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Introduction: Surgical Site Infection (SSI) is a common healthcare-associated
infection that imposes a considerable clinical and economic burden on
healthcare systems. Advances in wearable sensors and digital technologies have
unlocked the potential for the early detection and diagnosis of SSI, which can
help reduce this healthcare burden and lower SSI-associated mortality rates.
Methods: In this study, we evaluated the ability of a multi-modal bio-signal system
to predict current and developing superficial incisional infection in a porcine model
infected with Methicillin Susceptible Staphylococcus Aureus (MSSA) using a bagged,
stacked, and balanced ensemble logistic regression machine learning model.
Results: Results demonstrated that the expression levels of individual biomarkers
(i.e., peri-wound tissue oxygen saturation, temperature, and bioimpedance)
differed between non-infected and infected wounds across the study period,
with cross-correlation analysis indicating that a change in bio-signal expression
occurred 24 to 31 hours before this change was reflected by clinical wound
scoring methods employed by trained veterinarians. Moreover, the multi-modal
ensemble model indicated acceptable discriminability to detect the presence of a
current superficial incisional SSI (AUC = 0.77), to predict an SSI 24 hours in
advance of veterinarian-based SSI diagnosis (AUC = 0.80), and to predict an SSI
48 hours in advance of veterinarian-based SSI diagnosis (AUC = 0.74).
Discussion: In sum, the results of the current study indicate that non-invasive multi-
modal sensor and signal analysis systems have the potential to detect and predict
superficial incisional SSIs in porcine subjects under experimental conditions.
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1. Introduction

Despite the advances in peri- and intraoperative prevention measures, surgical site

infections (SSIs) remain one of the most common adverse events that occur in patients

undergoing in-patient or outpatient surgical procedures. SSIs can be classified as either

superficial-incisional (involving the skin or subcutaneous tissue layers of the incision),

deep-incisional (involving muscle or connective tissue layers of the incision), and organs/

spaces deep to the incision that were opened or manipulated during surgery (Table 1)

(1). Of the three, superficial incisional SSI are more common than deep incisional and
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2023.1111859&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fmedt.2023.1111859
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1111859/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1111859/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1111859/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1111859/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1111859/full
https://www.frontiersin.org/journals/medical-technology
https://doi.org/10.3389/fmedt.2023.1111859
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


TABLE 1 Surgical site infection classification according to the centers for disease control and prevention and national healthcare safety network [2022].

Type Definition
Superficial
Incisional

Date of event occurs within 30 days following the NHSN operative procedure (where day 1 = the procedure date)andinvolves only skin and subcutaneous
tissue of the incisionandpatient has at least one of the following:
a) Purulent drainage from the superficial incision.
b) Organism(s) identified from an aseptically-obtained specimen from the superficial incision or subcutaneous tissue by a culture or nonculture based

microbiologic testing method which is performed for purposes of clinical diagnosis or treatment [for example, not Active Surveillance Culture/
Testing (ASC/AST)].

c) A superficial incision that is deliberately opened by a physician or physician designee and culture or non-culture based testing of the superficial
incision or subcutaneous tissue is not performed and patient has at least one of the following signs or symptoms: localized pain or tenderness;
localized swelling; erythema; or heat.

d) Diagnosis of a superficial incisional SSI by a physician or physician designee

Deep Incisional Date of event occurs within 30 or 90 days following the NHSN operative procedure (where day 1 = the procedure date)
and
involves deep soft tissues of the incision (for example, fascial and muscle layers)
and
patient has at least one of the following:
a) Purulent drainage from the deep incision.
b) A deep incision that is deliberately opened or aspirated by a physician or physician designee or spontaneously dehisces and organism(s) identified

from the deep soft tissues of the incision by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical
diagnosis or treatment or culture or nonculture based microbiologic testing method is not performed and patient has at least one of the following signs
or symptoms: fever (>38°C); localized pain or tenderness.

c) An abscess or other evidence of infection involving the deep incision detected on gross anatomical exam, histopathologic exam, or imaging test.

Organ/Space Date of event occurs within 30 or 90 days following the NHSN operative procedure (where day 1 = the procedure date)
and
involves any part of the body deeper than the fascial/muscle layers that is opened or manipulated during the operative procedure and
patient has at least one of the following:
a) Purulent drainage from a drain placed into the organ/space.
b) Organism(s) identified from fluid or tissue in the organ/space by a culture or non-culture based microbiologic testing method which is performed for

purposes of clinical diagnosis or treatment.
c) An abscess or other evidence of infection involving the organ/space detected on gross anatomical exam or histopathologic exam, or imaging test

evidence definitive or equivocal for infection.

Physician may be interpreted to mean surgeon, infectious disease physician, emergency physician. Physician’s designee may be interpreted to mean a nurse practitioner or

physicians’ assistant.
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organ/space SSI (2, 3), and account for more than half of all SSIs

for all surgery categories (e.g., cardio-thoracic, gynecologic,

orthopedics, transplant) (2).

Regardless of SSI classification, SSIs place a significant burden

on both the patient and health system. In the US alone, SSI extends

the hospital length of stay by 9.7 days (4) and is associated with a 2-

to 11- fold increase in the risk of mortality (5, 6). SSI complications

translate into $10 billion in additional healthcare costs (5, 7), with

an average of $25,000 excessive cost per case (5, 7).

Focusing specifically on antibiotics to treat SSI, Jenney et al. (8)

reported that the wholesale cost of antibiotics to treat SSI after

coronary artery bypass surgeries (CABGs) was AUD $391 (AUD

$727.43 inflated to 2022 prices). The cost of antibiotic treatment

for patients undergoing vascular surgery who developed an SSI

was £3,776 (£4,280.25 inflated to 2023 prices) (9). Antibiotics

after major head and neck surgery due to MRSA infection was

£260 (£429.54 inflated to 2023 prices) on first admission and

£1,700 (£2,808.56 inflated to 2023 prices) on each re-admission

(10). As such, SSI imposes an enormous clinical and economic

burden on both patients and healthcare systems.

Over the past two decades, healthcare systems have

implemented strategies that minimize the length of hospital stay

and move inpatient surgical procedures to the outpatient setting.

Consequently, a growing proportion of SSIs are detected only

after discharge (11). Indeed, of the 500,000 SSIs that occur in the
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U.S. annually, an estimated 69% of SSIs occur after hospital

discharge (11). At present, there is no international scientific

consensus about the optimal method for post-discharge SSI

surveillance (12). Common methods for identifying surgical

wound infection after hospital discharge include direct

observation by healthcare professional, telephone interview,

patient questionnaire, and outpatient clinic follow-up (13).

Because post-discharge surveillance remains unstructured, SSIs

are often overlooked (14, 15), so there may be a significant time

delay before the physician is able to detect the infection. This is

unfortunate, given that a 45-hour delay in detection and

treatment of an SSI increases the odds of infection related deaths

by 3.8 times (6, 16, 17).

With increasing demand for healthcare, SSIs need to be

predicted and diagnosed early so that timely and effective

treatment (e.g., antibiotics) can be implemented to accelerate the

recovery of patients (4, 18–20). Fortunately, normal surgical

wound healing processes occur in a defined and organized

fashion, requiring oxygen to promote constructive healing and

fight off any contaminants or organisms (21). The development

and/or presence of infection leads to directly observable changes

(e.g., swelling and erythema) (22) that directly reflect changes in

tissue physiology (e.g., abnormal tissue oxygenation, altered acid

base, and temperature changes) (23). Such changes can be

measured using sensor-enabled technologies with sophisticated
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signal processing techniques (24–28). For example, Govinda et al.

[2010] reported that upper arm subcutaneous oxygen partial

pressure recorded using near-infrared spectroscopy 75 min after

colorectal surgery predicted SSI with a sensitivity of 71% and

specificity of 60%. More recently, Mostafalu et al. [2018]

developed a wound dressing capable of continuously measuring

wound pH and temperature connected to a wireless electronic

module, with in vitro bacterial testing indicating that the system

could accurately and reliably record wound potential of hydrogen

[pH] and temperature.

Taken together, these contribute to the growing evidence that

the status of wound healing can be objectively quantified using

digital devices. The current study builds on this research by

developing a multi-modal bio-signal system equipped with

clinical-grade sensors capable of continuously monitoring peri-

wound tissue oxygen saturation (StO2), temperature, and

bioimpedance (BioZ). The ability of the developed system to

predict developing infection in a porcine model was evaluated

using a bagged, stacked, and balanced ensemble logistic

regression machine-learning model. These results are the first

step towards determining the efficacy of a multi-modal sensor

system to collect digital biomarkers continuously from the

surgical site to monitor the healing status of the wound, with the

goal of eventually developing a machine-learning based early

warning system to detect and predict SSIs that could become the

standard of care for remotely monitoring patients’ post-surgery.

The aim of the present study was to evaluate the ability of a

multi-modal bio-signal acquisition system to predict current and

developing superficial incisional infection in a porcine model

infected with Methicillin Susceptible Staphylococcus Aureus

(methicillinsusceptible S. aureus, MSSA).
2. Materials and methods

2.1. Sensor apparatus

Wound healing data was collected using a multi-modal bio-

signal system (Figure 1, Crely Healthcare Ltd. Pte., Singapore)

that continuously measures peri-wound site temperature, tissue
FIGURE 1

(A) CrelySENSE sensors placed on a porcine subject. (B) Porcine subject wear
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oxygen saturation (StO2), and bioimpedance (BioZ). The multi-

modal biosignal system (CrelySENSE) consists of a printed

circuit board (PCB) that incorporates a custom-built near-

infrared spectroscopy (NIRS) subsystem, a digital temperature

sensor (TMP117, Texas Instruments), a bioimpedance system

(AD5941) capable of generating high frequency signals up to

200 kHz, and an inertial measurement unit module containing

a 3D accelerometer and 3D gyroscope (LSM6DS33,

STMicroelectronics). The NIRS subsystem uses an AFE4420

analog front-end to collect optical biosensing information, and

features two integrated light emitting diodes (LEDs, SMT730D/

850D, Marubeni, Tokyo, Japan) that emit red of 730 nm and

infra-red light at 850 nm, and a silicon-photodiode with a large

active area (7.5 mm2) that was used as photodetector

(VEMD5060X01, Vishay Intertechnology Inc., USA). The LEDs

and photodiode were soldered on the PCB at a source-detector

separation distance of 50 mm. Sensor data was continuously

acquired via regular burst-mode sampling (50 Hz), whereby data

was captured in one-minute bursts over a 10-minute interval.

The electronic components were encased in silicon molding, with

dimensions of 10 cm × 6 cm × 3 cm and a total weight of 121 g.

The CrelySENSE sensors interfaced with an eight-channel bio-

signal acquisition system (CrelyPRO) that featured onboard data

storage (Figure 1B). The CrelyPRO bio-signal acquisition system

utilizes the Feather nRF52840 single chip solution by Adafruit,

PCF8523 CMOS1 Real-Time Clock (RTC, Adafruit), and was

powered by a 3.7v Lithium Polymer battery. The material cost of

the system, which includes the CrelyPRO bio-signal acquisition

system and 28 CrelySENSE sensors [2 sensors per incision], was

USD $20,000.
2.2. Animal model selection and wound

The anatomical, physiological, and immune system of the pig

closely parallel that of humans (29). Porcine and human skin

share numerous similarities, with relatively thick epidermis,

distinct dermal papillae, and dense elastic fibers in the dermis

observed in both species. Similar to humans, pigs have a sparse

hair coat and firmly attached skin that adheres to underlying soft
ing the customized jacket in their individual pen.
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tissue structures, and also demonstrate similar epidermal turnover

time and keratinous protein characteristics. Porcine skin is

dissimilar to human skin in that the dermis of the pig has

poorer vascularization, has smaller holocrine sebaceous glands,

and lacks eccrine sweat glands. A comparative review of 180

empirical wound healing studies (30) reported that porcine

models are concordant with human studies 78% of the time. In

contrast, the concordance between wound healing in humans

and small mammal (e.g., rabbit, guinea pig, mouse, rat) and in

vitro studies is much lower (i.e., 53% and 57%, respectively). In

sum, the similarities between pig and human skin and wound

healing make the pig an appropriate and accurate model to

examine biomarkers that characterize wound healing and

superficial incisional infection from MSSA.
2.3. Animal preparation and surgical
protocol

Two skeletally-mature pigs (Sus scorfa domestica) (weighing

between 80 and 90 kg) were used in the current experiment, and

were treated in accordance with animal procedures and

applicable animal welfare regulations outlined by the SingHealth

Institutional Animal Care and Use Committee (IACUC)

guidelines (Ref 2020/SHS/1588). Prior to the start of the

experiment (Day -9), animals were fitted with a customized

jacket that enabled adequate access to the testing sites, while also

ensuring that the sensors and surgical sites were protected from

perturbations (e.g., scratching or bumping). Each animal was

housed in an individual pen for a seven-day acclimatization

period, during which trained veterinary personnel attended to

their physiological needs daily and regularly monitored the fit of

the jacket to ensure that their mobility and flexibility were not

heavily restricted.

Three days prior to wound creation procedure (Day -3), the

pigs were fasted overnight and sedated with 15–20 mg Ketamine

and 2–5 mg/kg Diazepam. As the NIRS subsystem of the

CrelySENSE sensors must remain incident with the skin, the

lateral region of the pigs were shaved and scrubbed with a 0.05%

Chlorhexidine solution. Subsequently, a CrelySENSE sensor was

placed 2 cm on either side of 14 testing sites (Figure 2) and

secured to the skin using 3-0 silk sutures. Vital parameters

(Heart rate [HR], respiratory rate [RR], oxygen saturation [Sp02],

and body temperature) were recorded using a pulse oximeter and

a manual thermometer. Buprenorphine 0.01–0.05 mg/kg was

administered intramuscularly, with dosage managed by the

veterinarian depending on the animal’s vital parameters and

observed clinical signs of pain or distress.

On the day of surgery (Day 0) the pigs were fasted overnight.

Thirty minutes before the anesthetic induction, Buprenorphine

0.01–0.05 mg/kg was administered intramuscularly (IM).

Ketamine 15–20 mg/kg, Diazepam 2–5 mg/kg and Atropine

Sulfate 0.05 mg/kg (to prevent bradycardia) was administered IM

while the animal was in the pen by trained veterinary personnel.

When the pigs are in plane 2 stage of anesthesia, they were

induced with 4%–5% Isoflurane via inhalation for 3–5 min and
Frontiers in Medical Technology 04
intubated by the veterinarian using an appropriate sized

endotracheal tube. A 21–23 G intravenous catheter was placed in

the ear vein for infusion of 0.09 Sodium Chloride (Na Cl) while

the animal was undergoing surgery. The animal was sent to the

operating room and maintained under 2%–3% Isoflurane. The

animal was positioned in lateral recumbency, and the fore/hind

legs were secured with cloth tie. Patient monitor sensors were

attached to the animal to monitor the vital parameters (HR, RR,

Sp02, body temperature, blood pressure (BP), and end-tidal

carbon dioxide (ETCO2). In alignment with IACUC policies of

animal care and use, the dorsum of each pig was shaved and

aseptically prepared for surgery using 70% Ethanol and 0.05%

Chlorhexidine solution. Portions of the jacket were removed to

render the aforementioned 14 sites easily accessible. The testing

sites were draped using sterile drape. Full thickness, 8 cm long

incisions transacting the epidermis, the dermis, and the

subcutaneous layer without entering the fascia of the musculature

(cutaneous trunci/ latissimus dorsi) were performed using a size

21 scalpel blade at 13 of the 14 sites, leaving one site as a

control. Seven incisions were inoculated with 100 microliters of

109 CFU/ml Methicillin Susceptible Staphylococcus Aureus

(ATCC 29213) under aseptic, surgical conditions, with the

inoculum kept out of contact with the surrounding skin.

Each pig was subjected to the continuous collection of digital

biomarkers (wound temperature, tissue oxygenation level, and

bioimpedance) by Crely sensors from Day -3 through Day

7. Every day, each pig had its vitals (heart rate, respiratory rate,

blood oxygen saturation and core temperature) measured using a

handheld pulse oximeter and manual thermometer. Subsequently,

each wound was monitored for clinical signs of infection

(redness, drainage, etc) through a manual wound assessment

performed by the facility veterinarian. All observations were

recorded in physical examination sheet and filed in the project

folder. Skin biopsy was performed daily on Days 2–7. Biopsies

were performed while the animal was under light anesthesia,

except on Day 7 when the pig was under general anesthesia.

During the biopsies, the jacket remained on the pig as it

contained openings that render the sites easily accessible by the

veterinarian performing the procedure. A size 21 surgical blade

and a pair of surgical scissors were used to extract a 10 mm ×

3 mm× 10 mm piece of tissue from two wound sites per day.

The incisional biopsy transacted the epidermis, dermis and

subcutaneous layers, with the original incision lying to either the

left or right edge of the extracted tissue.

On Day 7, the pigs were euthanized with an IV injection of 60–

80 mg/kg Pentobarbital Sodium. After tissue harvest, the carcass

was disposed as per standard operating procedures.
2.4. Clinical wound scoring

Consistent with prior research in animal populations (31, 32),

each wound was monitored by two blinded veterinarians for

clinical signs of infection using the United States Centers for

Disease Control and Prevention (CDC) criteria (33). A wound

score was assigned daily based on the scoring criteria (Table 2).
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FIGURE 2

Schematic illustrating the layout of incisions and placement of CrelySENSE sensors. Inoculated wounds are indicated in red, sham wounds in green, and
the control site in blue.
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2.5. Multi-modal ensemble machine
learning model

Multi-modal, bagged, stacked, and balanced ensemble logistic

regression machine learning models were developed to predict

the presence of a current superficial incisional SSI, an SSI 24 h in

advance of veterinarian-based SSI diagnosis, and an SSI 48 h in

advance of veterinarian-based SSI diagnosis. In the first step, the

signals were filtered and motion-derived artifacts were removed

from the raw signal, after which 90 features (e.g., slope and

percentiles) were extracted from the processed data (5,860

observations from 35 wound sites) using a moving window

approach. The minority classes were up-sampled to account for

class imbalance in the data, and the models were trained using a

bootstrap aggregation ensemble technique. Throughout the

training with entire data sets, we measured the performance,

specificity, and accuracy of each test set, and reported the

averaged performance. Then, the probabilities and confidence of

intervals were obtained via fusion of predictions for multiple
Frontiers in Medical Technology 05
classifiers. The model was trained and validated using Leave-1-

Out Cross-Validation (34).
2.6. Statistical analysis

The first step of the analysis focused on exploring differences in

the expression levels of the individual biomarkers (i.e., StO2,

temperature, and BioZ) due to the presence of superficial

incisional infection. These were determined by conducting two-

tailed unpaired Student’s t-tests between infected and non-

infected surgical sites, separately for each time point. Second,

cross-correlations were used to compare discrete time points

between the veterinarian-based and bio-signal-based SSI

diagnosis for each bio-signal of interest (i.e., temperature, StO2,

BioZ). In doing so, it enabled the determination of whether, and

at what time lag, the strongest relationship exists between the SSI

measures (35). Cross-correlation coefficients with values < 0.20

were classified as very weak, values between 0.20–0.40 as weak,
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TABLE 2 Wound scoring system.

Wound characteristic Scoring system
Dehiscence 0 = No dehiscence

1 =Mild dehiscence

2 =Moderate dehiscence

3 = Severe dehiscence

Discharge 0 = No discharge

1 = Serous discharge

2 = Seropurulent discharge

3 = Purulent discharge

Redness 0 = No redness

1 = Redness at cruciate suture

2 = Redness around entire incision

3 = Redness beyond the borders of the incision

Swelling 0 = No swelling

1 =Mild swelling

2 =Moderate swelling

3 = Severe swelling

Hughes et al. 10.3389/fmedt.2023.1111859
values between 0.40–0.70 as moderate, values between 0.70–0.90 as

strong, and values > 0.90 as very strong (36). Statistical analyses

were performed using the MATLAB software package version

R2021A (The MathWorks, Natick, Massachusetts), with a

p-value < 0.05 indicating statistical significance.

Third, the ability of the ML model to detect the presence of

superficial incisional SSI, predict superficial incisional SSI 24 h in

advance of veterinarian-based SSI diagnosis, and predict

superficial incisional SSI 48 h in advance of veterinarian-based

SSI diagnosis was determined. Given that accuracy is likely to be

overestimated in unbalanced data, model performance was

evaluated using the following metrics: area under the ROC curve

(AUC), accuracy, specificity, and sensitivity (36). The overall

diagnostic accuracy of the model was determined using Hosmer

& Lemeshow’s (38) empirical classifications, in which an AUC <

0.5 indicates no discrimination, 0.7–0.8 indicates acceptable

discriminability, 0.8–0.9 indicates excellent discriminability, and
FIGURE 3

Expression of digital biomarkers in the first six days after inoculation with meth
trends of peri-wound tissue oxygen saturation (left panel), temperature (midd
and inoculated wounds (red). The difference in expression levels of the individ
groups [marked with black rings (i.e., ○)] at certain time points (bottom pane
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> 0.9 indicates outstanding discriminability. Pairwise comparison

of AUCs was performed using DeLong’s test implemented in the

R package pROC (R version 4.1.1, The R Foundation) (39). The

P values of multiple comparison of AUCs were adjusted by

Bonferroni correction and tests with p < 0.017 were interpreted as

a significant difference.
3. Results

A total of 14 incisions were made on each pig: seven were

inoculated with MSSA, six served as sham sites, and one served

as a control site. For pig #1, 5/7 (71.4%) inoculated sites were

infected, 1/6 sham wound sites were infected (14.3%), and 0/1

(0%) control site were infected. For pig #2, 6/7 (85.7%)

inoculated sites were infected, 0/6 sham wound sites were

infected (14.3%), and 0/0 (0%) control sites was infected.

A total of 28 Hematoxylin and Eosin (H&E) stained skin tissue

samples were scored by a certified Research Veterinary Pathologist

for histopathological changes such as inflammation, granulation

tissue, collagen deposition, epithelization and neovascularization

based on the score pattern described by Barington et al. (40).

The infiltration of polymorphonuclear cells (PMNCs) persist in

inoculated biopsy skin samples from days one though six,

decreasing in distribution until day five, with a sudden increase

in presence on days three and six. The infiltration of PMNCs in

sham sites is decreased compared to inoculation sites on various

days of surgical removal of biopsy. The presence of mononuclear

cells in inoculation sites increased from day 1–5, and

comparatively declined in distribution in sham sites. Samples

taken from the control site failed to show pathological changes.

Figure 3 (top panel) illustrates time-related differences in peri-

wound tissue oxygen saturation (% StO2), wound temperature

(temperature from baseline), and bioimpedance (BioZ from

baseline) for non-infected (green) vs. superficial incisional
icillin susceptible Staphylococcus Aureus (MSSA). Graphs show the relative
le panel), and bioimpedance (right panel) from the sham wounds (green)
ual biomarkers with time showed significant differences between the two
l).
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infected wounds (red) relative to the sham wounds. Statistical

differences between wounds are indicated with black rings (i.e.,

○). The percentage of tissue oxygenation (% StO2) for infected

wounds followed a bell curve pattern under 72 h post-inoculation

peaking at the 25th hour. This differed from non-infected

wounds that were relatively stable across the study period.

Statistical analysis indicated that differences in percent StO2

between the infected and non-infected surgical sites reached

statistical significance at 12 h post-inoculation until 50 h post-

inoculation (Figure 3 bottom left panel, all p’s < 0.05). Wound

temperature (°C from baseline) between non-infected and

infected wounds demonstrated similar trends over the study

period, but with markedly different values that started 18 h post-

inoculation and lasted until 96 h post-inoculation (Figure 3

bottom middle panel). However, statistical analysis indicated that

the differences in wound temperature between the infected and

non-infected surgical sites reached statistical significance only

during the time period between 24 until 72 h post-inoculation

(all p’s < 0.05). Wound bioimpedance (Ohm from baseline)

between non-infected and infected wounds demonstrated similar

trends over the study period, but with markedly different values

that started 48 h post-inoculation and lasted until 120 h post-

inoculation (Figure 3 bottom right panel). However, statistical

analysis indicated that the differences in wound bioimpedance

between the infected and non-infected surgical sites reached

statistical significance only during the time period between 72

until 120 h post-inoculation (all p’s < 0.05).

For superficial incisional infected wounds, cross-correlational

analysis indicated a change in the three bio-signals that occurred

at least 24 h before a change in veterinarian-based SSI diagnosis

(Figure 4). The percentage of tissue oxygenation (% StO2) for

infected wounds exhibited a significant upward trend 25 h in

advance of a clinician’s diagnosis of wound infection (r = 0.39, p

< 0.001). Similarly, the peri-wound temperature exhibited a

moderately upward trend at 31 h before a diagnosis of infection

(r = 0.40, p < 0.001). A moderately strong downward trend in the

BioZ value of the tissue was observed 24 h prior to the clinical

diagnosis of wound infection (r = 0.54, p < 0.001).

Table 3 presents the ML model’s ability to predict current and

future superficial incisional SSI. The ability of the model to detect a
FIGURE 4

Cross-correlation analysis data indicating that peri-wound tissue oxygenation
predict the development of infection 24 to 31 h before veterinarian-based SS
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current SSI achieved an AUC of 0.77, accuracy of 64%, sensitivity

of 82%, and specificity of 59%. In comparison, the predictive

performance of the model was higher when predicting SSI 24 h

in advance of veterinarian-based SSI diagnosis, with an AUC of

0.80, accuracy of 78%, sensitivity of 81%, and specificity of 76%.

The algorithm exhibited lower performance for predicting SSI

48 h in advance of veterinarian-based SSI diagnosis (AUC = 0.74,

accuracy = 69%, sensitivity = 77%, specificity = 65%). By pairing

and comparing the AUC using DeLong’s test, we found that

there was no statistical difference between predicting current SSI

and 24 h in advance of veterinarian-based SSI diagnosis

(p = 0.071), between current and 48 h in advance of veterinarian-

based SSI diagnosis (p = 0.0790), while the difference between

predicting SSI 24 h in advance of veterinarian-based diagnosis

and predicting SSI 48 h in advance of veterinarian-based SSI

diagnosis was statistically significant (p < 0.001).
4. Discussion

The aim of the present study was to evaluate the ability of a

multi-modal bio-signal acquisition system to predict current and

developing superficial incisional infection in a porcine model

infected with Methicillin Susceptible Staphylococcus Aureus. The

predictions of the system were evaluated using a bagged, stacked,

and balanced ensemble logistic regression machine learning model.

The acquired bio-signals enabled the characterization of wound

healing and superficial incisional infection from MSSA across the

study period. At non-infected wound sites, StO2 was relatively

stable from the point of inoculation to the end of the study

period, temperature increased from the point of inoculation until

the 24th hour then decreased gradually, and bioimpedance

decreased from the point of inoculation to the 80th hour, then

increased to the end of the study period. In contrast, StO2 of

infected wounds increased from the point of inoculation to the

25th hour then decreased to the 80th hour. Temperature and

bioimpedance of infected wounds showed similar trends to the

non-infected wounds, but with higher peri-wound temperatures

from the 24th hour through the 96th hour, and lower

bioimpedance values from the 48th hour through the 120th
(left panel), temperature (middle panel), and bioimpedance (right panel)
I diagnosis.
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TABLE 3 Machine learning model performance in detecting the presence
of a current SSI, SSI 24 h in advance of veterinarian-based SSI diagnosis,
and SSI 48 h in advance of veterinarian-based SSI diagnosis.

AUC Accuracy Sensitivity Specificity
Current SSI 0.77 64% 82% 59%

24 Hours 0.80 78% 81% 76%

48 h 0.74 69% 77% 65%
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hour. When comparing the values of the individual biomarkers to

clinical wound scores, the results of the present study demonstrate

that digital signals can indicate the presence of an MSSA infection

24 to 31 h before standard methods. The ability to detect changes

in tissue physiology associated with SSI is of critical importance to

healthcare providers, as it would help enable the timely and

effective treatment (e.g., antibiotics) to accelerate the recovery of

patients (4, 20), that would ultimately reduce healthcare costs,

SSI-associated complications and mortality rates.

Interestingly, there were statistically significant differences

between the inoculated and sham wound sites 60–55, 10, and 2–

1 h prior to the incision and introduction of MSSA. Because the

distribution of inoculated and sham wounds across the trunk of

the animals, it is unlikely to be due to local physiological effects.

Rather, because the p-values during these time periods range

from p = 0.041 to 0.047 we believe that the statistical significance

at these time periods are spurious in nature, and be non-

significant with more data. We minimized the number of

animals involved in the current study, because the experimental

research methodology was invasive by its very nature which

resulted in potential undue distress and harm on the animals. As

the research moves into post-surgical human populations, the

non-invasive observational research methodologies (i.e.,

monitoring post-surgical patients) will allow us to evaluate the

system in a greater number of wound sites. If our assumption

regarding statistical spuriousness is correct, then we expect that

pre-surgical temperature will be similar within an anatomical

region.

Congruent with prior studies that have developed machine-

learning powered SSI models using medical data (41) or wound

imaging (42), the multi-modal ensemble model developed in this

study demonstrated promising accuracy and sensitivity to detect

a current infection, yielding an AUC value of 0.77. While model

performance to detect SSI 24 h and 48 h in advance of

veterinarian-based SSI diagnosis (AUC’s = 0.80 and 0.74,

respectively) also demonstrated acceptable discriminability,

DeLong’s tests indicated that both the current infection and the

24 h in advance models performed equally well, whereas the

model predicting SSI 48 h in advance of veterinarian-based SSI

diagnosis performed significantly worse. Based on the data, it can

be put forth that the measured bio-signals are best at providing

information regarding pathophysiological processes before overt

clinical signs are apparent. This conjecture is supported by

results of the cross-correlation analysis indicating that peri-

wound bioimpedance and tissue oxygenation of inoculated

wounds peaked 25 and 24 h before veterinarian-based SSI

diagnosis. Taken together, the current data indicate that

superficial incisional wounds infected with MSSA result in
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physiological changes to the peri-wound area (e.g., rise in peri-

wound temperature due to inflammation, immune responses,

and/or tissue metabolism) that can be detected using non-

invasive multi-modal sensors.

While the model showed acceptable performance, the diagnostic

accuracy of the model could be further improved by increasing the

volume of training data and/or handling the problem of

imbalanced data by using rule-based methods that can learn high

confidence rules for the minority SSI class (43) or by building

cost-sensitive classifiers (44). Another approach, which may lead

to greater clinical adoption, would be to integrate

sociodemographic and clinical information (e.g., hypertension,

diabetes mellitus, current or past smoker), peri-operative (e.g.,

urgency of surgery, duration of surgery, surgical drain placed,

antibiotic prophylaxis, intraoperative supplemental oxygen), and

post-operative parameters (e.g., serous exudate, purulent exudate,

white blood cell count, antibiotics administered) into the model.

There are limitations to the current study that may inform

future directions in this line of research. First, the sensors were

sutured on the skin of the porcine subjects in order to minimize

movement-related measurement errors and signal noise. We have

adapted the CrelySENSE sensors for use in clinical trials

involving human volunteers so that they attach to the peri-

wound site via disposable adhesives and are connected to the

CrelyPRO using Bluetooth low energy (BLE) protocols. Second,

SSI may also lead to changes in bio-signals such as perfusion,

pulse rate, respiration rate, and pH. The inclusion of these

parameters may improve the detection and prediction of SSIs in

animal and human populations. Third, we examined responses

after MSSA infection. While the most common organism that

causes SSIs (45–47), it is unknown whether SSIs caused by

bacteria such as Methicillin-resistant Staphylococcus aureus

(MRSA), extended-spectrum β-lactamase (ESBL)-producing

Enterobacteriaceae [Escherichia coli (E. coli), Klebsiella

pneumoniae], multidrug resistant gram-negative bacteria (e.g.,

Acinetobacter baumannii), and vancomycin-resistant

Enterococcus faecium (VRE) would yield similar bio-signal

responses. Lastly, the current study focused on the detection and

prediction of superficial incisional SSIs that occur in the area of

the skin where the incision was made. Whether or not the

described bio-signal system can detect infections that occur

beneath the incisional area in the muscle and surrounding tissues

(deep incisional SSIs) remains to be ascertained. There is some

evidence that post-surgical deep incisional infections may exhibit

different patterns of expression of wound biomarkers (48, 49).

Future studies should thus validate the current system in

different types of SSIs and pathogens.

In summary, the results of the current study bear out the

accuracy, sensitivity, and specificity with which the non-invasive

multi-modal bio-signal system of interest is capable of detecting

MSSA infection in porcine subjects. Such systems can provide

clinicians with a continuous and real-time understanding of the

state of the wound healing process, enabling them to make

timely decisions regarding wound care that would substantially

reduce post-operative complications, length of stay, and

treatment costs.
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