇒
¬dribble series(p2, i2)

This axiom states that a person can only take part in one dribble series event

at one time, and only one person at a time can dribble. The temporal relation
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intersects is a disjunction of a subset of the base temporal constraints and their

inverses that is true if the intersection of the intervals results in a time interval of

some positive length.

3.4.1.3 Observations

Observations about the world could imply certain events happened, or that certain

values of properties are more likely than others. These were not included explicitly

in Allen et al . [1], but we include them since they determine the likelihoods of events

that occurred.

obs nearest ball(p, i) ∧ ¬obs nearest hoop(p, i) ⇒ possession(p, i)

These rules may be inconsistent for two reasons: 1) observations are generated

by video processing, which may include mistakes, and 2) some observation rules

encode common sense knowledge that generally holds, but may at times lead to an

inconsistent knowledge base. In the example above, when the ball is nearest the

player who is farthest from the hoop, it generally means that player has possession

of the ball, but this may not always be true (e.g., immediately after a rebound, or

after a successful drive to the hoop). These potential inconsistencies are dealt with

by our inference approach by allowing these rules to be treated as soft rules (i.e., a

truth assignment can break these rules and incur a relatively low cost compared to,

say, violating the rules of basketball).
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3.4.2 Bottom-up event hypothesis generation

To avoid the computational cost of considering all O(T 2) intervals for each event

and property (assuming T frames), we generate a set of intervals which is small but

has a high recall rate. Since the observation predicates are deterministic given the

trajectories obtained by the tracking module, the intervals during which observation

predicates hold are deterministic as well. Our approach, then, is to use the logic

rules themselves to generate candidate intervals for events and properties. For exam-

ple, since a dribble series event is related by the observation rules to predicates

such as bounce in(i) and near ball(p, i), we can use these predicates to generate

hypothesized start and end times for a dribble series. Figure 3.3 depicts this process

for the dribble series event. Given the observation predicates, a small set of start

times and end times is created, and from these two sets, a small set of intervals is

created by pairing start and end times that are consistent with each other (end time

is after start time, etc). A similar process is performed for all of the events shown

in table 3.1: observed start and end times for observation predicates are used to

create hypothesized start and end times for event predicates. We treat all ground

atoms that contain the hypothesized intervals generated here as open world atoms;

all others are closed world, and are assumed to be false.

The set of hypothesized intervals for each event predicate and the event expla-

nation closure axioms presented earlier are then combined to generate times during

which properties might change value. For example, if all properties change values

either at the beginning or end of an event, then all unique hypothesized event start
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Figure 3.3: The bottom-up event generation module generates hypothesized event
intervals from low-level observations, with the goal of achieving a high recall rate
with a reasonably small set of intervals. Here, seven intervals are generated from
observations for which dribble series(p, i) is open world (could be true).

and end times can be collected to discretize time (non-uniformly). The intervals

considered for properties are those intervals with start and end times that are con-

secutive in the ordered list of event interval start and end times (these time periods

are called moments); thus, if there are M unique times that appear as start or

end times in hypothesized event intervals, there will be M + 1 moments over which

property predicates can be grounded. This allows us to remove some existential

quantifiers (which can be computationally expensive). For example, the first line of

the rebound event definition in section 3.4.1, can be replaced by the following:

rebound(p, i) ∧ started by moment(i, i−) ∧ meets moment(i, i+)⇒
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TP FP FN P R F1
Tracking
Hand tracklets 2153 1491 1214 .59 .63 .61
Foot tracklets 3821 1229 545 .76 .86 .81
Hand assign. 2095 475 1255 .82 .61 .70
Foot assign. 3600 339 720 .91 .82 .86
Ball tracks 1059 76 87 .93 .92 .93
Ball bounces 183 2 65 .99 .74 .85
Hypotheses
Check 103 20 11 .84 .90 .87
Clear 122 282 15 .30 .89 .45
Dribble 226 436 27 .34 .89 .49
OutOfBounds 26 61 6 .30 .81 .44
Rebound 153 426 6 .26 .96 .41
ShotMade 75 559 2 .12 .97 .21
ShotMissed 166 468 5 .26 .97 .41
Steal 2 50 2 .04 .50 .04
Overall 873 2302 74 0.27 0.92 0.42

Table 3.2: Performance of tracking and event hypothesis generation.

3.4.3 Probabilistic Inference using Markov Logic Networks

The knowledge base is likely to contain inconsistencies, either due to noisy or missed

observations, or due to imperfect rules that occasionally do not hold. For this rea-

son, we relax these rules and perform queries probabilistically using Markov Logic

Networks (MLN) [12]. Markov Logic Networks relax first-order logic by attaching a

weight to each formula, such that when a world violates a formula, that world be-

comes less probable instead of becoming impossible. More formally, Domingos et al .

[12] define an MLN as follows. An MLN consists of a set of first-order logic formulas

Fi, associated real weights wi and a finite set of constants C = {c1, c2, . . . , c|C|}.

An MLN can then be viewed as a template for dynamically constructing a Markov

network, given a set of constants. For a given set of constants, C, the network

is constructed by creating one binary node for each grounding of each predicate,
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which takes value 1 if that ground predicate is true and 0 if it is false. Each

possible grounding of each formula Fi will then have an associated feature, which

will have a value of 1 if that formula is satisfied, and 0 if it is not. Each fea-

ture will have an associated weight wi. In the factor graph representation of the

Markov network, ground predicates become nodes and formulas become factors de-

fined over these nodes. The probability distribution of a world x is then given by

P (X = x) = 1
Z

exp
(

∑F
i=1wini(x)

)

, where ni(x) is the number of true groundings of

formula Fi in x, F is the total number of formulas, and Z is a normalizing constant.

Inference on this Markov network can then be performed using standard techniques.

One theoretically desirable property of MLNs is that many common AI problems

can be mapped to an MLN representation, including Bayes networks and Hidden

Markov Models (HMM).

Predicates and formulas in our application contain three types of variables –

moment, interval, and person – so the set of constants will include the M+1 unique

moments, the I intervals, and the two players. Although weights can be learned

for each formula, we manually set the weights using intuitive values; for example,

formulas or axioms that describe constraints imposed by basketball rules have high

weight, but common sense or observation formulas have lower weight, as there is a

larger chance that they could cause the knowledge base to be inconsistent. We use

Alchemy1 [31] to generate ground MLNs, and AND/OR Branch-and-Bound [36] to

perform exact inference.

1http://www.cs.washington.edu/ai/alchemy
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3.5 Experiments

We demonstrate our approach on a dataset consisting of 7 outdoor sequences of one-

on-one basketball (roughly 100,000 frames at 30fps, or 1hr of video), with varying

camera positions, and 7 unique players. These videos contain varying illumination

conditions (two are collected right before sunset and contain strong shadows), and

5 out of the 7 sequences contain full games to 11 points. The static annotation

provided by the user includes hoop and backboard polygons and the homography

from camera view to court plane (using 5-7 pairs of points on the court). Our frame-

work does not yet include formulas to handle player identity switches, so additional

human input is needed after player tracking to merge/split tracklets. Head location

tracklets are shown to the user in an X-T plot, so that as many as 1600 frames can

be inspected at a time. The user does not add or modify detections, but provides

only identities of tracklets where necessary to prevent merges/splits.

For evaluation, ground truth is provided manually and includes locations of

visible hands, feet, and ball every 100th frame, and start/end times of the events

of interest. For hand, foot, and ball tracklets we first use the Hungarian algorithm

to associate one ground truth location to one detected location, subject to some

maximum distance, and then count the number of true/false positive and false

negative matches. We use a threshold of .1h for hands and feet (h is the height

of the person), and .5r for the ball (r is the ground truth radius of the ball). To

evaluate events, we represent ground truth and detected events by intervals and use

the Hungarian algorithm to match intervals to each other, minimizing the sum of
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the absolute difference between their start/end times. Matches are disallowed if the

gap between two intervals is too long (60 frames/2 sec).

Table 3.2 shows the overall performance of the tracking module, as well as

the performance of event hypothesis generation. Tracking performance is good (feet

and ball are the best, since hands are subject to large amounts of self-occlusion

and fast motion). Event generation is evaluated by assuming all hypothesized event

intervals are true; as expected, the recall ratio is high (.92), but some events are

still missed, and a large number of false positives are present. High-level inference

should be able to discard most false positives (increasing precision), but false nega-

tives (missed intervals) are more problematic, since high-level inference only assigns

truth values to hypothesized intervals; thus, final recall is strictly bounded by the

recall of the event generation module. Table 3.3 shows the overall performance of

our framework. As expected, most false positive hypotheses were removed (from

2302 to 279), but recall was reduced slightly since some true positive hypotheses

became false negatives after being labeled false by the MLN inference, likely due to

observation errors or missing nearby hypotheses that are required by the axioms.

Table 3.4 shows the final event recognition performance, given tracking and hypoth-

esis module performance, in order to analyze the sensitivity of our final result to

varying input performance. Performance is relatively stable, except for sequences 1

and 7, which have much better ball tracks, and thus have the highest F1 scores for

event recognition; this is not surprising since the ball is the most important object

in the game.

Our formulas relate only events that are nearby in time, leaving long-term
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TP FP FN P R F1
Check 102 19 12 .84 .89 .87
Clear 83 13 54 .86 .61 .71
Dribble 189 45 64 .81 .75 .78
OutOfBounds 21 3 11 .88 .66 .75
Rebound 115 71 44 .62 .72 .67
ShotMade 66 37 11 .64 .86 .73
ShotMissed 135 67 36 .67 .79 .72
Steal 2 24 2 .08 .50 .08
Overall 713 279 234 .72 .75 .74

Table 3.3: Overall event recognition performance

Hands Feet Ball Hyp. MLN
Sequence 1 .68 .88 .96 .55 .99
Sequence 2 .50 .84 .79 .41 .60
Sequence 3 .59 .82 .79 .47 .76
Sequence 4 .70 .82 .74 .40 .74
Sequence 5 .76 .88 .80 .40 .67
Sequence 6 .76 .91 .81 .43 .69
Sequence 7 .76 .89 .88 .41 .89

Table 3.4: F1 scores of tracking, hypothesis generation (Hyp.), and MLN inference
(MLN)

Figure 3.4: Ground MLN graph for 2910 frames, with 667 nodes, 2351 factors,
and treewidth of 12. Nodes are ground predicates, and edges link nodes of ground
predicates that appear in same formula.

relations to be implicitly enforced through properties, so the treewidth of the re-

sulting ground MLN is relatively small (see Figure 3.4), enabling exact inference.

The largest treewidth we encounter is 21, for a 25,287 frame sequence whose ground

MLN contains 4,963 nodes and 18,440 factors, requiring 1.9 seconds for exact infer-

ence (not including tracking and network generation) on a 2.5 GHz Core 2 Quad

CPU.
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Chapter 4

Human activity understanding using visibility context

4.1 Overview

Visibility in architectural layouts affects human navigation, so a suitable represen-

tation of visibility context is useful in understanding human activity. Here, visibility

context refers to a building’s spatial layout visible to a human from various locations

inside the building. See figure 4.1 for an illustration. Numerous studies in psychol-

ogy and architecture have underscored the significant influence of a building’s layout

on the manner in which people navigate through it and emotively perceive it, e.g.,

[29, 16]. People walk through different parts of a building depending upon its layout

and their purpose (e.g. to search, hide, explore).

The context provided by spatial layout may significantly affect an observer’s

interpretation of an agent’s trajectory. Consider a scenario in which a person is

(a) (b)

Figure 4.1: Layout visibility with (a) omnidirectional and (b) directed view. The
observer is denoted by the red circle, and the visible area – called an isovist – is the
green polygon.
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(a) (b) (c)

Figure 4.2: Part of a person’s trajectory (foot-print) while searching for an object.
Depending on the spatial layout, the sharp turn may be interpreted as a search
point or the location at which the subject picked up the object.

navigating through a building. The person’s objective is to find and pick up an

object and then place it at some location. The observer is only provided with the

person’s trajectory (foot-prints) on the floor plan and is assigned the task of inferring

the person’s actions, such as whether the person was still searching for the object

at a particular time, had already located it, etc. Figure 4.2 shows a zoomed in

portion of a hypothetical trajectory generated in this scenario. Figure 4.2(a) shows

the trajectory in the absence of any walls. In the absence of other information, the

sharp turn in the trajectory could reasonably be interpreted as the location at which

the person picked up the object – the person must have deviated from an otherwise

straight path for a reason. Figure 4.2(b) shows the same trajectory, but with walls

superimposed on the image. It is now much less likely that the agent picked up an

object at that point; instead, it appears more likely that the person walked to that

point only to explore the closed room and then moved on after discovering that the

room did not contain the object. Now consider figure 4.2(c) – the same trajectory

but with slightly different layout of the walls. In this case, the person walks deeper

into the room. Now, it seems more likely that the person saw the object in the room
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and walked in to pick it up – there would be no other reason to walk into an empty

room. Thus, the same trajectory can be interpreted very differently based on the

visibility context! This is the principal intuition of our work – how to represent a

layout’s visibility context and employ it for understanding human activity.

Consider a person searching for an object in a building. Two aspects of layout

visibility influence the person’s movement:

1. Vantage points: The person would give preference to locations that provide

views of large parts of the building so that the search is efficient. The visibility

context for the locations consists of features such as the field of view’s area,

perimeter, etc.

2. Belief/memory: While navigating through the building, the person builds a

mental map of the areas already explored and those still to be investigated. A

belief of the possible locations of the sought object is maintained and contin-

uously updated with new information.

We present a Bayesian framework for jointly modeling the influence of visibility

and belief on a person’s movement. The person’s goal, belief about the world,

trajectory and visible layout are considered to be random variables that evolve with

time during the movement. The belief/memory of the world and the visible layout

constrain the person’s goal. The belief and the goal together determine the sequence

of actions taken by the person, which in turn determines the trajectory. Recognition

is formulated as Maximum A Posteriori (MAP) estimation. The visibility context is

represented with features based on behavioral studies of architecture. The features
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are designed to enable generalization over novel spatial layouts.

Behavioral studies of architecture indicate that people’s navigation through a

building (spatial behavior) is closely coupled with the layout that is visible to them

from different locations within the building. For example, Kaynar proposed that the

spatial behavior of humans (in particular, their paths) in a museum can be predicted

by visibility analysis [29]. The study indicated that presence or anticipation of

unseen areas near a person’s location is correlated with the change in the person’s

movement direction. Wiener and Franz showed that spatial behavior and experience

can be predicted using measures derived from visibility context [16, 67]. For instance,

measures of spatial qualities such as spaciousness, openness, complexity and order

had significant correlations with the building’s ratings given by human subjects.

Our proposed approach also relates to recent work in the robotics literature,

where visibility – represented by isovists – has been used for motion planning in

tasks such as exploration of unknown environments [5] and tracking a target in an

environment with occlusions [4]. In the former example, a robot approximates its

isovist using line-of-sight sensors and moves toward isovist boundaries that lead to

unseen regions – the “inverse” of the problem we aim to solve. Rather than using

visibility for motion planning, we instead use visibility to provide context in which

an agent’s motion can be interpreted.

Recent studies on human activity recognition have highlighted the importance

of context provided by the scene, objects, etc. Our framework is closely inspired by

the work of Baker et al. on the “inverse planning” problem of determining the inten-

tions of an agent from trajectories [3]. They propose a Bayesian model for the agent’s
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intentions based on the trajectory and the spatial layout. The agent is assumed to

always know the exact position of the object. They do not consider visibility – the

spatial layout affects the analysis by constraining the possible movements. In our

work, the person is searching for the object and therefore has to explore the layout.

Moreover, only a part of the layout may be visible to the person at any given time.

There are numerous computer vision studies in activity recognition that focus on

trajectory-based features – we cite only a few, e.g., [50, 51]. These approaches do not

model visibility context. In other studies, the scenes are manually pre-annotated to

encode spatial and semantic information (e.g., doorways, hallways, furniture [56]).

The proposed visibility context complements such approaches as it does not require

explicit annotations, enabling generalization to novel scenes.

We illustrate the approach with experiments in a sprite-world domain. This

isolates visibility and spatial layout as the only factors affecting an agent’s actions.

The trajectories are generated by a human performing search-based tasks in a virtual

environment similar to first-person video game interfaces. We consider 6 layouts of

varying complexity. To observe the generalization over layouts, the model is trained

on 5 layouts and tested on the other, in a round robin format. As part of the

experiments, human observers were asked to analyze the same trajectories with and

without spatial information. Their scores are compared with that of the analysis

performed by the Bayesian framework. The experiments show the importance of

visibility context for activity recognition in our search-based task. Moreover, the

proposed framework achieves average recognition rates comparable to those of the

human observers.
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This chapter is organized as follows. In section 4.2 we describe previous work

on activity understanding and on effects that spatial and visibility constraints have

on behavior. In section 4.4 we provide the visibility features that we use. In section

4.3 we discuss our model that incorporates visibility, memory, and belief. In section

4.5 we show the results of human experiments and of our proposed approach.

4.2 Related work

Baker et al. [3] propose a general Bayesian framework to explain how people reason

and predict the actions of an intentional agent. They call their analysis of intentional

reasoning “inverse planning” since they assume that agents build plans (sequences

of actions) that achieve their goals, and to infer their intentions observers need only

to invert a model of how goals affect plan formation. Using experimental results on

pre-verbal infants from the cognitive science literature and their own experiments

on humans, the authors motivate their Bayesian framework by noting that any

model of intentional reasoning should include at least primitive planning capacities

with the tendency to choose plans that achieve goals as efficiently as possible and

that inferences about agents’ goals should be probabilistic. In addition, motivated

by how humans reason with the intentional stance, the authors introduce a utility

function and assume that agents will prefer actions which lead to a larger expected

increase in the utility function. In their design of the Bayesian framework, they

place emphasis on the ability to learn from multiple environments and generalize to

new ones.
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Belief(t+1)

Visibility(t+1)

Figure 4.3: Graphical model for spatial behavior.

In their application of the general Bayesian framework to sprite-world infer-

ences, Baker et al. introduce the assumptions that the world W is known to the

agent and the observer (i.e. the agent knows the layout of the world and objects

within it). However, agents often can only have partial observations of the world

determined by what is visible from their current location, and at any point in time

will know only the sections of the world that they have observed until that point.

In this work, we will remove this assumption. Visibility constraints and memory are

modeled in the Bayesian framework, eliminating the assumption that the agent has

full knowledge of the world and incorporating spatial context into the model. Note

that because spatial context is represented through visibility properties and is not

represented directly by the environment, the model generalizes to new environments

that have different spatial layouts.
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4.3 Bayesian model for visibility in activity recognition

Consider an agent exploring and navigating in a world W . The agent’s state at time

t is defined to consist of three components:

1. Current goal, g(t), for the movement. This controls the objectives guiding the

agent’s movements, e.g., searching for an object, approaching the object upon

discovering it. An activity may in general consist of a sequence of goals, one

leading to another.

2. The belief, b(t), about the world. As the agent explores the world W , it

continuously updates its belief about W based on the structure that is visible

to it at any given time. The agent’s belief consists of both memory as well as

priors on the world’s state.

3. The location of the agent in space, defined by x(t). The sequence of x(t)’s

forms the agent’s trajectory. The location in space determines the substructure

of the world that is visible to the agent. We denote the visible part of W by

v(t).

Based on its current goal, belief and position, an agent executes an action a(t) with

likelihood p(a(t)|g(t), b(t),x(t)) to bring about a change in its location, x(t)→ x(t+ 1).

The action’s outcome is modeled with the conditional probability p(x(t+1)|a(t),x(t)).

The change in location provides a novel view of the world v(t+1) subject to the like-

lihood p(v(t+1)|x(t+1),W ). This in turn results in an updated belief, b(t+1) with

probability p(b(t+1)|v(t+1), b(t)). The belief and current world view may lead to a
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change in the agent’s goal, g(t+ 1) with likelihood p(g(t+ 1)|b(t+ 1), v(t+ 1), g(t)).

E.g., when the agent locates the sought object, the goal shifts from searching to that

of approaching the object. The conditional probability structure is summarized in

the graphical model in figure 4.3. In practice, we only observe the agent’s trajectory,

x(t). All other components of the agent’s state are hidden variables.

The layout’s visibility is represented by the visibility-polygon, also called an

isovist. The visibility-polygon is defined by the walls of the scene that are visible to

the agent from a particular location in the world, and the occluded edges. Isovist

qualities, such as area, perimeter and presence of occluded edges, determine whether

a location is a good vantage point for searching (these qualities will be discussed

briefly in section 4.4). Suppose, the agent’s goal is to search for an object, and it

anticipates some location to give a good view of a large part of the world, then the

agent would likely navigate towards that point. Therefore, if an agent is observed to

show preference to locations with high visibility, then it is assigned a high likelihood

to a search goal. On the other hand, if an agent is observed to walk a direct path to a

corner in a room then it has most likely located the sought object and is proceeding

to pick it up.

4.4 Modeling visibility

Motivated by observations from cognitive science on visibility and architecture as

discussed above, we represent visibility, v(t), by using isovists and features derived

from them. Figure 4.1(a) shows an isovist which we refer to as a full isovist since
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it includes all visible areas if viewing angle and field of view constraints are not

taken into account. However, humans have a limited field of view; a partial isovist

refers to an isovist that excludes all areas that are not in an oriented observer’s

field of view. Figure 4.1(b) shows a sample partial isovist. The edges of the isovist

that do not coincide with a wall are referred to as occluded edges; they are formed

when walls occlude an observer’s view, and are often potential directions for further

exploration. The isovist can be used directly for modeling what an observer sees

along the trajectory, which facilitates the process of reasoning about the observer’s

belief of the world. However, features derived from the isovist contain additional

information related to spatial layout that can further help observers reason about

human behavior.

A variety of features can be computed from isovists (full and partial), many

of which are discussed in [9, 16, 67]. In addition, visibility graphs (which can be

used to compute shortest paths) are closely related to isovists, since each node in

the visibility graph corresponds to a point in a scene and there is an edge in the

graph between two nodes if they are visible (i.e. one node lies inside the other node’s

isovist). We calculate features using both isovists and visibility graphs.

The first group of features are derived from the isovist at the current loca-

tion along the trajectory. They include isovist area, perimeter, occlusivity (sum of

lengths of all isovist occluded edges divided by perimeter), openness (ratio of length

of occluded edges to that of non-occluded edges), compactness (square of isovist

perimeter divided by area), minimum distance to an occluded edge and minimum

distance to a wall. The first five correspond to the spatial qualities of spaciousness,
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openness, and complexity. The last two contain information about the agent’s cur-

rent positioning relative to the layout. Consider area for an example of how these

features can be helpful: as the agent moves from one room to another, isovist area

peaks when the agent is in the doorway between the two rooms, which can be helpful

if certain events are more or less likely to occur in doorways.

The second group of features uses isovists and limited path history (such as

positions at time t and t − ∆), which show how agents have changed their visi-

bility fields over time. The most straightforward use of limited path history is to

approximate derivatives of an isovist field along the path. However, there are useful

features that are not simply approximated derivatives. Such features include new

view area, lost view area, and deviation from the shortest path. The new view area

is the area of the isovist region at time t that does not coincide with the intersection

of the isovists at times t and t−∆ (lost view area is computed similarly). Deviation

from the shortest path uses visibility graphs instead of isovists, and is the additional

cost relative to the shortest path that an agent must incur to travel from a start

to an end point through a middle point. If the difference is large, then the middle

point is a significant detour from the shortest path, and the agent likely incurred

the additional cost because there was some reward for deviating from the shortest

path.

Features in the third group are based on the complete history of the trajectory

(e.g. the union of all areas seen by time t), and include area seen ratio (total area

seen divided by total layout area), and geodesic distance to unseen regions. Geodesic

distance is the shortest distance after taking walls into account. This is useful
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because a rational agent who is exploring a region or searching for an object will

tend to move toward some unexplored portion of the environment, thus causing the

shortest distance to unseen regions to decrease.

Figure 4.4 shows how some features described above change as an agent per-

forms a search-based task. The task in this case is to first search for and “pick up”

a blue cube and then to search for and “pick up” a red cube, and is described in

more detail in section 4.5.

4.5 Recognition

There are several human behaviors that are significantly influenced by the structure

of scene layout, e.g., searching, hiding, stalking. We use searching activities as the

domain for demonstrating the importance of visibility context and the proposed

Bayesian framework. The trajectories were collected by a human agent navigating

in a virtual 3D environment. The interface is similar to that commonly used in

first-person video games. A virtual environment allowed accurate and precise ob-

servations of ground truth, and isolated the spatial visibility features to be the only

factors influencing the movement. Six scenes were constructed, shown in figure 4.5.

They have distinctive spatial structure, varying from cubicles as seen in offices to

aisles commonly occurring in superstores.

There are a number of possible tasks that can be assigned to the human agent

to investigate search activities. These can range in complexity from a very simple

task, e.g., “Search for and pinpoint a stationary object”, to relatively complex tasks
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such as “Search for an object that is trying to evade you”. There can also be

variations such as the degree of background clutter, a sequence of search-and-locate

subtasks, etc. We chose a search task of medium complexity:

1. At the start, the human agent is “teleported” to a random location in a scene.

The task is to search out a blue cube placed randomly in scene, and go touch it.

Then the agent must proceed to search for a red cube, also placed randomly,

and touch it. There were no other objects except the blue and red cubes in

the scene.

2. The recognition task for the observer is to estimate the location of the blue

cube using just the trajectory of the agent. The recognition task was posed

to human subjects as well as to the proposed Bayesian framework.

The reasoning is that:

• As the blue cube is placed completely at random, the only distinguishing

feature for its location would be the trajectory of the agent before and after

touching it.

• As the agent is tasked to search for the red cube after touching the blue

one, the observer is forced to distinguish between searching and non-searching

behavior. This is a harder recognition task than the case in which the agent

is instructed to either walk to a predefined place or move around randomly.

In the latter case, the purposive search for the blue cube would be easily

distinguishable.
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Figure 4.4: Sample trajectory and corresponding visibility features. In part (a),
trajectory is shown segmented by search sub-goals: green = “search for blue cube”,
blue = “pick up blue cube”, yellow = “search for red cube”, red = “pick up red
cube”. Part (b) shows visibility features during the trajectory as they vary with
time. The coloring corresponds to trajectory coloring. Note that when the blue
cube is reached, isovist area and minimum distance to a wall are close to a local
minimum, the change in geodesic distance to unseen area is positive, and the seen
area ratio is relatively flat.

For each of the six scenes, the human agent was asked to perform the search task 15

times, generating 90 trajectories in total. Each time, the blue and red cubes were

placed randomly.

To isolate and highlight the importance of visibility context, half the human

subjects were asked to perform the recognition without any information about the

walls present in the scene, and other half were shown the trajectories with the
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Figure 4.5: Scenes. The top and bottom rows show scenes 1 to 3 and 4 to 6,
respectively.

walls correctly superimposed. The results indicate that human recognition perfor-

mance improves substantially when the context of the surrounding is provided. The

Bayesian framework was assigned the recognition task in the presence of visibility

context. The results indicate that the approach’s performance is comparable to that

of humans.

4.5.1 Human recognition results

For the human subject experiments, 8 subjects were presented with all 90 trajecto-

ries. The subjects were split into two groups: one group was shown the walls and

trajectory (the ‘walls’ group) and the other was shown only the trajectory (the ‘no

walls’ group). The subjects were informed of the agent’s task and were instructed

to pick the location on the trajectory where the agent most likely picked up the

blue cube. As figure 4.6 shows, the ‘walls’ group performed best, detecting 72.8%
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of the blue cube pick up events within 1.5 meters of the ground truth (scenes are

either 28m by 28m or 40m by 28m; see figure 4.7 for a depiction of error relative to

scene size). The ‘no walls’ group detected only 52.8% within the 1.5m error margin.

Thus, the visibility and spatial context of the walls provides significant information

to humans for inferring the intention of the agent.

The recognition performance showed significant variation w.r.t. the scenes -

see figure 4.6(b). Scenes 1, 2 and 3 have lower complexity of wall layout compared

to Scenes 4, 5 and 6. Scenes 5 and 6 are especially difficult. The complexity in scene

5 arises from the fact that the room is divided into aisles, allowing the agent to walk

directly through an aisle without returning after picking up an object in the aisle.

This greatly decreases the performance of the humans with and without walls. The

complexity of scene 6, however, arises from the number of small rooms that must

be explored. Without layout information, subjects have no clue as to what caused

all the turns in the trajectory. However, giving layout information to the subjects

resulted in a much larger improvement in detection error for scene 6 compared to

scene 5.

4.5.2 Recognition with the Bayes framework

The recognition task is formulated as MAP estimation of the location of the blue

cube given the human agent’s trajectory and the scene. We compute a set of interme-

diate goal-points based on high-curvature locations in the person’s trajectory. Each

of these goal-points is considered to be a hypothesized location for the blue cube.
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Figure 4.6: Experimental results: (a) Histogram of error between experimental
results and ground truth, showing the proportion of detections that lie in each error
range (in meters), and (b) ratio of detections with less than 1.5m error, grouped by
scene.

The recognition result is the hypothesis with the highest likelihood, estimated using

MAP. The joint likelihood of the agent’s state, the sequence of executed actions and

the world is

p(x, b, g, a,W ) =
T
∏

t=2

p(x(t)|x(t− 1), a(t− 1))

T
∏

t=1

p(v(t)|x(t),W )

T
∏

t=2

p(b(t)|v(t), b(t− 1))

T
∏

t=2

p(g(t)|v(t), b(t), g(t− 1)

T−1
∏

t=1

p(a(t)|x(t), b(t), g(t)) (4.1)

The first 3 product-terms in the joint likelihood eq.(4.1) are determined from

the trajectory, the scene’s layout and the blue cubes hypothesized location. Thus,

p(x, b, g, a,W ), the confidence for the blue cube’s location hypothesis is determined

by p(g(t)|v(t), b(t), g(t−1)) and p(a(t)|x(t), b(t), g(t)) ∝ p(g(t)|x(t),a(t),b(t))
p(g(t)|x(t),b(t))

– the good-
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ness of the goal sequence given the visibility and trajectory.

The scene and the blue cube’s hypothesized location together determine the

world W ’s state. Given the trajectory and W , the sequence of visible worlds v(t)

is computed. This, in turn, generates the sequences of beliefs, b(t), of the human

agent during the navigation (of course, conditioned on the hypothesized location).

The beliefs and visible world together determine the sequence of goal states, g(t),

of the human agent:

• Until the time the person sights the blue cube, the goals, g(t)’s, can either be

“search” - giving preference to high visibility areas, or “via-point” - that are

just intermediate points to reach some other goal, e.g., to turn a corner.

• After sighting the blue cube and until the hypothesized time of touching the

blue ball, the goal points must be “via-points”. There is no searching required.

• After the hypothesized touching of the blue cube and until the sighting of the

red cube, the goal points will either be “search” or “via-points”.

• After sighting the red cube and until touching it (the end of the sequence),

the goal points must be “via-points” because there is need for further search.

The likelihood for a goal-point, g(t), to be a “search” is determined from the

visibility field. Specifically, it is determined by the newly seen area. The likelihood

for a goal-point, g(t), to be a “via-point” is determined by the deviation from shortest

path. Combining the log-likelihoods of these goal-points gives the likelihood of the

sequence of goals before and after the hypothesized pickup of blue cube, denoted
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by l. This must be combined with the likelihood of the goal-point at the blue cube

location. A boosting algorithm is employed to classify correctly hypothesized blue

cube locations from incorrect ones based on l and v(tb), the visibility fields at the

blue cube location. During training, the negative class contains sequences of goals

generated by blue cube locations that are known to be incorrect, and the positive

class contains the sequences that are known to be correct. Thus, the classifier is

trained to recognize the MAP hypothesis using the visibility features at the blue

cube location and the likelihood of the goals at all other times. During testing, the

most likely hypothesis is defined to be the one with maximum confidence.

Note that we avoid the complex task of Bayesian inference on the proposed

network by brute search through the hypothesis space. The number of hypothesized

points (less than 50 in our experiments) was significantly smaller than the total

number of points in the trajectory.

We tested the proposed approach on the same 90 trajectories described above.

Unlike the human subjects (who did not require training scenes!), our algorithm

was trained on 5 scenes, and tested on the remaining scene following a round robin

protocol. As in the human experiments, the algorithm computed the likely location

of the blue cube in each scene. Since the algorithm is blind to the test scene, the

experiments test the generalization of the framework to novel scenes. Figure 4.6(a)

shows that the results of our algorithm are very good (68.1% of detections are within

1.5m of the ground truth). Figure 4.6(b) shows that our algorithm performed well

for all scenes (always better than the ‘no walls’ group), and better than the average

of the ’walls’ human subjects group for scenes 2 and 3!
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Figure 4.7 shows example detections by our algorithm (red circle), ‘no walls’

human group (blue cross), and ‘walls’ group (green x). In the first row, the detections

by our algorithm and by the ‘walls’ human are correct, but the ‘no walls’ human

chose the wrong sharp point in the trajectory since the subjects were not provided

with spatial information. In the absence of spatial information, the locations chosen

by the ‘no walls’ humans are reasonable choices. The second row shows cases where

all three groups were able to locate the blue cube location. Finally, the third row

shows examples of where our algorithm failed in locating the blue cube. In the

two leftmost cases, the scene is difficult to interpret because of the aisles. In the

rightmost image of the third row, the point that our algorithm chose could be

mistaken for the blue cube position since agent did not immediately leave the room

after reaching the entrance, but instead entered the room slightly before turning

around.
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Figure 4.7: Sample trajectories with ground truth, human, and algorithm detections
(red circle - our algorithm, cyan plus - human no walls, green x - human with walls,
blue square - blue cube ground truth). Dotted circles denote errors of 1.5m, 2.5m,
3.5m, and 4.5m from ground truth. The top row shows cases in which humans with
no walls chose the wrong solutions, while our algorithm and the humans with walls
were able to select the correct blue cube location. The middle row shows cases where
the locations were correctly chosen by both groups of humans and our algorithm.
Finally, the third row shows cases in which our algorithm failed to locate the blue
cube.
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Chapter 5

Conclusion

This dissertation explored the problem of activity understanding based on trajecto-

ries of people and their extremities, providing contributions to the following three

tasks: tracking the limbs of multiple interacting people (chapter 2), modeling the

spatio-temporal structure of events (chapter 3), and modeling relationships between

people and their environment (chapter 4). The combined contribution of this work

to the field is the extension and strengthening of previous approaches by improved

models of relationships and interactions between people, objects, and the scene. In

real world scenarios, complex interaction models can lead to solutions that are ex-

pensive to compute and that are brittle in the presence of visual uncertainty. As a

result, the contributions of this work include efficient computational models that in-

corporate probabilistic reasoning. The result is the increased ability of an automated

computer vision system to function in challenging real world applications.

In chapter 2 we proposed a framework for detecting and tracking extremities

of multiple interacting people. We quantitatively evaluated our approach on the

publicly available HumanEva I dataset, a dataset of a group of interacting people,
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and a dataset of one-on-one basketball games. Our experiments show that AND/OR

Branch-and-Bound with lazy evaluation can significantly reduce computational cost,

while yielding the globally optimal solution in each frame. Our approach is flexible

enough to deal with significant occlusion of people in groups as well as rapid motions

and large pose variations observed during basketball games. In chapter 3, we pre-

sented a framework which, given a semantic description of what generally happens

in a scenario, uses video analysis and mixed probabilistic and logical inference to

annotate the events that occurred. We demonstrated our approach on one-on-one

basketball videos, recognizing complex events without additional cues such as text,

camera movement, shot-changes, or overlaid time or score statistics. Because of

the flexibility of the logical knowledge representation and relatively few restrictions

on problem type (concurrent events are allowed, number of actors can vary, etc.),

we believe that our framework can be extended to more difficult scenarios or other

problem domains. Finally, in chapter 4, we presented a framework in which visibil-

ity context is utilized to aid in reasoning about human activity. Our experiments

showed that features used to represent visibility generalize well over new scenes, and

that our method resulted in a detection rate close to that of human observers in a

search-based task.

Future directions for the work described in this dissertation include:
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• The implementation of the tracking framework described in chapter 2 makes

use of background subtraction for detecting and tracking people and their

limbs. This work can be extended by incorporating stronger body part likeli-

hoods that do not depend on segmentation. Alternatively, segmentation might

be performed using other approaches that do not require a model of the back-

ground. Similarly, our deterministic occlusion constraints can be relaxed by

incorporating a probabilistic occlusion model as in [13].

• Our event hypothesis generation approach is based on feed-forward processing

of trajectories. If an event is never hypothesized, then MLN inference cannot

infer that event. Can the space of possible event intervals be sampled in a

better way without significantly affecting computational complexity?

• As described in chapter 3, a ground MLN is constructed for all observed data

in a sequence. In an on-line streaming setting, memory and computational

constraints require that only a subset of observations be used. How many

observations are needed in such a setting? If too many are used, memory and

inference cost will be high; if too few are used, results will be inaccurate.

• As the number of people increases, the assignment of roles (Player 1, Player

2, etc.) to tracks becomes increasingly challenging, especially in the presence

of tracking errors, and must be dealt with carefully.
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• In sufficiently complex scenarios, experts cannot manually specify all ax-

ioms/formulas. Thus, an interesting future direction is the use of approaches

such as Probabilistic Inductive Logic Programming (PILP) [47] to automati-

cally learn additional formulas given a background theory.

• Visibility context, described in chapter 4, is currently applied to trajectories

created by humans performing a task in a virtual environment. In future work,

it can be combined with the frameworks described in chapters 2 and 3 for the

analysis of real world activities.

In summary, this dissertation presented contributions to human activity un-

derstanding based on trajectories of people and their hands and feet. By dealing

with semantically meaningful trajectories, as opposed to relying only on low-level

image features computed globally for an image or for the image regions around peo-

ple, the proposed framework can naturally represent and reason about actions and

interactions in terms of spatio-temporal relationships between body parts, objects,

and the scene. In addition, the framework performs probabilistic reasoning at vari-

ous stages of processing for robustness against noisy visual observations. Promising

experimental results suggest that the proposed contributions enable efficient and

accurate activity analysis which should scale well to more complex scenarios.
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