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Abstract

This report describes a new methodology and system for satisfying requirements, and an archi-

tectural framework for linking discipline-specific dependencies through interaction relationships at

the meta-model (or ontology) level. In state-of-the-art traceability mechanisms, requirements are

connected directly to design objects. Here, in contrast, we ask the question: What design concept

(or family of design concepts) should be applied to satisfy this requirement? Solutions to this

question establish links between requirements and design concepts. Then, it is the implementation

of these concepts that leads to the design itself. These ideas are prototyped through a Washington

DC Metro System requirements-to-design model mockup. The proposed methodology offers several

benefits not possible with state-of-the-art procedures. First, procedures for design rule checking

may be embedded into design concept nodes, thereby creating a pathway for system validation and

verification processes that can be executed early in the systems lifecycle where errors are cheapest

and easiest to fix. Second, the proposed model provides a much better big-picture view of relevant

design concepts and how they fit together, than is possible with linking of domains at the model

level. And finally, the proposed procedures are automatically reusable across families of projects

where the ontologies are applicable.

Keywords: systems engineering, traceability, ontologies.
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Chapter 1

Introduction

1.1 Problem Statement

Good engineering design solutions are nearly always required to balance the need for sys-

tem functionality and maximum performance against limitations on cost. Common requirements

include the need for reliable system operation in a wide range of environments, and ease of accom-

modation for future technical improvements and changes to requirements. And due to their large

overall size, good engineering design solutions are nearly always developed by teams of engineers.

Figure 1.1 shows, for example, a hypothetical situation where high-level project requirements are

organized for team development, and project requirements are imported from external sources, in

this case, the Environmental Protection Agency (EPA). Methodologies for the team development

of system-level architectures need to support: (1) Partitioning the design problem into several

levels of abstraction and viewpoints suitable for concurrent development by design teams; (2) Co-

ordinated communication among design teams; (3) Integration of the design team efforts into a

working system; and (4) Evaluation mechanisms that provide a designer with a critical feedback

on the feasibility of system architecture, and make suggestions for design concept enhancement.

It is the responsibility of the systems engineer to gather and integrate subsystems and to ensure

that every project engineer is working from a consistent set of project assumptions. This requires

an awareness of the set of interfaces and facilities to which the system will be exposed. Systems

engineers are also responsible for trade studies to find a good balance in competing (design and

business) criteria. Again, this capability requires an awareness of the connectivity mechanisms

among all systems entities.
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Transition from Industrial- to Information-Age Capability. Nowadays, the systematic

consideration of these design concerns is complicated by a general trend toward the replacement of

industrial-age systems with information-age systems, the latter being a lot more instrumented and

interconnected than their predecessors [29].

Industrial-age systems are mechanical and electro-mechanical systems that date as far back

as the late 1800s [60]. As illustrated in Figure 1.2, established approaches to industrial-age develop-

ment deal with complexity through a systematic separation and decomposition of design concerns

into weakly coupled hierarchies of simpler discipline-specific problems. While this strategy simpli-

fies design, an analysis of industrial-age system capability reveals that in many cases, limitations

on achievable functionality and performance can be attributed to a general inability of humans

to sense the surrounding environment, control system behavior, and look ahead and anticipate

important events in a manner consistent with high performance and wide ranges of functionality.

While humans are good at collecting/sensing data and synthesizing information from it, they are

very slow (especially compared to computers) and also easy tire.

Information-age systems are developed under the premise that expanded system function-

ality and improved performance can be achieved through the use of distributed system structures,

concurrent subsystem behaviors, mixtures of centralized and decentralized control and use of tech-

nologies that move the boundary representing limits on what is possible [64]. As such, information-

age systems correspond to mixtures of hardware, software, and communications, and are often

assembled from smaller sub-systems having autonomous behaviors (i.e., so-called system of sys-

tems). Within the automobile industry, for example, large-scale mechanical machines (the car of

the 1950s) have evolved into networks of computers and electro-mechanical machines on wheels

(the car of 2010). The increased use of communications is simply a consequence of the world being

more interconnected than 50 years ago. The increased use of sensing means that systems must be

capable of collecting and processing large quantities of data and synthesizing relevant information

needed for decision making. And the increased use of software allows for programmable system

functionality.

Understanding System Failures. Generally speaking, information-age systems are required to

provide new types of time-critical services, superior levels of performance, and work correctly with

no errors.
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The unfortunate reality is that when new technologies are weaved together to achieve new

types of functionality, systems can fail in new and unprecedented ways. The post-event analysis of

recent engineering system failures [32, 33, 52] indicates that the underlying cause of catastrophic and

expensive failures can vary from major architectural mistakes all the way down to tiny mistakes or

omission in communication of design intent (e.g., errors in the use of engineering units; errors in the

placement of electronic devices on a drawing; logic errors in the implementation of software). One

vexing concern is the increased use of highly-integrated system architectures to extend functionality

and improve performance. The underlying motivation for this trend is surprisingly simple: a system

will function better when the sub-systems work together as a team rather than independently.

Figure 1.3 shows, however, that the key characteristics of integrated system complexity include:

1. Lateral influences that dominate hierarchical relationships,

2. Cause and effect relationships are not obvious and direct.

A change at almost any level may have system-wide consequences. Influences and impacts of

decisions are less predictable and difficult to bound. In some cases the lateral interactions between

systems are not well understood. This can lead to surprising patterns of failure across networks.

Validating a design for correct functionality and adequate performance is much more difficult than

before. As a case in point, correct functionality for software is defined by logic (not differential

equations). Not only does the concept of safety factors not apply, but as observed in a number of

engineering system failures, a small fault in the software implementation can trigger catastrophic

system level failures. While it is tempting to assume these errors are caused by bugs in the software,

recent studies [32] indicate that almost all grave software problems can be traced back to conceptual

mistakes made before the programming even started.

Mechanisms for Keeping the Complexity of Design in Check. Lessons learned from indus-

try [32, 39, 51] indicate that there are now many automated engineering systems with complexity

approaching the point where validation of design correctness will be impossible without mechanisms

for pre-deployment reasoning about system requirements and design built into the design process

itself. These mechanism include [4, 50]:

1. Formal Models. We need ways to capture the design representation and it specification in

an unambiguous formal language that has precise semantics.
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2. Abstraction. Abstraction mechanisms eliminate details that are of no importance when

evaluating system (functionality, performance, cost) with respect to a particular viewpoint.

3. Decomposition. Decomposition is the process of breaking a design at a given level of hierarchy

into subsystems and components that can be designed and verified almost independently.

In established approaches to system design (see Figures 1.4 and 1.5) procedures for “system testing”

are executed toward the end of system development. The well-known shortcoming of this approach

is the excessive cost of fixing errors. Emerging approaches to system design [39, 55, 61] aim to

make validation and integral part of the whole development process, and to maximize the use

formal methods and selective use of design abstractions. As illustrated along the right-hand side

of Figure 1.5, the goal is to move design processes forward to the point where early detection of

errors is possible and system operations are correct-by-construction [55].

1.1.1 Response of the Systems Engineering Community

In an effort to improve the accuracy and effectiveness of system-level architectural designs

and communication among engineers in the development of engineering systems, the systems en-

gineering community has developed SysML, the Unified Modeling Language (UML) extended and

adapted for the needs of Systems Engineers [58, 62]. The underlying motivation for SysML stems

from the software engineering community, which has already experienced great success with UML

as a representation for informal models of software design. By introducing a variety of new diagram

types to SysML that systems engineers need, and removing UML diagram types not of primary

importance to systems engineers, the hope is that similar success will occur in systems engineering.

The pillars of SysML are visual modeling support for system structure, system behavior, systems

requirements and parametric relationships. The UML class diagram (a staple of software engineer-

ing) has been removed and, instead, SysML employs a general-purpose block diagram. Mapping

relationships (e.g., assignment of functions to structural elements) are handled by allocation re-

lationships. Analytical support for performance assessment (i.e., simulation) and trade studies is

handled through API (application programming interfaces) linkages to engineering analysis tools

such as MATLAB and Modelica [42, 43].

In recent years the trend toward performance-based design and operation of systems has

elevated the importance of requirements maintenance and management. Unlike past generations of
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system development, these systems are required to have levels of performance that satisfy require-

ments throughout the entire lifecycle of a system. One implication of this change lies in the modeling

of systems. While it may have once been acceptable to implement requirements management on

system representations that were rather abstract (see, for example, the description of SLATE in

Chapter 2), requirements management systems now need to work with a variety of engineering

abstractions, including representations of the final design. Looking ahead, the required changes

can only benefit systems engineering. Recent history tells us that the benefits of UML/SysML are

unlikely to be appreciated by upper-level management and discipline-specific engineers – instead,

issues need to be explained in terms with which they are already familiar [21, 22]. These gaps will

not be bridged unless a method is found to use UML and SysML (and their inevitable extensions)

in concert with discipline-specific models and notations (e.g., visualization of requirements; block

diagrams; two- and three-dimensional engineering schematics).

1.2 Objectives and Scope

The long-term objectives of this research are to mitigate these shortcomings, thereby pro-

viding a pathway for the computer to play a pro-active role in the synthesis and formal checking

of multi-disciplinary system architectures. In a departure from other development efforts, the

underlying tenet of our research is that end-to-end development of engineering systems will occur

through multiple models of computation, control, and visualization networked together. We assume

that computational implementations will correspond to web-centric, graphically driven computa-

tional platforms dedicated to system-level planning, analysis, design and verification of complex

multidisciplinary engineering systems. These environments will employ semantic descriptions of

application domains, and use ontologies to enable validation of problem domains and communica-

tion (or mappings) among multiple disciplines. The associated graphical constructs will promote

a shared comprehension of relationships between disciplines, and patterns of change and negoti-

ation (particularly, cause-and-effect and trade-off of functionality, performance and cost) within

collaboratively developed systems. Traceability mechanisms are the glue that will bind multiple

models of engineering development and visualization together. Present-day systems engineering

methodologies and tools are not designed to handle projects in this way.

In this report we take a first step toward the implementation of this vision through devel-

opment of a new methodology and system for ontology-enabled traceability. By making ontologies
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an integral part of traceability mechanisms we hope to achieve several objectives:

1. Ontologies carry with them a conceptual representation and understanding of a particular

domain. By explicitly connecting requirements to engineering system representations through

ontologies we are indicating “how and why” requirements satisfaction is taking place.

2. Ontologies for different design viewpoints (e.g., system structure, system behavior) may also

be linked, thereby establishing dependencies among the viewpoints of different engineering

disciplines and their concerns.

3. Part of the understanding of ontologies is rules that partition acceptable functionality and per-

formance from unacceptable functionality and performance. A third benefit of the proposed

method is the opportunity for design rule checking at the earliest possible moment in design.

This is where design errors are easiest and cheapest to fix. For an operational system that is

being monitored, real-time evaluation rules can also contribute to system management.

Chapter 2 covers state-of-the-art requirements modeling and traceability, and describes in detail,

traceability capabilities of the IBM Teamcenter (SLATE) Requirements Tool; it is arguably best-

of-bred in traceability capability. Details of the proposed traceability model and its relationship

to ontologies and ontology-enabled computing are presented in Chapter 3. The software architec-

ture design and details of implementation (e.g., mechanisms of event-based communication) are de-

scribed in Chapter 4. Our preliminary implementation is a requirements-to-ontology-to-application

software prototype for a simplified representation of the Washington DC Metro System. A descrip-

tion of this pilot application may be found in Chapter 5. Finally, background material on inspiration

for the proposed model and semantic web technologies is presented in Appendices A.1 and A.2.

9



Chapter 2

State-of-the-Art Modeling,

Traceability, and Visualization of

Requirements

The purpose of this chapter is to critically examine state-of-the-art modeling, traceability,

and visualization of requirements.

Real-world engineering systems are developed over multiple levels of abstraction (i.e., sys-

tem, subsystem, component levels) using pre-defined strategies of development that are part top-

down decomposition and part bottom-up assembly. Throughout the development process, teams

need to maintain a shared view of the project objectives (this implies good communication among

stakeholders and developers), and at the same time, focus on specific tasks. To ensure that the

development process moves forward in a disciplined manner, pre-defined processes are needed for

requirements development (elicitation, organization, visualization), system synthesis and design, in-

tegration and validation. Two key elements of this capability are an ability to identify and manage

requirements during all phases of the system design and operational lifecycle.

2.1 Pathway from Operations Concept to Requirements and Sys-

tem Design

To see how these principles apply in practice, let us assume that the required engineering

system does not exist. Figure 2.1 illustrates the development pathway for one level of abstraction,
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beginning with the formulation of an operations concept, requirements, fragments of behavior, and

tentative models of system structure. Requirements need to be organized according to role they will

play in the design (e.g., behavior, structure, test) and processed to insure consistency, completeness,

and compatibility with the requirements system. Models of behavior state what the system will

do. System performance can be evaluated with respect to the value of performance attributes.

Models of structure specify how the system will accomplish its purpose. System architecture will

be evaluated with respect to selected objects, and the value of their attributes. System designs are

created by assigning (or mapping) fragments of required to object and subsystems in the system

structure. Thus, the behavior-to-structure mapping defines (in a symbolic way) the functional

responsibility of each subsystem/component. Finally, in the system evaluation, functional and

performance characteristics are evaluated against the test requirements. To satisfy all of the system

requirements, several iterations of development (involving modifications to the operations concepts,

system behavior, system structure) will usually be required.

2.2 Low- and High-End Traceability

Now that documents containing thousands and, sometimes, tens-of-thousands of require-

ments are commonplace, requirements modeling and traceability management tools are an indis-

pensable enabler of the system development process. Traceability mechanisms allow for an under-

standing of how and why various parts of the system development process are connected, thereby

providing the development team greater confidence in: (1) Meeting objectives; (2) Assessing the

impact of change; (3) Tracking progress; and (4) Conducting trade-off analysis of cost against other

measures of effectiveness. Visualization mechanisms improve the effectiveness in which engineers

can understand the problem under development.

In a comprehensive study of traceability models and meta-models, and their use in industry,

Balasubramaniam and co-workers [5] have classified users of traceability into two categories. Low-

end users have problems that require less than about 1,000 requirements (viewed as a mandate

from the project sponsors or for compliance with standards). They typically view traceability as

a transformation of requirements documents to design; they also lack lack support for capturing

rationale for requirements issues and how they are resolved.

High-end users of traceability tend to have problems that require, on average, about 10,000
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requirements (viewed as a major opportunity for customer satisfaction and knowledge creation

throughout the system lifecycle) [5]. They view traceability as an opportunity to increase the

probability of producing a system that meets all customer requirements, is easier to maintain, and

can be produced within cost and on schedule. High-end traceability employs much richer schemes of

traceability (e.g., capture of discussion issues, decisions and rationale product-related and process-

related dimensions) than their low-end counterparts. Traceability pathways of rationale enable

accountability (e.g., what changes have been made; why and how they were made), particularly to

stakeholders not directly involved in creation of the requirement.

2.3 State-of-the-Art Capability

This section contains a critical assessment of state-of-the-art capability in: (1) Require-

ments modeling and traceability, and (2) Visualization of requirements, as implemented in modern-

day requirements management tools.

2.3.1 Part I. Requirements Modeling and Traceability

Present-day requirements management tools such as SLATE [30], CORE [12], and DOORS

[17] provide the best support for top-down development where the focus is on requirements repre-

sentation, traceability, and allocation of requirements to system abstractions. In most of today’s

requirements management tools, individual requirements are represented as textual descriptions

with no underlying semantics. System engineers like to organize groups of requirements (e.g., func-

tional requirements, interface requirements) and abstractions for system development into tree-like

hierarchies, in part, because this technique is comfortable and well known. This is state-of-the-

art practice. However, when requirements are organized into layers for team development, graph

structures are needed to describe the comply and define relationships, sometimes tracing across

the same level. This happens because requirements are tightly interdependent with each other

across the same level of abstraction. Because the underlying graphical formalism is weak, many

questions that a user might want to ask about requirements and/or the system structure remain

unanswered or omitted. Simple questions like “Show me all complying and defining requirements

that are related to this particular requirement” cannot be answered.

As a case in point, the IBM Teamcenter (SLATE) Requirements Tool aims to improve

13



Figure 2.2: Anatomy of a generic object in IBM Telelogic SLATE [30].

Figure 2.3: Modeling of translational mappings (TRAMs) across hierarchies in IBM Telelogic
SLATE [30].
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systems engineering productivity (e.g., better accuracy; accelerated functional design; support for

trade studies), particularly at the conceptual stages of development. SLATE is based upon very

good data representations for requirements and abstraction blocks (ABs), linked together into

a graph structure. The graph edges correspond to relationships between entities in the system

development – for example, traceability links (complying and defining links) and connectivity of

different abstraction block hierarchies with translational mappings. ABs provide modeling support

for attributes (whose values can be used in performance assessment), functional flows (i.e., data

inputs and outputs), links to other ABs (e.g., in parent/child relationships), connectivity to groups

and translational mappings, and budgets. See Figure 2.2. Justification for use of abstraction

blocks in lieu of more detailed representations of an engineering system is really very simple – at

the conceptual stages of development, most of these details (e.g., geometry) remain to be developed.

Translational mapping relationships (TRAMs) provide a method for connecting abstrac-

tion blocks across hierarchies and for evaluating design alternatives. The upper part of Figure

2.3 shows, for example, trace links connecting requirements to abstraction blocks in a functional

decomposition hierarchy. Then, TRAMs relay the existence of dependencies between ABs in the

electrical, mechanical and software viewpoints. Translational mappings (TRAMs) work in terms

of connecting source ABs to destination ABs, and source-to-destination and destination-to-source

pathways. Two examples are shown in Figures 2.4 and 2.5.

2.3.2 Part II. Visualization of Requirements

Effective visualization techniques help end-users understand and study the behavior and

underlying cause-and-effect mechanisms within a phenomena [25]. Unfortunately state-of-the-art

capability in requirements visualization falls short of these goals and, in fact, has not advanced much

during the past two decades. Prior to 2006 requirements visualization has been used primarily

for three purposes: (1) To convey the structure and relations among evolving requirements and

other system artifacts, (2) To support the organization of requirements and, downstream, the

management of requirements during change, and (3) To model subsets of requirements (or properties

of these requirements) for analytical/engineering purposes. Looking forward, one can imagine

requirements visualization techniques mapping data/information about requirements onto visual

artifacts, permitting designers to “actually see” the requirements in the context of their satisfaction

and support for high-level decision-making activities.
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Figure 2.4: Modeling and graphical representation of translational mappings (TRAMs) in SLATE.
Part a shows a scenario with two source abstraction blocks and two destination abstraction blocks.
Part b shows an outline view of the icons that will be displayed when the TRAM is expanded from
one of the source source abstraction blocks. Part c shows the icons that will be viewed when the
TRAM is expanded about one of the destination abstraction blocks.

Figure 2.5: Inheritance and blocking Mechanisms in SLATE. Three cases: (1) Abstraction block 1
complies with requirements R1 and R2, (2) Abstraction block 2 complies with requirement R1, but
not R2, (3) Abstraction block 3 is defined by R3 – It also complies with R1 through the TRAM
mechanism.
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(a) Folder visualization of requirements in SLATE. (b) Representation of abstraction block hierarchy and translational map-
pings (TRAMs) in SLATE.
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To put these comments on a sound footing let’s return to SLATE, where system-level de-

signs are viewed as collections (e.g., networks and hirarchies) of functional units (ABs) that form

the major components of a system. The outline viewpoint highlights dependencies among ABs.

The block diagram viewpoint focuses on data flows between ABs. Unfortunately, the underlying

graphical support is weak in the sense that no provision exists for viewing a more detailed repre-

sentation of the system after lower-level details have been worked out. For systems that require

monitoring throughout their working lifetime, this is a major deficiency. Moreover, to date, no one

has been able to figure out how to actually organize and visualize the subsystem viewpoints on

a computer as illustrated in Figure 2.3. Instead, requirements and abstraction block hierarchies

with translational mappings among (TRAMs) viewpoints are visualized using the notation shown

in Figures 2.6(a) and 2.6(b).

Summary

Together these weaknesses leave systems and non-systems engineer in the dark, providing

little visual assistance in understanding how requirements influence design objects that they actu-

ally understand, and in understanding how elements in one domain of engineering are affected by

concerns in a different engineering domain. To overcome these limitations we need a better repre-

sentation of individual objects (requirements, abstraction blocks, and so forth) and the linkage of

those entities to the overall architectural design.
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Chapter 3

Ontology-Enabled Traceability

In a first step toward mitigating the weaknesses in state-of-the-art capability in require-

ments modeling and traceability, in this chapter we propose a new approach to requirements trace-

ability. We begin with a description of the simplest model possible – one requirement is satisfied

by applying a single design concept which, in turn, is implemented with a single design object.

Then, we propose extensions to the traceability model where real-world systems are designed from

multi-functional components and to satisfy the needs of multiple stakeholders.

3.1 Ontologies and Ontology-Enabled Computing

An ontology is a set of knowledge terms, including the vocabulary, the semantic inter-

connections, and some simple rules of inference and logic for some particular topic or domain

[24, 27, 56]. To provide for a formal conceptualization within a particular domain, and for people

and computers to share, exchange, and translate information within a domain of discourse, an

ontology needs to accomplish three things [37]:

1. Provide a semantic representation of each entity and its relationships to other entities;

2. Provide constraints and rules that permit reasoning within the ontology; and

3. Describe behavior associated with stated or inferred facts.
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Items 1 and 2 cover the concepts and relations that are essential to describing a problem domain.

Items 2 and 3 cover the axioms that are often associated with an ontology. Usually, axioms will be

encoded in some form of first-order logic. This project assumes that advances in ontology-enabled

design and development will occur in parallel with advances in the Semantic Web; for details see

Appendix A.2.

The ontology community makes a distinction between ontologies that are taxonomies and

those that model domains in depth, applying restrictions on domain semantics [24]. So-called

lightweight ontologies include concepts, concept taxonomies, relationships between concepts, and

properties of the concepts. Heavyweight ontologies add axioms to lightweight ontologies – axioms

serve the purpose of adding clarity to the meaning of terms in the ontology. They can be modeled

with first-order logic. Top-level ontologies describe general concepts (e.g., space, connectivity, etc.).

Domain ontologies describe a vocabulary related to a particular domain (e.g., building architec-

ture, plumbing, etc.). Task ontologies describe a task or activity. Application ontologies describe

concepts that depend on both a specific domain and task. These ontologies might represent user

needs with respect to a specific application.

3.2 Proposed Approach to Traceability

In a first step toward mitigating the weaknesses in state-of-the-art capability in require-

ments modeling and traceability, in this chapter we propose a new approach to requirements trace-

ability. Figure 3.1 provides a simplified view of state-of-the-art traceability and the proposed model.

The upper half of Figure 3.1 shows a simplified representation for how requirements are

connected to design elements in state-of-the-art traceability (i.e., traceability links connect require-

ments directly to design objects). Physical embodiments are the most natural interpretation of

design/engineering objects; however, the design itself may be a conceptual non-physical system.

Looking forward, state-of-the-art traceability mechanisms portray that “this requirement is satis-

fied by that design object (or group of design objects). Or alternatively, looking backwards, “this

design object is here because it will satisfy that design requirement. Under design occurs when

requirements cannot be traced forward to the design (i.e., they have not been taken into account).

Over design occurs when the design contains objects and systems that cannot be traced back to a

requirement (i.e., the design contains features that are not needed).
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Figure 3.1: Simplified view of state-of-the-art traceability and the proposed model.

The lower half of Figure 3.1 shows the proposed model that will be explored in this work.

Instead of directly connecting requirements directly to design objects, a new node called “Design

Concept” will be embedded in the traceability link. Assembly of traceability links will be conducted

by asking “what concept should be applied to satisfy this requirement?” Solutions to this question

establish links between requirements and design concepts. We assume that the design itself will

correspond to the application of appropriate concepts which, in turn, will be evaluated in terms

of the values of attributes relevant to the concept. Thus, the links between design concepts and

engineering objects represents an actual implementation of concepts.

Benefits. The proposed method offers the following benefits:

1. From an efficiency standpoint, the use of ontologies within traceability relationships helps

engineers deal with issues of system complexity by raising the level of abstraction within which

systems may be represented and reasoned with. Furthermore, because ontologies represent

concepts for a problem domain, the ontologies are inherently reusable.

2. From a validation and verification viewpoint, the key advantage of the proposed model is

that software for “design rule checking” can be embedded inside the design concepts module.

Thus, rather than waiting until the design has been fully specified, this model has the po-

tential for detecting rule violations at the earliest possible moment. Moreover, if mechanisms

can be created to dynamically load design concept modules into computer-based design envi-

ronments, then rule checking can proceed even if the designer is not an expert in a particular

domain.

3. From a modeling and visualization standpoint, this approach opens the door to improved
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methods for the visualization of requirements with respect to design objects. In an ideal

setting, the latter should be visualized using a notation familiar to the engineer (e.g., a

mechanical engineering drawing).

Remark. Inspiration for the proposed approach to traceability stems from the domain of archi-

tectural design for modern building environments. As a focus for study this problem domain is

appealing because it is easy to understand, yet, good solutions demand a team-based approach

to development with input and coordination of activities from multiple disciplines. A detailed

discussion of the issues can be found in Appendix A.1.

3.3 Representing Design Concepts with UML Class Diagrams

From a systems engineering perspective, the key advantage in modeling design concepts

with Semantic Web languages such as RDF, DAML and OWL is that software tools have been

developed for logical reasoning with relationships and rules implied by ontologies, and for evaluation

of assertions. See Figure A.4.

Unfortunately, at this time RDF, DAML and OWL lack a standard representation for

visualizing concepts expressed in these languages. A practical way of overcoming this shortcoming

is to use UML class diagrams – actually, graph structures of UML schema – in lieu of a formal

ontology. UML is well defined and has a community of millions of users. UML class diagrams

can be used for representing concepts (and their attributes), and relations between concepts (e.g.,

knowledge reflecting performance, legal and economic restrictions). Basic relationships, such as

inheritance and association can be modeled. Axioms (i.e., additional constraints) can be represented

in the Object Constraint Language (OCL).

This idea is not new. The close similarity of DAML and UML has been established by

Cranefield and co-workers [14, 13]. For example, both DAML and UML have a notion of a class

which can have instances. The DAML notion of a subClassOf is essentially the same as the UML

notion of specialization/generalization. Thus, UML qualifies as a visual representation for ontologies

[3]. Moreover, tools are starting to emerge for the automated transformation of ontologies to UML.

See, for example, descriptions of the tool DUET in Kogut et al. [35].
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Figure 3.3: Roles of the Meta-Meta-Model and Meta-Model in the System Assembly
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Meta-Model for the Proposed Approach. Most engineers think of UML as simply a diagram-

ming notation for the high-level, albeit informal, specification of system structure and behavior.

UML is, in fact, based on well-defined language concepts specified in terms of meta-models and

meta-meta-models. Diagrams are one representation of the UML language concepts; an equivalent

XML representation also exists.

A meta-model describes information about models. And meta-meta-models describe infor-

mation about meta-models (i.e., a language in which meta-models may be expressed). Figure 3.2

shows the pathway from meta-meta-models to meta-models to UML models and implementation

of engineering systems. Key points to note are as follows:

1. The meta-meta-model (also known as the UML meta-model) is a model that describes concepts

in the UML language – specifically, it describes classes, attributes, associations, packages,

collaborations, use cases, actors, messages, states, and all the other concepts in the UML

language.

2. UML-like diagrams express concepts and relationships (i.e., rules and meaning) among concepts

suitable for creating a design. These diagrams serve as a meta-model for the development of

potentially acceptable designs.

3. The UML diagrams themselves are created from diagram lments having well-defined semantic

meaning. The set of diagram elements (e.g., notations for inheritance, aggregation, and so

forth) form a meta-meta model.

4. UML 2 is defined by eight diagram types for behavior and six diagram types for system

structure.

In established approaches to engineering/software design, UML diagrams are created for required

system behavior (e.g., activity and statechart diagrams), system structure (e.g., class and object

diagrams), and the mapping or assignment of required behavior to system structure (e.g., collabora-

tion diagrams). The relationship among diagram elements (e.g., an association between two classes

in a class diagram) can imply a functional relationship (e.g., connectivity, required sequencing of

activities) that must exist in the design. Most often, these relationships are statements of required

functionality. Performance and interface requirements will stem directly from these diagrams.
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Figure 3.3 shows the role of UML diagram elements and specifically UML class diagrams

in the proposed approach. In a departure from established approaches to design, our goal is to

represent and visualize engineering models in a manner that consistent with discipline-specific no-

tations. For example, an architect might use lines to visualize the simple geometry of a house. We

envision that requirements will be organized into layers of detail suitable for team-based develop-

ment (although it is conceivable that the might also be represented via SysML). Requirements are

satisfied by applying a concept expressed in the meta-model. The activation of a concept results

in an object in the design model. The latter is shown on the bottom right-hand side of Figure 3.3.

3.4 Frameworks for Multiple-Viewpoint Design

The lower half of Figure 3.1 is overly simplified in the sense that it implies one requirement

can be satisfied by the application of one design concept or function which, in turn, will lead to the

implementation of one engineering object. Real-world systems are much more likely to correspond

to assemblies of design entities, organized into hierarchies along disciplinary lines, with each design

entity representing a meaningful concept to one or more system stakeholders [49]. To accommodate

these relationships in a disciplined way, there needs to be a formal framework for: (1) Connecting

stakeholder concerns to engineering entities, (2) Capturing the interactions and restrictions among

the various viewpoints, and (3) Systematically abstracting away details of a problem specification

that are unrelated to a particular decision.

3.4.1 Frameworks for Modeling Architectural Descriptions

As a first step toward understanding how stakeholder perspectives and needs might be inte-

grated into a comprehensive system model, Figure 3.4 shows the essential concepts and relationships

among concepts involved in the development of architecture descriptions.

The principal concepts are as follows:

1. An architecture is a fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its design and

evolution.
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Figure 3.4: Class diagram of concepts contributing to development of architecture descriptions.
Assembled from ideas due to Eeles et al. [19], Maier [40], and definitions in the IEEE 1471 Standard
[31].
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2. A system stakeholder is an individual, team, or organization (or classes thereof) with interests

in, or concerns relative to, a system.

3. Concerns are those interests which pertain to the systems development, its operation, or any

other aspects that are of critical importance to one or more stakeholders. Typical concerns

include considerations such as system functionality, performance, reliability, security, distri-

bution, ease of evolvability, schedule of development, and maintenance and cost.

4. A view is a representation of a whole system from the perspective of a related set of concerns.

5. A viewpoint is a specification of the conventions for constructing and using a view (i.e., notice

that there is a one-to-one correspondence between a view and a viewpoint). As such, the

viewpoint determines the languages (including notations, model, or product types) that will

be used to assemble the view, as well as any associated modeling/analysis techniques.

These languages and techniques are used to yield results relevant to the concerns addressed

by the viewpoint. For example, the class and statechart diagram types in UML define the

semantics for representing diagrams that aid engineers in understanding system structure and

behavior, respectively. A second example of this process is the multi-resolution capabilities

of Google Maps. When multiple visual representations of the same model are needed (e.g.,

different projection views of a house), software implementations should follow the model-

view-controller (MVC) design pattern.

6. Viewpoints may be partitioned into basic viewpoints and crosscutting viewpoints.

Basic viewpoints are associated with views that can be represented by a singular type of model

or entity (e.g., a requirements model, a functional model, a specific module or subsystem).

Crosscutting viewpoints cut across basic viewpoints, for example, multiple stages of devel-

opment (e.g., requirements, implementation) and/or multiple subsystems (e.g., to evaluate

system reliability and/or security).

7. Architectural models are developed using the procedures and methods established by the

associated architectural viewpoint.

The march toward enhanced functionality and higher performance means that, increasingly, systems

entities are required to be multi-functional, which, in turn, means that they will participate in

the satisfaction of multiple stakeholder needs and their associated viewpoints. Hence, there is a

27



Requirements

Behavior
Cost

Maintenance
Assembly

Retirement

Customers / Users

ProjectOrganization

Management
Validation / Verification
Traceability
Allocation / Flowdown

Organization
Evaluation

−− Legal agreement
Organization

Engineering
System

Strategy
Businesss processes
Resoucrces
Staff

Capture
Representation

MODELING   SPACE

Data DataSol’ns Sol’nsREAL   WORLD   SPACE

Figure 3.5: Requirements bridge the gap between organization- and project-level development.

strong need to represent not only multiple perspectives in design, but relationships between these

perspectives. Overlaps in system functionality must be identified. Complementary participants

must be made to interact and cooperate. Contradictions must be resolved.

Systems are developed to satisfy the needs of one or more stakeholders. Each stakeholder

typically has interests in, or concerns relative to, that system. The uppermost layer of this diagram

says that systems have an architecture which, in turn, is described by one architecture description.

The architectural description is organized by one or more views and one or more architectural

models. Then, in turn, an architectural description selects one or more viewpoints for use. Each

view addresses one or more of the concerns of the system stakeholders. Reading left to right along

the bottom of the figure, stakeholders have one or more concerns, which are covered by viewpoints,

views and models. Reading from right to left, an architectural model may participate in more than

one view, each conforming to a viewpoint developed to answer questions about specific stakeholder

concerns. Figure 3.5 shows, for example, elements of organization- and project-level development

and the associated engineering, requirements and engineering design concerns.
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Remark. Figure 3.4 is simply a snapshot of multiple-viewpoint design and is readily extensible.

For example, the IEEE 1471 Standard contains relationships that link a system to the goals of a

mission and the underlying rationale driving the synthesis of an architectural description.

3.4.2 Mechanisms for Functional and Viewpoint Interaction

Figure 3.4 sets the stage for multiple viewpoint design and asserts that architecture de-

scriptions are inherently multiview, with no single view adequately capturing all of the stakeholder

concerns. The potential complexity of this problem is indicated by the chain of many-to-many

relationships between stakeholders and their concerns, and then concerns and their study through

the implementation of multiple viewpoints. The first limitation of Figure 3.4 is that it does not

explicitly describe how the concerns associated with the various viewpoints will actually interact.

In some cases the relationship between concerns will be purely symbolic (e.g., entities A and B are

the same). But dependencies might also be physical, requiring an understanding of notions such as

connectivity and constraint, flows of data/energy, and scheduling and coordination. A second lim-

itation of Figure 3.4 is that it does not deal with the issue for how the models of an object/system

will relate to the actual physical object/system. To overcome these problems, this section deals

with these issues by looking at functional and viewpoint interaction at two levels of abstraction:

(1) the model level, and (2) the meta-model level.

The nature of dependency and interaction relationships is not as simple as one might

initially think. Figure 3.6 shows, for example, a system organized into (disciplinary-specific) hier-

archies and three examples of dependency relationships between viewpoints: (1) same as (i.e., the

element has all of the properties of the “named” element), (2) element of (i.e., the element is a

component of the “named” element), (3) part of (i.e., the element forms part of the “named” ele-

ment), and constrained by (i.e., a property of an element is constrained by the property of another).

Figure 3.6 implies that design entities will be viewed in a consistent manner. However, a much

more common situation is that each discipline will model and view design objects relevant to their

set of concerns, and as indicated in Figure 3.7, may not even use the same terms to describe the

same design object. For example, building architects refer to horizontal planes as floors. Structural

engineers refer to the same object as a slab. And, in fact, because these disciplines often work

at different stages of project development, neither single unified object models, nor single unified

system models can be guaranteed to exist.

29



Stakeholder System

Subsystem 1 Subsystem 2 Subsystem 3

O7 O8O6

O5

O4

O3

O2O1

Same as ....
Part of ....

Objects

Interaction
Mechanism

Functionality

Basic Viewpoint Basic Viewpoint Basic Viewpoint

Cross−cutting Viewpoints
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Figure 3.7: Multiple conceptual interpretations of a single design object. Because most systems
are developed in stages, a single unifying model of an object and/or the system may not exist.
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Functional and Viewpoint Interaction at the Model Level. During that past two decades,

several models of viewpoint interaction have been proposed.

In the early 1990s, systems engineers at TD Technologies (now owned by IBM) implemented

translational mappings in SLATE as a means of linking: (1) functional hierarchy abstractions to

abstraction block hierarchies in a variety of disciplines (e.g., mechanical, electrical, software), and

(2) dependencies among disciplines. The basic model for domain interactions and propagation

of dependencies is translational mappings, as illustrated in Figure 2.3. Figures 2.4 and 2.5 show

graphical notations for source-to-destination pathways (e.g., an abstraction block complies with

a requirement) and the linkage of requirements and abstraction block hierarchies and satisfaction

relationships through the use of translational mappings. TRAMs are weak in the sense that they

acknowledge the existence and direction of a relationship between abstraction blocks, but otherwise

leave it up to the designer to determine the meaning and context of the relationship.

In the mid 1990s, several research teams [48, 49] developed methodologies to handle multi-

functional design concerns through the systematic identification of attributes associated with re-

quired functionality, followed by their organization into groups called primitives. This process is

illustrated in Figures 3.8 and 3.9. An object primitive is defined to be a group of closely related

object attributes that provide a design-concern-focused abstraction to the designer. For example,

attributes might be clustered according to dimensions (geometric concerns), thermal properties

(energy usage concerns), structural properties and loadings (structural design concerns) and cost

(economic concerns). Then, working backwards, primitives are used to present the different views

of a system entity. Views hide the actual complexity of the entity by providing only the essential

information needed for decision making relating to a specific design concern, and systematically

removing all of the other details.

Functional and Viewpoint Interaction at the Meta-Model Level. The key benefit in

supporting dependencies among viewpoints at the system entity level is that it provides a complete

picture of all of the participating viewpoints and functions associated with the entity. However,

this approach always starts from scratch and requires a top-down decomposition of the system into

entities that can be characterized by design-concern-focused abstractions. No built-in support is

provided for reuse across families of similar projects. In practice, a global vision for how a specific

project’s goals will be satisfied (top-down refinement of abstractions) needs to be balanced against

a bottom-up synthesis of context-specific abstractions and practices (e.g., models of cooperation,
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exchange, dependencies among the project participants) that are repeated across families of similar

projects.

During the past decade the Object Management Group has developed an approach called

model driven architecture (MDA) for software systems development and, in particular, a framework

of certified industrial standards (e.g., UML, MOF). The MOF structure [45] gives us a conceptual

framework to represent collective activity and knowledge relations among collaborative entities. The

goals of model-driven engineering (MDE) are to unify different technical spaces (XML, Ontology)

and, as such, recommend the use of meta-models to define domain languages. After an abstract

layer has been defined in the context of collaboration – that is, the relationships among elements in a

project – in various different domains, specific models are created through instantiation of domain-

specific models. One can then create design tool support for customized models and viewpoints

relevant to an end-users specific needs, thereby helping them to monitor and understand a system’s

state and possibly look ahead and anticipate future states of the system.

The benefits of functional and viewpoint interaction at the meta-model level can be found in

cooperative platforms for building construction [26], where it is well known that during the assembly

stages of system development, final quality depends highly on the cooperation between actors (or

teams of actors) which may not have a global vision of the overall project goals. Furthermore,

work on context aware applications in mobile computing and artificial intelligence [16] show that

the user and his context have to be placed at the center of tool design in order to better answer

his/her needs.

3.5 Multiple-Viewpoint Ontology-Enabled Traceability

To date models for multiple-viewpoint design have focused on devising mechanisms for

explaining how the participating design concerns/viewpoints are connected. Some of these mech-

anism link domains at the model level. The most recent models link domains at the meta-model

level. In both cases, however, support for understanding why they are connected does not exist.

We propose in this section to formulate a new model for ontology-enabled traceability that

integrates the benefits of ontology-enabled traceability with meta-models for linking conceptual

entities belonging to multiple design concerns. As illustrated in Figure 3.10, collections of design
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concerns associated with a domain will be modeled as graphs of design concept entities. Most

of the graph edges will involve bi-directional relationships; however, dependency and association

relationships will also be possible. Then as illustrated in Figure 3.11, individual design concepts

will relate to other design concepts through a variety of interaction mechanisms. The association

class Interaction Mechanism is a generalization of dependency and linkage mechanisms. Depen-

dencies exist both within the ontology and, in the case of support for multiple viewpoints, to other

ontologies.

Even though a group of ontologies may only provide a partial prescription for the functions

and services that a system entity may need to provide it is still useful since a design can be checked

with respect to the rules associated with the design concepts included in the model. Moreover,

these domain-specific ontologies (meta-models) will be reusable across applications.

3.6 Simple Example: Renovation of a Wall in a House

To see how a multiple viewpoint implementation of ontology-enabled traceability might

work out in practice, we now develop two models of viewpoint integration for a simple application:

installation of a window into a load-bearing wall, the latter being part of a house. The two models

will be kept as simple as possible by considering only architectural and structural engineering

viewpoints, along with mechanisms for their interaction and potential conflict in the satisfaction of

design concerns. The first model will be based on the work of Fences and co-workers in the 1990s

(see Figures 3.8 and 3.9). The second model will build upon ideas illustrated in Figures 3.10 and

3.11.

Wall Renovation Process and Modeling of Design Concerns. Let us assume that a load-

bearing wall in a house contains a door, but the neighboring space is too dark. An architect decides

that the problem can be fixed by installing a window. This process is illustrated along the top of

Figure 3.12.

From an architectural perspective, the wall helps to define a space which, in turn, will

support a prescribed function for the occupants of that space (e.g., a room). A doorway provides

access to the occupants and a window provides ambient light. The latter is also a means to providing

fresh air to the occupants, thereby improving their comfort. Since the wall is load bearing, part
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Figure 3.12: Schematic for installation of a window in a house wall and architectural and structural
engineering design concerns.

Architectural Design Concerns Representations

• Functionality of the occupants

• Layout and arrangement of spaces.

• Elements used to define spaces

• Assignment of functionality to spaces

• Aesthetics

• Comfort

• Bubble diagrams

• Adjacency graphs

• Floorplans

• Elevation Views

Structural Engineering Design Concerns Representations

• External loads, gravity loads, live loads.

• Selection of beams, columns, load-bearing walls.

• Assessment of an object’s ability to transmit forces.

• Measurement of internal forces and displacements.

• Plan and elevation views.

• Finite element models.

Table 3.1: Summary of viewpoints and representations for the building architecture and structural
engineering disciplines.
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of its purpose will be to provide a pathway for safe transmission of gravity forces to foundation.

Structural engineers are responsible for making sure that the wall will have sufficient strength for

this to occur, and to keep displacement and stability concerns within permissible limits. For this

application, the architectural and structural engineering viewpoints are not only coupled through

the size and positioning of the new window, but are in conflict. This tension arises because a

large window may provide superior levels of ambient light, but the corresponding decrease in wall

strength may be too great. A summary of these issues and corresponding representations and

methods of analysis are summarized in Table 3.1.

Model 1. Linking Architectural/Structural Engineering Design Concerns at the Model

Level.

Figure 3.13 is a schematic for capturing the dependency of architectural and structural

engineering design concerns at the model level.
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Figure 3.13: Multiple conceptual interpretations of a single design object.

As suggested by Fenves and co-workers, the wall’s measures of effectiveness can be succinctly

represented by Wall Primitives which, in turn, can be traced to wall attributes and aggregated

groups of wall attributes. For example, one of the wall’s primary architectural purposes is to

participate in the definition of a space (e.g., a room). The characteristics of the space (e.g., its

shape and size) will depend on the wall geometry; here we use the term “geometry” as a reference

to a collection of lower-level geometric and topological quantities. We also assume that occupant

comfort will be affected by the presence (or lack thereof) of a window. Then, in turn, the window
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dimensions and positioning will affect the wall geometry. Access and Aesthetics primitives are tied

to the existence of a door and choice of material. Finally, we assume that structural engineers are

only interested in the wall strength which, in turn, depends on the wall geometry and choice of

material.

Assessment. This simple example links the design concerns of architects and structural engineers

at the object level, in this case, a singular wall. One key benefit of this approach is that models

need not be complete in order for the approach to be applied. Our simplified model only shows

a snapshot in the development. Although not explicitly captured by this model, groups of walls

can be assembled into a wall system. And wall systems can be assembled into floorplans, wings

of a building, and so forth. In fact, the mere existence of many organizational perspectives of a

building is one of the main reasons buildings are interesting from a systems modeling perspective.

The corresponding extension of Wall Primitives might be graphs of Building primitives. As far as

we know, no tools exist for helping an engineer visualize and work with these graphs.

Model 2. Linking Architectural/Structural Engineering Design Concerns through On-

tologies.

Our formulation for model 2 assumes that the most important design concepts and depen-

dencies among concepts can be represented at the meta-model (or ontology) level.

Figure 3.14 shows simplified ontologies for the architectural and structural engineering

domains, together with the linkage of domain concerns through interaction mechanisms. Within

the architectural domain, for example, the ontology provides an explicit description for how a wall

fits into the wall system which, in turn, complements definitions for a space and room. Individual

walls are a composition of material properties and wall geometry, and they may contain portals

– portal is a generalized term for opening, window or doorway. The functional purpose of doors

and window can be connected to occupant needs (e.g., access and comfort) through the use of

dependency relationships. From a structural engineering perspective, the wall system needs have

sufficient strength which, in turn, depends on the selection of material properties and the wall

geometry. In this simplified scenario, the architectural and structural engineering domains are

linked through notions of material and geometry. In fact, in both viewpoints they are exactly the

same thing.
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Figure 3.14: Linking of architectural and structural engineering ontologies. Linkages to libraries of
design components (e.g., material selections) are not shown.
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Assessment. There are several advantages in linking design concepts at the meta-model. First,

model 2 is project neutral. Design concepts and relationships among design concepts can be reused

across an entire family of project instances. A second key benefit is that it is much easier to show

how a design concept entity relates to other entities. In other words, model 2 facilitates a “big

picture” view of the essential concepts and relationships among concepts in a design situation.

40



Chapter 4

Software Architecture Design

For systems engineering design applications enhanced by ontology-enabled traceability, the

software architecture design is concerned with the selection, modeling, and visualization of major

software components and their connectivity into a networked architecture.

4.1 Network Architecture

As illustrated in Figure 4.1 below, we expect that software implementations will operate as

a network of loosely coupled systems, connected only by traceability mechanisms and interfaces for

communication of events and required data for tracking of dependencies and evaluation of design

rules.

Weak coupling

Engineering SystemRequirements

Strong cohesion Strong cohesion Strong cohesion

Model Model
Ontology

Model

mechanisms
Traceability

mechanisms
Traceability

Figure 4.1: Overview of system architecture.

Looking forward connectivity means: (1) linking of requirements to UML classes (i.e., the ontology),

and (2) linking of UML classes to objects in the engineering model. However, because traceability
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Figure 4.2: One Listener registered to One Source

Figure 4.3: Many Listeners registered to One Source

Figure 4.4: Many Listeners registered with Many Sources

relationships need to be bi-directional, connectivity also means: and (3) linking of objects in the

engineering model back to UML classes (i.e., the ontology), and (4) linking UML classes (i.e., the

ontology) back to the requirements.

Because requirements will change over time, a full implementation will need to support

dynamic assembly and management of traceability relationships. Also, we anticipate that combi-

nations of table and graph data structures will be used to store the data within each of the modules

shown in Figure 4.1.

4.2 Delegation Event Model

Traceability connectivity and communication mechanisms are handled by the Java Delega-

tion Event Model (DEM). The DEM is based on the Publish-Subscribe design pattern. The main

objectives of Publish-Subscribe are to provide a method of signaling from a publisher to subscribers

and to provide a method to dynamically register and deregister subscribers with a publisher. Pub-
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lishers generate and send events, and subscribers register or subscribe to those events from the

publishers. When a publisher sends out or publishes an event, all subscribers interested in that

event are notified. The DEM refers to publishers as event sources and subscribers as event listeners

[36].

4.3 Requirements-Ontology-Engineering Model Connectivity

The requirements to ontology to engineering model pathway is complicated by a chain

of many-to-many relationships; see Figure 3.4. A single requirement may be satisfied through

the implementation of one or more design concepts which, in turn, may correspond to multiple

engineering entities. Looking backwards, a single design entity may help to satisfy multiple design

concepts (e.g., it could be multi-functional) which, in turn, may trace back to multiple requirements.

As a result, one can think of the overall model as three discipline-specific graphs, linked through a

web of loosely-coupled dependencies.

Standard implementations of computational support for UML diagramming have the goal

of providing end-users with the ability to easily create static diagrams. Here, in contrast, UML

classes and class diagrams serve the dual role of: (1) representing domain ontologies, and (2)

enabling linkages between requirements and engineering objects. Computational support has the

goal of providing executable services for design traceability and design rule checking.

Figures 4.5 and 4.6 show the step-by-step procedure for development, implementation

and operation of ontology-enabled traceability in a design specification setting. Ontologies are

described by concepts (classes) and relationships (e.g., association and inheritance relationships).

For example, the simple ontology in Figure 4.5 states that an instance of A will contain instances of

B and C. Multiplicity constraints could be added to constrain the number of instances of B and C

with respect to A. Software implementations need to support: (1) Definition of relationships (e.g.,

one-to-one, one-to-many, etc.), (2) Management of relationships (e.g., create, trace, and remove)

and (3) Inquiry for availability of services. Looking forward (see Figure 4.5), each specification class

will store tables of references to objects in the physical design. Looking backward (not shown),

these references will be connected to one or more design requirements.

Figure 4.6 shows the pathway of development for the processing of user events and design
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Figure 4.5: Connectivity between the Specification and Physical Models

Detailed Software Implementation

CB

A
public class A  { ..... .... }

public class B extends A { ....

}

public class C extends A { ....

}

Skeleton of Java Source Code

−− Add  procedures for handling 
events

−− Add mechanisms for 
traceability and mappings.

Ontology Processing Engine

−− Detect events .....
−− Establish mappings ....
−− Evaluate design rules ....

Visual for Domain Ontology

Figure 4.6: Step-by-Step Implementation of Ontology Processing Machine
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rule checking. The main point to note is that the ontology is not just a pictorial representation;

rather it becomes an ontology processing machine that accepts registration of requirements and

design object interest in events, and supports design rule checking. A full-scale implementation

would also show dependencies among ontologies the exact details on how this should work (perhaps

with three-dimensional graphics) are currently being worked out.
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Chapter 5

Pilot Application: Design and

Management of the Washington DC

Metro System

This chapter describes our first prototype of ontology-enabled traceability, applied to the

architecture-level design and management of the Washington DC Metro System. We have selected

this application because it satisfies the dual objectives of being an important real-world engineering

application, and yet, the underlying engineering model is not too complicated. In fact, as we will

soon see, the metro systems architecture can be viewed simply as a geographic specialization of a

graph structure.

The prototype application focuses exclusively on architecture-level design concerns of the

as-built system from two viewpoints: (1) mathematical representation, and (2) transportation

design. As such, physical and sociological-political ramifications of decisions on the metro station

location and track routing are omitted, as are details of the track infrastructure at train stations

(e.g., track sections; platforms), and train behavior, scheduling and control.

The Washington DC Metro System

The Washington DC Metro System is the second largest rail transit system in the United

States. It serves a population of 3.5 million people with more than 200 million passenger rides per

year. As of 2006, there were 86 metro stations in service and 106.3 miles of track.
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Figure 5.1: Map of the Washington DC Metro System

Figure 5.1 shows the map of the Metro System. The five Metro System lines cover the

District of Columbia; the suburban Maryland counties of Montgomery and Prince George’s; the

Northern Virginia counties of Arlington, Fairfax and Loudoun; and the Virginia cities of Alexandria,

Fairfax and Falls Church [66].

5.1 Framework for Metro System Design and Management

Modern railway systems are a complex intermingling of traditional infrastructure with

electronics and telematics (i.e., GIS and GPS) [47]. To keep the complexity of design concerns in

check, railway system design procedures strive to separate the underlying infrastructure (e.g., track

profile and layout) from operational (e.g., schedule and capacity) and control (e.g., sequencing of

switching and crossings) concerns. In systems engineering terminology the track infrastructure and

railway vehicles define the systems structure. System behavior is defined by the operations and

control. The first and most important priority is to ensure that all operations are completely safe.

Then with safety concerns satisfied, schedules, capacity and switching operations are designed to

maximize available capacity and minimize delays, subject to cost and performance constraints,
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switches and signals.

Train Capacity

Control

Track InfrastructureTrack layout

Required capacity

Requirements Design Process

Metrostation location.

Design Outcomes

Metrostation locations.
Track layout.
Parking capacities.

Weekday and weekend
schedule requirements.

Allocation of train engines to 
train timetables.

Safety constraints
Train timetable
Algorithms for controlling

Figure 5.2: Flowdown of requirements and design outcomes in a top-down down development
process.

Figure 5.2 shows the sequence of developments and flowdown of requirements in a (sim-

plified) top-down development process. The development process begins with decisions on track

infrastructure (e.g., positioning of metro stations; track layout). Then issues of scheduling (e.g.,

weekday and weekend departure and arrival times for trains) and train control (e.g., routing trains

through railway stations) are handled. The primary purpose of a railway control system is to

prevent events from happening that could lead to an unsafe system state. Generation of a “train

timetable” is often complicated by highly utilized and intertwined railway networks with many

connections between trains [68]. Since many section of the track will operate as a shared resource

(meaning that different trains will use the same section of track at different times), strategies for

scheduling and control must guarantee that all safety constraints are met. The most straightforward

approach to achieving this objective is to implement centralized control algorithms that: (1) have

access to the global state of the system, and (2) verify correctness of system operations through

formal analysis. Finally, decisions are made on train selection to satisfy requirements on scheduling

and passenger capacity. A complete study would also generate a mix of best-engine allocations for

a number of fleet alternatives [20].

5.2 Graphical User Interface Design

Figure 5.3 shows the layout of windows in the prototype software implmentation and

mechanisms for storage of requirements, ontologies and engineering models in an XML data format.

The graphical user interface is a composition of three panels, a requirements panel containing the
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Figure 5.3: Graphical user interface design and connection to XML persistent storage.

table of requirements, a UML diagram panel for the application ontology, and an engineering model

panel containing the model of the system. As such, the interface provides cross-cutting viewpoint

of development. A stakeholder should be able to any aspect of the graphical interface and see how

features at one stage of development relate (i.e., via dependencies, etc) to features at another stage

of development.

As we will soon see, the panel assembly implements the notion of a reactive design en-

vironment, where users can query the system to establish relationships among the requirements,

ontologies and physical design entities.

5.3 Requirements-Ontology-Engineering Software Prototype

Figure 5.4 is a screendump of the Washington DC Metro System Requirements-Ontology-

Engineering graphical user interface.

The software prototype has a user interface and XML input/output consistent with the
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Figure 5.4: Requirements-Ontology-Engineering GUI for the Washington DC Metro System

spcifications of Figure 5.3, and inspired in part by the open source graph editor framework for

Violet, a UML editor developed by Cay Horstmann [28]. Violet supports the drawing of class

diagrams, sequence diagrams, use case diagrams, state diagrams and object diagrams – the under-

lying implementation relies on a framework for creating and editing graph data structures. In the

requirements-ontology-engineering software connectivity relationships are also modeled with graph

data structures. Metro station and group objects are identified by their name. A symbol table is

employed for fast storage and retrieval of named objects. XML import/export is handled by JAXP,

the java interface for XML processing with DOM parsers.

System Requirements. The metro system design is modeled with only five requirements:

Req. 1. The first and last mtro stations of a line shall have parking,

Req. 2. All lines shall have no less than ten mtro stations.

Req. 3. All mtro stations with parking shall have security,

Req. 4. All mtro stations that do not have parking shall be on a bus route, and

Req. 5. All connecting stations shall have security.
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The corresponding XML representation is illustrated in Figure 5.5.

Figure 5.5: XML Representation for the Requirements

The XML datafile for the requirements is parsed and inserted into the table (i.e., java JTable)

shown along the bottom of Figure 5.4.

Requirements 1 and 3 through 5 are satisfied by apply concepts in the MetroStation class.

Requirement 2 is satisfied by apply concepts in the Track class/ontology.

Notice that these requirements only cover design concerns related to the system structure

and the existence of attributes whose values can be used in requirements evaluation. A more

comprehensive study – see comments in future work – would also include requirements associated

with train behaviors and time-driven schedules.

Metro System Ontology. The top left-hand panel shows the mtro system ontology represented

in a UML class diagram format. The ontology diagram serves two stakeholder perspectives.

From a mathematical standpoint, the transportation network is simply a graph of nodes

and edges attached to a spatial surface. A node can be characterized by its name and geographical
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Figure 5.6: Tracing a requirement to the UML class diagram and onto the engineering model.

Figure 5.7: Graphical display of requirements and engineering model objects associated with the
MetroStation class.
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Figure 5.8: Graphical display of requirements and ontology classes associated with the College Park
Metro Station.

Figure 5.9: Graphical display of requirements and ontology classes traced to a detailed map of the
College Park Metro Station.
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Figure 5.10: Implementation of rule checking for the track requirement.

position. Well known algorithms exist for questions of reachability and routing. A transportation

viewpoint builds upon the mathematical viewpoint by adding attributes and conveniences suitable

for transportation engineering. Metro stations are modeled as graph nodes plus information on

parking and security. Notions of a transportation track correspond to edges in the graph. To

simplify and facilitate navigation, groups of tracks are organized into color-coded line abstractions

– passengers talk about catching a green line train to the College Park Metro Station, but in reality

neither the trains nor the track are actually painted green.

5.4 Listener-Driven Event Model for Requirements Traceability

The requirements, ontology, and engineering entities are connected and communicate

through the use of a listener-driven event model. Individual requirements register with the UML

classes containing the concepts relevant to their eventual satisfaction. Then, in turn, individual

UML class nodes register with individual and groups of design objects that a ultimately responsible

for implementing a requirement. Pathways of traceability also begin with objects in the engineering

model and work their way back to individual (or groups) of requirements. The result is a mixture
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of one-to-many and many-to-many relationships in a graph of bi-direxctional traceability relations.

5.5 User Interaction with the Requirements Panel

When single-clicking on a requirement, the classes that are affected by that requirement

are notified of the event. The classes in the UML diagram are highlighted and the items in the

engineering drawing are highlighted, because they are registered to listen to the single-click vent

from the requirement. Double clicking a requirement triggers the verification of that requirement

against the engineering model. For example, the first requirement (end of line mtro stations shall

have parking) can be checked by simply double clicking on the requirement. Two things happen.

First, a smal popup window will indicate whether or not the requirement has been violated. And

second, all of the associated ontology components and physical design objects that are part of the

rule checking procss will be highlighted.

5.6 User Interaction with the UML and Engineering Model Panels

When mousing-over a UML class node, the engineering drawing objects and requirements

that are registered to listen to that event are notified. The objects in the engineering drawing are

highlighted and all requirements that affect the class are highlighted because they are registered

to listen to the mouse-over event from the class node. For example, when the cursor is positioned

over the Metrostation class node, all of the Metro station nodes in the engineering drawing are

highlighted, as are all of the requirements that depend on class Metro Station for their satisfac-

tion. Similar behavior occurs when the cursor is positioned over an object in the engineering

model/drawing.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The key contributions of this work are twofold: (1) A new methodology and system for

satisfying requirements with ontology-enabled traceability mechanisms, and (2) An architectural

framework for linking discipline-specific dependencies through interaction relationships at the meta-

model (or ontology) level. In state-of-the-art traceability mechanisms, requirements are connected

directly to design objects. Here, in contrast, we ask the question: What design concept (or family of

design concepts) should be applied to satisfy this requirement? Solutions to this question establish

links between requirements and design concepts. Then, it is the implementation of these concepts

that leads to the design itself.

The proposed methodology offers several benefits not possible with state-of-the-art pro-

cedures. First, procedures for design rule checking may be embedded into design concept nodes,

thereby creating a pathway for system validation and verification processes that can be executed

early in the systems lifecycle where errors are cheapest and easiest to fix. Second, the proposed

model provides a much better big-picture view of relevant design concepts (see the examples in

Chapters 3 and 5) and how they fit together, than is possible with linking of domains at the model

level. And finally, the proposed procedures are automatically reusable across families of projects

where the ontologies are applicable.

Our focus in this study has been on the development and preliminary evaluation of ontology-

enabled traceability mechanisms for engineering design. As already noted, in design the predomi-

56



nant pathway of development is identification of design concepts that can help to satisfy require-

ments in a real-world implementation. It is important to note, however, that the proposed method-

ology can also support operations associated with systems management and health monitoring.

One can imagine, for example, a network of sensors feeding streams of data to objects/entities in

an engineering model (an abstraction of a real-world implementation). Then, in turn, these ob-

jects/entities will be connected to design concepts which can support the execution of rule checking

processes to find anomalies and unacceptable deviations in behavior. In a working implemen-

tation, system operators would be notified that something has gone awry through the graphical

visualization of requirements violations.

6.2 Future Work

As a general observation, the implementation of methods and tools for ontology-enabled

traceability is complicated by a chain of many-to-many relationships connecting requirements, de-

sign concepts and engineering objects. Each design concern can be modeled as a graph; the complete

system model is a collection of weakly coupled graphs. To keep the details of implementation for

our prototype application as simple as possible, all of the modeling dependencies were hard coded.

An improved implementation would provide support for the efficient and scalable management of

these links. Because we were primarily interested in making a point, our prototype application also

employed a simplified representation for ontologies covering multiple design perspectives. There is a

need to explore ways of treating domain ontologies as individual entities, yet, show the dependencies

among ontologies that are important for design. We surmise that a three-dimensional visualization

of ontologies and their connections might be useful. There is also a question of trust that needs to

be considered. In order for the proposed methodology and system to actually reduce the likelihood

of system failures, system-level designs need to faithfully represent both the stakeholder needs and

the capabilities of the participating application domain(s). Moreover, the ontology models need to

be accurate, complete, conflict free and minimal (i.e., no redundancy) [54].

Our ontology-enabled traceability model is now being extended along the lines of the

annotations accompanying the screendump in Figure 6.1. We are adding timetable-driven train

behavior to the Washington DC Metro system model. This extension opens the possibility of

traceability connections between functional/performance requirements and individual states, and

even the value of attributes within states of behavior models. This capability will provide a direct
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Figure 6.1: Annotated prototype for requirements-ontology-engineering traceability in the Wash-
ington DC Metro System. Here, an end-of-line parking requirement is associated with the Metro-
Station ontology which, in turn, traces to all of the metro station instances in the Washington DC
Metro System.

pathway from requirements to evaluation of performance attributes which, in turn, will allow for

tradeoff studies.

Looking forward, the small table of requirements will be replaced by PaladinRM, an inter-

active java-based tool for working with large graphs of engineering requirements [2]. We will also

investigate the feasibility of replacing UML diagrams with the Web Ontology Language (OWL) and

reasoning procdures driven by the Semantic Web Rule Language (SWRL). Fundamental research

is needed to understand the extent to which: (1) various kinds of relationships can be formally

represented, and (2) traceability pathways can be automatically assembled among design entities

and viewpoints. This will require precise definition of entities in the ontology meta-meta-model

(see Figure 3.3), so that chains of reasoning and rule checking implied by relationships among

conceptual domains will work correctly.
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Appendix A

Appendices

A.1 Architectural Design for Modern Building Environments

The key ideas in our proposed approach were initially flushed out by thinking about how

they might apply to the domain of architectural and services design for modern building environ-

ments. As a focus for study this problem domain is appealing because it is easy to understand,

yet, good solutions demand a team-based approach to development with input and coordination of

activities from multiple disciplines.

Modern Building Environments. Modern building environments are highly multidisciplinary

systems, serving many stakeholders over extended periods of time. Design solutions are assembled

from concepts pertinent to well-known design concerns (e.g., behavior, structure, testing), con-

texts, and viewpoints [49]. Architectural design processes typically begin with the identification

of enabled functionality and building services, followed by an assessment of required spaces and

their organization/clustering. Constraints on performance and cost place bounds on these spaces.

While the results of architectural design are most often represented as documents and blueprints,

this is changing. The CTO of Bentley Systems, a leading provider of architectural design software

notes that architectural/engineering firms need to move from “drawings” to “building information

models,” the latter being capable of representing and reasoning with graphical and non-graphical

entities. Building information models are compelling because they enable processes for designing-

in-context across disciplines and automatically enforcing standards. The resulting product is more

correct by design [6].
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From a systems modeling perspective, building behaviors are deceivingly simple; at the

architectural level there are no obvious components where inputs are transformed into outputs,

and traditional approaches to assembly of system behavior through composition of component

functionalities does not seem to apply. In reality, while many of the components in a building

may just sit there and do nothing, they are in fact necessary enablers of complex behaviors within

building environments. Many building environment behaviors are, in fact, so complex that we

do not even attempt to create detailed models of the enabled processes. Instead we step away

from detailed models and simply provide spaces to support functionalities and leave the details of

implementation up to the building occupants.

Established Approach to Architecture Development. Figures A.1 and A.2, show the es-

tablished pathway of architectural floorplan development. During the earliest stages of design,

architectural concerns are directed toward development of functional requirements and identifica-

tion of relevant design rules, and economic and legal restrictions. The progressive transformation

from required functional to constructive entities is very much a creative process. Initially, a systems

architect may not know what types of components will be used for the design implementation –

design development focuses on selection of components, and their preliminary position and con-

nectivity to other components. System structures are created through the decomposition and

clustering of spaces, followed by the progressive specification of geometric details. The symbolic

layout level focuses on room contours, connected symbolic wall segments, and assignment of prop-

erties to regions. Simple geometry corresponds to thick walls, fleshed-out columns, cut-out doors

and windows. System behavior is enabled by the ability of the building occupants to function – the

latter emanates from two sources: (1) functionality enabled by spaces and access to spaces, and

(2) networked services (e.g, electrical, environmental micro-climates, security, etc.) integrated into

the architectural domain. While many of these issues can be resolved with approximate/imprecise

models of the final components to be used [15], it is important to note that few opportunities exist

to test the final product prior to its full implementation. Therefore, formal mechanisms that will

enable early validation of designer intent and design rule checking can vastly improve the quality

and reliability of the building system prior to deployment.

Commercial tools such as AutoCAD [38], 3D Home Architect and TurboCAD Profes-

sional [8, 46] focus on the editing and presentation of Architectural/Mechanical CAD models/plans

as blueprint-like drawings, 2-D designer viewpoints, and 3-D photorealistc renderings. Medium-

end versions include support for pre-defined domain-specific features (e.g., architectural symbols),
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dynamic dimensioning, basic solid and surface modeling (i.e., boolean operations and slicing), col-

lision detection, and cost estimation. High-end versions go even further, including support for

sophisticated solid modeling, management of constrained design dependencies (d-cubed constraint

technology), multi-monitor visualization and export to standard interchange formats (e.g., STEP).

Shortcomings of Present-Day Tools. From a systems engineering perspective, present-day

tools for architectural development are limited in the following ways:

1. Support for separation of design concerns (e.g., from the beginning, topology/connectivity

concerns are connected to geometry concerns) is weak.

2. There is a lack of comprehensive support for spatial reasoning. As such, the tools are not easily

extensible to layers of services.

3. Support for traceability of requirements to the engineering system itself is nonexistent.

In defense of item 2, research tools have been created for the exchange of data/information associ-

ated with symbolic building design representations [18, 53] and to evaluate whether a building floor

plan adheres to certain requirements and standards [11]. Still, support for requirements traceability

is completely missing.

Traceability from Requirements to Building Design Models. Figure A.3 shows a potential

pathway from requirements to UML representations of system behavior and structure, to multi-level

representations of buildings in a representation familiar to architects. UML can play a central role

in the representation and visualization of intermediate products (i.e., application of “principles and

practices” employed by professionals). For example, UML class and object diagrams are an ideal

representation for: (1) Concepts (and relationships among concepts) associated with a particular

problem domain or design concern, and (2) Organization (clustering and decomposition) of spaces

into hierarchies.

The dashed arrows connecting requirements to UML classes are established by asking

the question: What concept will be applied to satisfy this requirement? Then once that link is

established, the continuing link to the engineering model is easily established – it is, after all, just

the object instantiation of concepts modeled in the UML class diagram. On the back end, each

class will contain attributes and methods needed to quantitatively evaluate object instances. Some
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of this information may not be explicitly visible (e.g., exact square footage of a region, function

of room, designated occupant, etc.). This extra information should be readily retrievable with a

simple mouse or menu action. Research is needed to better understand the extent to which various

types of constraints are supported by the UML class viewpoint.

System-level design alternatives are created by linking models of system-level behavior to

the high-level structure, and imposing constraints on performance and operation (e.g., control logic;

temporal logic; spatial logic). Floor planning processes need to adhere to three types of constraints:

(1) topological (i.e., orientation, traffic/pathway, and location/adjacency concerns), (2) dimensional

(i.e., size and space concerns) and (3) functional (e.g., aesthetic concerns) [10]. If the required

functionality at lower levels of development cannot be satisfied (perhaps because the constraint

values are too stringent), then the verification process will fail and the high-level developments will

need to be adjusted to accommodate the demands of the lower level requirements (e.g., perhaps a

space would need to be increased in size). The factoring process is guided by functionality that the

region is expected to provide, and restricted by topological/geometric constraints [34, 38].

The heavy dashed arrows in Figure A.3 represent traceability links connecting requirements

to specific system-level design concepts, which, in turn, will be implemented as entities in a building

architecture object-model. Looking forward, designers should be able to click on a requirement

and trace its implementation through the concept, structural decomposition, composite-structure

and engineering drawing models. Conversely, designers should be able to click on an object (or

group of objects) in a drawing and trace its existence back to a specific requirement (or groups of

requirements). In this scenario a drawing is a detailed two-dimensional projection of an engineering

model.
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A.2 The Semantic Web

In his original vision for the World Wide Web, Tim Berners-Lee described two key objectives

[7]: (1) To make the Web a collaborative medium, and (2) To make the Web understandable and,

thus, processable by machines. During the past decade the first part of this vision has come to pass

– today’s Web provides a medium for presentation of data/content to humans. Machines are used

primarily to retrieve and render information. Humans are expected to interpret and understand

the meaning of the content.

The Semantic Web [27] aims to give information a well-defined meaning, thereby creating

a pathway for machine-to-machine communication and automated services based on descriptions

of semantics [23]. Realization of this goal will require mechanisms (i.e., markup languages) that

will enable the introduction, coordination, and sharing of the formal semantics of data, as well

as an ability to reason and draw conclusions (i.e., inference) from semantic data obtained by

following hyperlinks to definitions of problem domains (i.e., so-called ontologies). In our view,

future generations of computer support for storage, exchange, management, and visualization of

requirements will make increasing use of Semantic Web technologies.

Technical Infrastructure. Figure A.4 illustrates the technical infrastructure that will support

the Semantic Web vision. Each new layer builds on the layers of technology below it. The bottom

layer is constructed of Universal Resource Identifiers (URI) and Unicode. URIs are a generalized

mechanism for specifying a unique address for an item. They provide the basis for linking in-

formation on the Internet. Unicode is the 16-bit extension of ASCII text – it assigns a unique

platform-independent and language-independent number to every character, thereby allowing any

language to be represented on any platform.

The eXtensible Markup Language (XML) provides the fundamental layer for representation

and management of data on the Web. XML grew out of demands to make the hypertext markup

language (HTML) more flexible. The technology itself has two aspects. It is an open standard which

describes how to declare and use simple tree-based data structures within a plain text file (human

readable format). XML is a meta-language (or set of rules) for defining domain- or industry-specific

markup languages. One well known example is the mathematical language specification (MathML),

which captures the structure and content of mathematical notation [41]. A second example is the

scalable vector graphics (SVG) markup language, which defines two-dimensional vector graphics
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Figure A.4: Technologies in the Semantic Web Layer Cake

in a compact text format [57]. XML is being used in the implementation of AP233, a standard

for exchange of systems engineering data among tools [44]. A key benefit in representing data in

XML is that we can filter, sort and re-purpose the data for different devices using the Extensible

Stylesheet Language Transformation (XSLT) [59, 67]. Stylesheets contain collections of rules and

instructions that inform the XSLT processor how to produce the details of output. For example, a

single XML file can be presented to the web and paper through two different style sheets.

Limitations of XML. Need for the RDF Layer. While XML provides support for the portable

encoding of data, it is limited to information that can organized within hierarchical relationships.

As illustrated in Figure 1.1, a common engineering task is the synthesis information from multiple

data sources. This can be a problematic situation for XML as a synthesized object may or may

not fit into a hierarchical (tree) model. A graph, however, can, and thus we introduce the Resource

Description Framework (RDF). RDF is a graph-based assertional data model for describing the

relationships between objects and classes in a general but simple way. The primary uses of RDF
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are to encode metadata – information such as the title, author, and subject – about Web resources,

and to designate at least one understanding of a schema that is sharable and understandable. The

graph-based nature of RDF means that it can can resolve circular references, an inherent problem

of the hierarchical structure of XML. An assertion is the smallest expression of useful information.

RDF captures assertions made in simple sentences by connecting a subject to an object and a verb.

In practical terms, English statements are transformed into RDF triples consisting of a subject (this

is the entity the statement is about), a predicate (this is the named attribute, or property, of the

subject) and an object (the value of the named attribute). Subjects are denoted by a URI. Each

property will have a specific meaning and may define its permitted values, the types of resources

it can describe, and its relationship with other properties. Objects are denoted by a “string”

or URI. The latter can be web resources such as requirements documents, other Web pages or,

more generally, any resource that can be referenced using a URI (e.g., an application program or

service program). Class relationships and statements about a problem domain are expressed in

DAML+OIL (DARPA Agent Markup Language) and more recently, the Web Ontology Language

(OWL) [63].

Ontology, Logic, Proof and Trust Layers. The ontology, logic, proof and trust layers intro-

duce vocabularies, logical reasoning, establishment of consistency and correctness, and evidence of

trustworthiness into the Semantic Web framework. The logic, proof and trust layers are beyond

the scope of this report.
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