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The early diagnosis of Mycobacterium avium subsp. paratuberculosis (MAP) is

one of the current challenges of farmers and veterinarians. This work aimed

to investigate the changes in metabolic levels associated with natural MAP

infection in infected and infectious dairy cattle. The study included sera from

23 infectious/seropositive, 10 infected but non-infectious/seronegative, and 26

negative Holstein Fresian cattle. The samples were selected from a collection

of samples gathered during a prospective study. The samples were analyzed

by quantitative nuclear magnetic resonance (NMR) spectroscopy and routine

blood chemistry. The blood indices and the 1H NMR data were concatenated

by low-level data fusion, resulting in a unique global fingerprint. Afterwards,

the merged dataset was statistically analyzed by the least absolute shrinkage

and selection operator (LASSO), which is a shrinkage and selection method for

supervised learning. Finally, pathways analysis was performed to get more insights

on the possible dysregulated metabolic pathways. The LASSO model achieved,

in a 10 time repeated 5-fold cross-validation, an overall accuracy of 91.5% with

high values of sensitivity and specificity in classifying correctly the negative,

infected, and infectious animals. The pathway analysis revealed MAP-infected

cattle have increased tyrosine metabolism and enhanced phenylalanine, tyrosine

and tryptophan biosynthesis. The enhanced synthesis and degradation of ketone

bodies was observed both in infected and infectious cattle. In conclusion, fusing

data from multiple sources has proved to be useful in exploring the altered

metabolic pathways in MAP infection and potentially diagnosing negative animals

within paratuberculosis-infected herds.
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1. Introduction

Mycobacterium avium subspecies (subsp.) paratuberculosis

(MAP), a slow growing, obligate intracellular pathogen, is the

etiologic agent of paratuberculosis, also known as Johne’s disease

(JD) (1). It is a chronic granulomatous infection causing relevant

economic losses in the cattle industry because of reduced milk

production, weight loss, and eventual death (2–4). MAP is

commonly transmitted by the fecal-oral route (2, 4, 5). The

high resistance of MAP, the long incubation period, and the

pathogenesis of the disease make the management of the disease

difficult (6). In addition, the difficulty, in the absence of accurate

diagnostic tests entail delayed diagnosis of JD, of making an

early diagnosis does not allow prevention of MAP diffusion

within cattle herds, nor protection of young calves that are more

susceptible to infection (2). After the long incubation period,

the animals can be divided into: (i) infected, when MAP is

present intracellularly in animal tissues, (ii) infectious, when the

animal is shedding MAP, and (iii) affected, when animals show

clinical signs (7), which are visible after 2–6 years post-infection.

Different tests, such as fecal polymerase chain reaction (PCR)

and enzyme-linked immunosorbent assay (ELISA) are commonly

used to make JD diagnosis (8). Unfortunately, cattle become

positive to these tests only during the late sub-clinical phase, and

thus, the successful early diagnosis of JD remains a challenge,

especially if considering the low efficacy of laboratory tests (7).

Over the last years, proteomics and metabolomics of animal

sera provided encouraging results (9–11) and different studies

on infected cattle have been carried out to introduce new tools

with the aim of unraveling important molecular markers that

describe the different stages of JD, diagnose early MAP infection,

and overcome the lack of reliable tests (12–14). Spectrometric

and spectroscopic methods recently were used to investigate the

metabolic changes in naturally and experimentally MAP-infected

cattle (13, 15–17). In details, the metabolomics studies, carried out

on sera of experimentally MAP-infected cattle using 1H nuclear

magnetic resonance (NMR) spectrometry, showed metabolomics

changes related to energy shortages, increased fat metabolism,

and altered protein turnover (13). Taylor et al. first examined

the sera metabolic profiles of naturally MAP-infected Holstein-

Friesian heifers and compared them to controls, finding changes

in some amino acids related to biochemical reprogramming (16)

and then proposed polyunsaturated fatty acids and eicosanoids

as potential biomarkers for MAP diagnosis (18). In our previous

study, we applied direct analysis in real time high resolution

mass spectrometry (DART-HRMS) coupled to a mid-level data

fusion approach to tease out molecular features able to chemically

characterize the animal sera at the infected and infectious

stage (15).

The least absolute shrinkage and selection operator (LASSO)

method yields multiclass classifiers that involve only a small

subset of discriminant metabolites (19–21). A mathematical

weight for each statistically informative metabolite is calculated

by LASSO, based on its capability in characterizing a certain

class. The application of LASSO method already showed its

utility in multiclass classification of cancer tissues for rapid

diagnosis in intra-surgery settings upon integration with mass

spectrometry (20, 22, 23). Recently, LASSO showed good

performances in classifying biological samples based on the

molecular information captured by NMR (24–26). Note that this

parsimonious method is less susceptible to the noise linked to

the heterogeneity of the samples (27). In the current study,

the combination of blood chemistry and 1H NMR signature

analysis, upon integration with LASSO method, was adopted to

robustly determine active signatures of metabolic changes capable

of classifying infected (non-infectious), infectious, and negative

(control) cattle. Finally, pathway analysis was performed on the

informative metabolites teased out by LASSO to reveal potential

dysregulated metabolisms.

2. Methods

2.1. Animal selection

Holstein Friesian cattle were selected from four dairy farms

of the Veneto region (Italy) with known paratuberculosis initial

seroprevalences of >10% and were divided into age-cohorts by

reproduction cycle: heifers, primiparous, and pluriparous cows. A

total of 356 animals were monitored for up to 4 lactations. Blood

and fecal sample were collected at 30± 15 days before the expected

calving date to minimize individual metabolic variations, except for

young heifers that were recruited at 13–15 months of age. During

the mid-dry period, cows do not produce milk and the metabolic-

hormonal changes that lead to calf delivery are not fully established.

MAP-affected animals and cattle showing other concurrent diseases

or under pharmacological treatment were excluded from the study.

Blood sample collection was performed under authorization n.

506/2015 of the Italian Ministry of Health for the use of animals

for experimental purposes.

2.2. Sample collection and testing for JD

Blood samples were collected from the jugular vein

in anticoagulant-free vacutainer tubes [Greiner Bio-One

(Kremsmünster, Austria)], left to coagulate at room temperature

for 2–4 h, and centrifuged at 3,000 x g for 5min. Aliquots from

the sera obtained were used for detecting serum antibodies

against MAP using a commercial ELISA (IDEXX Paratuberculosis

Screening Ab, IDEXX Laboratories, Inc. Westbrook, MN,

USA) and applying the manufacturer’s instructions for analysis.

Inconclusive and positive sera were submitted to an ELISA

biphasic confirmation test (IDEXX Paratuberculosis Verification

Ab, IDEXX Laboratories, Inc. Westbrook, MN, USA).

Individual fecal samples were collected from the rectal ampulla

and analyzed applying microbiological and molecular diagnostic

methods for MAP identification. All samples were processed for

testing by IS900 direct real-time PCR (qPCR, Applied Biosystems,

Nieuwerkerk a/d IJssel, The Netherlands) according to Pozzato

et al. (28, 29) while the culture was carried out by a double

decontamination method on modified Middlebrook 7H9 liquid

media (7H9+). After 6 weeks of culture, 7H9+ broths were

examined by Ziehl-Nielsen staining and real-time PCR, as reported
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by our previous work (27a). One fecal aliquot from each animal was

stored at−80◦C for possible future analyses.

2.3. JD health status assignment and
sample selection for 1H NMR analysis and
for blood indices determination

From 356 animals, a total of 854 serum samples were collected

during the study period, resulting in a mean value of 2.40 samples

per cattle (range 1–5). Regarding JD testing, the frequency of

positive animals throughout the study period was 6.23% by serology

and 11.05% by fecal PCR/culture. At the end of the prospective

study, the status of infectious was assigned to serum samples of

those animals that tested positive fecal PCR or culture. To exclude

“passive shedders” (30) and assure higher confidence of the status

we decided to select those animals that had seroconverted for

MAP by ELISA as well. Assuming that the infection occurred in

the 1st year of life, the status of infected (non-infectious) was

retrospectively assigned to the previous sample of the bovines

classified as infectious, in which all JD tests (ELISA, PCR, and

culture) produced negative results. The status of negative was

eventually assigned to exposed cohort animals from the same

infected herds that repeatedly tested negative along the study period

and exhibited at least one subsequent JD negative result after

the selected sampling date. These control animals were matched

to cases according to sampling date and age category (heifers,

primiparous cows, and pluriparous cows) in order to minimize

the variability due to dietary and management conditions. The

average number of samplings for these animals was 2.84 (range 2–

4). From the collection of sera stored at−80◦C, 23 sera of infectious

animals, 10 sera of infected animals and 26 sera of negative animals

were selected and then submitted to 1H NMR analysis and blood

indices determination. The age of the selected animals averaged

53.5 months (ranging between 13 and 119 months).

2.4. 1H NMR sample preparation and
analysis

Dried serum sample was reconstituted with 200 µL of

ultra pure water. Subsequently, 50 µL of a standard buffer

solution (54% D2O: 46% 810mM KH2PO4 pH 7.0 v/v containing

5mM DSS (2,2-dimethyl-2-silcepentane-5-sulphonate), 5.84mM

2-chloropyrimidine-5 carboxylate, and 0.1% NaN3 in H2O) was

added to the reconstituted sample. The diluted, buffered sample

(250 µL) was then transferred to 3mm SampleJet NMR tube for

subsequent spectral analysis. All 1H-NMR spectra were collected

on a 700 MHz Avance III (Bruker Daltonics, Bremen, Germany)

spectrometer equipped with a 5mm HCN Z-gradient pulsed-field

gradient (PFG) cryoprobe. The 1H-NMR spectra were acquired at

25◦C using the first transient of the NOESY pre-saturation pulse

sequence (noesy1dpr), chosen for its high degree of quantitative

accuracy. All free induction decays (FIDs) were zero-filled to 250K

data points. The singlet produced by the DSS methyl groups was

used as an internal standard for chemical shift referencing (set to 0

ppm) and for quantification.

2.5. NMR quantification using MagMET

For quantification, all 1H-NMR spectra were processed and

analyzed using a MagMET software package developed in-house

(31). MagMET allows for qualitative and quantitative analysis of an

NMR spectrum by automatically fitting spectral signatures from an

internal database to the spectrum. Specifically, the spectral fitting

for metabolites was done using the standard serum metabolite

library. Typically, all of the visible peaks were assigned. Most of

the visible peaks were annotated with a compound name. It has

been previously shown that this fitting procedure provides absolute

concentration accuracy of 90% or better (31).

2.6. Blood indices

Biochemical indices were determined in serum samples

using commercial dedicated kits applied to the automated

clinical chemistry analyzer, Cobas C501 (Roche Diagnostics,

Mannheim, Germany). Non-esterified fatty acid (NEFA) and β-

hydroxybutyrate (BHB) were determined with a colorimetric kit

produced by Randox (Randox Laboratories Ltd, Crumlin, UK),

whereas haptoglobin (Hp) concentration was obtained by using

the reagents from the Tridelta Phase Haptoglobin Colorimetric

Assay (Tridelta Development Limited, Maynooth, County Kildare,

Ireland.): NEFA, BHB and Hp were analyzed following the

manufacturer’s specific application for the Cobas C501 analyzer.

Almost 200 µL of each sample were necessary for biochemical

analysis as dead volume, but only 2.0, 6.0, and 3.8 µL were

used to measure NEFA, b-OHB and HP, respectively. Serum

electrophoresis was performed on a semi-automated agarose gel

system (Hydrasys LC Sebia, Bagno a Ripoli, FI, Italy). Serum

electrophoresis was performed to evaluate A/G ratio and acute

phase protein pattern. Only 10 µL were used for serum protein

electrophoresis while 2.0 µL were used for total protein analysis on

Cobas 501. The percentage of the each protein fraction, determined

by electrophoretic analysis, was converted into the absolute

concentration (g/L) based on the total protein concentration

obtained by the biuret method on the Cobas C501 analyzer.

2.7. Statistical analysis

The statistical analysis was performed by using RStudio

software 4.0.2 with caret package (32), a useful package for model

implementation. The processed 1H NMR data were autoscaled,

while the blood chemistry data were imputed by k-nearest

neighbor and then autoscaled. Afterwards, the two datasets were

concatenated by low-level data fusion. Low-level data fusion is

a simple concatenation of data in a unique table (33–36). The

merged dataset was submitted to the LASSOmethod, amultinomial

regression with L1 penalty optimized by a grid search, with the aims

of i) selecting and shrinking variables, and ii) predicting the health

status of animals, i.e., negative, MAP-infected, or MAP-infectious.

Moreover, in order to select the best classifier generated by LASSO,

a 10-time repeated 5-fold cross validation was performed on the

concatenated data using the retrieved informative features. To this
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FIGURE 1

The workflow of this study.

aim, we split the data in 75% of data for training the model (47

animals) and 25% for testing it (12 animals). For each iteration,

the training/test split was different. In the first iteration, the model

was tested on test data (12 animals) and test errors were calculated.

After 50 iterations, the average of the test errors was determined

and sensitivity (true positive rate), specificity (true negative rate)

and accuracy were calculated. The statistical workflow of this study

is reported in Figure 1.

2.8. Pathway analysis

Metabolic pathway analysis was performed using the “pathway

analysis” section of the web platform at www.metaboanalyst.ca.

After loading the discriminating metabolites teased out by the

LASSO, and the metabolites’ quantitative values (concentrations

obtained by NMR and blood chemistry), the metabolic pathway

analysis was performed in order to investigate the potential

metabolic pathways that could significantly have relevance in

infected and infectious animals. The pathway analysis is a form

of topology analysis, and applies a global test algorithm (37) for

differentially testing metabolites in functionally related groups

and relative-betweeness-centrality to estimate the importance of

a compound in a given metabolic pathway. Since the pathway

analysis on the Metaboanalyst web platform allows only a binary

comparison, we compared (i) MAP-infected cattle vs. negative

animals and ii) MAP-infectious cattle vs. negative animals.

According to both the resulting p-value and the impact value, the

analysis graphically shows the pathways that could be potentially

altered between each pair of compared MAP stages. The pathway

analysis provides for each pathway: (i) a list of the matched

metabolites over the total number of metabolites, (ii) the raw p-

value, (iii) the p-value adjusted by Holm–Bonferroni method, (iv)

the p-value adjusted by the false discovery rate (FDR), and v) the

pathway impact value. In the plot, the top pathways are ranked

by adjusted p-values (y-axis) and the total number of hits that

determine the impact of the pathway (x-axis). Cut-off values for

pathway analyses results were: impact score >0.1, false discovery

rate (FDR)< 0.25 and p-value< 0.05. The threshold of FDR< 0.25

denotes the confidence of ‘possible’, while the threshold of FDR <

0.05 is regarded as ‘high confidence’ (38).

Moreover, the node color is based on the relevant p-value, and

the node radius is determined based on its pathway impact value.

Large radius means high impact value, small radius means low

impact value. Finally, the color graduates from white (high p-value)

to yellow, orange, and red (low p-value).

3. Results

3.1. Significant metabolites

The list of metabolites quantified in the analyzed samples

by 1H-NMR and blood chemistry test is reported in

Supplementary Table S1. After low-level data fusion, LASSO

method retrieved and validated the statistically significant

metabolites (Figure 2A) within a cross-validation approach. The

LASSO has the capability of minimizing the statistically significant

variables and, thus, tease out a small pattern of metabolites

capable of discriminating each study group. The LASSO was

able to effectively shrink the amount of diagnostically significant

metabolites by selecting a total of 29 molecules that could reliably

predict the health status (with respect to MAP infection) of

the animals. Figure 2A and Supplementary Table S2 reports the

list of metabolites and the weights assigned by the LASSO. A

mathematical weight for each statistically informative feature is

calculated by the LASSO depending on the importance of the

concentration (obtained by NMR and blood chemistry) to a

class. Features that did not contribute to discriminating a class

received a weight of zero and were discarded. Each metabolite

whose concentration was important for characterizing the three

specific classes was given a high weight. As shown in Figure 2A,

magnesium, D-glucose, betaine, creatinine, L-asparagine, and

isopropanol were the variables that allowed the LASSO to predict

that a sample belonged to infected animals. In the same vein, the

metabolic pattern of hydroxyisovalerate, acetoacetate, creatine

kinase, oxoglutarate, total protein, lactic acid, albumin, bilirubin,

creatine, and β-hydroxybutyrate was indicative of infectious cattle.

3.2. LASSO classifier

These selected molecular features were used to build up

a classifier that was cross-validated. The results of the cross-

validation are reported in Figure 2B. A repeated k-fold cross-

validation was performed for the model evaluation. The results of
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FIGURE 2

Predictive metabolic features and performances of the LASSO classifier. (A) Metabolites selected as indicative of negative, MAP-infected and

MAP-infectious animals by LASSO. The related weights of each significant metabolites are illustrated. (B) Performances of the LASSO classifier on

cross-validation. The values of the statistical indicators were calculated within the 95% confidence interval.

the cross-validation are shown in the confusion matrix reported in

the Supplementary Table S3. The classifier correctly classified 25/26

control sera from negative, 7/10 sera from infected and 22/23 sera

from infectious animals. Based on the cross-validation results, we

calculated the statistical indicators. The LASSO classifier achieved

an overall accuracy of 91.5% (95% CI: 81.3–97.2) with high values

of sensitivity and specificity for each class. Specifically, it showed

sensitivity of 96.2% and specificity of 93.9% in correctly predicting

negative animals. Infected animals were correctly predicted by the

LASSO classifier with a very high specificity (100%) and a moderate

sensitivity (70%). Finally, the classifier also categorized infectious

cattle with a sensitivity of 96% and a specificity of 92%.

3.3. Pathway analysis

Figure 3 shows the significantly altered pathways in both

infected and infectious cattle. Specifically, the dysregulated

pathways (considering cut-off values for pathway impact score

>0.1, false discovery rate (FDR) < 0.25 and p-value < 0.05)

in infected cattle, is the phenylalanine, tyrosine, and tryptophan

biosynthesis (Figure 3A). In infectious cattle, the synthesis and

degradation of ketone bodies and tyrosine metabolism were

the most relevant metabolome pathways potentially involved

in the observed variation of serum metabolites (Figure 3B).

All the p-values, FDR and impact values are reported in

Supplementary Tables S4, S5 of the Supplementary material.

4. Discussion

Early diagnosis of JD is a considerable challenge (7). This

is the reason why several authors have recently applied some

combination of new methods (13, 15–17) to provide early evidence

of MAP infection in cattle, for which common diagnostic tests

fail. In this study, we verified the capability of 1H NMR combined

with blood chemistry to effectively distinguish between negative,

naturally infected, and infectious animals, and to identify some

metabolites that could be associated with the latent stage of

infection by MAP. The discovery of unexpectedly dysregulated

pathways are notably more successful when non-targeted analyses

are performed, and such discovery is enhanced by the combination

of data sources (39). In the present work, statistical analysis

using a LASSO allowed establishing possible molecular markers
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FIGURE 3

The metabolic pathway analysis identified di�erences between (A)

MAP-infected vs. negative cattle and (B) MAP-infectious vs. negative

cattle. In each plot, the top pathways were ranked by adjusted

p-values (y-axis) and the total number of hits that determined the

impact of the pathway (x-axis). Moreover, the node color was based

on its p-value and the node radius was determined based on the

pathway impact values. Large radius means high impact value, small

radius means low impact value. Finally, the color graduates from

white (high p-value) to yellow, orange, and red (low p-value).

Cut-o� values for pathway impact score >0.1, false discovery rate

(FDR) < 0.25 and p-value < 0.05.

of disease and categorizing serum samples into the animals’

JD status with high accuracy. In this study, we successfully

captured the characteristic metabolic profiles of healthy, infected,

and infectious animals, and thus, identified potentially altered

metabolic pathways associated with these three different health

statuses. Our pathway analysis revealed MAP-infected cattle have

perturbed phenylalanine, tyrosine and tryptophan biosynthesis:

these observations are in accordance with De Buck et al.,

who reported significant increases in the amino acid tyrosine

(together with threonine, isoleucine, leucine, and asparagine) in

experimentally MAP-infected cattle (13). On the other hand, Tata

et al. found increased tryptamine levels in MAP-infected and

infectious cattle, as compared to controls (15). In the same vein,

we observed an altered metabolism of the amino acid tyrosine

in infectious animals (Figure 3B). The alterations in amino acid

metabolism could be due to their utilization by immune-cells

or restrictive absorption by digestive system (17). The altered

synthesis and degradation of ketone bodies revealed by our

pathway analysis was already reported in 2014 by De Buck et al.

in experimentally infected cattle (13). This is consistent with an

energy deficit and the greater mobilization of lipid stores. Note

that the synthesis and degradation of the ketone body metabolic

pathway is known to be up-regulated when glucose sources are

severely restricted, and an excess of ketone bodies are consequently

produced. While the ketone body, acetone, was one of the most

discriminatory metabolites in MAP-infected cattle in the previous

study carried out in 2014 (13), we did not observe significant

changes in acetone concentration in our current raw data, nor after

we had applied the LASSO method to these data. Note that acetone

is a very volatile molecule that can be easily lost from samples.

As reported in Figure 3B, we also observed increased pyruvate

metabolism in infectious cattle, which we observed also in MAP-

infected cattle, and with a minor impact and p-value. This is likely

due to the alteration of glycolytic metabolism in these cattle.

Some limitations set our metabolic signature, with 1H NMR

and blood indices, apart from metabolic biomarker discovery

that can be used in routine analysis: (i) the small sample size

of clinical specimens in the statistical validation step to assess

the prediction ability of the method; (ii) the potential influence

of diet and herd management on the metabolic fingerprint.

While we are confident that the retrospective assignment of the

infectious animals is highly reliable, we cannot exclude that the

animals categorized as negative could have lately turned to a

different status.

5. Conclusion

The proposed approach allowed to move one step forward

the understanding and diagnosis of MAP. Alterations of amino

acid metabolism were observed. While the tyrosine metabolism

was significantly perturbed in infectious bovines, the biosynthesis

of phenylalanine, tyrosine, and tryptophan was dysregulated in

those infected. In accordance with previous scientific findings

in experimentally infected cattle a perturbation of the synthesis

and degradation of ketone bodies in infectious animals was also

confirmed. Further investigations are being carried out to validate

the method on new samples and thus evaluate the effect of diet and

herd management on the informative markers.
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