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The problem of robust predictability against sensor attacks is investigated. The
objective of a diagnoser is to predict the occurrence of a critical event of a discrete
event system (DES) under partial observation. An attacker may rewrite the
diagnoser observation by inserting fake events or erasing real events. Two
novel structures, namely, real diagnoser and the fake diagnoser, are
constructed based on the diagnoser of the system. We compute the hybrid
diagnoser as the parallel composition of the real diagnoser and the fake
diagnoser. The hybrid diagnoser can be used to verify if a critical event of the
system is robustly predictable when an attacker tampers with the diagnoser
observation.
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1 Introduction

Suppose that a plant is modeled by a discrete event system (DES) under partial
observation, predictability is a property that describes if a diagnoser can predict the
occurrence of a critical event (either observable or unobservable) according to its
observation of the system. As the system and the diagnoser are connected via a network,
a malicious attacker may corrupt such a communication channel with the insertion of fake
events and the deletion of real events that have happened in the system. Therefore, the
problem of robust predictability against sensor attacks is addressed. It characterizes the
ability of a diagnoser to predict the occurrence of a critical event, even if an attacker may
tamper with its observation.

Genc and Lafortune [1] proposed the problem of predictability in the centralized case,
and Kumar and Takai [2] considered this problem in the decentralized case. From this point,
many studies have focused on this topic in different contexts and problem settings. Takai and
Kumar [3, 4] considered the problem of failure prognosis with communication delays. In
[5–7], the problem of predictability is studied in the context of stochastic DESs. Benmessahel
et al. [8] investigated the problem of predictability in fuzzy DESs. Yin and Li [9] studied the
problem of reliable decentralized fault predictability. They supposed that only partial local
prognostic decisions are accessible to the coordinator. In [10], the authors showed how to use
one prognoser to predict the occurrence of any failure for a set of models. Xiao and Liu [11]
considered the problem of robust fault prognosis against loss of observations, where some
observable events may become unobservable because of sensor failures. Finally, the problem
of predictability is investigated in [12–14] in the framework of Petri nets.

The notion of diagnosability was first proposed in [15]. We assume that a DES contains
an unobservable fault event. A fault event is said to be diagnosable if we can determine its
occurrence within a limited delay. We point out that if the property of predictability is
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stronger than that of diagnosability, i.e., if an event is predictable,
then this event is also diagnosable.

The problem of robust codiagnosability against Denial-of-
Service and deception attacks has been considered in [16]. The
authors assume that an attacker can insert fake packages into the
network that transmits the sensor readings such that delays and loss
of observations may occur. They construct a new diagnoser to verify
the property of robust codiagnosability. In [17], the problem of
robust codiagnosability against sensor attacks under cost constraint
is proposed. The considered attacks include symbol insertion,
symbol erasure, and symbol replacement attacks. They assumed
that each attack action consumes a certain amount of cost. They
developed a strategy to verify the robust codiagnosability against an
attacker with a bounded total cost.

Mainly inspired by [16, 17] that considered the problem of
robust diagnosability in DESs subject to cyberattacks, we propose
the problem of robust predictability in DESs subject to sensor
attacks. To the best of the author’s knowledge, this problem has
not been considered in the framework of DESs. We finally mention
that in [18], a structure named joint estimator is addressed to solve
the problem of joint state estimation under attacks. This is a general
structure that can be used to consider a set of problems in DESs
subject to sensor attacks. In this work, we extend such a structure to
solve the problem of robust predictability against sensor attacks.

In Section 2, the automata model and the notions of
predictability and diagnoser are given. In Section 3, the
problem considered in this study is presented. In Section 4,
the real diagnoser is computed. It characterizes the real
evolution of the diagnoser subject to sensor attacks. In Section
5, the fake diagnoser is constructed. It characterizes the fake
evolution of the diagnoser subject to sensor attacks. In Section 6,
the hybrid diagnoser is computed. It allows us to test if a critical
event is robustly predictable. Section 7 summarizes the main
results of this work, and the possible future work is also
pointed out.

2 Preliminaries

Let E be an alphabet and L a language defined over E*. The prefix
closure of L is defined by �L � {σ ∈ E* | (∃σ′ ∈ E*) σσ′ ∈ L}. The
post language of L after σ ∈ L is defined as L/σ = {σ′ ∈ E* | σσ′ ∈ L}. A
language L is live if for all σ ∈ L, there always exists e ∈ E such that σe
∈ L. The set of words in L that end with event f is defined byΨ(f, L) =
{σf ∈ L | σ ∈ E*, f ∈ E}.

A deterministic finite-state automaton (DFA), denoted by G, is a
four tupleG = {X, E, δ, x0}, where X is a set of states; E is a finite set of
events; δ: X × E → X is the transition function and can be extended
from the domain X × E to the domain X × E*, that is, δ(x, ε)≔ x, and
δ*(x, σe)≔ δ(δ*(x, σ), e), where e ∈ E, σ ∈ E*, and x0 is the initial state.
The generated language of G is defined by L(G) = {σ ∈ E* | δ*(x, σ) is
defined}. The set of active events at state x of G is defined by ΓG(x) =
{e ∈ E | δ(x, e) is defined}.

A set of states {x1, x2, . . ., xn}⊆ X and a word σ = e1e2. . .en ∈ E*
form a cycle if δ(xi, ei) = xi+1, i = 1, 2, . . ., n − 1, and δ(xn, en) = x1. The
accessible part of G with respect to state x is defined as Ac(G, x) =
(Xac, E, δac, x0), where Xac = {x′ ∈ X | (∃σ ∈ E*) δ*(x, σ) = x′}, δac �
δ|Xac×E→Xac

.

Due to the lack of observability in the system, E is divided into
the set of observable events Eo and the set of unobservable events
Euo. The natural projection on Eo is denoted as P: E* → Eo*.
Considering a word σ ∈ E*, P(σ) simply removes the unobservable
events from σ, that is, P(ε) ≔ ε and P(σe) ≔ P(σ)e if e ∈ Eo and
P(σe) ≔ P(σ) if e ∈ E \ Eo.

Definition 1. [1] Consider a prefix-closed and live language L on
alphabet E. An event f is said to be predictable with respect to P if

(∃n ∈ N) ∀σ ∈ Ψ(f, L),∃t ∈ �σ such that f ∉ t ∧ P, where
condition P:

∀u ∈ L such that P(u) = P(t), f∉u. ∀v ∈ L/u such that |v|≥ n 0

f ∈ v.
In plain words, an event f is predictable if it holds that

once the observation P(t) is produced, f will necessarily occur
within n steps, where t is a normal prefix of a word σ that ends
with f.

Definition 2. [1] Let G = (X, E, δ, x0) be a plant and f an event that
needs to be predicted. The diagnoser is a DFA, denoted as Dg = (B,
Eo, δd, b0), where

• B ⊆ 2X×{N,F}, for example, b = {(x1, l1), . . ., (xn, ln)}, and x1, x2. . .,
xn ∈ X;

• δd: B × Eo → B, for example, if ∃e ∈ Eo such that δd(b, e) = b′,
where b = {(x1, l1), . . ., (xm, lm)} and
b′ � {(x1′, l1′), . . . , (xn′, ln′)}, then ∃i ∈ {1, . . ., m}, ∃j ∈ {1,
. . ., n}, and ∃σ � te: t ∈ Euo* such that δ*(xi, σ) � xj′, where

lj′ � N if li � N ∧ f ∉ σ,
F if li � F ∨ f ∈ σ.

{
If a state of the diagnoser is labeled N, it indicates that

event f has not happened when the current state is reached. If a
state of the diagnoser is labeled F, it implies that event f
has happened when the current state is reached. By
convention, the unobservable reach is not included in a
diagnoser state.

Definition 3. [1] In the diagnoser Dg = (B, Eo, δd, b0),

• We define Bn = {b = {(x1, l1), . . ., (xn, ln)} ∈ B | ∀ li ∈ {l1, . . ., ln},
li = N} as the set of normal states of Dg.

• We define Bc = {b = {(x1, l1), . . ., (xn, ln)} ∈ B | ∀ li ∈ {l1, . . ., ln},
li = F} as the set of certain states of Dg.

• We define Buc = {b = {(x1, l1), . . ., (xn, ln)} ∈ B | ∃ li, lj ∈ {l1, . . .,
ln}, li = N, lj = F} as the set of uncertain states of Dg.

• We denote by Bd the set of normal states with an instantaneous
continuator, which is not normal, that is, Bd = {b ∈ Bn | (∃e ∈
Eo) δd(b, e)∉Bn}.

In other words, a state b ∈ B is normal if all the labels within it are
N; a state b ∈ B is certain if all the labels within it are F; and a state b ∈
B is uncertain if there exist labels N and F within it.

Theorem 4. [1] Let G be a plant and Dg = (B, Eo, δd, b0) its
diagnoser. An event f is predictable if and only if for all bd ∈ Bd, in the
accessible part of the diagnoser Ac(Dg, b), all cycles are cycles of
certain states.
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3 Problem formulation

Let G = (X, E, δ, x0) be a plant modeled by a DFA. As shown in
Figure 1, if the word σ ∈ E* is generated byG, the observation s = P(σ)
may be corrupted by an attacker. Then, the diagnoser predicts the
occurrence of a critical event in accordance with the corrupted
observation s′. It should be noted that the internal structure of the
attacker within the dotted lines will be discussed later.

Suppose that an attacker can only tamper with a subset of events
of G, we call this subset the set of compromised events Ecom. We
divide Ecom into two subsets, that is, Ecom = Eins ∪ Eera, where Eins is
the set of events that may be inserted into the diagnoser observation,
and Eera is the set of events that may be deleted from the diagnoser
observation. The sets Eins and Eera may contain common events.

To make a distinction between the attacker’s action from the
original behavior of G, we define two new sets of events. We denote
by E+ the set of inserted events, defined as E+ = {e+ | e ∈ Eins} [19]. We
denote by E− the set of erased events, defined as E− = {e− | e ∈ Eera}
[19]. If e+ ∈ E+ happens, it indicates that an attacker inserts the fake
symbol e ∈ Eins into the diagnoser observation. If e− ∈ E− happens, it
indicates that an attacker erases the real symbol e ∈ Eera from the
diagnoser observation. Finally, we denote by Ea the attack alphabet,
defined as Ea = Eo ∪ E+ ∪ E−. We point out that the three subsets Eo,
E+, and E− are disjoint.

Definition 5. Let G be a plant and Ecom = Eins ∪ Eera the set of
compromised events. An attacker is defined by a sensor attack
function fs: P[L(G)] → Ea*:

(1) fs(ε) ∈ E+* ,
(2) ∀se ∈ P[L(G)]:

fs se( ) ∈ fs s( ) e−, e{ }E+* if e ∈ Eera,
fs se( ) ∈ fs s( )eE+* if e ∈ Eo\Eera.

{ (1)

Condition (1) means that a word in E+* can be inserted by the
attacker before an observable event occurs in G. Condition (2) means
that when an event that can be erased by the attacker occurs, the
attacker either erases it or not; then, it inserts any word defined overE+* .
Finally, when an event that cannot be erased by the attacker happens,
the attacker can insert a word defined over E+* after it.

Let G be a plant. We denote by L(fs, G) the attack language,
defined by L(fs, G) � fs(P[L(G)]) ⊆ Ea*. We call w ∈ L(fs, G) an
attack word. We denote by F s the set of sensor attack functions. We
denote by L(F s, G) the union of all the attack languages, defined by
L(F s, G) � ⋃

fs∈F s

fs(P[L(G)]).

Definition 6. The real mask ~P: Ea* → Eo* is defined as follows:

~P ε( ) � ε, ~P we′( ) � ~P w( )e if e′ � e ∈ Eo ∨ e′ � e− ∈ E−,
~P w( ) if e′ � e+ ∈ E+.

{ (2)

In plain words, the real mask transforms events in Ea into real
events that have happened in the system. As e− means an erased
event that has happened in the system, e− is transformed into the
corresponding event e ∈ Eo. e+ is neglected because it is a fake event.

Definition 7. The diagnoser mask P̂: Ea* → Eo* is defined as
follows:

P̂ ε( ) � ε, P̂ we′( ) � P̂ w( )e if e′ � e ∈ Eo ∨ e′ � e+ ∈ E+,
P̂ w( ) if e′ � e− ∈ E−.

{ (3)

In simple words, the diagnoser mask characterizes how the
diagnoser observes events in Ea. Namely, the diagnoser cannot
distinguish the real event e ∈ Eo from the inserted event e+ ∈ E+,
and it cannot observe erased events in E−.

As shown in Figure 1 within the dotted lines, the observation s ∈
Eo is corrupted into the attack word w ∈ Ea* by the sensor attack
function fs; then, w is transformed into the corrupt observation
s′ � P̂(w). Therefore, the diagnoser actually observes s′.

In this study, letG be a plant. The following two assumptions are
made:

1) The generated language L(G) is live.
2) In G, there does not exist a cycle that consists of unobservable

events only.

Assumption 1) is made for the sake of simplicity. Assumption 2)
guarantees that plant G does not generate unobservable words with
infinite length.

Definition 8. Let G be a plant that satisfies Assumption 1) and
Assumption 2). An event f is robustly predictable with respect to P if

(∃n ∈ N) ∀σ ∈ Ψ(f, L), ∃t ∈ �σ such that f ∉ t ∧ Pr, where
condition Pr:

∀w ∈ L(F s, G) such that ~P(w) � P(t) ∨ P̂(w) � P(t). ∀u ∈
L(G) such that P(u) � ~P(w) ∨ P(u) � P̂(w), f∉u. ∀v ∈ L(G)/u
such that |v|≥ n 0 f ∈ v.

In Definition 8, let t be a normal prefix of a word σ that ends with
f. We use t to find all the attack words w ∈ Ea* such that
~P(w) � P(t) ∨ P̂(w) � P(t). Then, we use these attack words w
to find all the word u ∈ E* such that P(u) � ~P(w) ∨ P(u) � P̂(w).

FIGURE 1
System under attack.
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An event f is robustly predictable if it holds that once the observation
P(u) is produced, then f will necessarily occur within n steps.

We point out that, for each attack word w, we distinguish
the observations P(u) � ~P(w) and P(u) � P̂(w) because the
attacker can make these two observations look alike for the
diagnoser.

4 Real diagnoser

The real diagnoser Dr describes the real evolution of the
diagnoser in accordance with the attack alphabet Ea. Namely, the
real diagnoser changes its states the same way in terms of e ∈ Eera and
the corresponding events e−; the real diagnoser does not change its
states when the fake event e+ ∈ E+ happens.

Definition 9. Let G = (X, E, δ, x0) be a plant and Dg = (B, Eo, δd, b0)
the diagnoser. The real diagnoser is a DFADr = (B, Ea, δr, b0), and its
transition function δr satisfies the following:

for all b ∈ B, for all e ∈ Eo: δr b, e( ) ≔ δd b, e( ),
for all b ∈ B, for all e ∈ Eera: δr b, e−( ) ≔ δr b, e( ),
for all b ∈ B, for all e ∈ Eins: δr b, e+( ) ≔ b.

⎧⎪⎨⎪⎩ (4)

The construction of the real diagnoser can be explained as
follows: first, we set the transition function of the real diagnoser
Dr equal to the transition function of the diagnoser Dg. Then, each
time there is a transition labeled e ∈ Eera, we add a transition labeled
e−. Finally, for each event in Eins, for each state of Dr, we add a self-
loop labeled e+.

We point out that the real diagnoser Dr is similar to the attacker
observer constructed by Algorithm 1 in [18]. Although the input of
Algorithm 1 is the observer of G, here we replace it with the
diagnoser of G.

Example 10. As sketched in Figure 2A, let G be the plant, Eo = {a,
b}, and Euo = {f}. Assume that f is the event that needs to be predicted.
The diagnoser Dg = (B, Eo, δd, b0) is sketched in Figure 2B.

Let Eins = Eera = {a}. The real diagnoser is shown in Figure 3. We
add a transition δr({0N}, a−) = {1N} in Dr because there exists a
transition δd({0N}, a) = {1N} such that e ∈ Eera in Dg. Self-loops
labeled a+ are added at all the states of Dr because a ∈ Eins.

Proposition 11. Let G be the plant, Dg = (B, Ea, δ, b0) its diagnoser,
and Dr = (B, Ea, δr, b0) the real diagnoser.

(i) L(Dr) � L(F s, G);

(ii)∀s L(Dg), ∀fs ∈ F s with w � fs(s) ∈ Ea*: δr*(b0,w) � δd*(b0, s).

Proof. The proof is neglected because it is the same as the proof of
Proposition 1 in [18]. In simple words, item 1) means that the real
diagnoser generates the union of all the attack languages. Item 2)
indicates that the state arrived in Dr by implementing w �
fs(s) ∈ Ea* equal to the state arrived in Dg by implementing s ∈ Eo*.

5 Fake diagnoser

The fake diagnoser Df describes the fake evolution of the diagnoser
in accordance with the attack alphabet Ea. Namely, the fake diagnoser
changes its states the same way in terms of e ∈ Eins and the
corresponding events e+ because it cannot distinguish the real event
of the plant e from the fake event e+. The fake diagnoser does not change
its states in case of the occurrence of e− ∈ E− because it cannot observe
the erased event e−. We add a new state b∅ in Dr. The diagnoser knows
that the plant is under attack when this state is reached.

Definition 12. Let G = (X, E, δ, x0) be a plant andDg = (B, Eo, δd, b0)
the diagnoser. The fake diagnoser is a DFA Df = (Bf, Ea, δf, b0) such
that Bf = B ∪ b∅, and its transition function δf satisfies the following:

for all b ∈ B, for all e ∈ Eo: δf b, e( ) ≔ δd b, e( ),
for all b ∈ B, for all e ∈ Eins: δf b, e+( ) ≔ δf b, e( ),
for all b ∈ B, for all e ∈ Eera: δf b, e−( ) ≔ b,
for all b ∈ B, for all e ∈ Ea: if δf b, e( ) is undefined, then δf b, e( ) ≔ b∅ .

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(5)

The construction of the fake diagnoser can be explained as follows:
first, we set the transition function ofDf equal to the transition function
of the diagnoserDg. Then, each time there is a transition labeled e ∈ Eins,
we add a transition labeled e+ ∈ E+. Self-loop labeled events in E− are
added at all the states ofDf. Finally, for each event in Ea and each state in
B, we set δf(b, ea) = b∅ for all the undefined transitions. Note that state
b∅ has no input and output arcs.

We point out that the fake diagnoser Df is similar to the operator
observer computed by Algorithm 2 of [18]. Although the input of
Algorithm 2 is the observer of G, here we replace it with the
diagnoser of G.

FIGURE 2
(A) Plant G and (B) diagnoser Dg in Example 10.

FIGURE 3
Real diagnoser Dr in Example 10.
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Example 13. Recall plant G with its diagnoser Dg in Example 10.
Suppose that Eins = Eera = {a}. Figure 4 shows the fake diagnoser.

First, we add a transition δr({0N}, a+) = {1N} in Df as there is a
transition δd({0N}, a) = {1N} such that e ∈ Eins in Dg. Then, for all
the states of Df, self-loops labeled a− are added because a ∈ Eera.
Finally, all the undefined transitions lead to the state b∅.

The following definitions are given to formalize the generated
language of the fake diagnoser Df.

Definition 14. Consider a plant G with the fake diagnoser Df.

• A sensor attack function fs is stealthy
if P̂[L(fs, G)] ⊆ P[L(G)].

• The set of stealthy words is defined
as Ws � {w ∈ Ea* | P̂(w) ∈ P[L(G)]}.

• The set of exposing words is defined
as We � {wea ∈ Ea* | w ∈ Ws, ea ∈ Ea, wea ∉ Ws}.

According to Definition 14, fs is stealthy if the attack words in
L(fs, G) ⊆ Ea* can be transformed into words in P[L(G)] ⊆ Eo* via
the diagnoser mask P̂; that is, the diagnoser cannot discover the
presence of an attacker. Set Ws includes all the words that keep
the attacker stealthy. Each word in We is the concatenation of a
stealthy word and an event in Ea, and the resulting word is no
more stealthy.

Proposition 15. Let G be the plant, Dg = (B, Eo, δd, b0) the
diagnoser, and Df = (B, Ea, δf, b0) the fake diagnoser.

(i) L(Df) = Ws ∪ We;
(ii) ∀w ∈ L(Df): ifw ∈Ws, then δf* (b0, w) � δd*(b0, P̂(w)); ifw ∈We,

then δf* (b0, w) � b∅.

Proof. The proof is ignored because it is the same as the proof of
Proposition 2 in [18]. In plain words, item (i) implies that the
language of the fake diagnoser equals the union ofWs andWe. Item
(ii) means that the state arrived in Df by implementingw ∈ Ea* equal
to the state arrived in Dg by implementing P̂(w) ∈ Eo*, and all the
exposing words lead to state b∅.

6 Hybrid diagnoser

The notion of the hybrid diagnoser is given on the basis of the
real diagnoser and fake diagnoser.

Definition 16. Let G = (X, E, δ, x0) be a plant, Dr = (B, Ea, δr, b0) the
real diagnoser, and Df = (Bf, Ea, δf, b0) the fake diagnoser. The hybrid
diagnoserDh = (R, Ea, δh, r0) is defined as the parallel composition of
Dr and Dh, that is, Dh = Dr‖Df, where

• R = (b, bf) ⊆ 2X×{N,F}× 2X×{N,F};
• δh[(b, bf), e] = [δr(b, e), δf(bf, e)] if e ∈ ΓDr(b) ∩ ΓDf(bf),where
ΓDr(b) (ΓDf(bf)) denotes the set of active events at state b (bf)
of Dr (Df);

• the initial state is r0 = (b0, b0).

Now, we investigate the complexity of building the hybrid
diagnoser Dh. Let G = (X, E, δ, x0) be a plant. Its diagnoser Dg is
built in 2|X| steps. In accordance with Definition 9, the real diagnoser
Dr contains at most 2|X| states. In accordance with Definition 12, the
fake diagnoser Df contains at most 2|X| + 1 states. As Dh = Dr‖Df, the
computational complexity to build Dh is O(2

|X|· 2|X|).

Example 17. Recall plant G in Example 10. The hybrid diagnoser
Dh = Dr‖Df is sketched in Figure 5, where Dr (Df) is sketched in
Figure 3 (Figure 4).

Definition 18. Let G be the plant, and Dh = (R, Ea, δh, r0) be the
hybrid diagnoser:

• We define Rn � {r � (b, bf) ∈ R | b � {(x1 , l1), . . . , (xm, lm)}, bf � {(x1′, l1′),
. . . , (xn′, ln′)} such that∀ li ∈ {l1 , . . . , lm},∀ lj′ ∈ {l1′, . . . , ln′}, li � N, lj′ � N} the set of

normal states of Dh.

• We define Rc � {r � (b, bf) ∈ R | b � {(x1 , l1), . . . , (xm, lm)}, bf � {(x1′, l1′), . . . ,
(xn′, ln′)} such that∀ li ∈ {l1 , . . . , lm},∀ lj′ ∈ {l1′, . . . , ln′}, li � F, lj′ � F} the set of certain
states of Dh.

• We define Ruc � {r � (b, bf) ∈ R | b � {(x1 , l1), . . . , (xm, lm)}, bf � {(x1′, l1′),
. . . , (xn′, ln′)} such that∃ li ∈ {l1 , . . . , lm},∃lj′ ∈ {l1′, . . . , ln′}, li � N (resp., F), lj′ �
F (resp., N)} the set of uncertain states of Dh.

• We denote by Rd the set of normal states with an instantaneous
continuator, which is not normal, that is, Rd = {r ∈ Rn | (∃ea ∈
Ea) δh(r, ea)∉Rn}.

We point out that Definition 18, defined in hybrid diagnoser Dh,
is the counterpart of Definition 3, defined in the diagnoser Dg.

Theorem 19. LetG be a plant,Dg = (B, Eo, δd, b0) the diagnoser, and
Dh = (R, Ea, δh, r0) the hybrid diagnoser.

(a) L(Dh) � L(F s, G) ∩ (Ws ∪ We);
(b) ∀s ∈ P[L(G)], ∀fs ∈ F s with w � fs(s) ∈ Ea*;

(i) If w ∈ Ws, then
δh*(r0, w) � (b, bf) 5 δd*(b0, s) � b, δd*[b0, P̂(w)] � bf;

(ii) If w ∈ We, then δh*(r0, w) � (b, b∅) 5 δd*(b0, s) � b,
δd*[b0, P̂(w)] is undefined.

Proof. The proof is neglected because it is the same as the proof of
Theorem 1 in [18]. In other words, item (a) implies that the language

FIGURE 4
Fake diagnoser Df in Example 13.
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of the hybrid diagnoser Dh equals the intersection of the language of
the real diagnoser and the language of the fake diagnoser.

Item (b) means that (i) if w ∈Ws and the state (b, bf) is arrived in
Dh by implementing w = fs(s), then the first element of this state
equals the state arrived in the diagnoser Dg by implementing s ∈ Eo*.
The second element of this state equals the state arrived in Dg by
implementing P̂(w). (ii) If w ∈We, then δd*(b0, P̂(w)) is undefined.

Proposition 20. Let G be a plant and Dh = (R, Ea, δh, r0) the hybrid
diagnoser. InDh, we suppose that a set of states {r1, r2, . . ., rn}⊆ R and
a word w � ea1ea2 . . . ean ∈ Ea* form a cycle. If ∃ri ∈ Rc, then ∀rj ∈ Rc,
where i, j ∈ {1, 2, . . ., n} and Rc are the set of certain states.

Proof. Proposition 20 means that in a cycle of Dh, if a certain state
exists, then all the other states in this cycle are certain. The proof
follows from the fact that the label F propagates; once a state is
labeled as a certain state, all the states that are reachable from this
state are also certain.

Proposition 21. Let G be a plant, Dg = (B, Eo, δd, b0) the diagnoser,
and Dh = (R, Ea, δh, r0) the hybrid diagnoser. In Dh, if a set of states
{(b1, bf1), (b2, bf2), . . ., (bn, bfn)}⊆ R and a word w �
ea1ea2 . . . ean ∈ Ea* form a cycle, where ∀i ∈ {1, 2, . . ., n}, (bi, bfi)
∈ {Rn ∪ Ruc}. Then, in G, there exists a set of states {x1, x2, . . ., xn}⊆ X
and a word σ = e1e2. . .en ∈ E* forming a cycle such that ∀i ∈ {1, 2, . . .,
n}, (xi, li) ∈ bi, li = N, w = fs[P(σ)] or ∀i ∈ {1, 2, . . ., n}, (xi, li) ∈ bfi, li =
N, P(σ) � P̂(w), where fs is the sensor attack function, and P̂ is the
diagnoser mask.

Proof. Assume that, in the hybrid diagnoser Dh, a set of states
{(b1, bf1), (b2, bf2), . . ., (bn, bfn)}⊆ R and a word w �

ea1ea2 . . . ean ∈ Ea* form a cycle, where ∀i ∈ {1, 2, . . ., n}, (bi,
bfi) ∈ {Rn ∪ Ruc}.

As Dh = Dr‖Df, a set of states {b1, , b2, . . ., bn}⊆ B and the
word w � ea1ea2 . . . ean ∈ Ea* form a cycle in the real diagnoser
Dr, and a set of states {bf1, , bf2, . . ., bfn}⊆ Bf and the word w �
ea1ea2 . . . ean ∈ Ea* form a cycle in the fake diagnoser Df.

In accordance with Theorem 19, if w ∈ Ws, then
δh*(r0, w) � (b, bf) 5 δd*(b0, s) � b, δd*[b0, P̂(w)] � bf, where
w = fs(s), s � P(σ) ∈ Eo*, and σ = e1e2. . .en ∈ E*. As ∀i ∈ {1, 2,
. . ., n}, (bi, bfi) ∈ {Rn ∪ Ruc}, we distinguish two cases: 1) If ∀i ∈ {1, 2,
. . ., n}, (xi, li) ∈ bi, li = N, then in G, a set of states {x1, , x2, . . ., xn}⊆ X
and a word σ = e1e2. . .en ∈ E* form a cycle, wherew = fs[P(σ)]. 2) If ∀i
∈ {1, 2, . . ., n}, (xi, li) ∈ bf, and li = N, then in G, a set of states {x1, , x2,
. . ., xn}⊆ X and a word σ = e1e2. . .en ∈ E* form a cycle, where P(σ) �
P̂(w).

Note that as state b∅ has no output arcs in the fake diagnoser Df,
then in Dh, the cycle does not contain the state whose second
element is b∅. Therefore, the case of w ∈We is not considered when
we use the results of Theorem 19. For the same reason, we exclude
this case in the proof of Theorem 22.

Theorem 22. Let G = (X, E, δ, x0) be a plant and Dh = (R, Ea, δh, r0)
the hybrid diagnoser. An event f is robustly predictable if and only if,
for all rd ∈ Rd, in the accessible part of the hybrid diagnoser Ac(Dh,
rd), all cycles are cycles of certain states.

Proof. (If) Assume that for all rd ∈ Rd, in Ac(Dh, rd), all cycles are
cycles of certain states. Consider a word σ ∈ Ψ(f, L(G)) such that
δ*(x0, σ) = x. Let σuoeo ∈ L/σ such that eo ∈ Eo and δ*(x, σuoeo) = x′.

Consider a word w such that ~P(w) � P(σ) or P̂(w) � P(σ). Let
δh*(r0, w) � r � (b, ff) and δh(r, eo) � r′ � (b′, bf′ ). According to

FIGURE 5
Hybrid diagnoser Dh in Example 17.
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Theorem 19, δh*(r0, weo) � (b′, bf′ ) � r′ 5 δd*(b0, s) � b′,
δd*[b0, P̂(weo)] � bf′ . We consider the following two cases:

a) If ~P(w) � P(σ), then s � ~P(weo) � P(σeo). It can be concluded
that there exists (x, l) ∈ b′ such that l = F.

b) If P̂(w) � P(σ), then P̂(weo) � P(σeo). It can be concluded that
there exists (x, l) ∈ bf′ such that l = F.

In any case, we can conclude that r′ ∈ Ruc ∪ Rc. As δh(r, eo) = r′,
the following two cases are possible:

1) If r ∈ Rn, it means that r ∈ Rd because δh(r, eo) = r′ ∈ {Ruc ∪ Rc}. Let
σ = tf, where t ∈ E*. ∀u ∈ L(G) such that P(u) � ~P(w) or
P(u) � P̂(w). As ∀rd ∈ Rd, in Ac(Dh, rd), all cycles are cycles of
certain states; then ∀v ∈ L(G)/u, |v| ≥ n, and v contains f.

2) If r ∈ Ruc ∪ Rc, then we can always find a state r″ ∈ Rd such that
state r is reachable from state r″. As a result, the proof for case 2)
is reduced to the proof for case 1) by replacing r with r″.

(Only if) Assume that event f is robustly predictable, and there
exists rd ∈ Rd such thatAc(Dh, rd) has a cycle that contains a state that
is uncertain.

According to Proposition 20, in Ac(Dh, rd), as there exists a
state that is uncertain in the cycle, then none of the states
is certain in this cycle. In accordance with Proposition 21, as
there exists a cycle where all the states are uncertain in Ac(Dh,
rd), there exists a cycle where all the states are labeled N in
plant G.

Suppose that, in Dh, δh*(r0, w) � rd � (b, bf) ∈ Rd. By Theorem
19, δh*(r0, w) � (b, bf) 5 δd*(b0, s) � b, δd*[b0, P̂(w)] � bf. As rd
∈ Rd, then there exists a word σ ∈ Ψ(f, L(G)) such that σ = tf, t ∈ E*,
~P(w) � P(t) or P̂(w) � P(t). Let r1 = (b, bf) ∈ R be a state of the
cycle ofAc(Dh, rd) such that δh*(rd, w′) � r1. As δh*(r0, w) � rd, then
δh*(r0, ww′) � r1. Let x be a state of the cycle of G such that δ*(x0,
uv) = x, and δ*(x, (e1e2 . . . en)m) � x, where u ∈ L(G), v ∈ L(G)/u
such that P(u) � ~P(w) or P(u) � P̂(w). Then,
δ*(x0, uv(e1e2 . . . en)m) � x. Because x is labeled by N in Ac(Dh,
rd), then we can always find a word v(e1e2 . . . en)m that does not
contain f, and its length is greater than any n ∈ N. As a result, the
robustly predictable condition is violated, leading to a contradiction.

Example 23. Recall plant G in Example 10, where Eo = {a, b} and
Euo = {f}. Assume that event f needs to be predicted. Let Eins = {a} and
Eera = {a}.

In the diagnoser Dg in Figure 2B, state {1N} ∈ Bd. As Ac(D, {1N})
only contains one cycle (self-loop) labeled b at state {2F}, that is a
certain state, according to Theorem 4, event f is predictable when no
attack occurs.

In the hybrid diagnoser Dh visualized in Figure 5, states ({0N},
{1N}), ({1N}, {0N}), ({1N}, {1N}) ∈ Rd. As Ac[Dh, ({0N}, {1N})]
includes a cycle labeled b at state ({3N}, {2F}), that is not a certain

state, and Ac[Dh, ({1N}, {0N})] contains a cycle labeled b at state
({2F}, {3N}), that is not a certain state, in accordance with Theorem
22, event f is not robustly predictable when the attack occurs.

7 Conclusion

We consider the problem of robust predictability against sensor
attacks. Based on a novel structure called hybrid diagnoser, an
approach to test robust predictability is provided.

In the future, on one hand, as the construction of the diagnoser
has exponential complexity, we intend to construct a verifier, which
has polynomial complexity, to test robust predictability. On the
other hand, we will try to extend the approach proposed in this work
to the decentralized case.
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