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Varroa destructor is a major threat for apiculture worldwide. A successful

approach to control this parasite must include the application of effective

treatments at the correct time. To understand the effect that treatment timing

has on Varroa populations at different seasons, we conducted an experiment

using a dataset comprising two separate field trials over multiple years, both

trials containing four apiary sites composed of 20 honey bee colonies across

an area representative of north central Florida environments. Before the start

of the season, colonies were treated with two acaricides simultaneously to

bring the Varroa populations to ∼0.25 mites/100 bees. Following treatment,

we monitored the mite populations monthly via alcohol washes. Our results

show that the temporal efficacy of Varroa treatments varies across seasons. We

observed that it takes about 4–5 months after treatment in winter and spring for

mite populations to return to the standard economical threshold (3 mites/100

bees). Nevertheless, there is a steeper increase in mite populations (<3 months to

exceed the economic threshold) after treating colonies in summer and fall. The

level of infestation that leads to colony collapse and the rate of colony decline

also varied by season. To our knowledge, this is the first study evaluating seasonal

effects on Varroa population growth and the first model of Varroa population

growth in Florida, USA. Our results serve as a foundation for Varroa treatment

models, aiding beekeepers in the future as a part of a holistic approach to control

this devastating honey bee parasite.
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1. Introduction

For decades, beekeepers around the world have struggled to control Varroa destructor,
an ectoparasitic mite, in their honey bee (Apis mellifera L.) colonies (Rosenkranz et al., 2010).
The pest now has a worldwide distribution and can be found nearly everywhere honey
bee colonies are managed (Boncristiani et al., 2021). Varroa’s impact is primarily linked to
its ability to vector and transmit a large number of viruses (Genersch and Aubert, 2010;

Frontiers in Ecology and Evolution 01 frontiersin.org

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.1102457
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1102457&domain=pdf&date_stamp=2023-04-17
https://doi.org/10.3389/fevo.2023.1102457
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2023.1102457/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1102457 April 10, 2023 Time: 15:38 # 2

Jack et al. 10.3389/fevo.2023.1102457

Traynor et al., 2020), severely weakening honey bee colony strength
(Budge et al., 2015), and resulting in widespread colony losses
(Brutscher et al., 2016; Gray et al., 2020).

Different non-chemical and chemical treatments are used
by beekeepers to reduce V. destructor populations below the
economic threshold, which is typically considered as 3 mites/100
adult bees (Jack and Ellis, 2021). The more time a colony
spends above the economic threshold, the more likely it is to
experience both increased viral infection and colony mortality
(Kulhanek et al., 2021). Each year, beekeepers must decide
which V. destructor treatment regimens are best to use in their
management setting, this being based on several factors (Thoms
et al., 2019; Underwood et al., 2019; Steinhauer et al., 2020). The
most obvious factor is the efficacy of the treatment, which can
vary under specific circumstances (Jack and Ellis, 2021). Weather
conditions, particularly temperature and precipitation, have been
observed to play a significant role in the efficacy of several
V. destructor treatments (Beyer et al., 2018; Steube et al., 2021).
Natural chemical treatments are particularly responsive to ambient
temperature conditions, as volatile chemicals release gases based on
the temperature where they are placed (Imdorf et al., 1995; Gracia
et al., 2017). Even honey bee behaviors, such as grooming behaviors
to remove V. destructor, can be affected by weather (Currie and
Tahmasbi, 2008).

Beekeepers have historically relied heavily on synthetic
chemical treatments to control V. destructor (Roth et al., 2020), but
the efficacy of these treatments has become limited due to resistance
issues (Haber et al., 2019). Some have observed treatment efficacy
to vary according to location and season in which it is applied
(Currie and Gatien, 2006; Gracia et al., 2017). As V. destructor can
only reproduce within the capped brood cells containing honey
bee pupae, the mites spend a significant amount of their lives
inside these cells (Rosenkranz et al., 2010). Thus, the timing of
chemical treatments is also essential for sustaining V. destructor
control (Delaplane and Hood, 1997; Gatien and Currie, 2003), as
the effectiveness of some treatments is considerably reduced if mites
are hidden within the capped brood cells at time of application
(Kraus and Berg, 1994; Rosenkranz et al., 2010; Al Toufailia and
Ratnieks, 2018).

Another factor beekeepers must consider when attempting to
control V. destructor is the amount of time required to apply the
treatment. Some non-chemical treatments can be effective (Ellis
et al., 2001; Wantuch and Tarpy, 2009; Kablau et al., 2020), but often
require too much time. This makes such treatments unpopular
among commercial beekeepers (Underwood et al., 2019). The
length of time the treatment must remain in the hive is also an
important factor to consider, as most chemical treatments are not
labeled for use while honey supers are present on the hive (Honey
Bee Health Coalition, 2018). To be successful with sustainable
V. destructor control, beekeepers must consider all these variables
in relation to beekeeping activities such as honey production, queen
rearing, package bee production, and commercial pollination. It
would be extremely valuable to beekeepers to have a decision tool
to aid them in their selection of V. destructor treatments according
to their own location and beekeeping situation.

Before a V. destructor control decision tool could be
created, researchers need to understand the relationship
between V. destructor population growth and the individual
mite treatments. Many researchers have explored the complex

dynamics of V. destructor population growth (reviewed by Fries
et al., 1994; DeGrandi-Hoffman and Curry, 2004; Coffey et al.,
2010; Ratti et al., 2012; DeGrandi-Hoffman et al., 2016). Some have
created elaborate growth models which include several factors such
as honey bee brood rearing, acaricidal efficacy, mite reproductive
rates, and the total number of foragers with mites to name a
few (reviewed by Fries et al., 1994; Wilkinson and Smith, 2002;
DeGrandi-Hoffman and Curry, 2004; DeGrandi-Hoffman et al.,
2016). Nevertheless, after thorough research, an extensive study
evaluating the effect of season has not been conducted to our
knowledge. By knowing the seasonal growth rate of V. destructor
populations, one may be able to predict how long after treatment it
takes mite populations to return to pretreatment levels.

It is necessary to create a model of natural V. destructor
population growth by season as a first step toward the creation of a
decision tool. Herein, we observed natural V. destructor population
growth rates in north central Florida throughout multiple years
and compared the growth rates by season. We hypothesized that
V. destructor population growth would vary by season, with the
fastest rate of growth happening in the summer and fall seasons,
as that is when the greatest amount of capped brood is present
in colonies. We made this hypothesis based on the knowledge
that the population dynamics of V. destructor and honey bees are
interwoven, as the mites can only reproduce within capped brood
cells (Rosenkranz et al., 2010).

2. Materials and methods

2.1. Experimental design

Two separate trials were conducted over multiple years. In
both trials, groups of honey bee colonies were maintained in four
different apiaries in north central Florida, all within 32 km of
the University of Florida’s Honey Bee Research and Extension
Laboratory (HBREL), Gainesville, FL (29◦37′38′′ N 82◦21′23′′

W). During each trial, a specific apiary was assigned to a
designated calendar season. The apiary sites were as follows: (1)
North Gainesville, FL (29◦44′01′′ N 82◦16′31′′ W), (2) Citra, FL
(29◦24′36′′ N 82◦08′48′′ W), (3) Hawthorne, FL (29◦35′24′′ N
82◦08′36′′ W), and (4) HBREL (29◦37′38′′ N 82◦21′23′′ W). Trial 1
was initiated in January 2018 and trial 2 was initiated in April 2020.
A map of the apiary locations assigned to each season for both trials
is shown in Figure 1.

2.2. Hive configuration

At the start of each trial, apiaries contained 20 healthy honey
bee colonies of European-derived honey bee stock. The genetic
lineage of honey bees used in this study likely derived primarily
from Apis mellifera ligustica stock, though we made no effort
to use a specific stock. Honey bee stocks used in the U.S. are
usually mixed-race (Schiff and Sheppard, 1995; Delaney et al.,
2009). The bees used in this study were of the same genetic
origins for both trial 1 and trial 2. Colonies were maintained
in 10-frame Langstroth hives consisting of a single deep hive
body and a solid bottom board. Brood combs were all a standard
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FIGURE 1

Satellite image of apiary locations used in both trials (image by Google Earth). Figure legend indicates the assigned season and trial used in each
location.

size and contained Plasticell foundation (Dadant & Sons, Inc.,
Hamilton, IL, USA). Colonies were equalized prior to the start
of the experiment to ensure that each colony was of similar size
and strength (approximately nine frames of bees and six frames of
brood).

2.3. Honey bee colony management

Prior to the start of each season, colonies within the assigned
apiary were treated with acaricides to bring the V. destructor
populations to an average of 0.25 mites/100 bees (high of 0.6
mites/100 bees). All colonies were treated with amitraz via Apivar R©

strips (Véto-pharma, New York, NY, USA) for 3 weeks instead of
the recommended 6-week period to maintain appropriate timing
of the seasonal groups. However, we do not believe that this
reduced treatment period negatively affected the reduction of

mites, as colonies were also simultaneously treated with 4 g of
oxalic acid (OA) dihydrate (Sigma Aldrich, St. Louis, MO, USA)
via vaporization. We used the commercially available ProVap
110

R©

vaporizer (OxaVap LLC, Manning, SC, USA) to vaporize
the OA, sealing the hive entrance and all cracks around the
nest to limit the escape of the vapor as per Jack et al. (2021).
Colonies received OA treatment once per week, for up to 3
consecutive weeks. This process was repeated for the colonies in
each apiary prior to the beginning of their respective seasons.
Once the experimental colonies’ V. destructor populations were
∼0.25 mites/100 bees, no further treatments were administered.
All experimental colonies were managed according to best
management practices that are common for this region (feeding
bees when necessary, swarm control, etc.), with the exception of
applications of additional miticides to control growing V. destructor
populations. To maintain the integrity of the study, no brood
combs were shared between colonies, even within the same seasonal
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FIGURE 2

Average Varroa destructor population growth expressed as number of mites/100 bees after 6 months for each season. These results combine data
from both trials 1 and 2. The dashed red line represents the standard economical threshold of 3 mites/100 bees. There was a significant impact of
season treatment was administered on the mites/100 bees (P ≤ 0.05). Significant differences between means are indicated with different letters
(α = 0.05; a > b > c).

cohort. Furthermore, small hive beetle (Aethina tumida) traps were
added to all colonies to reduce the effects of beetle damage. All
experimental colonies were treated with oxytetracycline (Tetra-B
Mix 2X

R©

, Dadant & Sons, Inc., Hamilton, IL, USA) to minimize
the potential of foulbrood outbreaks. The number of surviving
colonies was recorded each month, given there was some colony
mortality. Colonies were considered dead once there were no more
adult bees to sample or if the health of the colony would have
been significantly impacted by the sampling. As colony populations
began to decline, they were fed sugar syrup when needed and
entrance reducers were placed on hive entrances to limit robbing.
We believe that the colony mortality observed in this study was a
result of the high V. destructor populations and associated virus
loads rather than from the treatment regimen, as few colonies in
this study died within 2–3 months after treatment.

2.4. Varroa destructor population
monitoring

Varroa destructor population growth was monitored for every
colony monthly using alcohol washes according to the technique
described in Dietemann et al. (2013). Each month, 200–300 bees
were collected from the brood area and a ratio of # mites/100
bees was calculated for each sample. Monitoring of V. destructor
continued for each group until the mite population peaked and
then declined for 2 consecutive months, or until all of the colonies
within a cohort died. A decline in V. destructor populations

indicates that the colonies with severe infestations are collapsing
and the remaining colonies are in similar danger. Ending the study
after 2 months of consecutive mite population decline allowed us to
rescue the remaining colonies before their collapse.

2.5. Statistical analyses

All analyses were performed using the glmer function from the
package lme4 (Bates et al., 2015) implemented in the R platform (R
Core Team, 2022). Models for each analysis are described below.
Graphical visualizations were obtained using ggplot2 (Wickham,
2016).

2.5.1. Varroa destructor population growth model
The main interest with our present research was to observe the

effect of season on V. destructor infestation. For that, the following
generalized linear mixed model was used (i.e., model 1):

y = µ+ X1t + X2se+ X3t ∗ se+ Z1h+ e

where, y is the responsible variable (i.e., # mites/100 bees), µ is
overall mean, t is the effect of time since last treatment, se is the
effect of last season treated, t × se is the interaction effect between
time since last treatment and the last season treated, h is the effect of
each hive evaluated (hiveID), and e the vector for the residual error.
X1, X2, X3, and Z1 are the incidence matrices for time since last
treatment, last season treated, the interaction between time since
last treatment and last season treated, and hiveID, respectively.
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FIGURE 3

Box plots illustrating the assumed lifespan distribution for colonies (in months) in the season in which treatment were applied for both trials. The ×
indicates the mean survival for colonies within that seasonal cohort. There was a significant impact of season the mite treatment was administered
on colony lifespan within trial (P ≤ 0.05). Post-hoc tests were performed within trial and significant differences between means are indicated with
different letters (α = 0.05; a > b > c).

Only hiveID was not considered as a fixed effect, to account for
the independent variances of each hive evaluated. The analysis
was implemented using the package lme4 (Bates et al., 2015).
Autocorrelation regarding the repeated measures was accounted in
the model and a Poisson distribution was assumed, given the nature
of the data and its skewed distribution. As colony mortality began
to be significantly impacted after 6 months, creating significantly
unbalanced data, seasonal V. destructor population growth was
only analyzed considering the first 7 months of data. Preliminary
analysis was performed to select the best model to be used in this
analysis (i.e., model 1). For this, nested generalized linear mixed
models were tested and comparisons were made considering model
fit parameters (AIC, number of parameters, significance in the
ANOVA model comparison; data not shown). From these results,
we identified that V. destructor population growth per season was
not dependent upon trial (P = 0.998) and that the addition of
trial effect turned the model singular, which could be indicative of
overfitting. Thus, trial effect was not considered in model 1.

2.5.2. Colony lifespan model
The following generalized linear mixed model was used to infer

the effect of last season treated on hive lifespan.

y = µ+ X1T + X2se+ X3T ∗ se+ Z1T : h+ e

In this model, y is the responsible variable (i.e., hive’s lifespan), µ

is overall mean, T is the effect of trial, se is the effect of last season
treated, T × se is the interaction effect between trial and the last
season treated, T:h is the effect of each hiveID nested on trial, and e

the vector for the residual error. X1, X2, X3, and Z1 are the incidence
matrices for trial, last season treated, the interaction between trial
and last season treated, and hiveID, respectively. As in the previous
model, only hiveID was considered as a random effect, accounting
for the independent variances of each hive evaluated. Given the
nature of the responsible variable (i.e., counting data), a Poisson
distribution was assumed for the analysis.

2.5.3. Post hoc analyses
In order to verify significance between the factors tested

in each analysis, post hoc tests assuming Sidak correction for
multiple comparisons were performed (σ = 0.05), using functions
implemented in the package emmeans v. 1.7.5 (Lenth, 2022).

3. Results

3.1. Varroa destructor population growth
by season

Varroa destructor population growth per season was not
dependent upon the trial (P = 0.998), so data from both trials
were combined for subsequent analyses. V. destructor population
growth data became unbalanced 6 months post-treatment for all
seasons due to colony mortality (Figure 2 and Supplementary
Figure 1). Thus, we only included the first 6 months post-
treatment in our analyses. There were no significant differences

Frontiers in Ecology and Evolution 05 frontiersin.org

https://doi.org/10.3389/fevo.2023.1102457
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1102457 April 10, 2023 Time: 15:38 # 6

Jack et al. 10.3389/fevo.2023.1102457

in starting V. destructor levels each season after treatments were
administered (P > 0.05). Yet, there was strong evidence to
support the observation that V. destructor population growth varies
depending on which season the treatment was applied (Figure 2
and Supplementary Table 1).

There are some notable observations when examining
V. destructor population growth by season. First, when mite
populations are reduced in the winter and spring seasons,
V. destructor population growth rates remain below the economic
threshold (3 mites/100 bees) for 4–5 months, respectively
(Figure 2). Second, V. destructor populations rapidly increased
after the summer and fall seasons’ treatments, extending beyond
the economic threshold less than 3 months after treatment
(Figure 2). Third, mite populations peak only 4 months after a
summer treatment before significant colony mortality is observed,
causing a decline in average V. destructor populations. Meanwhile
V. destructor populations may be sustained at higher levels 5–
6 months after a fall treatment, likely due to a buildup of bees
during the spring (Figure 2).

3.2. Colony lifespan by season

There was a significant interaction between colony lifespan
per season and trial effect (P < 0.05, Supplementary Table 2);
therefore, data from each trial were analyzed separately, and
interpretations were made separately within each trial. The colony
lifespan during trial 2 was generally shorter than that during trial
1 (Figure 3 and Supplementary Table 2). In trial 1, colonies
treated during summer had the shortest of all colony lifespans,
averaging 7.5 months of survival post-treatment. Regardless, there
is no evidence that survival after fall treatment was different than
that after summer at 8.5 months survival post-treatment. Colonies
treated in the winter season had significantly longer survival
post-treatment during trial 1 than did any other group, with an
average colony surviving 11.5 months. In trial 2, treatment in the
summer and winter seasons ultimately led to the quickest mortality,
with colonies averaging only 6.9 and 7.6 months of survival post
treatment, respectively. The colonies that survived the longest
during trial 2 were treated in the fall and spring seasons, surviving
8.9- and 8-months post-treatment, respectively.

4. Discussion

We evaluated an extensive and robust dataset composed of 160
honey bee colonies to understand V. destructor population growth
seasonally. Our main goal was to generate information that can
guide beekeepers as a part of a holistic approach to control this
devastating honey bee parasite. Our results not only confirm the
importance of seasonal effects on the efficacy of treatments for the
mite, but they can also be used as a natural model of V. destructor
population growth for north central Florida, and possibly colonies
kept in similar climates. Additionally, we believe that the results
of this study demonstrate the importance of regular V. destructor
monitoring and treatment by beekeepers, as colony survival is often
less than 1 year for untreated colonies in Florida. We anticipate
that the benefits and information described in our study can be

applied to optimize treatment and control for V. destructor in
Florida and can help guide studies and research for the control of
this parasite worldwide.

Although much has been written related to V. destructor
population growth, to our knowledge, this is the first attempt
to determine V. destructor population growth seasonally after
treatment. As V. destructor population growth is closely tied to
honey bee brood rearing (Wilkinson and Smith, 2002), it is not
surprising that mite levels were able to rebound rapidly after
treatment in the summer and fall seasons when honey bee brood
is plentiful in Florida (Figure 2). However, somewhat surprising
is the significantly slower V. destructor population growth after
treatment in the spring when compared to that in winter (Figure 2).
One might predict that in colonies where mites were reduced
to near-zero in the winter, V. destructor populations would be
delayed in growth due to the lack of honey bee brood required for
reproduction. Interestingly, mite levels were still significantly lower
in the spring than in all other seasons 3 months after treatment,
making this the longest period during which mite populations were
maintained below the economic threshold (Figure 2). Dolezal et al.
(2016) demonstrated how the environment in which colonies are
placed can influence the nutritional physiology of the colony, thus
directly affecting V. destructor presence in a given environment.
As honey bee colonies in the spring season have access to more
floral resources, this nutritional advantage may have allowed the
bees to defend or guard against V. destructor reproduction or
reinfestation better than presumably nutrition-deficient colonies
treated in winter.

Information regarding seasonal V. destructor population
growth is applicable to beekeepers who struggle to maintain mite
populations below economic thresholds (Jack and Ellis, 2021;
Brodschneider et al., 2022). It appears that reducing V. destructor
populations in the spring season is important for long lasting
mite control. An effective reduction of mite populations in the
spring could provide beekeepers sufficient coverage through the
spring and summer months, effectively reducing the likelihood
of necessary treatments during the major nectar flows for most
temperate regions. Winter is also an effective season to treat for
V. destructor, providing beekeepers with coverage through the
spring season. However, even after an effective winter treatment,
mite populations could still return to economic thresholds by
the spring season. In this case, the beekeeper has a difficult
decision; either they interrupt their colonies’ honey production
during a major nectar flow or they delay treatment until after
honey supers have been removed. If beekeepers are not able to
reduce the V. destructor population below the economic threshold
of 3 mites/100 bees, their colonies are likely to succumb to viral
infection (Kulhanek et al., 2021).

While reducing V. destructor populations in summer and fall
seasons may be important, the benefits of doing so could be
very short-lived. A reduction of mite populations in summer only
resulted in about 2 months of coverage for the beekeeper, meaning
that another treatment in fall would be necessary. Unfortunately,
reducing mite levels in fall again only provides 2 months of
coverage, requiring another treatment in winter. Thus, it appears
that multiple treatments are likely necessary if mite populations
reach economic thresholds in the summer and fall seasons.
Frequent treatments such as these can, increase the likelihood that
the mites develop resistance to chemical treatments and the cost
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of controlling V. destructor to beekeepers. However, the need to
reduce V. destructor populations in the summer and fall months
is crucial, as viral titers tend to be at their highest and colonies are
most severely impacted during these seasons (Highfield et al., 2009;
Dainat et al., 2012; Traynor et al., 2016).

Varroa destructor treatments can vary widely in cost, with some
treatments, for instance oxalic acid, costing less than others, such
as the synthetic compound ApivarTM. Thus, optimizing treatment
efficacy and reducing the frequency of treatments could provide
the beekeeper with considerable savings. Based on the V. destructor
population growth data presented in Figure 2, we created Table 1
to provide a better understanding of when a beekeeper could expect
to apply miticides for the control of the pest. Depending upon when
the treatment regime is started, a beekeeper may need to apply
one additional treatment over the period of 2 years. Perhaps for
a hobbyist beekeeper, that would not equate to significant savings,
but it might for a large commercial operation. However, we created
Table 1 to be used as a reference for when colonies may need
treatment, as treatment efficacy can be region-specific and not
all treatments can be applied at all times of the year (Jack and
Ellis, 2021). Thus, beekeepers should not stay on a strict treatment
regimen but should closely monitor V. destructor populations to
determine treatment timing.

The difference in colony lifespan post-treatment between the
two trials was stark (Figure 3). For instance, survival was greatest
in trial one after treatment in the winter. In trial 2, the winter
treatment survival was similar to that of the summer group, with
both being low. It is possible that these two winter treatments
were affected differently by their location, as colonies receiving
the winter treatment in trial one were located in the northern
Gainesville apiary and while in trial 2, they were located at the
Hawthorne apiary. Both apiary sites are ∼24 km apart, yet the
floral resources available at the Hawthorne apiary are more plentiful
than those at the northern Gainesville apiary during the late spring
and summer months. Nutritionally, colonies in the Hawthorne
apiary may have been better able to handle V. destructor after a
winter treatment than were those at the Gainesville apiary. It is
also possible that viral titers differed between colonies at the two
sites, leading to the different responses of mite populations to
winter treatments at both apiaries. While we believe that the bees
used in this study were of the same genetic origins for both trial
1 and trial 2, slight genetic differences may have existed between
the two populations. It is possible that these genetic differences
of the bees used in both trials could have led to varying rates
of death after exposure to elevated V. destructor levels. Weather
differences, or other environmental parameters could have played
a role. Unfortunately, we cannot determine the impact of location,
genetics, virus load or weather on colony survival as we were only
able to conduct two trials for this experiment and did not collect all
the data necessary to make these determinations.

There are other variables that would likely impact V. destructor
populations and warrant additional exploration. These variables
could include temperature, frost-free days, rainy/dry seasons,
nectar flows, and growing seasons. As mite population growth is
closely tied to honey bee brood rearing (Wilkinson and Smith,
2002), the same climatic conditions that increase brood rearing
likely also increase V. destructor populations. Ultimately, we can
only use our results to predict the V. destructor population
outcomes in north central Florida. However, beekeepers managing

hives in areas with similar rates of brood rearing could use our
work to assist with predictions of their own colonies’ V. destructor
population growth. Therefore, regional or countrywide honey bee
brood surveillance would be helpful for predicting mite population
growth with greater resolution. Such a surveillance program for
the southeastern USA is currently underway (G. Williams, personal
communication, University of Auburn).

Beekeepers are in desperate need of effective controls to use
against V. destructor. As the development of new controls can take
many years, it is essential that beekeepers utilize existing treatments
more efficiently. We believe that the research presented herein
helps us better understand the seasonal efficacy of V. destructor
treatments and could potentially aid in the development of a
mite control decision tool for beekeepers. More effective timing
of treatments could reduce the frequency of treatments, thereby
reducing the likelihood of V. destructor development of resistance
to a given miticide. Additional research related to V. destructor
population predictions and modeling is essential for long-term,
sustainable management of this devastating honey bee parasite.
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