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Numerous microorganisms and other invertebrates that are able to degrade

polyethylene (PE) have been reported. However, studies on PE biodegradation

are still limited due to its extreme stability and the lack of explicit insights

into the mechanisms and efficient enzymes involved in its metabolism by

microorganisms. In this review, current studies of PE biodegradation, including

the fundamental stages, important microorganisms and enzymes, and functional

microbial consortia, were examined. Considering the bottlenecks in the

construction of PE-degrading consortia, a combination of top-down and

bottom-up approaches is proposed to identify the mechanisms and metabolites

of PE degradation, related enzymes, and efficient synthetic microbial consortia. In

addition, the exploration of the plastisphere based on omics tools is proposed as

a future principal research direction for the construction of synthetic microbial

consortia for PE degradation. Combining chemical and biological upcycling

processes for PE waste could be widely applied in various fields to promote a

sustainable environment.

KEYWORDS

polyethylene biodegradation, microbial consortia, plastisphere, microplastics,
nanoplastics, omics

1. Introduction

Plastic pollution remediation is always a global environmental protection issue. As the
most commonly used material, plastic products are, however, increasingly in demand and
used in all fields globally along with socio-economic development due to their excellent
characteristics such as durability, low cost and convenience, and it is predicted that the
global production of plastic products will be over 26 billion tons by 2050 (Plastics Europe,
2021; Zeenat et al., 2021; Liu et al., 2022b). Approximately 80% of the world’s 400 million
tons of plastic waste is dumped in landfills or discarded directly into the environment
(Tejaswini et al., 2022). And the most common types of plastic waste are divided into two
categories according to their thermal properties: thermoplastics and thermosetting plastics
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(Canopoli et al., 2018). Thermoplastics are types of linear-chain
polymer compounds that have plasticity at a certain temperature,
the most common of which are polyethylene (PE), polyvinyl
chloride (PVC), polypropylene (PP), and polystyrene (PS). On the
other hand, thermosetting plastics, such as polyurethane (PUR),
cannot be melted due to irreversible thermal chemical changes
(Amobonye et al., 2021). The backbones of thermosetting polymers
are highly crosslinked by heteroatoms, making it easy for fracture
to occur at ester or amide bonds. In contrast, the junctions of the
primary chains in thermoplastics, which mostly comprise carbon
atoms, render them more resistant to deterioration (Zheng et al.,
2005). The majority of plastic waste is sent to landfill or discharged
directly into the environment where it undergoes a very sluggish
natural degradation process, which for PE specifically, the most
inert polyolefin plastic, the half-lives were estimated to vary from
decades to centuries (Chamas et al., 2020).

As the primary C–C-chain polymer (Figure 1), PE is
currently the most extensively used plastic type, accounting for
approximately 38% of the market share (Danso et al., 2019). PE
is a thermoplastic made of ethylene that has been through high-
pressure polymerization (Kumar Sen and Raut, 2015). According
to different densities, branching degrees, and the availability of
surface functional groups, PE can be divided into low-density
polyethylene (LDPE), high-density polyethylene (HDPE), linear
low-density polyethylene (LLDPE), etc. (Restrepo-Flórez et al.,
2014). PE is widely utilized in cling film, commercial plastic bags,
pharmaceutical and food packaging films, and other consumer
and manufacturing industries, because of its desirable properties,
such as non-toxicity, tastelessness, high tensile strength, low
permeability, and durability (Shah et al., 2008; Liu et al., 2021).
Due to its large molecular weight, stable chemical structure, high
hydrophobicity, crystallinity, and limited number of functional
groups required for biodegradation, PE is the plastic polymer most
resistant to degradation, this means that polyethylene debris has
lingered in the marine and other ecosystems for two decades and
is extremely resistant to degradation (Kyaw et al., 2012; Dey et al.,
2020; Krause et al., 2020). In addition, PE is the most prevalent
municipal solid waste (MSW), and accounts for a high proportion
of plastic waste in the environment (Zhou et al., 2014). Therefore,
understanding the mechanisms of PE degradation and devising
effective and environmentally friendly methods for PE degradation
could provide ideas and data to help to mitigate our ever-worsening
plastic pollution on a massive scale.

Current research indicates that the decomposition of
plastic waste, such as PE, in landfills and other ecosystems
is predominantly accomplished via physicochemical (abiotic)
degradation and biodegradation (Dimassi et al., 2022). Physical
degradation, such as cracking, embrittlement, and spalling,
typically modifies the primary structures of polymers; whereas
chemical degradation primarily modifies the molecular structures
of polymers, such as breaking bonds or the oxidation of long
polymer chains to produce compounds with low molecular
weights (Andrady, 2011; Gewert et al., 2015; Ali et al., 2021).
Mechanical degradation (including tidal forces, waves, and
erosion), photo-oxidation (such as ultraviolet rays), thermal
oxidation (such as incineration, pyrolysis, and gasification),
and chemical hydrolysis processes (such as those involving
acids, alkalis, and other organic solvents) are the primary
physicochemical degradation mechanisms for PE and other

plastic waste in the environment (Kyrikou and Briassoulis,
2007). Among them, photodegradation and thermo-oxidative
degradation are the most common mechanisms of PE degradation
in the environment (Canopoli et al., 2020). Through a variety
of physical and chemical processes, large-sized plastic waste is
broken down into plastic debris and micro/nanoplastics, which
are then more easily digested and consumed by microorganisms
(Taghavi et al., 2021b; Singh Jadaun et al., 2022). Researchers have
become increasingly interested in the biodegradation of plastic
in recent years due to the high efficiency, availability, and eco-
friendliness of this approach (Khatoon et al., 2017). Deepening our
understanding of the natural microbial communities that arise in
the plastisphere may lead to novel approaches for the development
of PE-degrading consortia. The key to the construction of efficient,
stable, and controllable consortia is the design, which needs to
ensure that the microorganisms in these communities interact
synergistically. Certain technologies, such as next-generation
sequencing technologies like metagenomic sequencing, can be
used to determine the microbial community structure of the
plastisphere (Gilmore et al., 2019; San León and Nogales, 2022).

This study focused on PE, the most prevalent plastic polymer.
We briefly examined its characteristics and biodegradation
mechanisms, as well as the current research gaps and recent
advances in PE biodegradation. Then, we explored the advantages
of using microbial functional consortia and their potential for
PE pollution remediation compared to single strains. Lastly,
we emphatically investigated the prospect of combining the
plastisphere concept and metagenomics to inform the construction
of functional microbial consortia.

2. Biodegradation of PE

Polyethylene (PE) biodegradation occurs via bacteria, fungi,
algae, and other microorganisms that adhere to the plastic’s surface
and consume it for growth and reproduction (Taghavi et al.,
2021a). Microorganisms face a considerable challenge with PE
due to its high hydrophobicity, large molecular size, and lack
of reactive functional groups in its polymer backbone (Cowan
et al., 2022). Numerous microorganisms (including bacteria,
fungi, actinomycetes, and even some algae) that are capable of
degrading PE polymers in various ecosystems (including oceans,
soil, farmland, animal manure, compost, landfills, sewage, etc.) have
been discovered using culture-dependent or culture-independent
techniques (Dey et al., 2020). Several microbial enzymes associated
with plastic biodegradation, particularly those involved in PE
biodegradation, such as laccase, manganese peroxidase, lignin
peroxidase, and alkane hydroxylase (AH), have also been found to
play crucial roles (Wei and Zimmermann, 2017). It is worth noting
that laccase and peroxidase (manganese peroxidase and lignin
peroxidase) are also key enzymes in lignin degradation (Kavitha
and Bhuvaneswari, 2021). Lignin as a complex amorphous aromatic
biopolymer, which is connected by carbon–carbon bonds and ether
bonds. Additionally, lignin and PE have partial similarities in terms
of their structural and physicochemical properties, as they both
have the characteristics of high hydrophobicity and high molecular
weight. Thus, the enzymes required for the biodegradation of
lignin, as a recalcitrant natural polymer, are similar to those
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FIGURE 1

(A) Market share distribution of plastic types in 2021 (Plastics Europe, 2021); (B) common types of polyethylene (PE) and their molecular structure.

required for the degradation of PE in that their degradation
relies on the involvement of oxidoreductases to catalyze oxidation
and generate free radicals to drive depolymerization (Kumar and
Chandra, 2020; Daly et al., 2021).

2.1. Mechanisms of plastic degradation
by microorganisms

The microbial degradation of plastic polymers, including
PE, generally involves five basic stages (Figure 2): microbial
colonization, biodeterioration, biofragmentation, assimilation, and
mineralization (Gu, 2003).

(i) The initial phase involves the colonization of
microorganisms on the surface of the plastic material. During
this period, extracellular polysaccharides or biosurfactants allow
microbes to cluster more easily and cling to the hydrophobic
surface of the plastic material (Kavitha and Bhuvaneswari, 2021;
Ji et al., 2022). The formation of biofilms on polymer surfaces not
only is conducive to the colonization of microorganisms, but also
severely damages the surfaces, enabling the addition of functional
groups.

(ii) Typically, the microorganisms that colonize the surface
of a plastic material are the cause of biodeterioration. Through
the production of enzymes (such as lipase or dehydrogenase)
or other secretions, these colonizing microbes penetrate polymer
materials and subsequently generate interstices and cracks (Thakur
et al., 2018; Rana et al., 2022). Additionally, some filamentous
microorganisms (such as actinomycetes and molds) can deteriorate
plastic matrices via their filamentous network structures (Sánchez,
2020). Moreover, the production of acids and alkalis during
microbial metabolic processes may, in some cases, intensify the
erosion of polymer surfaces (Ali et al., 2021).

(iii) Biofragmentation is the lytic process by which
microorganisms convert macromolecular polymers into

oligomers, dimers, or monomers via the action of enzymes
or free radicals (Ghatge et al., 2020). Since polymers with
macromolecular structures cannot be directly absorbed or utilized
by microorganisms, they have to be disintegrated into smaller
products that are suited to cell absorption and subsequent
metabolism outside the cell (Lucas et al., 2008). PE, the main
C–C-chain polymer with a high molecular weight, can only be
supplied to microbial cells for further metabolism after being
broken into oligomers of 10–50 carbon atoms (Krueger et al.,
2015).

(iv) When polymers have been degraded into oligomers with
low molecular weights (< 600 Da), microbes can easily absorb these
oligomers via assimilation (Du et al., 2021). Finally, the polymers
are mineralized under aerobic or anaerobic conditions through a
range of metabolic pathways and to produce metabolites such as
CO2, CH4, and H2O (Pathak and Navneet, 2017).

2.2. Bacteria involved in PE degradation

Several studies have found that bacteria can inhabit plastic-
polluted environments (soil, water, etc.) by forming biofilms on the
surfaces of discarded plastic debris, meaning that these microbial
communities may be able to colonize plastic surfaces more
effectively (Basili et al., 2020; Vaksmaa et al., 2021). The colonizing
bacteria secrete the corresponding plastic-degrading enzymes,
which catalyze the decomposition of the polymers into oligomers,
dimers, and monomers through a combination of enzymes and
finally mineralize them into other products, such as CO2 and H2O.
Recent research has shown that Bacillus (Samanta et al., 2020),
Enterobacter (Ren et al., 2019; Sarker et al., 2020), Brevibacterium
(Hadad et al., 2005; Dwicania et al., 2019b), Pseudomonas
(Hou et al., 2022), Arthrobacter (Balasubramanian et al., 2010),
Acinetobacter (Montazer et al., 2018; Zhang et al., 2023), and
other prevalent bacterial genera have the ability to degrade PE
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FIGURE 2

A diagram of the microbial degradation processes of polyethylene (PE).

(Table 1). Notably, Bacillus spp. and Pseudomonas spp. also play
key roles in the degradation of other plastic polymers, including
polyethylene terephthalate (PET), PS, PP, and PUR (Auta et al.,
2018; Roberts et al., 2020; Ganesh Kumar et al., 2021; Roy et al.,
2021). In addition, bacteria that survive in extreme conditions,
such as those that are thermophilic, acidophilic/alkaline, halophilic,
radiation-resistant, etc., have significant potential for degrading PE
(Atanasova et al., 2021). Mouafo Tamnou et al. (2021) utilized
Pseudomonas aeruginosa to degrade PE under the conditions of
an acidic environment (pH = 5) and a temperature of 44◦C,
and the weight loss rate of PE reached 6.25% after 30 days of
culture. Hadad et al. (2005) recovered a thermophilic bacterial
strain (Brevibacillus borstelensis 707) from soil and demonstrated
that it reduced the weight of LDPE by 11%. Although previous
studies have revealed many bacteria with PE-degradation functions,
these bacteria have been determined to largely belong to the
genera Bacillus and Pseudomonas; however, with the development
of isolation and cultivation technologies, additional PE-degrading
bacterial resources may still be discovered.

Actinomycetes, as a special subgroup of prokaryotes that can
form branching hyphae and conidia, are abundant in soil and
other habitats (Barka et al., 2016). As highly efficient polymer-
degrading agents, Actinomycetes have been extensively studied in
the degradation of natural polymers, such as lignocellulose (Tan
et al., 2022) and natural rubber (Gibu et al., 2020). Regarding

the degradation of polymeric polymers by Actinomycetes, current
research primarily focuses on PET degradation. In the breakdown
of PET by Actinomycetes, many enzymes that can hydrolyze
polyester have been discovered (Wei et al., 2014; Charnock, 2021).
Actinomycetes also secrete related enzymes during the degradation
of PE. In one study, Santo et al. (2013) discovered that the
extracellular laccase produced by the actinomycete Rhodococcus
ruber C208 during PE degradation had greater PE-degradation
activity when copper was present. Similar to other bacteria, the
actinomycete colonization process is highly impacted by biofilm
development. Actinomycetes are able to produce extracellular
polymeric compounds, such as mucopolysaccharides rich in
N-acetylglucosamine, which may improve their adhesion to plastic
surfaces for later microbial action (Singh and Sedhuraman,
2015). The actinomycetes that have been identified in recent
studies as having the ability to degrade PE are predominantly
members of the genera Rhodococcus (Santo et al., 2013),
Streptomyces (Soleimani et al., 2021), and Nocardia (Table 1;
Koutny et al., 2006).

2.3. Fungi involved in PE degradation

Fungi play indispensable roles in decomposing recalcitrant
substrates and can make recalcitrant polymers, such as plastic, parts
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of their food web structures, driving the carbon cycle and nutrient
regeneration in terrestrial ecosystems (Zeghal et al., 2021). The
primary benefit of using fungi over single bacterial strains that can
degrade plastic is that fungi grow more broadly in soil and can
penetrate polymer surfaces using mycelia, making it easier for them
to interact with plastic polymers and subsequently degrade plastic
films (Sánchez, 2020). Additionally, fungi can secrete hydrophobic
proteins that are capable of adhering to extremely hydrophobic
polymer surfaces. These proteins enhance the development of aerial

mycelia in filamentous fungi and the adherence of mycelia to
hydrophobic polymer surfaces. Due to the high surface activity and
strong adhesion properties of these proteins, fungal mycelia can
grow more readily than bacteria on hydrophobic plastic surfaces
(Piscitelli et al., 2017; Sánchez, 2020). Moreover, the enzymes
required for PE degradation, such as laccase, lignin peroxidase,
etc., are also found in the fungi-mediated PE breakdown process
(Temporiti et al., 2022). Fungi have been shown to be capable
of degrading PE, especially strains that belong to the genera

TABLE 1 Bacterial strains have been reported with polyethylene degradation capacity.

Species Sources Culture time Plastic type Weight loss Other methods References

Stenotrophomonas sp.,
Achromobacter sp.

Waste dumpsite, drilling
fluid

100 days LDPE beads 7.45%, 7.54% SEM, AFM, FTIR Dey et al., 2020

Lysinibacillus sp. Soil 28 days Polyethylene films 7.50% SEM, GC-MS, FTIR,
XRD, crystallinity change

Jeon et al., 2021

Bacillus subtilis Microbial culture
collection

30 days LDPE films 9.26% FTIR Vimala and Mathew,
2015

Pseudomonas
knackmussii,
Pseudomonas aeruginosa

Activated sludge or
sewage water sample

56 days LLDPE films 5.95 ± 0.03%,
3.62 ± 0.32%

FTIR, SEM, WCA, AFM Hou et al., 2022

Bacillus cereus, Bacillus
gottheilii

Sediment 40 days PE powder 1.6%, 6.2% SEM, FTIR Auta et al., 2017

Micrococcus luteus Cow dung 90 days HDPE films 3.85% SEM, EDX, FTIR Gupta et al., 2022

Microbulbifer
hydrolyticus

Marine pulp mill wastes 30 days LLDPE particles – SEM, FTIR Li et al., 2020

Alcaligenes faecalis Sea water 70 days Polyethylene bags 47.36% FTIR, SEM, XRD, AFM Nag et al., 2021

Bacillus sp. Plastic waste polluted site 30 days LDPE bags 6.68 ± 0.59% FTIR, SEM, GC-MS Kavitha and
Bhuvaneswari, 2021

Pseudomonas sp. Municipal solid waste
dumping ground soil

45 days LDPE films 5 ± 1% SEM, AFM, tensile
strength

Tribedi and Sil, 2013

Marinobacter sp. H-244,
Marinobacter sp. H-246,
B. subtilis

Seawater and sediment 90 days LDPE films 1.46%, 1.68%, and
1.54%

SEM, AFM, FTIR, carbon
content analysis, TGA,

GC-MS

Khandare et al., 2022

Alcanivorax sp. Marine plastic debris 34 days Pristine and
weathered LDPE
pellets and films

2.4% (weathered
LDPE films)

FTIR, GPC, stable isotope
analysis, oxygen species

(ROS) analysis

Zadjelovic et al.,
2022

Alcanivorax borkumensis The “plastisphere” from
marine ecosystem

80 days LDPE films 3.4% FTIR Delacuvellerie et al.,
2019

Kocuria palustris,
Bacillus pumilus,
B. subtilis

Pelagic waters 30 days Pieces of
polyethylene bags

1 ± 0.033%,
1.5 ± 0.038%,
1.75 ± 0.06%

SEM, FTIR Harshvardhan and
Jha, 2013

Paenibacillus sp. Landfill 3 months polyethylene bags 30.8% (chemical
treatment)

FTIR, SEM Bardají et al., 2019

Exiguobacterium sp. Plastic dumped soil 90 days LDPE films
(Additive free)

5.70 ± 0.7% SEM, FTIR, XRD, total
carbon analysis

Maroof et al., 2022

Ralstonia sp., Bacillus sp. Municipal waste landfill 180 days LDPE sheets 39.2%, 18.9% Microscale analysis, FTIR Biki et al., 2021

Rhodococcus ruber Polyethylene waste
buried soil

30 days LDPE films 8% SEM, FTIR Gilan et al., 2004

Nocardia sp.,
Streptomyces sp.,
Rhodococcus sp.

Landfills and soil rich in
plastic waste

60 days LDPE films 9.5 ± 0.3%,
5.98 ± 0.72%,
6.23 ± 0.5%

Tensile strength analysis,
SEM, FTIR

Soleimani et al., 2021

Nocardiopsis sp.
mrinalini 9

Healthy leaf 60 days Polythene bags 22% BATH assay Singh and
Sedhuraman, 2015

SEM, scanning electron microscope; AFM, atomic force microscope; FTIR, Fourier transform infrared spectroscopy; GC-MS, gas chromatograph- mass spectrometer; WCA, water contact
angle; EDX, energy dispersive spectroscopy; GPC, gel permeation chromatography; XRD, X-ray diffraction; TGA, thermogravimetric analysis; BATH, bacterial adhesion to hydrocarbon.

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1181967
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-14-1181967 April 10, 2023 Time: 15:53 # 6

Zhang et al. 10.3389/fmicb.2023.1181967

Aspergillus, Fusarium, and Penicillium (Taghavi et al., 2021a),
among others (Table 2).

2.4. Enzymes involved in PE degradation

The involvement of enzymes is essential for the microbial
degradation of plastic. The molecular weights of plastic polymers
are too high for direct uptake by microorganisms; therefore,
extracellular enzymes are produced in advance to depolymerize
polymers with high molecular weights into oligomers, dimers,
monomers, etc., which can be ingested by microbial cells (John,
2019).

As the molecular structures of different plastic polymers vary,
identification and further investigation of the specific enzymes for
the degradation of different polymers is ongoing. For instance, in
the biodegradation of polyethylene terephthalate (PET), it has been
found that PETase (an aromatic polyester enzyme) from Ideonella
sakaiensis 201-F6 can metabolize PET into bis-hydroxyethyl
terephthalate (BHET), monohydroxyethyl terephthalate (MHET),
terephthalic acid (TPA), and other intermediates, while MHETase
(an auxiliary enzyme) further acts on MHET intermediates to
convert them into terephthalic acid and ethylene glycol. Both
enzymes are found in I. sakaiensis secretions and may work
cooperatively to degrade PET (Austin et al., 2018). Magnin et al.
(2019) demonstrated that a mixture of two enzymes [an efficient
amidase (E4143) that hydrolyzes the PUR bonds of molecules with
low molar masses and an esterase (E3576) that hydrolyzes aqueous
polyester PUR dispersions] could be used to treat thermoplastic

polyurethanes, resulting in a synergistic increase in the hydrolysis
of PUR bonds.

Polyethylene (PE) has an extremely stable C–C backbone
that is more resistant to hydrolysis than those of PET and
PUR, which have chemical bonds in their backbones that
can be attacked by hydrolases (Yeom et al., 2022). For this
reason, certain enzymes and their related mechanisms are still
inadequate for PE degradation. As mentioned in the previous
section “2.3 Fungi involved in PE degradation”, the main
fungal enzymes that have been discovered to be involved in PE
degradation are laccase, manganese peroxidase (MnP), and lignin
peroxidase (LiP). Gao et al. (2022) analyzed the genomics and
transcriptomics of the isolated marine fungus Alternaria alternata
FB1 with the potential for PE degradation and revealed significant
upregulation of the genes that encode 153 enzymes potentially
associated with PE degradation, including laccase, peroxidase,
and hydroxylase, which further confirmed the ability of some
of these enzymes to degrade PE. Laccase is also a potential
functional enzyme for PE-degrading bacteria such as Bacillus,
Psychrobacter, etc. (Liu et al., 2022c; Zhang A. et al., 2022).
Jeon and Kim (2015) discovered an AH system composed of
alkane monooxygenase, rubredoxin, and rubredoxin reductase
in P. aeruginosa E7. The alkane monooxygenase had LMWPE
(low-molecular-weight polyethylene) degradation activity, while
the rubredoxin and rubredoxin reductase were indirectly involved
in PE degradation through the transfer of relevant electrons.
They also identified two alkane monooxygenases (AlkB1 and
AlkB2) in P. aeruginosa and found that AlkB2 displayed higher
transcriptional activity in the presence of LMWPE, thus indicating

TABLE 2 Fungal isolates have been reported with polyethylene degradation capacity.

Species Sources Culture time Plastic type Weight loss Other methods References

Penicillium chrysogenum,
Fusarium oxysporum,
Trichoderma
brevicompactum,
Purpureocillium
lilacinum, Fusarium
falciforme, etc.

Plastic wastes from an
abandoned dumpsite

30 days PE films – Respirometry assay, SEM,
FTIR

Spina et al., 2021

Aspergillus clavatus Landfill soil 90 days LDPE films 22% CO2 evolution, FTIR,
AFM, SEM

Gajendiran et al.,
2016

Aspergillus tubingensis,
Aspergillus flavus

Soil in coastal plastic
waste dumping area

30 days Commercially
available HDPE

6.02 ± 0.2%,
8.51 ± 0.1%

FTIR, SEM Sangeetha Devi et al.,
2015

Penicillium citrinum Landfill soil 90 days LDPE films 38.82%, 47.22%
(pretreated with

nitric acid)

FTIR, SEM, TGA Khan et al., 2022

Alternaria alternata Plastic wastes 120 days PE films – SEM, FTIR, XRD, GPC,
GC-MS

Gao et al., 2022

Aspergillus terreus,
Aspergillus sydowii

Rhizosphere soil 60 days PE strips 50.00 ± 4% Tensile strength analysis,
SEM, FTIR

Sangale et al., 2019b

Trichoderma harzianum Dumpsite soil 90 days Polyethylene bags 23% SEM, FTIR, NMR Sowmya et al., 2014

Trichoderma hamatum Plastic from soil along
highways

60 days LDPE and LLDPE
films

1.3 ± 0.4%
(UV/T60-pretreated
LDPE), 3.9 ± 0.5%
(γ/T90-pretreated

LLDPE)

SEM, FTIR, GPC, TGA Malachová et al.,
2020

NMR, nuclear magnetic resonance spectroscopy.
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FIGURE 3

Degradation pathways of PE-derived long-chain linear alkanes by oxidation with alkane hydroxylases (AHs).

that AlkB2 was more efficient at degrading LMWPE than AlkB1
(Jeon and Kim, 2016).

Alkane hydroxylases (AHs) are key enzymes in the degradation
of alkane compounds such as petroleum, and the genes encoding
them have recently been identified in the genomes of a variety
of PE-degrading species (Nie et al., 2014; Khalil et al., 2018;
Hou et al., 2022). AHs harbor considerable diversity and can
differ in terms of substrate ranges and degradation pathways
(Ji et al., 2013). Polyethylene polymers with macromolecular
weights can be depolymerized to form polymers with low
molecular weights, as well as other alkanes, alcohols, and fatty
acids with different chain lengths, via a range of abiotic processes
(UV irradiation, heat treatment, oxidation, etc.) or enzymatic
processes (laccase, peroxidase, etc.) (Zhang Y. et al., 2022). The

ends of low-molecular-weight polyethylene can be oxidized by
AHs through oxidation processes, including terminal oxidation,
subterminal oxidation, etc. As a group of AHs, cytochrome
P450 (CYPs) are also candidate enzymes for PE degradation
(in addition to the AlkB family that was mentioned previously)
and are also key enzymes for PE degradation by PE-degrading
bacteria, such as Rhodococcus spp. and Bacillus spp. (Zampolli
et al., 2021; Liu et al., 2022c). The alkanes of different chain
lengths that are depolymerized by PE are oxidized by AHs to
form alcohols, which are subsequently reacted with a series
of cascade enzymes [such as alcohol dehydrogenase (Adh),
aldehyde dehydrogenase (Aldh), Baeyer–Villiger monooxygenase
(BVMO), and esterase, depending on the hydroxylation
terminus] to form alkanoic acids that eventually enter the
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metabolic pathways of organisms and are consumed (Figure 3;
Yeom et al., 2022).

3. Biodegradation by microbial
consortia

Microbial consortia, as efficient pollutant-degrading agents,
have been applied to various environmental remediation fields,
such as the degradation of agricultural and forestry residues
[cellulose (Wang et al., 2010; Zhao et al., 2017; Du et al., 2018),
hemicellulose (Wang et al., 2013; Tabanag et al., 2018; Zhang et al.,
2018; Zheng et al., 2020), lignin (Kim et al., 2019; Lu et al., 2019;
Zheng et al., 2020; Mendes et al., 2021), etc.], sewage treatment
(Halat-Las et al., 2018; Feng et al., 2021), the degradation of
persistent organic pollutants (POPs) (Arulazhagan et al., 2010; Li
et al., 2021; Xu et al., 2021), and oil pollution treatment (Wu et al.,
2017). In recent years, the potential for using microbial consortia in
the biodegradation of plastic pollution has been investigated by an
increasing number of relevant researchers.

3.1. Advantages in the construction of
functional PE-degrading microbial
consortia

Although many strains capable of degrading PE have been
isolated and identified, it takes an incredibly long time for single
strains/enzymes to degrade PE and the rate of degradation is
exceedingly inefficient due to some of the durability characteristics
of PE (Kotova et al., 2021). In addition, studies on the PE
degradation products (PE-DPs) that are generated in these
biodegradation processes are still in the preliminary stages. Some
studies have used gas chromatograph-mass spectrometer (GC-
MS) to conduct qualitative analyses and toxicity tests on PE-
DPs (Shahnawaz et al., 2016). Studies have confirmed that PE-
DPs are mostly composed of fatty acids, plasticizers, benzene,
and alcohol; however, it is unclear whether PE-DPs subsequently
interfere with microbial growth and metabolic activities (Sangale
et al., 2019a). Consequently, these unknown and complicated
byproducts may prevent single strains from degrading PE in
the latter stages of fermentation. The stable and complicated
coexistence of microbial communities arises via evolutionary
changes in ecological and biological systems that have occurred
over long periods of metabolic activity in the natural environment
(Escalante et al., 2015). However, single strains gradually lose their
naturally occurring microbial interdependence after isolation and
purification, resulting in some attributes being reduced or lost
(Ding et al., 2019).

Compared to single strains, microbial consortia are more
efficient, robust, and controllable (Qian et al., 2020). (i) Firstly,
the biodegradation of plastic polymers is a complex process
driven by collaboration between various enzymes and metabolic
pathways (Jaiswal et al., 2020). Microbial consortia have more
abundant enzyme systems and metabolic activities than single
strains (Zhang N. et al., 2022). (ii) Moreover, microbial consortia
also create new microenvironments for strains, which may activate

some metabolic pathways that are dormant under single-strain
culture conditions (Qian et al., 2020). (iii) And then, microbial
consortia generally adopt intercellular communication modes, such
as quorum sensing (QS), to minimize competition between strains
or synergistically regulate gene expression (Duncker et al., 2021).
(iv) Concurrently, microbial consortia can execute the division of
labor by partitioning metabolic pathways, thereby minimizing the
accumulation of byproducts and the metabolic burden of individual
strains (Jagmann and Philipp, 2014). (v) From the aspect of
stability, microbial consortia that are composed of multifunctional
microbes are more robust to environmental perturbations during
biodegradation than single-strain cultures (Xu and Yu, 2021). (vi)
It is important to note that despite the fact that some strains
that are quite prevalent in microbial communities lack degrading
capabilities, they may be of indispensable importance in the
formation of biofilms on the surface of plastic debris (Giri et al.,
2020; Gao and Sun, 2021). (vii) From a long-term perspective,
microbial consortia can also effectively use carbon sources and
access an expanded spectrum of substrates (Xu and Yu, 2021).
Although the majority of plastic debris in the environment consists
of mixed plastic, single strains can only target specific substrate
polymers. In contrast, multifunctional consortia that are composed
of diverse microorganisms can cope with plastic waste containing
various types of polymers more effectively due to their vast
biodegradation potential (Skariyachan et al., 2022).

3.2. Current approaches and applications
for construction of synthetic microbial
consortia in PE degradation

Current research on the development of synthetic microbial
consortia has generally followed two traditional approaches: “top-
down” and “bottom-up” (Liang et al., 2022). Top-down techniques
involve modification of environmental factors and continual
enrichment and serial dilution of natural microbial communities
derived from the environment, from which key microbial
populations can be identified and stable PE -degrading consortia
can ultimately be obtained (Lin, 2022). On the other hand,
bottom-up techniques combine isolated strains and/or engineered
microorganisms from the same or different sources, depending
on their characteristics, and optimize them via appropriate
adjustments to construct the desired functional synthetic consortia
(Ding et al., 2019).

Recently, some researchers have attempted to construct
microbial consortia/co-cultures by mixing single strains to achieve
the more efficient degradation of PE, and part investigations
on applications of microbial consortia in PE degradation are
summarized in Table 3. Park and Kim (2019) combined
Bacillus sp. and Paenibacillus sp. strains that were isolated
from landfill sediments and had PE -degradation capabilities
to construct a mixed bacterial consortium that, after 60 days
of incubation, degraded up to 14.7% of PE microparticles.
Skariyachan et al. (2016, 2021) isolated PE degrading strains from
a plastic waste disposal area and cow manure, respectively, and
then constructed PE degrading microbial consortia that achieved
higher PE degradation compared to single strains as well as
discovering that PE films lost more weight after treatment with
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the consortia than PE pellets, which is probably owing to the
large surface size and thinness of plastic films giving better
conditions for the colonization of microbes. Notably, Esmaeili
et al. (2013) demonstrated the ability of fungal–bacterial cross-
kingdom consortia to co-degrade LDPE films by burying PE films
in soil inoculated with Aspergillus and Lysinibacillus strains. The
advantage of using fungal–bacterial cross-kingdom consortia is that
fungal hyphae may represent media for the bacterial colonization of
soil that can facilitate the migration of bacterial strains beyond what
can be accomplished individually. These studies have formed the
basis for investigations into positive interactions between bacteria
and fungi that have high potential for the bioremediation of plastic
pollutants (Massot et al., 2022). Interestingly, Lou et al. (2022)
and Ruiz Barrionuevo et al. (2022) studied the gut microbial
communities of PE-fed wax worms and their larvae suggesting
that the gut microbes of invertebrates and the constructed
microbial consortia are capable of consuming and degrading plastic
polymers, thus providing a new resource for the development of
functional microbial consortia that have the capacity to degrade
PE and other types of plastics. In addition, hydrocarbon-degrading
bacteria (HCB) are prominent members of natural microbial
communities derived from the plastisphere, given the long-term
exposure to plastics, suggesting that PE enrichment cultures of
microbial communities derived from the plastisphere will provide
new potential for PE-degrading microbial communities (Harrison
et al., 2014; Delacuvellerie et al., 2022a; Wang et al., 2022). For
example, Joshi et al. (2022) screened potential LDPE-degrading
marine bacterial communities associated with the plastisphere from
plastic debris collected in coastal environments and then isolated,
identified, and evaluated potential marine bacterial strains. Finally,
they formulated an associated bacterial consortium that reduced
the weight of LDPE by 47.07 ± 6.67% within 120 days.

The current studies on the construction of functional PE
degradation consortia have focused on “bottom-up” construction
seeking to incorporate previously isolated strains with significant
efficiency of PE degradation aiming to improve the efficiency of
biodegradation significantly. Unfortunately, the lack of a clear
understanding of the key functional genes, naturally occurring
microbial symbioses, and metabolic mechanisms of isolated
PE -degrading strains currently restrict the construction of
microbial consortia through a variety of limitations, including
the existence of antagonistic effects between different strains, the
heavy workload associated with arbitrarily attempting different
microbial combinations, and the unknown metabolic mechanisms
within microbial communities. Significantly, the vast majority
of microorganisms in nature cannot be directly isolated in
the laboratory using traditional microbial culture technology
(Kaeberlein et al., 2002). Consequently, the combination of top-
down and bottom-up approaches may be able to compensate for
the deficiencies of each. The top-down selective enrichment of
natural microbial communities could provide a framework for
reconstructing PE -degrading consortia (Gilmore et al., 2019).
The application of next-generation sequencing technologies, such
as (meta)genomic and (meta)transcriptomic sequencing, could
enhance our understanding of microbial diversity, composition,
structures, functional characteristics, and metabolic activities of
natural microbial communities, thereby enabling the targeted
manipulation of synthetic functional consortia structures.

3.3. The integration of omics analysis

In recent years, genomics, metagenomics, transcriptomics, and
proteomics as well as multi omics have been increasingly applied
to the study of the microbial ecology of the plastisphere and its
plastic-biodegradation mechanisms due to the rapid development
of high-throughput sequencing (Gravouil et al., 2017; Zhang Z.
et al., 2022; Rüthi et al., 2023). Through metagenomic analysis,
the genomic information of microorganisms could be retrieved
directly from the landfill plastisphere and used to construct
genomic libraries (Culligan and Sleator, 2016). The interpretation
of the microbial community structures of the plastisphere could
uncover novel genes or enzymes involved in plastic-degradation
pathways (Purohit et al., 2020). Pinto et al. (2022) analyzed
a metagenome of seawater-derived PE biofilms after 2 years
of enrichment with LDPE as a carbon source and found that
functional genes gradually became more dominant over time. They
also identified numerous microorganisms, metabolic pathways,
and genes that could utilize LDPE and related components,
including the gene alkb. Hou et al. (2022) discovered that
biofilm formation was a distinct metabolic pathway through their
genomic analysis of two Pseudomonas strains with potential PE
-degradation capacity. Multiple genes that could encode PE -
degrading enzymes were found in both strains (Hou et al.,
2022). Gravouil et al. (2017) combined transcriptomics and
lipidomics to analyze the expression of functional genes associated
with R. ruber under PE exposure. Compared to the mannitol-
supplemented controls, the PE supplementation resulted in the
increased expression of 158 genes in R. ruber, with the most
upregulated pathways associated with alkane degradation and
fatty-acid β-oxidation. In the recent study, Gao and Sun (2021)
reported that they obtained a marine bacterial community that
effectively degraded PE and PET by screening a large number
of samples collected from plastic waste. They then combined
next-generation sequencing techniques to gain insights into the
community composition and abundance, as well as three purified
bacterial strains that were reconstituted into a synthetic functional
bacterial community that was similar to the native microbial
community. Transcriptomics was then used to elucidate the
degradation mechanisms and the expression of the upregulated
genes involved in the associated enzymes.

The integration of multi-omics analysis could not only
contribute to the elucidation of PE -degradation pathways,
microbial abundance, and community distributions, but also
effectively reveal metabolic capacities at community and individual
levels (Meyer-Cifuentes et al., 2020). In addition, the real-time
multi-omics analysis of synthetic functional consortia could be
used to monitor the dynamics and metabolic relationships between
the functional consortia and could act as a guide for the later
manipulation of population ratios and environmental parameters.

4. The exploration and development
of plastisphere

Natural microbial communities that form in ecological
environments through long-term diversification, dispersion,
selection, and drift have higher levels of complexity and diversity
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than synthetic synthetic consortia (Nemergut Diana et al.,
2013). The symbiotic relationships that are established through
interactions, such as reciprocity (commensalism and mutualism)
and resource-based competition, help to maintain the diversity
and stability of natural microbial communities (Blanchard and
Lu, 2015; Liang et al., 2022; Qin et al., 2022). Correspondingly,
the plastisphere is formed of natural microbial communities that
are tightly attached to the surfaces of plastic debris that have
been present in the natural environment for a long time. The
structures of the microbial communities in the plastisphere vary

depending on environmental factors, polymer type, and exposure
time (Kirstein et al., 2019; Zhang S. J. et al., 2022).

The concept of the plastisphere, first proposed by Zettler
et al. (2013), refers to diverse microbial communities consisting
of heterotrophs, autotrophs, predators, and symbionts, which
are attached to the surfaces of waste plastic materials. Through
the discovery of pits on the surfaces of plastic waste debris
using scanning electron microscope (SEM) techniques, it was
hypothesized that the plastisphere, as a naturally occurring
microbial ecological phenomenon, would have the potential to

TABLE 3 Microbial consortia/co-cultures constructed with capacity for polyethylene degradation.

Composition of
strains in
microbial
consortia

Sources Culture time Plastic type Weight loss Other methods References

Arthrobacter sp. and
Streptomyces sp.

Soil plastic film residues 90 days PE films – WCA, FTIR, SEM, CO2

evolution
Han et al., 2020

Bacillus sp. and
Paenibacillus sp.

Landfills 60 days PE microplastic
granules

14.70% SEM, FTIR, GC-MS,
thermogravimetric

analysis

Park and Kim, 2019

Pseudomonas aeruginosa
and Brevibacterium sp.

Laboratory isolated 30 days LLDPE stripes 7.31% FTIR Dwicania et al.,
2019a

Enterobacter sp.,
Enterobacter cloacae, and
P. aeruginosa

Cow dung 160 days LDPE films 64.25 ± 2% SEM, EDS, XRD, FTIR,
AFM

Skariyachan et al.,
2021

Acinetobacter sp. strain
NyZ450, and Bacillus sp.
strain NyZ451

Tenebrio molitor larvae
gut

30 days PE mulching films 18.74% SEM, FTIR, HT-GPC Yin et al., 2020

Aneurinibacillus
aneurinilyticus
btDSCE01, Brevibacillus
agri btDSCE02,
Brevibacillus sp.
btDSCE03 and
Brevibacillus brevis
btDSCE04

Activated sludge and
plastic contaminated soil

140 days LDPE stripes 58.21 ± 2% FTIR, SEM, AFM, EDS,
NMR, GC-MS

Skariyachan et al.,
2018

Bacillus licheniformis,
Paenibacillus
woosongensis, Vibrio
parahaemolyticus, and
Vibrio fluvialis

Plastic debris with
“Plastispheres”

120 days LDPE sheets 47.07 ± 6.67% SEM, AFM, FTIR, NMR,
TG-DSC

Joshi et al., 2022

Bacillus subtilis,
Lysinibacillus sphaericus,
Lysinibacillus fusiformis,
Alcaligenes faecalis, and
Kocuria rosea

The biomass from a
bioreactor treating

styrene

12 months Commercial LDPE
films

22.5% (under H2O2-
biostimulation)

SEM, FTIR, AFM,
TGA/DTG, GPC, GC/MS

Mohammadi et al.,
2022

Meyerozyma
guilliermondii ZJC1 and
Serratia marcescens ZJC2

Plodia interpunctella
larvae gut

60 days PE films 15.87% SEM, GC-MS Lou et al., 2022

Enterobacter sp. IS2,
Enterobacter sp. IS3, and
Pantoea sp. IS5

Soil samples from waste
disposal areas

120 days LDPE stripes and
LDPE pellets

81 ± 4 and 38 ± 3%
degradation for
LDPE strips and

LDPE pellets

SEM, FTIR. GC-FID,
tensile strength analysis

Skariyachan et al.,
2016

Aspergillus niger,
Aspergillus flavus, and
Aspergillus oryzae

Purchased 55 days LDPE bags 26.15% SEM, FTIR Dsouza et al., 2021

Rhodanobacter sp. and
Bacillus aryabhattai 5–3

Agricultural soil 60 days Polyethylene
mulching films

– SEM, AFM, FTIR, WCA Wang et al., 2023

HT-GPC, high temperature gel permeation chromatography; GC-FID, gas chromatography flame ionization detector.
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FIGURE 4

The strategy of “top-down” enrichment and “bottom-up” reconstruction combined to develop efficient PE degrading microbial consortia based on
multi-omics analysis of the natural microbial community derived from the “Plastisphere” and the functional microbial community achieved after
enrichment.

metabolize plastic waste. To date, many studies have explored the
plastisphere in aquatic ecosystems such as oceans (Delacuvellerie
et al., 2022b), lakes (Di Pippo et al., 2022), and rivers (Delacuvellerie
et al., 2022a), as well as in soil ecosystems such as farmlands (Wang
et al., 2022), mountains (Rüthi et al., 2023), and landfills (MacLean
et al., 2021), using techniques such as amplicon sequencing
and metagenome sequencing. These studies have analyzed the
microbial community structures in the plastisphere and compared
them to the microbial community structures in the surrounding
environment from the same environmental source (Zhang S. J.
et al., 2022; Zhurina et al., 2022). Moreover, the formation of
mature and stable biofilms on the surfaces of plastic debris is
required for the establishment of the plastisphere and the gradual
formation of biofilms reduces the hydrophobicity of plastic and
alters its functional groups (Tu et al., 2020; Du et al., 2022). With the
formation of biofilms, the richness and diversity of species in the
plastisphere gradually declines and the microorganisms involved
in biofilm development and plastic degradation eventually come
to dominate the microbial communities (Nguyen et al., 2022).
In this regard, studies on biofilm formation and structure in the

plastisphere may provide new ideas for consortium construction.
In the construction of synthetic consortia, the existence of biofilms
can stimulate the colonization of functional strains, stabilize
the diversity of genotypes, and protect cells from detrimental
environmental disturbances (Giri et al., 2020). Furthermore, studies
on terrestrial ecosystems, especially landfills, as they are the
most contaminated with plastic waste, have lagged significantly
behind those on aquatic ecosystems. Since landfills are perennially
contaminated with various types of plastic waste, the landfill
plastisphere contains a variety of microbial community structures
and potentially functional microorganisms that differ from those
of marine ecosystems (Kumar et al., 2021). As a result, further
research on the terrestrial plastisphere (especially in landfills,
petroleum-hydrocarbon-contaminated soils, etc.) may provide new
opportunities for the development of as yet unexplored potential
plastic-degrading microbes/genes.

In general terms, top-down strategies have been used to
selectively enrich the natural microbial communities of the
plastisphere and optimize environmental parameters to obtain
minimal and efficient plastisphere-derived PE -degrading microbial
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communities (Díaz-García et al., 2021). The studies to date
on the metagenomics of the plastisphere and its functional
microbial communities after enrichment have contributed to
the identification of core and specific microbial populations
and their ecological preferences, which could help to more
effectively manipulate the compositions of microbial communities
and comprehend the synergistic effects of strains (Zettler et al.,
2013; Pinnell and Turner, 2019). Moreover, multi-omics, i.e.,
the combination of metagenomic, transcriptomic, and proteomic
analyses, could be applied to interpret the microbial ecology of the
plastisphere at the species, gene, and metabolic levels and help us
to better understand the metabolic pathways that are involved in
the process of PE degradation (Tiwari et al., 2022). Single strains
with potential PE -degradation activities have been isolated from
enriched communities and artificially reconstructed into stable and
efficient synthetic functional consortia using bottom-up strategy,
based on an omics analysis of the original plastisphere and its
functional microbial communities, as well as a whole-genome
analysis of the single strains (Figure 4; Jia et al., 2016; Liu et al.,
2020).

5. Future perspectives toward PE
biodegradation and valorization

5.1. Current bottlenecks and potential
researches in PE biodegradation

Despite the isolation and identification of a few functional
PE-degrading microbes, the biodegradation process has been
relatively slow in the majority of recent studies, with microbial
culturing times ranging from 30 to 120 days and only minor
degradation observed using characterization techniques such as
weight loss or scanning electron microscopy. The most evident
limitation of present research is the lack of uniform criteria and
reliable methods for precisely quantifying deterioration efficiency.
Currently, the most common type of PE substrate that is utilized in
investigations is commercial PE. In addition, different studies have
used different PE types (powder, particles, pieces, or films), initial
weights, pretreatments, measurements, and culture conditions.
Therefore, it is crucial to establish standard procedures that can
be used to quantify PE degradation in subsequent studies to
evaluate the biodegradation ability of microorganisms (Zhang
Y. et al., 2022). Commercial PE also contains additives, such
as plasticizers, colorants, and antioxidants, which make PE less
degradable. It is also difficult to tell whether microorganisms
preferentially utilize the additives as preferred carbon sources
over the plastic, resulting in false positives. In addition, it is
uncertain whether the various additives have negative impacts
on the process of microbial biodegradation due to their levels
of toxicity. Therefore, it is recommended that further studies
eliminate additives and other contaminants using pretreatment
processes, such as extraction, prior to investigating biodegradation
(Ferreira et al., 2022). Alternatively, the integration of strains with
specific degradation additives into synthetic consortia could be
effective in both degrading the various additives and resolving PE
polymers in synergy with other functional bacteria in the consortia.

Moreover, the low enzyme production capacities and simple
enzymatic systems of single strains, as well as the lack of
discovery of efficient specific enzymes for PE degradation in
studies to date, render single strains incapable of effectively
tackling the complex PE -degradation process. Therefore, it
is suggested that both the exploration of novel efficient PE-
degrading enzymes/genes and the investigation of degradation
mechanisms be strengthened in future research. Additionally,
the combination of genetic engineering and enzyme engineering
technologies could help with the engineering of efficient PE-
degrading-enzyme-producing bacteria and the enhancement of
related enzyme activities. Various abiotic (e.g., temperature, UV,
dissolved oxygen, humidity, pH, etc.) and biotic (e.g., microbial
diversity and abundance, microbial enzymatic activity, etc.) factors
affect the process of microbial PE degradation (Maity et al., 2021).
Thus, different factors, including environmental parameters and
culture conditions, should be considered to establish the optimal
conditions for PE biodegradation.

As the production and properties of byproducts from PE -
biodegradation pathways are not currently fully understood, there
is an urgent need for additional studies on the properties of these
byproducts and their implications for later-stage fermentation and
environmental toxicity.

Remarkably, the majority of previous studies have focused
on the degradation of large pieces of PE. In contrast, there
has been a lack of studies on PE micro/nanoplastics, which are
relatively tiny in size and well-hidden in the environment. These
micro/nanoplastics are not as easily collected and disposed of as
large pieces of plastic and, as they absorb enormous quantities
of dangerous compounds during their movements around the
environment, they significantly enhance the difficulty of plastic
degradation (Liu et al., 2022a). For this reason, there is still a need to
further investigate collection methods for and the biodegradation
of PE micro/nanoplastics in the environment.

The microbial community structures and associated biofilms
of the plastispheres in different ecosystems polluted by plastic
waste have not been fully explored, particularly those in
terrestrial ecosystems; hence, comprehensive multi-omics studies
should be conducted to reveal the biodiversity, biofilm-formation
mechanisms, and biodegradation capacity of these plastispheres
in the future. Additionally, microbial metabolic engineering based
on recombinant DNA or gene-editing technology may be effective
to some degree in solving the limitations of PE-degrading
single strains, such as poor degradation ability and low enzyme
production capacity, thereby enhancing the metabolic activities of
PE -degrading strains and significantly enhancing their biological
degradation efficiency (Sharma and Shukla, 2022). Engineered
microorganisms with high efficiency for degrading PE that are
obtained through recombinant DNA technology or gene editing
may have potential for future large-scale industrial applications.

5.2. The potential approaches for
PE-valorization

Especially remarkable is the fact that, with the severe damage
to the environment caused by conventional plastic disposal
methods, more economically and environmentally acceptable
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plastic valorization is now increasingly being proposing and
developed to address the ever-increasing volume of plastic waste.
The valorization of waste plastics aims to maximize the value of
plastic waste by recycling, upcycling, biodegradation, or energy
recovery to dispose of the plastic waste in more sustainable
ways and/or to transform them into brand new and functional
products (Hou et al., 2021; Zhang F. et al., 2022; Table 4). Residual

bulk plastic waste can be processed by either mechanical or
chemical recycling, which involves manufacturing waste plastics
into homogeneous or homologous renewable plastic products
or breaking them down into their constituent molecules and
applying them to produce other products, such as fuels, chemicals,
etc. (Ragaert et al., 2017). Nowadays, the most common and
time-efficient method of recovering energy from waste plastics is

TABLE 4 Potential products and application area of waste plastic valorized via different strategies and technical routes.

The forms of
valorization

Tethnological processes Potential products Application fields References

Recycling Primary (closed-loop) recycling New plastic products – Hou et al., 2021

Secondary (mechanical) recycling

Tertiary (chemical)
recycling

Pyrolysis, gasification,
and

depolymerization,
etc.

Gases, liquids (olefins, alkanes and other
hydrocarbon compounds, gasoline),
waxes, lubricants, monomers or oligomer

Energy resources, chemical
feedstock

Lee et al., 2021

Upcycling Chemical upcycling Thermochemical
catalysis

Lightweight tiles, Plastic lumber, Bricks
and blocks

Construction materials Dhawan et al., 2019;
Awoyera and
Adesina, 2020

Liquids (naphtha, lubricants), chemicals
(long-chain alkyl aromatics) and solid
waxes

Chemical feedstock, fuels Zhang F. et al., 2020;
Dai et al., 2021; Jia

et al., 2021

Pollutants adsorbent Wastewater
Treatment/Environmental

remediation

Zhang H. et al., 2020

Surface coatings for commercial fabrics Textile Wu et al., 2022

Combined materials (porous carbon
nanosheets, graphene foil, zwitterionic
hydrogel), carbon materials, new
polymers, composite materials

Functional materials Gong et al., 2014;
Zhuo and Levendis,

2014; Cui et al., 2017;
Ayana et al., 2022;
Yue et al., 2022a,b

Gas or liquid fuels (H2 , bio-oil, bio-crude
oil, synthesis gas)

Energy resources Nanda and Berruti,
2021

Photocatalysis Fuels (H2), chemicals (HCOOH, C2H4 ,
C2H6 , CH3COOH), and new polymers

Energy resources, chemical
feedstock, functional

materials

Zhou et al., 2022

Electrocatalysis Modified polymers, H2 , organic acids,
hydrocarbons

Energy resources, chemical
feedstock, functional

materials

Zhou et al., 2022

Biological upcycling living
organisms/enzymes

Biofuels (ethanol, hexadecanoate,
methane)

Energy resources Gluth et al., 2022

Chemicals (succinic acid, wax esters, fatty
acids, biosurfactants)

Chemical feedstock, Food
industry, pharmaceuticals,

cosmetics

Ru et al., 2020;
Gregory et al., 2023

Bio-based materials polyhydroxyalkanoate Packaging, agriculture, and
medical materials

Guzik et al., 2014

Proteins, peptides, and amino acids Animal feed Sangiorgio et al.,
2021; Schaerer et al.,

2023
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FIGURE 5

A general overview of plastic waste bio-upcycling.

incineration, whereby part of the heat generated by the incineration
process is recovered and applied to heat or electricity generation
(Damayanti et al., 2022). Unfortunately, conventional recycling or
directly incinerating plastic waste has many shortcomings, namely
the labourious processes of collection, sorting and cleaning, the
finite recycling times, exorbitant costs, the emission of hazardous
residues and the unsuitability for heavily weathered plastic debris or
micro/nano plastics (Lomwongsopon and Varrone, 2022). Instead,
upcycling of plastic waste via chemical or biological methods into
smaller molecules and transforming these molecules into new and
valuable products is gradually appearing to be an attractive and
more eco-friendly route to valorizing plastics in order to maximize
the value of post-consumer plastics while minimizing the amount
of plastic waste being directly discarded into the environment (Hou
et al., 2021). The current studies on the upcycling of PE and other
plastic wastes mainly focuses on the production of plastic wastes
into fuels, high-value chemicals and multifunctional materials by
chemical reactions including thermochemical catalysis (hydrolysis,
oxidation, tandem catalysis, and carbonization), electrocatalysis,
and photocatalysis, which will be widely applied in various fields
such as energy, chemicals, medicine, construction, and textiles
(Zhou et al., 2022).

The bio-upcycling of plastic waste is more sustainable and
reaction conditions are more moderate than chemical processes.

Combining biodegradation and upcycling of plastic waste enables
to treat the non-recyclable plastic waste in the environment
as well as to overcome the issue of product and by-product
treatment during degradation of plastics. For one thing, the
by-products and products derived from the biodegradation of
PE could be taken directly into fuels or platform chemicals
such as hydrogen, methane and various alkanes, fatty acids,
etc. For the other hand, the oligomers or monomers obtained
from the biodepolymerization of plastic can be biotransformed
by engineered microbial cell factories to produce various value-
added products (e.g., biofuels, fine chemicals, bio-based materials,
biosurfactants, etc.) by upcycling (Guzik et al., 2014; Ru et al.,
2020; Hou et al., 2021; Jehanno et al., 2022; Figure 5). Significantly,
there is still relatively few studies on the upcycling of plastic waste,
especially polyolefins such as PE, by microorganisms or enzymes
given that there is limited understanding around the mechanisms
of plastic biodegradation. The strategy of integrating microbial
consortiums with multi-omics can further suggest a new vision on
the bio-upcycling of plastic waste. The application of multi-omics
will contribute to the deeper insights on the metabolic mechanisms
of plastic biodegradation and the understanding of microbial
interactions between microbial communities. The rational design
and synthesis of the microbial consortia’s composition and the
pathways of microbial metabolism would be more favorable
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to the promising biotransformation into a larger variety of
potential products of plastic biodegradation, thereby extending
the range of products that can be produced through upcycling of
plastic waste.

Furthermore, the adoption of gene engineering, metabolic
engineering and other technologies allow further enhancement
of functional strains and optimization of metabolic pathways
for more efficient and targeted biotransformation into different
products or specific chemicals derived from waste plastics
(Sullivan et al., 2022).

6. Conclusion

The prevalence of plastic waste and micro/nanoplastic
pollution has always been a great challenge facing environmental
remediation. Traditional plastic disposal methods have not been
effective in solving the global plastic waste pollution problem,
which is becoming increasingly serious. However, recent studies
on plastic biodegradation have led to new perspectives on the
sustainable disposal of plastic waste and the discovery of an
increasing number of microbes and other invertebrates that
are involved in plastic degradation. PE is the most widespread
and recalcitrant petroleum-based plastic and the study of its
biodegradation has received considerable interest over the
years. The microorganisms and other organisms involved
in the degradation of PE have been extensively explored in
the literature; however, there have been no breakthroughs
in the study of PE biodegradation, particularly regarding
the mechanisms of PE degradation and the identification
of specific PE depolymerases. Recent studies have examined
the constraints that single strains encounter when trying
to degrade PE, and progressive efforts have been made to
combine several strains to develop more effective consortia or
co-cultures. Compared to single strains, functional microbial
consortia offer many advantages in degrading plastic waste;
however, the lack of an understanding of the byproducts and
mechanisms of PE degradation has limited the development of
artificial functional consortia for PE degradation, which was the
focus of this review.

Considering the existing bottlenecks in the construction of
PE-degrading consortia and the pros and cons of each strategy,
we propose combining top-down and bottom-up approaches
for the synthesis of efficient PE-degrading consortia. In this
way, the selective, top-down enrichment of natural microbial
communities can be applied to optimize community functions,
and the enriched communities can undergo omics analyses of
their functions and community structures to help us better
understand the microbial PE -degradation mechanisms and
microbial interactions at play within the communities. The
insights into microbial communities achieved using top-down
strategies could contribute to a more reasonable and appropriate
bottom-up synthesis of functional PE -degrading consortia. The
plastisphere is a new ecological niche that spontaneously forms
on plastic debris and is closely associated with plastic polymers.
Investigating the microorganisms or microbial communities that
grow in the plastisphere could uncover principal sources of novel
PE-degrading microorganisms/microbiota. The combination of

genomic, transcriptomic, metagenomic, and other omics/meta-
omics analyses could help to unravel the microbial diversity
and community composition of the plastispheres in different
ecosystems and the metabolic relationships between microbes,
which could also enable the discovery of core microbiota and key
pathways/genes for PE degradation and provide a foundation for
the subsequent construction of functional consortia.

We close with a discussion of concerns and bottlenecks
in the existing studies on PE biodegradation as well as
some insights into the topics that should be considered in
future research. Due to insufficient study of the mechanisms
of PE biodegradation, the construction of effective microbial
consortia currently faces numerous obstacles. In addition, the
safety and stability of synthetic microbial consortia and the
regulation of coexistence between microorganisms could represent
challenges for future research due to the dynamic nature
of microbial communities, biological variability, and various
other uncertainties.
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