
An Analysis of Derived Belief Strategy’s Performance
in the 2005 Iterated Prisoner’s Dilemma Competition

Tsz-Chiu Au
Department of Computer Science

University of Maryland, College Park, MD 20742 USA.
chiu@cs.umd.edu

Technical Report CS-TR-4756 / UMIACS-TR-2005-59

February 19, 2006

Abstract

We analyzed the performance of the Derived Belief Strategy (DBS) in the 2005 Iterated
Prisoner’s Dilemma Competition [1]. Our technique is to remove the scores of the agents
submitted by the participants one by one in the computation of the average scores.

1 The Results of our Programs in the Competition
The 2005 Prisoner’s Dilemma Competition consists of four competitions. The first competition,
namely the Competition 1, is a re-run of the original experiment of Robert Axelrod that was held
twenty years ago; the other competitions are similar to the Competition 1 except that they are
run under different conditions and rules. Our strategies aimed for the second competition, the
Competition 2, which is the same as the Competition 1 but has a noise level of 0.1. In the following,
we shall only focus on the results of our programs in the Competition 2.

The Competition 2 consists of five runs. Each run is a round-robin tournament in which each
program plays with every program once, including itself. There are a total of 165 programs in the
Competition 2. Among them 8 programs are default programs provided by the organizer of the
competition, while the remaining 157 programs are programs submitted by 36 different partici-
pants. Even though it is allowed to submit up to 20 programs, 29 participants submitted only one
program. Nonetheless, four participants submitted 20 programs, one of them is the author of this
report.

The default programs are ALLC (always cooperates), ALLD (always defects), GRIM (cooper-
ates until the first defection of the other player, and thereafter it always defects), NEG (cooperate
(or defect) if the other player defects (or cooperates) in the previous iteration), RAND (defects or
cooperates with the 1/2 probability), STFT (suspicious TFT, which is like TFT except it defects
in the first iteration) TFT, and TFTT (Tit-for-two-Tats, which is like TFT except it defects only

1

after it receives two consecutive defections). They are well-known in the literatures of the iterated
Prisoner’s Dilemma.

We submitted twenty programs in the competition. They are the implementations of the three
different strategies proposed by the author. This report presented the results of one of these strate-
gies, the Derivative Belief Strategy (DBS). The other two are called Tat-for-Tat Improved (TFTI)
and Learning of Opponent’s Strategy with Forgiveness (LSF).

Like DBS, LSF is a strategy that learns the other player’s strategy during the game. The dif-
ference between LSF and DBS is that LSF does not make use of the symbolic noise filtering but
uses the discount frequency only to learn the other player’s strategy. In addition, it incorporates a
forgiveness strategy that decides when to cooperate when mutual defection occurs. There is only
one program that makes use of LSF, and it is also called LSF. In the Competition 2, LSF is at
around the 30’th places in three runs and around 70’th places in the other two runs. We believe the
poor ranking of LSF is due to the deficiency of using discount frequency alone.

TFTI is a strategy based on a totally different philosophy than DBS’s. It is not an opponent
modeling strategy in the sense that it does not model the other player’s behavior using a set of rules.
Instead, it is a variant of TFT with a sophisticated forgiveness policy that aims at overcoming some
of the shortcomings of TFT in noisy environments. As we shall see, the best implementations of
TFTI is one of the top five programs in the Competition 2 (if we excludes the multiple copies of
DBS). This paper focuses on DBS only, and we shall not discuss TFTI. We submitted ten programs
of TFTI, each of them has a different set of parameters or different implementation. Among them
TFTIm has the best performance.

Like TFTI, we have submitted nine programs of DBS, each of them has a different set of
parameters or different implementation. The best DBS program is DBSz, which makes use of
all features of DBS. Some other DBS’s makes use ideas that have never discussed in this report.
Nonetheless, it seems that these ideas do not greatly enhance their performance.

The other three participants who has submitted twenty programs are Wolfgang Kienreich, Jia-
wei Li, and Perukrishnen Vytelingum. According to our analysis of the competition results, we
recognize that they adopted a strategy called the master-slave strategy, that was first proposed by
a team from the University of Southampton in England. A master-slave strategy is actually not
a strategy for a single program but for a team of collaborating programs. One of the program in
such a team is the master, and the remaining programs are slaves. The basic idea is that the master
and slaves recognize each other through a series of moves at the beginning of a game through
a predefined protocol. If a slave recognizes that the other player is the master, it will cooperate
thereafter; conversely if the master recognizes that the other player is a slave, it continues to defect.
Thus once the recognition is established, the master can earn as much points as possible in every
following iteration at the expense of the slaves. Furthermore, if a slave find that the other player is
not the master, it will try to minimize the score of the other player by defections.

We notice that these participants have selected one of the their 20 programs as a master, and
the remaining are assigned to be slaves of their masters. Wolfgang Kienreich’s master is CNGF
(CosaNostra Godfather), and the slaves of CNGF are 19 copies of CNHM (CosaNostra Hitman).
Jia-wei Li’s master is IMM01 (Intelligent Machine Master 01), and the slaves of IMM01 are
IMM01, IMM02, . . . , IMM20, which are called Intelligent Machine Slave n for n = 02, 03, . . . 20.
Perukrishnen Vytelingum’s master is BWIN (S2Agent1 ZEUS), and the slaves of BWIN are
BLOS2, BLOS3, . . . , BLOS20, whose names are the names of different Gods in anicent Greek.

By the time we wrote this report, we do not know what strategies other particpants, except

2

whose we mentioned above, used in their programs.

1.1 The Competition 2 and the Results
The Competition 2 consisted of five runs. Each run was a round-robin tournament in which each
program plays with every program once, including itself. Each program will participate in 166
games in each run (the game that both players are the same program counted as two games). Each
game consists 200 iterations. 1 The point a program gets in a game is the sum of all payoffs it earns
in all 200 iterations. Hence, the maximum point one can get in a game is 1000, and the minium
point is 0. The total point of an program in a run is the sum of the points of all games in all 166
games it participates in the run. The higher the total point of an program, the better the program
plays. On the compeititon’s website, there is a ranking for each of the five runs, each of them is
ranked according to the total point of the programs in a run.

We define a point profile of a program in run r to be the set of points the program earns in
run r. Suppose {P1, P2, . . . , P165} be the set of all programs in the competition. Let Pointr(i, j)
and Point′r(i, j) are the points earned by Pi and Pj respectively in the game in which Pi is the
Player 1 and Pj is the Player 2 in run r. The point profile of Pi in this run is {Pointr(i, j) :
Pj} ∪ {Point′r(i, i)}. The total point of Pi in run r is the sum of all points in its point profile in
run r. The mean point of Pi in a run r is equal to the average of points in its point profile. The
rankings remain the same if we rank according to the mean points.

The average points of Pi against Pj is A(i, j) = (
∑

1≤r≤5 Pointr(i, j))/5. Likewise, the
average points of Pi against itself as the Player 2 is A′(i, i) = (

∑
1≤r≤5 Point′r(i, i))/5. Since

each game is independent of each other no matter which run the game takes place, we deem that
the average point is a good measure of the overall performance of Pi against Pj in the competition.
The average point profile of Pi is AvgProfile(i) = {A(i, j) : Pj}∪{A′(i, i)}. The mean average
point is the average of all average points in AvgProfile(i).

Table 1 shows the mean points in each runs of the five runs and their mean (i.e., the average
points) of the top twenty-five programs when the programs are ranked by their average points. We
submitted nine programs using DBS, and all of them were among the top twenty-five programs;
they dominated top ten places in the list, except that it lost to BWIN and IMM01, the masters of
two master-slave strategies. This phenomenon implies that the performance of DBS are insensitive
to the parameters in the programs and the implementation details of an individual program. The
same phenomenon happens to TFTI—nine out of ten programs using TFTI were ranked between
the 11th place and the 25th place, and the last one was at the 29th place.

1.2 Mean Average Points versus the Number of Slaves Removed
We would like to study the effects of slaves to the result of the Competition 2. Our approach is to
select a number of slaves and then exclude the points of the games that involve these slaves from the
calculation of their average points, as if the slaves have never participated in the competition. As we
gradually removed slaves from the calculations, we expect to see that mean average points of the
other players increases, while the mean average points of the masters decreases. More precisely,
suppose we want to remove a set of programs S = {S1, S2, . . . , Sk} ⊆ {Pi : 1 ≤ i ≤ 165}, the

1An iteration is also called a period or a round in some literatures

3

Table 1: The mean points of the programs in each of the five runs in the Competition 2, and their
mean average point. This table is ranked according to the mean points. Only top twenty-five
programs are listed.

Mean Point
Rank Programs Participant Run1 Run2 Run3 Run4 Run5 Average

1 BWIN Perukrishnen
Vytelingum

441.7 431.7 427.1 434.8 433.5 433.8

2 IMM01 Jia-wei Li 424.7 414.6 414.7 409.1 407.5 414.1
3 DBSz Tsz-Chiu Au 411.7 405.0 406.5 407.7 409.2 408.0
4 DBSy Tsz-Chiu Au 411.9 407.5 407.9 407.0 405.5 408.0
5 DBSpl Tsz-Chiu Au 409.5 403.8 411.4 403.9 409.1 407.5
6 DBSx Tsz-Chiu Au 401.9 410.5 407.7 408.4 404.4 406.6
7 DBSf Tsz-Chiu Au 399.2 402.2 405.2 398.9 404.4 402.0
8 DBStft Tsz-Chiu Au 398.4 394.3 402.1 406.7 407.3 401.8
9 DBSd Tsz-Chiu Au 406.0 396.0 399.1 401.8 401.5 400.9

10 lowES-
TFT classic

Michael Filz-
moser

391.6 395.8 405.9 393.2 399.4 397.2

11 TFTIm Tsz-Chiu Au 399.0 398.8 395.0 396.7 395.3 397.0
12 Mod Philip Hingston 394.8 394.2 407.8 394.1 393.7 396.9
13 TFTIz Tsz-Chiu Au 397.7 396.1 390.7 392.1 400.6 395.5
14 TFTIc Tsz-Chiu Au 400.1 401.0 389.5 388.9 389.2 393.7
15 DBSe Tsz-Chiu Au 396.9 386.8 396.7 394.5 393.7 393.7
16 TTFT Louis Clement 389.1 395.8 394.1 393.4 394.7 393.4
17 TFTIa Tsz-Chiu Au 389.5 394.4 395.1 389.6 397.7 393.3
18 TFTIb Tsz-Chiu Au 391.7 390.0 390.5 401.0 392.4 393.1
19 TFTIx Tsz-Chiu Au 398.3 391.3 390.8 391.0 393.7 393.0
20 mediumES-

TFT classic
Michael Filz-
moser

396.7 392.6 398.3 390.8 386.0 392.9

21 TFTIy Tsz-Chiu Au 391.7 394.6 390.8 392.1 394.9 392.8
22 TFTId Tsz-Chiu Au 395.6 393.1 388.8 385.7 391.3 390.9
23 TFTIe Tsz-Chiu Au 396.7 391.1 385.2 388.2 393.5 390.9
24 DBSb Tsz-Chiu Au 393.2 386.1 392.6 391.1 391.0 390.8
25 T4T David Fogel 391.5 387.6 400.4 387.3 383.5 390.0

4

new mean average point of Pi 6∈ S is

A(i|¬S) =

∑
1≤r≤5

{
Point′r(i, i) +

∑
1≤j≤165 and Pj 6∈S Pointr(i, j)

}
5× (166− k)

Suppose we want to remove k BWIN’s slaves, k IMM01’s slaves, and k CNGF’s slaves from
the competition. Let SBLOS, SIMS, SCNHM ⊆ {Pi : 1 ≤ i ≤ 165} be the set of slaves of BWIN,
IMM01, and CNGF, respectively. First, we randomly choose k slaves from each set of slaves and
let them be Sa

k ⊆ SBLOS, Sb
k ⊆ SIMS, and Sc

k ⊆ SCHHM, respectively. The new mean average point
of Pi which is not a slave is A(i|¬(Sa

k ∪ Sb
k ∪ Sc

k)).
This mean average point depends on the selection of the slaves to be removed. To minimize

biases toward a particular set of slaves, we repeated the above procedure one hundred times with
different selection of slaves, and obtained 100 mean averages points for each program for each
value of k. Then we calculated the minimum, the maximum, and the average of these 100 mean
average points using the data provided by the organizer of the competition, and plotted the mean
averages against k as shown in Figure 1, for a number of top-twenty programs. We also show the
minimum and the maximum mean average points of BWIN, IMM01, CNGF, and DBSz by using
error bars.

Figure 1 shows that as the number of slaves decreases, the mean average points of all selected
programs increases. The rate of increases of the non-master programs is much faster than the rate
of increases of the masters. For instance, the mean average points of DBSz increases by 3.9 as k
increases by 1, whereas the mean average points of BWIN increases only by 0.33. This implies
that slaves does not cooperate with the non-master programs but some of the masters. The mean
average points of a master increases because the slaves of different masters does not cooperate the
master. Furthermore, the rate of increases are not constant; as the number of slaves decreases, the
rate of increases of the mean average points increases. It is due to the fact that the pool of the
programs is getting smaller as the slaves is removed.

We can see that the average of the mean average point of DBSz surpasses the IMM01’s when
k ≥ 3 and the BWIN’s when k ≥ 9. Furthermore, the DBSz’s mean average points becomes the
highest when when k ≥ 9. It is more certain when k ≥ 10, as the minimum of the mean average
point of DBSz is more than the maximum of the mean average point of IMM01 when k ≥ 10.

1.3 Mean Average Points versus the Number of Our Programs Removed
In order to show that our programs do not act like the master-slave strategy, we conducted an
analysis similar to the one in the previous section: we removed most of our programs one by
one to see how it affects the mean average points of selected programs. The 18 programs to be
removed are DBSa, DBSb, DBSd, DBSe, DBSf, DBSx, DBSy, DBSpl, DBStft, TFTIa, TFTIb,
TFTIc, TFTId, TFTIe, TFTIf, TFTIx, TFTIy, TFTIz, LSF. These includes all programs we have
submitted except DBSz and TFTIm.

We followed the same procedure in the previous section, and plotted the graph in Figure 2. As
can be seen, the mean average points of most programs decrease as the number of our programs
removed increases. This indicates that our programs have cooperated with them and increased
their points on average. As opposed to the slaves in the master-slave strategies, our programs have
positive influence to the programs submitted by other participants.

5

0 2 4 6 8 10 12 14 16 18

380

400

420

440

460

480

500

Number of Slaves Removed (k)

M
ea

n
A

ve
ra

ge
 P

oi
nt

BWIN (P. Vytelingum)
IMM01 (J.−W. Li)
CNGF (W. Kienreich)
DBSz (T.−C. Au)
lowEsTFT_classic (M. Filzmoser)
TFTIm (T.−C. Au)
Mod (P. Hingston)
TTFT (L. Clement)
mediumESTFT_classic (M. Filzmoser)

Figure 1: Average points of selected programs as the number of slaves decreases. We randomly
selected k BWIN’s slaves, k IMM01’s slaves, and k CNGF’s slaves, and removed them from the
calculation of the mean average points, using the data provided by the organizer of the competition.
We repeated the procedure 100 times and calculated the average of the mean average points against
k, as shown in each data point in this graph. We also showed the maximum mean average points
and the minimum mean average points of BWIN, IMM01, CNGF, and DBSz.

6

0 2 4 6 8 10 12 14 16

380

400

420

440

460

480

500

Number of Our Programs Removed (k)

M
ea

n
A

ve
ra

ge
 P

oi
nt

BWIN (P. Vytelingum)
IMM01 (J.−W. Li)
CNGF (W. Kienreich)
DBSz (T.−C. Au)
lowEsTFT_classic (M. Filzmoser)
TFTIm (T.−C. Au)
Mod (P. Hingston)
TTFT (L. Clement)
mediumESTFT_classic (M. Filzmoser)

Figure 2: The mean average points of the selected programs as the number of our programs de-
creases. As in Figure 1, we randomly selected k programs from the set of our programs except
DBSz and TFTIm, and removed them from the calculation of the mean average points. We can see
that most of the selected programs have lower mean average points after the removal. It implies
that the removed programs have cooperated with them and increased their points on average.

7

1.4 Distributions of Average Points
The mean average point of a program is a measure of the overall performance of the program in
the competition. However, the mean average points give us little insight into why a program works
better. Perhaps a better way to study a program’s performance is to look into its average point
profile to see the distribution of the average points.

We counted how many average points in AvgPoint(i) that are fall into the interval (5k −
2.5, 5k + 2.5] for each 0 ≤ k ≤ 200, and then plot k against this number. This plot is called
the density plot of the average points. Figure 3 and Figure 4 show the plots for selected programs
(including some of the top twenty-five programs plus the masters and one of their slaves). Notice
that we do not show the scale of the y-axis as we do not concern with the actual numbers in the
intervals; all we care about is the distribution of average points.

In order to establish the link between programs Pj and the average points, we overlaid the
density plots with dot diagrams, which indicates the average points of Pi against different groups
of programs. We partitioned the set of all 165 programs into six groups: (1) the DBS programs, (2)
the TFTI programs, (3) BWIN and their slaves, (4) IMM01 and their slaves, (5) CNGF and their
slaves, and (6) the remaining programs. For each member Pj in a group, there is a point in a dot
diagram which indicates A(i, j). Thus, there are a total of 166 points in all density plots overlaid
on a density plot in Figure 3 and Figure 4. In addition to the dot diagrams, we drew a vertical solid
line at the mean average point A(i).

Figure 3 shows the distributions of the average points in the average points profiles of DBSz,
the three masters, and three slaves, one for each master. It is interesting to note that the average
points of DBSz distribute unevenly; there are two distinctive clusters of points at around x = 260
and x = 530. The first cluster is created by the slaves, and the second clusters is created by TFTI’s
and other programs. The two clusters counterbalances each other, so that the mean average point
of DBSz is near the middle point between two clusters (i.e. x = 408). We can reason about this
phenomena in the following way: in most iterations in which DBSz plays with a slave, the payoff
of DBSz is approximately equal to 1.3 = 260/200, which is the payoff one may receive when
mutual defection occurs in most of the 200 iterations in a game. In contrast, whenever DBSz plays
with a program in the second cluster, it receives a payoff of 2.65 = 530/200 in each iteration
on average. In fact, a payoff of 2.65 is very close to what we expect DBSz can earn in a noisy
environment. In the competition, the noise level is 0.1, thus about 20 iterations are affected by
noise in a game. Suppose the mutual cooperation relationship has been established in a game and
is never broken. Futhermore, suppose the other player is like TFT and it retaliates immediately
when it receives a defection, but it would not remember this defection in future. Then DBSz
receives approximately 20 defections in a game. Due to our policy of temporarily tolerance, we
will cooperate in all iterations as long as the evidence collection process does not detect a change of
hypothesized policy. Thus, we expect the point of DBSz of such a game is 540 = 3× 180+0× 20
and the average payoff is 2.7.

DBSz also has a small cluster at x = 580. The cluster is formed by other DBS programs and
some other programs. Once again it is close to our expectation: when DBSz played with another
DBS, it received about 10 defections in a game, and the point of DBSz in this game is about
570 = 3× 190 + 0× 10.

When compared with DBS’s, the average points of the masters are distributed more evenly,
even though they all have a cluster of points at around x = 260. Notice that in the distributions for

8

BWIN and IMM01 there are a number of average points that are over 600, and they are the average
points earned by the master when they plays with their slaves. It indicates that BWIN and IMM01
can earn more points than what they can earn with mutual cooperation when they play with their
slaves. Figure 3 also shows that the distributions for the slaves of IMS02 and CHHM are skewed
toward to the lower end, but that for the slave of BWIN does not.

Another interesting thing about the distributions of average poinst for DBSz, low-
ESTFT classic, TFTIm, Mod, TTFT, and mediumESTFT classic as shown in the Figure 4 is that
they all have two major clusters of points at around x = 260 and x = 530. DBSz has a shape
cluster at x = 530, whereas other programs are more spreaded out. It seems there is a trend that
the denser the clusters at x = 530, the higher the mean average points. Moreover, most of these se-
lected programs except Mod cooperates well with DBS’s and TFTI’s; their average points against
DBS’s and TFTI’s are often more than 500. Moreover, the the average points against DBS’s form
a small cluster near x = 600 in their density plots, and beyond x = 600 there is no more cluster. In
other words, DBS’s are among the most cooperative programs they encountered in the competition.

We notice that Mod does not work well with DBS’s; the average point of Mod against DBS’s
often less than 500. We don’t know why DBS’s failed to cooperate with Mod. Our hypothesis is
that DBS’s sometimes do not cooperate with exploitative programs, which try to earn more points
by defections. Mod’s exploitative behavior can be seem in its density plot—some of its average
points are beyond 600.

One might suspect that the clusters at x = 530 in many density plots are due to multiple
copies of DBS’s and TFTI’s. To check whether it is the case, we removed all DBS’s, TFTI’s,
and LSF, except DBSz and TFTIm, from the average point profile of DBSz, lowESTFT classic,
TFTIm, Mod, TTFT, and mediumESTFT classic, and plot the graph in Figure 5. As can be seen,
a dense cluster at x = 530 still exists in the density plot of DBSz, though it is somewhat less
dense than that in Figure 4. It indicates DBSz is able to maintain a mutual cooperation relationship
with many other programs submitted by other participants in the competition. Like DBSz, the
clusters at x = 530 still exists in the density plots of other programs, but they become flatter after
the removal. In general, the removal would lower the mean average points of these programs,
but the lowering effect is greater for TFTIm, TTFT and mediumESTFT classic than for DBSz
and lowESTFT classic, because their mean average points before the removal are smaller. The
mean average point of Mod is less susceptible to the removal of DBS’s and TFTI’s. This result is
consistent with the result in Figure 2.

To investigate the effect of slaves, we removed the average points due to slaves, in addition to
our programs, from the average point profiles, and drew the density plots in Figure 6. This causes
the clusters at x = 260 disappear or flatten in all density plots, and makes the clusters at x = 530
more prominent, especially the DBSz’s cluster. Without the cluster at x = 260, the mean average
points mainly depends on the center and the spread of the cluster at x = 530. Roughly speaking,
the center of DBSz’s cluster is the highest and the spread is the smallest among these programs.

1.5 A Comparison between DBSz and the Default Programs
We want to know why DBSz performs so well in the competition. However, as we know little
about the strategies other participants used, our analyses of DBSz have to base entirely on the
record of the moves other programs made in the competition. Due to a lack of information about
the logics behind those moves, it is difficult for us to propose a theory to explain the performance

9

200 300 400 500 600 700 800

CNHM

IMS02

BLOS10

CNGF

IMM01

BWIN

DB

 Average Point of Pi (x)

i

DBS*
TFTI*
Other programs
BWIN, BLOS*
IMM01, IMS*
CNGF, CNHM*

Figure 3: The distributions of average points in the average point profiles of DBSz and the master-
slave strategies. The clusters of points at around x = 260 in all plots is due to the slaves. The
BDSz’s plot has a cluster of points at x = 530, which counterbalances the points at x = 260 (the
mean average point is nearly halfway between two clusters). The average points of BWIN and
IMM01 against some of their slaves are more than 600.

10

200 300 400 500 600 700

mediumESTFT_classic

TTFT

Mod

TFTIm

lowESTFT_classic

DBSz

Average Point of Pi (x)

P
i

DBS*
TFTI*
Other programs
BWIN, BLOS*
IMM01, IMS*
CNGF, CNHM*

Figure 4: The distributions of average points in the average point profiles of DBSz, low-
ESTFT classic, TFTIm, Mod, TTFT, and mediumESTFT classic. The cluster of points at x = 530
is less spreaded out than the other programs’. All of these programs except Mod plays very well
with DBS’s and TFTI’s; their average points against DBS’s and TFTI’s are often more than 500.

11

200 300 400 500 600 700

mediumESTFT_classic

TTFT

Mod

TFTIm

lowESTFT_classic

DBS

Average Point of Pi (x)

P
i

DBS*
TFTI*
Other programs
BWIN, BLOS*
IMM01, IMS*
CNGF, CNHM*

Figure 5: The distributions of average points in the average point profiles of DBSz, low-
ESTFT classic, TFTIm, Mod, TTFT, and mediumESTFT classic under the condition that the aver-
age points of all games against DBS, TFTI, and LSF (except DBSz and TFTIm) are excluded from
their average point profiles. We can see that DBSz is still able to maintain a cluster at x = 530
without other DBS’s and TFTI’s. It indicates that DBSz cooperates with many other programs
submitted by other participants. For other programs, the clusters at x = 530 become even more
spreaded out when they are lack of supports from DBS’s and TFTI’s. The mean average points of
all programs shift toward to the side where the clusters created by the slaves are located.

12

200 300 400 500 600 700

mediumESTFT_classic

TTFT

Mod

TFTIm

lowESTFT_classic

DBSz

Average Point of Pi (x)

DBS*
TFTI*
Other programs
BWIN, BLOS*
IMM01, IMS*
CNGF, CNHM*

Figure 6: The distributions of average points in the average point profiles of DBSz, low-
ESTFT classic, TFTIm, Mod, TTFT, and mediumESTFT classic under the condition that the av-
erage points of all games against slaves, DBS, TFTI, and LSF (except DBSz and TFTIm) are
excluded from their average point profiles. We can see that the clusters at x = 260 spread out or
disappear in these plots. This makes the clusters at x = 530 more prominent.

13

of DBSz.
Fortunately, the organizer of the competition provided several simple but well-known strategies

to compete with the programs submitted the participants in the competition. We call them the
default programs. Since we all know how these default programs works, it is possible for us to
explain why DBS performs better than them or vice versa. Hopefully, a study of this kind can
shed light on the performance of DBSz when it encounters a player whose behavior is more or less
similar to one of these default programs.

In the following, we shall focus on the performance of TFT, TFTT, GRIM, RAND, and DBSz
in the games in which the other player is either DBSz or one of the default programs. A summary
of their performance can be found in Figure 7.

Surprisingly, when compared with TFT, TFTT, GRIM and RAND, DBSz is the best program
only when it plays with TFT, STFT, and ALLD; when it plays with other default programs, at least
one default programs would outperform DBSz, and it is usually GRIM. There are two exceptions:
when playing with TFTT, RAND is better than DBSz; when playing with DBSz itself, TFT is
better than DBSz. Fortunately, the difference between the average point of DBSz and that of the
best default program is not big.

In the competition, there are four rules in the hypothesized policy in DBS, and the conditions
of these rules depends on the outcome of the previous iteration. It turns out when DBSz plays
with a default program that the hypothesized policy is powerful enough to capture its behavior,
DBSz usually performs very well. The simple strategy that can be completely modeled by the
hypothesized policy are TFT, STFT, RAND, ALLC, ALLD, and NEG. DBSz got the highest points
with playing with TFT, STFT, and ALLD when compared with other default programs in question.
Even though DBSz loses to GRIM when playing with RAND and NEG, the difference between
their average points are not big. However, problems occur only when DBSz plays with ALLC;
most other default programs can outperforms DBSz, and DBSz earns much less than GRIM. It is
because DBSz is not exploitative—it would not defect once it learn that it is playing with ALLC.

The reason why DBSz plays well with TFT and STFT is obvious—its initial hypothesized
policy is TFT. With this correct hypothesized policy, DBSz always cooperates, which is the best
response when playing with TFT. When playing with ALLD, the correct responses is always defect,
and it will happen when DBSz learnt the behavior of ALLD. The reason why DBSz earns more
than 200 points when playing will ALLD is the presence of noise; with 10% of moves are affected
by noise, we expect DBSz earns slightly less than 230 = 180×1+10×5+10×0. But the reason
why it is better than GRIM is unknown; the only explanation we can offer is that there are more
noise in the games between DBSz and ALLD than in the games between GRIM and ALLD. The
behavior of GRIM is similar to ALLD in noisy environments. It is why playing GRIM, programs
earn as many as they earn when playing with ALLD. The best way to deal with RAND is to act
like ALLD, but DBSz does so only after it rejects its initial policy. It is why its average point is
slightly less than GRIM’s when playing with RAND. The same reason can be used to explain the
performance of DBSz when playing with NEG.

It is interesting to see that RAND outperforms DBSz when playing with TFTT. TFTT is known
to do much better than TFT in noisy environment. In fact, it is true, as we see that the programs earn
more points when playing with TFTT than with TFT in Figure 7. However, being more generous to
defections of the other player, TFTT is susceptible to opportunistic defections by strategies such as
RAND. Nonetheless, the difference of the average points between RAND and DBSz when playing
with TFTT is not big.

14

0 100 200 300 400 500 600 700 800

NEG

ALLD

ALLC

RAND

GRIM

STFT

TFTT

TFT

DBSz

Average Point of Player 1 against Player 2

P
la

ye
r

2

RAND

GRIM

TFTT

TFT
DBSz

Player 1

Figure 7: A comparison between the default programs (TFT, TFTT, STFT, GRIM, RAND, ALLC,
ALLD, NEG) and DBSz. This figure shows the average point when player 1 plays with player 2,
where the player 1 are chosen from the set of all default programs, while player 2 is either RAND,
GRIM, TFTT, TFT, or DBSz.

15

References
[1] Graham Kendall. The iterated prisoner’s dilemma competition: Celebrating the 20th anniver-

sary. http://www.prisoners-dilemma.com, 2005.

16

