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Forest resilience is crucial to the mitigation of climate change, due to

the enormous potential of forests to reduce atmospheric carbon dioxide

concentrations and the possible conversion of forests from net carbon sinks into

carbon sources following external disturbances. Subtropical forests are suffering

the highest rates of forest change, but how they are evolving in response to

climate change is little known. In this study, we estimated the spatial pattern

and temporal trend of the resilience of subtropical evergreen forests in China by

applying the lag-one autocorrelation (AC1) method to satellite kernel normalized

difference vegetation index (kNDVI) data over the past two decades and identified

the influential environmental factors that affect the ecosystem resilience by

developing random forest (RF) regression models. The computed long-term AC1

based on kNDVI for the 2001–2020 period depicts considerable spatial variability

in the resilience of the subtropical evergreen forests in China, with lower resilience

at lower latitudes. The RF regression analysis suggests that the spatial variability

in the forest resilience can be re-established by forest and climatic variables,

and is largely affected by climate, with the three most influential variables

being solar radiation (SR, %incMSE = 20.7 ± 1.8%), vapor pressure deficit (VPD,

%incMSE = 13.8± 0.2%) and minimum temperature (Tmin, %incMSE = 13.3± 1.2%).

Higher forest resilience is more likely to be located in areas with less radiation

stress, adequate water availability, and less warming. Trend analysis shows a

declining trend for the resilience of subtropical evergreen forests in China

since the 2000s but an increasing forest resilience in the last decade, which

is mainly dominated by temperature changes, including average and minimum

temperatures. Considering the expected warming-dominated period in times of

rapid climatic change, we suggest potential critical responses for subtropical

forest productivity to the disturbances should be of greater concern in the future.
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1. Introduction

Forests cover nearly 30% of the global land surface, or
approximately 41 million km2. Forest ecosystems play an
essential role in global carbon cycle, offsetting one-third of the
anthropogenic carbon emissions (Pan et al., 2011; Friedlingstein
et al., 2022). They are regarded as a core component of mitigating
future climate change. However, forest ecosystems are severely
threatened by more frequent and severe disturbances due to
climate change. The persistence and functionality of forests are
highly dependent on their ability to withstand and recover from
environmental disturbances, that is, their resilience (Ibáñez et al.,
2019; Forzieri et al., 2022). Resilience is the ability of a system
to absorb change and disturbance and recover to pre-disturbance
structure and function (Holling, 1973; Bai et al., 2019; Yi and
Jackson, 2021). Forest resilience may not withstand an increase
in disturbances caused by climate change, resulting in permanent
alterations of ecosystems or transitions to non-forest ecosystems
when tipping points are reached (Seidl et al., 2017). There is a
possibility of the transition of tropical rainforests to savanna due
to the trigger of external disturbances (Verbesselt et al., 2016;
Lovejoy and Nobre, 2018; Hubau et al., 2020). Moreover, the risk of
transitions to alternative ecosystem states becomes a global feature,
and extends to higher latitudes (Abis and Brovkin, 2017). Forests
hold enormous potential for reducing atmospheric carbon dioxide
concentrations (Lewis et al., 2019), but ecosystem transitions could
convert net carbon sinks into sources (Hubau et al., 2020), so
the resilience of forests is essential to the mitigation of climate
change.

Resilience can be characterized by the rate of an ecosystem
recovering to equilibrium from disturbances (Scheffer et al., 2009).
Theoretically, the recovery rate of an ecosystem after external
disturbances can be detected by its internal natural fluctuations.
The state fluctuations of the ecosystem resulting from disturbances
can reflect the declines in recovery rates through an increase
in temporal autocorrelation, i.e., the ecosystem state becomes
more correlated in subsequent time (Verbesselt et al., 2016).
Thus, the lag-one autocorrelation (AC1), which measures the
degree to which adjacent time spans of a given time series are
correlated, has been proposed as a gauge of vegetation resilience
in several studies (Dakos et al., 2012; Verbesselt et al., 2016;
Liu et al., 2019). Higher AC1 represents lower resilience, and
the increase in AC1 has been termed as an early-warning signal
for critical transition. Empirically, recovery rate can be estimated
by fitting the time series of vegetation structure or function to
an exponential function, as it recovers toward its previous state
after each abrupt negative transition (Smith et al., 2022). Studies
on the empirical recovery rate (r) have demonstrated that the
theoretical resilience AC1 is related to the empirical resilience r
through an exponential relationship, that is, AC1 = er1t , which
corroborates the effectiveness of AC1 by the empirical recovery
rate from external disturbances (Scheffer et al., 2009; Smith et al.,
2022).

Recent studies reveal that global forests have experienced a
significant decline in resilience since the early 2000s, but the
trends were spatially heterogeneous (Forzieri et al., 2022; Smith
et al., 2022). It’s shown that (1) tropical, temperate, and arid
forests have experienced the significant decreases in resilience,

presumably blamed on increased water scarcity and climate
variability, and (2) boreal forests are differently characterized
with an overall upward trend in resilience, perhaps benefiting
from warming and CO2 fertilization (Forzieri et al., 2022).
Moreover, previous research has explored the possible factors
contributing to the regional variations in forest resilience. Boulton
et al. (2022) stated that the resilience of the Amazon rainforest
was deteriorating faster in areas with less rainfall and closer
to human activity. Fang and Zhang (2019) illustrated that tree
resilience to drought in the Tibetan Plateau was linked to
moisture availability, diurnal temperature range, and growth
consistency. Higher moisture has great effects on recovery as
regional humidity increases in arid boreal forests (Ibáñez et al.,
2019).

Numerous studies focus on the resilience of tropical rainforests
due to their importance in providing ecosystem services and
complexity in responding to climate change (Cole et al., 2014;
Verbesselt et al., 2016). In contrast, subtropical forests are suffering
the highest rates of disturbance globally due to the practice
of intensive forestry (Hansen et al., 2013), whereas how they
are evolving in response to climate change is little known. The
knowledge gap regarding the lack of spatial patterns and its
mechanism in promoting resilience in subtropical forests remains
to be filled.

China has 208 million hectares of forest, of which the
southern forests account for about 44.7% (Zhao et al., 2015).
The vast hills and mountains of southern China have a warm
and humid climate, providing superior natural conditions for
forest growth. The subtropical forests in southern China are
a crucial component of the carbon sink in the East Asian
monsoon region (Yu et al., 2014). Unfortunately, with the
intensification of global warming, the forests in southern China
are increasingly endangered by numerous disturbances. Since
the 21st century, the southern region of China has suffered
several consecutive climatic extremes, including the 2008 winter
storm, the 2010 spring drought, the 2013 heat waves (Zhang
et al., 2012; Huang et al., 2013; Pei et al., 2013), and the
recent 2022 heat waves. Experimental evidence of increased
extreme weather is raising concerns about variability in the
resilience of the evergreen forests in southern China; further
assessment of the resilience of these forests is still required
to fully comprehend the response of ecosystems in China to
climate change.

Here, we estimate the resilience from a time series of satellite-
based vegetation index data to investigate the spatial pattern of
subtropical evergreen forest resilience over the past two decades
in southern China. The objectives of this study are to (1) quantify
the resilience and its trend in subtropical evergreen forests, and (2)
reveal the key drivers of forest resilience. The kernel normalized
difference vegetation index (kNDVI), which has recently been
suggested as a reliable substitute for ecosystem productivity
(Camps-Valls et al., 2021), is used here as an appropriate metric to
represent ecosystem function. Specifically, we computed the AC1 as
a resilience indicator from satellite-based kNDVI data for the 2001–
2020 period at 0.05◦ spatial resolution, and developed random
forest regression models to identify the interplay of environmental
drivers that affect the ability of ecosystems to recover from
disturbances.
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2. Materials and methods

2.1. Study area

Southern China (97◦31′–122◦57′E, 18◦10′–34◦14′N) includes
the enormous region bordered by the Qinling–Huaihe Line to
the north and the Qinghai-Tibet Plateau to the west (Figure 1).
The topography of the region varies greatly from east to west,
with plateau and basins dominating in the west and plains and
hills widespread in the east. The major climate type in the region
is subtropical monsoon climate, which is warm and humid. The
average annual temperature here is 17.3◦C and the average annual
precipitation is 1,480 mm during the years 2001–2020. Southern
China has a large vegetation cover of around 2.3 million km2,
46.1% of which is evergreen forests, including evergreen needleleaf
forest (ENF, 26.5%), evergreen broadleaf forest (EBF, 15.8%), and
mixed forest (MF, 3.9%) (Wu et al., 2014). The study area is
usually accompanied by sufficient rainfall and high temperatures,
but seasonal and even extreme drought conditions can occur
occasionally.

2.2. Datasets

We collected satellite kNDVI, forest age, and meteorological
data from various sources. All input data were resampled to 0.05◦

of spatial resolution and a monthly time scale, and masked by the
evergreen forest cover extracted from the land cover map of China.

2.2.1. kNDVI data
The kNDVI is a newly developed nonlinear generalization of

the well-known normalized difference vegetation index (NDVI)
by using the kernel method, which exhibits consistently strong
correlations with ecosystem productivity (Camps-Valls et al., 2021).
kNDVI can be calculated using the following computational
equation:

kNDVI = tanh (NDVI2) (1)

Here, kNDVI was used as a functional indicator to detect state
changes in forest ecosystems (Hu et al., 2022). The monthly MODIS
NDVI product (MOD13C2; Collection 6) at 0.05◦ spatial resolution
from 2001 to 2020 was obtained from the online Data Pool
at the USGS Land Processes Distributed Active Archive Centre
(LPDAAC).1 The data quality assessment product (QA-data) of
the MOD13C2 product provides pixel-by-pixel information on the
cloud conditions and overall data usefulness. We retained cloud-
free pixels with good and marginal overall quality.

2.2.2. Forest age
The forest stand age data used in this study was obtained from

a map of China’s forest stand age with a spatial resolution of 1 km,
which was estimated from the remotely sensed forest height in 2005
using the relationship between tree height and forest age from forest
inventory data (Zhang C. et al., 2014). The map illustrates that the
mean forest age across China was 43 years in 2005. Young and

1 http://lpdaac.usgs.gov

middle-aged forests occupy the majority of forests in current China.
The map also demonstrates a great spatial heterogeneity in China’s
forest age, with young forests in south and east and old forests
in southwest, northwest, and northeast. The forest age across our
study area is 36.9 ± 24.8 years. The forest age map was resampled
to a 0.5◦ × 0.5◦ spatial resolution to match the satellite data.

2.2.3. Meteorological data
The gridded meteorological data, including air temperature,

precipitation, solar radiation, and vapor pressure deficit during
2001–2020, were retrieved from the interpolation using the
ANUSPLIN software (Hutchinson, 1995) based on 836
meteorological station data from the National Meteorological
Information Centre of the China Meteorological Administration
(Wang et al., 2017). The gridded meteorological data has
1 km of spatial resolution and an 8-day time step. The station
observation data include daily average, maximum, and minimum
air temperatures (Ta, Tmin, and Tmax in ◦C), daily total precipitation
(Pre in mm), relative humidity (RH in %), and sunshine hour (SH
in h). The daily total solar radiation (SR in W m−2) was acquired
from the interpolated sunshine hour data through the use of the
solar radiation model developed by Bonan (1989). Vapor pressure
deficit (VPD, kPa) was quantified as a function of temperature
and relative humidity (Murray, 1966). All meteorological data
were interpolated to daily scales using the spline method, and then
aggregated into monthly averages or totals (Pre), and spatially
resampled to the 0.5◦ × 0.5◦ resolution.

2.2.4. Land cover
The land cover data were derived from ChinaCover2010,2 a

land cover map of China in 2010. The ChinaCover2010 dataset
was produced on the basis of Chinese domestic HJ 1A/1B satellite
and in situ data, and classified by an object-oriented method (Wu
et al., 2014). The spatial resolution of ChinaCover2010 is 30 m,
and the classification accuracy reaches 85% (Zhang L. et al., 2014).
The dataset classifies Chinese land surface into 38 types, including
evergreen needleleaf forests (ENF), evergreen broadleaf forests
(EBF), and mixed forests (MF). The evergreen forest cover was
extracted from the land cover map, which was also resampled to
0.05◦ spatial resolution using the majority method.

2.3. Resilience indicator of forest
ecosystems

We estimated the resilience of forest ecosystems using lag-
one autocorrelation (AC1) (Dakos et al., 2015; Verbesselt et al.,
2016). The AC1 was computed on the detrended and deseasoned
kNDVI time series for each forest pixel. The kNDVI data were
detrended and deseasoned through seasonal trend decomposition
by loess (STL) (Cleveland et al., 1990; Smith et al., 2022). We used
a period of 12 (1 year on monthly scale) and an adaptive loess filter
to decompose the full-year signal. Following the rules of thumb
originally proposed by Cleveland et al. (1990), we set 23 (1 month
less than 2 years) and 13 (1 month more than 1 year) as the values

2 http://www.geodata.cn
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for the trend smoother and the low-pass filter, respectively. Thus,
the residual time-series term was detrended and deseasoned from
the original kNDVI data, and used for the further AC1 calculation.
The AC1 computation on the whole kNDVI residual time series
(2001–2020) was referred to as long-term AC1. To detect the
temporal dynamics of the forest resilience, we also computed AC1
on a monthly scale over 5-year rolling windows over the 2001–2020
period, which was referred to as AC1 time series.

To support the resilience revealed by the kNDVI-based AC1,
we applied an empirical method proposed by Smith et al. (2022)
to estimate the recovery rate and compared it with the theoretical
AC1. Firstly, we applied a 9-month moving window over the
residual time series of kNDVI data and calculated the mean
difference between the preceding and rest halves of the moving
window. We then used a Savitzky–Golay filter (Savitzky and Golay,
1964) to smooth the aforementioned time series for the purpose
of eliminating high-frequency noise. Next, values above the 99th
percentile were distinguished and the subsequent time spans were
labeled as disturbance periods. For each detected disturbance
period, we used a 4-month constraint to locate local minima of
the residual time series as the starting point of recovery. Finally,
we fitted an exponential function to the 5-year time series after the
starting point to compute the exponent r, which is regarded as the
empirical recovery rate. Subsequently, we performed a comparative
analysis between the empirical r and the theoretical one computed
via rAC1 = log(AC1).

2.4. Trends analysis of the forest
resilience

Mann–Kendall (MK) trend test with Sen’s slope estimator was
used in this study to analyze the temporal trend of evergreen forest
resilience in China over the last two decades. The MK test is a
non-parametric model on the basis of the rank system proposed
by Mann (1945) and Kendall (1975). For the time series X1, X2,. . .,
Xn, the MK statistic (S) can be computed as:

S =
n−1∑
i=1

n∑
j=i+1

sgn
(
Xj − Xi

)
(2)

where n represents the number of observations, Xi and Xj are
the successive information estimation on occasion i and j. sgn
represents the sign function given by:

sgn
(
Xj − Xi

)
=


1

(
Xj − Xi

)
> 0

0
(
Xj − Xi

)
= 0

−1
(
Xj − Xi

)
< 0

(3)

Thus, standardized test statistic (Z) can be computed with variance
var(S) by utilizing the following equations:

Z =


S−1
√

var(S) S > 0

0 S = 0
S+1
√

var(S) S < 0
(4)

The determined Z values follow the normal distribution and is
utilized as a measure of trend significance. Given a significance
level of α, the null hypothesis of no trend was rejected when

|Z|≥ Z1−α/2, indicating a significant trend of the series. Otherwise,
the null hypothesis was accepted at the significance level of α. We
here set the significant level α = 0.05 and thus Z1−α/2 = 1.96.

The magnitude of the trend in the data time series was
determined using Sen’s estimator (Sen, 1968). The Sen’s estimator
is simple to compute, robust to outliers, and requires limited priori
information about measurement errors (Fernandes and Leblanc,
2005). The slope of data can be calculated as follows:

β = Median
(

Xj − Xi

j− i

)
(5)

where β denotes the trend degree, which is used to determine
the rise (positive β values) and fall (negative β values) of the
time series trend.

To verify the rationality and robustness of the trend analysis,
we also applied the univariate stationary first-order Gaussian
autoregressive (AR) method, which could avoid the issue that the
MK method may not fully account for the temporal autocorrelation
(Ives et al., 2021). We fit the time series using the model:

Xi (t) = ai + cit + εi(t) (6)

where εi(t) is a univariate stationary first-order Gaussian
autoregressive process with mean zero for each separate time
series, and the vector of εi(t) (t = 1, 2, . . ., T) has a multivariate
Gaussian distribution [details in Ives et al. (2021)]. This regression
model with lag-1 autoregressive error terms for every time series is
fitted by Restricted Maximum Likelihood (REML). The AR method
was conducted using the remotePARTS package in RStudio.

2.5. Random forest regression analysis of
forest resilience

In order to quantify the environmental factors modulating the
forest resilience, we applied random forest (RF) regression analysis
to explore the relationship between AC1 and explanatory variables.
The RF analysis was applied not only for the spatial pattern of the
entire long-term AC1, but also for the time series data in each
grid cell. The environmental explanatory variables contain forest
properties (forest age and annual averaged kNDVI) and climatic
variables (temperature, precipitation, solar radiation, and VPD).
The climatic variables were expressed as averages and extremes
shown in Table 1. All climatic variables were computed annually
and then averaged over time as background climate. Maximum
and minimum temperatures were collected on a daily scale and
integrated for the study period. Maximum precipitation was
calculated from the monthly total precipitation, while maximum
VPD was the maximum value for the period. These four factors
were regarded as extreme climate. Thus, a set of 10 predictor
variables representing the forest attribute, background climate, and
extreme climate were considered here (Table 1). All environmental
variables were calculated for the same period as the long-term AC1
and AC1 time series, respectively, for subsequent spatial and time
series analysis.

The existence of multicollinearity among environmental
variables produces inconsistent model outputs and reduces the
prediction accuracy of the models (Midi and Bagheri, 2010).
Therefore, we used variance inflation factor (VIF) in this study
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FIGURE 1

Distribution of evergreen forests in Southern China. ENF, evergreen needleleaf forests; EBF, evergreen broadleaf forests; MF, mixed forests.

to detect the multicollinearity among the ten environmental
variables and select the least correlated variables before building the
regression models. The VIF analysis was conducted, respectively,
for the spatial pattern of the environmental variables and the time
series of the variables in each grid cell. Several VIF thresholds, i.e.,
10, 5, or 3.3, are recommended for selection of variables (Hair et al.,
2009; Kock and Lynn, 2012). Given the magnitude of the sample
sizes, we fixed the VIF threshold at 3.3 for the spatial grid analysis
and at 10 for the time series analysis. We iteratively eliminated
the variable with the largest VIF, until the VIFs of all remaining
variables were less than the threshold values.

The RF regression models were then developed to identify
the emergent relationships between AC1 and the selected forest
and climate metrics. We divided the dataset randomly into two
subsets to develop the RF model: one training subset with 75%
of records used for model calibration, and one test subset with
the remaining 25% of records used for model validation. The key

TABLE 1 Environmental explanatory variables used in the forest
resilience model.

Variable name Category Abbreviation

Forest age Forest attribute Age

Average annual kNDVI Forest attribute kNDVI

Average annual temperature Background climate Ta

Average annual precipitation Background climate Pre

Average annual solar radiation Background climate SR

Average annual VPD Background climate VPD

Minimum temperature Extreme climate Tmin

Maximum temperature Extreme climate Tmax

Maximum precipitation Extreme climate Pmax

Maximum VPD Extreme climate VPDmax

parameters used in the RF model implemented here, including
the number of regression trees in the forest, the maximum depth
of the tree, the number of features considered at each split and
so on, were identified using the method of RandomizedSearchCV
algorithm (details in Supplementary Table 1) from Python Scikit-
learn package (Pedregosa et al., 2011). The model performances
were assessed on the basis of coefficient of determination (R2), root
mean squared error (rMSE), and percentage bias (PBIAS).

Variable importance ranking was synchronously calculated in
the RF regression model and used to quantify how individual
environmental factors influence the forest resilience (i.e., AC1). The
variable importance was quantified by the increase in mean square
error of predictions (%IncMSE) caused by scrambling the values
of a variable. Larger error before and after permutation indicates
that the variable is more important in the forest and contributes
more to predictive accuracy than the others (Breiman, 2001). And
we explored the AC1 across gradients of influential vegetation and
climate features using partial dependence plots, which show the
dependence between the response variable and a set of explanatory
variables. Partial dependency plots evaluate the impact of each
individual driver by holding the impacts of all the other potential
drivers constant (Geng et al., 2021). Furthermore, we also used
partial correlation analysis to confirm the robustness of the analysis.

3. Results

3.1. Spatial variation of forest resilience in
southern China

We explored the long-term lag-one autocorrelation (AC1)
at pixel level from the kNDVI time series (2001–2020) for the
subtropical evergreen forests in China. Results demonstrate that
the evergreen forests exhibit considerable spatial variability in
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long-term AC1 (Figure 2A). The long-term AC1 increases with
decreasing latitude (Figure 2B), indicating that the resilience
of the subtropical evergreen forest may be reduced at lower
latitudes. Low-resilience forests are mainly located in the Yunnan-
Guizhou plateau, Hainan Island, and the coastal hilly regions.
AC1 increases with mean annual temperature under a given
precipitation while decreasing with total annual precipitation
under a given temperature (Figure 2C). Low resilience (high values
in AC1) is observed for temperatures above 18◦C and precipitation
levels below 1,600 mm. Moreover, higher temperatures (above
24◦C) lead to low resilience despite adequate precipitation.

We tested the indication of the kNDVI-based AC1 for the
subtropical evergreen forests in China based on an empirical
method of detecting disturbances and estimating recovery rates
proposed by Smith et al. (2022). The comparison of theoretical
and empirical estimates of the recovery rate reveals broad spatial
consistency between the theoretical rAC1 and the empirical r
for areas where the recovery rate can be estimated empirically
(Figures 3A, C). The theoretical AC1 and the empirical recovery
rate support the theoretically expected exponential relationships
(Figure 3B, R2 = 0.91 for the exponential fit). Moreover,
the correspondence between theoretical and empirical estimates
remains good even if different R2 thresholds for the exponential
fit to the recovering time series after external disturbances are
considered (Figure 3D, R2

≥ 0.84 for the exponential fit).

3.2. Driving forces of the spatial
variability in forest resilience

A random forest (RF) regression model was developed to
identify the relationships between long-term AC1 and the selected
forest and climatic metrics. Age, kNDVI, SR, VPD, Tmin, Tmax,
Pmax, and VPDmax were selected as predictor variables, while
Ta and Pre were eliminated due to exceeding the VIF threshold
(Supplementary Table 2). The variations in AC1 were well
reproduced by the RF model with the predictor variables as
input (Supplementary Figure 1). Results of RF analysis show that
the spatial variability in long-term AC1 of the evergreen forests
in southern China is largely explained by local environmental
conditions (R2 = 0.70, rMSE = 0.0004, PBIAS = 0.034, Figure 4A).
The RF regression analysis shows that the most influential predictor
of the spatial variability in the evergreen forest resilience is solar
radiation (SR), with %incMSE = 20.7 ± 1.8 %. Vapor pressure
deficit (VPD, %incMSE = 13.8± 0.2 %) and minimum temperature
(Tmin, %incMSE = 13.3 ± 1.2 %) are also important to the forest
resilience. SR, VPD, and Tmin are the major driving forces behind
the resilience of subtropical evergreen forests in China among
the climatic and biotic factors, accounting for roughly half of
the variability in the forest resilience (Figure 4B). The remaining
variables are of secondary importance to the forest resilience. The
findings of the partial correlation analysis similarly show that SR
has the highest partial correlation with the long-term AC1, followed
by Ta and Tmin (Supplementary Figure 2). Ta was excluded from
the VIF variable selection due to its high correlation with VPD
(Pearson r = 0.79, p < 0.001, Supplementary Figure 3).

The partial dependence plots (Figure 5) show that the long-
term AC1 increased with SR, VPD, and Tmin, indicating that the
forest resilience decreased with the increases in these variables. Low

SR (<150 W m−2) leads to high resilience (low AC1) of evergreen
forests, while the value of AC1 remains high (low resilience) when
SR > 180 W m−2 (Figure 5A). AC1 increases (resilience decreases)
as the VPD value rises, and the rate of increase is gradually
accelerated (Figure 5B). The forest resilience remains constantly
low with Tmin less than −15◦C, then sharply increases until Tmin
reaches −10◦C, and finally stays high (Figure 5C). Overall, areas
with less radiation stress, adequate water availability, and less
warming are more likely to have higher forest resilience when
taking the magnitude of the effects of these dominant drivers into
account.

3.3. Temporal trends of forest resilience
and their dominant factors

Figure 6 depicts the temporal trend of the forest resilience
for the entire subtropical evergreen forests and in each grid
cell using the MK trend test. For the entire study period,
the AC1 significantly increased (β > 0, |Z| > Z1−α/2) when
considering the subtropical evergreen forests as a whole, indicating
a declining trend in its forest resilience (Figure 6A). Besides,
the trend distribution of all forest grid cells also shows that the
increasing trend of AC1 dominates (Figure 6A). The AR method
shows the spatial consistency of the trend in the majority of
grid cells with the results of the MK method (Supplementary
Figure 4), revealing a decreasing resilience in subtropical evergreen
forests in China since the 2000s through the upward trend
of AC1. But the trends of AC1 differ across plant functional
types (PFT) and time periods (Figures 6A, C–E; Table 2).
Over the last two decades, there was a significant decreasing
trend in forest resilience for ENF, but an insignificant increasing
trend for EBF, and even a significant increasing trend for MF.
As for different time periods, all three forest types showed a
significant increase in resilience in 2005–2010 and 2015–2020,
but a decrease in resilience in 2010–2014 (significant in all
but MF). Thus, although the resilience of subtropical evergreen
forests in China has shown an overall decreasing trend in the
past 20 years, the resilience has been gradually rising in recent
years.

We then assessed the dominant driving forces for the temporal
variability in forest resilience by applying the VIF analysis and
RF regression analysis with the AC1 time series in each grid cell.
We found that the temporal variation of AC1 in these evergreen
forest grid cells was not driven by one or two uniform variables.
However, the most dominant driving variables are temperatures,
including average and minimum temperatures (Ta and Tmin)
(Figure 7A). The grid cells with Ta as the most important variable
occupy 15.8% of all forest grid cells, and the grid cells with
Tmin occupy 13.2% of all grid cells. VPD and Pre followed with
a cover percentage of 11.5 and 10.8%, respectively. The cover
percentages of the other variables are all less than 10%. We also
assessed the cover percentages of the most influential variables
for different PFTs (Figure 7B). Ta is still the most important
variable with the highest percentages for ENF, EBF, and MF.
Tmin is the second important variable for ENF and EBF, while
forest age influences the trends of resilience in MF more than
Tmin (Figure 7B).
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FIGURE 2

Spatial variation in the resilience of subtropical evergreen forests in China. (A) Spatial map of long-term lag-one autocorrelation (AC1) computed
from kNDVI data for the whole 2001–2020 period. (B) Long-term AC1 with latitude. (C) Long-term AC1 binned as a function of precipitation and
temperature.

FIGURE 3

Comparison between theoretical resilience (AC1) metrics and empirical recovery rates based on satellite kNDVI data. (A) Theoretical estimate of the
recovery rate computed from the AC1 at each grid. (B) Empirical estimate of the recovery rate (for well-determined exponential fits, R2 > 0.2).
(C) Relationship between AC1 and empirical recovery rates from exponential fits with R2 > 0.5. (D) Binned means of AC1 as a function of the
empirically estimated recovery rate under different R2 thresholds.

4. Discussion

4.1. Indication of AC1 to forest resilience

The previous studies on ecosystem resilience mostly quantified
the recovery time or the extent of ecosystem loss after a single
special disturbance, such as drought (Longo et al., 2018; Huang
and Xia, 2019), heat wave (Tatarinov et al., 2016; Guha et al.,
2018), and wildfire (Stevens-Rumann et al., 2018; Hart et al.,

2019). For example, Huang and Xia (2019) define resilience to
drought as the rate of EVI recovering to its pre-drought level; Hart
et al. (2019) defines resilience to wildfire as the probability of the
forest state recovering to its original state after a stand-replacing
wildfire. But this definition is only applicable if strong external
disturbances occur to natural vegetation systems (Smith et al.,
2022). The resilience of natural ecosystems is hardly quantified in
the above ways due to the scarcity of strong external disturbances.
The temporal autocorrelation from long-term satellite vegetation
datasets, namely the kNDVI-based AC1 in this study, breaks
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FIGURE 4

Model performance and variable importance of the selected variables for explaining the spatial long-term AC1 using a random forest regression
model. (A) Comparison between measured AC1 and modeled AC1. (B) Variable importance of the predictor variables within the RF regression model.
Variable importance is quantified by the increase in mean square error (%IncMSE).

FIGURE 5

Partial dependence plots for the three most influential variables in the model for long-term AC1. (A) For solar radiation (SR), (B) for vapor pressure
deficit (VPD), and (C) for minimum temperature (Tmin).

TABLE 2 Temporal trends of forest resilience for different time periods and plant functional types.

2005–2020 2005–2009 2010–2014 2015–2020

β (× 10−4) Z β (× 10−4) Z β (× 10−4) Z β (× 10−4) Z

ALL 0.56 2.58 −3.49 −4.96 4.77 9.69 −3.53 −9.00

ENF 1.13 5.18 −2.69 −4.92 5.46 9.84 −3.80 −8.74

EBF −0.34 −1.43 −5.11 −5.68 4.21 9.10 −2.73 −7.51

MF −2.35 −12.60 −5.34 −5.66 1.12 1.72 −5.12 −7.85

“ALL” means the entire subtropical evergreen forests; “ENF” means evergreen needleleaf forests; “EBF” means evergreen broadleaf forests; “MF” means mixed forests. “β” is the trend degree,
with positive ones representing declining resilience and negative ones representing increasing resilience. “Z” is utilized as a measure of trend significance, with |Z| ≥ 1.96 indicating a
significant trend.

the limitation of the absence of strong disturbances and can be
leveraged to evaluate broader spatial patterns of forest resilience.

Besides, ecosystem resilience metrics are typically computed by
ecosystem state variables (such as biomass and species abundance),
which are difficult to directly connect to ecosystem processes

described by rates (Hu et al., 2022). Spectral indices are convenient
proxies for canopy structure and leaf biochemical features, and
consequently to track the dynamics of vegetation photosynthetic
activity [i.e., gross primary production (GPP)]. But the celebrated
NDVI has well-known issues with nonlinearities and saturation
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FIGURE 6

Temporal trends of the resilience of subtropical evergreen forests in China. (A) Temporal changes in AC1 computed in a 5-year moving window over
2001–2020 kNDVI time series for the subtropical evergreen forests. (B) Spatial map of the temporal trends in AC1 time series during 2005–2020.
(C) Spatial map of the temporal trends in AC1 time series during 2005–2009. (D) Spatial map of the temporal trends in AC1 time series during
2010–2014. (E) Spatial map of the temporal trends in AC1 time series during 2015–2020. “ALL” means the entire subtropical evergreen forests.

FIGURE 7

Variable importance of selected environmental variables for explaining the AC1 time series in each grid of subtropical evergreen forests in China.
(A) Cover percentages of different most influential environmental variables. (B) Cover percentages of the most influential variables across the plant
functional types.

effects at high vegetation productivity (Huete et al., 1997). A new
index called NIRv, calculated by multiplying NDVI with NIR, is
not a dimensionless quantity (or actual index) despite its good
performance in relation to GPP (Wang et al., 2023). kNDVI shows
good characteristics like boundedness, low error propagation, and

less sensitivity to orbital drifts (Wang et al., 2021, 2023), and is
therefore a more appropriate proxy for GPP than NDVI and NIRv.
Thus, we used kNDVI as an indicator of ecosystem function to
compute the lag-one autocorrelation (AC1) from its time series as
a measure of forest resilience.
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The indication of kNDVI-based AC1 to the evergreen forest
resilience has been supported by the empirical recovery rate
proposed by Smith et al. (2022) in an intuitive way and on
a per-point basis (Figure 3). The empirical recovery rate was
computed by delineating the large disturbances using the 99%
percentile method and then curve-fitting the subsequent time series
of recovering ecosystem state. It might be more realistic because it
clearly detected disturbances. We found that the empirical recovery
rate from external disturbances was more sparsely distributed than
the AC1-based recovery rate (Figures 3A, C). Not all forest areas
have undergone rapid and drastic changes during the period; thus,
vegetation resilience in these areas is impossible to be directly
quantified through recovery from an external disturbance (Smith
et al., 2022). In contrast, AC1-based recovery rate can be obtained
under a broader range of conditions. In areas where the recovery
rate can be estimated empirically from large disturbances, the
empirical recovery rate shows broad spatial consistency with the
theoretically computed rAC1 and binned means or medians of AC1
can be well-fitted as a function of the empirical recovery rate. Thus,
the AC1 from the kNDVI data reveals the forest resilience of the
subtropical evergreen forests.

4.2. Drivers of the evergreen forest
resilience

Some hypotheses on abiotic and biotic factors that can influence
resilience have been tested with numerous spatial and temporal
datasets. Consistent with our study, climate is a key abiotic factor
hypothesized to affect ecosystem resilience (Willis et al., 2018).
We found that solar radiation is the dominant driver influencing
the spatial pattern of forest resilience in the subtropical evergreen
forests of China (Figures 4B, 5A), which is in line with the
results in Forzieri et al. (2022). Higher solar radiation leads to
less resilient forests, which explains the decreasing forest resilience
with decreasing latitude (Figure 2B). It’s well-founded that elevated
temperatures and water limitations are systematically associated
with worldwide cases of massive tree mortality (Ibáñez et al., 2019).
Our analysis shows that temperature rather than precipitation
has a clear influence on both the spatial variability and temporal
trend in the resilience of subtropical evergreen forests in China
(Figures 4B, 7B). The findings here imply that resilience of
the subtropical evergreen forest may be declined at higher daily
minimum temperature (Tmin), which may be explained by the
decelerating growth rates with higher Tmin in forest trees (Feeley
et al., 2007). We also found that water limitation (high VPD)
slows down the forests’ capacity to recover after disturbances
(Figure 5B). Poorter et al. (2016) also reported that the recovery
of above-ground biomass increased with water availability (higher
precipitation and lower water deficit) in neotropical dry forests.
Under water-deficit conditions, trees close their stomata, reduce
photosynthesis, and consume stored carbohydrates to maintain
metabolism, hindering growth and recovery of trees. Besides, rising
temperatures may amplify the impacts of water deficit on tree
mortality, then on forest resilience (Adams et al., 2009).

In addition, a suite of biotic factors needs to be considered.
In this study, we assumed forest age and the average annual
forest photosynthetic activity as possible biotic factors influencing

forest resilience. Although they are of secondary importance in
the spatiotemporal variations in forest resilience, high values of
AC1 (low resilience) typically occur at locations characterized by
high long-term average kNDVI and forest age (Supplementary
Figure 2). This suggests that high productivity does not mean
high resilience, but rather the opposite. Nonproductive forests
may be more resilient to disturbances, because their previous
states are more easily attained. Older forests may provide more
various stem diameter sizes and thus, more complex structure
than younger forests (Jeffries et al., 2006), making it more difficult
to recover to the previous states. It’s also reported that increases
in plant flammability and wind damage vulnerability with forest
age promote reduced resilience to climate variability (Oliver and
Larson, 1996; Kitzberger et al., 2012).

Other abiotic factors such as soil attributes and number of
disturbances are also proven to be influential to the forest resilience.
High soil fertility has a positive influence on biomass recovery,
and soils with low clay content have higher resilience (Oliveras
and Malhi, 2016; Poorter et al., 2016). A system experiences more
disturbances recovers faster, perhaps because the vegetation is
gradually dominated by species with fast response and adaptation
abilities to disturbance (Cole et al., 2014; Willis et al., 2018).
Another biotic factor that has been widely considered but not
in this study is biodiversity (Hodgson et al., 2015). Ecosystems
with greater biodiversity will be more resilient to disturbances, but
this is not always the case. African regions with the highest plant
species richness exhibit the greatest sensitivity to environmental
disturbances (Liu et al., 2022). Our study focuses more on the
characteristics of vegetation and meteorology, which reproduce the
spatial and temporal variation of resilience well despite ignoring
the above factors. In the future, these factors need to be studied for
better identifying the underlying mechanisms of the tempo-spatial
variations in resilience of subtropical evergreen forests in China.

5. Conclusion

In this study, we estimated the temporal autocorrelation (AC1)
from a time series of the satellite kNDVI dataset to investigate
the spatial pattern and temporal variability of evergreen forest
resilience over the past two decades in southern China. The major
conclusions are drawn as follows:

(1) The computed long-term AC1 depicts considerable spatial
variability in the resilience of the subtropical evergreen forests
in China, with low resilience occurring in low-latitude areas
such as the Yunnan-Guizhou plateau, Hainan Island, and the
coastal hilly regions.

(2) The spatial variability in the forest resilience can be re-
established with RF model by forest and climatic variables,
and is largely affected by SR, VPD, and Tmin. Higher forest
resilience is more likely to be found in locations with less
radiation stress, adequate water availability, and less warming.

(3) The forest resilience has shown a declining trend over the
past two decades but has increased in the recent decade.
Temperature changes, including average and minimum
temperatures, dominate the temporal trends in the resilience
of subtropical evergreen forests in China.
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From the findings of this study, we suggest more attention
should be paid to the subtropical evergreen forests to deal with the
warming climate in times of rapid global change.
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