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The GGGGCC intronic repeat expansion within C9ORF72 is the most common

genetic cause of ALS and FTD. This mutation results in toxic gain of function

through accumulation of expanded RNA foci and aggregation of abnormally

translated dipeptide repeat proteins, as well as loss of function due to impaired

transcription of C9ORF72. A number of in vivo and in vitro models of gain

and loss of function effects have suggested that both mechanisms synergize to

cause the disease. However, the contribution of the loss of function mechanism

remains poorly understood. We have generated C9ORF72 knockdown mice to

mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this

loss of function in the pathogenesis. We found that decreasing C9ORF72 leads

to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation

of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also

developed FTD-like behavioral deficits and mild motor phenotypes at a later

stage. These findings show that C9ORF72 partial loss of function contributes to

the damaging events leading to C9-FTD/ALS.

KEYWORDS

TDP-43, C9ORF72, FTD (frontotemporal dementia), ALS (amyotrophic lateral sclerosis),
autophagy/lysosomal pathway

Introduction

A hexanucleotide repeat expansion (HRE) located in the 5′ UTR region of C9ORF72
gene is the most common genetic cause of familial frontotemporal dementia (FTD) and
amyotrophic lateral sclerosis (ALS) (DeJesus-Hernandez et al., 2011; Renton et al., 2011;
Gijselinck et al., 2012). These two fatal neurodegenerative diseases have been known to
occur within the same families or patients, and the discovery of C9-FTD/ALS has strongly
emphasized the existence of a clinical, genetic, pathological, and mechanistic continuum
between FTD and ALS (Vance, 2006; Burrell et al., 2016).
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The expanded GGGGCC impairs normal transcription of
C9ORF72 leading to reduced C9ORF72 mRNA and protein in the
frontal cortex and spinal cord of patients (DeJesus-Hernandez et al.,
2011; Gijselinck et al., 2012; Belzil et al., 2013; van der Zee et al.,
2013; Waite et al., 2014; Xiao et al., 2015; Sivadasan et al., 2016).
However, transcription of the non-coding HRE and its antisense
sequence leads to two concomitant gain of function mechanisms,
in addition to the loss of function. Aggregation of the expanded
sense and antisense RNA in foci sequesters RNA-binding proteins,
impedes their normal function, and thus, eventually leads to cell
death (Donnelly et al., 2013; Lee et al., 2013; Sareen et al., 2013;
Loureiro et al., 2016). Translation of aggregating peptides produced
by repeat-associated non-AUG (RAN) translation (Ash et al., 2013;
Mori et al., 2013) into dipeptide repeat proteins (DPRs) can variably
cause degeneration in cell culture, drosophila and mouse models
(Ash et al., 2013; Mori et al., 2013; Zu et al., 2013; Mizielinska et al.,
2014; Wen et al., 2014; Zhang et al., 2014, 2016; Freibaum et al.,
2015; Tran et al., 2015; Freibaum and Taylor, 2017; Schludi et al.,
2017; Hao et al., 2019; LaClair et al., 2020). Both the RNA foci and
the DPRs are present in the brains of patients carrying the C9ORF72
mutation (DeJesus-Hernandez et al., 2011; Gendron et al., 2015;
Gomez-Deza et al., 2015; Mackenzie et al., 2015).

Despite conflicting results in the different models regarding the
precise identity of the most toxic species among extended RNA or
DPRs, it is now established that those gain of function entities can
cause neurodegeneration (Balendra and Isaacs, 2018). Nevertheless,
it remains unclear if the disease is in fact caused solely by the gain
of function mechanisms. Etiological evidence remains elusive in
patients where DPR pathology is hardly correlated with affected
regions (Mackenzie et al., 2013; Mann et al., 2013; Gomez-Deza
et al., 2015). Mammalian gain of function models have generally
failed to fully reproduce the C9-FTD/ALS histopathological lesions
and associated behavioral changes (Balendra and Isaacs, 2018).
Bacterial artificial chromosome (BAC) transgenic mice mainly
reproduce RNA foci formation and DPR inclusions, but only rare
or unstable TDP-43 pathology, neurodegeneration or FTD/ALS
phenotype (O’Rourke et al., 2015; Peters et al., 2015; Jiang
et al., 2016; Liu et al., 2016; Mordes et al., 2020; Nguyen et al.,
2020). In other models, both histopathology and some behavioral
modifications related to FTD/ALS were observed but only when
overexpressing the HRE (Chew et al., 2015; Herranz-Martin et al.,
2017) or specific DPRs (Zhang et al., 2016; Schludi et al., 2017; Choi
et al., 2019; Hao et al., 2019; LaClair et al., 2020).

Therefore, the loss of function mechanism that initially seemed
an unlikely disease trigger has recently regained attention and
is being further explored (Lutz, 2020). The precise function of
C9ORF72 remains largely unknown, but is predicted to be a
guanine nucleotide exchange factor (GEF) interacting with various
Rab proteins and forming a complex with SMCR8 and WDR41
to regulate membrane trafficking and autophagy/lysosomal flux
(Levine et al., 2013; Amick et al., 2016; Blokhuis et al., 2016;
Sellier et al., 2016; Sullivan et al., 2016; Webster et al., 2016; Xiao
et al., 2016; Yang et al., 2016). The first in vivo models of C9orf72
loss of function in zebrafish and Caenorhabditis elegans resulted
in locomotor phenotypes and motoneuron degeneration (Ciura
et al., 2013; Therrien et al., 2013). On the other hand, knockout
mice predominantly developed an inflammatory phenotype,
sometimes associated with a shortened lifespan, but did not exhibit
neurodegeneration or motor phenotypes (Koppers et al., 2015;

Burberry et al., 2016; O’Rourke et al., 2016; Sudria-Lopez et al.,
2016; Sullivan et al., 2016; Ugolino et al., 2016). Abnormal social
recognition and mild motor deficits were nevertheless noticed in
two studies (Atanasio et al., 2016; Jiang et al., 2016) and late learning
and memory deficits were recently characterized in C9orf72 null
mice, associated with enhanced synaptic pruning (Lall et al., 2021).
While it appears that C9ORF72 deficiency is not the sole or more
potent trigger of neurodegeneration in C9-FTD/ALS, its exact
contribution to the phenotype has not yet been fully understood.
Very recently, it was clearly demonstrated that the loss or lowering
of C9ORF72 is an essential contributor to the development of the
disease, both in human neurons and in rodent models (Shi et al.,
2018; Shao et al., 2019; Staats et al., 2019; Dong et al., 2020a,b;
Zhu et al., 2020). However, the behavioral and neurological impact
of lowering C9ORF72 expression to levels observed in patients, in
the absence of gain of function toxicities, is still largely lacking.
In particular, the possibility that decreasing C9ORF72 expression,
instead of proceeding to a full excision, could be enough to
trigger some late or subtle anomalies has not been fully explored,
especially regarding FTD-like phenotypes. We have investigated
this by generating a ubiquitous knockdown (KD) mouse model and
performing extensive behavioral and histological characterization.
We found that KD mice developed pathological signs of C9-
FTD/ALS, behavioral deficits in social interaction and depression-
like behavior, as well as a lessening of strength and neuromuscular
junction abnormalities that appeared at an advanced age.

Materials and methods

Please see the Supplementary Information for detailed
procedures.

C9ORF72 miR-RNAi generation

Generation of miR-RNAi anti-C9orf72 (miR-C9orf72)
mice was done using a lentiviral vector carrying a
ubiquitous PGK promoter driving the expression of the 5′-
TTGACATCCACATCAATGTGCGTTTTGGCCACTGACTGAC
GCACATTGGTGGATGTCAA-3′ sequence targeting mouse
C9orf72 transcript variants 1, 2, and 3, coupled to the expression
of EmGFP. It was injected in C57Bl6/N mice oocytes that
were then implanted in pseudopregnant females as previously
described (Dussaud et al., 2018). A similar vector carrying a
random miR-RNAi sequence was used for scramble controls
(miR-Scramble).

All animal experiments were approved by the institutional
animal care and use committee CEEA –005 and in agreement with
the European legislation No. 2010/63 UE and national authority
(Ministère de l’Agriculture, France) guidelines.

C9ORF72 knockdown validation

C9orf72 mRNA was quantified by quantitative PCR (qPCR) in
the cortex, spinal cord, and muscle. Primers and probe sequences
are listed in Table 1.
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TABLE 1 List of primers used for qPCR.

Sense Reverse

OraV1 TGGAGCAGGACATATTT
GACGC

AGTGGGATCATCGTAA
GGAAAGT

GAPDH AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA

C9ORF72 CGCAGGACACCATCATCTAC GGCTTCAAATGGAAGACCTG

Behaviour tests

Prior to any behavior test, mice were allowed to acclimatize
to the testing room for 20 min. Material was cleaned between
each animal with Aniospray. Males were tested before females and
the equipment was washed with water between testing groups.
Standard procedures were used for each test. For each test, results
from males and females were pooled after verifying that sex did not
alter the results significantly. The sex ratio was balanced in each
group: 50, 60, and 47% of males in the wild-type, miR-Scramble,
and miR-C9orf72 groups, respectively.

Histological analysis

Sections of paraffin-embedded brain and spinal cord were
stained using standard protocols with antibodies against Iba1,
GFAP, NeuN, TDP-43, p62, and SV2. Digital images were captured
with an Axioscan slide scanner (Zeiss, Oberkochen, Germany)
or with an Apotome (Zeiss, Oberkochen, Germany) at 1.5 and
2.0 mm from the interneural line. Whole mounts specimens of
soleus, extensor digitorum longus (EDL) and diaphragm muscles
were stained for AchR with TRITC-labeled α-bungarotoxin, for
hNL168, SV2 and images were acquired with a confocal microscope
(Olympus FV-1000, Tokyo, Japan). Neuronal loss quantification
was done by counting the totality of neurons in frontal and motor
cortices using the Stereo Investigator software (MBF Bioscience,
Williston, ND, United States). Quantification of positive Iba1
and GFAP cells was done on images covering the totality of
frontal and motor cortices. Non-punctate p62 staining larger than
2 µM was counted as p62 accumulation. Positive staining for
cytoplasmic TDP-43 and accumulated p62 were counted in a total
of 250 to 500 cells per structure and per animal; positive cells
for cytoplasmic staining were normalized to the total number of
TDP-43 positive cells. Lumbar motor neurons marked with Nissl
staining were imaged using a Leica (Wetzlar, Germany) DM250
microscope (20x). Morphological endplate count was done on
confocal images. All cells counts were done by an experimenter who
was blind to the genotypes. Counts were reported to the surface
area (mm2) using ImageJ software (National Institutes of Health,
Bethesda, MD, USA). In each group, an equal number of males and
females were analyzed.

Statistical analysis

For behavioral analyses, intergroup differences were evaluated
by non-parametric Kruskal-Wallis tests followed by post-hoc Dunn
Tests. Quantification analyses were evaluated with parametric two-
way ANOVAs followed by Tukey’s multiple comparison tests,

after verifying normality with D’Agostino and Pearson omnibus
normality tests. Electrophysiological analyses were performed with
paired-t-tests. All tests were performed using Prism software
(Graphpad Software Inc). Values of p < 0.05 were considered
statistically significant. All data are presented as means± SEM.

Results

C9ORF72 patients’ haploinsufficiency is
mimicked by genetic knockdown of the
mouse C9orf72 gene

We designed a miR-RNAi sequence targeting a region located
in exon 8 of the C9orf72 mouse ortholog which is common to
all transcript variants, to knockdown the expression of C9ORF72
(Figure 1A), and thus mimic the downregulation effect seen with
the human mutation. A lentiviral vector containing this miR-
RNAi sequence and a GFP reporter gene under the control of a
ubiquitous promoter (phosphoglycerate kinase, PGK, Figure 1A)
was injected in mouse oocytes to generate lentitransgenic
animals with a range of C9orf72 knockdown (miR-C9orf72), as
has been previously observed in patients (DeJesus-Hernandez
et al., 2011; Ciura et al., 2013). Similarly, transgenic mice
expressing a scramble miR-RNAi were generated as control animals
(miR-Scramble). An initial verification was performed at E14.5
confirming lentiviral expression ubiquitously in transgenic mice
(Supplementary Figure 1A). C9ORF72 deficient animals present
a decrease of C9orf72 transcripts of approximately 50% which
is stable during the lifetime of the animal and observed in all
regions of interest (Figures 1B, C). This RNA decrease translates
at the protein level (Figure 1D) similarly to what we observed
previously in frontal cortices of patients (Viodé et al., 2018). Thus,
these results demonstrate an ubiquitous knockdown of C9ORF72
corresponding to the decreased expression seen in patients cortices
(DeJesus-Hernandez et al., 2011; Belzil et al., 2013; Ciura et al.,
2013; Waite et al., 2014; Frick et al., 2018; Viodé et al., 2018).

C9ORF72 deficient mice were comparable to controls in
viability, appearance, fertility, and weight (Figure 1E). Finally,
survival was not significantly affected in these animals, as they were
still alive after 23 months of age (Figure 1F).

C9ORF72 deficient animals present an
accumulation of autophagy/lysosomal
proteins, cytoplasmic TDP-43 and
decreased density of synaptic vesicle
protein 2 in the cortex

We next evaluated whether decreased expression of
C9ORF72 caused neuronal loss or degeneration resembling
the neurodegenerative state of patients’ brains. At 23 months of
age, miR-C9orf72 mice did not present brain atrophy (Figures 2A,
B). There was no marked reduction of the whole cortical,
hippocampal or cerebellar areas (Figures 2C–E). The number of
NeuN-positive neurons in total cortex, frontal cortex, and motor
cortex was similar in C9ORF72 deficient mice when compared to

Frontiers in Cellular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncel.2023.1155929
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1155929 April 10, 2023 Time: 12:41 # 4

Lopez-Herdoiza et al. 10.3389/fncel.2023.1155929

FIGURE 1

Generation of C9ORF72 knockdown mice. (A) Schematic representation of C9orf72 transcripts in the mouse and the lentiviral vector used to
perform transgenesis. MiR-C9orf72 targeted region is denoted by a square zone. (B) Relative expression of C9orf72 mRNA in transgenic mice cortex,
at 2 and 12 months measured by qPCR. (wild-type n = 3; miR-Scramble n = 3, c9 n = 6). (C) Relative expression of C9orf72 mRNA in transgenic mice
cortex, spinal cord, and muscle measured by qPCR at 23 months (wild-type n = 10; miR-Scramble n = 12, c9 n = 34). (D) Levels of mouse C9ORF72
protein orthoog in the cortex of miR-C9orf72, miR-Scramble, and wild-type mice. The expression of C9ORF72 (red asterisk) was quantified by
densitometric analysis of western blots and normalized to clathrin heavy chain (black arrowhead). The positions of the molecular weight marker are
indicated on the left in kDa. (E) Weight curve of males (left) and females (right) miR-C9orf72 mice compared to controls (wild-type n = 10;
miR-Scramble n = 12, miR-C9orf72 n = 34). (F) Survival curve of C9ORF72 deficient and control animals up to 24 months (wild-type n = 10;
miR-Scramble n = 12, miR-C9orf72 n = 34). Error bars represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

controls (Figure 2F and Supplementary Figure 1B). Similarly, the
spinal cord of miR-C9orf72 mice appeared intact and no difference
in motoneurons numbers or morphology was observed between
groups at 23 months of age (Figures 2G, H).

Absence of overt neurodegeneration is not uncommon in
mouse models of FTD/ALS and was often observed in other

C9ORF72 loss of function models as well as in gain of function
models (Balendra and Isaacs, 2018; Braems et al., 2020). However,
neuropathological signs of neuronal stress and dysfunction
characteristic of C9-FTD/ALS are more easily modeled in mice
and may thus be present. Astrocyte and microglia activation is
implicated in the onset and progression of neurodegeneration
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FIGURE 2

C9ORF72 deficient mice do not present brain atrophy or neurodegeneration. (A) Representative examples of adult brains of miR-C9orf72,
miR-Scramble and wild-type mice at 18 months. Scale bar = 5 mm.(B) Macro-measurements of brain width at caudal, bregma, parietal and frontal
positions (wild-type n = 4; miR-Scramble n = 4, miR-C9orf72 n = 6). (C) Areas of the brain analyzed: total cortex (yellow), frontal cortex (blue), motor
cortex (white), hippocampus (green), and cerebellar (pink) (wild-type n = 4; miR-Scramble n = 4, miR-C9orf72 n = 6). (D) Quantification of the total
cortical surface between 1 and 2.5 mm from interaural line. (E) Quantification of the total hippocampal (left) and cerebellar (right) surface at 2 mm
from interaural line. (F) Quantification of NeuN-positive cells in the whole cortex area (total cortex) and specifically in the frontal cortex and motor
cortex, 2 mm from interaural line. wild-type n = 4; miR-Scramble n = 4, miR-C9orf72 n = 6. (G) Anterior ventral horn sections of C9ORF72 deficient
mice and controls at 22 months of age stained with Cresyl Violet (Nissl staining). Scale bar = 200 µ m. (H) Quantification of motor neurons in L3, L4,
and L5 sections (wild-type n = 4; miR-Scramble n = 4, miR-C9orf72 n = 6). Error bars represent SEM.

in both ALS and FTD (Radford et al., 2015), but at the
histological level C9ORF72 deficient animals showed no signs of
increased glial activation at 23 months. The number or GFAP
positive cells and Iba-1 positive cells were similar to controls
(Supplementary Figures 1C–F) and there was no sign of peripheral
inflammation like splenomegaly (Supplementary Figure 1G),
previously observed in C9orf72 knockout animals (Atanasio et al.,
2016; Burberry et al., 2016; Jiang et al., 2016; O’Rourke et al.,
2016). The C9ORF72 protein is involved at different levels of the

endosomal, lysosomal and autophagy pathway (Levine et al., 2013;
Amick et al., 2016; Blokhuis et al., 2016; Sellier et al., 2016; Sullivan
et al., 2016; Webster et al., 2016; Xiao et al., 2016; Yang et al., 2016;
Jung et al., 2017; Liang et al., 2019; Staats et al., 2019; Shao et al.,
2020) which plays a key role in protein metabolism and recycling
in neurons and is strongly involved in TDP-43 degradation
(Filimonenko et al., 2007; Ju et al., 2009; Urushitani et al., 2010;
Wang et al., 2012; Barmada et al., 2014; Scotter et al., 2014).
In patients, cytoplasmic accumulation of p62 and TDP-43 are a
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FIGURE 3

C9ORF72 knockdown causes p62 and cytoplasmic TDP-43 accumulation in the cortex. (A) Immunofluorescence co-staining of the frontal cortex
from wild-type, miR-Scramble mice and miR-C9orf72 using anti-p62 (green) and anti-Lamp1 (red). Accumulation of p62 positive large structures
that stain positive for Lamp1 is observed in C9ORF72 deficient mice (arrows). Scale bar: 10 µm. (B) Quantification of cells presenting p62
accumulation in the frontal and the motor cortex of controls and C9ORF72 deficient animals. (C) Immunofluorescence staining of TDP-43 (red) in
sagittal sections of the cortex from wild-type, miR-Scramble mice and miR-C9orf72. Cytoplasmic structures that stain positive for TDP-43 are
indicated by arrows. Scale bar: 10 µm. (D) Quantification of cells presenting cytoplasmic TDP-43 accumulation in the frontal and the motor cortex
of controls and C9ORF72 deficient animals. (E) 3,3′-diaminobenzidine (DAB) staining of SV2 positive synapses in in sagittal sections of the cortex
from wild-type, miR-Scramble mice, and miR-C9orf72. Scale bar: 20 µm. (F) Quantification of the normalized density of SV2 staining in the frontal
and the motor cortex of controls and C9ORF72 deficient animals (the average density of SV2 staining in wild-type animals was used to nomalize all
densities). For all experiments, wild-type and miR-Scramble n = 4; miR-C9orf72 n = 6. Error bars represent SEM; *p < 0. 05, **p < 0.01.

major hallmark of C9-FTD/ALS pathology (Neumann et al., 2006;
Mackenzie et al., 2014). Regarding p62, C9ORF72 deficient animals
presented twice as many cells containing p62 accumulations in
the frontal cortex when compared to controls at 23 months
(Figures 3A, B). Furthermore, these p62 structures stained positive
for lysosomal marker Lamp1 in C9ORF72 deficient animals

(Figure 3A). Similarly, to assess TDP-43 pathology, we quantified
cytoplasmic accumulation of TDP-43 in both frontal and motor
cortices. As previously observed in aged animals (Thammisetty
et al., 2018) cytoplasmic staining for TDP-43 was observed in some
cells in the cortex of control mice, but TDP-43 positive structures
appeared more compact and their number was largely increased in
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the frontal cortex of C9ORF72 deficient animals (Figures 3C, D
and Supplementary Figure 2A). Interestingly, TDP-43 cytoplasmic
accumulations were more prevalent in layers 5–6 of both cortices
compared to layers 2–3 (Supplementary Figure 1H). 48% of
these TDP-43 cytoplasmic accumulations were also positive for
p62 (Supplementary Figure 2B). Synaptic impairment is also an
important pathological mechanism is FTD/ALS and both gain
and loss of function mechanisms of the C9ORF72 mutation
can lead to synapse loss in a diversity of models (Choi et al.,
2019; Lall et al., 2021; Nishimura and Arias, 2021; Huber et al.,
2022a,b). We measured the density of the synaptic marker Synaptic
Vesicle Protein 2 (SV2) in the frontal and motor cortices of
the C9ORF72 deficient mice and observed that it was markedly
decreased relatively to control animals (Figures 3E, F). Moreover,
immunoblot analyses showed that SV2 was globally decreased in
the cortex of C9ORF72 deficient mice (Supplementary Figures 2C,
D). Taken together, these data show that C9ORF72 deficiency alone
is not sufficient to trigger neurodegeneration or glial activation in
the brain of mice, but causes cellular pathology characteristic of
C9-FTD/ALS.

C9ORF72 knockdown causes altered
social interaction and depression-like
behavior in mice

Frontotemporal dementia symptoms are very complex and can
hardly be fully recapitulated in murine models. However, most
cases of C9-FTD present the behavioural variant of the disease (bv-
FTD), for which some characteristic behaviors can be evaluated
in mice and some phenotypes may be considered FTD-like. MiR-
C9orf72 mice were subjected to a battery of behavioral tasks at 2,
5, 9, 12, 15, and 18 months of age in order to determine whether
decreased expression of C9ORF72 caused such phenotypes, in
particular anxiety-like or depression-like behaviors and alterations
of social interaction, as was the case in other genetic FTD models
(Yin et al., 2010; Roberson, 2012; Filiano et al., 2013).

From early stages of bv-FTD pathology, patients can present
apathy, a loss of initiative and motivation that is common to both
FTD and depression. The forced swim test has been classically
used to measure depression-like behavior in mice and can detect
apathetic behavior (Porsolt, 2000). In this test, C9ORF72 deficient
animals presented strikingly longer periods of immobility at 5,
9, 12, 15, and 18 months of age when compared to controls
(Figure 4A). However, when accounting for exploration or anxiety-
like behavior in a novel-environment with the open-field test and
the dark and light chamber test, no difference was observed among
groups (Supplementary Figures 3A, B).

Progressive deterioration in social function is another
characteristic of bv-FTD (Burrell et al., 2016). Altered social
interactions in mice represents a phenotype reminiscent of
social deficits observed in FTD patients that can be investigated
using the three-chamber test for sociability and social novelty
preference (Yang et al., 2011). During the sociability session,
C9ORF72 deficient mice all preferred the mouse rather than
the object, similarly to controls (Supplementary Figure 3C).
However, they proved unable to distinguish between the “novel
mouse” and the “known mouse” in the social novelty preference
session, from 5 months of age onward through all subsequently

tested ages (Figure 4B), revealing a profound dysfunction of
social behavior. To make sure that this result really reflected
abnormal social functions we ran a number of complementary
tests to exclude confounding effects due to olfactory defects
or memory impairment. We verified olfactory abilities with
the habituation/dishabituation test, which showed that miR-
C9orf72 mice were perfectly able to identify a new odor and
to differentiate between a social odor and a non-social one
(Figure 4C). Hippocampal memory also appeared unaffected
as no phenotype was detected using the Morris-water maze test
(Supplementary Figures 3D, E), and long-term potentiation (LTP)
and synaptic transmission at the Schaffer collateral-CA1 synapse
was fully functional and similar between C9ORF72 deficient mice
and controls (Figure 4D and Supplementary Figures 3F–H).

These observations reveal for the first time that decreasing
C9ORF72 in vivo in mice can lead to apathetic or depression-like
behaviors, and very specifically alters social interaction at as early
as 5 months of age.

C9ORF72 deficient mice present mild
strength loss and neuromuscular
junction abnormalities but no motor
neuron disease

Patients bearing C9ORF72 HRE can present FTD, ALS, or
both. To test whether ALS-like anomalies arise when knocking
down C9ORF72, despite the absence of motoneuron degeneration
(Figures 2G, H) we assessed motor performance, strength,
and neuromuscular transmission in our mouse model. Using
the accelerating rotarod, C9ORF72 deficient mice demonstrated
normal balance and coordination (Figure 5A). To further assess
miR-C9orf72 mouse locomotion, video footage of the three
groups walking on a treadmill was used for precise gait analysis.
Gait traces were produced from which step, stance and swing
duration were analyzed. A regularity index was then computed.
No major differences were observed in gait coordination and
execution of step timing (Figure 5B). No differences in traveled
distance or velocity were either observed in the Open-Field
test (Supplementary Figure 4A). Next, mice were tested for
muscle strength using the grip test, during which the peak of
hindlimb maximal force is measured. Remarkably, miR-C9orf72
mice presented a deficiency that appeared with aging starting at
12 months (Figure 5C). Similar results were observed with the
hanging wire test, confirming the observed effect (Figure 5D).
We also noted that C9ORF72 deficient mice appeared slower to
reach their adult peak of force compared to controls in the grip
test, but the hanging wire test showed that they were similar to
miR-Scramble controls at that age (Figures 5C, D).

We next used electromyogram (EMG) recordings to determine
whether neurophysiological abnormalities occur in the peripheral
nervous system. Compound muscle action potential (CMAP)
amplitude as well as distal motor latency (DML) were normal,
thus excluding major motor conduction changes in miR-C9orf72
mice (Figure 6A). Similarly, muscle fibers did not present changes
at the histological level (Supplementary Figure 4B). Reduced
muscle strength may result from motoneuron loss, neuromuscular
transmission failure, or muscle atrophy. As motoneuron loss,
motor conduction changes or muscle atrophy were not observed,
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FIGURE 4

miR-C9orf72 mice develop FTD-like behaviors. (A) Forced swim assessment for depression-like behavior at 2, 5, 12, and 18 months (wild-type
n = 10; miR-Scramble n = 12, miR-C9orf72 n = 34). Depression-like behavior is measured as the time of immobility in the water tank. (B)
Three-chamber test for social interaction and social novelty at 2, 5, 12, and 18 months (wild-type n = 10; miR-Scramble n = 12, miR-C9orf72 n = 34).
Social exploration is quantified as time spent sniffing an already known mouse (stg1) or a novel mouse (stg2). (C) Olfactory
habituation/dishabituation test at 12 months used to measure if animals can differentiate between same and different odors, social and non-social.
For all mice, consecutive presentations of the same odor resulted in decreased investigation of the smell showing habituation. Sniffing time
increased again each time the subject was introduced to a new smell and social cues elicited a higher response than non-social ones as expected
demonstrating normal olfaction and memory (wild-type n = 6; miR-Scramble n = 6, miR-C9orf72 n = 7). (D) Study of long-term potentiation in the
CA1 area. High frequency stimulation (HFS; 2 × 100 Hz, 1 s) of CA3 Schaffer collaterals induced a long-term potentiation (LTP) of the CA1
post-synaptic field potential (fPSP) in all animals tested. The LTP amplitude was similar between the miR-C9orf72 and control animals. At the top
right, representative sample traces from an electrode before (gray) and after the LTP induction in the miR-C9orf72 (red) and the WILD-TYPE (black)
(wild-type n = 6; miR-Scramble n = 6, miR-C9orf72 n = 7). Error bars represent SEM; ∗p < 0.05, ∗∗p < 0.01.
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FIGURE 5

Age-dependent strength loss but absence of motor deficits in C9ORF72 deficient mice. (A) Rotarod testing of C9ORF72 deficient mice at 2, 5, 9, 12,
and 22 months (wild-type n = 10; miR-Scramble n = 12, miR-C9orf72 n = 34). No differences of sensorimotor coordination, or motor learning were
observed across trials in young or aged animals. (B) Quantification of normal step number and stride length by Treadmill. No alteration could be
seen with C9ORF72 deficient animals (wild-type n = 10; miR-Scramble n = 12, miR-C9orf72 n = 34). (C) Hind limb grip strength measured at 2, 5, 9,
12, 15, and 22 months (wild-type n = 10; miR-Scramble n = 12, miR-C9orf72 n = 34). (D) Hanging wire test measuring time to fall at 2, 5, 9, 12, and
15 months (wild-type n = 10; miR-Scramble n = 12, miR-C9orf72 n = 34). Error bars represent SEM; *p < 0.05, **p < 0.01, ****p < 0.0001.

we looked into other possible mechanisms. As neuromuscular
junction innervation can be strongly affected in ALS (Dupuis and
Loeffler, 2009), we looked for signs of degeneration and/or muscle
atrophy. Muscle fibrillations were more frequently observed in
miR-C9orf72 mice compared to miR-Scramble mice (Figure 6B),
which suggested possible events of muscle denervation. We
then studied individually the neuromuscular junction (NMJs)
at the morphological level. Nerve terminals and motor plates

were perfectly colocalized, excluding massive denervation events
(Figure 6C). However, we observed a mild yet significant
remodeling of pre- and post-synaptic compartments (Figure 6D).
Unlike wild-type and miR-Scramble mice in which we observed
typical fork-shaped nerve terminals innervating well-defined
post-synaptic pretzel organization of the acetylcholine receptors
(AChR), the miR-C9orf72 mice presented pre- and post-synaptic
defects in all tested muscles at 15 and 23 months of age (Figure 6D).
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FIGURE 6

C9ORF72 deficient mice show evidence of mild neuromuscular junction deficits. (A) Representative tracings of evoked Compound Muscle Action
Potentials (CMAPs) at 20 months in the gastrocnemius muscle after stimulation of the sciatic nerve. Distal Motor Latency (DML), expressed in ms,
was determined by the time between the stimulus and the time to onset of a negative peak in the CMAP as shown by arrows. Both graphs present
DML in ms as means ± SEM and CMAP in millivolts, as means ± SEM for wild-type, miR-Scramble and miR-C9orf72 groups (n = 8). (B)
Representative tracings of abnormal activities used to score the EMG abnormal activities at 20 months: normal activity (0)/presence of abnormal
activities (1) fibrillation (2a)/positive sharp wave (2b) and intermittent activities (3). The graph present EMG abnormality score rating 0 to 4 (wild-type
n = 8; miR-Scramble n = 8, miR-C9orf72 n = 8). (C) Analysis of synaptic contact in diaphragm muscle of wild-type, miR-Scramble and miR-C9orf72
mice. Whole-mount preparations stained with α-bungarotoxin for acetylcholine receptors (nAChR) in red and with anti-neurofilament (NF) and
anti-SV2 antibody for axons and synaptic vesicles in green. NMJ overlaps quantification shows no differences between synaptic contacts in
miR-C9orf72 when compared to controls. Scale bar = 10 µm. (D) Morphological study of NMJ in Soleus muscle of wild-type, miR-Scramble and
miR-C9orf72 mice. MiR-C9orf72 mice present abnormal focal axonal swellings (arrows). The histograms represent quantification of both
abnormalities expressed as a percentage of the 224, 260, and 243 NMJs analyzed in miR-C9orf72, wild-type and miR-Scramble mice, respectively.
Scale bar = 10 µm. Error bars represent SEM; n.s. non-significant; *p < 0.05, **p < 0.01, ****p < 0.0001.
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Fragmentation of post-synaptic gutters and focal pre-terminal
axonal swellings were most frequently seen in miR-C9orf72 mice
when compared to controls (Figure 6D).

Thus, in agreement with previous reports (Koppers et al., 2015;
Atanasio et al., 2016; Burberry et al., 2016; Jiang et al., 2016;
O’Rourke et al., 2016; Sudria-Lopez et al., 2016; Sullivan et al.,
2016; Ugolino et al., 2016; Zhu et al., 2020) C9ORF72 decrease
does not cause a motor phenotype in mice. However, we show that
it can cause deficits in muscle strength with aging and light NMJ
structural alterations, signaling late distal axonal suffering.

Discussion

We have used a constitutive and ubiquitous knockdown
to reproduce in mice the decrease in C9ORF72 RNA and
protein expression observed in patients. Using these miR-C9orf72
mice, we conducted an extensive behavioral, histological and
neurophysiological characterization over 24 months, which allowed
us to investigate in more detail alterations that can arise from
reduced C9ORF72 in the brain, spinal cord and muscles over time.
In agreement with previous work (Koppers et al., 2015; Atanasio
et al., 2016; Burberry et al., 2016; Jiang et al., 2016; O’Rourke et al.,
2016; Sudria-Lopez et al., 2016; Sullivan et al., 2016; Ugolino et al.,
2016; Zhu et al., 2020), there was no overt neuronal loss in our mice,
nor did they develop any locomotor dysfunction or motoneuron
loss. However, subtle strength decrease, NMJ alterations, and
distal axonal swellings developed in aged animals. They also
exhibited abnormal accumulations of key proteins involved in the
autophagy/lysosomal functions, which are commonly altered in
C9orf72 KO animals (Koppers et al., 2015; Atanasio et al., 2016;
Burberry et al., 2016; Jiang et al., 2016; O’Rourke et al., 2016;
Sudria-Lopez et al., 2016; Sullivan et al., 2016; Ugolino et al., 2016;
Zhu et al., 2020). Recently, alterations of the endosomal-lysosomal
pathway were also reported in haploinsufficient C9orf72 mice
supporting our findings (Staats et al., 2019). Interestingly, we found
an increased number of neurons with cytoplasmic TDP-43 deposits,
as had previously been seen in C9ORF72 loss of function cellular
models (Sellier et al., 2016), and which might represent an early
pathological event in the process leading to TDP-43 accumulation
and aggregation. Previous studies on C9orf72 knockout animals
did not report a similar pathology, but TDP-43 mislocalization
was either investigated in much younger animals or not quantified
(Koppers et al., 2015; Burberry et al., 2016; O’Rourke et al., 2016).
Since we observed it only in maximum 15–20% of the frontal
cortex neurons, it may have been previously missed. In parallel,
there was a decrease in the cortical density of the synaptic marker
SV2, suggesting a decrease in the number of functional synapses in
FTD/ALS related regions. Contrasting with the absence of motor
neuron disease, we observed that our miR-C9orf72 mice presented
social interaction deficits and apathy or depression-like behavior as
early as at 5 months of age. Therefore, we show that a C9ORF72
deficiency in mice reflecting the decrease of C9ORF72 expression
observed in patients is enough to trigger an FTD-like behavioral
phenotype and some pathological alterations characteristic of C9-
FTD/ALS. While it does not trigger an ALS-like phenotype, the
deficiency also leads to mild alterations of the motor system with
aging.

Since the discovery of the C9ORF72 mutation in FTD/ALS,
the understanding of mechanisms that drive neurodegeneration
in C9-FTD/ALS has raised a number of questions, none of them
more debated than the relative roles of gain and loss of function
effects. Models aiming to reproduce only one or the other have shed
light on affected cellular pathways but have generally failed to fully
mimic the disease or identify a main triggering effect (Balendra
and Isaacs, 2018; Braems et al., 2020). On the one hand, RNA
foci and DPRs seem to cause neurodegeneration and often lead
to motor neuron disease when overexpressed (Chew et al., 2015;
Zhang et al., 2016; Herranz-Martin et al., 2017; Schludi et al.,
2017; Choi et al., 2019; Hao et al., 2019; LaClair et al., 2020),
whereas most BAC models presenting RNA foci and RAN proteins
at physiological levels do not fully develop neurodegeneration or
FTD/ALS behavioral phenotypes (O’Rourke et al., 2015; Peters
et al., 2015; Jiang et al., 2016; Liu et al., 2016; Mordes et al., 2020;
Nguyen et al., 2020). On the other hand, knockout mice have
been produced unraveling some of the functions of the C9ORF72
protein without extensively investigating behavioral characteristics
of these mice, particularly in relation to FTD (Atanasio et al.,
2016; Burberry et al., 2016; O’Rourke et al., 2016; Sudria-Lopez
et al., 2016). Most interestingly, a thorough characterization was
done in one study (Jiang et al., 2016) which showed that complete
ablation of C9ORF72 resulted in sociability defects and late motor
deficits. Lately, spatial memory impairment was also identified in
aged C9ORF72−/− mice (Lall et al., 2021). Therefore, it gradually
appeared that the disease must result from a combination of events
involving both gain and loss of function mechanisms (Balendra
and Isaacs, 2018). Multiple evidence now supports the hypothesis
that C9ORF72 haploinsufficiency synergizes with gain of function
mechanisms to produce the FTD/ALS phenotype (Shao et al., 2019;
Staats et al., 2019; Dong et al., 2020a,b; Zhu et al., 2020). Yet, how
a decrease of C9ORF72 is going to alter the functions of the brain
and spinal cord is still largely unknown.

In the first published models of C9ORF72 loss of function
in mice, animals developed neither locomotor defects or motor
neuron loss, or showed subclinical signs of degeneration (Lagier-
Tourenne et al., 2013; Koppers et al., 2015). C9ORF72 reduction
was, however, either exclusively neuronal (Koppers et al., 2015),
or was only transiently knocked-down (Lagier-Tourenne et al.,
2013). Other full knockout mouse models revealed very mild motor
deficits that were not observed in C9ORF72 ± mice (Atanasio
et al., 2016; Jiang et al., 2016). These deficits, consisting of
progressive hindlimbs weakness and reduced locomotor activity
appeared between 10 and 15 months (Atanasio et al., 2016), as
well as a slight decrease in the latency to fall on a rotarod after
12 months (Jiang et al., 2016), are globally in agreement with
the observations in our knockdown mice. Indeed, the decreased
strength in hindlimbs coupled to weakness when hanging to an
inversed grid, and pre and post-synaptic alterations in the NMJ
denotes subclinical suffering of the motor unit (Figures 5C, D,
6B–D). The observed focal axonal swellings in the miR-C9orf72
mice might represent early signs of future and more pronounced
axonal damages (Nikić et al., 2011; Duregotti et al., 2013).
“Focal axonal degeneration” (FAD) is characterized by sequential
stages, beginning with focal axonal swellings, progressing to
axon fragmentation, and eventually leading to motor neuron
death (Craner and Fugger, 2011; Nikić et al., 2011). Although our
evidence and others demonstrate that C9ORF72 deficiency cannot
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by itself cause ALS, it was recently shown in mice and rats that
decreasing C9ORF72 predisposes animals to the development of
motor neuron disease (Shao et al., 2019; Dong et al., 2020a,b;
Zhu et al., 2020). In human motoneurons derived from iPS
cells from C9ALS patients, neurodegeneration was also dependent
on haploinsufficiency (Shi et al., 2018). Therefore, despite the
numerous evidences that C9ORF72 loss of function does not cause
motor neuron disease without additional hits, targeting C9ORF72
haploinsufficiency early on in the disease course might be of strong
therapeutic interest in C9ALS.

Regarding the role of C9ORF72 deficiency in the development
of C9-FTD, there has unfortunately been too few investigations
in animal models. Social interaction deficits, in particular, are
a common phenotype in FTD mouse models (Yin et al., 2010;
Roberson, 2012; Filiano et al., 2013) and were only investigated by
Jiang et al. (2016) and in the present study. Nevertheless, social
behavior incongruities are observed early on in both studies (5–
6 months) suggesting that decreasing C9ORF72 in the mouse
results consistently in social interaction deficits. Strikingly, in gain
of function models, however, although also rarely explored, this
behavior generally appears unaffected (Peters et al., 2015; Jiang
et al., 2016; Balendra and Isaacs, 2018). One study (Chew et al.,
2015) with strongly overexpressed transgenic HRE reported social
behavior anomalies, regarding, however, the ability to differentiate
a social stimulus from a non-social object. This is quite different
from a blunting of social recognition, which affects the ability of
mice to identify and remember conspecifics, a most interesting
phenotype in relation to FTD. In our study, miR-C9orf72 mice
were perfectly able to distinguish between social and non-social
stimuli in two different tests (Figure 4C and Supplementary
Figure 2C) whereas social recognition was impaired both in our
model (Figure 4B) and in the knockout mice analyzed by Jiang et al.
(2016).

Several groups showed that complete ablation of C9ORF72
causes mice to develop autoimmunity (Atanasio et al., 2016;
Burberry et al., 2016; Jiang et al., 2016; O’Rourke et al., 2016).
Heterozygous mice do not seem to suffer from this abnormal
immune activation (Atanasio et al., 2016; Burberry et al., 2016;
Jiang et al., 2016; O’Rourke et al., 2016; Zhu et al., 2020)
and we did not detect glial activation either in our miR-
C9orf72 mice (Supplementary Figures 1C–F) nor splenomegaly
(Supplementary Figure 1G). This type of effect has been observed
with the FTD-causing gene progranulin (GRN). GRN knockout
mice often present changes in behavior relevant to FTD with
increased inflammatory and phagocytic responses (Yin et al., 2010;
Lui et al., 2016) while heterozygous mice can have FTD-related
behavioral deficits without major signs of inflammatory alterations
(Filiano et al., 2013). In GRN-FTD as well as in C9-FTD/ALS
there is a strong possibility that more subtle alterations of the
immune response can generate a critical frailty and contribute
significantly to the disease. The fact that we observe signs of
synaptic impairments may be in line with this hypothesis since it
was recently observed as a consequence of microglial dysfunction
in C9ORF72 knockout mice (Lall et al., 2021). It is intriguing to note
that both C9ORF72 and PGRN depletion are capable of causing
systemic immune dysfunction in mouse models and FTD-related
behaviors without motor neuron disease.

Interestingly, C9ORF72 has been shown to form a complex
with SMCR8 to regulate the autophagy/lysosomal pathway

(Levine et al., 2013; Farg et al., 2014; Almeida and Gao, 2016;
Amick et al., 2016; Blokhuis et al., 2016; Sellier et al., 2016;
Sullivan et al., 2016; Webster et al., 2016; Xiao et al., 2016;
Yang et al., 2016; Jung et al., 2017; Liang et al., 2019; Shao
et al., 2020). The autophagy receptor p62, which aggregates in the
brain of C9ORF72 expansion carriers, accumulated in the cortices
of our mice and colocalized with lysosomes. This result shows
that decreased expression of C9ORF72 is enough to dysregulate
the autophagy/lysosomal pathway, as was also observed in the
hippocampus of C9orf72± mice by Staats et al. (2019). Most
importantly, the study of SMCR8 knockout mice has revealed
that they develop autoimmunity similarly to C9ORF72 deficient
animals (Zhang et al., 2018; Liang et al., 2019), but they also display
mild motor phenotypes (Zhang et al., 2018) resembling those
observed in C9ORF72 knockout mice (Atanasio et al., 2016; Jiang
et al., 2016) and in our model. In SMCR8 and in C9ORF72 deficient
mice, promoting autophagy via MTOR inhibition could rescue
the autoimmunity phenotype, definitely establishing a causative
link between the cellular function of C9ORF72 and immune
dysfunction (Shao et al., 2020). It is however, unknown if SMCR8
knockout animals present disturbances of social interaction and
if this phenotype as well as the mild motor deficits could be
rescued in C9ORF72 and SMCR8 deficient animals by injecting
MTOR inhibitors. The PIKfyve inhibitor apilimod was shown to
rescue the endo-lysosomal impairment and increased glutamate
receptor levels caused by C9ORF72 deficiency both in vitro and
in vivo (Shi et al., 2018; Staats et al., 2019). Considering the
hypothesis regarding the causes of the immune dysfunction in
C9ORF72 knockout mice (Shao et al., 2020), it seems likely that
apilimod or other PIKfyve inhibitors could rescue this phenotype
as well. There is hope then that such molecules could rescue
the behavioral phenotypes presented by C9ORF72 deficient mice,
including our model, or even the SMCR8 knockout mice, offering
a therapeutic strategy addressing the effects of C9ORF72 loss of
function.

In conclusion, our study supports the hypothesis that decreased
expression of C9ORF72 plays an important part in damaging
target neuronal or glial cells involved in C9-FTD/ALS. Considering
our results and those of others (Peters et al., 2015; Jiang
et al., 2016; Balendra and Isaacs, 2018; Lall et al., 2021), we
believe that C9ORF72 haploinsufficiency might be the main
factor triggering the initiation of the FTD symptoms. However,
most evidence suggests that additional stimuli or stresses such
as those caused by RNA foci or DPRs are necessary to trigger
the full neurodegenerative C9-FTD/ALS. In any case, in the
light of recent data including the present work concerning the
functions of C9ORF72 and the genetic evidence linking the
autophagy/lysosomal pathway to FTD/ALS (Deng et al., 2017;
Stamatakou et al., 2020), future therapies must be considered
carefully. Strategies targeting the gain of function effects of the HRE
should be designed to maintain or even increase in parallel the
expression of the wild-type copy of C9ORF72.
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