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Integrated bioinformatic
analysis of mitochondrial
metabolism-related genes
in acute myeloid leukemia

Xiqin Tong and Fuling Zhou*

Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
Background: Acute myeloid leukemia (AML) is a common hematologic

malignancy characterized by poor prognoses and high recurrence rates.

Mitochondrial metabolism has been increasingly recognized to be crucial in

tumor progression and treatment resistance. The purpose of this study was to

examined the role of mitochondrial metabolism in the immune regulation and

prognosis of AML.

Methods: In this study, mutation status of 31 mitochondrial metabolism-related

genes (MMRGs) in AML were analyzed. Based on the expression of 31 MMRGs,

mitochondrial metabolism scores (MMs) were calculated by single sample gene

set enrichment analysis. Differential analysis and weighted co-expression

network analysis were performed to identify module MMRGs. Next, univariate

Cox regression and the least absolute and selection operator regression were

used to select prognosis-associated MMRGs. A prognosis model was then

constructed using multivariate Cox regression to calculate risk score. We

validated the expression of key MMRGs in clinical specimens using

immunohistochemistry (IHC). Then differential analysis was performed to

identify differentially expressed genes (DEGs) between high- and low-risk

groups. Functional enrichment, interaction networks, drug sensitivity, immune

microenvironment, and immunotherapy analyses were also performed to

explore the characteristic of DEGs.

Results: Given the association of MMs with prognosis of AML patients, a

prognosis model was constructed based on 5 MMRGs, which could accurately

distinguish high-risk patients from low-risk patients in both training and

validation datasets. IHC results showed that MMRGs were highly expressed in

AML samples compared to normal samples. Additionally, the 38 DEGs were

mainly related to mitochondrial metabolism, immune signaling, and multiple

drug resistance pathways. In addition, high-risk patients with more immune-cell

infiltration had higher Tumor Immune Dysfunction and Exclusion scores,

indicating poor immunotherapy response. mRNA-drug interactions and drug

sensitivity analyses were performed to explore potential druggable hub genes.

Furthermore, we combined risk score with age and gender to construct a

prognosis model, which could predict the prognosis of AML patients.
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Conclusion: Our study provided a prognostic predictor for AML patients and

revealed that mitochondrial metabolism is associated with immune regulation

and drug resistant in AML, providing vital clues for immunotherapies.
KEYWORDS

mitochondrial metabolism, tumor microenvironment, prognostic model, acute myeloid
leukemia, drug sensitivity
Introduction

Acute myeloid leukemia (AML) is a common hematological

malignancy characterized by poor prognosis and therapy resistance.

The five-year survival rates of AML patients are less than 40% for

patients aged 50 to 64 years and less than 10% for older patients (1).

AML patients still receive the “7+3” chemotherapy protocol as their

standard treatment for 50 years. The chemotherapy consists of a

nucleoside analog and an anthracycline (2). Almost half of AML

patients who have achieved complete remission still relapse (2).

Although various promising novel therapies such as BCL-2

inhibitor venetoclax, IDH1 and IDH2 inhibitors (3) ,

hypomethylating agents (4), antibody-drug conjugates (5), several

FLT3 Tyrosine kinase inhibitors (TKIs) (6), and adoptive T cell

therapies, have been approved or advancing through clinical trials

in the past decade, patient responses to these novel therapies are not

promising. For example, the leukemic cells with somatic mutations

on the FLT3-TKD or BCR-ABL genes are resistant to TKIs

treatment (7) or BCL2 inhibitor (8). Although mutation-targeted

treatments have improved AML patient outcomes, many somatic

mutations lack targeted treatment options, thus limiting their

widespread clinical success (9). Therefore, it is necessary to study

the unique traits of malignant leukemic cells independent of

mutation to eradicate treatment-resistant leukemic cells.

Malignant cells maintain survival and rapid proliferation by

altering their metabolic pathways to increase energy production

(metabolic reprogramming) (10). Mitochondria are crucial

bioenergetic hubs essential for tricarboxylic acid (TCA) cycle,

fatty acid oxidation, the electron transport chain (ETC), and

oxidative phosphorylation (OXPHOS) processes. These processes

may promote malignant phenotype development and maintenance.

Mitochondria also produce reactive oxygen species, which could be

pro-tumorigenic (11). Although Warburg described that malignant

cells produce energy mainly via aerobic glycolysis, many studies

have demonstrated that many tumor cells depend on mitochondrial

oxidative metabolism to obtain energy (12–14), indicating that

inhibiting glycolysis does not prevent tumor proliferation.

OXPHOS maintains leukemia stem cells (LSCs) and influences

treatment resistance in AML (15). Additionally, Wu et al. reported

that the mitochondria related genes were upregulated in AML and

related to poor prognosis (16). Moreover, mitochondrial

metabolism is crucial for tumor microenvironment (TME), and

the differentiation and activity of immune cells, such as
02
macrophages (17) and T cells (18). Changes in mitochondrial

function can affect immunotherapy effectiveness (19–21). These

findings indicate that mitochondrial metabolism is crucial for

tumor biological activity. Therefore, it is necessary to identify

specific energy metabolism dependencies and how they relate to

the cellular microenvironment to provide novel treatment options

for AML patients.

A recent study constructed a metabolism-related prognostic

model in AML, consisting of FADS1, NEU1, SLC2A5, TBXAS1 and

PDE4B (22). However, this study didn’t explore the relationship of

TME and metabolism. In addition, another study found that four

mitochondria-related genes (HPDL, CPT1A, IDH3A, and ETFB)

influence the prognosis and BM microenvironment of AML

patients (23). However, the bioinformatics study was validated

based on a children cohort and relatively simple: no omics

integration analysis, no somatic mutation assessment, or without

experimental validation. Our study aimed to identify molecular

targets and therapeutic mechanisms related to AML.
Materials and methods

Data acquisition

Public transcriptome and clinical data were collected from the

Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus

(GEO) database (24) up to May 28, 2022. Three eligible AML

cohorts (TCGA-LAML, GSE12714 (25), and GSE37642 (26)) were

selected for further investigation. Patients without survival data

were excluded. For the TCGA dataset, the RNA transcriptome data

were acquired from the Genomic Data Commons (GDC) database

via the TCGAbiolinks package (27) and normalized to fragments

per kilobase of exon model per million mapped fragments (FPKM)

values, while the clinical data were acquired via the UCSC Xena

database (28). For GEO datasets, GEOquery package was used to

obtain the normalized matrix files and clinical data (29). The

baseline information of the included patients is summarized in

Table S1.

MMRGs and immune-related genes were obtained from

GeneCards database (30). A total of 50 MMRGs were obtained

with a relevance score >5 (Table S2), and 27 immune-related genes

were obtained with a relevance score >20. Twenty DNA repair

genes were also obtained from published literature (31) (Table S3).
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Genomic analysis

Somatic mutation profile of AML patients was obtained from

the TCGA database. Mutation signatures of MMRGs were

summarized and presented using the R package Maftools (32).

The chromosomal locations of MMRGs were presented using the R

package RCircos (33).
i)

Generation of mitochondrial metabolism
scores (MMs)

The relative abundance of a gene set enriched in a sample is

widely detected using the single sample gene set enrichment analysis

(ssGSEA) algorithm. In this study, MMs of patients in the three AML

datasets were calculated using GSVA package (34) through the

ssGSEA algorithm based on the expression data of MMRGs. The

patients in the three datasets were separated into high- and low-MMs

groups based on the cut-off values. Cut-off values with the lowest

significant (P-value< 0.05) log-rank P-value were chosen as the

optimal cut-off values (35). Two-group comparisons were analyzed

with Wilcoxon rank sum test. One-way ANOVA and Tukey’s

Honestly Significance Difference test were used to compare MMs

among different French–American–British (FAB) subgroups.
Weighted co-expression network analysis
(WGCNA)

First, the limma package was used to determine the

differentially expressed genes (DEGs) between high- and low-

MMs groups in the TCGA-LAML dataset (36). DEGs with the

adjusted P-value< 0.05 and |logFC|> 0 were included for analysis.

The DEGs were used for WGCNA via the WGCNA package (37) to

determine the gene modules related to MMs with highly correlated

expression profiles across samples. WGCNA was run with

networkType = “signed”, minModuleSize = 30, and softpower = 21.
Unsupervised clustering for 17 MMRGs

The patients were classified in TCGA-LAML datasets using the

R package ConsensusClusterPlus (38) based on the expression of

MMRGs via the consensus clustering algorithm (39). The cluster

size was set between 2 and 8. About 80% of the samples were

randomly selected 50 times to ensure classification stability.

Wilcoxon rank-sum test was used to determine the expression

differences of MMRGs between different subtypes of AML patients.

P-value< 0.05 was considered statistically significant.
Construction of the prognosis model
with MMRGs

The MMRGs with prognostic value (P-value< 0.1) were

selected among the 17 MMRGs via univariate Cox analysis for
Frontiers in Immunology 03
the least absolute and selection operator (LASSO) regression.

LASSO regression was performed via the glmnet package (40)

based on prognostic MMRGs with parameter family = “cox” and

ten-fold cross-validation, and repeated 1,000 times to prevent

overfitting. A prognosis model was built via the multivariate Cox

regression based on the MMRGs selected through LASSO

regression. Per-patient risk score was calculated based on the

prognostic model formula.

RiskScore  =o
i
Coefficient (key genei)*mRNA expression (key gene

Patients were categorized into high- and low-risk groups based

on the optimal cut-off value. An internal verification nomogram

for overall survival (OS) prediction was developed using the rms

package to verify the prognostic accuracy of the model.

Additionally, calibration curves and decision curve analysis

(DCA) were used to verify the model’s performance (41).

Further external val idation was performed using the

GSE12417 cohort.
Immunohistochemistry (IHC) and
hematoxylin-eosin staining (H&E)

Bone marrow specimens were fixed in paraformaldehyde,

decalcified, and embedded in paraffin. Tissue sections were

deparaffinized and rehydrated, and then stained with H&E, or

incubated with antibodies, specifically ECHS1 (Cat No. 11305-1-

AP; proteintech, China), and NUDFS2 (Cat No. R27071;

Zenbioscience, China) . Antigens were detected using

diaminobenzidine. Images were captured using a microscope

equipped with a SPOT camera under high-power fields (400x).

The mean intensity optical density (IOD) was used to quantify the

immunohistochemical expression measured by ImageJ. This study

was performed according to the Declaration of Helsinki, and

received approval from the Ethics Committee of Zhongnan

Hospital of Wuhan University.
Identification and enrichment analysis of
differentially expressed MMRGs

The limma package was used to determine the DEGs between

high- and low-risk groups of the TCGA-LAML cohort (36) for

further analysis. Adjusted P-value<0.05 and |logFC| >1 were set as

the inclusion criteria.

Gene Ontology (GO) analysis (42), Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis (43), and

Disease Ontology (DO) analysis (44) were performed using the

clusterProfiler package to reveal the characteristics of the

DEGs (45). Besides, Gene Set Enrichment Analysis (GSEA) (46)

was performed using the clusterProfiler package (45). The

c2.all.v7.5.1.entrez.gmt gene set was acquired via the Molecular

signatures database 3.0 (MSigDB) (47) as the reference gene set.

Significantly enriched pathways were determined at P-value< 0.05

and FDR< 0.25.
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Construction of Protein-protein interaction
(PPI) network and hub gene identification

PPI networks were constructed via the STRING database based

on the DEGs (48) (confidence level 0.400) and visualized using

Cytoscape software. MCC (Matthews Correlation Coefficient

metric) (49), MNC (the maximal neighbourhood coefficient), and

Degree algorithms were used to identify the hub genes.
Immune infiltration estimation and
correlation analysis

Tumor immune activity in AML patients was assessed using

the ESTIMATE package based on TCGA-LAML expression

profiles (50). The Tumor Immune Dysfunction and Exclusion

(TIDE) immune scores were estimated through the TIDE

database (51) to predict patients’ immunotherapy responses.

Also, the infiltration abundance of 22 immune cells was

determined using the CIBERSORTx database (52) based on

patients’ transcriptome data. Besides, enrichment scores of 28

tumor-infiltration-associated immune cells were calculated

using the ssGSEA algorithm in the GSVA package to represent

the immune infiltration levels (53) in each sample. The

correlation of different immune cells within two groups was

calculated using the spearman algorithm. The expression

matrix of the TCGA-LAML dataset was combined to calculate

correlations between immune cells and hub genes in different

groups. The correlation heat map was developed through the

pheatmap package.
Construction of mRNA-RNA binding
proteins (RBPs) and mRNA-drugs
interaction networks

RBPs interacting with hub genes were predicted using ENCORI

database (54). mRNA-RBPs interaction pairs were then screened

with clipExpNum > 2 and clipIDnum > 2 as screening criteria and

plotted mRNA-RBPs interaction network. In addition, potential

drugs or small molecule compounds interacting with hub genes

were predicted using the drug-gene interaction database (DGIdb)

(55). Cytoscape software was used to visualize mRNA-RBPs and

mRNA-drugs interaction networks.
Drug sensitivity analysis of hub genes

The relationships between hub genes and drug sensitivity

were explored based on their transcriptome profiles and drug-

sensitive profiles downloaded from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (56), the Cancer Cell

Line Encyclopedia (CCLE) database (57), and the CellMiner

database (58).
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Statistical analysis

R software (Version 4.1.2) was used for data processing and

statistical analyses. Students t-test andWilcoxon rank sum test were

used for two-group comparisons, while Kruskal-Wallis tests were

used for three or more group comparisons. Chi-square or Fisher’s

exact tests were used to compare categorical variables. The survival

package was used to perform survival analysis. Kaplan-Meier (KM)

curves were used to express the survival difference between the two

groups, and its significance was measured using a log-rank test.

Spearman correlation analysis was used to calculate the correlation

of distinct variables if not specified. The P-value was adjusted by the

Benjamini and Hochberg method.
Results

Mutation profile of MMRGs and
construction of MMs

A general overview of the study is presented in Figure 1. The

three datasets (TCGA-LAML, GSE12417, and GSE37642) were first

normalized using the limma package, with the TCGA-LAML

dataset containing 151 samples (Figures S1A, B), the GSE12417

dataset containing 163 samples (Figures S1C, D), and the GSE37642

dataset containing 422 samples (Figures S1E, F). The expression

profiles of the three datasets were consistent among samples after

normalization (Figures S1A, F). The mutation profile of the 31

MMRGs in AML samples was analyzed to evaluate the mutation

characteristic of the 31 MMRGs (BCS1L, COX10, COX15,

DGUOK, ECHS1, ETHE1, FBXL4, LIAS, MPV17, NDUFA1,

NDUFA13, NDUFAF5, NDUFS1, NDUFS2, NDUFS4, NDUFS7,

NDUFV1, NFU1, POLG, POLG2, SDHA, SDHD, SLC25A4,

SUCLA2, SUCLG1, SURF1, TACO1, TIMM8A, TMEM70,

TRIT1, TTC19). The MMRGs had few single nucleotide

polymorphisms (SNPs) in patients in the TCGA-LAML cohorts,

only three genes (SUCLA2, SURF1, and POLG) with somatic

mutations among 31 MMRGs in three AML patiens (Figure 2A,

Figure S2A), mainly missense mutation. Single nucleotide

variant (SNV) with C>T was the most prevalent, followed

by T>A (Figure 2A).

RCircos package was used to annotate the chromosome location

of 31 MMRGs to analyze the location of the 31 MMRGs on human

chromosomes (Figure 2B). The MMRGs were mainly distributed in

the 2, 5, 10, 11, and 17 chromosomes, of which most were

distributed on the second chromosome (6 MMRGs) (Figure 2B).

MMRGs located on the same chromosome were closely related at

the genome level.

To investigate the overall expression of MMRGs in AML,

MMs of each patient were calculated to represent the

mitochondrial metabolism levels of AML patients. The patients

were divided into two groups after combining the prognostic

information and MMs of AML patients in the three datasets

(excluding the AML patients lacking OS and OS. time) based on
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the MMs levels. Patient survival outcomes were significantly

different per grouping (P-value< 0.05) depending on the best

cut-off values for three datasets; TCGA-LAML (P-value = 0.038,

Figure 2C), GSE12417(P-value = 0.025, Figure 2D), GSE37642

(P-value = 0.0017, Figure 2E). Moreover, the levels of MMs were

significantly different between the two groups in the three

datasets (P-value< 0.001) (Figures 2F–H). What’s more, we

found that MMs constructed based on the expression of 31

MMRGs in the TCGA-LAML dataset could accurately diagnose

the M0-M5 stages of AML patients (P-value< 0.05, Figure S2B,

Table S4).
Identification of co-expression modules
through WGCNA

A total of 3,798 DEGs were identified (|logFC| > 0, adjusted P-

value< 0.05) (3,036 upregulated and 762 downregulated genes) in

the high-MMs group (Figure 3A). Furthermore, the expressions of

the MMRGs were significantly different in the TCGA-LAML
Frontiers in Immunology 05
dataset (Figure 3B). To obtain genes closely associated with

mitochondrial metabolism, WGCNA were conducted to identified

modules in which genes were highly correlated. The modules with

similarity lower than 0.25 (Figure 3D) were merged to obtain 11

modules at the scale independence of 0.9 (Figure 3C) (MEbrown,

MEgrey60, MElightcyan, MEmagenta, MEpurple, MEcyan,

MEmidnightblue, MEgreenyellow, MElightgreen, MElightyellow,

and MEgrey). The correlations between the 11 module eigengenes

and different MMs groups were then investigated (Figure 3E). The

genes of the MEbrown (|r|=0.52, P-value =5e-11), MEpurple

(|r|=0.51, P-value =1e-10), and MEcyan (|r|=0.55, P-value =2e-12)

modules with correlation coefficients greater than 0.5 were selected

for the analysis. The 31 MMRGs were intersected with genes in

MEbrown (Figure 3F), MEpurple (Figure 3G) and MEcyan

(Figure 3H) modules to obtain the 17 MMRGs modules (BCS1L,

COX10, DGUOK, ECHS1, ETHE1, MPV17, NDUFA1, NDUFA13,

NDUFS2, NDUFS7, NDUFV1, POLG, SDHA, SUCLG1, SURF1,

TACO1, and TIMM8A).

Additionally, the correlations between the 17 MMRGs modules in

the TCGA-LAML cohorts were explored. The 17 MMRGs modules
FIGURE 1

Flow diagram.
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were significantly correlated according to the TCGA-LAML dataset

(Figure S3A). BCS1L and NDUFV1 (r = 0.701, P-value< 0.001, Figure

S3B), MPV17 and NDUFV1 (r = 0.645, P-value< 0.001, Figure S3C),

DGUOK and NDUFA1 (r = 0.653, P-value< 0.001, Figure S3D),

NDUFA13 and NDUFS7 (r = 0.681, P-value< 0.001, Figure S3E),

NDUFS7 and NDUFV1 (r = 0.643, P-value< 0.001, Figure S3F) were

the top five pairs of genes with the highest correlations (Figures S3B–F).
Frontiers in Immunology 06
Unsupervised clustering for MMRGs

Two AML subtypes (cluster1 and cluster2) were identified based

on the expression of the MMRGs modules via an unsupervised

clustering method in the TCGA-LAML to investigate differential

expression of the MMRGs modules in AML patients (Figure 4A).

Cluster1 and cluster2 contained 71 samples and 71 samples,
A B

D E

F G H

C

FIGURE 2

Mutational analysis of MMRGs in AML patients and construction of MMs. (A) The mutational landscape of MMRGs in AML. (B) Localization of MMRGs
on chromosomes. (C-E) KM curves for the TCGA-LAML dataset (C), GSE12417 dataset (D), and GSE37642 dataset (E) grouped by high and low MMs.
(F-H) Comparison of MMs between high- and low-MMs groups in the TCGA-LAML dataset (F), GSE12417 dataset (G), and GSE37642 dataset (H).
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respectively. Principal component analysis (PCA) showed that the

two AML subtypes had significant differences (Figure 4B). The

consensus clustering had the best stability when k = 2 (Figures 4C,

D). Subsequent survival analysis for the two AML clusters indicated

that the clinical outcomes of two AML subtypes were significantly

different (P-value = 0.018, Figure 4E). Furthermore, the expression
Frontiers in Immunology 07
levels of 17 MMRGs modules were significantly different between the

two AML subtypes (Figure 4F).

Furthermore, the MMRGs modules were significantly

upregulated in cluster1 in the TCGA-LAML dataset (Figure

S4A). The expression of COX10 and TIMM8A was significantly

different between the two AML subtypes (P-value< 0.01).
A B

D

E

F G H

C

FIGURE 3

Identification of co-expression modules by WGCNA. (A) Volcano plot of DEGs between high- and low-MMs groups in the TCGA-LAML dataset. (B)
Heatmap of MMRGs in the TCGA-LAML dataset. (C) The mean connectivity and scale free topology module fit for different soft-threshold powers.
(D) A cluster dendrogram of module eigengenes. (E) Relationships between the module eigengenes and MMs. (F-H) Venn diagrams of MMRGs with
MEbrown (F), MEpurple (G), and MEcyan (H).
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However, the expression of the other 15 MMRGs was

significantly different between the two AML subtypes (P-value<

0.001). The ROC curves showed that expression levels of COX10

(AUC = 0.650, Figure S4C), NDUFA1 (AUC = 0.673, Figure

S4H), and TIMM8A (AUC = 0.630, Figure S4R) had lower
Frontiers in Immunology 08
accuracy in distinguishing two AML subtypes, while the

expression levels of BCS1L (Figure S4B), DGUOK (Figure

S4D), ECHS1 (Figure S4E), ETHE1 (Figure S4F), MPV17

(Figure S4G), NDUFA13 (Figure S4I), NDUFS2 (Figure S4J),

NDUFS7 (Figure S4K), NDUFV1 (Figure S4L), POLG (Figure
A B

D E

F

C

FIGURE 4

Identification of AML subtypes based on 17 module MMRGs. (A) The consensus clustering matrix of the TCGA-LAML cohort for K = 2. (B) Principal
component analysis for the expression profiles of two AML clusters in the TCGA-LAML dataset. (C, D). Relative changes in the area under cumulative
distribution function (CDF) curve (C), and consensus clustering CDF for k = 2-8 (D). (E) KM curves of two AML clusters in the TCGA-LAML cohort.
(F) Heatmap of 17 module MMRGs in the two AML clusters.
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S4M), SDHA (Figure S4N), SUCLG1 (Figure S4O), SURF1

(Figure S4P), and TACO1 (Figure S4Q) could accurately

distinguish the two AML subtypes (Figures S4B–R).
Establishment and validation of MMRGs
prognosis model

First, nine MMRGs modules correlated with the survival

outcomes with P-value< 0.1 were selected via univariate Cox
Frontiers in Immunology 09
regression analysis (Figure 5A, Table S5) for further analysis.

Finally, only five MMRGs modules (ECHS1, NDUFA1, NDUFS2,

SDHA, SUCLG1) were selected through the LASSO regression

analysis with minimized lambda (Figures 5B, C) for the

construction of the prognosis model (Figure 5D).

Further validation of the prognostic value of the five MMRGs

was conducted by analyzing the survival information of AML

patients in TCGA-LAML dataset (Table 1). A prognostic model

was then constructed based on the expression of five MMRGs using

multivariate Cox regression (Table 2).
A B

D

E

F G H

C

FIGURE 5

Construction of a prognostic risk signature based on MMRGs. (A) The forest plot showing the univariate Cox regression results of 17 module MMRGs
in the TCGA-LAML dataset. (B, C). Partial likelihood deviance of different numbers of variables (B), and coefficient profiles (C) for the LASSO
regression model. (D) Distribution of risk scores and survival status, and expression of five MMRGs. (E) A nomogram for multivariate Cox regression
analysis of prognostic MMRGs. (F-H). Calibration curves of the MMRGs prognostic model for 1-, 2-, and 3-year outcomes.
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The prognosis model of the MMRGs was evaluated using

nomogram analysis (Figure 5E). The expression of NDUFA1 and

SDHA performed better significantly in the Cox regression model

than other variables. In addition, the nomogram performed best at

predicting 1-year OS based on calibration plots (Figures 5F–H).

DCA at 1-year (Figure 6A), 2-year (Figure 6B), and 3-year

(Figure 6C) were performed to assess the clinical applicability of

the nomogram. The results indicated that the nomogram had a

higher net clinical benefit at 1-year. The KM curve showed that

low-risk patients had markedly longer survival times than other

patients (P-value< 0.001, Figure 6D). In addition, risk scores

of two groups were significantly different (P-value< 0.001,

Figure 6E).

Further assessment was conducted to assess the predictive

capability of prognosis model in the GSE12417 dataset

(Figures 6F, G). Similarly, high-risk patients had worse outcomes

(P-value = 0.045, Figure 6F) and higher risk scores (P-value< 0.001,

Figure 6G) in the GSE12417 dataset, indicating that the prognosis

model developed by MMRGs could accurately predict the survival

outcomes of AML patients.
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DEGs were obtained via differential analyses on the TCGA-

LAML dataset. A total of 38 DEGs were identified (|logFC| > 1,

adjusted P-value< 0.05) (33 upregulated and 5 downregulated

genes) in the high-risk group displayed in the volcano plot and

heatmap (Figures 6H–I).
Validation of ECHS1 and NDUFS2 by IHC

Expressions of ECHS1 and NDUFS2 were analyzed by IHC

staining in bone marrow (BM) biopsies of 10 AML patients, and 10

non-neoplastic patients. Control BM samples showed weak ECHS1

(Figure 7A) and NDUFS2 expression (Figure 7B), and most cells were

negative. However, most cells showed strongly positive signals of

ECHS1 and NDUFS2 in AML samples (Figures 7A, B). According to

the statistics of mean IOD from IHC images, AML samples had

significantly increased expression levels of ECHS1 (Figure 7C) and

NDUFS2 (Figure 7D) when compared to normal BM samples.
Functional annotation of
MMRGs phenotypes

To explore the biological process between two risk groups, GO

and KEGG analyses were conducted based on the 38 DEGs. GO

analysis showed that the DEGs were mainly involved in immune

responses, including positive regulation of cytokine, neutrophil

mediated immunity, T cell activation and antigen processing and

presentation (Figure 8, Table S6). The GO enrichment pathways of the

38 DEGs were mainly concentrated in the BP pathway (Figure 8E).

KEGG analysis showed that the DEGs were mainly enriched in four

pathways, hematopoietic cell lineage, phagosome, antigen processing

and presentation, and Th1 and Th2 cell differentiation (Figure 8A,

Figure S5, Table S7). These results indicated that 38 DEGs may play a

crucial role in regulating AML TME.

To further explore the correlation between the 38 MMRGs’

prognosis-correlated DEGs and disease, DO analysis was

performed. The DEGs were significantly (P-value< 0.05) enriched

in parasitic protozoa infectious disease, multiple sclerosis,

hypersensitivity reaction type IV disease, demyelinating disease,

vasculitis, psoriatic arthritis, lung disease, sarcoidosis, parasitic

infectious disease, and malaria (Figure S6A, Table S8). However,

HMOX1 and HLA-DRB1 had the most correlations with diseases,
TABLE 1 Patient Characteristics of LAML patients in the TCGA datasets.

Characteristic levels Overall

n 151

Gender, n (%) Female 68 (45%)

Male 83 (55%)

Race, n (%) Asian 1 (0.7%)

Black or African American 13 (8.7%)

White 135 (90.6%)

Age, n (%) <=60 88 (58.3%)

>60 63 (41.7%)

BM blasts (%), n (%) <=20 60 (39.7%)

>20 91 (60.3%)

OS event, n (%) Alive 54 (35.8%)

Dead 97 (64.2%)

Age, median (IQR) 56 (42, 66.5)
TABLE 2 Cox regression to prognosis MMRGs associated with OS in TCGA-LAML.

Characteristics Total(N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

ECHS1 140 2.424 (1.516-3.877) <0.001 0.960 (0.513-1.797) 0.900

NDUFA1 140 1.432 (0.990-2.070) 0.056 1.777 (0.950-3.324) 0.072

NDUFS2 140 6.848 (3.094-15.157) <0.001 1.274 (0.376-4.314) 0.697

SDHA 140 4.568 (2.560-8.152) <0.001 3.767 (1.753-8.095) <0.001

SUCLG1 140 5.369 (2.243-12.852) <0.001 1.520 (0.514-4.501) 0.449
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and they were significantly correlated with seven diseases among

the top ten diseases (Figure S6B).

To reveal the influence of MMRGs on AML occurrence, TCGA-

LAML dataset was analyzed via GSEA to identify biological

processes involved in two different groups. Surprisingly, these

genes were remarkably associated with mitochondrial metabolism,

drug resistance, and immunity, indicating that mitochondrial
Frontiers in Immunology 11
metabolism is crucial in immunoregulatory in TME and tumor

drug resistance. Furthermore, genes highly in the high-risk group

were significantly correlated with LSCs (Figure S6D), inflame

pathway (Figure S6E), Ebola virus infection in host (Figure S6F),

leukemia with MLL fusions (Figure S6G), mitochondrial translation

(Figure S6H), glycolysis (Figure S6I), and multiple drug resistance

(Figure S6J) (Figures S6C–J, Table S9) in the TCGA-LAML cohort.
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FIGURE 6

Prognostic performance of the MMRGs prognosis model. A-C. DCA curves of MMRGs prognosis model for the 1-year (A), 2-year (B), and 3-year (C).
D-E. Prognostic KM curves (D) and group comparison (E) in TCGA-LAML dataset. (F, G). Prognostic KM curves (F) and group comparison (G) in
GSE12417 cohort. (H, I). Volcano plot (H) and heatmap (I) of DEGs between high- and low-risk groups in TCGA-LAML cohort.
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Identification of hub genes

To further explore the molecular mechanisms underlying influence

of mitochondrial metabolism on AML, A PPI network was built based

on the 38 DEGs (Figure 9A). The top 10 DEGs were determined using

Cytoscape’s cytoHubba plugin viaMCC,MNC, and Degree algorithms
Frontiers in Immunology 12
(Figures 9B–D). Eight hub genes (CD14, CD74, HK3, HLA-DRB1,

HLA-DRB5, LILRB2, S100A8, and S100A9) were identified with high

connections (Figure 9E). Additionally, HLA-DRB1, S100A8 and

S100A9 had the highest functional similarity with other hub genes

(Figures 9F, G). The eight hub genes might play a pivotal role in

immunoregulatory and treatment resistance.
A

B

DC

FIGURE 7

Validation of the expression levels of key MMRGs by IHC. A-B. H&E and ECHS1 (A) and NDUFS2 (B) IHC staining of BM samples from nonneoplastic
patients and AML patients. Original magnification, 400X. (C-D). Statistics of ECHS1 (C) and NDUFS2 (D) mean IOD from IHC images of nonneoplastic
patients (n = 10) and AML patients (n = 10). ****P-value< 0.0001.
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Characteristics of MMRGs in the TME
immune regulation

To further explore the influence of mitochondrial metabolism

on TME, the ESTIMATE, CIBERSORT, and ssGSEA algorithms

were employed to characterize the TME. Results showed that the
Frontiers in Immunology 13
stromal scores were comparable between the two groups (P-value >

0.05, Figure 10A). It was also observed that the high-risk group had

higher immune scores (P-value = 0.007, Figure 10B), and higher

ESTIMATE scores (P-value = 0.018, Figure 10C), but lower tumor

purity compared with the low-risk group (P-value = 0.018,

Figure 10G), suggesting that high-risk patients had high immune
A B

D E

C

FIGURE 8

Functional annotation of DEGs between high- and low-risk groups. (A) Bubble chart showing the GO or KEGG analysis results. B-D. GO analysis for
DEGs in BP (B), CC (C), and MF (D) terms. (E) Bubble chart displaying the GO analysis results of DEGs combined with logFC. The ordinate in the
bubble chart (A) is the GO terms, and the length of the bubble from Y-axis stands for the GeneRatio value of GO terms. In network diagrams (B–D),
the orange dots represent specific genes, and the lavender circles represent specific pathways. In the bubble chart (E), the lilac circles represent the
BP pathway; the orange circles represent the CC pathway; and the green circles represent the MF pathway.
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cell infiltration. Interestingly, we found that the risk score showed a

positive nonsignificant association with the stromal score (R = 0.091,

P-value = 0.29, Figure 10D), however, the risk score was significantly

related to the immune score (R = 0.28, P-value = 0.00099,

Figure 10E), ESTIMATE score (R = 0.21, P-value = 0.012,

Figure 11F), and tumor purity (R = -0.2, P-value = 0.017, Figure 10J).

Although the high-risk group showed higher immune cell

infiltration, M2 macrophages, gamma delta T cells, myeloid-

derived suppressor cells (MDSCs) and regulatory T cells (Tregs)
Frontiers in Immunology 14
were significantly higher in the high-risk group (Figures S7, S8).

Additionally, inhibitory receptors (IRs), such as CTLA4 and IL2RA,

were significantly overexpressed in high-risk group patients (Figure

S9). These indicated that patients in the high-risk group might have

a strong immunosuppressive TME.

Given that immunotherapy has been considered as an

important treatment for tumors, we also evaluate the

immunotherapy response in AML patients in the TCGA-LAML

dataset using the TIDE algorithm. The TIDE immunotherapy
A B
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C

FIGURE 9

Construction of the PPI network. (A) PPI network of DEGs. (B-D). Interaction networks of the top 10 DEGs in the PPI network obtained by the MCC (B),
MNC (C), and Degree (D) algorithms. The color of the dots in the figure changes from yellow to red, indicating gradual increases in scores. (E) The Venn
diagram of the top 10 DEGs obtained by the three algorithms. (F, G). Functional similarity analysis results (F) and PPI network (G) of hub genes.
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scores in high-risk patients were significantly higher compared with

low-risk patients (P-value = 0.008, Figure 10H), suggesting that

responses to immunotherapy might be higher in low-risk patients.

Further analysis revealed that the risk scores were significantly

related to TIDE immunotherapy scores (R = 0.280, P-value< 0.001,
Frontiers in Immunology 15
Figure 10K). High-risk patients showed significantly higher MMs

(P-value< 0.001, Figure 10I), and risk scores were significantly

positively related to MMs (R = 0.556, P-value< 0.001, Figure 10L).

To explore the role of hub genes in immune regulation, the

correlations between immune infiltrating cells and hub genes were
A B
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C

FIGURE 10

Immune infiltration estimation and correlation analysis. (A-C). Comparison of StromaScore (A), ImmuneScore (B), and ESTIMATEScore (C) between
groups. (D-F). Scatterplots of the correlations between risk score and StromalScore (D), ImmuneScore (E), and ESTIMATEScore (F). (G-I). Comparison
of Tumor Purity (G), TIDE prediction score (H), and MMs (I) between groups. (J–L). Scatterplots of the correlations between risk score and Tumor
Purity (J), TIDE prediction score (K), and MMs (L).
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analyzed. By CIBERSORTx analysis, most immune cells were

negatively correlated, with the highest positive correlation

obtained between NK cells resting and Tregs in both groups, and

the highest negative relationship was detected between monocytes

and plasma cells (Figures S7C-D). Meanwhile, in both groups, 8 hub

genes and 22 immune cells were found to be significantly correlated

(P-value< 0.05) in both groups, and monocytes showed a

significantly positive correlation with hub genes (Figures S7D, E).
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Through ssGSEA analysis, positive relationships were observed

among the 15 immune cells in both groups (Figures S8B, C).

Meanwhile, in the low-risk group of TCGA-LAML dataset, there

were significant correlations (P< 0.05) between 15 immune cells and

8 hub genes, and most of them showed a significant positive

correlation (Figure S8D). Specifically, CD14, HK3, LILRB2,

S100A8, and S100A9 were significantly correlated with 15

immune cells. Similarly, significant positive correlations were
A B
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C

FIGURE 11

Construction of mRNA-RBP and mRNA-drugs interaction network and drug sensitivity analysis. (A, B). mRNA-RBP (A) and mRNA-drugs (B)
interaction networks for the identified hub genes. (C–E). Drug sensitivity analysis results of hub genes in the GDSC database (C), CCLE database (D),
and CellMiner database (E). In the mRNA-RBP interaction network (A), the blue circular block is mRNA; the orange triangle block is RBP. In the
mRNA-drugs interaction network (B), the blue circular block is mRNA; the light green diamond block is drug.
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found between 15 immune cells and 8 hub genes in high-risk group

(Figure S8E), among which S100A8, S100A9, CD14, and LILRB2

were significantly correlated with 15 immune cells. Through

correlation analysis, we found that the 8 hub genes were

significantly positively correlated with the 11 immune-related

genes (Figure S9C). These findings indicated that these hub genes

were closely correlated with tumor immunity.
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Comparison of transcriptome and clinical
traits between high- and low-risk groups
Given that tumor cells are characterized by genomic instability

and altered metabolism, to determine the correlation between

mitochondrial metabolism and DNA repair, we extracted 19
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FIGURE 12

Prognostic performance of the MMRGs prognostic model. (A, B). Forest plot (A), nomogram (B) of multivariate Cox regression model with risk score
and clinical variable. (C-E). Calibration curves of multivariate Cox regression model nomogram for the 1-year (C), 2-year (D), and 3-year (E)
outcomes. F-H. DCA plots of multivariate Cox regression model for the 1-year (F), 2-year (G), and 3-year (H) outcomes. (I-K). Comparison of OS
events (I), prognostic KM curve (J), and time-dependent ROC curve (K) of the risk score + age + gender prognosis model.
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DNA repair genes from published literature. The analysis revealed

that ERCC1, FANCC, FEN1, MGMT, MLH1, RAD23A, and XPC

were upregulated in high-risk patients whereas MBD4 and WRN

were downregulated in low-risk patients (Figure S9B). As displayed

in Figure S9D, 8 hub genes were significantly related to 19 DNA

repair genes, with WRN showing a negative correlation with the 8

hub genes.

To better illustrate the characteristic differences between the

two groups, we compared clinical traits of the two groups. The

proportion of patients under 60 years old in the low-risk group

was significantly higher than that of high-risk group (Figure S9E),

while there was no difference in sex between the high- and low-

risk groups (Figure S9F). The proportion of OS events in low-risk

group was markedly lower than that in the high-risk group

(Figure S9G).
Identification of potential
druggable targets

To investigate the regulatory mechanism of hub genes in AML

and whether all of the hub genes are druggable targets, mRNA-RBP

interaction analysis and mRNA-drug interaction analysis were

conducted. An mRNA-RBP network with eight hub genes and 45

RBPs (Figure 11A) was constructed (69 pairs of mRNA-RBP

interaction relationships) (Table S10). Meanwhile, 39 potential

drugs targeting six hub genes (CD14, CD74, HLA-DRB1, HLA-

DRB5, S100A8, S100A9) were identified (Figure 11B, Table S11).

Besides, 31 drugs or molecular compounds targeting the HLA-

DRB1 gene were identified.

What’s more, the drug sensitivity was predicted based on the

mRNA expression profile and drug activity data of the eight hub

genes in the GDSC, CCLE, and CellMiner database via pRRophetic

algorithm. A total of 50 and 13 drugs interacted with eight hub

genes in the GDSC and CCLE databases, respectively (Figures 11C,

D). Fourteen drugs interacted with the other seven hub genes

(except for the CD14 gene) in the CellMiner database

(Figure 11E). These results indicate that the eight hub genes were

all druggable targets. The majority of the hub genes are related to

immune regulation, however small molecular inhibitors, such as

BCL2 inhibitors, might target these genes. This suggested that
Frontiers in Immunology 18
treatment targeting mitochondrial metabolism might improve the

TME of AML patients.
Prognostic performance of MMRGs
prognosis model

To evaluate the performance of the MMRGs prognosis model,

univariate and multivariate Cox regression were conducted based

on risk scores combined with 2 independent clinical variables (age,

and gender). The results are shown in the forest plot (Figure 12A).

Results indicated that the risk score remained an independent

predictor of survival in the multivariate Cox regression analysis

(P-value< 0.001, Table 3). A nomogram was developed which

revealed that the risk score contributed the most risk points

compared with other clinical variables (Figure 12B). Additionally,

we conducted calibration analysis to evaluate the correctness of the

model. The results indicated that the model could accurately predict

AML patients’OS at 1-, 2-, and 3-year (Figures 12C–E). The clinical

benefit of this prognosis model at 1-, 2- and 3-year was also

determined using the DCA (Figures 12F–H). This model

displayed many clinical benefits over time.

The AML patients in the TCGA-LAML cohorts were grouped

according to the OS to explore differences in risk scores between

different OS event groups. Patients in the death group had higher

risk scores (Figures 12I). Patients with lower risk scores had longer

survival as determined from the KM curves (Figure 12J). Data

shown in Figures 12K revealed that the prognosis model based on

MMRGs risk score had high predictive accuracy (AUC1 = 0.808,

AUC2 = 0.813, AUC3 = 0.806).
Discussion

AML is a common hematologic malignancy characterized by

poor prognosis and high recurrence rates. The 5-year survival rate

of AML is low because of disease relapse and lack of precise

treatment for each patient. Therefore, assessing the resistance

mechanism and finding novel potential molecular targets for

AML therapeutic intervention is essential. Genomic aberrations

and functional heterogeneity have been studied to understand AML
TABLE 3 Cox regression to MMRGs prognosis model and identify clinical features associated with OS in TCGA-LAML.

Characteristics Total(N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 140

<=60 79 Reference

>60 61 3.333 (2.164-5.134) <0.001 2.989 (1.915-4.666) <0.001

gender 140

Female 63 Reference

Male 77 1.030 (0.674-1.572) 0.892 0.764 (0.494-1.181) 0.226

RiskScore 140 2.718 (1.972-3.747) <0.001 2.585 (1.848-3.617) <0.001
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heterogeneity (59, 60). Although most somatic mutations

responsible for AML have been identified, the lack of targeted

therapies for numerous mutations limits the widespread clinical

success of mutation-specific treatments. Some studies have shown

that mitochondrial metabolism promotes AML tumorigenesis,

progression, and treatment resistance (15, 61). Therefore,

mitochondrial metabolism can be a potential therapeutic target in

AML. In this study, a prognosis model including five MMRGs that

can accurately predict outcomes of AML patients was constructed.

Additionally, we identified different immune infiltration status and

immunotherapeutic responses between high- and low- risk groups.

Potential drugs were further identified.

In this study, overall somatic mutation frequency of 31 MMRGs

was extremely low in AML, which was consistent with a recent

study (62). Noteworthy, LSC transcriptional and epigenetic

signatures are mainly independent of genetic mutations (63).

Moreover, LSC protein expression profiles are enriched for

biomarkers of OXPHOS and LSC dependent on mitochondrial

metabolism for survival (64). Next, MMs based on the expression of

31 MMRGs were calculated, which were notably associated with the

OS and FAB stages of AML patients in all cohorts. By WGCNA

analysis and univariate Cox regression analysis, we identified 9

prognosis-related MMRGs (POLG, NDUFV1, BCS1L, TACO1,

SUCLG1, SDHA, NDUFA1, NDUFS2 and ECHS1). POLG, the

sole polymerase responsible for mitochondrial DNA replication,

have been reported to be involved in the proliferation and

differentiation of AML cells in vitro and in vivo (65). NDUFV1,

subunits of ETC complex I, was demonstrated to be overexpressed

in AML LSCs (66). BCS1L encodes a mitochondrial protein that

functions as a chaperone in the assembly of respiratory chain

complex III. A recent study revealed that knockdown of BCS1L

could reduce AML proliferation and oxidative metabolism (67).

TACO1, encoding a translational activator of cytochrome c oxidase

1, the function of which is poorly understood (68). Previous studies

reported that SUCLG1 and SDHA are independent prognosis

predictors in AML (69–71). SUCLG1 participate in regulate ETC,

regulate TCA cycle activities, and regulate mitochondrial

respiration-dependent energy production. SDHA is a component

of ETC complex II, that promotes oxidative cell phosphorylation

and ATP production through glutathionylation, which is required

for the survival of AML LSCs (71). Venetoclax + azacytidine

treatment can inhibit SDHA glutathionylation and target LSCs in

AML patients (72). NDUFA1, subunit of mitochondrial complex I,

was associated with the prognosis of head and neck squamous cell

carcinoma (73). ECHS1 plays an important role in phospholipid

metabolism, tumor occurrence, development, and drug resistance

(74). NDUFS2 is involved in cell growth, metabolism, apoptosis,

and necrosis. A recent study reported that antitumor compound

SMIP004-7 could eradicate drug-resistant cancer cells and promote

anticancer immune surveillance by targeting NDUFS2 (75). These

findings confirmed that mitochondrial metabolism plays a crucial

role in tumor development and progression.

The 9 MMRGs were further used for Lasso regression, and 5

MMRGs were selected (SUCLG1, SDHA, NDUFA1, ECHS1 and

NDUFS2). Subsequently, a novel AML risk signature combining the

5 MMRGs was developed via integrative analysis of TCGA and
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GEO databases. The low-risk group showed a more favorable

prognosis in both training and validation cohorts. The signature

could accurately predict the prognosis of AML patients at 1-, 2- and

3-year, showing a stable strong predictive power. We then

combined risk scores and clinical characteristics (age and gender)

to develop a nomogram, indicating that risk score was an

independent predictor. The predictive capability of our risk

signature is equivalent to that of a signature including four genes

(23) and a signature including six genes (22). However, our

signature can better predict antitumor immune responses and

promotes the finding of biological targets for immune treatments.

This is the first study to assess the prognostic value of ECHS1,

NDUFA1, and NDUFS2 expression on the overall survival of AML

patients. What’s more, we found that AML BM samples had

significantly higher ECHS1 and NDUFS2 expression than normal

BM samples by IHC assay. According to these findings, we

speculate that ECHS1 and NDUFS2 may be essential regulators in

influencing the prognosis of AML patients.

The DEGs between high- and low-risk groups were mainly

related to immune regulation and mitochondrial metabolism, such

as positive regulation of cytokine production, neutrophil activation,

T cell activation, and Th1 and Th2 cell differentiation. This

indicated that these two groups were affected by different immune

regulation. Increasing studies have demonstrated that the leukemic

microenvironment is involved in outcomes and treatment

responses of AML patients (76, 77). By immune infiltration

analysis, we found that the high-risk group showed higher

immune scores, but increased ratio of gamma delta T cells, M2

macrophages, MDSCs and Tregs and increased expression of

CTLA4 and IL2RA. In many cancers, immunoregulatory

mechanisms have been proved to hamper anti tumor

immunotherapy, including ligand-mediated engagement of IRs on

effector cells, such as CTLA4, and induction of immunosuppressive

cell subsets, such as Tregs or MDSCs (78–80). IL2RA was

demonstrated to be involved in inferior outcomes of AML

patients (81). Several clinical trials have assessed immunotherapy

for AML, including checkpoint inhibitors, CAR T cells,

multispecific antibodies, and vaccines (82, 83). Nonetheless,

immunotherapy has only benefited a few patients. Therefore,

effective biomarkers are needed to predict the immunotherapy

response of AML patients. Herein, the high-risk group showed

more likelihood to experience immune escape or immune

dysfunction, indicating poor response to immunotherapy. This

result suggests that mitochondrial metabolism-related genes may

be a new therapeutic target.

Drug repurposing, the new use of old drugs, can accelerate drug

development and reduce the cost (84). Hub genes identified from 38

DEGs between high- and low-risk groups were used to explore

potential drugs by protein-drug interaction analysis and drug

sensitivity analysis with public databases. 77 ideal compounds for

targeting hub genes were identified (PI3K inhibitor, BCL-2

inhibitor, CDK inhibitor, MDM2 inhibitor, tyrosine kinase

inhibitor, etc.). Tasquinimod, an inhibitor of S100A9, is currently

in a phase Ib/IIa clinical trial in multiple myeloma patients

(NCT04405167). A recent study demonstrated that Tasquinimod

could inhibit the MDSC suppressive ability and promote T cell
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activation in myeloma BM microenvironment (85). As we showed,

the TME of the high-risk group were immune suppressive with

higher MDSCs and Tregs infiltration and poor immunotherapy

response. Additionally, Tasquinimod was reported to target

HDAC4 to inhibit tumor proliferation (86). Increasing studies

have shown histone deacetylases play pivotal roles in

leukemogenesis and stemness maintenance of AML (87, 88).

These indicates that Tasquinimod might be a candidate drug for

AML. Navitoclax, a BCL-2 inhibitor, have been demonstrated as a

single agent or in combine with other drugs to successfully eradicate

leukemia cells (89, 90). Venetoclax, another BCL-2 inhibitor, can

reduce mitochondrial respiration, induce TCA cycle inhibition, and

activate reductive carboxylation in AML cells, thus inducing

apoptosis (91–93). AXL inhibitor, a tyrosine kinase inhibitor,

combined with venetoclax, can eradicate AML primitive cells by

perturbating the process of OXPHOS (94). These findings indicated

that these drugs might have effects on AML. In this study, GSEA

showed that genes associated with multiple drug resistance were

overexpressed in the high-risk group, indicating that mitochondrial

metabolism is related to the resistance treatment in AML. Similarly,

other studies reported that OXPHOS and mitochondrial

metabolism can promote chemotherapy resistance in AML

patients (95), suggesting that mitochondrial metabolism is a

promising therapy target for AML. In addition, some studies have

demonstrated that OXPHOS inhibitors could effectively eradicate

leukemia cells and are being evaluated in clinical trials, such as

IACS-010759 (96), Mubritinib (61), Ammocidin (97), devimistat

(98) and ONC212 (99). Although drug repurposing is an effective

strategy to search for therapeutic candidates, but the anti-tumor

mechanism of these drugs still needs further investigation.

However, this study has some limitations. First, there was

incomplete data for all variables of AML patients, and thus the

MMRGs risk score + age + gender prognosis model was not

validated with the GSE12417 and GSE37642 datasets. Although

736 AML patients from three datasets were included, the prediction

value of five MMRGs was evaluated using only 314 AML patients.

Therefore, more independent AML cohorts and prospective studies

are needed to validate the prognostic signature. Second, this study

was analyzed via bioinformatics based on public datasets only.

Sufficient clinical samples and corresponding clinical data are

needed to verify the prediction value of these MMRGs. Third, it

is unclear how these MMRGs work together to affect immune

infiltration, immunotherapy response, and drug sensitivity in AML

patients. Analyses of the data were based solely on bioinformatics

and IHC assays in this study. Therefore, in vitro and in vivo

experiments are needed to further reveal these mechanisms.
Conclusions

Taken together, a novel five MMRGs signature that could

accurately predict the prognosis outcomes and immune status in

AML patients was successfully developed and validated. This study

may provide novel insights into predicting clinical outcomes for

AML patients. Meanwhile, this study also develops theoretical
Frontiers in Immunology 20
guidelines for improving immunotherapy and personalized

antitumor treatment.
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SUPPLEMENTARY FIGURE 1

Normalization of the AML datasets. A-B. Boxplots of the TCGA-LAML dataset
before (A), and after (B) normalization. (C, D) Boxplots of the GSE12417

dataset before (C), and after (D) normalization. (E, F) Boxplots of the
GSE37642 dataset before (E), and after (F) normalization.

SUPPLEMENTARY FIGURE 2

Mutation analysis of MMRGs and correlation of MMs and FAB stages in TCGA-

LAML cohort. (A) SNP of MMRGs in AML patients. (B) Comparisons of MMs
among different AML FAB subgroups. *P-value< 0.05, **P-value< 0.01, ***P-

value< 0.001.

SUPPLEMENTARY FIGURE 3

Correlation analysis for the module MMRGs. A. Heatmap showing the

correlation among module MMRGs in the TCGA-LAML dataset. (B-F)
Scatter plots for the correlations between BCS1L and NDUFV1 (B); MPV17
and NDUFV1 (C); DGUOK and NDUFA1 (D); NDUFA13 and NDUFS7 (E);
NDUFS7 and NDUFV1 (F).

SUPPLEMENTARY FIGURE 4

Differential expression of 17 module MMRGs in the two AML clusters. (A) The
expression of 17 module MMRGs in the two AML clusters. (B-R) ROC curves

for discriminating the two AML subtypes from the TCGA-LAML cohort on
BCS1L (B), COX10 (C), DGUOK (D), ECHS1 (E), ETHE1 (F), MPV17 (G), NDUFA1

(H), NDUFA13 (I), NDUFS2 (J), NDUFS7 (K), NDUFV1 (L), POLG (M), SDHA (N),
SUCLG1 (O), SURF1 (P), TACO1 (Q), TIMM8A (R). **P-value < 0.01,

***P-value < 0.001.
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SUPPLEMENTARY FIGURE 5

KEGG pathway map of DEGs between high- and low-risk groups. (A-D)
KEGG pathway maps of hematopoietic cell lineage (A), phagosome (B),
antigen processing and presentation (C), Th1 and Th2 cell differentiation

(D) enriched by KEGG analysis based on the DEGs between high- and
low-risk groups.

SUPPLEMENTARY FIGURE 6

DO analysis of DEGs and GSEA analysis. (A, B) Histogram (A) and network

diagram (B) displaying DO analysis results of the DEGs. C. Seven main
biological characteristics of GSEA analysis. D-J. Genes in the TCGA-LAML

dataset were significantly enriched in leukemic stem cell (D), inflame pathway
(E), Ebola virus infection in host (F), leukemia with MLL fusion (G),
mitochondrial translation (H), glycolysis (I), and multiple drug resistance

(J) pathways.

SUPPLEMENTARY FIGURE 7

CIBERSORTx immune infiltration analysis of high- and low-risk groups. (A)
Immune cell infiltration in high- and low-risk groups by CIBERSORTx analysis.

(B, C) Correlations between each immunocyte infiltration level in the low-risk
group (B) and high-risk group (C). (D, E) Heatmap showing the correlations

between hub genes and immunocyte infiltration level in low-risk group (D)
and high-risk group (E).

SUPPLEMENTARY FIGURE 8

ssGSEA analysis for high- and low-risk groups. (A) Immune cell infiltration

in high- and low-risk groups as determined by ssGSEA analysis. (B, C).
Correlations between each immunocyte infiltration level in low- (B) and
high-risk group (C). (D, E). Heatmap displaying the correlations between

hub genes and immunocyte infiltration level in low- (D) and high-risk
group (E). *P-value< 0.05, **P-value< 0.01, ***P-value< 0.001, ns,

no significance.

SUPPLEMENTARY FIGURE 9

Difference analysis between high- and low-risk groups. A, B. Expression of

immune-related genes (A) and DNA repair genes (B) in the AML patients. C, D.
Relationships between hub genes and immune-related genes (C) and DNA

repair genes (D). E-G. Stacked histogram of the proportions of age (E), gender
(F), OS event (G). *P-value< 0.05, **P-value< 0.01, ***P-value< 0.001.
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