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Introduction: Hyperglycemia-induced endothelial dysfunction and the
subsequent increase of oxidative stress could lead to aberrant regulation of
various genes which are responsible for a range of functions. This study aims
to find out how hyperglycemia affect oxidative stress and then the expression and
methylation of endothelin 1 (ET-1) gene in in human umbilical vein endothelial
cells (HUVEC).

Methods: Cells were cultured in growth medium and exposed to low and high
glucose concentrations to mimic normal and diabetic condition respectively.
Computational analysis were performed using UCSC genome browser and
eukaryotic promoter database (EPD). The expression of ET-1 gene was
investigated by real time PCR. Cytotoxicity and oxidative stress were
determined by MTT and DCFH-DA assays respectively. Promoter methylation
was assessed by the bisulfite sequencing method.

Results:DCFH-DA assay showed that hyperglycemia can significantly increase the
regulation of reactive oxygen species synthesis. The relative expression of ET-1
gene was increased due to exposure to high glucose concentration. MTT assay
revealed reduced viability of cells due to the glucose induced damage.
Methylation analysis revealed hypomethylation of the promoter of ET-1
however the difference was not significant. Out of 175 CpGs at 25 CpG sites,
only 36 CpGs were methylated (20.5% methylation) in cell treated with normal
glucose. Upon exposure to high glucose only 30 CpGs were methylated in 175
CpGs at 25 CpG sites (17.1% methylation).

Discussion: Our study concludes a significantly high expression of ET-1 gene in
response to high glucose exposure in HUVECs. It also reports that hyperglycemic
condition leads to elevated oxidative stress. No significant change was found in
methylation when cells were treated with high and low glucose concentrations.
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Introduction

Diabetes mellitus (DM) is a multifactorial disease in which body
fails to release or respond to insulin. The increasing incidence of
diabetes is a growing concern, causing a huge death toll and
disability worldwide (Safi et al., 2014a; Barysheva, 2015; Shestakova
and Maioriv, 2019; Darenskaya et al., 2021). In diabetes, chronic
hyperglycemia consequently contributes to the progression of several
other diabetic complications including endothelial dysfunction, insulin
resistance, nephropathy and retinopathy (Safi et al., 2014b; Cho et al.,
2018). Vascular endothelium performs a range of functions including
maintenance of vascular homeostasis and regulation of adhesion
molecules. The condition in which endothelium fails to maintain
vascular homeostasis is known as endothelial dysfunction (Sena
et al., 2013; Cai et al., 2021).

Under hyperglycemic conditions, the normal vascular
physiology changes to endothelial dysfunction, which leads to
dysfunctional cellular redox and increased generation of oxidative
stress (Meza et al., 2019). Increased ROS generation leads to aberrant
regulation of a range of genes including inflammatory cytokines and
adhesion molecules. In response to hyperglycemic environment,
several pro-inflammatory pathways also participate during the
process of oxidation and antioxidation. Consequently, the
imbalance of enzymatic and non-enzymatic antioxidant and ROS
generation induce endothelial dysfunction by augmenting
endothelium permeability, necrosis and apoptosis in endothelial
cells (Batumalaie et al., 2013; SZ Safi et al., 2015; Safi et al., 2016;
Escobar-Morreale et al., 2017; Luna and Estévez, 2018; Safi et al.,
2022; Wang et al., 2022).

Endothelin 1 (ET-1) gene is a very important vasoconstrictor
gene which is primarily expressed in vascular endothelial cells. Due
to its role as vasoconstrictor, this gene contributes to vascular
remodeling in diabetes and other diabetic complications. ET-1 is
reported to play a key role in endothelial dysfunction (du Plooy et al.,
2017; Kruger et al., 2012; Akter et al., 2015). ET-1, TNF-α and
angiotensin II are some of the inducing factors of superoxide radical
(O2−) generation (Münzel et al., 2010; Montezano and Touyz,
2012). In endothelial dysfunction, various studies have
demonstrated the role of ET-1 gene in augmenting ROS and

increased production of O2- in human arteries and animal
vessels (Elmarakby et al., 2005; Loomis et al., 2005; Böhm et al.,
2007; Cerrato et al., 2012; Sánchez et al., 2014). Studies have also
shown that blocking the ET receptor improves endothelial function
in human coronary arteries (Verma et al., 2001; Romero et al., 2009).

Epigenetics is an emerging field in which epigenetic
modification can regulate genes without changing their
sequences. These are heritable and stable modifications which
alter the gene function without changing the DNA sequence
(Pradhan et al., 2016; Álvarez-Nava and Lanes, 2018; Ling and
Rönn, 2019). In diabetic complications, a number of studies have
found alterations in DNA methylation which could change the
gene expression profiles, and consequently the fate of the disease
(Rakyan et al., 2011; Volkmar et al., 2012). One study reported
hypomethylation in DNA from liver tissue (Williams et al., 2008).
Another study on diabetic rat model found increased DNA
methylation in pancreatic tissue. This study concluded that
methylation and demethylation of DNA in diabetes may
attribute to various factors the local conditions and type of
tissue exposed to the disease (Williams and Schalinske, 2012).

Keeping in view the above reports, and the role of epigenetics, the
purpose of this study was to assess the level of methylation and its
association with the expression of ET-1 gene. We also aimed to
investigate the association of hyperglycemia and the level of reactive
oxygen species in hyperglycemic human umbilical vein endothelial cells
(HUVEC). To this end, we exposed the cells to high and low glucose
concentrations and evaluated the expression of ET-1 gene. We also
studies the methylation level in ET-1 gene to establish its role in
hyperglycemic condition and probe the possibility of any association
between gene expression and methylation in cells with high oxidative
stress.

Methodology

Cell culture

Using 10% serum and 1% Penicillin/Streptomycin, human
umbilical vein endothelial cells (HUVEC) were cultured in a

FIGURE 1
Shows the schematic representation of ET-1 with coding and promoter sequences. It also shows the 5′UTRwith downstream and upstream regions
from where we picked our sequence of interest for methylation analysis.
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complete growth medium (Cell Systems). Cells were grown in 25
and 75 ml flask. One set of cells was treated with normal glucose
(5 mM, 0.9008 g/L) while the other was exposed to high glucose
concentration (25 mM, 4.5 g/L). Upon 80% confluency, cells were
passaged using the same formulation of growth medium. Cells
were incubated for 24 and 48 hours in 5% CO2 at 37°C and media
was changed every 2–3 days. Cells viability and growth was
observed everyday using microscope. Cells were sub-cultured
by detaching the cells by Trypsin-EDTA (Gibco® United
States). RNA and DNA were extracted using commercially
available kits (Gene JET and Qiagen). The cell lines present in
this study were obtained from Thermo Fisher Scientific, United
States (C0155C).

MTT assay

MTT assay was conducted following an already reported method
(Kumar et al., 2018) with modifications. Briefly, 96 well plates were used
to seed the cells containing experimental (24 and 48 h) and control (24
and 48 h) groups, treated with high and low glucose concentrations. In
each well, a total of 1 × 104 human umbilical vein endothelial cells were
cultured for 24 and 48 h followed by incubation at 37°C with 5% CO2.
Experiments were initiated with addition of MTT reagents in triplicates,
followed by incubation for 4 h. Cells were rendered to extensivewash, and
solubilization solution was added to dissolve the formazan crystals. A
BIO-RAD-PR 4100 microplate reader was used to take readings at
570 nm after 24 and 48 h incubation.

FIGURE 2
Shows the 400 bp sequence which contained a 180 pb downstream sequence (relative to TSS) within the 5′ UTR, and −220 bp upstream sequence
(relative to TSS). This 400 bp sequence was used to design methylation primers for methylation study.
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Real time PCR

RNA was isolated from high and low glucose treated cell lysates
using commercially available Gene JET RNA Purification kit

(Thermo Scientific, United States). RevertAid™ kit (Thermo
Scientific, United States) was used to synthesize cDNA. ET-1
gene was amplified by real time PCR using Maxima SYBR Green
PCR master mix from Thermo Scientific, United States. Ct and

FIGURE 3
Graphical representation ofMTT assaywhich shows a significantly reduced viability of cells treatedwith high glucose as compared to low glucose for
24 and 48 h. The viability further reduced in high glucose treated for 48 h.

FIGURE 4
Graphical representation of the mRNA expression of ET-1 gene using real time PCR in HUVECs treated with normal/low glucose and high glucose
concentrations for 24 and 48 h. There was a time dependent increased in the expression of ET-1.

FIGURE 5
Shows the level of reactive oxygen species in HUVECs treated with normal/low glucose and high glucose concentrations for 24 and 48 h.
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ΔΔCt method along with beta-actin as control, was employed to
calculate the relative expression of ET-1 gene.

DCFH-DA assay

To investigate the level of reactive oxygen species (ROS), reagent
2′7′-dichloro-dihydro-fluorescin diacetate was added to the
experimental and control cells with high and low glucose
concentrations, respectively. Cells were seeded in 96-well plates
and 5 μM DCFH-DA reagent was added, followed by incubation

for 24 and 48 h. Fluorescence plate reader was used to take readings
at 530 nm emission and 485 nm excitation. For the calculation of
reactive oxygen species, the mean control was deducted from the
mean experimental group.

Computational analysis–Primer design and
selection of sequences

To evaluate the promoter methylation of ET-1 gene, the
gene transcript which consisted of 2032 bp, was retrieved from

FIGURE 6
Shows the overall promoter methylation of ET-1 gene. (A) methylation of ET-1 gene at normal glucose concentration. (B) it summarizes the
methylated vs. unmethylated CpGs in the promoter of ET-1. (C) methylation of ET-1 gene at high glucose concentration. (D) methylation vs.
unmethylated CpGs in high cells treated with high glucose concentration. (E) the difference of methylation in HUVECs treated with normal and high
glucose concentrations.
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NCBI and UCSC genome browser databases. The 2,032 bp
transcript of ET-1 gene had a 636 bp coding region, in which
269 bp was 5′UTR and 1,127 bp 3′UTR. Relative to transcription
start site (TSS), promoter sequences (from 180 downstream
to −1000 upstream) were identified using Eukaryotic Promoter
Database (EPD). Out of 1180 bp long promoter sequence (from
180 downstream to −1000 upstream) a 400 bp sequence, with
appropriate number of CpGs was identified for primer
designing. The 400 bp sequence contained a 180 pb downstream
sequence, relative to TSS within the 5′UTR. The remaining 220 bp
sequence was from the upstream region (−220) relative to TSS.
Subsequently, primers were designed within the 400 bp sequence
using MethPrimer tool, as shown in Figures 1, 2.

PCR amplification and bisulfite conversion

After quantification, a total of 500 ng of extracted DNA was
bisulfite-converted using commercially available EZ DNA kit
(Zymo United States). Bisulfite modified DNA was amplified
using DNA polymerase (hot start taq) with specially designed
primers for the promoter of ET-1 gene. PCR reactions
conditions were set at 95°C for 5 minutes followed by 95°C
for 45 sec and 60°C for 60°s. The final extension was given for
7 minutes at 72°C. Electrophoresis was carried out using
agarose gel. A commercially available mini elute gel
extraction kit (Qiagen) was used to purify the DNA from the
agarose gel.

Cloning, transformation and sequencing

After purifying the amplified product from gel, ligation into
pCR2.1 vector was initiated using a cloning kit from
Invitrogen. A 4 μl of PCR product was thoroughly mixed
with 1 μl of TOPO vector followed by a 5 minutes
incubation at room temperature. The reaction was again
incubated on ice for 10 minutes after adding chemically
competent DH5α cells. It was followed by heat shock
procedure for 30 s. To check the cloning, all samples were
spread onto LB plates and incubated overnight at 37°C. After
blue-white screening, 10 colonies of both types of samples
(high and low glucose concentration for 48 h) were isolated
from the LB plates. The isolated colonies were cultured using
ImMedia Amp Liquid for 24 h. Plasmids were isolated using
commercially available kit (Favorgen). The final samples were
stored for sequencing. For methylation studies, we included
only 48 h exposure (the maximum) and 24 h exposure was not
included.

Methylation analysis

Out of 10 samples for each, we encountered cloning/sequencing
problems in 3 samples. After deducting 3 samples, we were left with
7 samples for each control and high glucose treated sample.
Different softwares and platforms including QUMA
(Quantification tool for methylation analysis), NCBI and UCSC
genome browser were used to analyze the data.

Statistical analysis

GraphPad prism and SPSS were used to for the statistical
analysis. The results were calculated in mean SD. Statistical
significance was determined using multiple t tests. Significance
was set at a value of 0.05.

Results

Effect of high glucose on the proliferation
and viability of cells

To see the effect of high glucose on HUVEC, MTT assay was
performed in cells exposed to physiological glucose (5 mM),
and High glucose (25 mM) concentrations. As shown in
Figure 3, MTT assay revealed a significantly decreased cell
proliferation index in cells treated with high glucose
(25 mM) as compared to control (5 mM). Cells treated for
48 h showed far less viability (p-value 0.005) than cells
treated for 24 h (p-value 0.010) It suggests that
hyperglycemia creates a deleterious condition in the cells
which doesn’t favor a healthy cell proliferation.

Expression of ET-1 in hyperglycemic
HUVECs

Results from real time PCR showed a significantly higher expression
of ET-1 gene in HUVECs treated with high glucose concentration as
compared to normal physiological concentration (Figure 4). Difference in
expression was slightly higher in cells treated for 48 h (p-value 0.006) as
compared to cells treated for 24 h (p-value 0.007). These results of cell
viability from MTT assay, and ET-1 expression from real time PCR
exhibited a similar time dependent pattern.

Reactive oxygen species (ROS)

Several studies have reported a strong correlation between
hyperglycemia and elevated levels of reactive oxygen species.
We were interested to see this in human umbilical vein
endothelial cells which were treated with high and low
concentrations of glucose for different time periods (24 and
48 h). Our results demonstrated a significantly high oxidative
stress in cells treated with high glucose as compared to those
which were treated with normal glucose concentration. ROS
levels were comparatively high in those cells which were
exposed for 48 h (p-value 0.006) as compared to 24 h
(p-value 0.014). This was consistent with the expression of
ET-1 and cell viability in MTT assay (Figure 5).

ET- 1 gene methylation and associated
factors

After we detected a significantly high ET-1 expression in
HUVECs, we presumed a hypomethylation in the promoter of
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ET-1. To check our hypothesis we carried out promoter methylation
analysis. We evaluated 25 CpGs in each sample, where we had
7 samples for each high glucose and low glucose treated cells. So we
investigated a total of 175 CpGs in high glucose treated cells and
175 CpGs in low glucose treated cells (control). As shown in Figures
6A, B, we found 36 methylated CpGs out of 175 CpGs in HUVECs
treated with normal glucose concentration. In high glucose treated
cells, the number of methylated CpGs was 30 (Figures 6C, D).
Contrary to our expectations, the hypomethylation in glucose
treated cells was very trivial and insignificant (Figure 6E). This
demonstrates that hyperglycemia and high oxidative stress may
regulate the expression of ET-1 gene without involving methylation
at its promoter sequence. Cells with low glucose concentrations
exhibited high methylation at CpG positions 22, 251, 236 and 380.
At positions 92, 155, 247, 295 and 314, no methylation was found.
Cells treated with high glucose concentrations, showed high
methylation at positions 22, 74 and 260. No methylation was
detected at positions 34, 100, 251, 289 and 305.

Discussion

Hyperglycemia and reactive oxygen species are the hallmarks of
diabetes and diabetic complications. In this study we demonstrate that a
24 and 48 h exposure of HUVECs to high glucose significantly alter the
ET-1 gene expression. It also negatively affect the viability of cells with
increased level of reactive oxygen species. Hyperglycemia caused a
significant reduction in cell viability which suggested that glucose has
created a pro-oxidative stress environment. In such diabetic and high
oxidative stress conditions, studies have shown that pro-diabetic, pro
inflammatory and pro-oxidative stress genes are highly expressed.
Several studies have reported altered gene expressions in such
conditions (Shaik et al., 2010; Safi et al., 2018; Bima et al., 2022a;
Aziz et al., 2022; Bima et al., 2022b). In a recent study, Hall et al.
reported a significant impact of high glucose exposure on global gene
expression andDNAmethylation in human pancreatic islets (Hall et al.,
2018). Several genes including VAC14, RASD1, SYT16, CHRNA5 and
TMED3 showed altered gene expression in response to high glucose
exposure. Another study reported distinct patterns of gene expressions
in primary human skin cells treated with normal and high glucose
concentrations (Zhang et al., 2021).

A number of studies have reported altered methylation patterns
in response to high glucose exposure. In 2020, Kandilya et al.
reported varied levels of DNA methylation in human neural
progenitor cells (Kandilya et al., 2020). Several other studies have
also concluded that altered DNA methylation and other epigenetic
mechanisms play an important role in the pathogenesis of diabetes
and other diabetic complications (Ling et al., 2008; Yang et al., 2011;
Wu et al., 2016; Ahmed et al., 2020; Chen et al., 2021). Similarly,
elevated levels of both reactive oxygen species (ROS) and DNA
methylation have been reported to be the characteristics of various
diseases including cancer, diabetes, endothelial dysfunction and
atherosclerosis (Wu et al., 2016). Several studies have reported a
possible association of elevated oxidative stress and epigenetic
modifications (Galligan et al., 2014; Wu and Ni, 2015; Khan
et al., 2016; Kreuz and Fischle, 2016; Zhou et al., 2016; Zhou
et al., 2018).

In diabetic patients, high blood glucose and elevated
oxidative stress contribute to affect the epigenetic landscape,
thus leading to persistent upregulation/downregulation of
genes controlling vascular homeostasis. A significant shift in
gene expression profiles also point to an altered methylation in
the promoter sequences of the respective genes. After
confirming varied cell viability and significant changes in
oxidative stress toward normal and high glucose exposure,
followed by a significantly high expression of ET-1 gene in
high glucose samples, we hypothesized reduced methylation in
the promoter of ET-1 gene. To check our hypothesis we
analyzed 175 CpGs at 25 CpG sites in HUVECS treated with
normal and high glucose concentrations. Out of 75 CpGs, we
found only 36 methylated CpGs in cell treated with normal
glucose (20.5% methylation). To our understanding it was quite
low methylation however we were expecting further reduction
after cells being exposed to high glucose concentration.
Surprisingly, the outcome was not as we expected. In cells
treated with high glucose, showed almost similar number of
methylated CpGs (30 methylated CpGs out of 175) which makes
17.1% methylation in comparison to 20.5% methylation in
normal glucose treated HUVECs (Figure 6). Cells with low
glucose concentrations exhibited high methylation at CpG
positions 22, 251, 236 and 380. At positions 92, 155, 247,
295 and 314, no methylation was found. Cells treated with
high glucose concentrations, showed high methylation at
positions 22, 74 and 260. No methylation was detected at
positions 34, 100, 251, 289 and 305.

24 and 48 h exposure of cells to glucose demonstrated a time
dependent effect on cell viability and oxidative stress. ET-1 gene
expression was also affected in a time dependent manner.
However we used only maximum (48 h) exposure for the
methylation analysis, as it has shown the maximum effect on
cell viability and reactive oxygen species.

Our data conclude that cells treated with high and low glucose
concentrations demonstrate no significant difference in the
promoter methylation of ET-1 gene. In hyperglycemic conditions,
the significant changes in the expression of ET-1 gene might be due
to other factors. Oxidative stress and hyperglycemia may regulate
the gene expression by recruiting other proteins.

Conclusion

Our study demonstrate a significantly high expression of
ET-1 gene in response to high glucose exposure in HUVECs. It
also reports that hyperglycemic condition leads to elevated
oxidative stress and reduce cell viability. Upon high glucose
exposure, no significant changes were noticed in the promoter
methylation of ET-1 gene.
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