
Editorial: Telomere length and
species lifespan

Kurt Whittemore1* and Michael Fossel2*
1Harvard Medical School, Boston, MA, United States, 2Telocyte, Grand Rapids, MI, United States

KEYWORDS

telomeres, species lifespan, body mass, telomere shortening rate, cellular senescence

Editorial on the Research Topic
Telomere length and species lifespan

The extent to which telomeres, the protective caps at the ends of chromosomes,
determine lifespan and impact the aging process has been debated for many decades
and continues to be debated today. In the late 1800s, the German evolutionary biologist
August Weismann was one of the first to propose that aging is caused by the inability of cells
to replicate forever (Strehler, 2000). His theory was seemingly disproved when Alexis Carrel
published papers claiming that mammalian cells have an infinite capacity for replication
(Carrel, 1912). This was the prevailing view for many decades until 1961 when Leonard
Hayflick was able to use better techniques to demonstrate that mammalian cells do indeed
have a finite replicative capacity (Hayflick and Moorhead, 1961). Through a series of
discoveries (Watson, 1972; Szostak and Blackburn, 1982; Greider and Blackburn, 1985;
Cooke and Smith, 1986; Greider and Blackburn, 1989), scientists soon worked out that the
telomere caps at the ends of chromosomes shortened with each cell division, that cells
entered into a state of senescence once telomeres became critically short, and that the enzyme
telomerase could lengthen telomeres. There seemed to be a strong link between telomeres
and aging. This relationship became more complicated however, when the discovery was
made that mice lacking the gene for telomerase did not show dramatically shortened
lifespans or defects until the third or fourth generation of breeding after the gene knockout
(Blasco et al., 1997; Lee et al., 1998; Rudolph et al., 1999). Additionally, some species of mice
have short telomere lengths similar to humans, while others have extremely long telomere
lengths, yet they have approximately the same lifespans (Hemann and Greider, 2000). Today
there are those who argue that other aspects of biology such as changes of DNA methylation
with age are much more important determinants of the aging process. One approach to
disentangle the effects of telomeres on the aging process is to study how telomeres affect the
lifespan of different species. One recent article has demonstrated that the telomere
shortening rate can be used to predict the lifespan of a variety of species (Whittemore
et al., 2019), but there are still many additional questions that can be addressed and species
that could be investigated.

In this small Research Topic of articles, the effect of telomeres in different species is
explored. One of the articles found that there is little correlation between telomere length and
lifespan in marine mammals (https://www.frontiersin.org/articles/10.3389/fgene.2021.
737860/full). However, there was a strong correlation between body size and lifespan.
These findings are in agreement with a previous study which found no correlation between
initial species telomere length and lifespan but did find a strong correlation between telomere
shortening rate and lifespan (Whittemore et al., 2019). In the marine mammal study,
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telomere shortening rates could not be determined since the
necessary samples were not available. Another article in this
Research Topic studied the telomere length of Psittacidae species
(parrots) and found that longer living species had longer telomere
lengths and greater antioxidant capacity (https://www.frontiersin.
org/articles/10.3389/fgene.2023.1156730/full). Interestingly, the
study found that breeding shortened telomere length. Another
study investigated the paternal effects of telomere length on
Passer domesticus (house sparrows) and found that older fathers
had daughters with longer telomere lengths (https://www.
frontiersin.org/articles/10.3389/fgene.2022.880455/full). A separate
study in this Research Topic investigated the effects of the tumor
suppressor genes p16 and p21 in a mouse model of Werner
syndrome lacking telomerase (https://www.frontiersin.org/articles/
10.3389/fgene.2021.597566/full). The study found that p16 and
p21 had very different effects: p21 deficiency resulted in a
dramatic increase in DNA damage responses, cellular senescence,
apoptosis, and proliferation, whereas p16 deficiency showed reduced
cellular senescence, apoptosis, increased telomere length, and
increased cellular proliferation, ultimately rescuing the aging
Werner syndrome phenotype.

The overall trend that species lifespan increases with increasing
body mass, as also noted in the marine mammal article in this
Research Topic (https://www.frontiersin.org/articles/10.3389/fgene.
2021.737860/full), is quite fascinating. One possible explanation for
this trend is simply that smaller animals are more likely to be eaten,
and therefore, there would be no natural selection pressure to select
for genes to allow for long life since the average lifespan would
already be short. However, smaller organisms also often have higher
heartbeat rates and metabolisms. Why is it that small animals have
higher heartbeat rates andmetabolisms? One proposal is that a faster
metabolism is necessary in small organisms due to their large surface
area to volume ratio through which heat can be lost (Levine, 1997).
Thus, it is necessary for these species to have a fast metabolism in
order to maintain their body temperature. Perhaps the fast
metabolism of these species leads to more rapid cell turnover and
telomere shortening. Note that within a given species, the opposite
trend is observed: instead of large body size being correlated with
longer life, smaller breeds within a species tend to live longer than
larger breeds. For example, smaller breeds of dogs live longer on
average than larger breeds of dogs (Selman et al., 2013), smaller
breeds of horses live longer than larger breeds of horses (https://
equestrianspace.com/average-lifespan-of-a-horse/), smaller mice
live longer (Miller et al., 2000), and there is even a trend for
shorter humans to live longer than taller humans (Samaras et al.,
2003).

There are many important questions remaining to address
telomere length and species lifespans. For example, how can one

explain the large variation in mouse species telomere lengths, and
the lack of large variation in the lifespan of those species? For
example, the Mus musculus castaneus mouse species has a telomere
length of 18–20 kb (Hemann and Greider, 2000), and yet the
lifespan of Mus musculus castaneous (≈681 days (Hemann and
Greider, 2000)) is similar to the lifespan of other mouse species
such as C57BL/6J (≈767 days (Hemann and Greider, 2000)) which
can have telomere lengths of 40–50 kb (Zijlmans et al., 1997;
Hemann and Greider, 2000; Vera et al., 2012; Varela et al.,
2016). A thorough investigation comparing initial telomere
length, telomere shortening rate, percentage of short telomeres,
the length of the shortest telomeres, and other aging markers
such as DNA methylation may provide insights. Another caveat
is that telomeres are oftenmeasured from circulating lymphocytes in
the blood, which may not be the best cell type for these
measurements (Fossel, 2012). Additional Research Topics of
interest are more thorough investigations of outlier species which
have much longer lifespans than expected such as the naked mole rat
which can live 31 years (Buffenstein, 2005) compared to the mouse
which lives about 2 years (Hemann and Greider, 2000), or the bat,
which can live up to 37 years in some species (de Magalhães et al.,
2007) even though a bat is about the same size as a mouse. Overall, a
complete understanding of telomere dynamics and species lifespan
requires further studies and discoveries.
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