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Advances in lung bioengineering:
Where we are, where we need to
go, and how to get there
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Lung transplantation is the only potentially curative treatment for end-stage lung
failure and successfully improves both long-term survival and quality of life.
However, lung transplantation is limited by the shortage of suitable donor lungs.
This discrepancy in organ supply and demand has prompted researchers to seek
alternative therapies for end-stage lung failure. Tissue engineering
(bioengineering) organs has become an attractive and promising avenue of
research, allowing for the customized production of organs on demand, with
potentially perfect biocompatibility. While breakthroughs in tissue engineering
have shown feasibility in practice, they have also uncovered challenges in solid
organ applications due to the need not only for structural support, but also
vascular membrane integrity and gas exchange. This requires a complex
engineered interaction of multiple cell types in precise anatomical locations. In
this article, we discuss the process of creating bioengineered lungs and the
challenges inherent therein. We summarize the relevant literature for selecting
appropriate lung scaffolds, creating decellularization protocols, and using
bioreactors. The development of completely artificial lung substitutes will also
be reviewed. Lastly, we describe the state of current research, as well as future
studies required for bioengineered lungs to become a realistic therapeutic
modality for end-stage lung disease. Applications of bioengineering may allow
for earlier intervention in end-stage lung disease and have the potential to not
only halt organ failure, but also significantly reverse disease progression.
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lung transplant, tissue engineering, ex vivo lung perfusion, bioreactor, tissue scaffolds,

extracorporeal membrane oxygenation

1. Introduction

Within the field of end-stage lung disease (ESLD), the conventional treatment of choice

is lung transplantation. This therapy is limited by an imbalance between the availability of

suitable donor lungs and demand, creating a lengthy waiting list. Therefore, alternatives

to conventional transplantation to alleviate donor organ shortage have been investigated,

such as use of organs from different species (xenotransplantation) as well as

bioengineering or regenerative medicine. The basic concept of bioengineering requires the
Abbreviations

CIT, cold ischemic time; CHAPS, sodium deoxycholate or 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate; COPD, chronic obstructive pulmonary disease; DCD, donation after circulatory death;
ECM, extracellular matrix; ECMO, extracorporeal membrane oxygenation; ESLD, end-stage lung disease;
EVLP, ex-vivo lung perfusion; FBN-2, fibrillin 2; iPSC, induced pluripotent stem cell; IRI, ischemia
reperfusion injury; PGLA, poly lactic-co-glycolic acid; PLLA, poly-L-lactic acid; POSS-PCA, polyhedral
oligomeric silsesquioxane poly(carbonate-urea) urethane; TN-C, tenascin C; XC, cross circulation
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FIGURE 1

Overview of lung bioengineering process.
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creation of a form of tissue scaffold or matrix, populated by cells of

the desired tissue, to transplant into the patient and allow for

function as closely to the native organ as possible (Figure 1) (1).

If successful, the promise of this approach lies in the ability to

replace diseased and damaged lungs with bio-compatible tissue

on demand. Tissue engineering approaches have had successful

applications in human skin substitutes, vascular grafts, and

bladder tissue (2–4). However, lung tissue engineering is made

more challenging given the multiple cell types involved (e.g., over

40 different cell types in the lung), the need for structural and

vascular membrane integrity, and in the case of lung tissue,

ability to perform adequate gas exchange and the mechanical

forces of respiration (5).
2. Selection of the tissue scaffold

The ideal scaffolding for the bioengineered lung has not yet

been established. In tissue engineering, the extra-cellular matrix

(ECM) is critical for maintaining mechanical support of the

regenerating tissue, establishing the optimal microenvironment

for tissue repair and regeneration, and incorporating biochemical

cues for the modulation of cell behavior (6). Possible sources for

such scaffolding include human tissue, animal tissue, or synthetic

materials. Use of human or animal tissue requires a process of

decellularization to remove antigenic material which may cause

an immune reaction in the recipient.
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One possible source of human tissue that may be used for

scaffolding are donation after circulatory death (DCD) donors

whose lungs are unsuitable for allotransplantation (7–11). A

significant problem with the standard transplantation of DCD

donor lungs is the length of ischemic time. At 18 h of cold

ischemic time (CIT), ischemia-reperfusion injury (IRI) can

significantly alter phenotypic features of lung cells—epithelial

cells more so than endothelial cells (12). It is plausible that DCD

lungs deemed to be untransplantable with prolonged ischemic

time can be used as scaffolds for bioengineered lungs. There have

also been studies on the use of human scaffolds from older

donors with pre-existing lung diseases such as chronic

obstructive pulmonary disease (COPD). However, these scaffold

sources have demonstrated difficulty sustaining prolonged

viability after recellularization compared to human lungs without

COPD, suggesting that these cohorts of human lungs may not be

an ideal choice (8, 13).

The ECM that remains after lung decellularization provides

both structure and biophysical cues for whole organ regeneration

after recellularization. A study by Gilpin et al. evaluated epithelial

stem cells isolated from adult human lung tissue that were

cultured on acellular ECM derived from neonatal or adult lung

donors (14). There were significantly higher cell proliferation and

survival rates for stem cells cultured on neonatal lungs. This may

be because the ECM in the neonatal lung is actively undergoing

alveologenesis and possesses distinct signals that aid in cell

proliferation. The same study also found that treatment of the
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scaffolds with Fibrillin 2 (FBN-2) and Tenascin C (TN-C) prior to

re-epithelization increased epithelial proliferation and tissue

remodeling. This finding suggests that FBN-2 and TN-C

(identified in neonatal ECM) have an important role in

sustaining and maintaining cellular proliferation which is critical

for tissue engineering of lung tissue.

Scaffolds need not be of human origin, and decellularized

scaffolds from both porcine and non-human primates have been

described (15, 16). Primate tissue is the most similar to human

in matrix composition, but its use is associated with concerns

related to animal welfare (17). Porcine lungs have the advantage

of being readily available, and their use is potentially more

acceptable in the eyes of the public compared to non-human

primates. However, porcine models are susceptible to the

formation of blebs and cystic spaces following the

decellularization process (9). Furthermore, the composition of the

ECM in porcine scaffolds has been shown to be significantly

different, possibly inhibiting the proliferation of human

endothelial cells (17). Although there is much care taken to

decellularize scaffolds to avoid rejection from the recipient, there

still exist risks of rejection from other aspects of the ECM.

Proteoglycans and collagen in xenogenic ECMs possess antigenic

properties and stimulate the production of anti-non-gal

antibodies due to differences in protein sequences between

human and non-primate ECMs (18, 19). A study by Tao et al.

demonstrated evasion of the immune system by coating

autologous red blood cell membrane on xenogeneic ECM-based

tissue engineering graft surface (19). This may be a promising

avenue for further research.

Synthetic scaffolds made of poly lactic-co-glycolic acid (PLGA),

poly-L-lactic-acid (PLLA), and poly-DL-lactic acid have been

studied as well, although all have shown difficulty in guiding

correct cell differentiation (20, 21). The use of Matrigel and

laminin are promising in addressing the problems in

differentiation in murine embryonic stem cells, but have yet to

be applied to human embryonic stem cells (22). Due to the fewer

number of cell types present in tracheal tissue, more research has

been done into producing synthetic tracheal scaffolds using 3D

printable materials such as polyhedral oligomeric silsesquioxane

poly (carbonate-urea) urethane (POSS-PCU) and polyglycolic

acid, pluronic F-127 (23, 24). While these inks are accurate in

printing, they lack integrin binding sites and an environment for

the biochemical processes required for lung tissue (11).

Interestingly, in an effort to more closely mimic alveolar

structure for the purpose of lung cancer drug development,

materials such as gelatin mixed with microbial transglutaminase

have been preliminarily studied and shown to evenly distribute

cells and are able to be efficiently seeded (25).
2.1. Decellularization protocols and
decellularized scaffolds

The aim of the decellularization process is to preserve the

airway and vascular structures whilst removing all cells and

cellular material yet still preserving as much native ECM as
Frontiers in Transplantation 03
possible. Most protocols for decellularization utilize a detergent

solution such as Triton X-100 and sodium deoxycholate or 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)

detergent perfused through the pulmonary artery and trachea,

followed by DNAse and peracetic acid to disinfect and dissociate

DNA from the extracellular matrix (26–28). The current criteria of

complete decellularization from Gilpen et al. includes (i) <50 ng

double-stranded DNA per mg of decellularized material; (ii) less

than 200 bp length of DNA fragments; (iii) preservation of

structural proteins of ECM; and (iv) retention of mechanical

properties (29). Confirmation of decellularization can be obtained

through DNA quantification techniques (fluorescent nucleic acid

stains) and gel electrophoresis to determine DNA fragment size

(30). Trace amounts of DNA remain after processing, however,

the inflammatory or other responses to small fragments of

remnant DNA (<300 base pairs) are unlikely to have clinical

effects (31). There is a delicate balance between the goals of

removing cellular material and disrupting the mechanical integrity

of the ECM with the decellularization process.

Currently, human scaffolds and natural cell-derived ECM

matrices are superior to synthetic biomaterials derived hydrogels.

However, degradation rates of biomaterials scaffolds are difficult

to control, and it is important to choose the right method of

decellularization in order to preserve as much of the native ECM

as possible. One method of decellularization is through the

application of direct pressure to the tissue. Mechanical force is

not ideal for many types of tissues which exhibit densely

organized ECMs. However, in organs like the lung, mechanical

force may be a feasible way to decellularize tissue while

maximally preserving the ECM (30). Mechanical methods of

decellularization avoid the toxicity of chemical methods and

allow surfactant to remain in the decellularized tissue (29).

One of the problems that has been seen during

decellularization in whole organs is the loss of the endothelium,

resulting in an activation of the coagulation cascade.

Consequently, direct contact between the recipient’s blood and

the ECM of the blood vessels occurs and subsequent

intravascular blood coagulation can manifest after implantation

and significantly reduces short-term graft survival (32–35). To

address this, studies have utilized re-endothelialization of the

graft, heparin immobilization on the ECM, end-point

immobilization, layer-by-layer techniques, and use of heparin-

gelatin to coat the vascular network—all of which have

promising results but lack long-term graft survival data (33–

37). A recent study from Akinnnola et al. explores endothelial

cell specifications necessary to prevent thrombus formation and

barrier leaks. The group successfully identified one cell source

in a mouse study that was able to accomplish the

aforementioned characteristics: pulmonary microvascular

endothelial progenitor cells. Fathi et al. has also utilized pre-

vascularization methods by axial vascularization and

subsequent infusion of either bone marrow or adipose-derived

stem cells through the portal vein of the Lewis rat liver scaffold

after initial decellularization and implantation. The bone

marrow and adipose-derived stem cell groups were functionally

superior to the acellular scaffold (38).
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One of the ways to overcome the challenge of repopulating the

lung with so many cell types is to de-epithelialize instead of fully

decellularize the lung. In diseases that primarily affect the

conducting airways, de-epithelialization may allow for autologous

lung transplantation after specific removal of diseased cell

populations (39). Dorrello et al. describes a method of de-

epithelization through infusing a CHAPS detergent solution

through the airways while using low tidal volume ventilation to

optimize distribution of the solution through the airways which

was tested and successful in rat lungs (40). Subsequent targeted

reseeding of the epithelium using normal epithelial cells or

mutation-corrected iPSCs has the potential to allow patients to

keep their native lungs which would result in a lower burden on

the lung transplant list (41). This is especially viable now that

the technology regarding ex-vivo lung perfusion (EVLP) and

cross-circulation (XC) has advanced to a level where the possible

amount of time on EVLP or XC supersedes the time needed to

de-epithelialize and reseed the lung as proven in large animal

models on EVLP and both small and large animal models on XC

(40, 42–44). Dorrello et al.’s approach to reseeding the

epithelium can also be applied to lungs that do not qualify for

traditional or extended criteria donation, and would otherwise

serve as scaffolds for lung bioengineering. With majority of

donor lungs unable to meet the standards for transplantation due

to injury located in the alveolar epithelium, de-epithelialization of

the donor lung and subsequent reseeding of the lung with

recipient stem cells would allow for an increased number of

donor lungs to successfully be used as scaffolds. By selectively

decellularzing the epithelium, there is the potential to address the

problems of recellularization of a wide range of cell types,

preservation of the vascular network, and support and delivery of

growth factors and signaling molecules vital to the success of

lung scaffolds (39).
2.2. 3D Printed scaffolds

Recent advances in lung tissue engineering involve production

of a synthetic acellular matrix. 3D “bioprinting” is a technology

that uses computer-aided models and specific 3D bioprinters

with either biomaterials (non-cellular biological material

hydrogels such as collagen and gelatin which need to be seeded

after printing) or bioinks (which contain biologically active cells

that can be processed and printed to produce a biological model)

(45). There are challenges with using either. Bioinks must be

utilized within temperature and pressure parameters that allow

the cells to survive the printing process (45). Scaffolds made with

biomaterial inks must be able to sustain cellularization, with the

ability to seed on varied cell types. Due to limitations of 3D

printers and differences between capabilities in viscosity of

materials that can be printed, clogging of the nozzle has often

been problematic and limits the number of cell types available to

be printed (46, 47).

One promising biomaterial is human recombinant type 1

collagen, which has been produced by crossbreeding tobacco

plants to incorporate human genes encoding for procollagen type
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I, with similar biofunctionality compared to human tissue-

derived collagen (48). 3D bioprinting technology has been able to

produce models of the alveolus, including endothelial cell,

basement membrane, and epithelial cell layers (49). Selection of

the most appropriate biomaterial for a synthetic scaffold is

challenging. Completely synthetic materials can be altered for

varying mechanical properties, an important consideration when

supporting respiration, but offer relatively poor cell adhesion and

lack biological signals for differentiation and proliferation.

Naturally derived hydrogels have the benefit of biocompatibility

and biochemical cues for adhesion, although they tend to have

poor mechanical properties. Consequently, a mixture of both

synthetic materials and naturally derived hydrogels may retain

the benefits of each (11, 45).

At the alveolar level, Grigoryan and colleagues developed a

model of stereolithographic production of a hydrogel that

contained intricate and functional vascular architectures, which

subsequently modeled into alveolar structures that could support

ventilation cycles for over 6 h (50). This advance proved the

ability to produce highly intricate biologically active structures, a

previous limitation of 3D printing technologies.
3. Bioreactors

Repopulating the scaffold with a suitable lung cell population is

another challenge. Ideally, autologous cells from the transplant

recipient would be used to recellularize the scaffold. The

advantage of this would be complete biocompatibility without

the need for immunosuppressive medications. However, adult

cells are difficult to obtain from patients in sufficient numbers.

Induced pluripotent stem cells (iPSCs) are a promising cell

lineage that offer some benefits in bioengineered lungs. iPSCs are

obtained from skin fibroblasts, and differentiation of iPSCs into

human fetal lung tissue and population of a human scaffold of

alveolar epithelial cells have been reported (51, 52). Development

of endothelial cells (also necessary for complete recellularization)

through reprogramming has been reported in decellularized

vascular scaffolds (53). What remains unknown is whether all

cell types necessary for recellularization are present in current

models. Interstitial cells make up 30% of the lung (such as

fibroblasts) and are vital for supporting epithelial and endothelial

cell populations. Mesenchymal stem cells, derived from bone

marrow, play a role in lung injury and fibroblasts assist in ECM

turnover. Excessive fibroblast activity contributes to the

development of pulmonary fibrosis (54). Consequently, it is likely

that repopulation with interstitial cells (from mesenchymal stem

cells and fibroblasts) are necessary for successful lung tissue

engineering (55).

Repopulating either synthetic or decellularized scaffold requires

a bioreactor. This allows seeding of the cells, adequate nutrient

transfer, and waste removal, and additionally provides the

appropriate mechanical and biochemical stimuli for cell

differentiation. Current technology for human EVLP utilized in

clinical transplantation allows for lung perfusion up to 12 h

experimentally and 4 h clinically (56, 57). It is likely that
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repopulation and maturation of a decellularized scaffold will

require more time than this, and therefore further research into

the development of appropriate bioreactors for human

bioengineered lung is necessary.

One of the adverse events of decellularizing organs is the

damage to critical ECM components such as elastic fibers,

proteoglycans, and glycosaminoglycans. These elements are

crucial for tissues to sustain compressive forces, and thus must

be a consideration when evaluating bioreactor systems. While

some bioreactor systems can recover some of the lost

glycosaminoglycans, there is growing evidence that the recipient’s

body may serve as a superior bioreactor to restore some of the

constructs lost during decellularization. This is especially

applicable in partial lung transplants, such as single-lobe or

tracheal transplants. Tan et al. implanted a tissue-engineered

bronchus in a lung cancer patient, and at four month follow-up

confirmed complete revascularization and re-epithelialization of

the bronchus (58). While the patient’s death was reported 13

months postoperatively, this nevertheless demonstrated the

success of using the body as a bioreactor.

It is important to mimic in vivo conditions (mechanical stress,

environment) as closely as possible when reseeding the scaffold.

This permits the scaffold to maintain the correct signaling and

differentiation of cell types in the lung. Due to the variety of cell

types that exist in the lung, it may be plausible that synthetic

scaffolds be constructed of mixed materials or inks that are

optimal in supporting the respective cell types in that area of the

lung (59–62).
4. Animal studies

There have been numerous animal transplants performed with

bioengineered lungs (Table 1). In large animals comparable to

humans, the longest survival report to date is from Nichols and

colleagues who performed transplantation of porcine lungs using

a decellularized pig scaffold (69). They reported survival of one

animal to 2 months. While only the airway was anastomosed in

this experiment, vascularization of the airway was observed.

Yanagiya et al. reported 3 pigs who received bioengineered lungs,

although all developed issues with gas exchange and bullous

emphysema (70). This was potentially due to the degradation of

elastin during the decelluarization process. A report from Zhou

et al. noted reduced lung compliance and gas exchange in the

bioengineered lungs, possibly as a result of both the lack of

pulmonary surfactant production and immature barrier function

(71). Kitano et al. observed thrombus formation in the

pulmonary artery and vein in pigs at 24 h, with collapse despite

high airway inspiratory pressures of 30 cm H2O in two pig

recipients of bioengineered lungs (72). This was likely due to

cross-species hyperacute dysfunction and activation of

coagulation cascade despite three drug immunosuppression.

Animal transplantation experiments with bioengineered 3D-

printed artificial lung scaffolds are ongoing, however, peer

reviewed data has yet to be published (73). While these
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experiments are in the early developmental stages, there is

incremental progress in the use of bioengineered lungs utilizing

decellularized scaffolds or artificially manufactured scaffolds.

Further work is needed to determine the optimum protocol for

de- and re-cellularization and bioreactor maturation. If

successful, this regenerative technique promises not only to

provide a personalized lung organ replacement, but can also

likely be applicable to other organs and can shift the

transplantation paradigm away from allo- and xenotransplantation.
5. Clinical and human studies

While whole bioengineered lung studies have yet to be done,

there have been advances in tracheal and vascular human studies

(74, 75). The first successful tissue-engineered vascular graft was

a pulmonary artery in 1999 (76). The scaffold was an autologous

peripheral vein and showed ability to grow with the patient. In

2008, Macchiarini et al. performed a tracheal transplant using a

tracheal scaffold of a human donor that had been first

decellularized and then recellularized with the recipient’s

autologous bronchial epithelial cells from bronchoscopic biopsy.

A novel bioreactor was used to mimic the biomechanical cues of

shear stress. The recipient did not suffer any complications and

had normal lung function tests at two-month follow-up. At one

month, “the appearance of the graft was indistinguishable from

native trachea, and local mucosal bleeding was elicited when the

biopsy sample was taken, indicating successful revascularization”

(77). However, subsequent events surrounding this transplant

and other tracheal transplants have cast significant doubt into

the scientific integrity and success of these experimental

procedures.

As mentioned previously, in 2015, Tan et al. addressed the

challenge of the extensive (multiweek) revascularization

timeframe associated with implanted tissue engineering (58).

During the traditional revascularization timeframe, majority of

the cells seeded onto the scaffold die, decreasing viability of the

implanted scaffold (78). By using an “in-vivo bioreactor” which

is bioengineered tissue—or in this case, porcine acellularized

dermix matrix—perfused with continuous medium, the group

allowed the pre-seeded cells to remain alive during

revascularization while simultaneously reseeding the system and

allowing for the addition of various growth factors into the

perfusate. During the procedure, the left upper lobe, lower

superior segment, and left main bronchus were resected and the

engineered left bronchus substitute implanted with two PORT-A-

CATH (Smiths Medical, London, UK) inserted in between the

two matrix layers. Ringer’s solution containing gentamicin was

continuously pumped into the scaffold for a month while total

nucleated cells were injected directly into the matrix twice a week

for a month. The group confirmed revascularization and re-

epithelialization 4 months postoperatively which showed the

efficacy of the patient serving as his own bioreactor for the

scaffold. The patient who initially was given a prognosis of 3

months died at 13 months post-op due to a lung cancer relapse.
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TABLE 1 Summary of bioengineered animal transplantation experiments and survival.

Author Animal n Bioreactor
culture time

Recellularization cell line Survival Anastamosis Comments on graft function

Ott (63) Rat 3 9 days Human umbilical cord endothelial
cells and human alveolar basal
epithelial cells

6 h Airway and
vascular
anastamosis

Development of pulmonary secretions,
possibly associated with lack of lymphatic
drainage, capillary leak of immature
vessels, and ventilation trauma

Doi (64) Rat 3 8 days eGFP-labeled vascular endothelial
cells, QDs655-labeled adipose-derived
stromal cells

3 h Airway and
vascular
anastomosis

Pulmonary edema and alveolar
hemorrhage, likely caused by incomplete
establishment of vascular barrier in
endothelial cells group; excessive ASC
proliferation in EC-ASC-FGF9 group
resulting in vessel obstruction

Petersen
(28)

Rat 4 8 days Neonatal rat lung epithelial cells and
microvascular lung endothelial cells

45 min–
2 h

Airway and
vascular
anastamosis

No acute graft failure

Song (65) Rat 12 7 days Human umbilical cord endothelial
cells

14 days Airway and
vascular
anastamosis

One death at 4 h due to pulmonary edema
secondary to fungal infection at time of
transplantation; defective mucociliary
apparatus caused by incomplete
proximodistal epithelial cell
differentiation

Gilpin
(66)

Rat 5 10 days Human ventralized iPSC derived
endothelial cells

60 min Airway and
vascular
anastamosis

No acute graft failure

Ren (10) Rat 6 8 days Human umbilical vein endothelial cells
and human mesenchymal stromal cells
(n = 3)
Human induced pluripotent stem cells
(n = 3)

3 days Airway and
vascular
anastamosis

Low delivery efficiency from fluid driven
hydrostatic pressure loss

Obata
(67)

Rat 16 3 days Rat adipose derived stromal cells and
rat lung microvascular endothelial cells

30 min Vascular
anastomosis only

Regarding decellularization, potassium
laurate (a natural detergent) reduces lung
ECM damage when compared to
traditional sodium dodecyl sulfate

Jensen
(68)

Mouse Unknown 24 or 50 h Predifferentiated murine embryonic
stem cells

14 days Implanted
subcutaneously

Rapid detergent-based decellularization
maintains architecture and critical ECM
components and enables maintenance of
murine embryonic stem cell
differentiation both in vitro and after
subcutaneous implantation

Nichols
(69)

Pig 6 30 days Adult pig derived lung cells from
pneumonectomy

2 months Airway
anastomosis only

Pig 2 euthanized due to respiratory
complications at 10 h, Pig 5 suffered from
airway occlusion after bioengineered lung
transplant

Yanagiya
(70)

Pig 3 3 weeks Autologous airway epithelial cells and
vascular endothelial cells obtained by
wedge resection 3 weeks prior to
transplantation

2 h Airway and
vascular
anastomosis

Bullous changes and poor/insufficient
carbon dioxide gas exchange

Zhou (71) Pig 3 6 days Human umbilical vein endothelial cells
and human airway epithelial
progenitor cells

1 h Airway and
vascular
anastomosis

Stiffer lungs due to lack of pulmonary
surfactant, lower level of gas exchange,
and immature barrier function relative to
native lungs

Kitano
(72)

Pig 3 6 days Human umbilical vein endothelial cells
and basal endothelial stem cells

24 h Airway and
vascular
anastomosis

Thrombosis and subsequent occlusion of
pulmonary arteries

Hsiung et al. 10.3389/frtra.2023.1147595
6. Towards the development of a
bioartificial lung

There has been much research regarding prolonging the

direction of mechanical circulation and gas exchange in the

context of lung injury and bridge to transplant. Along with the

increasing use of extracorporeal membrane oxygenation (ECMO)

as a bridge to lung transplant, it is possible to envision a device

that goes beyond a bridge and serves as the lung itself. In lung

transplant patients, longer term use of ECMO as a bridge to
Frontiers in Transplantation 06
transplantation has been associated with worse post-transplant

survival rates (79, 80). There are also many complications

associated with long term use of ECMO that would also be

concerns for an ECMO-type bioartificial lung, such as vascular

complications, organ dysfunction (such as kidney injury) due to

alteration in blood flow characteristics, oxygenator degradation

and malfunction, major bleeding, and significant infection (81).

The requirement for battery power (for pump systems) and a

continuous oxygen supply are also limitations. Now more than

ever, it is crucial to find an accessible and suitable alternative to
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orthotopic lung transplantation to fulfill the gap between available

organs and patients on the waitlist. In 2020, the lung transplant

waitlist mortality was 16.1 deaths per 100 waitlist years in the

United States, with even more occurring in other solid organ

transplantation waitlists (82). Over 2,600 new candidates were

added to the lung transplant waiting list that year. Waitlist

mortality in other countries with differing policies and

availability of donor organs is even higher (83, 84). The field of

bioengineering offers unparalleled potential to drastically extend

life expectancy in patients with ESLD who may otherwise have

no options for salvage therapy.
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