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A forest fire smoke detection
model combining convolutional
neural network and vision
transformer

Ying Zheng, Gui Zhang*, Sanqing Tan, Zhigao Yang, Dongxin Wen

and Huashun Xiao

College of Forestry, Central South University of Forestry and Technology, Changsha, China

Forest fires seriously jeopardize forestry resources and endanger people and

property. The e�icient identification of forest fire smoke, generated from

inadequate combustion during the early stage of forest fires, is important for

the rapid detection of early forest fires. By combining the Convolutional Neural

Network (CNN) and the Lightweight Vision Transformer (Lightweight ViT), this

paper proposes a novel forest fire smoke detection model: the SR-Net model that

recognizes forest fire smoke from inadequate combustion with satellite remote

sensing images. We collect 4,000 satellite remote sensing images, 2,000 each

for clouds and forest fire smoke, from Himawari-8 satellite imagery located in

forest areas of China and Australia, and the image data are used for training,

testing, and validation of the model at a ratio of 3:1:1. Compared with existing

models, the proposed SR-Net dominates in recognition accuracy (96.9%), strongly

supporting its superiority over benchmark models: MobileNet (92.0%), GoogLeNet

(92.0%), ResNet50 (84.0%), and AlexNet (76.0%). Model comparison results confirm

the accuracy, computational e�ciency, and generality of the SR-Net model in

detecting forest fire smoke with high temporal resolution remote sensing images.

KEYWORDS

forest fire smoke, detection model, convolutional neural network, vision transformer,

lightweight model

1. Introduction

Forest fires pose a serious threat to forest resources and people’s lives and property. In

the early stages of a forest fire, the low temperature makes it difficult for satellites detection.

However, inadequate combustion of combustible materials produces large amounts of

smoke (Wang Z. et al., 2022), presenting from the ignition to the extinguish of forest fires.

Therefore, forest fire smoke could be an important indicator of the occurrence of early forest

fire. Timely capture of forest fire smoke allows earlier detection of forest fires compared to

the monitoring of infrared reflections of forest fires. Recent development in “high-altitude”

satellite remote sensing technology (Zhang et al., 2022) makes it possible to detect forest

fire smoke with remote sensing satellites. The application of remote sensing satellites in

detecting forest fire smoke not only remedies the defects of “low-altitude” cameras in forest

areas, including small monitoring range, poor stability, and high cost (Jia et al., 2016; Wu

et al., 2020; Govil et al., 2022), but also solves the issues of “mid-altitude” Unmanned Aerial

Vehicles (UAV), including constraints of air traffic controls andweather conditions and short

endurance (Allison et al., 2016; Howard et al., 2018; Pérez-Rodríguez et al., 2020). Moreover,

satellite remote sensing obtains timely and accurate information on forest fire smoke given
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its advantages of large detection range, short response time, and

strong anti-interference ability (Li et al., 2015; Filonenko et al.,

2018). Although the infrared detection of high-temperature sites

has been extensively studied, there is limited research on the

application of satellite remote sensing in monitoring forest fire

smoke for early-stage forest fire detections.

The essential of forest fire smoke detection with satellite

remote sensing is the accurate identification of forest fire smoke,

which requires constructing and optimizing the forest fire smoke

identification algorithms. Xie et al. (2007) propose a multi-channel

threshold method based on MODIS data, which eliminates pixels

of other land objects in the research area, by choosing different

thresholds, to extract smoke pixels. Compared with their model,

the model obtained by network training using deep learning

can significantly improve the detection accuracy of the forest

fire smoke (Zhu et al., 2017). Based on multi-temporal and

multi-spectral features, Chrysoulakis et al. (2007) use the multi-

image temporal differentials algorithm to improve forest fire

smoke detection. Their method identifies the forest fire smoke by

discriminating the images of smoke from other ground objects

with spectral differences. Convolutional Neural Networks (CNN),

as a representative algorithm of deep learning, has promising

applications in the field of image classification (Li et al., 2015; Zheng

et al., 2019) and has been applied to forest fire smoke detection

of satellite remote sensing images (Zheng et al., 2022). Li et al.

(2019) propose a forest fire smoke identification model based on

the Back Propagation Neural Network (BPNN). By integrating

the multi-threshold approach and the BPNN classification, their

method, trained with MODIS data, detects smoke by examining

the spectral characteristics among the forest fire smoke and other

land objects. Ba et al. (2019) further improve the accuracy of

CNN for forest fire smoke detection with remote sensing images

by incorporating spatial and channel-wise attentions in CNN to

comb spatial features and other information from medium and

high spatial resolution satellite remote sensing images. Vision

Transformer (ViT), proposed by Google in 2020, is a model

that applies Transformer to image classification and recognition

(Bazi et al., 2021). Compared to CNN, this model has a better

recognition performance with great extensibility, since it learns

more comprehensive target features (Han et al., 2022). ViT can

outperform CNN given sufficient samples for pre-training. In the

area of image classification and recognition, ViT is pre-trained

using large-scale datasets (containing ∼1.4–3 billion images) and

migrated to small or medium-scale datasets to undertake specific

tasks, achieving 94.55% accuracy on the CIFAR-100 dataset (Bazi

et al., 2021). Unlike CNN, which has inductive bias, ViT requires

more data for training to avoid over-fitting. The inductive bias,

also called prior knowledge, of CNN, specifically refers to two

main aspects: first is its locality, that is, the CNN considers that

adjacent regions on the image have adjacent features; and second is

its transitional invariance, which means the detection target always

has the same prediction label no matter where it is moved to in the

image. Without these two aspects, ViT requires relatively more data

to learn a better model than CNN. However, due to the constraints

of the in-orbit lifetime of remote sensing satellites, geographical

coverage, and other conditions, there is only limited amount of

remote sensing image data. It is difficult to obtain a dataset of

remote sensing images, containing forest fire smoke, that large

enough to avoid overfitting when training the Vit model (Zhang

et al., 2018). How to accurately identify forest fire smoke with small-

scale remote sensing image datasets is the key research question for

effective remote sensing detections of forest fire smoke.

To address this question, this paper proposes a novel forest

fire smoke detection model: the SR-Net model by combining

CNN and Lightweight ViT. We construct a small-scale remote

sensing image dataset using high temporal resolution remote

sensing images from the Himawari-8 geostationary satellite. The

front part of the SR-Net model uses CNN for inductive bias, and

the back part uses the global attention of Lightweight ViT. We

confirm that the SR-Net model can detect a forest fire smoke with

higher accuracy and less training resources. The study compares

and analyzes the performance of SR-Net with benchmark models

including: AlexNet, MobileNet, GoogLeNet, and ResNet50 models

to comprehensively assess the application potential of SR-Net for

forest fire smoke detections. We document supportive evidence

that the SR-Net consistently outperform all benchmark models

in terms of Accuracy, Precision, Recall, F1-Score, and Kappa

Coefficient on both the validation and test sets.

Overall, our paper makes the following contributions to the

existing literature:

First, there have been very few studies on forest fire smoke

detection with remote sensing satellites. Previous studies like Li

et al. (2015) and Ba et al. (2019) use imagery datasets collected from

polar orbit satellites. In this paper, we extent existing studies by

constructing the dataset originating from the Himawari-8 satellite

with high-temporal resolution. Our dataset not only allows forest

fire smoke detection with different spatial satellites but also leads

to the timely detection of forest fire smoke, which improves the

monitoring of early forest fires.

Second, the state of the art in pattern classification and

recognition is the CNN and ViT models and both models

have limitations in forest fire smoke detection. Unlike CNN,

ViT does not have inductive bias. Although ViT outperforms

CNN, it requires large amounts of data for pre-processing.

However, only limited remote sensing images containing forest

fire smoke are available since the remote sensing data collection

is limited by conditions such as the in-orbit lifetime of remote

sensing satellites.

The proposed SR-Net model is an innovative lightweight

model tailored to forest fire smoke detection with limited remote

sensing imagery data. The SR-Net model combines the advantages

of both CNN and ViT models. The number of parameters

of the SR-Net model is lowered to six million, indicating

significantly lower computational consumption. Compared to

existing models, our model is superior in computational efficiency,

generalization capability, robustness to environmental disturbance,

and recognition accuracy. Further application of our model in

forest fire detection could be promising.

The rest of this paper is organized as follows. Section 2

introduces our new constructed dataset, presents the proposed

model, and illustrates the evaluation and visualization methods.

Section 3 reports the results of experiments and the comparison

of models. Section 4 discusses the empirical results. Finally, we

conclude the paper in Section 5.
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FIGURE 1

Forest fire smoke spots and examples of forest fire smoke images from some of these spots. (A) Denotes China, and (B) denotes Australia.

2. Materials and methods

2.1. Data acquisition and processing

The remote sensing image data used in the study are derived

from the Himawari-8 geostationary satellite. The Himawari-8

satellite has the advantages of high timeliness and stable data

quality (Yumimoto et al., 2016). Therefore, compared with polar

orbit satellites, the Himawari-8 satellite can provide more timely

feedback of remote sensing image information (Jang et al., 2019).

In the study, the full-disk remote sensing images of the

Himawari-8 satellite are first acquired. The forest fire smoke spots

are marked in Figure 1, which can be seen more directly. And the

specific information of remote sensing images containing forest fire

smoke is derived from the confirmed historical forest fires, whose

specific acquisition date, location, longitude, and latitude are shown

in Table 1, in forest areas of China and Australia. What’s more, the

remote sensing images containing clouds are acquired through the

random samplingmethod. And then, we extract three visible bands:

Band1, Band2, and Band3 of remote sensing images (Table 2).

Finally, true color remote sensing images are synthesized by these

three bands for model training, validation, and testing, and are pre-

processed, including geometric correction, radiometric calibration,

and atmospheric correction, to compensate for distortions in the

imaging process.

As clouds and forest fire smoke are similar in color, shape and

other features on true color remote sensing images, the accurate

differentiation between clouds and forest fire smoke is crucial

for early warning of forest fires. After pre-processing, we clip

and classify these true color remote sensing images, of which
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TABLE 1 Specific acquisition information of date, location, longitude, and latitude of remote sensing images containing forest fire smoke.

Date Location Longitude and latitude

2020.3.29 Lijiang City, Yunnan Province 100.9838E, 26.9710N

100.0690E, 26.7162N

101.0687E, 26.9808N

2020.3.30 to 2020.3.31 Xichang City, Sichuan Province 101.3214E, 27.9653N

2021.1.7 Ganzi Tibetan Autonomous Prefecture, Sichuan Province 100.4013E, 28.8039N

100.8957E, 28.0091N

101.6373E, 28.3334N

2021.2.20 Border of Henan Province with Shanxi Province 113.1757E, 35.4786N

2019.3.29 to 2019.3.30 Changzhi City, Shanxi Province 112.5494E, 36.7741N

2021.10.27 to 2021.10.28 Linzhi City, Tibet 97.3856E, 28.8735N

2022.8.21 Banan District, Chongqing City 105.1694E, 29.1426N

105.7187E, 28.6761N

2019.12.21 to 2019.12.31 Queensland, Australia 143.4869E, 18.9582S

2015.11.20 to 2015.11.27 Queensland, Australia 146.6235E, 26.2343S

142.5751E, 18.3024S

144.3109E, 19.8391S

143.2782E, 17.8637S

2019.9.7 to 2019.9.16 Queensland, Australia 143.0585E, 17.0673S

144.9701E, 17.9369S

2019.10.9 to 2019.10.15 Queensland, Australia 152.5122E, 28.9793S

115.9222E, 33.5917S

133.1982E, 13.9874S

2019.12.21 to 2019.12.31 New South Wales, Australia 151.3312E, 31.5785S

150.2216E, 33.2387S

152.2650E, 26.4607S

2019.12.21 to 2019.12.31 Queensland, Australia 143.4869E, 18.9582S

143.2535E, 19.8081S

TABLE 2 Information of the Band 1, Band 2, and Band 3 of the Himawari-8 satellite.

Band Central wavelength Temporal resolution Numbers of pixels

(µm) (min.)

Band 1 0.46 10 11,000 ∗ 11,000

Band 2 0.51 10 11000 ∗ 11,000

Band 3 0.64 10 22,000 ∗ 22,000

2,000 sample images contained clouds and 2,000 sample images

contained forest fire smoke, with fixed size and bit depth. Figure 2

shows typical remote sensing sample images of cloud and forest fire

smoke. The forest fire smoke is marked with red arrow and the

cloud is marked with green arrow. According to models’ training

rules based on small-scale datasets, the remote sensing sample

images of cloud and forest fire smoke are randomly selected in the

ratio of 3(Training Set): 1(Validation Set): 1(Test Set), respectively,

each containing 1,200, 400, and 400 remote sensing sample images.

The Training Set is used to fit the parameters of the forest fire smoke

detection models, the Validation Set is used to adjust the hyper-

parameters of the model and evaluate the fitted model, and the Test

Set is used to evaluate the performance and verify the generalization

ability of the model.

2.2. Model structure and implementation

CNN focuses only on local features with translation invariance

and rotation invariance, but there is still room to improve its
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FIGURE 2

Example remote sensing sample images of cloud (marked with green arrow) and forest fire smoke (marked with red arrow).

performance, for instance, it holds a limited amount of spatial

information (Kattenborn et al., 2021). Compared with CNN, ViT

performs better but has shortcomings, such as the large model size,

which makes training more difficult; the need to use large-scale

dataset for inductive bias in advance; and the need to add additional

decoders for migration to downstream tasks (Wei et al., 2022).

In this paper, we draw on the advantages of CNN and ViT to

propose a new lightweight forest fire smoke detection model (SR-

Net). The proposed SR-Net model takes into account the difficulty

of obtaining sufficiently large-scale remote sensing datasets of forest

fire smoke and optimizes the learning effect of themodel on a small-

scale remote sensing dataset of forest fire smoke. The network

structure of the SR-Net model is shown in Table 3.

The main body of the SR-Net model uses the Inverted Residual

Block, similar to MobileNet, with the input of low-dimensional

features and uses Pointwise (PW) Convolution to reduce the

computational complexity (Can et al., 2021).

Firstly, the channels of the feature pattern are expanded

through the 1 × 1 PW convolution to enrich the number of

features. Secondly, features are extracted through Depthwise (DW)

Convolution, which can reduce the number of parameters and

computational burden. The Depthwise Separable Convolution is

one of the important part of Mobilenet V2, whose small number

of parameters and computational effort compensates for the large

computational effort of the ViT, allowing the model to achieve a

Input: Feature map DfDf

Step 1 & 2: DGDGM = DfDf MAC DkDk

Step 3:

DGDGN = Conv1_1(ReLU (BN (DGDGM)))

Output: DGDGN

Algorithm 1. Depth wise separable convolution.

balance between efficiency and accuracy. The DWConvolution has

three steps. In the first step, a convolution kernel of size DkDk is

used on an input feature image of size DfDf to do the Multiply

Accumulation operation. In the second step, the convolution frame

is slid in a left-to-right, top-to-bottom order and with a certain step

size. The operation in the first step is repeated to obtain a single-

channel feature image of size DGDG. In the third step, the feature

images of DGDGM dimension are kept as the output features of

this layer. And the output feature image of DW convolution is

processed by the Batch Normalization layer and activation function

and then input to the PW Convolution layer. The PW convolution

layer uses N convolution kernels of 1∗1 size to map the feature

image from the M-dimensional linear space to the N-dimensional

space to obtain the output feature image of DGDGN. From the

above process, the precise algorithm is given in Algorithm 1.

Frontiers in Forests andGlobal Change 05 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1136969
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Zheng et al. 10.3389/�gc.2023.1136969

TABLE 3 The network structure of the SR-Net model.

Output size SR-Net Model

128 × 128 Conv, 3 × 3, 16, stride 2












Conv, 1 × 1, 16

DWconv, 3 × 3, 64

Conv, 1 × 1, 32













× 1

64 × 64













Conv, 1 × 1, 32

DWconv, 3 × 3, 128

Conv, 1 × 1, 64













× 3

32 × 32













Conv, 1 × 1, 64

DWconv, 3 × 3, 256

Conv, 1 × 1, 96













× 1

Lightweight VIT Block × 2

16 × 16













Conv, 1 × 1, 96

DWconv, 3 × 3, 384

Conv, 1 × 1, 128













× 1

Lightweight VIT Block × 4

8 × 8













Conv, 1 × 1, 128

DWconv, 3 × 3, 512

Conv, 1 × 1, 160













× 1

Lightweight VIT Block × 3

Conv, 1 × 1, 640, stride 1

1 × 1 Average Pool, 7 × 7, stride 1

FC, Softmax, 2

In this table, “Conv” means convolution, “DWconv” means Depthwise Convolution,

“Lightweight VIT” means Lightweight Vision Transformer, and “FC” means Fully

Connected Layer.

Finally, convolution is used to downscale the output features to

build a highly accurate deep network structure (Figure 3).

Meanwhile, the SR-Net model is alternatively added the

Lightweight Vision Transformer (Lightweight VIT) Block to its

network (Figure 3). To be specific, after the extraction of local

features through convolution layers, the features are embedded

into patches. And then the global information is obtained using

the Multi-head Attention and Multilayer Perceptron (MLP). The

Multi-headed attention is a mechanism that can be used to improve

the performance of the general Self-attention layer (Li et al.,

2021). The Single-headed attention layer restricts the ability of

the model to focus on one or more specific locations without

simultaneously affecting the attention to other equally important

locations. This is achieved by giving the attention layer a different

representation subspace. To be specific, different attention heads

use different query, key, and value matrices. These matrices, due

to random initialization, can project the trained input vectors

into different representation subspaces and are processed by

multiple independent attention heads in parallel, with the resultant

vectors aggregated and mapped to the final output. The process

of the Multi-head Self-attention mechanism can be expressed as

Algorithm 2.

Input: Feature Map F

Step 1: Patches = Patch Embedding (F)

Step 2: X,Y,Z = Linear Projection(Patches)

Step 3:

Qi = XWQi , Ki = YWKi , Vi = ZWVi

Step 4:

Zi = Attention (Qi, Ki, Vi) , i = 1 . . . h

Step 5: MultiHead(Q, K, V) =

Concat (Z1, Z2, . . . , Zh)W
o

Output: MultiHead Result

Algorithm 2. Vision transformer.

In Algorithm 2, i denotes the header number, the number

range is 1 to h. WO
∈ Rhdv×dmodel denotes the output projection

matrix. Zi denotes the output matrix of each head. WQi ∈

Rdmodel×dk ,WKi ∈ Rdmodel×dk ,WVi ∈ Rdmodel×dv are three different

linear matrices. Similar to the Sparse Connectivity of convolution,

the Multi-head attention uses a dmodel/h-dimensional vector to

separate the input into h separate attention heads and processes the

features of each head in parallel. With no additional computational

cost, the Multi-head attention mechanism enriches the diversity of

feature subspaces.

The following is that the MLP is applied to integrate the

information and the Skip Connection structure is applied to

enhance the stability of the training. The integrated information is

reassembled into a new feature pattern.

The final part of the SR-Net model uses Global Average Pooling

to extract the individual channel information, and uses Softmax

Logistic Regression to output the category information. Eventually,

different features are extracted by the SR-Net model.

In this experiment, the Adam optimizer is chosen to minimize

the cross entropy loss function. The Adam optimizer which

can automatically adapt different learning rates for different

parameters, is better than SGD optimizer that uses the same

learning rate for each parameter update. The parameters of the

model are set to A-0.9 and the learning rate is 1e-4. And the model

is trained for a total of 100 Epochs.

2.3. Model evaluation and visualization

When the number of positive and negative samples in the

dataset is balanced, the confusion matrix, which relates the true

labels to the ones detected by each model (De et al., 2022), is a

reliable method to count the classification results of the model. By

jointly analyzing the amount of correct and mismatched true and

detected labels, this method provides a direct assessment of the

model’s ability to predict both positive and negative cases (Table 4).

In this study, the positive case denotes the forest fire smoke, and the

negative case denotes the cloud.

When facing large amounts of data or multiple confusion

matrices, it is difficult to accurately assess the detection capability

of a model with a single confusion matrix. This requires the

introduction of secondary indices based on the confusion matrix,

including Accuracy (proportion of samples with correct detections

out of all samples.), Precision (proportion of samples identified
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FIGURE 3

The network structure of the proposed SR-Net model. In this figure, “Conv” means convolution, “s” means stride, “Lightweight vit” means Lightweight

Vision Transformer, and “Inductive Conv” means convolution layers used to perform inductive bias.

TABLE 4 The basic confusion matrix of forest fire smoke detection.

True label Detection label

Forest fire smoke Cloud

Forest fire smoke Correctly identified True label is forest fire smoke

Forest fire smoke samples Detected label is cloud

Cloud True label is cloud Correctly identified

Detected label is forest fire smoke Cloud samples

by the model as one class that are actually in that class), Recall

(proportion of samples correctly detected by model as one class

to the total number of that class), and even the tertiary index F1-

Score (relation between Recall and Precision values) (Salih and

Abdulazeez, 2021). The above secondary and tertiary indices allow

for a standardized evaluation parallel comparison of models by

transforming the quantitative results in the confusion matrix into

ratio results between 0 and 1. The indices introduced are calculated

based on Equations (1–4). Among these indices, to improve

Precision, models tend to make predictions only when they are

certain enough, which can result in unsure samples being missed

due to over-conservatism, resulting in a lower Recall. Therefore, to

achieve the best balance between Precision and Recall, the detection

ability of the model is better when the result of the F1-score, which

is calculated from Precision and Recall, is close to 1.

Accuracy =
T1 + T2

T1 + F1 + F2 + T2
. (1)

Precision =

(

T1
T1+F2

+
T2

T2+F1

)

2
. (2)
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Recall =

(

T1
T1+F1

+
T2

T2+F2

)

2
. (3)

F1 Score =
2× Precision× Recall

Precision+ Recall
. (4)

In Equations (1–4), T1 represents the number of correctly identified

forest fire smoke samples by the model, T2 represents the number

of correctly identified cloud samples by the model, F1 represents

the number of forest fire smoke samples being detected as cloud,

and F2 represents the number of cloud samples being detected as

forest fire smoke. The indices are all macro-average, which directly

adds and then averages each index of positive and negative cases,

giving the same weight to index of each case.

The generalization ability of the model is a key index for

evaluating its application range (Caroline and Mariana, 2022),

which can be assessed by plotting the Receiver Operating

Characteristic (ROC) curve, calculating the Area Under the ROC

Curve (AUC), and introducing the Kappa coefficient. The ROC

curve provides a visual indication of the model’s detecting ability

by incorporating both Precision and Recall and is independent

of the decision threshold (Obuchowski and Bullen, 2018). The

closer the curve is to the upper left (0, 1) coordinate, the better

detecting ability the model has. The AUC is a comprehensive

measure of the effectiveness of all possible classification thresholds.

The closer the AUC is to 1, the more realistic the detection model

is, and the higher value it has for application. The Kappa coefficient

assesses the consistency of detection results with the actual situation

through attempting to renormalize a debiased estimate of Accuracy

(Powers, 2020). When the Kappa coefficient is in the range of

0.61–0.80 (Dettori and Norvell, 2020), it means that the detection

label is substantially consistent with the true label, and the model

detects well. When it is in the range of 0.81–1, it means that the

detection label is almost identical to the true label, and the model

detects perfectly. The kappa coefficient is calculated according to

Equation (5).

Kappa coefficient = K0−Ke
1−Ke

, (5)

where K0 = Accuracy,

Ke =
(T1+F1)×(T1+F2)+(F1+T2)×(T2+F2)

(T1+T2+F1+F2)
2 .

In Equations (5), T1 represents the number of correctly identified

forest fire smoke samples by the model, T2 represents the number

of correctly identified cloud samples by the model, F1 represents

the number of forest fire smoke samples being detected as cloud,

and F2 represents the number of cloud samples being detected as

forest fire smoke.

As for the visualization, CNN, known as black box operations,

often has outputs that are difficult to interpret (Wu et al., 2018).

However, the Gradient-weighted Class Activation Mapping (Grad-

CAM) makes the CNN transparent through visual interpretation

without modifying or retraining the model structure. The Grad-

CAM can visualize the attention distribution on which the model

detection is based. Hence, when the attention distribution appears

to be inconsistent with the position of the detection object, such as

the forest fire smoke, in original images or the model does not fit

well, Grad-CAM can target the reason for model failure. This kind

of visual comparative assessment can examine the forest fire smoke

detection model for model bias, increase the persuasion of model

effects, and enhance confidence from users in model detection

results (Selvaraju et al., 2020).

In this study, we evaluate the detection of forest fire smoke

by AlexNet, MobileNet, GoogLeNet, and ResNet50 models,

which have a wide range of applications in the field of image

classification and recognition. Among them, AlexNet deepens

the net and replaces the activation function (Krizhevsky et al.,

2017). MobileNet uses linear bottlenecks and inverted residuals to

reduce the number of parameters and computation (Brijraj et al.,

2019). GoogLeNet uses inception block to combine the outputs of

convolutional kernels of different sizes for channel merging, which

reduces the model complexity (Chen et al., 2022). And ResNet50

uses residual block with residual connections and introduces the

Batch Normalization, so that deeper networks will have better

performance (Mahdianpari et al., 2018). By comparing the forest

fire smoke detection effects of the above four models with the

proposed SR-Net model, this study analyzes the potential of the

SR-Net model for forest fire smoke detection.

3. Results

This study proposes a forest fire smoke detection model (SR-

Net) combining CNN and Lightweight ViT using small-scale

remote sensing dataset. We compare and analyze the effectiveness

of the SR-Net model with AlexNet, MobileNet, GoogleNet, and

ResNet50 models for the detection of forest fire smoke by

employing confusion matrices and visual heat images.

3.1. Evaluation of model detecting results

Statistically, the number of input parameters required for

the AlexNet, MobileNet, GoogleNet, ResNet50, and SR-Net

models are 38 million, 37 million, 6 million, 23 million, and 6

million, respectively.

The confusion matrix of the SR-Net model applied to forest fire

smoke detection is shown in Table 5. In the Validation Set, the SR-

Net model correctly identified 394 cases of forest fire smoke with a

total of 400 and 398 cases of clouds with a total of 400, as well as

378 cases of forest fire smoke with a total of 400 and 397 cases of

cloud with total 400 in the Test Set. The above results indicate that

the SR-Net model has a higher probability than 95% of accurately

detecting positive and negative cases.

Figure 4 compares the secondary indices of the SR-Net model

with ResNet50, MobileNet, GoogLeNet, and AlexNet models to

further analyze the forest fire smoke detection capability of the SR-

Net model. According to the detection results, the SR-Net model

has the highest Accuracy, Precision, Recall, F1-Score, and Kappa

coefficient for the detection of forest fire smoke. This indicates

that the SR-Net model outperforms the ResNet50, MobileNet,

GoogLeNet, and AlexNet models in detecting forest fire smoke.

On the other hand, the construction purpose of the forest fire

smoke detection model is to monitor early forest fires. So among

the evaluation indices, the Recall is of great practical significance,

because a higher Recall represents less under-reporting of early
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TABLE 5 Confusion matrix of the SR-Net model in the test and validation sets.

Validation set Test set

Detection label:
forest fire smoke

Detection label:
cloud

Detection label:
forest fire smoke

Detection label:
cloud

True label: forest fire smoke 394 2 378 3

True label: cloud 6 398 22 397

FIGURE 4

Comparison of AlexNet, ResNet50, MobileNet, GoogLeNet and

SR-Net models for each evaluation indices based on validation set

(A) and test set (B).

forest fires in practice through forest fire smoke detection by remote

sensing. Figure 4 shows that the proposed model SR-Net is superior

to the other four models in terms of Recall because according to the

results of the Test Set, the Recall of AlexNetmodel is 82%, ResNet50

model is 88%, MobileNet and GoogLeNet models are 92.5%, while

that of proposed SR-Net model reached 97%. This means that the

SR-Net model has a lower probability of missing the detection of

forest fire smoke than the other four models. Furthermore, because

of the interaction between Recall and Precision, the F1-Score has

emerged to measure the balance condition of the two indices.

The Recall and Precision need to be optimally balanced to avoid

missing or miss-detecting of forest fire smoke to reduce missed

and false forecasts in early forest fire monitoring in practical use.

FIGURE 5

ROC curves and AUC for AlexNet, ResNet50, MobileNet,

GoogLeNet, and SR-Net models on the validation set (A) and test set

(B).

The F1-Score of the SR-Net model is closer to 1 (>0.95), which

indicates a good balance between Recall and Precision. What’s

more, compared to other four models, the SR-Net model has the

largest Kappa coefficient, which implies that the model’s detections

for forest fire smoke are highly consistent with the actual situations.

Figure 5 shows the ROC curves of AlexNet, ResNet50,

MobileNet, GoogLeNet, and SR-Net models and their AUC results
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for the Validation and Test sets. As shown in Figure 5, the SR-

Net model corresponds to the ROC curve closest to the (0, 1)

coordinate, which reveals that the SR-Net model has the best

capability for forest fire smoke detection and performs consistently

across different datasets. In addition, by comparing the AUC, it can

be concluded that the SR-Net model has the best generalization

than the other four models, and can be applied to other small-scale

forest fire smoke datasets.

3.2. Visualization of model detecting e�ects

Figure 6 shows the original remote sensing images of forest

fire smoke and heat images processed by Grad-CAM based on the

SR-Net model. The white areas in both the original and the heat

images represent forest fire smoke (marked with red arrows in

the original images), and the attention degree from high to low is

colored blue, yellow, and red in the heat images. Figure 6 compares

and analyzes the smoke detection results of the SR-Net model with

different proportions of smoke in an image, where (A) represents

the proportion of smoke area >30%, (B) represents the proportion

of smoke area <20%, and (C) represents situations when there is a

small portion of clouds (marked with red rectangles) in the original

smoke images. The results show that the percentage of smoke area

in an image has little effect on the forest fire smoke detection of the

SR-Net model, because of the global attention added to the SR-Net

model. However, when the forest fire smoke is partially obscured

by clouds in the original images, the attention distribution scope of

the SR-Net model to detect forest fire smoke is reduced (Figure 6C).

This is due to the narrowing of the distinction between forest fire

smoke and background clouds when the smoke is obscured by

point-like clouds, which increases the difficulty of model detection.

Overall, the attention of the SR-Net model can largely avoid areas

where cloud points are present. This indicates that the model has

the ability of resistance to interference and can identify forest fire

smoke under complex meteorological environmental conditions.

The original remote sensing images of forest fire smoke are

shown in Figure 7 (A-1, B-1, C-1), along with the visualized heat

images based on the AlexNet, ResNet50, MobileNet, GoogLeNet,

and SR-Net models processed by Grad-CAM. The white areas

marked with red arrows in the original images are forest fire smoke,

and the distribution of attention when the model detects forest fire

smoke is marked with blue (high), yellow (medium), and red (low)

in descending order of weight.

Compared to other models, first, the SR-Net is more stable

than the GoogLeNet model and is more likely to focus on the

target object—the forest fire smoke. The attention distribution for

detecting forest fire smoke obtained by the SR-Net model is square

in shape. It largely matches the contour of the background and

forest fire smoke, which occupy a larger area in images (A-6, B-

6). The yellow area outside the square is the part that the model

does not focus on. In addition, when the remote sensing image

has a strong background texture, the attention of the SR-Net model

only wraps around the target—forest fire smoke to analyze features

of it (C-6). The attention distribution of the GoogLeNet model is

focused on the forest fire smoke presenting an ellipse to include

the target (A-5, B-5). However, there are still cases of bias in its

attention distribution as can be seen in its heat images (C-5), which

may cause errors when detecting forest fire smoke. Second, the

performance of the ResNet50 and MobileNet models is erratic.

Specifically, the shape of the attention distribution of the ResNet50

model is generally consistent with the outline of the target object—

forest fire smoke (A-3). But its attention distribution is fragmented

into patches and some of them are scattered to other parts of the

image (B-3, C-3), which may lead to inaccurate results of forest

fire smoke detection. The attention distribution of the MobileNet

model shows a blocky distribution, which can almost cover the

target object—forest fire smoke in most cases (A-4). But it can

sometimes be shifted and completely cannot overlap with the target

object (B-4, C-4). Third, the distribution of attention based on the

AlexNet model is mostly blurred, with the focal (blue) areas being

lightly and irregularly colored (A-2, B-2). And the focal areas only

cover an extremely small proportion of the target object—forest fire

smoke (C-2). In conclusion, the SR-Netmodel has a stable attention

distribution state, outstanding detecting performance on different

datasets, and good generalization performance.

A comparative analysis of the results in Figure 7 shows that

the SR-Net model outperforms AlexNet, ResNet50, MobileNet, and

GoogLeNet in terms of both the fitness and stability of the attention

distribution state, and has a better adaptability and generalization

for forest fire smoke detection.

Figure 8 presents a very small number of anomalies in the

visualization of forest fire smoke images based on the SR-Net

model. The first row is original forest fire smoke images and the

second row is the heat images processed by Grad-CAM based on

the SR-Net model. The white areas in images are the forest fire

smoke sample (marked with red arrows) and the attention weight

of the SR-Net model is marked from high, medium, to low with the

color from blue, yellow, to red.

As shown in Figure 8, in a few cases, the attention distribution

of the SR-Net model does not show a blue square but chooses to

ignore the forest fire smoke roots. This may be because the SR-

Net model considers the overall features in the Middle and rear of

the smoke and the surrounding background to be more important

than the individual target features in the thickest part of the forest

fire smoke. Therefore, the SR-Net model does not choose to use the

forest fire smoke as the only basis for detection and identification.

4. Discussions

At present, forest fire monitoring by meteorological satellites

are mainly through infrared technology to detect high-temperature

points of forest fires. The limitation is that in the early stage of forest

fires, combustible materials are not fully burnt, so their temperature

is not high enough to be detected. This is why the infrared band of

meteorological satellites cannot receive enough energy of infrared

radiation for imaging, which makes it difficult to detect in time.

Therefore, there is a risk of delayed detection of forest fires. In

the meanwhile, however, incomplete combustion produces a large

amount of smoke. The method of forest fire smoke detection by

remote sensing satellites can forecast forest fires much earlier than

the method using infrared technology. However, there is scant

studies on detecting forest fire smoke to forecast early forest fires.

And existing researches of forest fire smoke models are mostly
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FIGURE 6

Comparison between the original remote sensing images of forest fire smoke and heat images processed by Grad-CAM based on the SR-Net model.

(A) The proportion of smoke area >30%, (B) the proportion of smoke area <20%, (C) situations when there is a small portion of clouds (marked with

red rectangles) in the original smoke images. The attention distribution when the model detects forest fire smoke is marked with blue, yellow, and

red in descending order of weight from high to low.
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FIGURE 7

Original forest fire smoke images (A-1, B-1, C-1), comparison of heat images processed by Grad-CAM based among AlexNet (A-2, B-2, C-2),

ResNet50 (A-3, B-3, C-3), MobileNet (A-4, B-4, C-4), GoogLeNet (A-5, B-5, C-5), and SR-Net (A-6, B-6, C-6) models. (A-C) Represents three di�erent

sets of forest fire smoke images and heat images based on each model. The attention distribution when the model detects forest fire smoke is

marked with blue, yellow, and red in descending order of weight from high to low.
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FIGURE 8

Examples of some unusual conditions of visualizations based on the SR-Net. The (Top) row shows the original forest fire smoke images, and the

(Bottom) row shows heat images processed by Grad-CAM based on the SR-Net. The attention distribution when the model detects forest fire smoke

is marked with blue, yellow, and red in descending order of weight from high to low.

devoted to developing CNN, for example, increasing the scale

of the dataset (Zhang et al., 2018), adding different mechanisms

(Xie et al., 2018), and improving the structure of CNN (Khan

et al., 2021), to improve the forest fire smoke detection accuracy

of models. The common problems with the above development

methods are as follows: first, it is difficult to achieve an effective

balance between data scale and detection accuracy. A small number

of parameters will affect the detection accuracy, while a large

number of parameters will require sufficient data to solve the

overfitting problem (Krizhevsky et al., 2017). Second, it is hard

to collect a large amount of forest fire smoke data from remote

sensing satellites (Zhang et al., 2018). However, CNNs may not

perform well when there are not enough datasets available for its

pre-training (Sathishkumar et al., 2023). And third, the increase in

data scale will cause an increase in computational resource cost. To

address the above issues, we introduce the ViT and propose a forest

fire smoke detectionmodel (SR-Net) for small-scale remote sensing

forest fire smoke datasets. It has improved detection accuracy and

reduced resource consumption compared with traditional CNN.

Although ViT has been less studied in the field of forest

fire monitoring, existing research is attempting to compare the

classification accuracies of the latest CNN and ViT models on the

ImageNet dataset, aimed at the image classification task (Xu et al.,

2022). Part of the results is in Table 6 (Xu et al., 2022).

Table 6 indicates that ViT models have the potential to achieve

comparable performance or even outperform state-of-the-art CNN

architectures (Xu et al., 2022). And an increasing number of

researches on ViT or progressively merging CNN and ViT have

come out in various fields (Xu et al., 2022). In the field of Remote

Sensing, the network combined CNN and ViT is proposed to

do Hyperspectral image (HSI) classification tasks (Li et al., 2022)

TABLE 6 Flogs, parameters, and accuracy of each model on the ImageNet

dataset (Xu et al., 2022).

Model Flogs (G) Parameters (M) Accuracy (%)

Convolution-based neural network

ResNet 4.1 25.6 76.2

RegNetY-16G 16.0 84 82.9

EfficientNet-

B7

37.0 66 84.3

Visual transformer

ViT 55.4 86 77.9

190.7 307 76.5

ConViT 5.4 27 81.3

17.0 86 82.4

Swin

transformer

4.5 29 81.3

47.0 88 84.2

and to solve cross-resolution issues conducted on IKONOS and

WorldView 2 with 4- and 8-bandmultispectral (MS) images (Wang

N. et al., 2022). In the field of Scene Classification, ViT is used to

distinguish scenes and obtains an average classification accuracy

of 98.49% on Merced datasets (Bazi et al., 2021). In the field of

Medicine, CNN and ViT are combined to diagnose Novel Corona

Virus Pneumonia (COVID-19) and its result is obviously better

than that of the typical CNN network (ResNet-152) (95.2%) and

Transformer network (Deit-B) (75.8%) (Fan et al., 2022). And

the combination is also applied to diagnose Acute lymphocytic
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leukemia, and the accuracy reached 99.03% (Jiang et al., 2021). The

above researches provide theoretical support for the application

prospects of models combining CNN and ViT.

What’s more, while previous researches of forest fire smoke

detection has focused on using high spatial-resolution satellites,

this paper chooses to use high time-resolution satellite. The SR-

Net model, benefitting from the high temporal resolution feature

of the Himawari-8 satellite, can be applied to detect forest fire

smoke promptly. Considering the difficulty of collecting remote

sensing sample data of forest fire smoke, the front part of SR-Net

uses CNN to make inductive bias of forest fire smoke samples,

complementing the missing priori knowledge of ViT due to being

based on a small-scale dataset. The back part uses lightweight

ViT, which adds a global attention mechanism compared to CNN,

allowing the model to achieve better performance on small-scale

remote sensing datasets of forest fire smoke. SR-Net simplifies

the structure and reduces the number of parameters to reduce

computational costs and resource consumption while maintaining

the detection accuracy of forest fire smoke. Other benchmarks,

like GoogLenet et al., are still essentially convolutional models.

The advantage of convolutions lies in its inductive bias, while the

disadvantage lies in its inability to effectively obtain and construct

the global information, as the size of the convolutional kernel is

finite. However, our proposed model introduces the ViT, which

has the multi-headed attention mechanism, compensating for the

disadvantages of all kinds of convolutional models.

By comparing the results of different indices, it is found that the

SR-Net model has the highest accuracy, precision, recall, F1-Score,

and Kappa coefficient of forest fire smoke detection, outperforming

AlexNet, MobileNet, ResNet50, and GoogLeNet models. In forest

fire smoke detection, the SR-Net model has a higher accuracy and

lower false rate than other models as well as a better capacity of

balance between the two, allowing the model to make the best

measurements and avoid being too ’conservative’ or ’confident’ in

its judgments. This balance allows the model to be used more

reliably in real-time scenarios of forest fire smoke detection and

helps the human and material resources needed to confirm forest

fires to be deployed more efficiently and effectively, without time

and resource consuming.

In addition, heat images of SR-Net attention distribution

drawn by Grad-CAM show that SR-Net presents a wider attention

distribution in images because of the global attention mechanism.

This mechanism allows amore comprehensive exploration of forest

fire smoke features and is less affected by the proportion of forest

fire smoke in remote sensing images. What’s more, when there is

interference from point-like clouds in forest fire smoke images, the

difficulty of classification and detection increases for the reason

that the distinction between forest fire smoke and the cloud is

narrowed. In this case, the attention scope of the SR-Net model is

reduced. But the reduced scope manifests that the SR-Net model

has better resistance to interference for it can avoid the areas

where cloud points are present when detecting forest fire smoke. By

comparing the heat images of AlexNet, ResNet50, MobileNet, and

GoogLeNet models, this study find that the SR-Net model is more

stable and fit for forest fire smoke detection than other models.

It has a more fixed pattern of attention distribution for forest fire

smoke detection, showing a square shape, which can include the

target object and its background. With this pattern, the detection

by the SR-Net model does not tend to miss the target object—forest

fire smoke. When the background has strong textural features,

the detection capability of the model is disturbed and there is a

reduction in the scope of attention distribution. The GoogLeNet

model, in general, performs well with regard to the attention

distribution state but is less stable than the SR-Net model. The

attention distribution of it is affected by the presence of background

interference, resulting in a shift. The attention distribution of

ResNet50 and MobileNet models is unstable and can cover most

of the target object—forest fire smoke in most cases, however,

there are also cases where the attention distribution is scattered

or only covers a small portion of the target object. The attention

distribution of AlexNet is blurred, which cannot cover forest fire

smoke, resulting in the poor effect of forest fire smoke detection.

To sum up, the SR-Net model is more effective in detecting forest

fire smoke under complex environmental conditions with better

accuracy and greater generalization.

The major limitation of our study is that the model needs to

be put to further practical use to explore what contingencies exist

in real-time applications and to refine the model by developing

emergency pre-solutions. Notwithstanding the limitation, the SR-

Net model is more effective and stable than traditional CNNs in

detecting forest fire smoke with high timeliness. Therefore, it has

the potential to be used in practical applications to help monitor

forest fire smoke or as a complement to monitoring forest fire

smoke through near-infrared bands.

5. Conclusions

In this paper, we propose a lightweight forest fire smoke

detection model (SR-Net) combining the merits of CNN and

ViT models and construct a new small-scale remote sensing

dataset, containing cloud and forest fire smoke, collected from

the Himawari-8 satellite. We conduct a comprehensive evaluation

of the of SR-Net and benchmark models, including AlexNet,

MobileNet, GoogLeNet, and ResNet50. We conclude our findings

as follows:

(1) The combination of CNN and ViT allows for a lightweight forest

fire smoke detectionmodel (SR-Net), and reduces the number of

themodel parameters to sixmillion. Themodel can be applied to

small-scale remote sensing datasets of forest fire smoke images.

(2) The results of the confusion matrix manifest that the SR-Net

model is more than 95% likely to accurately detect positive

and negative cases of forest fire smoke samples. On both the

validation and test sets, the SR-Net model is superior to AlexNet,

MobileNet, GoogLeNet, and ResNet50 models in comparison

criteria including: Accuracy, Precision, Recall, F1-Score, and

Kappa Coefficient.

(3) Visualization of the model attention in detecting forest fire

smoke by Grad-CAM revealed that the SR-Net model has a wide

range of attentions, which could comprehensively explore the

features of the remote sensing images, leading to an accurate

detection of the forest fire smoke with less interference from

environmental factors. The comparison of the heat images

further confirms the outperformances of the SR-Net model over
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benchmark models in adaptability and stability for forest fire

smoke detections.

This paper sheds a light on the lightweight models of forest

fire detection with small-scale datasets. The documented model

performance calls for further application of the proposed model

on broader sets of imagery data from multiple satellites to

test the model generality. As it is difficult for existing remote

sensing satellites to achieve the coexistence of high temporal and

high spatial resolution, future research may focus on processing

spatial resolution information collected from high temporal

resolution remote sensing images. Moreover, recent developments

in Computer Vision (CV) could further improve forest fire smoke

detections by exploring the migration and scalability of the

new networks.
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