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Shape estimation is a crucial problem in the fields of computer vision, robotics

and engineering. This thesis explores a shape from structured light (SFSL) approach

using a pyramidal laser projector, and the application of texture extraction. The

specific SFSL system is chosen for its hardware simplicity, and efficient software.

The shape estimation system is capable of estimating the 3D shape of both static

and dynamic objects by relying on a fixed pattern. In order to eliminate the need for

precision hardware alignment and to remove human error, novel calibration schemes

were developed. In addition, selecting appropriate system geometry reduces the

typical correspondence problem to that of a labeling problem. Simulations and

experiments verify the effectiveness of the built system. Finally, we perform texture

extraction by interpolating and resampling sparse range estimates, and subsequently

flattening the 3D triangulated graph into a 2D triangulated graph via graph and

manifold methods.
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Chapter 1

Introduction

In recent years, cameras have proliferated into almost every aspect of modern

life, effortlessly capturing snapshots and video. The sciences of computer vision,

digital signal processing, and image processing allowed for this aggressive expansion

of technology, yet there remain numerous problems yet to be solved. One of the

cornerstone problems in the field of computer vision is 3D shape estimation, i.e.

given an image or set of images of some scene, attempt to recover models for the

objects in that scene. Since images are 2D projections of 3D objects, this is typically

a very difficult problem, as an entire dimension has vanished. This thesis explores

a structured light approach to solve this problem, along with a specific application

termed texture estimation. The goal of the structured light approach taken in this

thesis is to estimate the global shape of some surface (whether it be stationary or

dynamic) in a fast and efficient manner. Such a system is highly scalable, allowing

for the miniaturization of the technology. While the primary focus of this thesis is 3D

shape estimation, the problem of texture estimation is also analyzed in conjunction

with the structured light approach. This is a natural pairing of problems, since

3D shape estimation requires surface interpolation schemes, denoising, and shape

analysis, all of which apply directly to the problem of texture extraction. This

chapter details the motivation and outline for the shape and texture estimation
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system described throughout this thesis.

1.1 System Motivation

The need for shape and texture estimates occurs in many engineering practices,

such as pattern recognition, machine vision for part inspection, medical imaging, and

many others. In a part inspection setting, one may wish to measure feature distances

on various shaped parts as a quality metric. Traditional approaches, include using

complicated and expensive telecentric lenses or line scanners that preserve object

level distances when projected onto the camera sensor plane. If a handheld tool

could perform the same function, this would increase the flexibility of the manufac-

turing line by coping with odd shaped parts, or complicated configurations. To do

so, the shape estimation system would need to be capable of scanning a surface in

a quick fashion, without any complicated calibration or large projectors. In book

archiving, expensive industrial scanners must be used in order for optical charac-

ter recognition (OCR) algorithms to function properly (as these scanners physically

flatten the book’s pages, or scan in a sophisticated manner). A much cheaper and

flexible solution would utilize an ordinary off-the-shelf camera, operated by the user

in a handheld fashion. If such a camera were used to image a book’s pages, the

shape distortion would need to be accounted for in order for the OCR algorithms to

work. By first estimating the shape of the book with a shape estimation system, the

book archiving process is simplified into that of taking a single picture of a page.

The texture extraction system would then generate an image of the page as if it
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were imaged via the industrial scanner. In medical imaging, a doctor may want to

compare a skin abnormality against a database to diagnose a disease. This would

involve running image-processing algorithms on images of skin in order to analyze

them in addition to studying the topography of the problem area. Using a shape and

texture estimation system would allow the doctor to scan the target area quickly,

yielding a 3D model of the area as well as a large flattened image (which could be

compared to the database, independent of the skin topography). The guiding prin-

ciples in the design of this shape and texture estimation system are simple hardware

requirements (i.e. little to no calibrated hardware or precision alignment), scalabil-

ity (i.e. the solution can be implemented for a hand held device or a lab-oriented

machine), and modularity so that the various hardware and software components

are easily interchangeable and upgradeable. By not requiring calibrated, precision

hardware, we open up the possibility to miniaturize the technology. This scalability

will enable approaches, such as the one described in this thesis to perform a wide

variety of novel tasks, even outside the particular application of texture extraction.

1.2 Outline of System

The system described in this thesis utilizes an engineered structured light

source to extract shape information from a visible surface. This structured light

source originates from a single laser beam, which passes through a diffractive optical

element (DOE). In general, DOEs are capable of producing various patterns ranging

from lines to entire images; however, the DOE selected in this thesis produces a grid
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of dots (also referred to as a pyramidal laser projector). This grid of dots reflects

off an object of interest, and is subsequently imaged by a camera. Thus, the shape

estimation occurs from only a single image of some surface with the projected grid.

Since the pyramidal projector samples the surface at a finite number of discrete

points which are in turn imaged by a camera, the shape estimation procedure can be

performed in rapid succession–enabling the system to scan moving objects without

much motion distortion. Figure 1.1 depicts the basic hardware elements.

Figure 1.1: Diagram of shape estimation system.

The software to accomplish shape and texture estimation relies on several

modules, as shown in Figure 1.2. The first module is the calibration module, which

Figure 1.2: Diagram of shape and texture estimation software.

computes essential information for depth estimation. Fortunately, calibration can

be pre-computed, and retained for many shape estimation sessions. The next two
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modules, fiducial location and labeling, contain the image-processing required to

transform an input color image into a vector of fiducial image locations. The fidu-

cials locations are rectified by the following block if appropriate calibration data is

available. Next, the range from the camera to each reflected fiducial is estimated.

Subsequently, the next module performs surface interpolation of the range data to

generate a dense topographic map of the object’s surface. Lastly, in the specific

application of texture extraction, the flattening module produces a flattened version

of the imaged texture using the original image and the dense estimated topographic

map.

1.3 Outline of Thesis

This thesis first describes the problem of 3D shape estimation from 2D imagery.

While there are numerous approaches to this problem, Chapter 2 focuses primarily

on structured light due to its robustness, hardware simplicity, and scalability. After

the general framework of structured light is presented, a detailed mathematical view

into the mechanics of structured light and associated image processing requirements

is given in Chapter 3. Chapter 4 uses the 3D shape estimation framework developed

in the previous chapter to focus on the specific application of texture extraction using

sparse 3D range measurements. This sparse measurement scheme is dealt with via

interpolation methods, which are also outlined in Chapter 4. Chapter 5 provides

the conclusion and future work relating to this thesis.
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Chapter 2

3D Shape Estimation, Theory, and Techniques

This chapter introduces the problem of 3D shape estimation, and investigates

the varied approaches taken to estimate the shape of an object. Since this thesis

specifically focuses on structured light shape estimation, a review of structured light

approaches is given, along with the physical considerations of the specific shape

estimation system implemented.

2.1 Vision Based 3D Shape Estimation Schemes

As mentioned before, estimating the 3D shape of an object is one of the cor-

nerstone problems in the field of computer vision. Humans have an innate under-

standing of the 3D world, yet observe objects with only 2D image sensors; likewise,

cameras obtain only 2D projections of 3D objects. The study of 3D shape esti-

mation is therefore important in order to develop algorithms and techniques that

allow computers to mimic or even improve upon our shape estimation ability. The

need for 3D shape estimation occurs in many fields such as medical imaging, robot

control and planning, machine control, part inspection, and many others. There are

numerous approaches one may use to extract the 3D shape from a 2D image, which
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can be separated into two categories, passive and active shape estimation1.

Passive 3D shape estimation involves estimating the shape of an object by

remotely sensing the object (typically with a digital image sensor), using only am-

bient excitation sources such as room lighting or outdoor illumination. The term

“passive” in effect means that one must not transmit a signal to the object in at-

tempts to recover information; in other words, a passive shape estimation system

is a sensing only modality with no transmission. In computer vision, there are

many approaches that fall under this category such as stereo-vision [3], shape-from-

shading [4, 5], shape-from-texture [6, 7], shape-from-motion [8, 9], and many others.

A vast amount of literature is available on these topics, as shape estimation from

only a 2D projection is a compelling and difficult problem (that is often ill posed).

These techniques often must assume substantial constraints or simplifications in or-

der to become tractable, such as Lambertian reflectance in shape-from-shading, etc.

To operate in a generalized capacity, active approaches that have both transmit-

ting and sensing modalities provide additional information in the shape recovery

problem.

Active vision2 shape estimation schemes involve transmitting a signal of some

sort to the object prior to sensing. It is intuitive that active shape estimation should

simplify the 3D shape estimation problem since the observer now gets to “touch” the

1There are many other optical methods available to solve the 3D shape estimation problem, a

good overview is provided by Chen et al. [1] and Besl [2].
2Though the term active can also be used to describe any system where the camera non-

stationary, the term is used here to discriminate between sensing modalities that receive or both

transmit and receive light
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object directly via the transmitted signal. There are numerous methods available

categorized as active shape estimation techniques including active stereo, light in

flight, structured light, and many others. This thesis focuses on structured light

approaches to the shape estimation problem because of their scalability, simplicity of

hardware, and robust estimation results. The following section outlines the history of

structured-light, and establishes the proposed system in a framework of the previous

approaches.

2.2 Structured Light Approaches

Shape from Structured Light (SFSL) is a process in which range information

(i.e. 3D shape) is estimated from an object by imaging a scene containing some

projected pattern. Such systems contain an image sensor, and a light-projector of

some sort (which can range from LCD projectors, to lasers projectors). The SFSL

technique is analogous to stereo vision methods; with SFSL however, one of the

passive cameras is replaced with a transmitting light source. As an active method

for shape estimation, the transmitted signal determines in part what information is

revealed by the observed scene. In particular, the arrangement (or structure) of the

light pattern in SFSL determines how 3D shape information projects to the image

domain. Thus, there exists two primary components of SFSL that engineers can

change according to their application needs, the structure of the light (the coding)–

that is, how the light is arranged spatially and temporally, and the shape estimation

scheme–how the shape is estimated after observing the scene (including selecting the
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calibration scheme). There are many different structures of light used in the field

of SFSL; we will examine three important categories, non-coded patterns, spatially

encoded patterns, and spatio-temporally coded patterns in Section 2.2.1.

2.2.1 Structured Light Patterns

Various patterns have been used successively in the field of SFSL. These range

from single scanning lines, to complex spatio-temporally encoded pattern sets, each

with advantages and disadvantages. Salvi et al.’s review of pattern codification

strategies [10] groups these patterns into three distinct groups: time-multiplexing,

spatial neighborhood, and direct coding. We will first explore light-stripes, fol-

lowed by spatially-encoded patterns, and lastly spatio-temporally encoded patterns.

Light stripes and spatially-encoded patterns belong to the spatial neighborhood and

direct coding categories, while spatio-temporal patterns belong primarily to time-

multiplexing and secondarily to the other two groups.

Light Stripe Patterns : Light stripes are perhaps the oldest form of SFSL, origi-

nating in the 1970’s with the pioneering work from Shirai et al. [11], who developed

one of the first systems for estimating polyhedrons via a sliding slit projector, and

Will et al. [12], who used a Fourier approach to infer information about the shape of

objects. Shape estimation in these cases is performed by scanning for line segments,

and hence detecting simple polyhedral scenes. Recent approaches such as [13], use

light stripes in a probabilistic framework. All of these approaches involve projecting
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a stripe of light onto a target object, and imaging the resulting distorted pattern.

Since the light stripe method utilizes a continuous line, dense range estimates are

obtained wherever the stripe is projected upon. However, to fully scan an object,

the light stripe must pass over the the scene (either by projector movement or object

movement), thus restricting such systems to capturing static scenes, but with high

depth resolution.

Spatially-Encoded Patterns : Related to light stripes are the projected grids/arrays

patterns (direct encoding), and more generally spatially-encoded patterns. Where

light stripe systems require scanning to obtain a full set of measurements, projected

patterns require only a single image of the object overlaid with the projected pat-

tern. Thus, projected grids/arrays sample the target surface at the grid points or

intersections. If the target surfaces are fairly smooth, these sparse measurements

can provide adequate reconstruction results in a fast, reliable manner. When the

pattern is a grid of lines, such as in the case of [15] and [16], the spacing of the lines

as well as the thickness of each line determines the accuracy of the surface sampling.

When the pattern is instead a grid of dots such as in [17], the spacing of the dots

determines the accuracy, as well as the difficulty of the correspondence problem.

The advantage of such systems is the ability to capture non-stationary objects (by

sacrificing some surface sampling density). More general spatially-encoded patterns

extend the ability of direct coding by taking advantage of neighborhood relations

among pixels such as in Salvi et al. [18] using a color-encoded grid, and Albitar

et al. [19] using primitives based encoding. These encoding schemes can increase
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the sampling density of the system by eliminating the correspondence problem at

the expense of complexity, as pixels must now be decoded in order to obtain the

correct correspondences. Grid based patterns solve the correspondence problem by

utilizing proper system configuration which ensure unique decodings at the expense

of spatial resolution.

Spatio-Temporal Patterns : An alternative to the temporally-fixed patterns such as

described before are spatio-temporally coded patterns. Since these patterns actu-

ally consist of several separate patterns, techniques such as multi-resolution, time-

averaging, and space-coding may be taken advantage of. These methods typically

involve projecting a set of patterns, and imaging the reflected scene for each pattern

such as in [20, 21, 22]. The time-averaging aspect of spatio-temporal light patterns

was investigated by Curless et al. [22], which provides a study of the error in single-

shot triangulation schemes. Error sources include reflectance discontinuities, object

corners, shape discontinuity, and sensor occlusion. By moving the light source, these

errors are averaged out over time. Horn and Kiryati [21] derived the mean-squared

error (MSE) optimal spatio-temporal structured light pattern, using the commu-

nications notion of embedding l−points in a k−dimensional space. The resulting

optimal pattern is the 3D-Hilbert curve which may be interpreted as projecting k

gray level planes. Since the spatio-temporal patterns generally rely on projecting

several patterns sequentially, observing dynamic scenes is not feasible.

Given the available methods, it is clear that spatially coded patterns are the

best suited patterns for a nominally real-time SFSL system for use with both static
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and dynamic scenes. Of these spatially coded patterns, direct-coded systems such

as grid patterns allow for efficient 3D shape estimation without the overhead of pixel

neighborhood decoding, thus allowing for scalability in size, resolution and speed.

The selected pattern used in this thesis is the pyramidal grid pattern as discussed

in Section 2.3.

2.3 Diffractive Optical Element Projection

A convenient method for generating a pyramidal grid pattern is via a diffractive

optical element (DOE) which is a thin-film capable of diffracting light into engineered

patterns [23]. The DOE uses principles from diffraction gratings to generate patterns

from a single light source. Figure 2.1 depicts a simulated DOE projector with 4x4

output spot lasers. This model is parameterized by the equivalent “focal” length of

the projector (represented here by the single red line segment), the number of lasers

in the x− and y− dimensions, and the angle separating neighboring beams. In this

figure, red lines denote laser path from the DOE. We designate two parallel planes

that define the capture volume of the system. The interception of the pyramidal

laser pattern with each plane is denoted by a blue maker, with a blue line segment

connecting the nearest and furthest points of the capture volume.

When using a DOE projector, laser spots (fiducials) are projected into the

scene and subsequently imaged by a camera. Since the resulting image will only

contain some surface superimposed with a grid of laser fiducials, we rely on direct

correspondences to identify which fiducial belongs to which laser in order to deter-
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Figure 2.1: DOE laser projector with capture volume marked.

mine the range to that point in space. Previous work by Dipanda, et al. [17, 24]

coined the term Configurations of System (COS), the relative position of the camera

with respect to the laser projector. Valid COS provide unambiguous fiducial loca-

tions at every range within the specified capture volume, as well as sufficiently high

spatial resolution. Thus, if the laser projector and camera are arranged within a

valid COS, any surface imaged will yield a distorted pattern of fiducials from which

a 3D shape can be estimated. The different valid COS cases for this SFSL system

are considered in Section 3.1.1.

2.3.1 Surface Sampling

The structured light approach taken in this thesis gathers only sparse range

estimates from target surfaces. While these few measurements allow the system to

operate very quick and efficiently, it means that some surface features are not imaged

by the SFSL system. Since the DOE projector can only project a finite number of

lasers, the spatial density of these lasers will, to a large extent, determine the fidelity
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of 3D shape reconstruction. While this method will provide fewer samples than other

SFSL methods, the trade off is increased speed and lower system complexity. The

immediate questions are how to control the granularity of the resulting depth map

and what does this entail physically for the DOE projector? To control the resolution

of the surface sampling, one must change the angle between adjacent lasers from the

DOE. In simulations, this is controlled by increasing the projector’s focal length for

a higher resolution, or decreasing it for a lower resolution, as illustrated by the 2D

case in Figure 2.2. The obvious side effect is that the capture area decreases for a

fixed number of lasers as the angle between lasers is decreased. A less obvious side

effect is that for different surfaces, a higher-resolution sampling results in more laser

registration errors, when, for example, point x′2 moves to the left of point x1 in the

image. Thus, if we restrict our SFSL setup so that these errors are not permitted,

we not only decrease the capture area, but the capture volume as well.

Figure 2.2: Diagram of surface sampling density’s relationship to the image plane.
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2.3.2 Depth Resolution Analysis

In the projective geometry of the pinhole camera, the resolution of an object

projected onto the image plane is related to the distance the object lies from the

camera. The general relationship between imaged points from an object at vari-

ous depths can be visualized by a depth-curve; an example of which is shown in

Figure 2.3, whose equation is given by,

d =
A

B − x
, (2.1)

where A and B ∈ R are constants, and d and x ∈ R are variables. The mathematics

governing this relationship are derived in Section 3.1. Figure 2.3(b) shows how the
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Figure 2.3: Example depth curve with associated depth resolution plot.

depth resolution drops off significantly when the object is far away from the camera.

Depth resolution is derived from the depth equation by computing the number of

pixels per fixed distance amount. When designing a SFSL system, it is desirable

to mitigate depth resolution drop off by careful selection of the camera/ projector

geometry.
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Chapter 3

3D Shape Estimation from Structured Light via DOE Projector

In order to design a SFSL system, it is necessary to understand the underlying

mathematics. Chapter 1 outlined the algorithm requirements for SFSL and texture

extraction; this chapter first formulates the mathematics behind SFSL in Section 3.1,

and then presents the key algorithmic components of the system; namely, fiducial

localization in Section 3.2 (finding laser fiducials in a single image), fiducial labeling

in Section 3.3 (the correspondence problem), triangulation (depth estimation) and

calibration in Section 3.5.

3.1 Geometry of SFSL: The Role of Epipolar Geometry

The use of a DOE projector requires a thorough examination of the geometry

governing the projector-camera relationship. We begin by establishing the central-

projection camera, the ideal pinhole camera1, which maps points in R
3 to the image

domain R
2. The pinhole camera model is illustrated in Figure 3.1. Simply put, the

pinhole camera creates an image by connecting a 3D point to the camera center

C with a line. The intersection of this line and the image plane (located f units

away from the camera center C along the principal axis) determine the projected

1This section assumes the ideal pinhole camera model; nonlinearities and distortions will be

dealt with later during the camera calibration stage in Section 3.5
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location of the 3D scene point. In other words, this geometry produces a perspective

projection from the 3D scene point, X, to the 2D image point, x. The mathematical

Figure 3.1: Ideal pinhole camera model.

expression for this geometry is best expressed using homogeneous coordinates, that

is, a vector coordinate in R
d that have been augmented to a d+1 vector. Using this

notation allows for the matrix-vector representation as follows,





U
V
W



 =





f 0 0 0
0 f 0 0
0 0 1 0













X
Y
Z
1









. (3.1)

where image pixels are x = U
W

and y = V
W

. More compactly expressed,

x̃ = P̃ X̃ = [P |03] X̃ (3.2)

where P̃ is the 3x4 projective matrix from Equation 3.1, X̃ are homogeneous 3D

points and x̃ are 2D image points. Using Equation 3.1, we can now take points

from the 3D scene and project them through the ideal pinhole camera to the image

plane using the camera coordinate frame; however, it is often convenient to consider

two different Euclidean coordinate frames, one called the world coordinate frame,
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the other being the camera coordinate frame. This allows for the trivial expression

of 3D points such as ones defined on some plane such as a calibration board. We

define the relationship between a 3D scene point in the world coordinate frame, and

its corresponding image points via the rigid body equation,

Xcam = RX + t (3.3)

where,

R =





1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)









cos (ψ) 0 sin (ψ)
0 1 0

− sin (ψ) 0 cos (ψ)









cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1



 (3.4)

represents the 3D rotation matrix about x−, y−, and z− axis, and

t =





tx
ty
tz



 (3.5)

represents the translation vector. This relationship is visualized in Figure 3.2. Using

Figure 3.2: Extrinsic relationship between target plane and image plane.

this rigid body motion, we can write new equations for projecting 3D scene points in

the world-coordinate system to the image plane (using the transformation between
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the world coordinate frame and the local camera coordinate frame),

x̃ = P̃DX̃ = P̃

[

R t

0T
3 1

]

X̃ (3.6)

equivalently,

x̃ = P [R|t] X̃. (3.7)

Since SFSL is analogous to a stereo-vision system, it is intuitive that the

geometry should be very much the same. The geometry that governs both SFSL

and stereo systems is that of two-perspective view geometry, commonly referred to

as Epipolar Geometry [25]. Epipolar geometry allows us to explore how 3D points

project onto images, how points on the image plane can be transferred to other

planes, and perhaps most importantly, how 2D image points from multiple views

allow for estimation of their corresponding 3D points in space. The generic two-

camera view is presented first, followed by SFSL. In Figure 3.3 below, the epipolar

geometry is shown for a two-perspective view. In this case, there are two cameras

represented by their image planes and camera centers. The 3D scene point X maps

to the two image planes via the pinhole model described earlier. Without knowing

X and observing only x, the epipolar plane determined by the baseline between the

two camera centers and the ray determined by x constrains the possible locations

for x′ in the second image. This constraint is termed the epipolar line. This is

intuitive, since X was projected to x from anywhere along a specific ray (i.e. an

infinite number of possible 3D scene positions), the corresponding projection x′

will also have many possible locations. When one camera is replaced by a laser

projector, the same epipolar geometry holds. In Figure 3.4, lasers from the DOE
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Figure 3.3: Epipolar geometry for two-perspective view.

projector travel outward in the 3D scene space. A surface that intersects these

projected, such as points X1 and X2, will reflect the ray to the image plane, just as

in Figure 3.3, and generate the corresponding x1 and x2.

Figure 3.4: Two lasers and their corresponding epipolar lines.

If one can associate known range estimates with points along an epipolar line,

then the epipolar line will serve as a measurement device for range estimation. To

augment the DOE model presented in Section 2.3, we add a virtual pinhole camera

as shown in Figure 3.5.

In this virtual camera, the blue line segments from the capture volume are pro-
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Figure 3.5: Laser projector with known distances marked, with virtual camera.

jected onto the virtual image, explicitly determining the epipolar line corresponding

to each laser. The resulting virtual image is shown in Figure 3.6. Here, the leftmost

point of each line corresponds to the nearest 3D point in the capture volume, while

the rightmost point corresponds to the furthest. The orientation of these epipolar

lines is determined by the orientation of the camera with respect to the projector.
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Figure 3.6: Epipolar lines associated with laser projector between two known dis-

tances.

The equations that represent the epipolar geometry are very similar to the

projective equations discussed before. From the previous figures, we know that
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there is a mapping from x 7→ l′, the epipolar line in the second image. First, we

define P as the first view’s projection matrix, and P ′ as the second view’s projection

matrix. The ray from the left camera’s center through the image point x can be

written as

X(λ) = P+x + λC (3.8)

where C is the camera center defined by PC = 0 and P+ is the pseudo-inverse2.

The epipolar line in the second image, l′, is defined by two points: the first is,

conveniently, the left camera’s center projected onto the right camera’s image plane,

and the second is the point along the previously defined ray at infinity projected

to the image plane. Thus, l′ = (P ′C) × (P ′P+x). In the SFSL system, each laser

will have an associated epipolar line. The arrangement of these lines varies as the

camera moves with respect to the laser projector. Section 3.1.1 discusses how the

geometry changes with the position of the camera.

3.1.1 Camera Motion Effects

As the camera moves, the epipolar lines corresponding to the laser fiducial

will transform. A valid COS is one where no epipolar line associated with a laser

intersects another epipolar line within the capture volume. Below, three different

motions are presented, which define all possible camera motions besides a z-axis

translation, which would result in an overall zooming (in or out) of the epipolar line

image. By understanding these motion effects, we can place the camera w.r.t. the

projector to maximize the depth resolution while maintaining separation between

2The details of this back-projection equation are given in Section 3.5.2.3
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epipolar lines (to ensure a straightforward correspondence).

Camera motion along the baseline: If the camera is displaced along a plane par-

allel with the projector plane, the epipolar lines will appear horizontal, as shown in

Figure 3.7. In this configuration, the epipolar lines will intersect at their endpoints

if the capture volume is large enough.
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Figure 3.7: Epipolar geometry from y-translated camera.

Converging camera motion along the baseline: If the camera is displaced along

the baseline between the projector and the camera (as before), and then allowed to

converge (i.e. rotate so that the center ray from the projector and camera meet at a

point) the epipolar lines will appear to converge, as shown in Figure 3.8. Note that

the epipolar endpoints are still collinear, thus for a large enough capture volume,

they will intersect.

Converging, camera motion parallel to projector plane: Most generally, if the camera
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Figure 3.8: Epipolar geometry from converging y-translated camera.

is displaced by a two-dimensional translation from the projector center, and then

allowed to converge, the epipolar lines will skew, as shown in Figure 3.9. Figure 3.9
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Figure 3.9: Epipolar geometry from converging xy-translated camera.

illustrates a method by which the epipolar lines may be increased without risking

epipolar intersections– by separating the projector and camera by the desired base-

line, and translating one of them vertically, the epipolar lines travel in their own

“lanes”.

Given the geometric foundation for SFSL, we may now explore specific algo-

rithms that are required to archive shape and texture estimation. The first such
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step involves locating the laser fiducials in the captured image.

3.2 Fiducial Localization

Fiducial localization is the process by which the image coordinates of each

laser fiducial are estimated from an image. This process can be thought of as

two separate tasks, the first is to extract the pixels corresponding to laser spots

from the background, and the second is to find the precise centroid of each laser

fiducial. As with the overall system design, we desire this process to be robust

against noise, and be computationally efficient. There are several approaches one

may take while performing image segmentation: binary thresholding [26], clustering

methods, graph-cut methods [27] and many others. Sezgin et al. [28] provide a very

thorough overview of such thresholding techniques. The following subsection will

detail the approach taken for this thesis. After performing image segmentation, the

task of centroid extraction must be carried out. This task is more sensitive to noise

than the previous task, as it relates to subpixel level of accuracies.

3.2.1 Localization Methodology: Image Segmentation

The hardware of this system provides some insight as to which method will

work best. The lasers selected for this system operate at a nominal 650nm wave-

length (visible red). The laser shape also plays a key role in the ability to easily

segment the fiducials from the background. Through experimentation, round lasers

proved the most reliable. Oval lasers tend to suffer from distortion when applied
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to surfaces at severe incident angles. The color camera selected relies on a Bayer

image filter to separate incoming light into three bands of wavelengths. In the ideal

setting, this Bayer pattern would block almost all of the red laser light in the green

and blue channels; however, real Bayer patterns suffer from leakage. It is anticipated

that the laser will still be very bright in the other two color channels, but brightest

in the red color channel. The image segmentation scheme can take advantage of

this by examining where the brightest green/blue pixels are versus the brightest red

pixels. By selecting a threshold just past the green/blue responses, the remaining

pixels should belong to the laser fiducials.

Data was captured under three illumination settings, bright ambient light

(day), dim ambient light (dusk), and no ambient light (night) as shown in Fig-

ure 3.10. Since the laser fiducials are very bright, but also very small (in terms of

the number of pixels), we expect long histogram tails, primarily along the red chan-

nel. Figure 3.12 shows the histogram results of the three images from Figure 3.10.

These histograms have values that are the logarithm of the 256-bin histogram levels.

The logarithm allows us to better visualize the differences at the brighter pixel end

of the spectrum. As expected, the red channel in each illumination case has the

longest histogram tail, though with few pixels in each bin (i.e. the histogram is

roughly flat where the fiducials are located). Also, there is a strong green response

to the red fiducial, as indicated by the long green channel response. Unexpectedly,

the blue channel seems largely unaffected by the fiducials. This effect is exploited

later during the texture extraction stage in Section 4.3.

After closely examining these log-histograms, it is apparent that a simple
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(a) Day Image

Dusk Image

(b) Dusk Image

Night Image

(c) Night Image

Figure 3.10: Illumination sample images for fiducial localization.
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Figure 3.11: Log-Histograms for three illumination cases.

thresholding strategy will work to segment the fiducials from the background. When

the expected number of fiducials is known, an iterative approach can be taken. This

approach starts with a high threshold on the red channel, decreasing the threshold

until the expected number of fiducials is found. In the lab setting, this has proven

very reliable.

(a) Day Image (b) Dusk Image (c) Night Image

Figure 3.12: Binarized results for three illumination cases using thresholding.
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3.2.2 Localization Methodology: Centroid Extraction

The next step in fiducial localization is to estimate the centroid location of

each fiducial with high accuracy (see Section 3.4.5 for an tolerance/ error analysis).

Connected Component Analysis : Given a segmentation map, as shown in Fig-

ure 3.12, it is important to know how many discrete components there are in the im-

age, and the characteristics of them. Connected Component Analysis (CCA)(colloquially

known as Blob Coloring) is a pixel-level process by which neighboring pixels are as-

signed a unique label. Traditionally, CCA is implemented via a two-pass scan of

a binary image produces; though, some modern CCA have been developed [29].

The segmented binary fiducial images are run through CCA which allows us to

determine how many fiducials are present and statistics about each fiducial such

as width/height/mass. Components outside the standard acceptable range (deter-

mined experimentally) are discarded, such as components with too many pixels (due

to shadowing, etc.), or components whose nearest-neighbors are too far away (this

occurs for spurious noise).

Centroiding : This is the process by which the center of mass of a connected com-

ponent (a mass of pixels) is computed. Trivially, one computes the average pixel

location for a group of pixels which is deemed the centroid. The drawback to the

centroiding approach lies in the physics of the laser projector. Lasers exhibit so-

called “speckle” noise, due to the random interference of many light wavefronts.
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This random speckle pattern creates segmented objects that are inherently random

in nature. That is, given identical laser/camera setups with a stationary target, the

imaged laser fiducial will appear random about its true centroid3. While the spot

intensity is approximately Gaussian, there is no guarantee that the binarized image

will be centered at the true centroid because of this random speckle.

Matched Filter Approach: A more traditional signal processing approach is peak

detection, which is readily accomplished via a matched filter. For this problem, our

matched filter will be a 2D filter that corresponds to the nominal laser spot. The

matched filter based fiducial localization may be computed very efficiently by the

Fourier method, as discussed in [30]. We denote the template fiducial f(x, y) whose

Fourier transform, F {.}, is given by:

F (ηx, ηy) = |F (ηx, ηy)| exp (jΦ (ηx, ηy)) . (3.9)

A 3D object with reflected laser fiducials is imaged and denoted as g(x, y), with

Fourier transform G (ηx, ηy). The matched filter is then given by

HMF (ηx, ηy) = F ∗ (ηx, ηy) = |F (ηx, ηy)| exp (−jΦ (ηx, ηy)) . (3.10)

To apply the filter, we must compute the correlation of the input image with the

matched filter transfer function. Again, after using the Fourier correlation property,

we derive:

C (x, y) = F−1 {G (ηx, ηy)HMF (ηx, ηy)} . (3.11)

3Though, this deviation is well below the accuracy capability of the calibration system, Sec-

tion 3.5

29



Estimates of the centroid positions are then given by the peaks found in the corre-

lation.

3.3 Fiducial Labeling (Correspondence Problem)

After every fiducial has been located, the task now is to associate each fiducial

centroid to a laser beam. This is the so-called correspondence problem that occurs

often in multiview geometry. Unlike stereo vision, SFSL enjoys a simplified corre-

spondence problem. In fact, this is one of the main reasons SFSL is so widely used.

In SFSL, the engineer explicitly controls the difficulty level of the correspondence

problem in two ways. First, the epipolar geometry can be carefully measured to

ensure that epipolar lines do not overlap. Second, structured light patterns can

be designed to uniquely encode every pixel. Since the selected structured light

pattern is a direct coding, we must rely on the validity of the COS in order to com-

pute accurate fiducial labels. In this section, two methods are presented. The first

method is useful for computing fiducial labels during calibration, when no a priori

information is known about the configuration. Given a vector of fiducial centroids

C = [f1 f2 . . . fnm]T , we would like to sort C to match each fi with its corresponding

laser. First, we denote the grid of lasers by pij , i = 1, . . . , n and j = 1, . . . ,m.

Arranging C into an n by m matrix, we get

C =











f1 f2 · · · fn
fn+1 fn+2 · · · f2n

...
...

fn+m−1 · · · · · · fnm











. (3.12)
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Next, we sort each column vector according to the x−component of each fi. The

corresponding rows must then be sorted by the y− component of each fi, thus

leaving the top-left most fiducial in the first matrix position, and the bottom-right

most fiducial in the last matrix position. This method works only when the fiducial

orientation is within pi/2 radian rotation of the nominal position (as the upper left

most fiducial will not be the same).

Once initial labeling is performed on the calibration data, we may utilize a

direct correspondence procedure for future data sessions. Other approaches to this

problem such as [17] involve computing a homography H that maps the epipolar

lines to a regular grid (where the correct label can simply be read from the grid

coordinates of the transformed fiducial). This method does not allow epipolar lines

such as in Figure 3.9. An alternative method is to instead precompute a map

for each pixel that assigns a fiducial label. Figure 3.13 depicts such a mapping

for two epipolar cases. To generate this mapping, the resulting epipolar image

from calibration is fed into a nearest-neighbors algorithm. This algorithm scans

through the entire image pixelwise, assigning a label based on the Euclidean distance

from that pixel to pixels belonging to the epipolar lines. This map can be easily

precomputed and stored. During runtime, a new fiducial centroid is labeled by

looking up the corresponding cell in the map.

31



150 200 250 300 350

150

200

250

300

350

(a) Example 1

100 150 200 250 300

150

200

250

300

350

(b) Example 2

Figure 3.13: Voronoi cells from nearest neighbor on epipolar line segments.

3.4 Triangulation for Range Estimation

The process of triangulation provides range estimates for 3D shape estimation.

The following subsections present the mathematical formulation of this procedure,

along with simulation and experimental results.

3.4.1 Planar Triangulation

First, consider a 2D scene where the camera is 1D and the laser projector is

2D as shown in Figure 3.14. We know from the study of epipolar geometry that rays

in space will project to epipolar lines on the image plane. A simple way to view this

is, for a given laser beam, a change in range will correspond to a fiducial movement

along the epipolar line. This means that if the epipolar lines are well estimated,

we can use 1D equations to estimate depth for a given laser. This figure represents

a transformation of the 3D geometric equations into simple 1D equations. The

baseline between the laser and the camera is represented by b. It is assumed that

the camera center and projector center are on this line; thus the camera plane is f

away from this baseline for this laser. The laser is at some θ from the baseline. It is
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Figure 3.14: 1D Triangulation from camera to laser.

shown here that the laser is coplanar with the baseline and camera, though this will

be expanded upon later. There are three range projections shown, dn representing

the nearest object that can be imaged, df representing the furthest object that can

be imaged, and a generic d for any object in-between. These ranges project to the

image line at locations xn, xf , and x 4, which invokes the corresponding angles ϕn,ϕf

and ϕ (the angle between the chief ray and the principal point). This ϕ yields a

new angle ψ = π
2
− θ. By the law of sines, we can then write

b1 =
d sin (ψ)

sin (θ)
=
d sin

(

π
2
− θ
)

sin (θ)
=

d

tan θ
; (3.13)

4Note that the value of x here decreases as the object distance increases. Therefore, care must

be taken when implementing using a different reference for x to ensure the correct polarity.
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and, since b = b1 + b2,

b2 = b−
d

tan θ
. (3.14)

Forming the trigonometric relationship between the right triangle defined by the b2

portion of the baseline and the projected d, we have

tan(ϕ) =
b2
d

(3.15)

thus,

tan(ϕ) =
b− d

tan θ

d
. (3.16)

Finally, we can write the final equation for x in terms of d, f and θ,

x = f tan (ϕ) =
f
(

b− d
tan θ

)

d
. (3.17)

Equivalently, the equation that yields the range for a given pixel is:

d =
fb

x+ f

tan θ

. (3.18)

In general, f , b and tan θ are not known values, rather they must be estimated in

some manner. To simplify the estimation problem, we can write Equation 3.18 in

terms of two constants,

d =
c1

x+ c2
, (3.19)

which is an equation with only two unknowns. This thesis estimates these param-

eters in three ways, all of which are fast visual methods (i.e. they rely on camera

measurements during calibration), the details of which are in Section 3.5.2.
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3.4.2 Non-planar Triangulation

For the non-planar case, consider that the laser is allowed to rotate from

along the opposite dimension (Figure 3.15). According to Hartley, “As the position

of the 3D point X varies, the epipolar planes ‘rotate’ about the baseline. This

family of planes is known as an epipolar pencil. All epipolar lines intersect at the

epipole.” [25]. Thus, this rotation generates a pencil along the baseline such that the

projected range on the image plane is always mapped to the same x value (though

the y values change correspondingly). We can thus estimate the range using only

the x−coordinate in the ideal, noise free case. In actual experiments, there will

Figure 3.15: Non-planar triangulation case.

be estimation noise, thus relying solely on the x−coordinate will result in non-

optimal solutions. Using the mean-square-error (MSE) as the optimality criterion,

the optimization is given by

x̂ = arg minE

[

(

d̂− d
)2
]

= arg min
c

E

[

(

c1
x̂+ c2

−
c1

x+ c2

)2
]

s.t. x̂ ∈ l′, (3.20)

where l′ is the estimated epipolar line. Since c1 and c2 are fixed, this optimal x̂

is the one such that the error is orthogonal to the MSE estimate (which must lie

on the epipolar line because of the constraint). Thus, the error is perpendicular to
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the epipolar line. In geometric terms, we can simply compute the point along the

epipolar line that is the intersection of the measured point and its perpendicular

projection to the epipolar line. The optimal x̂ is the projection of the measured

fiducial location to the estimated epipolar line as shown in Figure 3.16.

Figure 3.16: Measured fiducial projected onto estimated epipolar line.

3.4.3 Shape Estimation Simulations

To verify the triangulation equations, and the calibration procedure, simula-

tions were performed with synthetic surfaces. Each simulation involved constructing

a virtual surface in 3D space, and computing the intersection points of the surface

with the laser fiducials to give ground truth range values. These points were then

imaged by the virtual camera and processed. Since the fiducial localization algo-

rithm is trivial in the simulation case, various levels of noise must be added to test

the reconstruction capabilities. The residual error from between the ground truth
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range and estimated range, i.e.

ǫk,j = d (k, j) − d̂ (k, j) , x ∈ {1, . . . , Nx} , y ∈ {1, . . . , NY } (3.21)

with MSE percentage given by,

ǫMSE =
1

NxNy

100

df − dn

Nx
∑

k

Ny
∑

j

|ǫk,j (k, j)|2. (3.22)

The first simulation was a a planar surface perpendicular to the laser projector

center line as shown in Figure 3.17(a) with the noise-free triangulated mesh shown

in Figure 3.17(b). Table A.1 shows the residual error for each fiducial after triangu-

lation in the noise-free setting, while Table A.25 shows how additive Gaussian noise

(zero mean, one pixel variance) affects the results.
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Figure 3.17: Triangulation simulation for orthogonal planar surface.

The second simulation rotated the surface in both the x− and y−dimensions,

as shown in Figure 3.18(a). The estimated range points are shown in Figure 3.18(b).

Table A.3 shows the error performance.

5Any 3D model shown in this Thesis is oriented so as to best show planarity, curvature, or other

important feature.
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Figure 3.18: Triangulation Simulation for angled surface.

Finally, a step-discontinuity was used as the surface as shown in Figure 3.19(a),

with the triangulated mesh surface shown in Figure 3.18(b). Table A.4 shows the

error performance.
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Figure 3.19: Triangulation Simulation for step surface.

These simulations confirm that the triangulation and calibration equations

are accurate (as indicated by the 10e−12% error in the noise free case). They

also show how the sensitivity to noise perturbations occurs as the fiducial/ surface

intersection point moves towards df . Since the error at some points was over 2%

for a noise variance of only one pixel, understanding how noise and misestimation
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is crutial to the design of the system. Secion 3.4.5 analyzes this problem in detail.

3.4.4 3D Shape Estimation Experiments

We have seen that the 3D shape estimation algorithm works very well on

simulated data, now we turn our attention to real surfaces imaged with an actual

camera and DOE laser projector, as seen in Figure 3.20.

Figure 3.20: SFSL hardware setup.

Planar Surface: The first experiment performed was a flat surface situated orthogo-

nally to the camera’s principal axis. Figure 3.21 shows the estimated ranges at each

fiducial.

Split Planar Surface: The next test featured two parallel planar surfaces that split

the projected pattern into two levels, similar to the simulation in Figure 3.19. Fig-

ure 3.22 shows the estimated ranges at each fiducial.
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Cylindrical Surface: The following experiment involved a cylindrical surface. Fig-

ure 3.23 shows the resulting point cloud.
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Figure 3.23: Cylindrical surface point estimates.

Due to the lack of available calibrated surfaces (where the 3D model is known

a priori), measuring the performance of the triangulations on arbitrary surfaces is

a difficult task. To measure the performance of the 3D reconstruction of simple

geometric objects, one can try to fit a geometric model to the reconstructed data,

and compare that model to what is known to be true. For instance, a plane located

at 955mm from the camera is imaged, and the resulting 3D surface is estimated. A

least-squares plane can be fit to the data; the fit plane is then compared to the ground

truth (a plane located 955mm away from the camera). The residual error between

the 3D points and the fit surface also gives an estimate of the triangulation error.

The error performance of triangulation in these experiments is given in Table 3.1.

Here sparse refers to fiducial-only measurements, while dense refers to the smoothed

triangulated surfaces via methods in Section 4.2. The error percentage is the amount

of triangulation error over a given capture volume.
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Table 3.1: Triangulation Results for Various Surfaces
Norm of Residual Error Error Percentage

Sparse Orthog. Plane 6.6474 3.2547

Dense Orthog. Plane 9.6727 4.7358

Sparse Slanted Plane 5.3943 2.6411

Dense Slanted Plane 6.5360 3.2001

Sparse Cyl. 7.9151 3.8753

Dense Cyl. 0.7291 0.3570

3.4.5 Epipolar Error/ Tolerance Analysis

There are many variables in the 3D shape estimation system, all of which may

contribute some sort of error in range estimation. As this system relies on epipolar

line estimation, any perturbation in these estimates will directly influence the final

depth estimate. The system also relies on estimation of the each fiducial centroid.

The algorithm to detect the fiducial centroids is very accurate, but may incorrectly

estimate the centroid because of the laser speckle noise as described in Section 3.2.2;

also, the fiducials themselves may deviate from the epipolar line because of erroneous

estimation of the epipolar lines, imperfect camera calibration (localized), and so on.

A detailed analysis of the error sources that arise in SFSL systems is provided by

Yang et al. in [31].

To analyze these sources of error, Monte Carlo simulations were performed.

For each simulation, a specific error source was allowed to deviate from the noise

free position via additive Gaussian noise. Each simulation began by generating 500

random surfaces, drawn from a uniformly random range for each fiducial within the

dn and df limits. It is important for the random surface to be uniformly generated

since error is more significant towards the df plane, as the range resolution decreases

with distance. For each random surface, the noise source under study was amplified
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by incrementing the noise variance. For a comparison, each simulation was run

using the simple 1-dimensional triangulation equations (x-projection) as well as the

MSE optimal projected-triangulations.

The first simulation studied fiducial localization error. Figure 3.24 shows the

results of the fiducial localization noise test. Here, the epipolar lines are assumed to

be error free, thus the only error source is the incorrect fiducial centroid estimate.

The performance metric used was the MSE between the measured range and the

ground truth, as in Equation 3.22.

0 1 2 3 4 5
0

2

4

6

8

10

12
Depth Estimation Error over 500 random surfaces vs. Fiducial Localization Noise Variance

Noise Variance (in pixels)

E
rr

or
 P

er
ce

nt
ag

e

 

 
Optimal Fiducial Projection
x−Axis Projection

Figure 3.24: Simulation of range estimation error from fiducial localization noise.

The second set of simulations performed analyzed how estimation error of

the epipolar lines leads to range estimation noise. Three scenarios were examined

as shown in Figure 3.4.5. The first scenario involved adding Gaussian noise (zero

mean, with a variable variance) to the rightmost point of each epipolar line (the

df measurement). The second involved adding noise to the leftmost point (the dn

measurement); and the last simulation added independent noise to both endpoints.

Again, 500 random surfaces were generated, each surface being tested under increas-
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(b) Near WD Epipolar Endpoint Noise
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Figure 3.25: Epipolar estimation error analysis.

ing noise variance. As evident by Figure 3.25(b), mis-estimation of the leftmost

epipolar endpoint contributes to the range estimation error negligibly (since the

depth resolution is quite high close to the camera), whereas error in the rightmost

endpoint estimation is significant when the uncertainty is four pixels or greater (since

the depth resolution is significantly lower).

Lastly, both the epipolar endpoints, and the fiducial centroid were subjected

to additive Gaussian noise as shown in Figure 3.26. As expected the error increased

significantly from previous simulations. To achieve a range estimation error of under

1%, every parameter must have estimation error of approximatly 1 pixel.
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Figure 3.26: Range error versus epipolar endpoint and fiducial localization noise.

3.5 Calibration Methodology

The proposed system for SFSL relies on pixel level accuracies for estimating

range. There are two calibration stages that take place in this system. The first

stage is the intrinsic camera calibration, which attempts to remove distortion from

the captured images. Depending on the required level of reconstruction accuracy,

this stage may be omitted or simplified. The Projector-to-Camera calibration stage

however, is essential to the operation of the system; though, every attempt has been

made to simplify this process to the minimum requirements.

3.5.1 Camera Calibration

Camera calibration is the process by which a physical camera and lens system

is transformed into an ideal pinhole camera (up to a certain degree of accuracy) by

a distortion model. Much work has been done on this topic, including the work by

Zhang, et al. [32], Heikkila, et al. [33] and Clarke, et al. [34]. The Caltech Matlab
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camera calibration software [35] was used in this system’s implementation. The

camera distortion model used corrects the distortion-free Equation 3.1 by trans-

forming the distorted image coordinates (x, y) into undistorted image coordinates

(xp, yp) via:




xp

yp

1



 =





f1 s x0

0 f2 y0

0 0 1









x̃
ỹ
1



 (3.23)

which is more compactly expressed as,

mp = Km̃. (3.24)

We define (x̃, ỹ) by,

[

x̃
ỹ

]

=

[

(1 + k1r
2 + k2r

4 + k5r
6)x+ (2k3xy + k4 (r2 + 2x2))

(1 + k1r
2 + k2r

4 + k5r
6) y + (k3 (r2 + 2y2) + 2k4xy)

]

(3.25)

where r2 = x2 + y2 and s = αcf1 (the skew between pixel-axis). These param-

eters reflect the intrinsic camera parameters as well as radial and tangential lens

distortion. Instead of a fixed f , we now have f1 and f2 that allow for non-square

pixels, as is the case with many CCD and CMOS sensors. The principal point offset

(x0, y0) allows for a camera center that is not located at the principal point, p (See

Figure 3.1). To compute these constants, the Caltech camera calibration toolbox

for Matlab was used [35]. This software works by imaging a known calibration

plane at several positions. This plane yields image points corresponding to known

3D world points via Harris corner detection on the checkerboard pattern. From

this correspondence, the homography between the image plane and each calibration

plane can be estimated via a variety of methods such as random-sample consen-

sus (RANSAC), maximum-likelihood estimation (MLE), and others. The intrinsic
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parameters can then be estimated directly from the estimated homographies. Ex-

trinsic parameters such as rotation and translation are given by the factorization

of the estimated homographies. This technique is used to aid the projector-camera

calibration in Section 3.5.2.

3.5.2 Projector-to-Camera Calibration

The goal of the projector-to-camera calibration is to estimate the epipolar

geometry between the two devices. As shown before, the epipolar lines induced by

the projector’s lasers are crucial to the triangulation of range data.

3.5.2.1 Two-Plane Epipolar Line and Depth Curve Estimation

The minimum calibration required is the two-plane epipolar line and depth

curve estimation approach. The most direct method for projector-to-camera cali-

bration is to explicitly measure the image position of each laser fiducial (along some

unknown epipolar line) at known ranges. The operator must capture an image of

the fiducial grid on a planar surface orthogonal to the principal camera axis some

known distances. Recalling the triangulation equations from before, we have an

equation with two unknowns for a given image coordinate x and range d. Thus, if

we measure the fiducials’ image coordinates at two known distances, dn and df , we

can determine the value of the constants as follows,

C1 =
df (xf − xn) dn

dn − df

(3.26)

C2 =
df (xf − xn)

dn − df

− xn. (3.27)
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So, by simply viewing a plane parallel with the image plane at two distances, we

can quickly estimate the required parameters for triangulation. Using the measured

image coordinates from each fiducial at df and dn also allows us to construct the

epipolar line corresponding to each laser by trivially “connecting the dots”. Recall-

ing Section 3.4.2, the epipolar lines are used to minimize the MSE of new fiducials

that are imaged.

Unfortunately, the two-plane method is susceptible to many forms of error. As

with any method, there exists localization error when measuring the laser fiducials’

image coordinates. In addition, it is highly unlikely that the plane is truly parallel

with the image plane, thus introducing errors in df and dn.

3.5.2.2 Least-Squares Epipolar Line and Depth Curve Estimation

To improve upon the two-plane method, we may over-determine the system

of equations for C1 and C2 by taking into consideration many parallel planes such

as in [24]. The procedure is very similar to the two-plane method, except instead

of measuring fiducial image locations from planes at df and dn, many more planes

spanning the range between are imaged. A linear least-squares epipolar line estimate

is then performed by

arg min
c

N
∑

i=1

(yi − (c1xi + c2))
2 = arg min

c

‖y − [x|1] c‖2 (3.28)

which is readily solved by the pseudo-inverse

ĉ =
(

XTX
)

−1
XTy = X+y. (3.29)

While the two-plane method is the minimum, capturing the fiducial locations

48



at more ranges yields a better epipolar line estimate as shown by Figure 3.27. For

this experiment, the number of calibration planes ranged from two to fifteen. For

each set of calibration planes, 1500 random surfaces were generated as ground truths.

Noisy fiducials were used for triangulation on the epipolar lines generated from just

the two end planes, and on the LS generated epipolar lines. As expected, the LS

generated epipolar lines are more accurate than the two-plane approach. Since each

experiment (i.e. the number of calibration planes)
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Figure 3.27: Comparison of calibration method error percentage performance.

For depth-curve estimation, the linear LS regression approach will not work

due to the nonlinear nature of the depth-curve equation 3.19. Thus, we must ex-

amine non-linear LS regression. Since the equation for depth is only locally convex

(in the region we are interested), proper initial starting points must be selected in

order for the algorithm to converge to reasonable estimates. The function we wish

to optimize is,

arg min
C

N
∑

i=1

(

di −
C1

xi + C2

)2

(3.30)

which may be solved by gradient-methods such as nlinfit in MATLAB. In order
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convergence, we must select proper initial values for C1 and C2. The method imple-

mented simply uses the two-plane estimates for C1 and C2, which are then further

refined through the nonlinear LS regression. To visualize the improvement of this

method over the epipolar only LS esitmate, Figure 3.28 shows the results of a sim-

ulation similar to that of Figure 3.27
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Figure 3.28: Comparison of least-squares depth-curve estimation vs. previous ap-

proach.

3.5.2.3 Visual-Feedback Depth Curve Correction

While the least-squares epipolar and depth-curve estimation works quite well

when the only source of noise is measurement noise, the method requires that the

calibration planes be approximately orthogonal to the principal axis. This is incon-

venient since it requires calibrated hardware to hold the plane at a right angle to

the camera at a known distance. A more sophisticated approach is to use a visual-

feedback mechanism. The procedure is carried out the same as before, except the

target calibration plane carries a calibration fiducial pattern as shown in Figure 3.29.
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This pattern is imaged by the camera, which enables the estimation of the extrinsic

relationship between the camera and the target board. This extrinsic relationship

is then used to more accurately compute the range at each imaged fiducial location

via back-projection. Back-projection is a method to map image points (R2) to scene

points (R3) (given that there are some additional constraints).

Figure 3.29: Calibration target board.

From before, we define the projection from a world-coordinate point to an

image coordinate via

x̃ = [P |p4] X̃ (3.31)

as seen in Figure 3.30.

Figure 3.30: Calibration board’s extrinsic relationship with camera.

We denote a calibration plane π = [π1 π2 π3 π4]
T by its normal vector [0 0 1]T ,

or equivalently, by this the vector’s point at infinity, D̃ = [0 0 1 0]T . The ray joining
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the camera center C with the imaged fiducial point x is defined by

L(λ) = C̃ + λD̃x, (3.32)

where C̃ is the homogeneous camera center, and D̃x is the fiducial at infinity. At the

heart of the problem is solving for where this ray intersects the calibration plane.

This intersection occurs at X, the fiducial point on the 3D surface. We can then

write,

X̃ = C̃ + λD̃x, (3.33)

Since any point on the calibration plane must be orthogonal to the normal vector,

X̃T D̃ = D̃T X̃ = 0, thus

D̃T X̃ = D̃T
(

C̃ + λ D̃x

)

= 0. (3.34)

Solving for λ,

λ =
−D̃T C̃

D̃T D̃x

. (3.35)

The camera center C is defined as the 1-dimensional null-space of [P |p4], which is

defined (homogeneously) as

C̃ =

[

−P−1p4

1

]

. (3.36)

The point D̃x represents the back-projected point on the plane at infinity, i.e.

D̃x =

[

−P−1x

0

]

. (3.37)

Thus, with λ determined, the back-projected estimate for X̃ is obtained. This

point represents the 3D location of the laser fiducial in the world-coordinate frame,

thus inversing the rotation and translation transformation to the camera coordinate
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frame is necessary to obtain the positive range from the camera to the fiducial.

Using this method, we arrive at more-accurate estimates for each di, xi pair. These

accurate pairs are then fed into the LS depth-curve fitting algorithm as described

in the previous subsection.

A side benefit to performing the visual-feedback calibration is that an accurate

model of the laser projector may be computed. Since we obtained X̃ at several

points along the laser, we can perform a 3D linear regression fit to these points,

thus estimating the path of each laser from the projector. The regression is much

like before, except using a 3D line equation, Z = aX + bY + C, and performing

a regression for each dimension. The resulting model appears in Figure 3.31; blue

markers indicate the back-projected 3D coordinate estimates a fiducial, and the red

lines represent the linear regression fit to the points.
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Figure 3.31: Reconstructed model of laser paths via visual-feedback calibration.

To compare the effects of the various calibration methods, a cylindrical object

was imaged, and its depths computed using the two-plane approach, the LS epipolar

line and depth-curve approach, and the visual-feedback approach. Figure 3.32. As

expected, the visual-feedback approach combined with the LS fitting performs much
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better than the other methods.
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Figure 3.32: Comparison of the presented calibration methods.
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Chapter 4

Texture Estimation from 3D Shape

4.1 Texture Estimation Introduction

The goal of texture estimation in this thesis is to find a isometric mapping from

our sparse 3D range data to a 2D plane which represents the “unrolled” or “shape-

distortion”-free image texture1. Glasbey [36] separates warping into two categories,

parametric (such as bilinear, affine, polynomial, etc.) and non-parametric (such

as elastic deformations, thin-plate splines, Bayesian approaches, etc.). Parametric

transforms are widely used to correct image warping due to their simplicity, but

suffer greatly when there are localized distortions in the data [37]. What we seek is an

isometric mapping, where the distance between any two points along the estimated

3D surface (termed geodesic distances) and the distance between the corresponding

points on the flattened 2D surface are preserved [38].

This chapter first examines the sparse range data interpolation problem, fol-

lowed by the 3D model flattening (and image warping) problem.

1Here the term texture is meant not as a 3D construct but as a 2D image that when applied

(mapped) to the estimated 3D shape and imaged, the resulting view is the same as the actual

object. This is a common problem in cartography, e.g. flattening a view of the Earth onto a 2D

plane.
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4.2 Sparse Range Data Interpolation

The output of the SFSL algorithms is a collection of noisy, irregularly-spaced

range estimates that represent samples along the target surface. Depending on the

design of the DOE, this sampling may be very dense, or very sparse. As shown

before in Section 2.3.1, sparse sampling allows for a larger capture volume, at the

expense of spatial resolution. The problem of 3D shape data interpolation can

be viewed as a special case of a k−dimensional data interpolation, where general

algorithms apply, or more problem-specific approaches can be taken. This section

examines both, general data interpolation applied to range data; then range-data

specific interpolation schemes.

4.2.1 Range Driven Interpolation

Given only the noisy range data, the goal is to interpolate between the sparse

samples and reconstruct a surface. Amidror [39] explores four common families of

scattered data interpolation that occur in imaging systems, namely: Triangular-

ization, Inverse Distance Weighted Functions, Radial Basis Functions, and Natural

Neighbors. Of these, we will explore triangularization, and radial basis functions.

Mathematically, we are given a set of points Gi, where i ∈ (1, 2, . . . ,M) belonging to

the 3D surface, and we seek a set of points Pi,i+1,k where k ∈ (1, 2, . . . , N) such that

each Pi,i+1,k lies between the bounding Gi and Gi+1. We desire that these Pi,i+1,k

also belong to the set of points along the true surface.
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4.2.1.1 Triangularization and Tetrahedralization

Two of the most studied areas of range data interpolation are triangularization

(of 2D data) and tetrahedralization (of 3D data). One can use triangularization or

tetrahedralization to generate a mesh between points in the dataset, which then

provides a guide for data interpolation (i.e. data generates a cell, and new points in

that cell are interpolated from the cell-generating data). Triangularization is an in-

herently local operation, that tries to join a set of 2D data points with triangles [39].

There are obviously many possible ways to accomplish this task, but in general, we

seek a “good” surface that consists of approximately equilateral triangles. The very

popular Delaunay triangularization generates a triangle net in which every circle

that circumscribes a triangle in the net contains only the three nodes that define

the triangle, as shown in Figure 4.1. By enforcing this property, the resulting tri-
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Figure 4.1: Example Delaunay triangularization with circumscribed circles.

angle meshes are composed of triangles with the “largest minimal angles” [39]. To

extend the 2D triangle net to a 3D net, we must use tetrahedrons. Choi [40] explores
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the conversion of Delaunay triangles into tetrahedrons. Essentially, we extend the

circumscribed circle into a sphere, for which the enclosed points all belong to a single

tetrahedron.

For a given interpolation point P, (x, y), we wish to determine its corresponding

z−coordinate. We can do so using a variety of methods including linear interpola-

tion, cubic interpolation, etc.

Linear-Based Interpolations : Given the Delaunay triangle or tetrahedral nodes Gi,

we wish to determine the estimated z− value for some P (x, y). We do so by assum-

ing a planar surface connecting the nodes. Thus we must simply solve the general

equation for any point P belonging to plane by three known points,





z1

z2

z3



 = a





x1

x2

x3



+ b





y1

y2

y3



+ c1. (4.1)

A linear-based tetrahedralization will result in a continuous piecewise-linear sur-

face that covers the convex-hull of the scattered input range points. This is the

first-order spline [36]. For the application of texture-extraction, this may pose some

problems, e.g. the triangularization is not unique, nor is it always optimal (for non-

convex shapes [39]). By exploiting more information (i.e. using neighboring nodes),

we hope to achieve a better surface interpolation.

Cubic-Based Triangle Interpolations : Unlike the planar linear-based triangulariza-

tions, the cubic-based methods use cubic-faced patches that create a continuous

and differentiable surface, since the partial derivatives of two neighboring triangles

“that share the same triangle edge, in the direction normal to the edge, should

be the same” [41]. The very popular approach to solving this problem is the
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Clough−Tocher method (1965), which requires 12 known or estimated values: the

value and gradient for each of the three vertices, and the normal derivatives at each

edge midpoint. However, this system is underdetermined from the cubic relation-

ship, which only provides 10 unknowns,

p(x, y) = a1x
3 + a2x

2y+ a3xy
2 + a4y

3 + a5x
2 + a6xy+ a7y

2 + a8x+ a9y+ a10, (4.2)

To solve this dilemma, the Clough−Tocher method splits every initial triangle into

three sub-triangles in order to generate enough relations to solve the system of

equations. To achieve a continuous differentiable surface, m = 3 order Bernstein-

Bézier curves are applied to the Barycentric coordinates, i.e.

p(u, v, w) =
∑

i+j+k=3

m!

i!j!k!
bi,j,ku

ivjwk, s.t. 0 ≤ i, j, k ≤ 3 (4.3)

which is an equation with 10 unknown constants. As seen in [39], these Bézier

control points must be estimated by imposing constraints on cross-boundary deriva-

tives. The control net equations are provided in [41].

4.2.1.2 Thin-Plane-Splines, (TPS)

TPS interpolation has fast become a very popular method for scattered data

interpolation [42]. A subclass of RBF, TPS interpolation is analogous to bending a

thin sheet of metal to conform to the scattered to set of input data. Put mathemat-

ically, we seek F (u, v) of the form (Fu(x, y), Fv(x, y)) to map a set of points (x, y)
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to (u, v):

u =
m
∑

i=1

cif

(
√

(x− xi)
2 + (y − yi)

2

)

+ a10x+ a01y + a00 (4.4)

v =
n
∑

j=1

djf

(

√

(x− xj)
2 + (y − yj)

2

)

+ b10x+ b01y + b00, (4.5)

where the functions to be minimized are,

Fu(x, y) =

∫

∞

−∞

∫

∞

−∞

(

(

∂2u

∂x2

)2

+ 2

((

∂2u

∂x∂y

))2

+

(

∂2u

∂y2

)2
)

dxdy (4.6)

Fv(x, y) =

∫

∞

−∞

∫

∞

−∞

(

(

∂2v

∂x2

)2

+ 2

((

∂2v

∂x∂y

))2

+

(

∂2v

∂y2

)2
)

dxdy. (4.7)

It has been shown ([42], [36]) that selecting f(t) = t2 log t2 with t =
√

(x− xi)
2 + (y − yi)

2

minimizes the bending energy equations. If we wish to perform smoothing in ad-

dition to the TPS interpolation, a regularized minimization can be constructed as

follows:

Gu(x, y) =
m
∑

i=1

(ui − u(xi, yi))
2 + λF (u) (4.8)

Gv(x, y) =
n
∑

i=1

(vi − v(xi, yi))
2 + λF (v). (4.9)

4.2.2 Interpolation Simulations

Appendix B presents the results of the interpolation simulations. Two surfaces

are shown in the results section (though many others were tested during this thesis),

a slanted planar surface, and a cylindrical surface. Both surfaces were first created

in a noise-free, densely sampled manner, as shown in Figure 4.2.

To simulate the SFSL 3D range data, these ground-truth surfaces were then

sparsely sampled by taking one-tenth the number of original samples. Three interpo-
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(a) Slanted Planar Surface (b) Cylindrical Surface

Figure 4.2: Original noise-free, densely sampled surfaces.

lation methods are shown for each surface, linear-triangulation, cubic-triangulation,

and TPS. For each simulation, the interpolation results were compared to the

ground-truths to determine the performance. These results are displayed for the

noisy cases in Appendix B. Table 4.1 summarizes the interpolation results. The

TPS interpolation performed best in each case.

Table 4.1: Interpolation Mean-Squared Error Percentages
Noise-Free Noisy Residual

Cylinder, Linear 0.696 2.459 1.764

Cylinder, Cubic 0.538 2.708 2.171

Cylinder, TPS 0.496 1.426 0.930

Plane, Linear 0.000 1.406 1.406

Plane, Cubic 0.000 1.801 1.801

Plane, TPS 0.000 1.082 1.082

4.2.3 3D Shape Estimation and Interpolation Experiments

To test the entire SFSL system, various objects were imaged and reconstructed.

Similar objects to those in the previous simulations were selected for easy visual

comparison between simulation and actual experimental results. The first object

imaged was a planar surface, shown in Figure 4.3. The first image is the the scene
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view from the camera, the second is the linear-interpolated 3D shape, and the third

is the TPS interpolated 3D shape.

(a) Original Image
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Figure 4.3: Interpolation experiment for planar surface.

Next, a cylindrical object was imaged, as shown in Figure 4.4.

(a) Original Image
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Figure 4.4: Interpolation experiment for cylindrical surface.

To test the how TPS dealt with sharp surface edges, a step surface was imaged,

The last object is a corrugated foam surface, Figure 4.6.

4.3 Image warping from 3D Shape

Up to this point, this thesis has demonstrated a 3D shape estimation system

that can quickly and accurately determine the shape of an object. An example
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Figure 4.5: Interpolation experiment for step surface.
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Figure 4.6: Interpolation experiment for corrugated surface.
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application is that of texture extraction via image warping from 3D shape. After

data interpolation, image warping performs the final task of generating a shape-

distortion free 2D image from the original (distorted) 2D image. This process is

known as image-warping, more specifically, image-flattening. There are many (ac-

tually infinite) number of ways to take a 3D shape and project it to a 2D planar

surface. A common method used by cartographers for centuries is orthographic

projection [43]. Unfortunately, this orthographic projection (along with any other

projection) does not capture the inherent distortion arising from the 3D shape.

Therefore, we consider warping models that can in some sense preserve features

that lie on the 3D surface when projected to two dimensions. Such a mapping is an

isometric mapping from the estimated 3D surface to the 2D image plane in which

local distances are preserved. Unfortunately, Gauss proved that such an isometric

mapping between two curves with different intrinsic curvature is not possible [44].

In other words, for a true isometric mapping to exist, the 3D surface must have

zero Gaussian curvature [38]. This section explores two methods for embedding a

3D graph such as the ones resulting from the SFSL technique on a 2D plane. This

embedding serves as the shape-distortion correction for the original captured image.

The first method explored is a graph flattening technique using parameterization,

while the second is a dimensionality reduction technique applied to the 3D to 2D

embedding problem.

64



4.3.1 Free-boundary Mesh Parameterization

Given an arbitrary graph, a common question is how to best draw or display

it. For a 2D embedding, a visually-appealing method to arrange and display graphs

is the Tutte embedding [45] which places each graph node in the center of gravity of

its neighboring nodes. This is can equivalently be thought of as a physical spring-

mass models (SPM) such as [46, 47] where each node is a mass, and each edge is

some string. By applying a force to the graph, the graph can be flattened to a

2D plane. Tutte’s embedding begins by examining the boundary of the mesh. If

this boundary is embedded as a convex shape in the 2D plane, and each interior

vertex of the graph is convex combination of its neighbors (Barycentric coordinates)

with edges being straight lines, then the 2D planar embedding contains only convex

faces [46]. The resulting planar embedding contains graph edges which do not

intersect. To generalize, we may define a mesh parameterization as a mapping

P : M 7→ U where M is the original 3D triangulated graph and U is the planar

triangulation with original points xi 7→ ui (the 2D representations). According to

Floater [48], by parameterizing the surface via u, which are Barycentric or other

convex-combinations of neighboring nodes, and by specifying a shape-preserving

scheme we can generate a planar triangulation that is isomorphic to the original

surface triangulation (the proof of which is given in [48], for certain convex surfaces).

Mathematically, choose un+1, . . . ,uN to be the vertices of aK−sided convex polygon

in M . We can compute the new coordinates by solving

ui =
N
∑

j=1

λijuj, i = 1, . . . , n, λij ≥ 0,
N
∑

j=1

λij = 1. (4.10)
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The nodes ui, . . . ,un represent the new nodes for U with straight line edges and

triangular faces. To generate a shape-preserving parameterization, we must select

appropriate λi,j. One such method explored (see [48] for others) uses the area ratio

as a guide to compute λ’s for a specific Barycentric point p,

λi,j1 =
area (p, p1, p2)

area (p1, p2, p3)
, λi,j2 =

area (p1, p, p3)

area (p1, p2, p3)
, λi,j3 =

area (p1, p2, p)

area (p1, p2, p3)
. (4.11)

While classic Tutte-embedding requires a fixed boundary, methods such as Desbrun

et al. [49], Karni et al. [50] and Wang [51] allow for free-boundary graph parame-

terizations. This is useful for the problem of texture extraction since most of the

3D shape estimations will not be homeomorphic to a disk, rather they will have

some arbitrary boundary. The free-boundary graph parameterizations are achieved

by minimizing some distortion measure (see [49] for details) for each vertex place-

ment. For example, some distortion measures for the 3D to 2D embedding include

area, perimeter, and Euler characteristics. A wonderful implementation of such a

free-boundary parameterization was used for this thesis by Peyré [52].

4.3.2 Isomap Manifold Method

Whereas the SPM lacked a geometric foundation, the Isomap method is based

on the inherent geometry of the surface (even if this surface is embedded in a higher

dimension). The concept of image flattening via manifolds is rooted in the notion

that high-dimensional data (such as 3D range points) really reside on a manifold

which can be thought of as a surface that behaves Euclidean locally, but exhibits

non-Euclidean behavior globally. For instance, we live on the surface of the Earth
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which appears flat locally, in which Euclidean geometry pertains; while globally the

Earth is (roughly) spherical, which behaves non-Euclidean. For example, measuring

the distance between two objects at the local scale is a simple matter of computing

the Euclidean distance, while measuring the distance between objects separated by

a large distance along the Earth’s surface requires a non-Euclidean measurement

known as the geodesic distance. Thus, the goal of using a manifold approach to

image flattening is to exploit the manifold relationship to create a 3D to 2D mapping

that serves our texture extraction needs. The key behind such methods lies in graph

based methods for computing the geodesic distances between graph nodes.

To approximate geodesic distances, we must first construct a mesh with nodes

and connecting edges. Fortunately, this mesh has already been generated via the

interpolation methods in Section B. For a given interpolation scheme, a triangulated

mesh can always be computed from the known sparse ranges, and interpolated

ranges. The triangle edges connecting each node serves as a first nearest-neighbor

distance. One of the most widely used methods for computing the minimal geodesic

distance between two point is Dijkstra’s method [53]. More recently, Kimmel and

Sethian’s Fast-Marching approach on triangulated surfaces [54, 55].

The Dijkstra algorithm works on tree-graphs (that is, graphs where only one

path exists between two nodes). For a given node vs in graph G with nodes v and

edges e, we wish to determine the minimal geodesic distance to some other node

vd. The process involves three steps. The first step is to construct a list of all other

nodes which connect to vs through at least one edge. We begin by setting v0 = vs,

67



and computing T for every other node,

T (vi) = min (T (vi), T (v0) + d0,i) (4.12)

where T (vi) is initialized to be zero for the source node, and infinity for every other

node, and d0,i is the distance along the triangle edge connecting v0 and vi. The list

of vertices is updated according to this rule (using a min-heap data structure); each

time the vi = arg minvi
T (vi) is chosen as the new v0 if T (vi) is a value less than

infinity. This process is repeated until the node vd is reached. The collection of v′is

designates the geodesic path from the source vs to destination vd.

Once the geodesic distances have been approximated, we wish to find the

mapping that preserves distances along the curved surface (geodesic distances) dij

to the distances along the planar surface (Euclidean distances) d̂ij. We can do so

by minimizing the following (i.e. apply MDS),

L =
1

c

i=N
∑

i<j

(

dij − d̂ij

)2

d̂ij

, (4.13)

where c =
∑

d̂ij. L may be solved via gradient methods as described before. An-

other perspective of the same problem is to treat the Isomap as a Kernel Principle

Component Analysis (PCA) method. PCA is a classic data dimensionality tech-

nique that projects high dimensional data to a lower dimension in such a way so

that the data variance is preserved. PCA fails when data is not linearly-separable

in its native space. Kernel PCA addresses this problem by first projecting the data

(typically nonlinearly) into a higher-dimensional space in which the data is linearly-

separable by some hyperplane. Thus, we can view the Isomap problem in the same
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light. The given data belongs to R
3, but might not have a clear projection into R

2;

thus we must first project the data into a higher dimension. To do so, we construct

a kernel as follows:

K =
1

2
CDC (4.14)

where C = In − 1

n
1n1

T
n is a centering matrix, and D is the element wise square

of geodesic distances, i.e. D(i, j) = d2
i,j. Following the Kernel-PCA procedure, we

avoid directly computing the covariance matrix, and instead use the known kernel

and its eigen-decomposition,

Nλa = Ka. (4.15)

The two eigenvectors associated with the two largest eigenvalues represent the map-

ping of the data onto the 2D plane.

4.3.3 Warping Simulations

This section presents the warping simulations ran in order to test the validity

of the selected warping methods. First, simple 3D shapes were modeled, and ortho-

graphically texture mapped with a known texture. The texture extraction problem

is the dual of the texture mapping problem2, thus we can judge the performance of

texture extraction equivalently by texture mapping. This process begins by extract-

ing a non-shape distorted texture from the 3D surface. By flattening this non-shape

distorted texture, we are actually applying shape-distortion. The first example is

2Texture mapping and texture extraction are dual problems trivially because determining a

mapping from some surface S1 to surface S2 is the same as determining the mapping from S2 to

S1.

69



a test to verify that the geodesic distances closely approximate euclidean distances

when the surface is well-behaved. The surface is a plane, as shown in Figure 4.7.

The parameterized and Isomap flattened graphs are shown in Figure 4.8. To vi-
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Figure 4.7: Slanted planar surface with regular texture.

(a) Parameterization (b) Isomap

Figure 4.8: Distortion correcting graphs for planar surface.

sualize how the distortion correcting graphs move image pixels, a quiver plot was

generated using the vector difference between the original (regular) grid, and the

correcting grid. The results for the planar surface are shown in Figure 4.9. Given

the new mappings, we can now perform texture extraction. Using the graphs as

control points, a TPS morph is used to generate the estimated texture as shown

in Figure 4.10. The next surface tested was a cylindrical surface, as shown in Fig-

ure 4.11. The distortion correcting graphs are shown in Figure 4.12. The quiver
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Figure 4.9: Quiver plots for planar surface.
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Figure 4.10: Estimated texture for planar surface.
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Figure 4.11: Cylindrical surface with regular texture.
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(a) Parameterization (b) Isomap

Figure 4.12: Distortion correcting graphs for cylindrical surface.

plots are shown in Figure 4.13. The estimated textures are shown in Figure 4.14.
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Figure 4.13: Quiver plots for cylindrical surface.
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Figure 4.14: Estimated texture for cylindrical surface.
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4.3.4 Warping Experiment

The first set of warping experiments involved imaging a known grid-pattern

on various surfaces, including planes, and cylinders. The first experiment tested

how the image warping worked in a zero-warp scenario. A plane was positioned

roughly orthogonal to the camera’s principal axis, as shown in Figure 4.3. From the

estimated surface, the distortion-correcting graph (using the free-boundary method)

was generated, along with the quiver plot as shown in Figure 4.15. The distortion-

(a) Parameterized distortion-

correcting graph
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Figure 4.15: Distortion correcting graph and resulting quiver plot for orthogonal

plane experiment.

correction graph is nearly identical to a normal grid, as shown in the quiver plot,

thus indicating the warping function is not trying to correct a shape distortion.

After performing TPS morphing using the new graph, the estimated texture was

extracted, as shown in Figure 4.16. As anticipated, the resulting estimated texture

is nearly identical to the input texture. Next, the plane was then tilted, and the

experiment was repeated yielding a straightened version of the grid texture as shown

in Figure 4.17.
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Original

(a) Original Imaged Texture

Recovered Texture

(b) Estimated Texture

Figure 4.16: The imaged texture (blue channel) and the output of the TPS morphing

for the orthogonal plane.
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(b) Estimated Texture (c) Abs. Difference

Figure 4.17: The imaged texture (blue channel) and the output of the TPS morphing

for the slanted plane.
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The next target was a cylinder with the same known grid texture applied to

its surface. The original image and model were shown in Figure 4.4. From the

estimated surface, the distortion-correcting graphs were generated. Comparing this

distortion correcting graph to a synthetic graph such as in Figure 4.12(a) we can

immediately see that the amount of shape distortion is significantly less. This is due

to the cylinder’s position being sufficiently far away from the camera. If the cylinder

were placed closer, the shape distortion would be aggravated. After performing TPS

morphing using the new graph, the final texture was extracted, shown in Figure 4.19.

The image warping algorithm attempts to straighten the horizontal lines occurring

from the curvature of the cylinder, in addition to displacing the vertical lines on the

edges of the image to account for the perspective distortion.
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(a) Parameterized distortion-

correcting graph
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Figure 4.18: Distortion correcting graph and resulting quiver plot for cylinder ex-

periment.
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Figure 4.19: The imaged texture (blue channel) and the output of the TPS morph-

ing.

76



Chapter 5

Conclusion

This thesis presented a system comprised of only a DOE laser projector and

camera capable of 3D shape estimation. By using a static structured-light pattern

that sparsely samples surfaces, such a system is capable of very efficient implemen-

tations. As such, the presented SFSL is appropriate for measuring the 3D shape of

a stationary or moving object via a hand-held device. While the proof-of-concept

system is limited in spatial and depth resolution, future versions of the system could

achieve much higher resolution by using different optics (DOE and camera). Along

with the efficient shape estimation algorithm, the supporting algorithms such as

projector-to-camera calibration improve upon previous designs by eliminating the

need for calibrated mechanisms or complicated procedures. In the current version,

calibration of both the intrinsic camera parameters and the extrinsic projector-to-

camera parameters is accomplished via one set of calibration images, thus reducing

the time to setup the system while improving its calibration accuracy over other

such SFSL systems. Compared to other SFSL systems, the pyramidal laser pattern

combined with epipolar geometry estimation allows for easy-setup and a simplified

correspondence problem.

This thesis explored the SFSL problem, including the geometry of two-view

perspective, triangulation, identifying fiducials, the correspondence problem, and
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surface interpolation /smoothing. In addition, this thesis examined application of

texture extraction from SFSL. SFSL simulations verified that the mathematics for

triangulation were correct, followed by experiments with various surfaces. The ex-

perimental results using the prototype system were satisfactory, showing that such

a system is capable of 3D shape estimation even with limited hardware (such as the

DOE in the prototype). Future systems will use a higher-quality laser and DOE

capable of projecting denser patterns on surfaces at a close range, thus enabling

for even higher-quality 3D shape estimations. The texture extraction simulations

showed that recovering the texture from a 2D image and a 3D model is possible

via the parameterization and manifold methods contained in this thesis. While

the simulations were very promising, the experimental results suffered more from

3D model noise and insufficient camera resolution, which created disturbances in

the distortion-correcting grids, thus making this particular application rather lim-

ited. When combined with the future SFSL system, accurate texture extraction

will be highly achievable. One possible extension to this work is to use random

laser patterns paired with compressive sensing for surface sampling. Such a system

may combine the efficiency of the current system with higher-accuracy of surface

reconstruction.
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Appendix A

Triangulation Performance Simulation Results

Table A.1: Triangulation Error Percentage on Orthogonal Planar Surface, zero noise
0.0e+000 0.0e+000 0.0e+000 7.1e-014 1.4e-013 7.1e-014 -7.1e-014 -1.4e-013

0.0e+000 -7.1e-014 7.1e-014 7.1e-014 7.1e-014 0.0e+000 -7.1e-014 1.4e-013

1.4e-013 7.1e-014 -7.1e-014 -7.1e-014 -2.1e-013 -1.4e-013 1.4e-013 7.1e-014

0.0e+000 -7.1e-014 7.1e-014 0.0e+000 1.4e-013 7.1e-014 7.1e-014 0.0e+000

-7.1e-014 0.0e+000 1.4e-013 0.0e+000 -1.4e-013 -4.3e-013 3.6e-013 1.4e-013

7.1e-014 -7.1e-014 3.6e-013 0.0e+000 -7.1e-014 -7.1e-014 -7.1e-014 -2.8e-013

1.4e-013 -7.1e-014 -7.1e-014 2.1e-013 7.1e-014 -2.1e-013 7.1e-014 -1.4e-013

2.1e-013 7.1e-014 0.0e+000 -1.4e-013 -2.8e-013 -3.6e-013 7.1e-014 -1.4e-013

Table A.2: Triangulation Error Percentage on Orthogonal Planar Surface, with

additive Gaussian noise
-2.1 1.2 -2.2 -2.7 0.0 1.3 -3.7 2.1

0.4 -1.4 0.2 -0.4 -1.8 2.0 0.6 2.4

0.9 -1.1 -2.7 5.1 -2.8 1.9 1.6 -2.5

-1.1 -1.8 1.3 3.4 4.7 -6.1 1.2 0.3

-1.9 0.4 0.5 -0.1 3.5 0.2 -1.2 0.7

3.0 -1.1 -1.1 0.7 -0.5 -0.3 3.9 1.9

-1.1 -0.8 0.7 4.1 0.1 -3.5 -0.3 -2.4

-0.5 1.0 -3.7 -0.1 -1.3 0.6 2.5 -0.8

Table A.3: Triangulation Error Percentage on Angled Surface, with additive Gaus-

sian noise
-1.4 0.5 -0.2 -0.6 -4.2 1.3 -1.6 -2.4

0.5 -0.9 3.5 -0.4 -1.8 -0.5 -3.3 -1.3

2.3 -0.0 1.0 -3.4 -1.3 -0.9 2.7 0.1

1.3 -2.5 -1.4 -4.3 -0.5 -1.9 -3.8 1.9

-0.1 0.4 -0.7 -1.3 -2.1 1.7 1.6 0.2

-2.7 2.3 -1.3 1.2 -0.5 2.4 5.1 3.8

1.9 -0.7 -2.2 -0.0 -1.5 -2.0 2.1 1.4

-0.2 0.7 2.5 0.6 0.6 3.3 -1.4 -1.8
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Table A.4: Triangulation Error Percentage on Step Surface, with additive Gaussian

noise
0.6 -3.8 -0.2 -1.0 -1.7 0.6 2.5 3.1

0.2 -2.4 1.4 -0.7 2.4 0.5 -0.3 -2.6

-0.6 2.0 0.7 3.9 1.3 1.3 -4.4 1.3

2.0 -2.7 0.4 0.4 -0.8 -1.7 1.8 3.0

0.5 -1.9 -0.3 2.2 -0.6 -1.4 3.8 1.7

-0.7 0.8 0.0 2.9 -6.8 3.9 -1.2 -6.6

1.3 -0.8 0.5 -2.6 0.1 2.4 4.8 2.5

-1.3 1.5 0.4 0.6 0.5 2.0 -0.7 0.2
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Appendix B

Interpolation Simulation Results

(a) Linear Interpolation (b) Cubic Interpolation (c) TPS Interpolation

Figure B.1: Interpolation results for noise-free slanted surface.

(a) Linear Interpolation (b) Cubic Interpolation (c) TPS Interpolation

Figure B.2: Interpolation results for noisy slanted surface.
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(a) Linear Interpolation
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(b) Cubic Interpolation
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Figure B.3: Residual difference of interpolation and ground truth.

(a) Linear Interpolation (b) Cubic Interpolation (c) TPS Interpolation

Figure B.4: Interpolation results for noise-free cylinder surface.

(a) Linear Interpolation (b) Cubic Interpolation (c) TPS Interpolation

Figure B.5: Interpolation results for noisy cylinder surface.
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Figure B.6: Residual difference of interpolation and ground truth.
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