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Robust definition of the spatial extent of seafloor habitats and how they may be
changing through time is a holy grail for ecosystemmanagement, particularly if an
ecosystem is approaching a tipping point beyond which irreversible changes may
occur. Here we generate and explore a new data set for the management of
warming reefs in eastern Tasmania, Australia that will significantly improve the
baseline maps required for fine-scaled spatial modelling and management that is,
both robust at regional scales and is highly resolved within the water column. This
procedure enabled the relative density of kelp vegetation to be identified in a
region that is being overwhelmed by the range extension of a destructive grazer,
the Longspined Sea Urchin, Centrostephanus rodgersii. We present a new online
tool to visualize multibeamwater column acoustic data as surfaces of kelp density
at high resolution (50 cm) scale over seafloor terrain maps (spanning a total
straight-line distance of 594 km and a total area of 29.14 km2) to reveal the
types of reef structure on the East Coast of Tasmania where abalone habitat is
threatened by kelp loss.
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Introduction

Kelp beds are among the most productive ecosystems on earth and support high levels of
marine biodiversity and valued fisheries (Steneck et al., 2002; Pessarrodona et al., 2022). At a
global scale they are increasingly threatened by catastrophic phase shifts to poorly productive
sea urchin barrens largely devoid of seaweed cover (Ling et al., 2015) or to turf algae
assemblages dominated by low-growing filamentous or branching algal species (Strain et al.,
2014). The proliferation of either degraded state (barrens or turfs) would result in a decline in
reef fisheries productivity and biodiversity of coastal reef systems and compromise the
associated ecosystem services (Ling, 2008). Thus, the ability to map and predict changes in
kelp cover is critically important in coastal management. In eastern Tasmania, Australia, a
catastrophic shift of kelp bed habitats (dominated by Ecklonia radiata) to Longspined Sea
Urchin (Centrostephanus rodgersii) barrens is underway, and is one of the most significant
threats to the integrity of rocky reef ecosystems that support valuable rock lobster and
abalone fisheries (Johnson et al., 2005). This range-extending destructive grazer of kelp beds
has invaded eastern Tasmania via increasing southerly incursions of the East Australian
Current (EAC), creating ecologically and fisheries depauperate barrens for ~15% of reef
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(5–40 m depth) along the east coast of Tasmania (Ling and Keane,
2018). Effective management of this problem is contingent on highly
resolved spatial data defining the extent and type of reef systems
currently impacted by urchins, including areas vulnerable to future
overgrazing (Ling and Keane, 2021; Keane et al., 2022).

The reef systems on the east coast of Tasmania were first
mapped at low resolution using single beam sonar acoustics
(>50 m scale) between 2001 and 2009 by the Seamap
Tasmania project (Lucieer et al., 2007; Lucieer et al., 2009).
These interpolated maps define the reef and sand boundaries
and the extent of the reef systems, but not the fine scale internal
physical structure which has been identified as a key element in
the susceptibility of reef systems to recruitment and
establishment of Centrostephanus (Ling and Johnson, 2012).
Currently marine managers rely on these low resolution,
interpolated habitat maps and kelp cover maps derived from a
series of spatially nested diver and video transects downscaling
from ~25 km to 2 km along the coast of Tasmania (Ling and
Keane, 2018). Traditional diver and video based transect methods
for surveying habitat coverage are laborious, expensive, and more
spatially limited in mapping the underwater environment
compared to acoustic surveys nor are they at sufficiently high
resolution to map fine-scale reef structure. Nevertheless, diver
and video-based techniques have been used to document the
broad-scale decline in the cover of canopy-forming kelp along the
east coast of Tasmania associated with the dramatic expansion of
Centrostephanus barrens (Ling and Keane, 2018) and notably
remain the only way to effectively track growing populations of
urchins within kelp beds (Ling et al., 2016). Appropriate
integration of these two approaches—high resolution acoustics
and diver-and-video-based surveying—can provide much needed
and valuable information to managers, e.g., defining the influence
of vegetation loss on catch rates of commercially important
species (Young et al., 2016). Furthermore, it could optimise
the use of limited resources and permit the opportunity to
identify where targeted surveillance of urchins and kelp with
intensive diver surveys should be conducted.

Multibeam acoustic methods can be employed to survey the
seabed at high resolution (<1 m scale) and also collect coincident
water column data, that is comparable in scales to diver-based
video surveys. The water column acoustic record enables the
identification of ecological features that extend into the water
column. This improved spatial resolution of water column data
collected from acoustic multibeam systems has only become
possible because of availability of complex computing power
that this method relies on, but also in new acoustic methods
being developed (Schimel et al., 2020; Nau et al., 2022; Porskamp
et al., 2022). One of these developments includes new filtering
algorithms to reduce the feature space of acoustic targets in the
water column and refine the analysis to the features of interest
such as isolating those points that are within 1 m distance of the
seafloor, similar to the methods identified by Porskamp et al.
(2022). This provides us with a means to be able to differentiate
reef that hosts vegetation from reef that is barren—presenting us
with a method to map urchin barrens over a greater area than is
viable from video diver transects alone (Porskamp et al., 2022). In
this study the seafloor acoustic signal was processed at 50 cm
resolution and classified using the Seamap Australia classification

scheme (Lucieer et al., 2019)—into pavement reef, megaclast reef,
mixed hard substrata and sand. To cross-calibrate the water
column signal of macroalgae and to establish a baseline of the
size-frequency of barrens patches across eastern Tasmania we
conducted video surveys simultaneously alongside acoustic
mapping. Video footage was annotated at the scale of
individual barrens and kelp patches to quantify their current
patchiness, and importantly identify the earliest stages detectable
for incipient barrens (barrens <5 m in diameter).

We present a new water column mapping method that has been
operationalized for management surveys of reef systems in <20 m
depth to create a spatially continuous dataset of rocky reef structure,
extent and coverage of reef associated vegetation using multibeam
sonar water column data. This dataset presents a stepwise
improvement on video transect survey methods because there are
no “gaps” in the survey data, eliminating the potential for under or
over representation of barrens from systematic spacing of sites every
~20 km. This data provides a resource for describing, modelling, and
predicting the distribution of kelp habitat and, through the absence
of kelp, indicate where urchin barrens may be present along
Tasmania’s climate change impacted east coast. The
unprecedented high resolution (50 cm) maps of the reef structure
will improve the ongoing management of Tasmania’s kelp bed
habitat and the associated fisheries by underpinning stock
assessments and providing a high-resolution data set that can be
used in prediction modelling of where kelp habitat may be at risk-
ultimately improving the spatial knowledge of these reefs for key
species.

Materials and methods

Multibeam acoustic data and coincident video transects were
sampled along the East Coast of Tasmania covering seven of fifteen
fishing blocks (blocks 22 to 30, excluding blocks 25 and 26) most
heavily impacted by Centrostephanus in the Eastern Zone of the
Tasmanian Abalone Fishery (Ling and Keane, 2018; Mundy and
McAllister, 2021). The fishing blocks geographically delineate the
regions open for fishing for commercial harvest. Abalone harvest
from the Eastern Zone peaked at 1,500 t in 1998, but has decreased
to 220 t in 2020 with stressors on stock including overfishing,
climate change, marine heat waves, as well as habitat loss from
urchins (Mundy and McAllister, 2021).

Acoustic acquisition and seafloor data
processing

Field surveys to collect multibeam acoustic data were
conducted between Eddystone Point to Tasman Island between
the 17th and 21st of April 2021, when we expected seasonally high
kelp canopy cover (Layton et al., 2020). The extent of the survey
spanned abalone management blocks 22, 23, 24, 27, 28, 29, and
30 which are further divided into sub blocks as shown in Figure 1A.
A Kongsberg Maritime EM2040 multibeam sonar was pole
mounted on the RV Abyss (Marine Solutions) vessel. The
multibeam sonar collected swath data at an average width of
50 m across the surveyed depth range of 10–20 m. CARIS HIPS
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and SIPS software was used to process the bathymetric data into a
bathymetric gridded surface at 50 cm resolution. The bathymetric
surface was analysed in ArcGIS 10.8.1 to produce spatial
derivatives of seabed slope, planform curvature, and
topographic position index.

The bathymetric surface of the seafloor was analysed to
generate habitat maps depicting reef type. Substratum type
was inferred using an unsupervised classification approach
based on a raster stack of depth, slope (calculated on a
neighbourhood of 4), planform curvature (based on a scale
factor of 9), a zero corrected topographic position index
(based on a circular window scale of 5) and a non-zero
corrected topographic position index (based on a circular
window scale of 9). These derived bathymetric products were
calculated using Raster package in R (https://cran.r-project.org/
web/packages/raster/index.html). The ‘unsuperClass()’ function
in the RStoolbox package in R (https://www.rdocumentation.org/
packages/RStoolbox/versions/0.2.6) was used to classify each
management reporting block into 5 classes based on
“MacQueen” algorithm drawn from 10,000,000 random
samples and run over 10,000 iterations. The five classes
represented pavement reef, megaclast reef (boulder reef),
mixed hard substrata and two depth strata of sand (<15 m
and >15 m). This assisted in better defining the mixed hard

substrata category. The final habitat classification consolidated
the two sand categories into one-resulting in 4 classes in total.

Acoustic water column feature extraction

The water column data from the multibeam data record (all
and.wcd format) were read into Matlab using the open-source
CoFFee toolbox (https://github.com/alexschimel/CoFFee). The
water column samples were filtered using subsequent custom
Matlab scripts based on Nau et al. (2022) to eliminate most of the
unwanted noise while retaining targets likely to be signal from
vegetation (Figure 1B). Figure 1C shows that the filtering
algorithm permitted the assessment of ‘targets’ close to the
seafloor to be retained limiting only those points within 1 m
of the seafloor.

The first steps were to remove the high amplitude signals from
the seafloor using a model to estimate the spreading of the seafloor
signal across all beams, as well as an amplitude threshold to remove
residual spreading from sharp rocky features. The across-track
sidelobe noise was filtered using a threshold calculated from the
raw sample amplitudes (dB) from each sample range equal to the
mean plus two times the standard deviation of all samples along
that sample range (Figure 2A) (Nau et al., 2022). A final threshold

FIGURE 1
(A) Numbered fisheries management blocks for the abalone industry on the east coast of Tasmania. Each block shows linear distance of survey
transect in <20 m water depth. (B) Multibeam acoustic swath visualised over the benthic terrain model. Green point cloud indicates features that were
extracted from thewater column. (C) The remaining point cloud could be filtered by dB to extract estimates of signal strength which relates to vegetation
density.
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filter of −30 dB was applied to remove remaining low amplitude
noise (Figure 2B). Only targets within 1 m of the seafloor were
retained to eliminate mid-water targets. An along-track sidelobe
filter was used to remove any signal below the modelled spreading
of along-track sidelobe interference due to rocky seafloor features
using the methods described in (Nau et al., 2018). This step
removes data surrounding large rocky features. Final analysis
was limited to the inner 36 beams (beams 110–146) due to the
high signal noise created by rocky reef environments in the outer
beams.

The remaining signals were gridded by calculating the
average signal within 50 cm grid cells and exporting as point
features at 50 cm spacing (Figure 2B). In ArcGIS, these points
were re-gridded to 1 m resolution using the mean signal within
1 m blocks. The Block Statistic tool was run using a 3 ×
3 neighbourhood and calculating the mean value to create a

surface representing 9 m2, which we deemed to be a relevant scale for
managers to enact management decisions (e.g., enact urchin control
before collapse to extensive barrens occurs). The presence of small
barrens patches (1–10 s square metres) within kelp beds is not
problematic for fisheries production or biodiversity more generally
but are seen as early warning signs for more extensive barren formation
(Ling and Keane, in prep). Urchin barrens become problematic when
the sea urchin’s abundance builds towards the tipping-point of
overgrazing (approx. 2.0 urchins per m2) across hectares to
hundreds of hectares of the reef, when collapse to extensive barrens
occurs (Ling et al., 2015; Ling and Keane, 2018).

The raster layer “block statistic” was then reclassified using a
threshold to make a “traffic light” quick reference map with three
classes representing-bare (no signal in the water column), patchy
(medium level signal) and dense signal (lots of vegetation). The
thresholds for the three classes were −64 (minimum) to −60 db as

FIGURE 2
(A) Kelp (in red) can be seen in the acoustic swath (no threshold). (B)When a threshold is applied to the signal it removes excess “noise” and permits
higher resolution of the vegetation to be detected, improving the accuracy of the classification.

Frontiers in Remote Sensing frontiersin.org04

Lucieer et al. 10.3389/frsen.2023.1149900

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1149900


bare, −60 to −50 as patchy vegetation, and >−50 as dense vegetation.
The geotiff layers were uploaded onto the Seamap data portal as three
different files: the 1 m mean signal, the raw “block statistic layer” of

mean dB (9 m2), and the threshold ‘traffic light’ layer. Thewater column
data was then analysed in relation to the reef classes using a raster
statistic (Figure 3).

FIGURE 3
Water ColumnData (WCD) overlaid on 50 cmhillshade at Governor IslandMarine Reserve. Panels show: (A)WCD 1 m2 continuous surface; (B)WCD
9 m2 mean signal; and (C) thresholded vegetation likelihood “traffic light signal.”
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Video data collection and analysis

Video collection and annotation
At sites within key abalone blocks (Blocks 22/23 –Tasman, Block

24—Maria, Block 27—Freycinet, Blocks—29/30 St Helens) acoustic
mapping was supplemented with the simultaneous deployment of
towed underwater video. GPS positions for the towed video system
were acquired using a TrackLink 1500 USBL tracking system with a
spatial accuracy of less than 1 m. These blocks were chosen as prior
diver and towed-video surveys revealed a range of urchin densities
and overgrazing impacts from metre-scale incipient barrens up to
barrens 100 sm in length (Ling and Keane, 2018).

The video footage was annotated at the scale of individual kelp
and urchin barren patches, whereby the start and end points of
discrete patches of canopy-forming kelp and urchin barren were
recorded as precisely as possible with the assistance of Biigle video
analysis software (https://biigle.de). Three different types of barren
patch were identified based on the percentage of barren reef within the
camera’s field of view (~3–4 m). Dense, middle, and sparse barren
categories represented barrens with >85%, 40%–85%, and<40% cover
respectively. Different types of kelp patches were identified based on
the species composition and density of the canopy strata. The different
kelp density categories (also assessed relative the camera’s field of
view) identified were dense: representing >60% cover, middle:
representing 20%–60% cover, sparse: representing <20% cover.
The start and end points of regions of sand and uncategorisable
sections of video (sections of poor visibility of the benthos or titled
camera angles) were also annotated so that these sections could be
excluded from subsequent analyses. The position of the start and end
points of the annotations in the video were determined based on the
time-calibrated position of the towed camera, allowing for the
distance across all barren patches to be calculated.

Barren patch-sizes and cover estimates

The percentage of reef distance covered by different kelp and
barren patches was determined by summing the distance of the algal
and barren patch types and dividing by the total distance of reef
(i.e., total video distance per transect—all uncategorisable/sandy
sections). The percentage of reef covered by complete barren was
then estimated by multiplying the percentages of each barren type by
the mid-point of its density range i.e., the proportion of reef covered
by dense barren was multiplied by 92.5% (the midpoint of 85%–100%
cover), consistent with the approach used by Ling and Keane (2018).
These percentages were then compared to equivalent data determined
by the multibeam survey. The mean size of continuous barren patches
and the size spectrum of the different barren patches were plotted to
provide a baseline assessment of urchin barren patch dynamics across
the variously impacted abalone management sub blocks.

Results

Acoustic water column results

Seafloor habitat data at 50 cm resolution was collected for the
abalone blocks 22 to 30 (excluding blocks 25 and 26) consisting of a

survey line of 594 km, resulting in 29.14 km2 of high-resolution
habitat data. Acoustic bathymetry data derivatives, which describe
the characteristics of the reef system, have been extracted and made
publicly available on the IMAS Data Repository: https://doi.org/10.
25959/AHR1-Q718. These data include the multibeam bathymetry,
spatial derivatives of the bathymetry data (seabed slope, curvature,
rugosity, and associated contour information), classified benthic
habitat maps, point-based video validation data, and acoustic water
column data (WCD). The WCD data is supplied in three formats: the
first is a continuous surface at 1 m2 resolution that illustrates the range
of dB values for targets detected within the water column. Those
targets that were not within range of 1 m of the seafloor were removed
from the point cloud on the assumption that they were either bubbles
or fish. The dB values are displayed as a continuous range
from −10 to −64 dB with the lower values showing low signal and
the higher values showing greater signal. The 9 m2 resampled version
of the product reflects the scale at which the accuracy of the video data
was collected and was used for the “traffic light” vegetation density
thresholded product. An example for the seafloor from Governor
IslandMarine Reserve is shown in Figure 3. The entirety of the survey
data can be visualised on the Seamap Australia data portal at https://
tiny.cc/mappingwarmingreefs.

Table 1 shows that, at the shallowest sampling depth of ~3 m, the
occurrence of no signal, moderate signal, and dense WCD signal
strengths were approximately equal. By excluding sand (and analysing
the acoustic signal on hard substrate only) we can examine different
vegetation density classes on reefs and infer the likelihood of low
vegetation density (Table 2). In deeper waters, “no vegetation” (low
signal) was the most prevalent acoustic signal with a maximum depth
of 53.1 m, almost 10 m deeper than for ‘vegetation’ acoustic signals
(44.9 and 45.1 m for medium and dense signals, respectively). The
mean depth for the unvegetated signal was 21.3 m—more than 2m
deeper than patchy (19.1 m) and densely vegetated (17.6 m) signals,
respectively - and within the range 5–35 m in which empirical
observations have indicated urchin barrens to be present. Depth
variation in the occurrence of different reef classes may affect
vegetation density and likelihood of low acoustic signal strength;
Table 3. Table 4 shows the summary results of the likelihood of a
vegetation class (bare reef, patchy vegetated reef and dense vegetated
reed) by different reef classes (sand excluded).

Figure 4, Table 5 depicts vegetation density and infers the
likelihood of urchin barrens occurring depth (in 5 m intervals)
and type of hard substratum. If we are to assume that vegetation
density reduces at 25 m water depth due to light attenuation and
transitions into reef-associated benthic invertebrate communities, a
focal depth to examine sea urchin overgrazing of kelp is nominally
between 5 and 25 m. Within this range, the highest proportion of
likely barrens occurred on mixed hard substrata (73% unvegetated
reef within the 20–25 m depth range).

TABLE 1 Depth summaries of WCD signal strength (all substratum types).

No signal Medium signal Dense signal

Minimum depth (m) 2.93 2.27 2.21

Maximum depth (m) 54.52 44.89 45.07

Mean depth (m) 22.35 19.33 17.78
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Video results of barren area and algal canopy
cover

Barren and algal canopy cover across sub blocks
The cover of Centrostephanus barrens increased markedly from

the less impacted southern sites (sub-blocks 22A, 23B) to the more
impacted northern sites (sub-blocks 30A and 30B) from ~5%
complete barren cover to >70% complete barren cover (Figure 5).
Conversely, the algal canopy cover transitioned from being relatively
complete (although not necessarily dense), to being sparse and very
patchy moving from the sites less impacted by Centrostephanus
barrens in the south to the more impacted northern sites (Figures 5,
6). This trend was supported by both video (Figure 7A) and acoustic

water column (Figure 7B) results. Ecklonia and mixed
Ecklonia—Phyllospora beds featured predominantly in the mid-
density category dominated reef areas in sub blocks 22A and 23B
(Figure 6). These algal canopy types were also a feature of central
blocks (blocks 27 and 29) but diminished in extent due to the
presence of completely bare (barren) areas of reef. Sub-blocks 27C
and 27D also featured some emergent Cystophora growing above the
canopy of Ecklonia and Phyllospora, but only rarely. Block 30 was
dominated by bare reef substratum (~70%) and also contained
occasional small patches of Ecklonia and mixed Ecklonia and
Phyllospora. Across all algal canopy species, dense cover was
relatively rare at sub blocks 22A and 23B, despite the absence of
bare reef (Figure 6). With the exception of sub-block 27C, dense

TABLE 2 Depth summaries of vegetation density likelihood classes on hard substratum (sand excluded).

No vegetation Patchy vegetation Dense vegetation All

Minimum depth (m) 2.93 2.55 2.73 2.55

Maximum depth (m) 53.10 44.89 45.07 53.10

Mean depth (m) 21.30 19.08 17.62 20.39

TABLE 3 Depth summaries of hard substratum types (sand excluded).

Megaclast Mixed hard substrata Pavement All reef types (M + MHS + P)

Minimum depth (m) 2.44 2.46 2.69 2.49

Maximum depth (m) 52.32 52.52 51.74 52.38

Mean depth (m) 21.07 21.61 15.14 20.66

TABLE 4 Depth summaries of vegetation density likelihood classes by reef types.

Bare reef

Megaclast Mixed hard substrata Pavement All reef types (M + MHS + P)

Minimum depth (m) 2.93 3.82 3.22 3.57

Maximum depth (m) 51.50 53.10 43.69 51.51

Mean depth (m) 21.71 21.57 19.23 21.29

Patchy vegetated reef

Megaclast Mixed Hard Substrata Pavement all reef types (M + MHS + P)

Minimum depth (m) 3.30 3.05 2.42 3.01

Maximum depth (m) 44.32 44.89 41.25 44.30

Mean depth (m) 18.84 19.41 17.77 19.08

Dense vegetated reef

Megaclast Mixed Hard Substrata Pavement all reef types (M + MHS + P)

Minimum depth (m) 2.90 2.73 3.42 2.84

Maximum depth (m) 44.17 45.07 41.22 44.39

Mean depth (m) 17.64 17.73 16.64 17.57

Frontiers in Remote Sensing frontiersin.org07

Lucieer et al. 10.3389/frsen.2023.1149900

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1149900


TABLE 5 Occurrence of barrens likelihood classes, by depth (5 m intervals) and hard substratum type (sand excluded).

Low vegetation (high barrens
likelihood)

Patchy vegetation (moderate barrens
likeihood)

Dense vegetation (low barrens
likelihood)

Area (m2) % Of all reef in depth band Area (m2) % Of all reef in depth band Area (m2) %Of all reef in depth band

Megaclast

all depths 742,843 67.4 204,064 18.5 154,685 14.0

≤5 m 72 15.8 102 22.4 281 61.8

>5–10 m 67,814 34.3 6,518 28.6 8,445 37.1

>10–15 m 89,262 51.7 43,907 25.4 39,574 22.9

>15–20 m 213,834 61.4 75,948 21.8 58,302 16.7

>20–25 m 205,579 70.8 49,063 16.9 35,658 12.3

>25–30 m 152,048 82.5 22,143 12.0 10,140 5.5

>30–35 m 69,216 89.3 6,100 7.9 2,194 2.8

>35–40 m 4,028 91.5 282 6.4 91 2.1

>40–45 m 956 100.0 0 0.0 0 0.0

>45–50 m 31 96.9 1 3.1 0 0.0

>50–55 m 3 100.0 0 0.0 0 0.0

>55–60 m 0 0.0 0 0.0 0 0.0

>60 m 0 0.0 0 0.0 0 0.0

Mixed Hard Substrata

all depths 1,814,942 68.6 436,322 16.5 396,006 15.0

≤5 m 32 3.1 238 22.7 779 74.3

>5–10 m 17,289 39.8 9,622 22.2 16,507 38.0

>10–15 m 171,991 48.8 77,464 22.0 102,984 29.2

>15–20 m 617,292 65 173,342 18.3 158,856 16.7

>20–25 m 513,315 72.9 106,352 15.1 84,404 12.0

>25–30 m 323,59 79.8 53,942 13.3 28,120 6.9

>30–35 m 165,150 89.6 14,946 8.1 4,258 2.3

>35–40 m 1,960 94.1 102 4.9 21 1.0

>40–45 m 4,219 91.5 315 6.8 77 1.7

>45–50 m 0 0.0 0 0.0 0 0.0

>50–55 m 95 100.0 0 0.0 0 0.0

>55–60 m 0 0.0 0 0.0 0 0.0

>60 m 0 0.0 0 0.0 0 0.0

Pavement

all depths 481,730 65.9 135,601 18.6 113,589 15.5

≤5 m 803 63.0 172 13.5 299 23.5

>5–10 m 15,506 56.5 4,744 17.3 7,174 26.2

>10–15 m 121,999 58.9 43,956 21.2 41,210 19.9

>15–20 m 136,525 63.1 43,236 20.0 36,615 16.9

(Continued on following page)
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vegetation comprised a relatively minor (<25%) component of the
total area covered by vegetation.

Barren patch size and density across sub
blocks

The patch size of Centrostephanus barrens increased markedly
from the southern sites (in blocks 22 and 23) to the more impacted
northern sites (in block 30) with an approximate 10-fold increase in
the mean size of barrens (i.e., 10 m–100 m) (Figure 8A). There was a
comparatively low density of barrens at the severely impacted
northern sites (sub blocks 30A and 30B), but these barrens
tended to be larger in size (i.e., in the 40 m + distance bin).
Whilst in the southern sites (sub bocks 22A and 23B) and
central sites (sub blocks 27 A, C and D), barrens were more

numerous, but they were largely in the <5 m distance bin,
although there was a more even spread of barren sizes in the
central sites (Figure 8B).

Discussion

This research has demonstrated an application of acoustic water
column data to create a baseline for the extent and condition of kelp
vegetation on shallow reef systems in depths <25 m that can be used
as a tool for management to monitor vegetation change within
abalone fishing administration blocks. The results presented here
showing the probability of vegetation on the reef system are useful
for rapid assessment of reef vulnerability and have a spatial coverage
far greater than is possible from traditional visual surveys. The
unprecedented high resolution (50 cm) maps of the reef structure

TABLE 5 (Continued) Occurrence of barrens likelihood classes, by depth (5 m intervals) and hard substratum type (sand excluded).

Low vegetation (high barrens
likelihood)

Patchy vegetation (moderate barrens
likeihood)

Dense vegetation (low barrens
likelihood)

Area (m2) % Of all reef in depth band Area (m2) % Of all reef in depth band Area (m2) %Of all reef in depth band

>20–25 m 8111.887 69.4 28,514 17.7 20,907 13.0

>25–30 m 74,044 78.9 13,055 13.9 6,759 7.2

>30–35 m 20,559 89.1 11,905 8.3 625 2.7

>35–40 m 365 95.1 18 4.7 1 0.3

>40–45 m 42 95.5 1 2.3 1 2.3

>45–50 m 0 0.0 0 0.0 0 0.0

>50–55 m 0 0.0 0 0.0 0 0.0

>55–60 m 0 0.0 0 0.0 0 0.0

>60 m 0 0.0 0 0.0 0 0.0

All reef types (M + MHS + P)

all depths 3,039,515 67.8 775,987 17.3 664,280 14.8

≤5 m 907 32.6 512 18.4 1,359 48.9

>5–10 m 40,609 43.4 20,884 22.3 32,126 34.3

>10–15 m 383,252 52.3 165,327 22.6 183,768 25.1

>15–20 m 967,651 63.9 292,526 19.3 253,773 16.8

>20–25 m 830,781 71.9 183,929 15.9 140,969 12.2

>25–30 m 549,691 80.4 89,139 13.0 45,019 6.6

>30–35 m 254,925 89.5 22,951 8.1 7,075 2.5

>35–40 m 6,353 92.5 402 5.9 113 1.6

>40–45 m 5,217 93.0 316 3.1 78 1.4

>45–50 m 31 96.9 0 0.0 0 0.0

>50–55 m 98 100.0 0 0.0 0 0.0

>55–60 m 0 0.0 0 0.0 0 0.0

>60 m 0 0.0 0 0.0 0 0.0
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will improve the ability of management to respond to specific kelp
bed habitats that are imminently under threat and assist in the triage
of allocating resources (for example, urchin management) at an

appropriate time. These data will critically underpin spatially
explicit “tailored modelling” of changes in kelp habitat and
urchin barren development along the east coast of Tasmania as it

FIGURE 4
Percent cover of (A) different vegetation densities, and (B) inferred barrens likelihood, at different depths (5 m intervals) across different hard
substratum types (mixed hard = mixed hard substratum). Lighter shading in b represents depths >25 m for which vegetation density cannot be used to
reliably infer the barrens likelihood.

FIGURE 5
Mean (±SE)% of reef estimated to be covered by “complete” barren across abalone management blocks.
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FIGURE 6
Mean% cover of different algal canopy species at different densities across abalone management sub blocks. Bare = no algae, sparse = 0–20%,
middle 20%–60%, dense = >60% cover.

FIGURE 7
% of reef 5–25 m covered by three algal canopy densities across species determined by video and acoustic water column data. (A) is % cover across
fisheries management subblocks and (B) is the correlation plots comparing estimates derived from the two survey methods. Low, moderate, and high
algal densities represent algal cover of 0–20, 20–60, and >60% respectively determined by video analysis, and signal strengths of −64 to −60 db, −60 to
50, and >−50 respectively determined by the acoustic water column (multibeam) data.
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is impacted by climate change. These data will be of upmost value to
decision support tools employed by commercial reef associated
fisheries to manage stock assessments, assessing the regional risk
of kelp habitat loss and improving knowledge of the function of
these reefs for key species.

The results of the video analysis support our ongoing
understanding of the extent of the urchin barrens across the
Tasmania’s east coast (Ling and Keane, 2018; Ling and Keane,
2021) and additionally provides a detailed description of the
spatially dynamic nature of kelp bed and urchin barren patches.
In particular, it has documented site-to-site variability in the density
of kelp and Centrostephanus barren patches across a spectrum of
barren patch-size ranges. The broad-scale pattern in the extent of
barren cover, with increasing cover moving from southern sites
(blocks 22, 23) to more northern sites (block 30) is consistent with
results from 2001 to 2017 survey data presented in Ling and Keane
(2018). However, the present estimates of reef occupied by complete
barren are up to ~20% higher than for those estimated in 2017 for

the same range of depths (10–20 m) and the same sub blocks. This
difference could reflect an increase in the extent of barrens over the
5-year interval between the surveys; however, this notion should be
viewed with caution given that different reef areas were surveyed,
this survey was not spatially structured, and different video analysis
methodologies were used (see Ling and Keane, 2018). A more robust
current comparison in the impact of Centrostephanus on east coast
reefs would involve the continuation of the sampling/analysis
protocol outlined in Ling and Keane (2018); such surveys are due
for completion in 2023 (Keane, pers. comm.).

Underwater imagery can be used to map the extent of urchin
impact, and through space and time, can be used to gain insights into
the patch dynamics of urchin barrens formation within kelp beds
(Ling et al., 2016; Williams et al., 2016). Currently though, imagery-
based mapping has only focused on defining percentage cover of
barrens in broad categories (Ling and Keane, 2018) whereas a full
assessment of barrens patch-size distributions as a continuous
variable, spanning small (<5 m) to larger (1000 ms) barrens

FIGURE 8
Urchin barren patch size and density dynamics. (A) Mean (±SE) of urchin barren patch size (m) based on the length of each barren across abalone
management sub-blocks. Numbers above plotted points show the mean patch size in meters. Means and standard errors were generated from the total
number of barrens recordedwithin each sub block. (B)Mean (±SE) density of urchin barrens (number per kilometer of reef) belonging to different size bins
(m) grouped by abalone management sub-block based on video surveys in 2020–21. Means and standard errors were generated from n = 1–5 sites
within each sub-block.
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features, has not been conducted. This type of assessment will not only
enable patch dynamics to be determined in space and time but will also
enable identification of the earliest spatial warnings of impending kelp
bed collapse. While useful for identifying broad-scale trends in the
extent of kelp beds and urchin barrens, this study revealed a high
density of urchin barrens at intermediate patch sizes (5—40 m length)
across blocks 27 and 29 (Figure 8A) which is indicative of likely
expansion to larger scale barrens in the future as multiple sizeable
barrens coalesce (Ling and Keane, 2021). Management intervention at
this stage, through targeted harvesting and/or culling, of these areas is
paramount before collapse to extensive barrens occurs at which point
recovery becomes exceedingly difficult (Ling et al., 2015; Ling et al.,
2016; Johnson et al., 2017; Ling and Keane, 2021).

The comparatively low prevalence of dense canopy algae in sub
blocks 22A, 23B, and 27B (Figure 6), despite the low abundance of urchin
barrens, warrants further exploration, but could be influenced by water
temperature, exposure to rough coastal conditions, or differences in
substratum type (which is now possible to determine at the sub-block or
smaller scale using the high-resolution acoustic data collected by this
project). The higher prevalence of dense algal cover at more impacted
sites may also be a result of dense localised remnant patches being more
resilient to environmental stress and/or grazing by urchins, e.g., on the
tops of large boulders orwhere sand gutters provide barriers to sea urchin
movement (Ling pers. obs.). It should also be noted that the greatest
difference between the estimated cover from the video surveys and the
multibeam survey occurred at blocks 22 and 23, where dense vegetation
(>60% cover) was rare, but total cover was 100%; where the reefs were
extensively covered in kelp, but predominantly at the lower densities. This
may indicate that small macroalgal species (e.g., red and green seaweeds),
sponge andmacro invertebrate communities, and turf algal communities
may not have been detected by thewater column acoustics (red and green
algae are prevalent in block 22A). This suggests that the multibeam was
less able to detect sparse cover kelp compared to mid/dense kelp, which
couldmean that adjustments in the sensitivity/thresholds used in the data
processing are warranted. Given the speed at which the coastline was
surveyed using multibeam acoustics (~3–5 days), this method controls
for seasonal variation in sparseness of kelp beds which can impact some
diver-based monitoring programs whereby the time taken to survey
many sites across >250 km of coastline abridges multiple seasons (or
years) given the workload involved.

Through applying a new acoustic water columnmappingmethod, we
have been able to assess the effectiveness of hydroacoustics for determining
kelp distribution over large scales, and inversely areas of likely urchin
barrens (inferred by absence of vegetation). The acoustic water column
data analysis illustrates an increasing likelihood of “no vegetation” with
depth, which is expected given the natural decrease in vegetation density
on temperate reefs with increasing light attenuation. This concurs with
empirical observations of kelp communities diminishing and benthic
invertebrate communities beginning to dominate with increasing depth
for the surveyed region. The high resolution at which the acoustic data was
collected enables us to additionally resolve relationships between
vegetation density and substratum type that have not previously been
possible at such a large spatial scale fromvisual surveys alone. For example,
the presence of “no vegetation” (high likelihood of barrens habitat) occurs,
on average, shallower (relative to themean depth of occurrence of that reef
type) on mixed hard substrata compared to other reef types (mean depth
of MHS = 23.6 m, mean depth of barrens on MHS = 21.7m). This
supports the observation that barrens occur more readily on complex reef

substratum (compared with pavement reef) in which urchins can locate
shelter in rocky interstices and feed more readily in rough sea conditions
(Flukes et al., 2012; Ling and Keane, 2018). Similarly, patchy vegetation
(moderate acoustic signal) becomes less likely in the sub-10m bracket
specifically onpavement substrata. This alignswith our understanding that
it is difficult for urchins to initiate forming barrens on flat featureless rock
surfaces in shallower areas where water movement is greater. The average
depth occurrence of the three reef types however is also different:
pavement occurs at shallower depths than megaclast and mixed hard
substrata, so caution must be applied in interpreting depth trends by
substratum type. This may also be biased by the fact that pavement reef is
more prevalent in the north of the extended Centrostephanus range in
Tasmania (fishing block 30).

The thresholded “traffic light” data layer indicating the likelihood of
the reef system being bare of canopy-forming macroalgae was created by
applying three dB thresholds (−64 to −60, −60 to −50 and >−50 as bare,
patchy and dense vegetation, respectively) to the continuous 1m2 layer.
These thresholds will require further analysis to determine whether the
ranges selected are appropriate for use on different types of reef habitat,
and if they can be applied consistently across depths.When examining the
point clouds there are quite a few areas where the ringing around the rocks
is getting picked up as “kelp,” even though the reef is barren. This is likely
due to the ship turning and the along-track noise filter not being able to
adequatelymodel the noise pattern around the rocks.We applied the same
dB threshold for data on megaclast reef as well as pavement reef or mixed
hard substrata. It may be reasonable to assume that the topography affects
the water column signal and therefore different thresholds may be more
appropriate for different structural complexity. Further research might
explore the links between the dB values of the water column with the
VectorRuggednessMeasure (VRM) surface to correlate the signal strength
against how rugose or flat the reef substratum is. VRM data created from
this analysis is available from https://doi.org/10.25959/AHR1-Q718.

This study would benefit from additional high precision video data to
improve the ability to resolve the densities in vegetation from the water
column data signal. The positioning uncertainty (~5m) of the GPS on the
video transects impeded our ability to be able to match the acoustic point
cloud estimates directly to the imagery which was needed to be able to
resolve the density of vegetation. In a preliminary pilot study for this
survey, we employed a high precision USBL acoustic positioning system
(Sonardyne Mini-Ranger 2 USBL System with Nano Transponder,
accurate to within 0.5 m) hired from STR. The cost of the hire of the
high precisionUSBLwas not budgeted for this project and therefore could
not be employed for the full survey. For future research we recommend
only a high precision USBL positioning system be used on the video
transects for validation of the water column signal. This has implications
for the current data sets and must be considered when interpreting the
acoustic data result. The video transect data indicate that there are <5%
barrens cover in blocks 22/23, - yet the water column acoustic data reports
no signal from60%–70%of the reef systems.One of the aims of this study
was to determine if incipient barrens can be detected. At the scale that
incipient barrens occur (<9m2) we advise that further research would be
required to resolve this question. To be able to map low vegetation
densities we need a better understanding of the target strength in dB to
the biomass of the kelps present on different seafloor rugosities. Although
we can detect individual kelp thalli in the acoustic signal in the inner
beams, it is difficult to assess, without further study, how the target
strength reduces across the swath and what the impact of a rugose
(i.e., megaclast) reef habitat has on the water column signal.
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Figure 3 shows clear changes in detectability across the acoustic
swath, with vegetation (shown in green) largely occurring in the centre of
the swath, yellow on the sides of the nadir line (centre line), and redmost
frequently on the edges of the swath. One of the limitations of this survey
has been understanding the angles of dependence across the swath for
which the water column results are reliable. As the swath angle increases
from nadir (directly beneath the vessel) the volume of water above the
seabed decreases. Although all data was recorded, we extracted the water
column data only from beams 110 to 146. This will be the focus of
ongoing research so as to improve the extraction of targets within a less
limited swath width (increased number of beams). The cost effectiveness
of the multibeam high resolution seafloor data, however, is a significant
improvement over single beam acoustic surveys as were conducted over
10 years ago in this region (Lucieer et al., 2009). It is evident from the data
visualisations that it is now possible to characterise the reef habitat at the
scale of individual rocks (at 50 cm resolution). This datawill be invaluable
as a resource to the abalone and Centrostephanus management
communities for future research that unlocks the resilience or
vulnerability of different reef structures to environmental pressures.

Future research should focus on improving the data collected in
abalone habitat in shallower waters <10m which was limited in this
study due to operational restrictions (draft of vessel; risk of vessel running
aground) as well as the narrow footprint of acoustic operations in these
depths. Recent advances in Satellite-Derived Bathymetry (SDB) and
benthic habitat mapping services for shallow waters could infill data
gap on this margin of the coast critical to abalone harvesting activities
(Wilson et al., 2022). Very high-resolutionmapping (2 mhorizontal grid)
using the DigitalGlobeWorldView-2 satellite sensor and high-resolution
mapping (10 m horizontal grid) using the European Space Agency’s
(ESA) Sentinel-2 sensor should be further investigated (Purkis et al.,
2019). Satellite mapping depths along the Tasmanian coastline will likely
be around 10m,with localised variation between ~5mand ~15mdue to
turbidity. Steep cliffs, heavy sea state and clouds in available satellite
imagery may also pose some limitations. The cost of SDB data for
Tasmania is in the range of $10K AU (local area) to $500K AU (state-
wide). Acquisition of satellite derived bathymetry and habitat data would
provide productive shallow water (<10m) abalone habitat data and
compliment data collected within this project (10–255m).

Mapping of macroalgal cover using water column acoustics is an
emerging technique in the seafloor mapping discipline. This research
demonstrates that further empirical data are necessary to determine key
model parameters in order to refinemeasures of canopy cover/density that
more closely match those acquired by traditional visual surveys, which are
relatively restricted in spatial and temporal coverage and further validation
of various water column processingmethods would be beneficial. Notably,
more research is required to improve the interpretation of the water
columnacoustic data as an overlay to the seafloor data before it can reliably
provide a cost-effective means of monitoring climate change impacts on
kelp cover beyond what is achievable using towed-video surveys of reef
habitats. Lessons from this study will guide the further development and
future use of this technology.
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