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Introduction: Maintaining high cognitive functions is desirable for “wellbeing”

in old age and is particularly relevant to a super-aging society. According to

their individual cognitive functions, optimal intervention for older individuals

facilitates the maintenance of cognitive functions. Cognitive function is a result of

whole-brain interactions. These interactions are reflected in several measures in

graph theory analysis for the topological characteristics of functional connectivity.

Betweenness centrality (BC), which can identify the “hub” node, i.e., the most

important node a�ecting whole-brain network activity, may be appropriate for

capturing whole-brain interactions. During the past decade, BC has been applied

to capture changes in brain networks related to cognitive deficits arising from

pathological conditions. In this study, we hypothesized that the hub structure

of functional networks would reflect cognitive function, even in healthy elderly

individuals.

Method: To test this hypothesis, based on the BC value of the functional

connectivity obtained using the phase lag index from the electroencephalogram

under the eyes closed resting state, we examined the relationship between the

BC value and cognitive function measured using the Five Cognitive Functions test

total score.

Results: We found a significant positive correlation of BC with cognitive

functioning and a significant enhancement in the BC value of individuals with high

cognitive functioning, particularly in the frontal theta network.

Discussion: The hub structure may reflect the sophisticated integration and

transmission of information in whole-brain networks to support high-level

cognitive function. Our findingsmay contribute to the development of biomarkers

for assessing cognitive function, enabling optimal interventions for maintaining

cognitive function in older individuals.
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1. Introduction

In a super-aging society, extending a healthy life expectancy
is a pressing issue (Muramatsu and Akiyama, 2011). Physical and
mental health are maintained through social participation (Chiao
et al., 2013). These activities are supported by high cognitive
functioning; however, aging and dementia lead to cognitive decline
(Deary et al., 2009), which prevents a physically and mentally
healthy lifestyle (Deary et al., 2009). Interventions for dementia
can prevent the progression of cognitive decline. Therefore,
early detection is important for early intervention (Sanford,
2017; Porsteinsson et al., 2021). Medical interviews and cognitive
function tests have been widely used clinically to estimate the
cognitive decline in older adults (Boccardi et al., 2016; Arvanitakis
et al., 2019). In addition to these methods, the development of
biomarkers may allow the evaluation of cognitive functions in
a more multifaceted manner (Soria Lopez et al., 2019; Khan
et al., 2020). Furthermore, estimating cognitive functions may be
utilized not only for intervention for dementia but also for optimal
intervention for healthy life for elderly people, according to their
individual cognitive functions. Such interventions for enhancing
cognitive functions may facilitate achieving “wellbeing” in old age
(Bauermeister and Bunce, 2015; Nuzum et al., 2020).

Recently, with the development of methods that can measure
brain activity non-invasively, such as functional magnetic
resonance imaging, electroencephalography (EEG), and positron-
emission tomography, studies to clarify brain functions from
brain activity have been conducted widely (Shibasaki, 2008). In
particular, EEG has the advantages of low cost, user-friendliness,
and high temporal resolution compared to other methods and has
wide clinical and healthcare applications (van Diessen et al., 2015).
Previous studies have shown that people with age-related diseases
exhibit abnormalities in EEG (see review, Jeong, 2004; Yang et al.,
2019). For example, wave slowing is observed in Alzheimer’s disease
(AD), where there is a shift from high-frequency components such
as alpha, beta, and gamma to low-frequency components (Cassani
et al., 2018). In cases of mild cognitive impairment, patients show
an increase in theta power (Prichep et al., 2006; Moretti et al.,
2013) as well as a decrease in alpha power (Huang et al., 2000;
López et al., 2014). Not only in individuals with pathological
conditions but also in healthy individuals, band-specific neural
activity on EEG reflects various brain functions (reviewed in
Helfrich et al., 2019). The phase component of alpha-band activity
supports perceptual functions (De Graaf et al., 2013; Spaak et al.,
2014; Helfrich et al., 2017), whereas in higher cognitive functions,
typified as attention and prediction, neural activity at the delta
and theta bands coordinates the top-down control of cognitive
processing (Landau and Fries, 2012; Fiebelkorn et al., 2013; Dugué
et al., 2015).

Compared with power spectrum analysis, which examines the
activity in intra-brain regions, functional connectivity analysis
focuses on the interactions between brain regions (see review,
Fingelkurts et al., 2005). Functional connectivity, which is
defined as the degree of synchronization and information flow
between neurally activated areas of different brain regions (strong
synchronization and large information flow corresponding to
strong functional connectivity), has been widely utilized for
evaluating pathological and aging brain network changes and
the brain network characteristics that support cognitive functions

in healthy individuals (Stam et al., 2007a; Zhou and Seeley,
2014; Sala-Llonch et al., 2015; Torres-Simón et al., 2022). In
particular, the relationship between functional connectivity and
cognitive status has been elucidated in diverse dementia cases
involving mild cognitive impairment, AD, and dementia with
Lewy bodies (Zhou and Seeley, 2014; van Dellen et al., 2015;
Zhang et al., 2016; Nobukawa et al., 2020a; Torres-Simón et al.,
2022). In this relationship, most of the reduced functional
connectivity correlates with decreasing cognitive functions (Zhou
and Seeley, 2014; van Dellen et al., 2015; Nobukawa et al., 2020a).
However, some functional connectivity is enhanced, especially in
mild cognitive impairments (Zhang et al., 2016). Therefore, to
estimate the cognitive state in older individuals, capturing disease-
specific (Zhou and Seeley, 2014; van Dellen et al., 2015; Zhang
et al., 2016; Nobukawa et al., 2020a; Torres-Simón et al., 2022),
age-specific (Scally et al., 2018; Ando et al., 2022), and level-
of-cognitive-functional-specific (Nobukawa et al., 2020b) spatial
patterns of functional connectivity is important. Moreover, among
the many approaches to estimate functional connectivity, such as
coherence measure and transform entropy, instantaneous phase
synchronization, typified as the phase lag index (PLI), is an effective
approach for estimating functional connectivity with higher spatial
resolution compared to other synchronization approaches, by
virtue of suppressing the influence of volume conduction (Stam
et al., 2007b; Tobe andNobukawa, 2022). In particular, utilizing this
approach, older people have been reported to experience reduced
connectivity in the upper alpha band compared to younger adults,
even in EEG signals that have relatively low spatial resolution
(Scally et al., 2018). Additionally, AD patients have shown a
decrease in functional connectivity in the alpha and beta bands
(Stam et al., 2009; Engels et al., 2015; Nobukawa et al., 2020a),
whereas healthy older individuals with high cognitive functions
exhibit strong whole-brain functional connectivity at the alpha
band (Nobukawa et al., 2020b).

Functional connectivity examines the pair-wise interactions
of neural activity. By contrast, graph theory analysis, which can
examine global topological features consisting of an assembly
of functional connectivities, has been widely applied to explore
whole-brain network abnormalities in many diseases (Rubinov
and Sporns, 2010; Sporns, 2018). For example, in AD, alterations
in topological network characteristics, such as the loss of small-
world characteristics, have been reported (Stam et al., 2007b; de
Haan et al., 2009). In addition, these alterations, typified by the
clustering coefficient and nodal centrality, appear even in healthy
aging individuals (Knyazev et al., 2015; Javaid et al., 2022). Of the
different kinds of topological features, the brain region termed a
“hub,” i.e., the most important brain region affecting the activity of
the whole network, is an essential factor coordinating whole-brain
interactions. In particular, betweenness centrality (BC), which is
defined as centrality based on the shortest paths in the network,
is widely used to detect the “hub” in a functional network (Liu
et al., 2014; van Oort et al., 2014; Engels et al., 2015). By virtue
of focusing on pathways among whole brain regions, BC can
easily capture global “hub” structures (Liu et al., 2014; van Oort
et al., 2014; Engels et al., 2015). Cognitive function emerges by
whole-brain interactions and their integration among many brain
regions (van den Heuvel and Sporns, 2013). Thus, BC is an effective
candidate to reveal the global topological features related to
cognitive functions.

Frontiers in AgingNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1130428
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Tobe et al. 10.3389/fnagi.2023.1130428

TABLE 1 Descriptive statistics and demographic information of the total

participants.

Variables

Mean age [Standard deviation (SD)], years 70.84 (3.59)

Mean education history [Standard deviation (SD)], years 12.08 (2.01)

Mean total score of Five Cognitive Functions test (Five-Cog)
[Standard deviation (SD)]

101.11 (15.31)

Mean Mini Mental State Examination (MMSE) [Standard
deviation (SD)]

28.76 (1.13)

Mean body mass index values (kg/m2) 23.48

Mean blood pressure (Systolic, mmHg) 137.63

Mean blood pressure (Diastolic, mmHg) 80.03

Male/Female 12/26

Evaluation of the hub structure in functional networks related
to aging and age-related pathology has been proceeding (Engels
et al., 2015). In particular, Engels et al. (2015) showed that the
alternation of BC was related to the stage of AD severity and
demonstrated the effectiveness of usage of BC in the evaluation
of pathological cognitive deficits. Knyazev et al. (2015) and Javaid
et al. (2022) demonstrated that under healthy aging conditions
the hub structure in the functional networks decreases with aging.
However, Knyazev et al. (2015) captured the hub structure by
modularity based on the average among adjacent connectivity
[called as node degree (ND)], instead of pathways among whole
brain regions as in BC. In the study by Javaid et al. (2022),
frequency-band-specific functional network was not identified,
although BC was evaluated. Moreover, in these previous studies
(Knyazev et al., 2015; Javaid et al., 2022), the relationship between
alteration in cognitive functions with aging and hub structure
remains unclear.

In this context, we hypothesized that the global hub
structure of functional networks reflects cognitive function in
healthy elderly individuals. To investigate this hypothesis, we
examined the relationship between the hub structure obtained
by BC values in functional networks estimated from EEG
using PLI and cognitive functions in healthy older individuals,
measured using the Five Cognitive Functions test (Five-Cog
test) total score (Miyamoto et al., 2009). From the view point
of assessment of cognitive function for social implementations,
easier measurement method is required. Moreover, previous
studies reported that even in the resting state, performance
of cognitive functions reflect the functional connectivity and
its topology (Engels et al., 2015; Nobukawa et al., 2020b).
Therefore, we evaluated the EEG signals under the eyes closed
resting state.

2. Materials and methods

2.1. Participants

In this study, participants were recruited from among older
adults living in the community in Eiheiji-Cho, Japan. We

selected 38 medication-free, healthy, older participants for this
study. Table 1 shows the descriptive statistics and demographic
information of the participants. The sample size for this study
was determined based on those used in previous studies on the
relationship between the evaluation index at the electrode level and
cognitive functions (Nobukawa et al., 2020b; Ando et al., 2022;
Iinuma et al., 2022). We excluded individuals with major medical
or neurological conditions, a history of alcohol or drug dependency,
and systemic diseases, including hypertension, hyperlipidemia, and
diabetes mellitus. To quantify the degree of cognitive function in
each individual, these participants underwent cognitive function
tests, such as the Five-Cog test (Miyamoto et al., 2009) and
the mini mental state examination test (MMSE) (Folstein et al.,
1975). None of the participants had an MMSE test score lower
than the dementia threshold of 24, indicating that there were no
patients with dementia in this study. In this study, the results
of the Five-Cog test were used as a quantification index for the
degree of cognitive function and the participants were divided into
two groups, high- and low-cognitive function groups, according
to the score. The Five-Cog test was developed as a cognitive
function test for mass examination by video among older people
in Japan (Fujii et al., 2021). The stimuli and instructions for the
test were projected on a screen and the examinee followed the
images and filled in the response form in pencil. The Five-Cog
test is composed of six items, including five categories of cognitive
tasks (i.e., attention, memory, visuospatial function, language, and
reasoning) and a finger movement task (Miyamoto et al., 2009;
Kamegaya et al., 2012, 2014; Sugiyama et al., 2015; Fujii et al.,
2021). The sum of the scores for each category was used as a
measure of cognitive function (the detailed explanation for each
task and its sub-score is shown in Supplementary material). The
Five-Cog test is similar to MMSE, because it is used as a screening
test for dementia along with MMSE. However, the Five-Cog test
in comparison with MMSE can assess a more extensive range of
cognitive levels between dementia to healthy cognitive level by
virtue of avoiding ceiling effect (Miyamoto et al., 2009; Kamegaya
et al., 2012, 2014; Fujii et al., 2021). Based on the median (101.5
points) for the distribution of scores, the participants were then
divided into two groups: participants with 101 points or less
were allocated to the low-cognitive function group, and those
with 102 points or more were allocated to the high-cognitive
function group. The high-cognitive function group consisted of 6
men and 13 women (average age, 69.05 years; standard deviation
[SD]), 3.03 years; range, 65–74 years). The low-cognitive function
group consisted of 6 men and 13 women (average age, 72.63
years; SD, 3.25 years; range, 67–78 years). Characteristics of the
participants in the two groups are presented in Table 2. The age
and education history were significantly different between these
groups. All participants provided informed consent before the
start of the study. The study protocol was in agreement with the
Declaration of Helsinki and approved by the Ethics Committee of
the University of Fukui. The data used in this study were evaluated
in our previous study for complexity analysis of EEG. However, the
age distribution in this study was more restricted than that in our
previous study, to ensure a more rigid evaluation (Iinuma et al.,
2022).
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TABLE 2 Descriptive statistics and demographic information.

High-cognitive
function group

Low-cognitive
function group

P-value

Mean age [Standard deviation (SD)], years 69.05 (3.03) 72.63 (3.25) 0.0012

Mean education history [Standard deviation (SD)], years 12.74 (1.52) 11.42 (2.24) 0.0414

Mean total score of Five Cognitive Functions test (Five-Cog) [Standard deviation
(SD)]

113.26 (9.27) 88.95 (9.13) <0.001

Mean Mini Mental State Examination (MMSE) [Standard deviation (SD)] 28.95 (0.97) 28.58 (1.26) 0.32

Mean body mass index values (kg/m2) 23.75 23.21 0.64

Mean blood pressure (Systolic, mmHg) 137.47 137.79 0.95

Mean blood pressure (Diastolic, mmHg) 80 80.05 0.99

Male/Female 6/13 6/13 1.0

For clarity, values with p < 0.05 are shown in bold.

TABLE 3 Mean value, median value, and standard deviation of epoch size

in high- and low-cognitive function groups.

Mean
value

Median
value

Standard
deviation

High-cognitive
function group

79.63 86 26.47

Low-cognitive
function group

70.42 68 31.38

No significant large difference between high- and low-cognitive function groups (t = 0.978,

p = 0.334) was confirmed. (Positive t-value corresponds to larger epoch size of high-cognitive

function groups than one for low-cognitive function group).

2.2. EEG recording

EEG signals were recorded using a 21-channel
electroencephalography system (EEG-4518; Nihon-Koden,
Tokyo, Japan). With the electrode arrangement based on the
International 10–20 system, EEG was recorded from 19 electrodes
(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6,
Fz, Cz, and Pz) equally distributed across the scalp, using the two
ear lobes jointly as the reference. Based on previous studies, even
with this low-density EEG signal, it was reported that functional
connectivity regarding cognitive functions could be elucidated
(Nobukawa et al., 2020b). All the participants were studied while
seated in a soundproof, electrically shielded, light-controlled
recording room. During the EEG recording, they were in a state of
wakefulness, with their eyes closed and rested for at least 3 min. The
sampling frequency of recordings was 500 Hz. The time constant
was 0.3 s. A bandpass filter was applied from 1 to 60 Hz. Because
the line noise located at 60 Hz is the upper limit of the bandpass
filter, a notch filter was not applied. The electrooculogram and
electromyograms were recorded along with EEG measurements.
The electrode impedance was controlled to less than 10 k� for
each electrode using the recording device and its software with a
self-check function. Artifacts caused by several factors, such as eye
movements, blinks, and muscle activity, were manually excluded
from the evaluated epochs by focusing on specific artifact patterns
and monitoring the electrooculogram and electromyograms. In
this study, we removed durations with artifacts at even one channel

from the analyzed epochs. Therefore, in all epochs used in this
analysis, EEG signals from 19 channels were obtained.

2.3. Phase lag index

PLI evaluates the functional connectivity between two time
series (Stam et al., 2007b). PLI is based on the asymmetry of the
phase-difference distribution between the two time series, which
is determined using the Hilbert transform. Designed to ignore the
zero and π phase differences, the PLI can reduce the influence of
volume conduction. The PLI can be obtained from a time series of
phase differences 1ϕ with tk, as follows:

PLI = | < sign(1ϕ(tk)) > |, (1)

where “sign” represents a signum function, <> indicates the mean
values, and || denotes the absolute values. tk represents the time
series (k = 1, 2 . . . , N). PLI values ranged from 0 to 1. A value
of 0 means no coupling or coupling with zero lag, while a value of 1
means perfect phase coupling.

In PLI analyses, the values decrease with increasing epoch
length (Fraschini et al., 2016); therefore, it is difficult to identify
changes with increasing epoch length. Moreover, to increase the
size of the obtained artifact-free epochs, the epoch length must
be shortened. In addition, using short epoch lengths makes it
impossible to capture information on slow-frequency components.
To balance these considerations, we used an epoch length of
4 s. The PLI values for each participant were averaged over
epochs. In addition, as the number of epochs differed for each
individual, the PLI value for each epoch was obtained and
averaged for each participant (mean number of epochs among
individuals: 75.03, maximumnumber of epochs among individuals:
135, minimum number of epochs among individuals: 22). The
statistical values in high- and low-cognitives are shown in Table 3.
No significantly large difference between high- and low-cognitive
function groups (t = 0.978, p = 0.334) was confirmed. (Positive
t-value corresponds to larger epoch size of high-cognitive function
groups rather than one for low-cognitive function group). These
epoch sizes were satisfactory for stabilizing the PLI value through
averaging the epochs (Nobukawa et al., 2020a; Ando et al., 2022).
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FIGURE 1

Correlation coe�cient (rho) between betweenness centrality (BC) values and Five Cognitive Functions test (Five-Cog) total score for each of 4

frequency bands (delta (2–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz)) and 19 electrodes. Statistically significant strong positive

correlations were observed at F8 [rho = 0.335 (p = 0.039)] and T4 [rho= 0.343 (p = 0.034)] in the delta band, Fp1 [rho = 0.368 (p = 0.022)] in the

theta band, and F8 [rho = 0.325 (p = 0.046)] and Fz [rho = 0.394 (p = 0.014)] in the alpha band. In contrast, statistically significant strong negative

correlation of the Five-Cog total score with P4 [rho = −0.40 (p = 0.012)] was observed in the delta band.

With regards to the flow for calculating the PLI values, first,
the time-series signal in each electrode was divided into four bands
by finite impulse response (FIR) filter with linear phase: delta (2–4
Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). Here,
the roll-off of filtering process of the recording system, EEG-4518
appear in & 57 Hz; therefore, we did not use the gamma band.
Subsequently, a square 19 × 19-weighted adjacency matrix for the
PLI value was constructed by computing the PLI values between
all pair-wise combinations of 19 electrodes for each epoch in each

frequency band. The PLI was calculated using theHERMES toolbox
(Niso et al., 2013).

2.4. Betweenness centrality

BC is widely used to identify focal nodes in brain networks
(Freeman, 1978). Mathematically, the BC is defined as the fraction
of the number of shortest paths that pass through a given node to
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TABLE 4 Summary of multiple linear regression analysis for betweenness centrality (BC).

R R2 F-vale
(p-value)

β for Five-Cog total
score (p-value)

β for age
(p-value)

β for education
history (p-value)

β for sex (p-value)

Delta

F8 0.51 0.263 2.947 (0.035) 0.260 (0.160) −0.231 (0.188) 0.139 (0.425) 0.075 (0.637)

P4 0.447 0.200 2.061 (0.109) – – – –

T4 0.549 0.301 3.554 (0.016) 0.285 (0.115) −3.67 (0.035) −0.326 (0.060) −0.092 (0.552)

Theta

Fp1 0.496 0.246 2.692 (0.048) 0.538 (0.006) 0.136 (0.440) −0.225 (0.203) −0.184 (0.258)

Alpha

F8 0.446 0.199 2.050 (0.110) – – – –

Fz 0.426 0.182 1.834 (0.146) – – – –

T4 0.344 0.119 1.110 (0.368) – – – –

For clarity, values with p < 0.05 are shown in bold. R, multiple correlation coefficient; R2 , coefficient of determination; β , standardized partial regression coefficient.

FIGURE 2

Scatter plot between BC values and Five-Cog total scores at Fp1 in

the theta band, which exhibited significant large β for Five-Cog total

score in Table 4. The result showed the di�erent tendency of BC

distribution between high- and low-cognitive function groups.

TABLE 5 The results of the repeated-measure analysis of covariance

between the high- and low-cognitive function groups for the value of

betweenness centrality, using age and educational history as covariates.

Group e�ect Group× electrode

Delta F = 0.007 (p = 0.932, η2 = 0.000) F = 0.736 (p = 0.704, η2 = 0.021)

Theta F = 5.148 (p = 0.030, η2 = 0.131) F = 2.726 (p = 0.004, η2 = 0.074)

Alpha F = 0.951 (p = 0.336, η2 = 0.027) F = 1.364 (p = 0.226, η2 = 0.039)

Beta F = 1.268 (p = 0.268, η2 = 0.036) F = 1.000 (p = 0.439, η2 = 0.029)

F, p, and η2 value with p < 0.05 are represented in bold text.

the total number of shortest paths in the network. A node with
a high BC value corresponds to a bridge node in the network
and plays an important role as a hub. The BC value bi of node i

is defined as:

bi =
1

(n− 1)(n− 2)

∑

h,j∈N,h6=i,j6=i

ρhj(i)

ρhj
, (2)

where ρhj is the number of shortest paths from node h to j, and
ρhj(i) is the number of paths passing through node i. N is the
set of all nodes in the network, and n is the number of nodes.
Subsequently, bi was normalized between 0 and 1 by dividing it
by (n − 1)(n − 2). In BC estimation of functional connectivity,
the length of the pathway between nodes is defined as an inverse
number of PLI values. Moreover, to allow focusing on the main
backbone of the network pathway, long pathways were pruned
by using the minimum spanning-tree process; the study adopted
this pruning process (Engels et al., 2015; van Dellen et al., 2018).
This network was evaluated for BC analysis instead of a fully
connected network. To calculate BC, we applied the MATLAB
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

2.5. Statistical analysis

Spearman’s correlation analysis was performed to analyze
the relationships between Five-Cog total scores and BC values,
between age and BC values, and between education history
and BC values. Against BC values exhibiting significantly strong
correlation with Five-Cog total scores, multiple linear regression
analysis with Five-Cog total score, age, education history, and
sex as explanatory variables was conducted. In these analysis, the
statistical significance level was set at p < 0.05.

For the statistical comparison of BC values between the low-
and high-cognitive function groups, a repeated-measures analysis
of covariance (ANCOVA) was performed at each frequency band.
The within-participants factor was 19 electrodes, the between-
participants factor was group, and the covariates were age and
educational history. Correction of the degrees of freedomwasmade
by Greenhouse–Geisser adjustment and results were considered
significant at a two-tailed α level of 0.05. Post-hoc t-tests were
conducted to assess the significant main effects of group and

Frontiers in AgingNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1130428
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Tobe et al. 10.3389/fnagi.2023.1130428

FIGURE 3

(A) Mean value and standard deviation of betweenness centrality (BC) within each group (high- and low-cognitive function groups) in the theta band.

The dots and error bars represent the mean and standard deviation, respectively. (B) The topography of t-values of the value of BC in the theta band.

Warm colors indicate that the high-cognitive function group has a greater value than the low-cognitive function group. The significantly greater BC

value at Fp2 for high-cognitive function than low-cognitive function [t = 3.23 (p = 0.0026)], which satisfied with criteria of FDR (q < 0.05), was

confirmed.

electrode-wise interactions. To control for multiple comparisons,
false discovery rate (FDR) correction was applied with a threshold
of q = 0.05 using the Benjamini–Hochberg method to t-scores
(Benjamini and Hochberg, 1995).

Statistical analyses were performed using MATLAB version
R2022b (Natick, MA, USA) and SPSS software version 28.0 (IBM
SPSS Inc., Armonk, NY, USA).

3. Results

3.1. Betweenness centrality: Multiple linear
regression analysis

First, we investigated demographic characteristics, BC, Five-
Cog total score, age, and education history. Figure 1 shows
the correlation coefficient between the BC values and Five-Cog
total score for 4 frequency bands and 19 electrodes. Statistically
significant strong positive correlations were observed at F8 [rho
= 0.335 (p = 0.039)] and T4 [rho = 0.343 (p = 0.034)] in
the delta band, Fp1 [rho = 0.368 (p = 0.022)] in the theta
band, and F8 [rho = 0.325 (p = 0.046)] and Fz [rho = 0.394
(p = 0.014)] in the alpha band. In contrast, statistically significant
strong negative correlation of the Five-Cog total score with P4
[rho = −0.40 (p = 0.012)] was observed in the delta band.
Statistically significant strong positive and negative correlations

appeared at several electrodes in the delta and theta bands between
the BC values and age and between the BC values and education
history (data not shown). Against the BC values that exhibited
significant strong correlation with Five-Cog total score, multiple
linear regression analysis with Five-Cog total score, age, education
history, and sex was conducted as shown in Table 4. Significant
large multiple correlation coefficients R, R2, and F were observed
at F8 and T4 in the delta band and Fp1 in the theta band. Among
these BC values, the BC values at T4 in the delta band and at Fp1
in the theta band exhibited significantly strong negative β values
for age and positive β values for Five-Cog total score, respectively.
The scatter plot with Five-Cog total score at Fp1 in the theta band
is shown in Figure 2.

3.2. Betweenness centrality: Group
comparisons between the high- and
low-cognitive function groups

Table 5 summarizes the results of the repeated-measures
ANCOVA for BC, with age and educational history as covariates.
We identified both a significant group effect and group× electrode
interaction effect in the theta band. Figures 3A, B show the mean
value of BC in each group for the theta band and the results of the
post-hoc t-test, respectively. The significantly greater BC value at

Frontiers in AgingNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1130428
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Tobe et al. 10.3389/fnagi.2023.1130428

Fp2 for high-cognitive function than low-cognitive function [t =

3.23 (p = 0.0026)], which satisfied the criteria of FDR (q < 0.05),
was confirmed.

4. Discussion

In this study, we investigated the relationship between cognitive
function level and hub properties in a functional network structure
in healthy older participants using the BC of PLI in EEG
signals. Through multiple linear regression analysis, statistically
significant positive correlations of Five-Cog total scores were
found mainly in the frontal regions and in the theta band.
Additionally, a comparison of BC between the high- and low-
cognitive function groups revealed significant group differences
with electrode dependence in the theta band. In particular, a high
BCwas observed in the high-cognitive function group in the frontal
region.

First, we considered the region-specificity of changes in
BC in terms of cognitive functions, particularly in the frontal
region in the theta band. Regarding the frequency bands, many
previous studies have revealed that the theta band is related
to cognitive performance (Klimesch, 1999). In particular, many
studies have been conducted on the relationship between theta
activity and cognitive functions, and it has been shown that
theta power is related to cognitive functions such as working
memory control (Sauseng et al., 2005; Hsieh and Ranganath,
2014), cognitive control (Nigbur et al., 2011; Zavala et al.,
2018), and attention (Aftanas and Golocheikine, 2001). Global
neural interactions, which exhibit functional connectivity in
the theta band, more strongly reflect the degree of cognitive
function than local regional activity represented by the intra-
regional power component (Lejko et al., 2020; Nobukawa et al.,
2020b). Functional networks in the frontal regions of the theta
band are involved in top-down control of cognitive processing
(Von Stein and Sarnthein, 2000; Min and Park, 2010). This
sophisticated top-down control approach supports high cognitive
functioning (Edin et al., 2009; Jo et al., 2019). Moreover, recent
studies showed that the top-down projections of frontal-polar
structural/functional connectivity support the extensive cognitive
functions (Souza et al., 2022) (reviewed in Tsujimoto et al., 2011).
The high frontal BC in the theta band obtained in this study
(see Figures 2, 3 and Tables 4, 5) implies the existence of this
top-down control, which achieves high cognitive functioning.
Regarding the lack of correlation with cognitive functions and
group difference in the faster bands, the neural activities at fast
frequency bands do not form long-range functional connections of
extensive cognitive functions in comparison with slow frequency
bands (reviewed in Ishii et al., 2017). Additionally, in extensive
cognitive functions involving attention and prediction, which are
measured by the Five-Cog test, the neural activity at the delta
and theta bands, rather than the faster bands, coordinate the top-
down control of cognitive processing, (Landau and Fries, 2012;
Fiebelkorn et al., 2013; Dugué et al., 2015). Therefore, in the
faster bands the relationship of BC with cognitive functions did
not appear.

Second, we considered the effectiveness of BC in analyzing
functional networks related to cognitive function. Because BC

quantifies the ratio of the shortest path between node pairs
that pass through the node of interest (Freeman, 1978), it can
be used to evaluate the global propagation of neural signals
generated by whole-brain interactions in comparison with pair-
wise functional connectivity for directly adjacent brain regions (see
the results of pair-wise PLI analysis in Supplementary material).
BC can be considered a useful approach to capture these global
interactions in theta-band networks. In particular, during the
last decade, BC has been applied to capture alterations in brain
networks for cognitive functions under pathological conditions
(Dai and He, 2014; Engels et al., 2015; Yun and Kim, 2021).
However, this study showed that BC is useful for capturing the
global network topology involving cognitive functions not only
under pathological conditions (Dai and He, 2014; Engels et al.,
2015; Yun and Kim, 2021) but also in healthy older people.
Thus, this study may have opened a new avenue for studies
involving the assessment of functional connectivity for healthy
cognitive functions.

Third, we must consider the reason why BC captures the
hub structure related to the cognitive function, in contrast to
ND as the hub structure focused on neighbor electrodes (see
the results in the case using ND for Supplementary material).
Previous studies by Sporns et al. (2007) and Mišić et al. (2011)
examined the relationship between the complexity produced
by the interaction of neural activity and the hub structure
captured by ND and BC; consequently, a strong correlation
was observed between the complexity and hub structure in
both cases by ND and BC. In contrast, this study focuses on
the relationship between extensive cognitive functions emerging
from global interactions (Sporns and Betzel, 2016; Battiston
et al., 2020) and hub structures rather than the complexity
of neural activity itself involving local and global interactions.
Therefore, ND cannot capture the hub structure to produce
global interactions because it focuses only on the connectivity
between adjacent electrodes (see Supplementary material). Since

BC can assess the global hub structure, it enables capturing

the relationship with the extensive cognitive functions by global

neural interaction. In comparison with the previous studies on

healthy aging, this study demonstrated the effectiveness of BC in
the evaluation of the global frequency-band specific topological

characteristics for the first time; while the previous studies used

the indices defined by the adjacent connectivity such as clustering

coefficient and nodal centrality (Knyazev et al., 2015; Javaid et al.,
2022).

Fourth, we must discuss the comparison with our previous

study with the same data set (Iinuma et al., 2022). Based on

the findings for complexity analysis of neural activity, global

neural interaction increases the slow temporal-scale complexity

(Wang et al., 2018). Our previous study showed that the
slow temporal-scale complexity increases in the frontal, parietal,
and temporal regions (Iinuma et al., 2022). Considering that
in the frontal region, the global hub structure related to
the top-down cognitive process exists (van den Heuvel and
Sporns, 2013; Powers et al., 2016), we speculate that the
enhanced complexity at the frontal region emerges by the
global neural interactions in the hub structure observed in the
theta band.
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This study had some limitations. First, regarding the slower
functional connectivity analysis, i.e., about the delta band, a
previous study reported the alternation of BC in the delta band
under the condition of cognitive deficits (Engels et al., 2015); the
delta-band frequency network also plays an important role for top-
down cognitive processing, in addition to the theta-band network
(Landau and Fries, 2012; Fiebelkorn et al., 2013; Dugué et al.,
2015). Therefore, more detailed analysis in the delta-band network
is important. In this study, the epoch length for calculating the
PLI was set to 4 s, but this epoch length may be too short to
evaluate delta activity (2–4 Hz) precisely. To reveal the topology
of the delta network by PLI, sequential and prolonged artifact-
free EEG acquisition may be needed. Second, the index used in
this study was unable to detect the direction of neural signal
propagation. To reveal the information regarding integration and
transmission at the hub of a functional network, it is necessary
to evaluate the directional functional connectivity with directed
PLI (Stam and van Straaten, 2012). Moreover, many methods for
functional connectivity have been proposed, which can remove
the influence of volume conduction (Nolte et al., 2004; Pascual-
Marqui et al., 2011; Brookes et al., 2012). Therefore, finding
the optimal evaluation index to evaluate functional connectivity
must be considered. Third, the sample size in this study was
considerably small to assess the respective cognitive functions;
therefore, a larger sample size is required. Fourth, in terms of social
implementation, assessing cognitive function through low-density
EEG is important. However, high-density EEG is also essential for a
more detailed evaluation of network topology involving other types
of topology, such as clustering coefficient and efficiency. Finally,
regarding technical issues, Laplace re-reference was appropriate
to weaken the common source problem. On the other hand,
PLI analysis achieves relatively high spatial resolution without
re-reference (Nobukawa et al., 2020b). It has also been pointed
out that re-reference is not always necessary, especially in an
extended version of PLI called wPLI (Cohen, 2015). However,
the actual effect of re-reference in detecting the hub structure at
the global topology level has not yet been evaluated; therefore,
a detailed verification of the comparison will be necessary in
the future.

5. Conclusion

In this study, by evaluating functional networks in EEG
signals, we identified the hub structure of theta networks
that support a wide range of cognitive functions in healthy
older people. This structure may reflect the sophisticated
integration and transmission of information in whole-
brain networks. Furthermore, we demonstrated that BC
based on PLI of EEG signals is an effective approach for
identifying this topology. Although several limitations
remain, our findings may contribute to the development
of biomarkers for assessing cognitive function, which is
desirable for maintaining high cognitive functioning by
optimal intervention for older individuals in the upcoming
super-aging society.
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