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The potential of psychedelics to persistently treat substance use disorders is 
known since the 1960s. However, the biological mechanisms responsible for 
their therapeutic effects have not yet been fully elucidated. While it is known 
that serotonergic hallucinogens induce changes in gene expression and 
neuroplasticity, particularly in prefrontal regions, theories on how specifically 
this counteracts the alterations that occur in neuronal circuitry throughout the 
course of addiction are largely unknown. This narrative mini-review endeavors 
to synthesize well-established knowledge from addiction research with findings 
and theories regarding the neurobiological effects of psychedelics to give an 
overview of the potential mechanisms that underlie the treatment of substance 
use disorders with classical hallucinogenic compounds and point out gaps in the 
current understanding.
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Introduction

In 2019, substance use disorders (SUDs) affected an estimated 2.2% of global population 
and continue to impose a substantial economic burden on society (Peacock et  al., 2018; 
Castaldelli-Maia and Bhugra, 2022). Drug addiction is commonly described as a behavioral 
disorder featuring cycles of abuse, abstinence, and relapse, as well as negative affective states 
(Kalivas et al., 2009; Wolf, 2016; Koob, 2022). SUDs result from repeated exposure of a vulnerable 
brain to reinforcing drugs. This induces various transcriptional and epigenetic changes, altering 
neural pathways that mediate reward assignment, motivation, and executive control (Nestler, 
2001; Lüscher and Malenka, 2011; Ruffle, 2014). The resulting behavioral changes are very stable, 
potentially persisting over the lifetime of an individual and leading to relapses even after years 
of abstinence (Spanagel, 2009).

Current pharmacotherapies for SUDs include agonist replacement, reduction of withdrawal 
symptoms, and inhibition of the rewarding properties of addictive drugs (Volpicelli et al., 1995; 
Warner and Shoaib, 2005; Lobmaier et al., 2010). However, so far, these approaches are limited 
to certain drugs or classes of drugs because they target receptors or enzymes specific to particular 
substances, instead of the underlying pathway modifications shared by all SUDs (Kreek et al., 
2002; Nichols et al., 2017).

Recently, serotonergic hallucinogens (here also referred to as psychedelics), such as 
psilocybin, lysergic acid diethylamide (LSD), or N,N-dimethyltryptamine (DMT), have shown 
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great promise in reducing symptoms of substance addictions and 
mood disorders, as indicated by a vast body of research and reviews 
(Dos Santos et al., 2018; Romeo et al., 2021; Bogenschutz et al., 2022; 
Calleja-Conde et al., 2022; Jones et al., 2022; Mendes et al., 2022; van 
der Meer et al., 2023). Hypotheses explaining the therapeutic efficacy 
of these drugs cover psychosocial models, large-scale effects on neural 
activity and network connectivity, neuroinflammatory mechanisms, 
as well as molecular/pharmacological actions and are, thus, as 
multilayered as the phenomenon of addiction (Tófoli and de Araujo, 
2016; Koslowski et al., 2022; Teixeira et al., 2022; van Elk and Yaden, 
2022). Among these explanations, the induction of structural 
neuroplasticity is often pointed out as the key mechanism (Mertens 
and Preller, 2021; Nutt et  al., 2023). This mini-review focuses on 
neuroplastic changes in addiction circuitry and how they potentially 
lead to alleviation of symptom load.

The addicted brain

As addiction develops, successive adaptations in distinct but 
interconnected neurocircuits take place while compulsivity of drug 
intake gradually increases. The affected circuits comprise reward-
related pathways, prefrontal control networks, and stress systems 
(Koob and Volkow, 2010).

Goal-directed behavior is, in part, controlled by dopamine (DA) 
release from the ventral tegmental area (VTA) into the nucleus 
accumbens (NAc) and the prefrontal cortex (PFC). This circuit is 
known as mesocorticolimbic system. Depending on its release site, 
DA codes for reward, anticipation, or motivation, and mediates 
associative learning or the activation of goal-directed behavior 
(Volkow et al., 2007). The reinforcing effects of addictive substances 
arise from their ability to stimulate DA release in mesolimbic areas, 
which substantially exceeds that caused by natural rewards, thereby 
creating strong incentive salience of drug cues (Hyman and Malenka, 
2001). With repeated drug intake, epigenetic modifications alter gene 
expression profiles in mesocorticolimbic areas, leading to homeostatic 
adaptations. These include changes in synaptic morphology and 
dysregulation of dopamine receptors (Volkow et al., 2007; Robison 
and Nestler, 2011; Bidwell et al., 2019). Also, induction of the opioid 
peptide dynorphin inhibits DA release in the NAc via its action on 
κ-opioid receptors (Nestler, 2001). As a consequence of these 
alterations, the responsiveness of the reward system, and thus the 
motivation to pursue natural rewards, diminishes (Willuhn et  al., 
2010). Furthermore, in the later stages of addiction, mesocortical DA 
release initiates drug seeking (Kalivas and Volkow, 2005).

The PFC exerts top-down control over subcortical structures, like 
the striatum or the amygdala, and by that mediates higher-order 
cognitive functions, such as selection and coordination of complex 
behaviors as well as emotional regulation (Jackson and Moghaddam, 
2001; Funahashi and Andreau, 2013). As addiction progresses, the 
ability of the PFC to choose behavioral options that favor long-term 
positive outcomes is compromised and immediate drug reward is 
preferred (Dalley et al., 2011). A structural correlate of this dysfunction 
is gray matter reduction in the PFC, which likely results from loss of 
dendritic complexity and spine density (Abernathy et al., 2010; DePoy 
et al., 2014; Mackey et al., 2018). Such atrophies correlate with the 
duration of drug abuse and impulsivity scores, implying disruption of 
executive function in the cortex as an underlying mechanism of 
escalating drug use (Qiu et al., 2013; Becker et al., 2015; Gröpper et al., 

2016). Morphological alterations in the PFC change its 
neurotransmission, importantly leading to hyperactive efferents to the 
NAc. These corticoaccumbal projections become active upon 
mesocortical DA release and activate drug seeking (Kalivas and 
Volkow, 2005). A molecular hallmark of excessive corticoaccumbal 
transmission is significant down-regulation of metabotropic glutamate 
receptor subtype 2 (mGluR2) on cortical neurons (Meinhardt et al., 
2013, 2021). mGluR2 serves as an inhibiting autoreceptor that 
modulates glutamatergic transmission (Kalivas et al., 2009). Cortical 
mGluR2 deficit was shown to be necessary and sufficient for impaired 
cognitive flexibility and elevated cue-induced drug seeking in ethanol-
dependent rats (Meinhardt et al., 2021). Reduced mGlur2 expression 
was also found in human addicts and implied to play a role in other 
SUDs besides alcoholism (Jin et al., 2010; Meinhardt et al., 2013; Qian 
et al., 2019).

Besides that, the emotion and stress systems are crucially involved 
in the pathogenesis of SUDs (Koob and Schulkin, 2019). Regulation 
of affective states is achieved through prefrontal top-down control of 
the dorsal raphe nucleus (DRN) and the amygdala and is compromised 
in addiction (Vollenweider and Kometer, 2010; Lee et al., 2012; Wilcox 
et  al., 2016). Amygdala and DRN control the activity of the 
hypothalamic–pituitary–adrenal (HPA) axis by modulating serotonin 
(5-hydroxytryptamine, 5-HT), corticotropin-releasing factor (CRF), 
and norepinephrine release in the hypothalamus (Feldman and 
Weidenfeld, 1998; Lowry, 2002). The HPA-axis mediates endocrine 
responses to stress and becomes increasingly sensitized during 
addiction, particularly during phases of abstinence (Koob and 
Schulkin, 2019). This seems to arise from excessive excitatory input 
from the extended amygdala, which in turn is attributable to a 
disruption of inhibitory control mechanisms within this structure 
(Kallupi et  al., 2013; Stamatakis et  al., 2014; Sharp, 2017). 
Consequently, the levels of stress-related neurotransmitters increase 
and negative affect becomes a driving force behind drug use (Koob, 
2013). Stress-induced drug consumption is mediated by projections 
from the extended amygdala to the VTA and the NAc (Shaham et al., 
2000; Kalivas and Volkow, 2005; Rinker et al., 2017). Structural and 
functional imaging studies support the notion that impaired prefrontal 
control over emotion and stress systems contributes to defective 
regulation of behavior (Li and Sinha, 2008; Qiu et al., 2013; Xiao et al., 
2015). Additionally, chronic stress itself conduces to deleterious 
structural alterations and might exacerbate neuronal atrophy, and thus 
impairments in behavioral regulation, through reduction of dendritic 
complexity (Ansell et al., 2012; Lu et al., 2021).

To summarize, loss of control over drug consumption results from 
a series of adaptations in neurocircuits that regulate goal-directed 
behavior, executive function, and affective states. Abnormalities in all 
described circuits, resulting from genetic or environmental influences, 
have been suggested to elevate addiction vulnerability (Goldstein and 
Volkow, 2011; Shumay et al., 2012; Al’Absi et al., 2021).

Effects of psychedelics – Prefrontal 
plasticity

Agonism at the 5-HT-2A receptor (5HT2AR) is thought to be the 
most relevant mechanism of serotonergic hallucinogens for eliciting 
psychoactive effects and lasting behavioral changes (Benko and 
Vrankova, 2020; DiVito and Leger, 2020; Pędzich et  al., 2022). 
5HT2ARs are abundantly expressed at dendrites of glutamatergic PFC 
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pyramidal neurons in layer V, projecting to regions such as the 
amygdala, VTA, or NAc (Mocci et  al., 2014; de Veen et al., 2017; 
Nichols and Hendricks, 2020). Thus, one common hypothesis 
regarding the anti-addictive properties of psychedelics focuses on 
induced neuroplasticity in the PFC leading to functional and 
structural alterations which may help to recover the phenotype (Ross, 
2012; DiVito and Leger, 2020; Peters and Olson, 2021).

A variety of pathways and immediate early genes related to cell 
growth are upregulated by psychedelics, including brain-derived 
neurotrophic factor (BDNF) (Olson, 2022). BDNF has been repeatedly 
suggested to be the key effector in inducing neuroplasticity and thus 
lasting changes in cognition and behavior (Perkins et  al., 2021; 
Knudsen, 2022; Olson, 2022). This is, for example, underlined by the 
fact that the anti-depressive effects of the dissociative ketamine, which 
displays therapeutic effects similar to psychedelics, are blocked by 
BDNF knockout in mice (Autry et al., 2011). Comparable studies with 
psychedelics are still missing (Olson, 2022). However, BDNF-driven 
plasticity seems to be the convergent mechanism of ketamine and 
serotonergic hallucinogens, hence it is not unlikely that BDNF is 
equally crucial for the lasting behavioral effects of classical 
hallucinogens (Aleksandrova and Phillips, 2021). The suggested 
process behind psychedelic-induced plasticity is initiated by 5HT2AR 
agonism, leading to the depolarization of prefrontal pyramidal 
neurons and locally increased glutamate release in the PFC 
(Muschamp et  al., 2004). This drives activation of glutamatergic 
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 
receptors and subsequent BNDF secretion (Jourdi et al., 2009). BDNF 
binds to tropomyosin receptor kinase B (TrkB), resulting in activation 
of mechanistic target of rapamycin (mTOR), which in turn upregulates 
BDNF synthesis in dendrites, thereby creating a positive feedback loop 
that allows for prolonged periods of plasticity (Takei et al., 2004; Ly 
et al., 2021; Olson, 2022). Such periods are characterized by increases 
in neurito-, spino-and synaptogenesis, which might counteract 
neuronal atrophy occurring throughout addiction, and hence improve 
executive functioning and affective regulation (Ly et  al., 2018; 
Aleksandrova and Phillips, 2021; Raval et al., 2021).

Activity on 5HT2AR-mGluR2 dimers may be crucially important 
for therapeutic effects of psychedelics (Benko and Vrankova, 2020; 
Meinhardt et al., 2021). As described above, mGluR2 deficit is an 
important hallmark of uncontrolled drug consumption, associated 
with impaired cognitive flexibility and elevated craving in ethanol-
dependent rats. Psilocybin administration rescued this behavioral 
phenotype by restoring mGluR2 expression and presumably 
rebalancing aberrant corticoaccumbal glutamate transmission 
(Meinhardt et al., 2021). The persistence of these changes and their 
relevance in human patients need to be validated in human studies. In 
addition to corticoaccumbal modulation, prefrontal 5HT2AR 
stimulation via psychedelics is known to acutely increase activity of 
serotonergic neurons in the DRN and dopaminergic neurons in the 
VTA (Puig et al., 2003; Pehek et al., 2006). Long-lasting changes in 
these projections are yet to be  identified but might contribute to 
regaining control over affective states and impulses, respectively.

Adaptation of 5HT2AR density in prefrontal areas could 
constitute another important effect of psychedelic action 
(Vollenweider and Kometer, 2010; Bogenschutz and Johnson, 2016). 
As elevated 5HT2AR availability in the PFC is associated with mood 
dysregulation and impulsivity, which are known features of SUDs, 
normalizing 5HT2AR density could alleviate symptoms of addiction 
(Frokjaer et al., 2008; Shelton et al., 2009; Rosell et al., 2010). Rapid 

induction of tolerance, known as tachyphylaxis, is a commonly 
observed phenomenon with psychedelics and is often accompanied 
by downregulation of 5HT2AR signaling in cortical areas (Buckholtz 
et  al., 1988; Gresch et  al., 2005; Raval et  al., 2021). Although this 
presents regulation of 5HT2AR as a compelling mechanism, 5HT2AR 
availability returns to baseline a few days after psychedelic intervention 
in preclinical studies, which speaks against this effect as a mediator of 
lasting change (Buckholtz et al., 1990; Raval et al., 2021). PET studies 
in humans could not identify a reliable trend regarding neocortical 
5HT2AR availability, although individual-specific relationships 
between 5HT2AR regulation and therapeutic outcomes were implied 
by Erritzoe et al. (2011) and Madsen et al. (2020). Further studies are 
necessary to evaluate the role of 5HT2AR modulation in therapeutic 
effects of psychedelics and explore alternative mechanisms besides 
downregulation, such as redistribution within the cell.

Various clinical findings support the idea of functional and 
structural plasticity in the PFC as a key mechanism of psychedelic 
therapy. For example, studies on regular users of the DMT-containing 
plant brew ayahuasca showed enhanced cognitive capabilities related 
to executive functioning as well as increased cortical thickness in the 
anterior cingulate cortex, a region that is crucial for affect regulation 
(Stevens et al., 2011; Bouso et al., 2012, 2015). Causality between the 
use of psychedelics and cognitive improvements mediated by effects 
in the cortex is further implied by increases in cognitive flexibility and 
altered metabolism in the anterior cingulate cortex following 
psilocybin intervention in depressive patients (Doss et  al., 2021). 
Clinically controlled studies for long-term structural effects of 
psychedelics are lacking but could generate valuable insights, 
specifically with a focus on patients suffering from mood or addictive 
disorders. Higher capacity for emotional regulation, as well as lower 
levels of anxiety and depressive moods, were found in studies 
comparing frequent users of psychedelics to controls (Thiessen et al., 
2018; Lafrance et al., 2021). In a clinical imaging study, psilocybin 
reduced reactivity of the amygdala to affective stimuli beyond acute 
drug effects. This was accompanied by increased activity of prefrontal 
regions known to control amygdala responses, which implies a 
potential improvement in top-down control over emotional reactions 
(Barrett et al., 2020).

Effects of psychedelics – Direct 
effects on reward and stress systems

5HT2AR is also found in regions of reward and stress systems and 
directly contributes to regulation of goal-directed behavior and 
emotional states (de Veen et al., 2017; Nichols and Hendricks, 2020). 
Therefore, direct stimulation of these circuits might have therapeutic 
benefits besides top-down effects. One line of thought points toward 
effects of psychedelics on the mesolimbic DA system (Liester and 
Prickett, 2012; Ross, 2012; DiVito and Leger, 2020). Acutely, 
psychedelics elevate mesolimbic DA release, although not to a degree 
that renders them addictive (Vollenweider et al., 1999; Yan et al., 2000; 
Ross, 2012). Since persistent low-grade activity on dopamine 2 
receptors (D2Rs) caused D2R upregulation in preclinical studies, it has 
been put forward that psychedelics could normalize D2R deficiency in 
the NAc by this effect (Boundy et al., 1995; Ross, 2012). Increases in 
D2R density caused by psychedelics were, indeed, identified in cell 
membranes from the mouse striatum. This effect was mediated by 
5HT2AR, with which D2R forms heterodimers, and potentially caused 
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TABLE 1 Experimental evidence for psychedelic effects in key regions and pathways in the addicted brain.

Affected region/
pathway

Species and 
psychedelic

Mode of exploration Observed effects References

PFC Rat (DOI, LSD, DMT) ELISA, ddPCR and morphology 

analyses after systemic application 

or in cell cultures

Increase in translated BDNF, spine 

and synapse density as well as 

dendritic branching

Ly et al. (2018, 2021)

PFC Rat (LSD)

Pig (psilocybin)

Human (various psychedelics)

Radioligand binding assays after 

systemic application in animals; 

PET after systemic psilocybin 

application or lifetime psychedelic 

use in humans

Decreased 5HT2AR availability in 

preclinical studies; no or slight 

differences in 5HT2AR availability in 

clinical studies

Buckholtz et al. (1990), Gresch 

et al. (2005), Erritzoe et al. 

(2011), Madsen et al. (2020), 

and Raval et al. (2021)

PFC Human (ayahuasca, psilocybin) MRI of long-term ayahuasca 

users; fMRI/MRS in MDD 

patients treated with psilocybin

Increased ACC thickness in 

ayahuasca users; reduced ACC 

metabolism and altered connectivity 

after psilocybin

Bouso et al. (2015) and Doss 

et al. (2021)

PFC-NAc Rat (psilocybin) PCR and behavioral assays in 

ethanol-dependent rats after 

systemic application

Elevated mGluR2 expression and 

cognitive flexibility; reduced ethanol 

seeking

Meinhardt et al. (2021)

PFC-VTA Rat (DOI) Microdialysis after systemic 

application

Increased DA release in mesocortical 

pathway

Pehek et al. (2006)

PFC-Amyg Human (psilocybin) fMRI after systemic application Reduced amygdala and increased 

prefrontal activity in response to 

aversive stimuli

Barrett et al. (2020)

PFC-DRN Rat (DOI) Electrophysiology and 

microdialysis after systemic and 

local application, respectively

Increased firing rate of PFC-DRN 

neurons after systemic and increased 

5-HT release after local application

Puig et al. (2003)

VTA-NAc Human (psilocybin)

Rat (DOI)

PET and microdialysis after 

systemic application, respectively

Increased striatal D2R occupancy in 

humans; increased DA release in rats

Vollenweider et al. (1999) and 

Yan et al. (2000)

NAc Human (LSD)

Rat (DOI)

Radioligand binding assays in 

human cell cultures and rat 

striatum

Increased D2R density in cell culture 

and rat brain; decreased 5HT2AR 

binding in striatum of rat brain

Buckholtz et al. (1985) and 

Borroto-Escuela et al. (2014)

NAc-VTA Mouse (ayahuasca) Western blot after systemic 

application in ethanol-dependent 

animals

Decreased dynorphin concentration 

in withdrawal

Almeida et al. (2022)

Amygdala Human (psilocybin)

Mouse (DOI)

fMRI after systemic application in 

humans; behavioral assay after 

local application in mice

Decreased amygdala reactivity and 

altered connectivity in response to 

fearful stimuli in humans; suppressed 

fear expression in mice

Kraehenmann et al. (2015, 

2016), Grimm et al. (2018) and 

Pędzich et al. (2022)

Hypothalamus Rat (DOI) Radioimmunoassay after systemic 

application

Increased corticosterone levels Hemrick-Luecke and Evans 

(2002) and Zhang et al. (2002)

Summary of the experimental findings referenced in this paper. PFC, prefrontal cortex; DOI, 2,5-dimethoxy-4-iodoamphetamine; LSD, lysergic acid diethylamide; DMT, N,N-
dimethyltryptamine; ELISA, enzyme-linked immunosorbent assay; (dd)PCR, (droplet digital) polymerase chain reaction; BDNF, brain-derived neurotrophic factor; PET, positron emission 
tomography; 5HT2AR, 5-hydroxy tryptamine 2a receptor; (f)MRI, (functional) magnetic resonance imaging; MRS, magnetic resonance spectroscopy; MDD, major depressive disorder; ACC, 
anterior cingulate cortex; NAc, nucleus accumbens; mGluR2, metabotropic glutamate receptor subtype 2; VTA, ventral tegmental area; DA, dopamine.

by allosteric modulation of D2R signaling (Borroto-Escuela et al., 2014, 
2021). As in the PFC, 5HT2AR availability in the striatum diminishes 
significantly after administration of psychedelics (Buckholtz et  al., 
1985). Since 5HT2AR positively regulates DA release in the mesolimbic 
pathway and repeated treatment with drugs of abuse seems to increase 
5HT2AR sensitivity in the NAc, 5HT2AR downregulation might 
contribute to rebalancing of aberrant dopaminergic transmission 
(Pessia et  al., 1994; Yan et  al., 2000; Alex and Pehek, 2007). The 
persistence of changes in striatal DA release, D2R, and 5HT2AR 
density, as well as correlating behavioral alterations, requires further 
investigation. The same is true for changes in dynorphin levels. 

However, so far, one preclinical study implies that ayahuasca reduces 
the effects of ethanol on dynorphin activity (Almeida et al., 2022). 
Studies regarding psychedelic-induced 5HT2AR downregulation often 
focus on cortical areas, thus specific investigations in mesolimbic areas 
and their relation to therapeutic effects are lacking (Hall et al., 2000; 
Buchborn et al., 2015; Raval et al., 2021).

Furthermore, 5HT2AR is expressed in mood-regulating regions 
of the brain, such as amygdala or hypothalamus (Shi et  al., 2008; 
Bombardi, 2014). Neuroimaging studies investigating acute effects of 
psychedelics in the amygdala revealed reduced activity during 
processing of fearful stimuli (Kraehenmann et al., 2015, 2016; Grimm 
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et al., 2018). While such observations could be caused by top-down 
mechanisms, preclinical findings show that local stimulation of 
5HT2AR in the amygdala is necessary and sufficient to suppress fear 
expression in rats, implying the presence of direct effects (Grimm 
et  al., 2018; Barrett et  al., 2020; Pędzich et  al., 2022). Agonism at 
5HT2ARs expressed at inhibitory interneurons in the amygdala could 
readjust their function and normalize hyperactive output to the stress 
system, like the hypothalamus, and thus re-balance the emotional state 
(Nichols and Hendricks, 2020). This effect could also decrease 
signaling to the VTA or the NAc and thereby stress-mediated drug 
seeking. Direct stimulation of 5HT2AR in the hypothalamus was 
shown to account for the neuroendocrine response to psychedelics, 
further supporting the notion that these substances display direct 
effects in stress-related regions (Hemrick-Luecke and Evans, 2002; 
Zhang et al., 2002). As use of psychedelics is associated with reduced 
levels of psychological distress in clinical and population studies, 
examinations of how this is reflected by long-term alterations in 
activity of the stress systems (e.g., HPA-axis) would be of interest 
(Hendricks et al., 2015; Johansen and Krebs, 2015; Doss et al., 2021).

Conclusion

Effects of psychedelics on addiction-related circuitry are diverse 
and include indirect as well as direct mechanisms in reward, stress, 
and emotion systems (see Table 1). Prefrontal plasticity supposedly 
re-establishes impaired top-down regulation of regions like the NAc, 
the VTA, DRN or the amygdala, which leads to increased control over 

emotions and impulses, thus reducing cue-and stress-induced drug 
intake and improving general mood (Vollenweider and Kometer, 
2010; Bouso et al., 2015; Aday et al., 2020; see Figure 1). Specifically, 
rescue of mGluR2 expression was demonstrated to re-balance 
corticoaccumbal glutamate transmission and reduce craving 
(Meinhardt et al., 2021; see Figure 1). Direct effects in the limbic 
system might elevate DA-release and D2R-density, thereby 
normalizing the function of the reward system (Liester and Prickett, 
2012; Ross, 2012; DiVito and Leger, 2020; see Figure 1). Acute effects 
in stress or emotion systems can partially be attributed to altered 
top-down regulation, however, local stimulation of the amygdala or 
the HPA-axis caused behavioral and neuroendocrine effects, 
respectively, as well (Zhang et al., 2002; Barrett et al., 2020; Pędzich 
et al., 2022). It is thus still unclear which proportion of the effects in 
subcortical structures are the consequence of top-down modifications 
and which part is caused via local action.

Studies employing local administration of psychedelics to or local 
blocking of 5HT2AR in important emotion-and reward-hubs in 
combination with animal models of addiction could shed light on the 
role of bottom-up mechanisms in subcortical structures. Furthermore, 
studies elucidating top-down effects on addiction circuitry are needed. 
These could include investigation of synaptic plasticity in corticolimbic 
or corticostriatal projections, examination of local transmitter release 
in response to different stimuli (e.g., fear-provoking or drug cues) pre 
versus post-psychedelics, and correlating structural changes with 
behavior. Most studies so far focus on acute or short-term effects of 
serotonergic hallucinogens and the field could benefit from (pre)
clinical studies that systematically investigate long-term alterations in 

FIGURE 1

Effects of psychedelics on key pathways in the addicted brain. Depicted are crucial pathways that contribute to the behavioral and affective symptoms 
of SUDs and descriptions of how psychedelics supposedly alter their function to restore a healthy phenotype. Mechanisms listed in green boxes are 
backed up by experimental evidence, the other ones are deduced from knowledge about addiction circuitry and the effects of psychedelics. However, 
all pathways deserve closer examination. mGluR2, metabotropic glutamate receptor subtype 2; 5HT2AR, 5-hydroxy tryptamine 2a receptor; HPA-axis, 
hypothalamic–pituitary–adrenal axis. Created with BioRender.com.
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the key pathways outlined in this paper (see Figure 1). Despite the 
existing gaps, the current state of knowledge implies that psychedelics 
induce profound changes in cognition and emotional processing 
which are accompanied by circuit modifications that foster 
improvement of SUDs in general and challenge the efficacy of 
currently available addiction pharmacotherapy (Fuentes et al., 2020).
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