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Widely used in neuroscience the averaging of event related potentials is based

on the assumption that small responses to the investigated events are present

in every trial but can be hidden under the random noise. This situation often

takes place, especially in experiments performed at hierarchically lower levels

of sensory systems. However, in the studies of higher order complex neuronal

networks evoked responses might appear only under particular conditions and

be absent otherwise. We encountered this problem studying a propagation of

interoceptive information to the cortical areas in the sleep-wake cycle. Cortical

responses to various visceral events were present during some periods of sleep,

then disappeared for a while and restored again after a period of absence.

Further investigation of the viscero-cortical communication required a method

that would allow labeling the trials contributing to the averaged event related

responses–“efficient trials,” and separating them from the trials without any

response. Here we describe a heuristic approach to solving this problem in the

context of viscero-cortical interactions occurring during sleep. However, we think

that the proposed technique can be applicable to any situation where neuronal

processing of the same events is expected to be variable due to internal or

external factors modulating neuronal activity. The method was first implemented

as a script for Spike 2 program version 6.16 (CED). However, at present a

functionally equivalent version of this algorithm is also available as Matlab code at

https://github.com/george-fedorov/erp-correlations.

KEYWORDS

event related potentials (ERP), evoked potentials, trial-by-trial analysis, EEG, LFP,
response variability

Introduction

It is hard to find a method as often used in neuroscience as the averaging of event related
potentials (ERP). This method was introduced into electrophysiology by Barlow (1959), and
is based on the assumption that each single trial waveform is the combination of a relatively
constant neural response to a stimulus and a variable random noise superimposed on it. As a
result of averaging procedure signal-to-noise ratio is growing and a signal shape becomes
sufficiently prominent for the analysis (Dawson, 1954; Picton et al., 1995). However, in
reality the components resulting from neuronal activity might vary in latency or shape due
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to stochastic nature of neuronal signaling and other sources of
variability, e.g., variation of blood supply to a tissue under the
recording electrode. In some studies, these minor variations can
be ignored. However, in some cases they may influence the results
to the point of changing its meaning [discussed, e.g., in Truccolo
et al. (2002)], and might reflect specific network state phenomena
(Kelly et al., 2010). Huffmeijer et al. (2014) assessed the reliability
of different ERP component and revealed that components
might have substantially different levels of repeatability, ranging
from excellent to poor. The problem of inter-trial (trial-by-trial)
variability has been recently reviewed by Trenado et al. (2019).
The authors have pointed out that response variability changes
in various psychiatric disorders as well as with normal aging and
during behavioral adjustments to the task requirements. Thus,
the variability might potentially serve as a functional marker of
cognitive processing.

We encountered this problem in our own sleep studies
focused on testing predictions of the visceral theory of sleep.
This theory proposes that neurons in the sensory cortical
areas, which in wakefulness respond to exteroceptive and
proprioceptive stimulation, during sleep “switch” to processing of
interoceptive stimuli (e.g., coming from gastrointestinal system,
heart, respiration, etc.) (Pigarev, 2014), as propagation of the
visceral signals to the cortex, e.g., judged by the amplitude of evoked
responses to visceral stimuli, is more effective in sleep (e.g., Pigarev,
1994; Levichkina et al., 2021; Rembado et al., 2021). We have also
encountered similar changes associated with state of vigilance in
the dynamic of somatic and visceral signal transmissions in the
ascending somatovisceral fibers in the spinal cord (Levichkina et al.,
2022).

We have studied cortical evoked responses recorded from
various cortical sensory areas to electrical (Pigarev, 1994;
Levichkina et al., 2021) or magnetic (Pigarev et al., 2008)
stimulation applied to different visceral organs in cats, monkeys
and rabbits. However, we also analyzed the relationships between
naturally occurring periodic events in the activity of the studied
visceral organs and cortical activity, e.g., used as triggers for
averaging neuronal activity maxima of the R wave in ECG, or the
elements of periodic myoelectric activity of duodenum or stomach
associated with peristaltic waves, and found that slow wave sleep
drastically increased the probability of such gut-brain relationships
(Pigarev et al., 2013).

Conducting these studies we noticed that during sleep the
propagation of interoceptive information to the cortical areas
was not constant. Quite often prominent cortical responses were
present during some periods of sleep, then disappeared for a
while and reappeared again after a period of absence. This
temporal pattern of viscero-cortical interaction occurring during
sleep attracted our attention. However, evoked cortical responses
to visceral stimuli, as well as responses to exteroceptive sensory
stimulation in wakefulness, were relatively small in a single
trial and could be clearly visualized only after averaging across
multiple trials. Therefore, further investigation of the viscero-
cortical communication in the sleep-wake cycle required a method
that would allow labeling the trials contributing to the averaged
evoked responses. We further refer to them as the “efficient trials.”
The problem is not limited to evaluation of naturally occurring
responses, but also extends to situations where some external
stimulation is applied or perception can be interrupted by variation

of the internal state, which is not uncommon in neuroscience. One
striking example of such internal variability of information transfer
is a phenomenon of local or partial sleep, when certain brain
areas transition into sleep while the animal’s behavior demonstrates
overall awareness and the ability to respond to presented stimuli
(Pigarev et al., 1997; Rector et al., 2005; Vyazovskiy et al., 2011).

In this article we describe our heuristic approach to solving this
problem in the context of viscero-cortical interactions occurring
during sleep. However, we think that the proposed method can
be applicable not only to sleep research, but to any situation
when neuronal processing is expected to be variable, e.g., to
visual processing under natural viewing conditions or neuronal
activity influenced by variation of attention paid to stimuli by a
subject. The method was first implemented as a script for Spike
2 program version 6.16 (Cambridge Electronic Design). However,
at present a functionally equivalent version of this algorithm is
also implemented as Matlab code available at https://github.com/
george-fedorov/erp-correlations.

In order to demonstrate this method of data analysis we
utilized recordings obtained from New Zealand rabbits in a
methodologically similar way to our previous work described in
detail in Levichkina et al. (2021). Results of that study, focused
on gut-brain interactions, were previously reported (Pigarev et al.,
2004). No new animal or human data were collected for this article.
The method included the following three steps.

At the first step of data analysis we used a conventional
procedure of averaging of the cortical evoked responses to
repetitive stimuli. We marked all Positive (upward) and Negative
(downward) waves of the obtained evoked responses as P and
N with numbers reflecting latencies of their maxima or minima
correspondingly. For all obtained components of ERPs we tested
statistical significance of these deflections (the procedure is
explained in detail later).

As each of the significant waves could reflect activity of different
functional groups of neurons responsible for different aspects of
information processing, each of them could potentially be evoked
only by some of the applied stimuli and not by all of the stimuli
equally. Thus, these ERP components could be unrelated in a sense
that each one can occur independently from the others.

The second step of the analysis included selection of the
component of interest for which the "efficient" trials needed
to be identified. The shape of this component, located within
particular time window after stimulation, was used as a template for
identification of the “efficient” trials. The idea of using templates to
find segments of a signal similar to particular shape was expressed
early on by Woody (1967) in the concept of adaptive filter. The goal
of a template-based approach is to evaluate the degree of likeness of
an individual trial and the template.

We estimated a similarity of every single trial waveform to
the template of the ERP component in question. The estimation
could be performed using different similarity thresholds to extract
individual trials having different levels of contribution to the
activity shaping this particular component of the response.

At the last step we averaged waveforms of the selected efficient
trials, and compared their shapes to the ones obtained after
averaging of all residual “inefficient” trials. In order to find
an optimal threshold level for trial separation we repeated this
procedure, identifying efficient and residual trials for different
categorization thresholds. Similar procedure could be applied
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FIGURE 1

An example of a rabbit electroencephalogram (EEG) activity. Stimulations of the abdominal viscera are denoted as Stim.

to each component of the evoked potential. This procedure is
described in detail below.

Materials and methods

Cortical evoked responses and
estimation of their significance

As mentioned above, for test purposes we utilized
electroencephalogram (EEG) recordings collected in our previous
study using epidural bipolar electrodes located over the visual
cortex of a rabbit during natural slow wave sleep. In that
experiment, intraperitoneal electrical stimulation of the small
intestine was applied during periods of sleep and wakefulness.
Recordings and averaging of the evoked responses were performed
with Spike 2 (CED) software package using the onsets of intestinal
electrical stimulation as a trigger. A fragment of the EEG with
the markers of electrical stimulation is shown in Figure 1. ERP
obtained by averaging of the signal in 1 s time windows before and
each stimulus across the entire recording session is presented in
Figure 2.

Figure 2 demonstrates the first three waves of the averaged
evoked response with maxima around 200 ms (P 200) and 500 ms
(P 500), and a minimum at 340 ms (N 340) after stimulation. The
range of ±2 standard errors of the mean (SEM) is shown as gray
lines above and below the black line representing the mean value.

One can see that the first component P 200 and the second
component N 340 clearly deflect from the 1 s background interval
before the stimulation. However, for the third putative component
P 500 the situation is not that clear and this component is closer to
the ±2 SEM threshold of the background. For achieving the final
conclusion regarding the presence of a particular ERP component
in such “near threshold cases” we applied an additional criterion
derived from permutation of the trial-by-trial mean values, as
described below.

Responses to 131 stimuli were averaged to obtain the evoked
response shown in Figure 2. For the purpose of permutation-
based analysis, the custom-made Spike 2 program generated the

same number of markers randomly distributed over the same
interval of the EEG recording. These random markers were used
as triggers for averaging of the new pseudo-response. After that
maximal deflection of this pseudo-response was measured within
the time interval in question at the time point that corresponds
to the maximal absolute value of the deflection (e.g., between
dashed lines 3 and 4 for P 500 component in Figure 2). The same
procedure of random marker generation and EEG averaging was
performed 500 times and 500 maximal deflection values obtained.
These values, sorted in descending order for positive components
and in ascending order for the negative component, are presented
as distribution curves in Figure 3. The confidence interval for
detecting the presence of an ERP component was set at 95% of
the values of such distribution. Thus, the value of the 25th point
of the sorted distribution corresponded to p-value = 0.05. All
components with amplitudes higher (for positive components) and
lower (for negative ones) than the confidence interval threshold
were considered significant. For example, for our P 500 component
the threshold value was equal to 5.7 µV. The real P 500 amplitude
was equal to 7.43 µV, which corresponded to p-value = 0.03.
Therefore, P 500 component was considered significant. The other
mentioned components were tested in a similar way and were
significant as well.

For all significant components we performed further analysis
aimed to investigate whether all of these components were evoked
in response to every stimulus applied or only to some of the stimuli.

Selection of the “efficient” trials

As mentioned above, procedure of the efficient trial selection
was implemented as a script for Spike 2 version 6.16 to
augment EEG analysis routines of this package, and was later
re-implemented as a Matlab script (freely available).1

Estimation of the efficiency of the trials was done independently
for each of the three significant components of the ERP obtained at
the previous step. We further describe this procedure using the P

1 https://github.com/george-fedorov/erp-correlations
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FIGURE 2

Evoked response to visceral stimulation averaged across the entire
recording session, the averaging is triggered by all stimulation
(n = 131). Black line demonstrates the mean amplitude, gray lines
signify ± 2 SEM. Positive ERP components are marked by P and the
negative one by N. Vertical dashed lines show time intervals used
for further analysis.

200 component as an example. The process was identical for the
other components.

For this analysis we arbitrarily defined the time range where
the component in question can be observed. For P 200 component
that was the interval shown between dashed lines 1 and 2 in
Figure 2. Usually the interval between two points where the ERP
signal crossed zero line was chosen for further analysis. The shape
of the ERP component located between dashed lines 1 and 2 was
taken as the template for further comparison with the shapes of
the individual waveforms for all 131 trials in the same interval
from the trial onset. The algorithm evaluated Pearson correlation
coefficient between each individual trial shape and the template
resulted from averaging. The program considered only positive
correlations; with negative values replaced by zero. Thus, every trial
received a corresponding value of the correlation coefficient, either
positive or 0. Sine similarity (S) was calculated as

S = 1–r2 for r > 0, and S = 1 for r < 0
were r is Pearson correlation coefficient. Pearson correlation

value was squared to contrast the shape differences in order
to make trial separation clearer, and 1− r2 was used to allow
to intuitively interpret this formula as “difference”: the smaller
the value is (ideally–something close to zero), the smaller is
the difference between the average (the template) and the
individual trial waveform.

In our early tests, the initial formula to compare the
waveforms—the average and the trial—was∫ b

a
(
f (x)− g (x)

)2dx
b− a

where f() and g() are waveforms compared on the interval (a, b)—
or, in discrete form, ∑N

i = 1
(
fi − gi

)2

N

where i = 1. . . N are the indexes in waveform arrays f and
g. Here small values represent a good fit; however, we quickly
realized that the amount of variation in the trial waveforms can

FIGURE 3

Sorted amplitudes of the averaged pseudo-responses, n
permutations = 500. (A) Distribution of pseudo-responses for the
interval corresponding to P200 component of the evoked
response; (B) N 340 interval; (C) P500 interval. Arrows demonstrate
the amplitude values obtained for the real evoked response.

be quite substantial, and therefore there is a need for a normalized
criterion. Nevertheless, we preferred to keep the same intuitive
rule—“smaller is better.”

As a result, sine similarity threshold varied from zero to one,
but unlike the correlation coefficient, the lower value corresponded
to higher likeness between the template and the individual trial
activity, and the amount of selected efficient markers for lower
thresholds was smaller.

Neuronal responses to stimuli are affected by the intrinsically
probabilistic nature of the ion channel mechanisms. That normally
results in a jitter in response timing. Thus, it might be beneficial

Frontiers in Neural Circuits 04 frontiersin.org

https://doi.org/10.3389/fncir.2023.1138774
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/


fncir-17-1138774 April 13, 2023 Time: 8:46 # 5

Fedorov et al. 10.3389/fncir.2023.1138774

to account for a jitter while computing Sine similarity. The
implemented algorithm allows moving the template along the
time scale within a defined small window until the best match is
found between the individual response and the averaged one, to
account for that jitter. The offered code provides such an option
by introducing a maxshift parameter equal to a number of points
of data sampling that can be chosen by a user to reflect the
expected jitter. If maxshift > 0, S is calculated as many times as
the number of maxshift data points surrounding the component
marker, including 0 time that corresponds to the marker. The
lowest trial value of S among the ones obtained using maxshift
is chosen for the further described thresholding of the individual
evoked responses.

Figure 4 shows five sets of markers selected for the P 200
component using different thresholds ranging from 0.5 to 0.9.
Markers of efficient and residual trials are given above and below
the EEG channel, respectively.

Choosing the optimal threshold for trial
separation

Since the above described procedure might seem arbitrary,
it seems crucial to establish the criteria for choosing the best
threshold. For that we compared averaged responses to the
selected efficient markers with averaged responses to the residual
markers. The main goal was to achieve the most prominent
evoked response shape for the averaged efficient trials and flat
averaged residual shape at the same time. The reasoning underlying
that choice is the following. In the case when not all of the
efficient trials are selected, after averaging of all residual trials
we would still see some small response in the shape of the
averaged residuals. To flatten the shape of the averaged residuals
one needs to change the threshold in a way that produces

more of the efficient and less of the residual trials. At some
threshold the averaged residual signal should look as a uniform
noise without visible peak at the expected position of the evoked
response component. Changing the threshold further would lead
to more of the noise to be included in the efficient trials. This
would also start changing the sign of an averaged response
for the residuals.

This relationship of the efficient and the residual shapes is
illustrated in Figure 5. In this figure we show short time intervals
(140 ms) around the peaks of all three components of the evoked
response. Shapes of the P200 component averaged using markers
corresponding to different S threshold values ranging from 0.5 to
0.9 are shown at the top row (A). The shapes of this component
look rather similar for all thresholds although slightly flatten from
left to right. The averaged N 340 and P 500 components also
demonstrated very little difference for different thresholds, and
we do not present them in this figure. Row B shows the shapes
of the averaged residual signal for different thresholds for the P
200 component. Rows C and D show averaged residual signals
for components N 340 and P 500. For better visual estimation of
the sign and the flatness of the averaged residuals these curves
were “smoothed” using the “Fit data” tool of the Spike 2 program
(gray superimposed curves). It is seen that for all our components
the signs of the curvatures were reversing when S thresholds
were increasing. Thus, the threshold of choice would be the first
threshold that causes the curvature of the residual signal to reverse
polarity or the one that leaves it flat. With that threshold the
sum of all absolute values of the averaged residual component is
minimal. Asterisks in Figure 5 highlight these choices. For the
components P 200 and N 340 the best thresholds were S = 0.7.
For the component P 500 the best threshold was 0.5. Final
conclusion concerning the optimal threshold depends on the goal
of a study–what is better, to take some “false” trials, or not to take
some real ones.

FIGURE 4

Efficient and residual trials for P200 component of the evoked potential, calculated at S thresholds ranging from 0.5 to 0.9.
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FIGURE 5

Shapes of the evoked response components averaged for efficient and residual trials. (A) Shapes of the P200 component averaged using efficient
trials markers corresponding to S ranging from 0.5 to 0.9. (B) Shapes of the averaged residual signal for the corresponding thresholds for the P 200
component. (C) Averaged residual signals for N 340. (D) Averaged residual signals for P 500. Asterisks signify the S values corresponding to the least
deflection of the averaged residual signal from 0.

FIGURE 6

Workflow diagram of the method.

The above described procedure is summarized in a workflow
diagram shown on Figure 6.

Result

Figure 7 demonstrates the same fragment of EEG as in
Figure 1, but with three channels added at the top, demonstrating

the markers which indicated efficient trials selected for three
components with the best thresholds as described above.

In Figure 8 at the left panel we show the evoked response
averaged for all 131 trials (identical to that shown in Figure 2).
Three other panels of the Figure 8 demonstrate three evoked
responses averaged using markers selected with the best S
thresholds for each of the three components. All peaks of these
components indeed became much larger, while the peaks of the
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FIGURE 7

Electroencephalogram (EEG) and the stimulations of the abdominal viscera. Stim correspond to all electrical stimulations applied, P 200, N 340, and
P 500 mark the efficient trials for each of the three components.

other two components were reduced but still visible. This is not
surprising because the positions of the markers selected for three
components partly overlapped (Figure 7).

We further selected markers for those trials where each one of
the components appeared alone, excluding the overlapping trials.
Using these markers as triggers for averaging it was possible to
estimate “the pure shapes” of the investigated components. Figure 9
shows thus obtained pure shapes of our three components.

Discussion

The method proposed in our article allows studying the
presence of different evoked components in a signal coming from
a single brain location at different time intervals. To make the
most of this approach we always try to record activity of a well-
localized brain area and commonly perform MRI imaging for our
animals before starting a set of experiments to achieve a desired
electrode placement. We also record intracranial EEG or local
field potential (LFP) in a bipolar way from two microelectrodes
with their tips located within several hundred microns from
each other to ensure clarity of the origin of the recorded signal.
The importance of local bipolar recording for some aspects of
LFP analysis was described earlier (e.g., Herreras, 2016; Shirhatti
et al., 2016). Thus, we can be fairly sure of the localization of a
particular signal in the brain, however, the described variability
of the responses still requires additional analytic approaches to
further relate it to various internal or external influences that might
underlie such variability. Although there are approaches developed
for trial classification under similar conditions, they usually require
training the classifier by presenting a set of stimuli having different
parameters while local field potentials are recorded (e.g., Dezfouli
and Daliri, 2020). However, such approaches are inapplicable to

many situations when responses depend on the internally changing
parameters, such the changes of the state of vigilance. In addition
to that, training a classifier to certain stimuli might be difficult in
experiments involving awake behaving animals, where recording
session time is limited. Another method was suggested by Iannetti
et al. (2005), and includes analysis of the amplitudes of the
components of an averaged evoked potential, but the shape of the
response or the response jitter were not considered.

Templating has been previously used in ERP analysis. Woody
(1967) suggested the method of adaptive filter, an iterative approach
which utilized maximum of covariation coefficient and might
or might not converge to the correct waveform (Woody, 1967),
when our paper proposes a method of components classification
based on a threshold value of the Pearson’s correlation coefficient.
The disadvantage of using covariation coefficients (correlogram)
instead of Pearson coefficients is that the calculated values are not
normalized and therefore do not generalize well.

The method of adaptive filter was primarily focused on finding
in the signal responses with the known and well-defined shapes.
That can be highlighted by the Woody’s choice of the test signals
having stereotypical shape with low inherent variability such as
ERPs recorded from anesthetized cats, spike-and-dome epileptic
discharges and motor neuron spikes. Another methodological
study relied on the same idea of “true” low variance evoked
responses to reject artifacts (Talsma, 2008). However, growing
interest to brain activity of awake behaving animals, the need
to study cognitive function fluctuating in time, and to include
state of vigilance into the picture necessitate developing methods
which take into account the inherent high variability of ERP
components in question. Our work addresses this issue. Rather than
assuming the existence of some “true” ERP shape including all of its
components we propose that neuronal assembles contributing to
each component do not necessarily work together and might even
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FIGURE 8

Evoked responses averaged using different sets of trials. Left panel demonstrates the averaged evoked potential for all 131 trials of the recording
session.

FIGURE 9

Averaged evoked responses for the trials where each of the components appeared alone.

compete, and that in some cases ERP might in fact be a result of
averaging of different activities that need to be studied separately.

Our method can be applied not only to the analysis of EEG
or LFP, but also to the analysis of neuronal spike trains. Neuronal
spiking is often analyzed using average peristimulus histograms
(the method has been in use since the 1970s, e.g., Henry et al.,
1973), which are affected by response variability as well. For that
analysis spiking activity has to be transformed to a spike density
curve that can be used in an analogous way to the above described
procedure. This can potentially be informative for detection of time
intervals during which the studied brain area received information
from a particular source of afferentation or was receptive to a
particular stimulus.

In its current form the method requires supervision for
making decisions regarding the shapes of the ERP components

to investigate as well as to choose the threshold values.
However, it can potentially be made unsupervised by setting
up a criteria for a component as a significant deflection
from zero with a particular polarity, choosing its boundaries
as the points where the averaged ERP crosses zero line,
and setting up the threshold as the one corresponding to
the sum of residual trials with a minimal difference from
zero.

The offered method is certainly qualitative and heuristic in
nature. One cannot exclude that in some trials an accidental
wave of noise resembling the real evoked response by shape
could coincide with the stimulus, in which case the trial would
be falsely selected as the efficient one. However, this problem
always presents in any averaging procedure. On the other hand,
proposed comparison of the averaged responses to selected and
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residual trials offers a reasonable way to estimate quality of the
performed selection.

Conclusion

We believe that the proposed approach can be useful for
investigation of the causes underlying variability of the evoked
responses since it enables selecting individual trials with the clearest
contribution to the averaged ERP components for further analysis.
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