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New deformed Heisenberg
algebra from the μ-deformed
model of dark matter

A. M. Gavrilik1*, I. I. Kachurik2 and A. V. Nazarenko1

1Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine, 2Khmelnytskyi National University,
Khmelnytskyi, Ukraine

Recently, the μ-deformation-based approach to modeling dark matter, which
exploits μ-deformed thermodynamics, was extended to the study of galaxy halo
density profile and of the rotation curves of a number of (dwarf or low brightness)
galaxies. For that goal, μ-deformed analogs of the Lane–Emden equation (LEE)
have been proposed, and their solutions describing density profiles obtained.
There are two seemingly different versions of μ-deformed LEEwhich possess the
same solution, and sowe deal with their equivalence. From the latter property we
derive new, rather unusual, μ-deformed Heisenberg algebra (HA) for the position
and momentum operators, and present the μ-HA in few possible forms (each
one at μ→ 0 recovers usual HA). The generalized uncertainty relation linked
with the new μ-HA is studied, along with its interesting implications including
the appearance of the quadruple of both maximal and minimal lengths and
momenta.

KEYWORDS

deformed BEC model of dark matter, deformed lane-emden equation, deformed
heisenberg algebra, generalized uncertainty relation, maximal/minimal length
uncertainty

1 Introduction

The suggestion of the existence of minimal nonzero (uncertainty of) length linked with
generalized uncertainty principle (GUP) or relation (GUR) has been advanced in the context
of string theory and quantum gravity (Gross and Mende, 1988; Amati et al., 1989; Adler
and Santiago, 1999; Scardigli, 1999; Maziashvili, 2006), see also (Chang et al., 2011) and the
reviews (Garay, 1995;Hossenfelder, 2013). It was shown to follow frommodified or deformed

Extension (Kempf et al., 1995) of the Heisenberg algebra (HA). It is worth to mention
that the concept of maximum observable momenta can play as well important role, see,
e.g., (Ali et al., 2009). Such a quantity was predicted, in particular, within the doubly special
relativity theory suggesting rather simple (with terms linear and quadratic in momentum)
modification of the right hand side of commutators (Magueijo and Smolin, 2002; Magueijo
and Smolin, 2005). Further it became clear that besides such a minimal extension of the
original HA, a lot of generalizations are possible, suggesting diverse ways to generalize
(or deform) the HA. As a tools to classify diverse forms of deformed HA, the concept of
deformation function(s) is of importance, see, e.g., (Saavedra and Utreras, 1981; Jannussis,
1993; Gavrilik et al., 2010; Dorsch and Nogueira, 2012; Maslowski et al., 2012; Gavrilik and
Kachurik, 2016a). Clearly, the choice of such function must determine the corresponding
GUR. As usual, most of the authors deal with position-momentum commutation relations
of deformed HA that involve particular function of X, p and deformation parameter(s) in
its right hand side (Jannussis, 1993; Dorsch and Nogueira, 2012; Maslowski et al., 2012).
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It is also possible that both the right and left hand sides of defining
commutation relation are appropriately deformed (Gavrilik and
Kachurik, 2012), although such approach may be overlapping with
the case of standard commutator and the terms containing XP
and PX in its right-hand side as it was considered in (Quesne and
Tkachuk, 2007).

In the present paper, a special form of deformed HA will
be derived in the context of the so-called μ-deformation based
approach aimed to model (Gavrilik et al., 2018; Gavrilik et al., 2019)
basic properties of dark matter that surrounds dwarf galaxies, and
its consequences analyzed.

The case of GUR related with the minimal (ΔX)min is the
best known and well studied one. In relation with this, due to
the conjugated roles of position and momentum, the concept of
(ΔP)min has appeared. As it was demonstrated in (Kempf, 1997), a
single theory—single extended or generalized HA (GHA) and the
corresponding GUR do exist which can jointly accommodate the
both special quantities, (ΔX)min and (ΔP)min.

Then, an interesting question arises whether it is possible that
the opposite concept of maximal uncertainties for the momentum
and/or the position does exist. Quite recently, it was shown in
some papers that such a possibility indeed can be realized (Pedram,
2012; Perivolaropoulos, 2017; Bensalem and Bouaziz, 2019; Skara
and Perivolaropoulos, 2019; Hamil and Lutfuoglu, 2021; Bensalem
and Bouaziz, 2022; Pramanik, 2022). Moreover, as a generalization
of the already mentioned unified treatment of A. Kempf, in
the work (Perivolaropoulos, 2017) of L. Perivolaropoulos, it was
explicitly shown that one can provide a theory (based on appropriate
generalization of HA) which incorporates the whole quadruple of
(ΔX)min, (ΔP)min, (ΔP)max, and (ΔX)max.

Usual treatments in the most of papers are in a sense model-
independent, implying a kind of universality. That means, physical
meaning of (ΔX)min, (ΔP)min, (ΔP)max, and (ΔX)max is rather
universal and depends on Planck length or its inverse, i.e., Planck
energy scale (Planck mass).

On the contrary, our treatment is based on (related with) special
deformedHAdeduced in the framework of particularmodel of dark
matter. It is remarkable that all the four quantities: (ΔX)min, (ΔP)min,
(ΔP)max, and (ΔX)max do appear. So it is clear and natural that the
physical meaning of this quadruple is tightly linked with physics of
the model, i.e., with properties of the halo of DM hosted by dwarf
galaxies.

For our case (connection with DM) some motivation was due
to the work (Perivolaropoulos, 2017), since therein the cosmology-
related uncertainty relation was explored, along with clear meaning
of maximal length: as suggested in (Perivolaropoulos, 2017), this
quantity can be naturally interpreted as cosmological horizon.

The uncertainty relation in its initial form due to Heisenberg
is linked with the standard commutation relation and is shared by
different states. Unlike, for all the deformed versions of HA, explicit
dependence of GUR on particular state does appear—for deformed
oscillators this was noticed in the pioneer papers (Biedenharn, 1989;
Macfarlane, 1989). In our present paper, just this fact/property is in
the focus and exploited to full extent.

Unlike the approach perceived in (Harko, 2011) and some other
papers also exploring galaxy rotation curves with the use of the well-
known Lane–Emden equation (LEE), in our line of research we deal
with the (μ-)Bose-condensate model of dark matter (Gavrilik et al.,

2018), and with such tool as μ-deformed analogs (Gavrilik et al.,
2019) of LEE. In general, as it is well-known, deformation of an
object under study is not unique, and in (Gavrilik et al., 2019) we
encountered two different possible forms of μ-deformed LEE, with
the corresponding different sets of solutions, one of which being the
deformed function sinμ(kr)/(kr). In the present work, the third form
of LEE will be introduced that nevertheless possesses the indicated
solution as well. Just from the requirement of equivalence of two
seemingly different deformed versions of LEE, the new μ-deformed
HA can be deduced and its basic properties and consequences
explored.

Thepaper is structured as follows. In Section 2, some basics of μ-
deformation and μ-deformed calculus are presented. In Section 3.1
we describe relevant deformed analogs of LEE and, from the
condition of their equivalence, obtain the μ-analog of HA which
is the central object of this work. The corresponding GUR which
involves the parameter μ is derived, and its main properties are
explored in Section 3.2, including the appearance of minimal and
maximal uncertainties of both position andmomentum. Section 3.3
is devoted to discussion of implications of these quantities for dark
matter. The paper is ended with concluding remarks.

2 Deformed functions and calculus

2.1 Basis functions

The so-called μ-bracket of a number or operator X,

[X]μ ≡
X

1+ μX
; [X]μ→ X, if μ→ 0, (1)

and the related μ-deformed oscillator have been introduced
3 decades ago in (Jannussis, 1993). More recently, there appeared
some papers (Gavrilik et al., 2010; Gavrilik and Mishchenko, 2012;
Gavrilik et al., 2013) in which the μ-deformation based approach
was initiated and developed.

For our purposes we define the μ-deformed trigonometric
function (see (Gavrilik et al., 2013; Gavrilik et al., 2019) and
references therein) as

sinμx =
∞

∑
n=0
(−1)n x2n+1

[2n+ 1]μ!
, cosμx =

∞

∑
n=0
(−1)n x2n

[2n]μ!
, (2)

where [n]μ! = [1]μ [2]μ… [n]μ. Clearly, at μ→ 0 one recovers
customary sine and cosine.

For our purposes, we introduce the μ-deformed analogs of
spherical Bessel functions, namely,

j(μ)0 (x) =
sinμx
x
, y(μ)0 (x) =

cosμx
x
. (3)

At μ = 0 these reduce to the familiar Bessel functions.
The physical motivation for introducing these functions is two-

fold: the first one in Eq. (3) describes the density profile of the
dark matter halo and also leads to the rotation curves within the
μ-deformed extension (Gavrilik et al., 2019) of the Bose-condensate
model, while both functions, taken jointly, are of importance
for constructing the representation space of the position and
momentum operators, see Sections 3.1–3.2 below.
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FIGURE 1
Basic μ-deformed trigonometric (A, B) and spherical (C, D) functions.

Since the applied deformation concerns mainly the basic
trigonometric functions, let us study sinμx and cosμx in
detail. Contracting the corresponding series to the Gaussian
hypergeometric function, we can then represent them in the analytic
form

sinμx = I(x,μ) sin φ (x) , cosμx = I(x,μ)cos φ (x) (4)

where

I(x,μ) ≡ (1+ μ2x2)−
1+μ
2μ , φ (x) ≡

1+ μ
μ

arctan(μx) . (5)

Therefore, in the case of μ-deformation, the main trigonometric
identity is written as follows:

sin2
μx+ cos2μx = I2 (x,μ) , I(x,μ) ≤ 1. (6)

The behavior of the μ-deformed trigonometric and spherical
functions is shown in Figure 1.

In principle, it is possible to express the deformed trigonometric
functions in terms of the μ-deformed exponential function. The μ-
analogs of exponential and logarithmic functions are

eμ (x) = (1− μx)
− 1+μ

μ , lnμ (x) =
1
μ
(1− x−

μ
1+μ ), (7)

which give us the known functions at μ→ 0− due to the asymptotic
formulas:

e (x) = lim
n→∞
(1+ x

n
)
n
, ln (x) = lim

n→∞
n(x1/n − 1) . (8)

Note that the μ-deformed functions exhibit a non-trivial
property at μ > 0:

(eμ (x))
n = eμ(

1− (1− μx)n

μ
),

lnμ (x
n) =

1− (1− μ lnμ (x))
n

μ
.

(9)

Focusing on the problems with spherical symmetry, we need to
define an inner product ⟨f|g⟩ in terms of which the real functions
u1(x) = j

(μ)
0 (x) and u2(x) = y

(μ)
0 (x) become orthonormal on finite

interval x ∈ [0; R(μ)]:

〈 f|g〉 = ∫
R(μ)

0
f* (x)g (x) wμ (x) dx, 〈ui|uj〉 = δi,j, (10)

where the asterisk means complex conjugation; the Latin indexes i,
j run from 1 to 2.

For the orthogonality of sinφ and cosφ on the interval
φ ∈ [0; π], we constitute ad hoc

wμ (x) dx =
2
π
x2I−2 (x,μ) dφ (x) , π = φ(R(μ)) , (11)

and obtain

wμ (x) =
2(1+ μ)

π
x2(1+ μ2x2)

1
μ , R(μ) = 1

μ
tan

μπ
1+ μ
, (12)

where R(μ) coincides with the first zero of sinμx.
Expanding these as.

wμ (x) =
2
π
x2[1+ (1+ x2)μ+(x2 + x

4

2
)μ2 +O(μ3)] , (13)

R(μ) = π− πμ+(π+ π
3

3
)μ2 +O(μ3) , (14)

We see that the known quantities are restored at μ = 0.
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TABLE 1 The μ-deformed derivatives.

f(x) D(μ)x f(x)

1 xn [n]μxn−1

2 eμ(px) peμ(px)

3 lnμ(x) (1+ μ− μ2)−1x−2+
1

1+μ

4 sinμ(x) cosμ(x)

5 cosμ(x) −sinμ(x)

6 j(μ)0 (x)
1+μ
1−μ

y(μ)0 (x) −
1−μ2x2

(1−μ)x
j(μ)0 (x)

7 y(μ)0 (x) − 1+μ
1−μ

j(μ)0 (x) −
1−μ2x2

(1−μ)x
y(μ)0 (x)

2.2 Deformed differential calculus

We would like to define the μ-deformed derivative D(μ)x with
respect to the positive variable x, and its inverse. Let the functions
f(x) and ϕ(x) admit expansion in the Taylor series and satisfy the
relation

D(μ)x f (x) = ϕ (x) . (15)

The actions of D(μ)x and antiderivative (D(μ)x )
−1

are respectively
given as.

ϕ (x) = d
dx
[ f (x) − x−

1
μ∫

x

0
f′ (s) s

1
μ ds] , (16)

f (x) = μx ϕ (x) +∫
x

0
ϕ (s) ds+ f (0) , (17)

Were the prime means ordinary differentiation.
We see that ϕ(x) = f′(x) at μ→ 0 due to vanishing (s/x)1/μ

for s < x. By definition, the derivative D(μ)x lowers the exponent
of the monomial xn by one, namely, D(μ)x xn = [n]μx

n−1. However,
the operator D(μ)x violates the Leibniz rule: D(μ)x ( f(x) g(x)) ≠
g(x)D(μ)x f(x) + f(x)D(μ)x g(x).

The μ-deformed derivatives of some functions are collected
in Table 1. To derive expressions 4–7, we have used the known
auxiliary integrals:

∫ sinp−1 x
{
{
{

sin ((p+ 1)x)

cos ((p+ 1)x)

}
}
}

dx = 1
p
sinp x
{
{
{

sin (px)

cos (px)

}
}
}
. (18)

On the base of relations 4–5 (not 6–7) in Table 1, we define the
Hermitian momentum operator ̂P as

̂P = − i
x
D(μ)x x, (19)

so that ⟨ui| ̂P|ui⟩ = 0, and ⟨u1| ̂P|u2⟩ = ⟨u2| ̂P
*|u1⟩ = i (see Eq. 10),

using the imaginary unit i. This operator will play an important role
in the study of the deformed Heisenberg algebra further on.

To demonstrate the action of ̂P on some functions, note that
̂Pxn = −i[n+ 1]μx

n−1 for n ≥ 0, and then

̂Pψp (x) = pψp (x) , ψp (x) =
eμ (ipx)

x
. (20)

In addition, we consider the radial part Δ(μ)r of μ-deformed
Beltrami–Laplace operator and its inverse (up to the additive
constant C ∼ f (0)).

Δ(μ)r f (r) ≡ 1
r2
D(μ)r (r2D

(μ)
r f (r)) , (21)

(Δ(μ)r )
−1
f (r) = μ2r2 f (r) + (1+ μ)∫

r

0
f (s) s ds

−
1− μ
r
∫
r

0
f (s) s2 ds+C. (22)

It is easy to verify for positive n that

Δ(μ)r rn = [n]μ ⋅ [n+ 1]μ r
n−2;

(Δ(μ)r )
−1
rn = rn+2

[n+ 2]μ ⋅ [n+ 3]μ
, C = 0.

(23)

We also verify that

(Δ(μ)r )
−1
j(μ)0 (r) + j

(μ)
0 (r) = 0, C = −j(μ)0 (0) , (24)

by the use of the integrals

∫cosp−1 x
{
{
{

sin ((p+ 1)x)

cos ((p+ 1)x)

}
}
}

dx = 1
p
cosp x
{
{
{

−cos (px)

sin (px)

}
}
}
. (25)

3 Deformed Heisenberg algebra and
uncertainty principle

3.1 Deformed equations and Heisenberg
algebra

Here we are going to present the equations of somemodels using
deformed differential calculus. The main model for us, from which
the deformed Heisenberg algebra will follow, is described by the
deformation of the Lane–Emden equation (LEE) for finite density
function ρ(r) in the two possible formulations.

(Δ(μ)r ρ (r) + k2)ρ (r) = 0, (26)

(D(μ)r D(μ)r + gμ (r)
2
r
D(μ)r + hμ (r)k2)ρ (r) = 0, (27)

Where

gμ (r) =
1

1− 2μ
(1−

1− μ
1+ μ

μ2k2r2),

hμ (r) =
1+ 2μ
1− 2μ
− 2μ2 1− μ2k2r2

(1+ μ)(1− 2μ)
.

(28)

Note that the version Eq. 26 of μ-deformed LEE was already
dealt with earlier in (Gavrilik et al., 2019), whereas the version in
Eq. 27 is completely new, unpublished one. As seen, gμ(r) → 1 and
hμ(r) → 1 at μ→ 0.

It is important that, due to the special form of gμ(r) and hμ(r),
these two μ-deformed versions of LEE have the same physical
solution j(μ)0 (kr) (along with y(μ)0 (kr)) at μ < 0.5, whichmeans that the
two versions are equivalent. To display this equivalence we have to
explicitly transform Eq. 26 into Eq. 27. Setting kr ≡ x for simplicity,
we assume the permutation rule asD(μ)x x = σ(x) xD(μ)x + λ(x), apply it
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twice to the operatorD(μ)r r2 D(μ)r of the μ-Laplace operator in Eq. 21,
and find the functions σ(x) and λ(x). Then, the equivalence of Eq. 26
and Eq. 27 is seen, with the non-trivial commutation relation:

σ (x) xD(μ)x −D
(μ)
x x = −λ (x) , (29)

σ (x) = 1

√hμ
= [
(1− 2μ)(1+ μ)
1+μ(3+2μ3x2)

]
1/2

,

λ (x) =
2gμ
(1+σ)hμ

=
1+ μ− (1−μ)μ2x2

μ[2+ μ(1+ μ2x2)]
(1−σ) .

(30)

As result, we have come to the new (μ-deformed) generalization
of Heisenberg algebra.

The functions λ(x) and σ(x) are real for 0 < μ < 0.5, tend to 1 at
μ→ 0, and are shown in Figure 2. We have 0 ≤ σ(x) ≤ 1, while the
maximum of λ(x) is determined by λ(0) and is equal to

λmax (μ) =
1+ μ
(2+ μ)μ

(1−√
(1− 2μ)(1+ μ)

1+ 3μ
). (31)

Although the function λ(x) has a tail in negative values for

x > xmax (μ) =
1
μ
√

1+ μ
1− μ
, (32)

as shown in Figure 2, consideration of the problem over finite
interval of x ∈ [0; R(μ)] with R(μ) ≤ xmax(μ) for μ ∈ (0;0.5]
guarantees a positive value of λ(x). Therefore, R(μ) varies between
Rmin ≃ 2.886 and Rmax = 2√3 ≃ 3.464, and it is the minimum
positive number that satisfies the condition sinμR(μ) = 0 (see
Eq. 12).

It seems to be of interest to consider, elsewhere, the quantum-
mechanical problem of the propagation of a particle, viewed as a
spherical waveΨ(r) in a space curved due to μ-deformation.Without
specifying the boundary condition, it can be formulated as follows:

̂P2Ψ (r) = k2Ψ (r) , (33)

where the momentum operator Eq. 19 for x = r is used. Let
us remark again that the operator D(μ)r in ̂P is a pseudohermitian
one, see e.g., (Mostafazadeh, 2002; Bagchi and Fring, 2009; Gavrilik
and Kachurik, 2016b; Gavrilik and Kachurik, 2019), but the
“sandwiching” η−1D(μ)r ηwith η = r transforms it intoHermitian form
as in Eq. 33.

In view of the definition Eq. 19 of the momentum operator, we
formulate our μ-deformed Heisenberg algebra:

σ (x) x ̂P− ̂P x = iλ (x) . (34)

In what follows, we will focus on the study of the uncertainty
principle (relation) which follows from the algebra Eq. 34.

3.2 Generalized uncertainty principle

Denoting the standard deviations as

Δx = √〈x2〉 − 〈x〉2, ΔP = √〈 ̂P2〉 − 〈 ̂P〉2, (35)

we proceed to the analysis of the generalized uncertainty relation
(GUP)

ΔxΔP ≥ 1
2
|⟨[x, ̂P]⟩|, (36)

where the commutator is taken from Eq. 34.
To gain insight into the general properties of Eq. 36 for the μ-

deformed Heisenberg algebra Eq. 34, let us combine Eq. 34 with its
Hermitian conjugate to obtain

[(1+ σ (x))x, ̂P] = 2iλ (x) . (37)

Applying Eq. 36 to this commutation relation, we get

Δ [(1+ σ)x] ΔP ≥ ⟨λ (x)⟩. (38)

Taking into account that 1 ≥ σ(x) > 0 for μ < 0.5 in the left hand
side, we come to the GUP

ΔxΔP ≥ 1
2
⟨λ (x)⟩. (39)

To evaluate the averages, we specify the states similarly to
quantum ones. So, let us consider a normalized mixed state |ξ⟩ for
ξ ∈ [0;2π) in a Hilbert space basis Eq. 3 endowed with the inner
product from Eq. 10:

|ξ〉 = cosξ|u1〉 + sinξ|u2〉. (40)

Here u1(x) = j
(μ)
0 (x) and u2(x) = y

(μ)
0 (x) as before.

In fact, the mixed state |ξ⟩ represents a general solution to
the μ-deformed LEE, given by Eq. 26 and Eq. 27. Since the μ-
deformed LEE is formulated for the local density of matter and,
therefore, basically differs from the complex-valued Schrödinger
equation, it is natural to describe its solution from Eq. 40 in terms
of real-valued functions. Although the state |0⟩ for ξ = 0, such
that ⟨x|0⟩ = j(μ)0 (x), serves to describe the finite DM distribution in
(Gavrilik et al., 2019), the case ξ ≠ 0 admits the contribution of the
cuspidal distribution y(μ)0 (x) at x→ 0.

Thus, we define the mean:

〈(…)〉 = 〈ξ| (… )|ξ〉 (41)

for fixed ξ ∈ [0; 2π] and 0 < μ < 0.5.
In contrast to quantum mechanics, Eq. 41 suggests to evaluate a

mean of someoperator (…) in the basis generated by the μ-deformed
LEE. There is no mathematical incorrectness in choosing basis
functions coinciding with physical distributions. Only in turning
to an interpretation, does one face the averaging (of powers) of
the distribution function itself (this also happens in multifractal
analysis).

The necessary matrix elements are given by.

〈ξ| f (x) |ξ〉 = A f (μ) −B f (μ)cos (2ξ) +C f (μ) sin (2ξ) , (42)

〈ξ| f (x) |ξ+ π/2〉 = B f (μ) sin (2ξ) +C f (μ)cos (2ξ) , (43)

{{{{
{{{{
{

A f

B f

C f

}}}}
}}}}
}

= 1
π
∫
π

0

{{{{
{{{{
{

1

cos(2φ)

sin(2φ)

}}}}
}}}}
}

f (X(φ)) dφ,

X(φ) = 1
μ
tan

μφ
1+ μ
.

(44)
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FIGURE 2
Functions σ(x) (A) and λ(x) (B) in a wide range of variable x and at fixed μ.

It is immediately seen that

〈 ̂P〉 = 〈ξ| ̂P|ξ〉 = −i〈ξ|ξ+ π/2〉 = 0,

〈 ̂P2〉 = 〈ξ| ̂P2|ξ〉 = −〈ξ|ξ+ π〉 = 1,
(45)

Therefore, the standard deviation ΔP = 1 is fixed for the set of states
{|ξ⟩}.

On the other hand, let us introduce the functions

Δx(ξ,μ) ≡ √⟨ξ|x2|ξ⟩ − (⟨ξ|x|ξ⟩)2, Λ(ξ,μ) ≡ ⟨ξ|λ (x) |ξ⟩, (46)

which represent the averages Δx and ⟨λ(x)⟩, respectively.
Thus, in the basis of the μ-deformed spherical waves, one has

ΔP = 1, and it is required that

Δx(ξ,μ) ≥ 1
2
Λ(ξ,μ) . (47)

This relation can be analyzed with the help of Figure 3A.
Let us introduce the auxiliary momentum variance, accounting

for Eq. 47:

δP(ξ,μ) =
Λ(ξ,μ)

2Δx(ξ,μ)
≤ 1. (48)

We see that δP (ξ,μ) ≤ ΔP = 1 and δP (ξ,μ) Δx (ξ,μ) = Λ(ξ,μ)/2 by
definition. The behavior of δP (ξ,μ) is shown in Figure 3B.

The admissible domain of variety of the running values of Δx and
ΔP is shown in Figure 4.We see that the black and pink curves are in
antiphase regime, as it should be. For comparison, the violet curve
describes the change in the deviation Δx according to the hyperbolic
law in accordance with the standard Heisenberg algebra.

3.2.1 Alternative approach
To confirm the validity of Eq. 39 for the algebra Eq. 34 non-

linear in x, it is worth to develop an alternative calculation scheme
applicable to variousways of writing the commutator for x and ̂P. For
instance, there is a possibility to rewrite relation Eq. 34 in equivalent
form as

[x, ̂P] = i
2λ (x)

1+ σ (x)
+

1− σ (x)
1+ σ (x)

{x, ̂P} , (49)

where {x, ̂P} ≡ x ̂P+ ̂Px is anticommutator.

To analyze the GUP given by Eq. 36 for this commutation
relation, we assume that the brackets ⟨(…)⟩ mean the quantum
average over the state defined by the real wave function in the
coordinate representation. Then, the action of the operator i ̂P on
such a state results in a real-valued expression, what immediately
yields

|⟨[x, ̂P]⟩| = 2⟨
λ (x)

1+ σ (x)
⟩−⟨

1− σ (x)
1+ σ (x)

{x, i ̂P}⟩, (50)

when the positive first term on the right hand side dominates the
second one.

In view of the inequality |⟨Â ̂B⟩| ≤ |⟨Â⟩| |⟨ ̂B⟩|, we split the last
term as

|⟨
1− σ (x)
1+ σ (x)

{x, i ̂P}⟩| ≤ ⟨
1− σ (x)
1+ σ (x)

⟩ |⟨{x, i ̂P}⟩|, 0 ≤ σ (x) ≤ 1.

(51)

At this stage, we obtain

|〈[x, ̂P]〉| ≥ 2⟨
λ (x)

1+ σ (x)
⟩−⟨

1− σ (x)
1+ σ (x)

⟩ |〈{x, i ̂P}〉|. (52)

To evaluate |⟨{x, i ̂P}⟩|, we introduce the operators δx = x− ⟨x⟩
and δ ̂P = ̂P− ⟨ ̂P⟩, where the hat over ̂P distinguishes the operator δ ̂P
from the function δP in Eq. 48. Then one gets

〈{x, i ̂P}〉 = 2i〈x〉〈 ̂P〉 + 〈{δx, iδ ̂P}〉. (53)

Due to the Cauchy–Schwartz inequality |⟨Â ̂B⟩|2 ≤ |⟨Â2⟩| |⟨ ̂B2⟩|,
the following estimate holds:

|⟨{δx, iδ ̂P}⟩| ≤ 2ΔxΔP. (54)

Since the dark matter flux is assumed to be absent in the halo,
one can put ⟨ ̂P⟩ = 0, which is confirmed by our direct calculations.
Combining, we have the estimate

|⟨[x, ̂P]⟩| ≥ 2⟨
λ (x)

1+ σ (x)
⟩− 2⟨

1− σ (x)
1+ σ (x)

⟩ ΔxΔP. (55)

Substituting it into Eq. 36 and accounting for ⟨1⟩ = 1, we arrive
at.

ΔxΔP ≥ 1
2
〈λ(x)〉W, (56)

〈(… )〉W ≡
〈W (x) (…)〉
〈W (x)〉

, W (x) = 1
1+ σ (x)

, (57)
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FIGURE 3
(A): Position deviation Δx (ξ,μ) versus mean ⟨λ(x)⟩ = Λ(ξ,μ), which are computed in the state |ξ⟩ at fixed μ (B): Limiting momentum deviation
δP (ξ,μ) = Λ/(2Δx) versus Δx (ξ,μ). Turning points of the pink banana-like curve are A (0.51;0.85), B (1.05;0.4). Grey line corresponds to δP = 1/(2Δx).

FIGURE 4
Dependence of the lower limit deviations Δx (ξ,μ) and δP (ξ,μ) on the
state labeled by ξ at μ = 0.18. The running deviations Δx and ΔP satisfy
the GUP ΔxΔP ≥ Λ/2 and vary in the ranges
Δx (ξ,μ) ≤ Δx ≤ R (μ = 0.18) ≃ 2.89 and δP (ξ,μ) ≤ ΔP ≤ 1.

Where the new mean ⟨(…)⟩W with additional convex weighting
function W(x) arises.

For a given function W(x) we get

〈λ(x)〉W = 〈λ (x)〉 +
〈δW (x)δλ (x)〉
〈W (x)〉

, (58)

where ⟨δW(x)δλ(x)⟩ is a covariance between the convex function
W(x) and concave λ(x), and it determined by deviations like
δf(x) = f(x) − ⟨f(x)⟩.

Since the function σ(x) (and W(x)) changes only slightly over
the interval x ∈ [0; R(μ)] in Figure 2A, it can be approximated by
a constant close to σ(0) when calculating integrals. This provides
δW(x) → 0 and numerically leads to expressions:

⟨
λ (x)

1+ σ (x)
⟩ ≃
⟨λ (x)⟩

1+ ⟨σ (x)⟩
, ⟨ 1

1+ σ (x)
⟩ ≃ 1

1+ ⟨σ (x)⟩
, (59)

when we use ⟨(…)⟩ = ⟨ξ|(…)|ξ⟩ in the range 0 < μ < 0.5.
This circumstance leads again to Eq. 39 for the states |ξ⟩, that is

just Eq. 47.
Note that the appearance of the mean Eq. 57 is associated with

the initial Eq. 49 for the commutation relation. In other cases, we
may only encountermeans of type Eq. 59, where it would be justified
to use the estimate 1 ≥ ⟨σ(x)⟩.

3.3 Application to dark matter

Let us remind the connection between the operators in terms of
the dimensionless variable x = kr and the operators of the physical
radial coordinate r and the momentum ̂Pr:

r = x
k
, ̂Pr = ℏk ̂P, (60)

where k is the parameter of Eqs 26 and 27 and has the dimension of
inverse length; the operator ̂P is given by Eq. 19.

The most successful results of paper (Gavrilik et al., 2019) for
describing the dark matter halo of dwarf galaxies based on the μ-
deformed Lane–Emden equation were obtained in the following
range of parameters:

μ = 0.151…0.18, k = 0.17…2.64 kpc−1. (61)

Using the turning points A ((Δx)min; (δP)max) and
B ((Δx)max; (δP)min) for fixed μ as in Figure 3B, we relate extreme
physical values Δr and ΔPr with dimensionless ones Δx and δP as.

Δr = Δx[ k
1 kpc−1
]
−1

kpc, (62)

ΔPr = δP [
k

1 kpc−1
]× 6.394× 10−27 eV

c
. (63)

The calculation results are collected in Table 2. Therein, we
present the obtained data for five dwarf galaxies (from the eight
ones given inTable 1 of (Gavrilik et al., 2019)), because just for these
galaxies the μ-deformation based description of the rotation curves
is most successful with respect to earlier approaches, as it provides
the best agreement with observational data (certainly better then
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TABLE 2 The parameters for the darkmatter halos of dwarf galaxies.

Galaxy μ k, kpc−1 (Δr)max, kpc (Δr)min, kpc (ΔPr)max , 10
–27eV/c (ΔPr)min, 10

–27eV/c

M81dwB 0.18 2.64 0.398 0.193 14.38 6.75

DDO 53 0.18 0.97 1.082 0.526 5.28 2.48

IC 2574 0.179 0.17 6.18 3.0 0.926 0.435

NGC 2366 0.178 0.37 2.84 1.38 2.02 0.946

HO I 0.151 1.27 0.830 0.402 6.98 3.33

if one uses the profile from the usual Bose-condensate model of
DM being the solution of non-deformed Lane–Emden equation as
in (Harko, 2011), or uses the famous Navarro–Frenk–White profile
(Navarro et al., 1997)).

Of course, the remaining three galaxies can also be considered,
but the choice of five ones is both sufficient, trustful, and best suited
for our treatment and conclusions.

Note that both the Lane–Emden equation and its μ-deformed
extensions determine the distribution function ρ(r) of the matter,
not the wave function of single particle. Therefore, the mean Eq. 41
is a quadratic form in the distribution, related here with |0⟩ which
differs by a multiplicative constant defining ρ(0) (Gavrilik et al.,
2019). Generally speaking, the state |0⟩ may not determine the
turning points of a banana-like curve in the (Δx,δP) plane in
Figure 3B, along with the extreme values of the deviations Δr
and ΔPr . Nevertheless, the mathematically correct mean Eq. 41
can be used to obtain new additional information about dark
matter, even by means of considering the moments ⟨ρn⟩ of the
distribution similarly to multifractal analysis. Besides, the extreme
deviations set the limits for the fluctuations of physical quantities at
ξ = 0.

Without a deep study of the structure of averages here, let us
analyze the physical consequences of the data inTable 2. We see that
in the non-relativistic theory themomentum deviation ΔPr =mΔυr ,
where m is the particle mass, Δυr is the deviation of particle
radial velocity υr . Since the original work (Gavrilik et al., 2019) was
using bosons with m ∼ 10–22 eV/c2, we obtain from Table 2 that
Δυr ∼ 10−5c in units of the speed of light c. Moreover, deviation of
the kinetic energy ΔEK =m(Δυr)2/2 can be used to determine the
effective temperature of dark matter, namely, Teff = (ΔPr)2/(2m) ∼
10−32 eV. This value is much smaller than the critical temperature
of the Bose–Einstein condensation, as it should be in such a
paradigm.

Due to the GUP given by Eq. 39, we relate the temperature Teff
of the spherical layer in the vicinity of ⟨r⟩ to its width 2Δr:

(Δr)2 Teff ≥
ℏ2

8m
⟨λ⟩2. (64)

This formula holds for a macroscopic system of finite volume
when Δr does not exceed the radius of the system, and it shows
that a smaller domain may have a higher temperature, and vice
verse.

It is worth to note that the mean ⟨λ⟩ in Eq. 64 takes values in the
limited interval ⟨λ⟩ = Λ(ξ,μ) ∈ [Λmin,Λmax], where the positive Λmin
and Λmax depend on μ (see Eq. 46; Figure 3A). For μ = 0.18, we have
Λmin ≃ 0.818 and Λmax ≃ 0.875.

4 Concluding remarks

In this work we have studied unusual consequences of the
new (μ-deformed) generalization of the Heisenberg algebra Eqs 29
and 34 which is special as it was derived within the extension
of Bose-condensate dark matter model based on μ-deformation.
From the generalized algebra we obtained non-trivial GUR that
generates minimal and maximal uncertainties of both positions
(minimal/maximal lengths) and momenta. The obtained GUR is
strictly dependent on the states (labeled by ξ) of the system, and such
dependence was exploited to full extent.

In Table 2, the galaxies M81dwB and IC 2574 look as the two
“extreme” cases. Namely, for the latter we have the largest (Δr)max
and (Δr)min, while for the former these quantities show smallest
values. Clearly, the situation concerning (ΔPr)max and (ΔPr)min is
quite opposite. Noteworthy, the value of μ (strength of deformation)
for M81dwB and IC 2574 is almost the same. The relations Eq. 62,
63 show the defining role of the quantity kwhich involves scattering
length a and particle mass m as k∝m3/2a−1/2 (Harko, 2011).

For the considered galaxies (each labeled by its specific value of
μ)we conclude: since the particlemass is same (namely, 10–22 eV/c2),
we have differing scattering lengths in halos of different galaxies
(vice versa, would we assume same scattering length for all the five
galaxies we would have somewhat differing masses of DM particle
in different galaxies, though this second option seems to be less
realistic). As already shown in (Harko, 2011), where the BEC DM
model is also based on the LEE, there is no universality of model
parameters when describing all admissible objects. In fact, this issue
remains in our model, which improves the previously fitted rotation
curves by including an additional parameter μ. Physically, we can
only control the applicability conditions of our model: consider
DM-dominated dwarf galaxies leaving aside their rigid rotation,
which contributes to the distribution function (Zhang et al., 2018;
Nazarenko, 2020). Therefore, giving clear physical meaning to
differing scattering lengths in halos of different galaxies remains an
interesting task for future study.

Note that the parameter k is related to the observed radius rgal
of the galactic halo by krgal = R(μ), where the right-hand side is
determined by the parameter R(μ) from Eq. 12, replacing π = R (0)
in the non-deformed case. We can easily find a small difference
(of several percent) between the values of rgal in the deformed and
non-deformed cases, by comparing these with the galaxy radii from
(Harko, 2011). However, the simulation of rotation curves is more
successful in the deformed case, as shown in (Gavrilik et al., 2019).

It is worth to remark that the values of (Δr)max and (Δr)min for
the two galaxies M81dwB and IC 2574, and the others in Table 2,
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reside well within the observed sizes of DM halos as it should.
Accordingly, the values of (ΔPr)max and (ΔPr)min for these same
galaxies lie in the ranges completely consistent with DM being in
the (μ-Bose) condensate state. Clearly this is in agreement with the
above reasonings concerning the effective temperature.

It is of interest to analyze possible special meaning of our results
on the existence of finite (Δr)max and (Δr)min in the context of
treatment in (Lee and Lim, 2010; Lee, 2016) of minimum length
scale of galaxies (note that for the candidate length scales one
can take into consideration such concepts as coherence length,
Compton wavelength, quantum Jeans length scale, gravitational
Bohr radius, and de Broglie wavelength, see (Lee and Lim, 2010) and
references therein). Time dependence of some of these quantities,
e.g., characteristic length scale ̃ξ (minimum size of DM dominated
galaxies) is studied in (Lee, 2016). Let us quote one of the interesting
predictions of this work: with the mass of DM particles chosen
as m = 5× 10−22 eV/c2, it follows that ̃ξ(z = 0) = 311.5 pc while
̃ξ(z = 5) = 81.2 pc, i.e., early dwarf galaxies were significantly more

compact. In view of the extremely tiny mass of the particle from
dark sector, a question may arise of possible (inter)relation of this
entity with the cosmic microwave background (CMB). The very
first answer which comes to one’s mind could be that no relation
is possible, because of the absence of interaction between visible
and dark sectors. However, when considered in the framework
of doubly special relativity, the properties of the photon gas at
these special conditions can appear, see (Chung et al., 2019), much
more interesting and non-trivial. Noteworthy, the treatment in
(Chung et al., 2019), on one hand, is potentially applicable for
studying some unclear features of CMB, and, on the other hand,
involves a kind of deformation which is very similar to the μ-
deformation explored herein. We hope to address the details of all
these intriguing issues elsewhere.
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