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This article circumvents the Laplace transform to provide an analytical solution in a
power series form for singular, non-singular, linear, and non-linear ordinary
differential equations. It introduces a new analytical approach, the Laplace
residual power series, which provides a powerful tool for obtaining accurate
analytical and numerical solutions to these equations. It demonstrates the new
approach’s effectiveness, accuracy, and applicability in several ordinary differential
equations problem. The proposed technique shows the possibility of finding exact
solutions when a pattern to the series solution obtained exists; otherwise, only
rough estimates can be given. To ensure the accuracy of the generated results, we
use three types of errors: actual, relative, and residual error. We compare our
results with exact solutions to the problems discussed. We conclude that the
current method is simple, easy, and effective in solving non-linear differential
equations, considering that the obtained approximate series solutions are in
closed form for the actual results. Finally, we would like to point out that both
symbolic and numerical quantities are calculated using Mathematica software.
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1 Introduction

A differential equation or a system of differential equations, along with proper boundary
and initial conditions (ICs), is one of the most common outputs when mathematical
modeling describes physical, biological, or chemical phenomena. Finding ordinary or partial
differential equations and analyzing their solutions are at the heart of applied
mathematics [1].

Since ancient times, differential equations have attracted the interest of researchers and
scientists from two sides. The first is how to use them to express phenomena and issues that
interest them in their specializations and research. On the other hand, there is the question of
how to solve these equations. There are a limited number of differential equations, especially
linear ones, whose solutions can be determined using the well-known traditional methods
based on finite and simple algebraic operations. In contrast, there are many kinds of
differential equations that still require the search for simple and accurate solutions. For this
reason, the interest of mathematicians in previous decades was and is still in the investigation
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for analytical and sometimes numerical methods to solve these
forms of differential equations.

Many analytical, numerical, and numero-analytical techniques
have been proposed previously and recently to provide solutions for
differential equations with initial or boundary conditions, such as
the Laplace and Fourier transforms method [2], the Adomian
decomposition method [3–5], the variational iteration method
[6–8], the homotopy perturbation method [9–11], the homotopy
analysis method [12, 13], the differential transformation method
[14–16], the finite difference method [17], the predictor–corrector
method [18, 19], the first integral method [20, 21], the
Adams–Bashforth Molten method [22], the new iterative method
[23, 24], the Crank–Nicolson method [25, 26], the reproducing
kernel method [27, 28], the Laplace Adomian decomposition
method [11, 29, 30], the He–Laplace method [31–33], and others
[34–36].

Recently, Eriqat et al. [37] presented a new hybrid method in
which they combined the Laplace transform (LT) method with the
residual power series (PS) method to establish series solutions of the
pantograph equation. This method is called the LRPS method, and it
simulates the residual PS method but with a different construction
and view. It uses the limit concept instead of the concept of the
derivative as in the residual PS method. The LRPS method uses the
LT to transfer the given differential equation to a new algebraic
equation in a new space. The obtained algebraic equation is solved
by assuming that it is a solution that has a Laurent series (LS) form.
The values of the coefficients of the LS are determined by utilizing
the limit at infinity. Then, the inverse LT is used to transfer the LS,
which is the solution of the algebraic equation in the Laplace space,
to the initial space. Thus, we have obtained the solution to the
original problem in the form of PS.

Indeed, the LRPS method is similar to the He–Laplace method’s
[31–33] idea of searching for the solution of differential equations in
Laplace space. The He–Laplace technique uses the variational
iteration method or homotopy perturbation method to solve the
just-transformed Laplace space. In contrast, the LRPS method uses
the PS method to solve that equation using the Laurent series instead
of the Taylor series. In addition, the LRPS method is just an easy and
fast technique for finding the PS solution coefficients of the
differential equations.

The LRPS method has won the admiration and interest of many
researchers due to its ease, speed, and efficiency in arriving at exact
or accurate approximate solutions to many equations. In addition,
the LT was employed in dealing with non-linear problems because it
is known that the LT deals only with some categories of linear
equations. In 2021, El-Ajou [38] adapted the LRPS method to
establish solitary solutions of non-linear time-fractional dispersive
partial differential equations and to introduce a vector series
solution of some types of hyperbolic system of Caputo time-
fractional partial differential equations with variable coefficients
[39]. Recently, the LRPS method was used for solving time-
fractional Navier–Stokes equations [40], fuzzy quadratic Riccati
DEs [41], Lane–Emden equations of fractional order [42], a
system of fractional initial value problems (IVPs) [43],
autonomous n-dimensional fractional non-linear systems [44],
and others [45–49].

Despite the extensive publication of research dealing with the new
method, all works dealt with specific problems devoid of complexity

and generality. Therefore, we aim in thismanuscript, first, to employ the
LRPS method to provide exact or accurate approximate analytic series
solutions to linear ordinary differential equations (ODEs) in their
general form, whether their coefficients are constants or analytical
functions, which have the following formula:

dny

dtn
� Lt y t( )[ ] + g t( ), t≥ 0. (1.1)

Subject to the ICs,

y 0( ) � y0, y′ 0( ) � y1, . . . , y
n−1( ) 0( ) � yn−1, (1.2)

where Lt is a linear differential operator of order (n − 1) with
coefficients being analytic functions. This general equation is
difficult to solve by the direct PS method. Herein lays the
importance and novelty of the aim of this research.

Since in our world, most events are essentially non-linear and
modeled by non-linear equations, the study of non-linear issues is
critical in mathematics and physics, engineering, economics, and
other disciplines. Solving non-linear problems is difficult, and
getting an analytical approximation of a given problem is often
more complicated than getting a numerical one. Therefore, the
second aim of this paper is to establish analytic approximate
solutions to the general form of non-linear ODEs, which have
the following form using the proposed method (LRPS method):

dny

dtn
� f t, y t( ), dy

dt
,
d2y

dt2
, . . . ,

dn−1y
dtn−1

( ), t≥ 0. (1.3)

Subject to the ICs,

y 0( ) � y0, y′ 0( ) � y1, . . . , y
n−1( ) 0( ) � yn−1, (1.4)

where f is an analytic function on [0,∞).
The third objective of this article is to provide a series solution to

the singular ODEs, whether linear or non-linear. This type of
equation is of great interest to researchers in providing analytical
solutions to it, as it appears in the models of many natural
phenomena, as well as the difficulty of providing solutions to it.

To determine the efficiency and applicability of the method, we
test for three types of errors: exact error, relative error, and residual
error. We present the numerical results of the resulting solutions
through prepared and organized tables. In addition, we sketch the
obtained approximate solution by the proposed method along with
the exact solution if we can obtain it to make the comparison on the
one hand and to determine the period of convergence to solve the
series on the other hand.

2 Basic facts of the LT and PS

In this section, we overview essential facts about the LT and the
PS, along with some properties that are needed in this article.

Definition 2.1: [50]). We assume that y(t) is a continuous function
defined for t≥ 0 and let s ∈ I ⊆ R. Then, the LT of y(t) is the
function Y(s), denoted and defined as follows:

Y s( ) � L y t( )[ ] s( ) � ∫∞
0

e−sty t( )dt, (2.1)
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where the improper integral is the convergence on an interval of s,
which represents the domain of Y(s).

Also, the inverse LT of a function Y(s), s ∈ I is the function
y(t), t≥ 0 that is denoted and defined as

y t( ) � L−1 Y s( )[ ] t( ) � ∫c+i∞
c−i ∞

estY s( )ds, c � Re s( )> c0, (2.2)

where c0 lies in the right-half plane of the absolute convergence of
the Laplace integral.

Lemma 2.1: [50]). Suppose that y(t) and x(t) are both
continuous functions defined on [0,∞), Y(s) � L[y(t)],
X(s) � L[x(t)], and η, λ are constants. Then, we have the
following properties:

1) L[eλty(t)] � Y(s − λ)
2) L[tny(t)] � (−1)n dn

dsn Y(s)
3) L[y(λt)] � 1

λY(sλ), λ> 0
4) L−1[ηY(s) + λX(s)]

� ηL−1[Y(s)] + λL−1[X(s)] � ηy(t) + λx(t)

5) lim
s→∞ sY(s) � y(0)

6) L[y(n)(t)] � snL[y] −∑n−1
k�0 s

n−k−1y(k)(0)

Definition 2.2: [51]). A series that has the representation

∑∞
n�−∞

cn s − s0( )n � ∑∞
n�1

c−n
s − s0( )n +∑∞

n�0
cn s − s0( )n (2.3)

is called the LS about s � s0, where s is the variable and cn’s are the
coefficients of the series. The series∑∞

n�0cn(s − s0)n is known as the

analytic or regular part of the LS, while ∑∞
n�1

c−n
(s−s0)n is known as the

singular or the principal part of the LS.

Theorem 2.1: [50]). Let y(t) be an analytic function defined on the
domain D: ξ1 < |t − t0|< ξ2. Then, y(t) can be expanded as a PS as
follows:

y t( ) � ∑∞
n�0

cn t − t0( )n, (2.4)

which is valid for ξ1 < |t − t0|< ξ2.

Theorem 2.2: If Y(s) � L[y(t)] has an LS representation
about s � 0,

Y s( ) � c0
s
+∑∞

n�1

cn
sn+1

, s> 0, (2.5)

then cn � y(n)(0), n � 0, 1, 2, . . . ..
Proof. Suppose that Y(s) can be represented by the LS

expansion as in Eq. 2.5. So,

sY s( ) � c0 +∑∞
n�1

cn
sn
, s> 0. (2.6)

According to part (5) of Lemma 2.1, we have c0 � y(0).
Multiplying Eq. 2.6 by s gives the following expansion:

s2Y s( ) − y 0( )s � c1 +∑∞
n�2

cn
sn
, s> 0. (2.7)

Using part (5) of Lemma 2.1, it is obvious that

c1 � lim
s→∞

c1 +∑∞
n�2

cn
sn

⎛⎝ ⎞⎠ � lim
s→∞

s2Y s( ) − sy 0( )( )
� lim

s→∞
s sY s( ) − y 0( )( ) � lim

s→∞
s L y′ t( )[ ]( ) � y′ 0( ).

Similarly, multiplying Eq. 2.7 by s gives the following
expansion:

s s2Y s( ) − y 0( )s − y′ 0( )( ) � c2 +∑∞
n�3

cn
sn
, s> 0. (2.8)

Again, by parts (5) and (6) of Lemma 2.1, we have

c2 � lim
s→∞

c2 +∑∞
n�3

cn
sn

⎛⎝ ⎞⎠ � lim
s→∞

s s2Y s( ) − sy 0( ) − y′ 0( )( )
� lim

s→∞
s L y″ t( )[ ]( ) � y″ 0( ).

Now, we can find out the general formula for the coefficient
cn. However, we can get it by multiplying Eq. 2.6 by sn+1 and
taking the limit of the resulting equation as s → ∞; then, we
find that cn � y(n)(0), n � 0, 1, 2, . . .. Thus, the proof is now
complete.

Theorem2.3: assume thatL[y(t)] � Y(s) can be represented as in
Eq. 2.6. If |sL[y(n)(t)]|≤K, on 0< s≤ d, then the reminder Rn(s) of
the expansion of the LS appearing in Theorem 2.2 will satisfy the
relation

Rn s( )| |≤ K

sn+2
, 0< s≤d . (2.9)

Proof.
First, we assume that for r � 0, 1, 2, . . . , n + 1, L[y(r)(t)](s) is

defined on 0< s≤d. Also, we assume the following:

sL y n+1( )( ) t( )[ ]∣∣∣∣∣ ∣∣∣∣∣≤K, 0< s≤d . (2.10)

From the definition of the reminder Rn(s) � Y(s) −∑n

i�0
y(i)(0)
si+1 ,

one can acquire

sn+2Rn s( ) � sn+2Y s( ) − ∑n
m�0

s n+1−m( )y m( ) 0( )

� s sn+1Y s( ) −∑n
i�0
s n−m( )y m( ) 0( )⎛⎝ ⎞⎠ � sL y n+1( ) t( )[ ].

(2.11)
Eq. 2.10 and Eq. 2.11 lead to the conclusion that

|s(n+1)α+1Rn(s)|≤K. Thus,

−K≤ sn+2Rn s( )≤K, 0< s≤ d . (2.12)
The inequality |Rn(s)|≤ K

sn+2 can be discovered by reformulating
Eq. 2.12, and so, we got the result.
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3 Constructing series solutions to ODEs

In this section, we first use the LRPS method to solve linear
ODEs in preparation for solving non-linear ODEs. What is worth
noting is the possibility of solving non-linear ODEs, which cannot be
carried out using the traditional LT method. We will use the
construction that we will get to solve non-linear ODEs when
solving singular ODEs, whether linear or non-linear, and this is
what we will see in Section 3.3.

3.1 LRPS method for solving linear ODEs

In this section, we demonstrate the steps of the LRPS method for
solving linear ODEs. The basic idea of the proposed method is to
apply the LT to the linear ODEs and then use the LRPS approach to
construct a series solution, in LS form, to the transformed equation.
Then, we transform the obtained solution into the required solution
in the original space.

To illustrate the idea of the LRPS method in constructing series
solutions to the linear ODEs, we consider problems (1.1) and (1.2),
considering that Lt is a linear differential operator given by

Lt � an−1 t( ) d
n−1

dtn−1
+ . . . + a1 t( ) d

dt
+ a0 t( ), (3.1)

where a0(t), a1(t), ..., an−1(t) and g(t) are arbitrary analytic
functions that depend only on t, y(t) is the unknown function
of the independent variables t, and I is an open interval.

To generate the LRPS solution of the IVP (1.1) and (1.2), first, we
apply the LT to both sides of Eq. 1.1 to obtain

L y n( ) t( )[ ] � L Lt y t( )[ ][ ] + L g t( )[ ], t ∈ I. (3.2)

Using ICs (1.2) and some properties of the LT, Eq. 3.2 becomes

Y s( ) � ∑n−1
i�0

yi

si+1
+ 1
sn

L Lt L−1 Y s( )[ ][ ][ ] + G s( )
sn

, s> 0. (3.3)

We assume that Y(s) in Eq. 3.3 has an expansion in the LS
form as

Y s( ) � ∑∞
i�0

ci
s1+i

, s> 0. (3.4)

Depending on Theorem 2.3 and the given conditions in Eq. 1.2,
the first n-coefficients of the expansion (3.4) can be determined, so it
can be rewritten as follows:

Y s( ) � ∑n−1
i�0

yi

si+1
+∑∞

i�n

ci
s1+i

, s> 0. (3.5)

The kth-truncated series of Y(s) is given by

Yk s( ) � ∑n−1
i�0

yi

si+1
+∑k

i�n

ci
s1+i

, s> 0. (3.6)

Thus, one can conclude

Yn s( ) � ∑n−1
i�0

yi

si+1
+ cn
s1+n

, s> 0. (3.7)

To find the values of the unknown coefficients in series (3.7), we
define the Laplace residual function (LRF) of Eq. 3.3 as

LRes s( ) � Y s( ) −∑n−1
i�0

yi

si+1
− 1
sn

L Lt L−1 Y s( )[ ][ ][ ] − G s( )
sn

, s> 0

(3.8)
and the kth LRF as

LResk s( ) � Yk s( ) −∑n−1
i�0

yi

si+1
− 1
sn

L Lt L−1 Yk s( )[ ][ ][ ] − G s( )
sn

, s> 0.

(3.9)
It is clear that Limk→∞LResk(s) � LRes(s), LRes(s) � 0, and

thus, skLRes(s) � 0 for s> 0 and k � 0, 1, 2, 3, . . .. Therefore,
Lims→∞(skLRes(s)) � 0. Moreover,

Lims→∞ sk+1LRes s( )( ) � Lims→∞ sk+1LResk s( )( ) � 0, k � 1, 2, 3, . . .

(3.10)
Substituting the first nth-truncated series in Eq. 3.7 into the nth

LRF to obtain

LResn s( ) � cn
s1+n

− 1
sn

L Lt L−1 ∑n−1
i�0

yi

si+1
+ cn
s1+n

⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦ − G s( )
sn

, s> 0.

(3.11)
Running the inverse LT in Eq. 3.11, we get

LResn s( ) � cn
s1+n

− 1
sn

L Lt ∑n−1
i�0

yi

i!
ti + cn

n!
tn⎡⎣ ⎤⎦⎡⎣ ⎤⎦ − G s( )

sn
, s> 0. (3.12)

Since the coefficients of the linear operator in Eq. 3.1 are analytic
functions, they can be expressed as

ar t( ) � ∑∞
j�0
λrjt

j, r � 0, 1, . . . , n − 1, (3.13)

where

λrj � a
j( )

r 0( )
j!

, r � 0, 1, . . . , n − 1, j � 0, 1, 2, . . . . (3.14)

So, the linear operator Lt in Eq. 3.1 can be expressed as

Lt � ∑n−1
r�0

∑∞
j�0
λrjt

j⎛⎝ ⎞⎠ dr

dtr
. (3.15)

Running the operator Lt on Eq. 3.12 according to its new form in
Eq. 3.15, we get

LResn s( ) � cn
s1+n

− 1
sn

L ∑n−1
r�0

∑∞
j�0

cn λrj
n − r( )!t

n+j−r +∑n−1
i�r

λrjyi

i − r( )!t
i+j−r⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− G s( )
sn

.

(3.16)
Finally, we run the LT in Eq. 3.16 to obtain the required form of

the nth LRF:
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LResn s( ) � cn
s1+n

− G s( )
sn

− 1
sn

∑n−1
r�0

∑∞
j�0

cn λrj
n − r( )!

n + j − r( )!
s1+n+j−r

(
+∑n−1

i�r

λrjyi

i − r( )!
i + j − r( )!
s1+j+i−r

⎞⎠. (3.17)

Now, multiplying Eq. 3.17 by sn+1, we get the following function:

sn+1LResn s( ) � cn − sG s( ) −∑n−1
r�0

∑∞
j�0

cn λrj
n − r( )!

n + j − r( )!
sn+j−r

−∑n−1
r�0

∑∞
j�0

∑n−1
i�r

λrjyi

i − r( )!
i + j − r( )!
sj+i−r

. (3.18)

Taking the limit at infinity to Eq. 3.18, according to Eq. 3.10,
we get

cn � g 0( ) +∑n−1
r�0

λr0yr. (3.19)

Thus, the first approximation of the solution of Eq. 3.3 is

Yn s( ) � y0

s
+ y1

s2
+ y2

s3
+ . . . + yn−1

sn
+ 1
sn+1

g 0( ) +∑n−1
r�0

λr0yr
⎛⎝ ⎞⎠.

(3.20)
Following that, one can find the value of the coefficient cn+1; to

do that, we substitute the (n + 1)th-truncated series,
Yn+1(s) � y0

s + y1

s2 + y2

s3 + . . . + yn−1
sn + cn

sn+1 + cn+1
sn+2 , into the (n + 1)th

LRF to get the following:

LResn+1 s( ) � cn
sn+1

+ cn+1
sn+2

− 1
sn

L Lt L−1 ∑n−1
i�0

yi

si+1
+ cn
s1+n

+ cn+1
sn+2

⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎡⎣ ⎤⎦
− G s( )

sn
.

(3.21)
Performing the previous steps, we obtain the final form of the

(n + 1)th LRF:

LResn+1 s( ) � cn
sn+1

+ cn+1
sn+2

− G s( )
sn

− 1
sn

∑n−1
r�0

∑∞
j�0

cn+1 λrj
n + 1 − r( )!

n + 1 + j − r( )!
s2+n+j−r

(
+ cn λrj

n − r( )!
n + j − r( )!
s1+n+j−r

+∑n−1
i�r

λrjyi

i − r( )!
i + j − r( )!
s1+j+i−r

⎞⎠. (3.22)

Again, we multiply Eq. 3.22 by sn+2 to obtain

sn+2LResn+1 s( ) � cn+1 − s2G s( ) + sg 0( ) + s∑n−1
r�0

λr0yr

−∑n−1
r�0

∑∞
j�0

cn+1 λrj
n + 1 − r( )!

n + 1 + j − r( )!
sn+j−r

(
+ cn λrj

n − r( )!
n + j − r( )!
sn+j−r−1

+∑n−1
i�r

λrjyi

i − r( )!
i + j − r( )!
si+j−r−1

⎞⎠. (3.23)

Computing the limit at infinity to both sides of the last equation
and using Eq. 3.10, we get

cn+1 � g′ 0( ) + cn λ n−1( )0 + 1!∑n−1
r�0

λr1yr +∑n−2
r�0

λr0yr+1. (3.24)

So, the second approximation of the solution of Eq. 3.3 is

Yn+1 s( ) � y0

s
+ y1

s2
+ y2

s3
+ . . . + yn−1

sn
+ 1

sn+1
g 0( ) +∑n−1

r�0
λr0yr

⎛⎝ ⎞⎠

+ 1

sn+2
g′ 0( ) + g 0( ) +∑n−1

r�0
λr0yr

⎛⎝ ⎞⎠ λ n−1( )0⎛⎝
+∑n−1

r�0
λr1yr +∑n−2

r�0
λr0yr+1). (3.25)

Like the previous steps, we have

cn+2 � g″ 0( ) + cn+1 λ n−1( )0 + cn λ n−2( )0 + 2!
1!
cn λ n−1( )1

+2! ∑n−1
r�0

λr2yr +∑n−2
r�0

λr1yr+1 +∑n−3
r�0

λr0yr+2⎛⎝ ⎞⎠. (3.26)

Repeating the steps, one can obtain

cn+3 � g‴ 0( ) + 3!∑2
i�0
∑i
r�0

c n+2−i( ) λ n−1−i+r( )r
3 − r( )! + 3! ∑3

i�0
∑n−1−i
r�0

λr 3−i( )y r+i( )
i!

⎛⎝ ⎞⎠.

(3.27)
Considering a pattern of the obtained coefficients, we easily

deduce the coefficient cn+k as follows:

cn+k � g k( ) 0( ) + k!∑k−1
i�0

∑i
r�0

c n+k−1−i( ) λ n−1−i+r( )r
k − r( )!

+ k! ∑k
i�0

∑n−1−i
r�0

λr k−i( )y r+i( )
i!

⎛⎝ ⎞⎠,

k � 0, 1, . . . . (3.28)
According to Eq. 3.14, the recurrence relation (3.28) becomes as

follows:

cn+k � g k( ) 0( ) +∑k−1
i�0

∑i
r�0

k
r

( )c n+k−1−i( ) a
r( )
n−1−i+r( ) 0( )

+ ∑k
i�0

∑n−1−i
r�0

k
i

( )y r+i( )a k−i( )
r 0( )⎛⎝ ⎞⎠. (3.29)

Thus, we can express the (k + 1)th-approximate solution of Eq.
3.3 by the following formula:

Yn+k s( ) � ∑n−1
i�0

yi

si+1
+∑k

i�0

cn+i
s1+i+n

, s> 0, k � 0, 1, . . . .. (3.30)

Therefore, the exact solution of Eq. 3.3 can be expressed as

Y s( ) � ∑n−1
i�0

yi

si+1
+∑∞

i�0

cn+i
s1+i+n

. (3.31)

Substituting the result in Eq. 3.29 into Eq. 3.31 and running the
inverse LT gives the solutions of IVP (1.1) and (1.2) as follows:
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y t( ) � ∑n−1
i�0

yi

i!
ti +∑∞

i�0

ti+n

i + n( )! g i( ) 0( ) +∑i−1
j�0

∑j
r�0

i

r
⎛⎝ ⎞⎠c n+i−1−j( ) a r( )

n−1−j+r( ) 0( )⎛⎝
+∑i
j�0

∑n−1−j
r�0

i
j

( )y r+j( )a
i−j( )

r 0( )). (3.32)

3.2 The LRPS method for solving non-linear
ODEs

This section introduces the steps of the LRPS approach in
solving non-linear ODEs. To explain the methodology of the
proposed method in constructing series solutions to this class, we
consider IVP (1.3) and (1.4).

To generate the LRPS solution of the IVP (1.3) and (1.4), we
consider the first step; that is, operating the LT to Eq. 1.3 and
utilizing conditions (1.4), we obtain

Y s( ) � ∑n−1
i�0

yi

si+1
+ 1
sn
Ψ s, Y s( ), dY

ds
,
d2Y

ds2
, . . . ,

dmY

dsm
( ), s> 0, (3.33)

where Ψ is a multivariable function of s, Y(s), dYds , d
2Y
ds2 , and

dmY
dsm ,

m ∈ N.
We assume that Y(s) given in Eq. 3.33 can be expanded as in Eq.

3.4. According to the conditions given in Eq. 1.4 and Theorem 2.3,
series (3.4) also has the form in Eq. 3.5, and the kth-truncated series
of Y(s) will be like Eq. 3.6.

To set the values of the unknown coefficients in Eq. 3.6,
according to Eq. 3.33, we define the LRF of Eq. 3.33 as

LRes s( ) � Y s( ) −∑n−1
i�0

yi

si+1
− 1
sn
Ψ s, Y s( ), dY

ds
,
d2Y

ds2
, . . . ,

dmY

dsm
( ), s> 0

(3.34)
and the kth LRF as

LResk s( ) � Yk s( ) −∑n−1
i�0

yi

si+1

− 1
sn
Ψ s, Yk s( ), dYk

ds
,
d2Yk

ds2
, . . . ,

dmYk

dsm
( ), s> 0. (3.35)

According to the form of Yk(s) as in Eq. 3.6, it is clear that
Ψ(s, Yk(s), dYk

ds ,
d2Yk
ds2 , . . . ,

dmYk
dsm ) has a finite LS as follows:

Ψ s, Yk s( ), dYk

ds
,
d2Yk

ds2
, . . . ,

dmYk

dsm
( ) � ∑k

i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+i

, s> 0,

(3.36)
where ϕ is a multivariable function of cn, cn+1, . . . , cn+i, for i �
0, 1, . . . , k.

Substituting the expansions (3.6) and (3.36) in (3.35) gives the
following expansion form of the kth LRF:

LResk s( ) � ∑k
i�n

ci
s1+i

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0. (3.37)

Thus, the nth LRF is

LResn s( ) � cn
s1+n

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0. (3.38)

Now, we multiply Eq. 3.38 by sn+1 to get

sn+1LResn s( ) � cn −∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
si

, s> 0. (3.39)

Now, applying the limit as s → ∞ to both sides of Eq. 3.39 and
using the fact in Eq. 3.10, we can easily determine the value of cn by
solving the following equation for cn:

cn � ϕ cn( ). (3.40)
In the same manner, we find the value of the coefficient cn+1 by

substituting the (n + 1)th-truncated series, Yn(s) � ∑n−1
i�0

yi

s1+i + cn
s1+n,

into the (n + 1)th LRF to get the following:

LResn+1 s( ) � cn+1
s2+n

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s2+n+i

, s> 0. (3.41)

Multiplying sn+2 by both sides of Eq. 3.41, we get the following
function:

sn+2LResn+1 s( ) � cn+1 −∑k
i�1

ϕ cn, cn+1, . . . , cn+i( )
si−1

, s> 0. (3.42)

Applying the limit at infinity to Eq. 3.42, we obtain the algebraic
equation:

cn+1 � ϕ cn+1( ). (3.43)
Solving Eq. 3.43 implicitly for cn+1 determines the second

unknown coefficient in Eq. 3.6.
Similarly, we compute the third coefficient cn+2 by substituting

the (n + 2)th-truncated series, Yn+2(s) � y0

s + y1

s2 + y2

s3 + . . .

+yn−1
sn + cn

sn+1 + cn+1
sn+2 + cn+2

sn+3 , into the (n + 2)th LRF to get the following
function:

TABLE 1 The exact and the 10th approximate solutions of the IVP (4.1) and (4.2)
and the actual and relative errors at a � 3 and b � −2.

t y(t) y10(t) Act. err.(t) Rel. err.(t)
0.0 0 0 0 −

0.1 0.044244 0.044244 1.45827 × 10−15 3.29600 × 10−14

0.2 0.196077 0.196077 4.34332 × 10−12 2.21511 × 10−11

0.3 0.489605 0.489605 3.82242 × 10−10 7.80716 × 10−10

0.4 0.967566 0.967566 9.21045 × 10−9 9.51919 × 10−9

0.5 1.683357 1.683357 1.09149 × 10−7 6.48398 × 10−8

0.6 2.703517 2.703516 8.25760 × 10−7 3.05439 × 10−7

0.7 4.110778 4.110774 4.58384 × 10−6 1.11508 × 10−6

0.8 6.007802 6.007782 2.02872 × 10−5 3.37681 × 10−6

0.9 8.521765 8.521689 7.55276 × 10−5 8.86290 × 10−6

1.0 11.809970 11.809724 2.45341 × 10−4 2.07741 × 10−5
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LResn+2 s( ) � cn+2
sn+3

−∑k
i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0. (3.44)

Multiplying Eq. 3.44 by sn+3 gives

sn+3LResn+2 s( ) � cn+2 − ϕ cn( ) − ϕ cn+1( ) − ϕ cn+2( )

−∑k
i�2

ϕ cn, cn+1, . . . , cn+i( )
si−2

, s> 0. (3.45)

According to fact (3.10), we obtain

cn+2 � ϕ cn( ) + ϕ cn+1( ) + ϕ cn+2( ). (3.46)
Solving Eq. 3.46 for cn+2 sets another coefficient in Eq. 3.6.
The value of the third unknown coefficient cn+3 can be

obtained by similar arguments and by solving the following
equation:

cn+3 � ϕ cn( ) + ϕ cn+1( ) + ϕ cn+2( ) + ϕ cn+3( ). (3.47)
Considering the pattern of the obtained coefficients, we easily

conclude the coefficient cn+k from the following implicit formula
of cn+k:

cn+k � ϕ cn( ) + ϕ cn+1( ) + ϕ cn+2( ) + ϕ cn+3( ) + . . . + ϕ cn+k( ). (3.48)
Thus, we can express the (k + 1)th-approximate solution of Eq.

3.33 in the following shape:

Yn+k s( ) � ∑n−1
i�0

yi

si+1
+∑k

i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

, s> 0, k � 0, 1, . . . .

(3.49)
Therefore, the exact analytic solution of Eq. 3.33 is written in a

series form:

Y s( ) � ∑n−1
i�0

yi

si+1
+∑∞

i�0

ϕ cn, cn+1, . . . , cn+i( )
s1+n+i

. (3.50)

Running the inverse LT to Eq. 3.50 gives the solution of Eq. 1.3
and Eq. 1.4 in a series expansion as

y t( ) � ∑n−1
i�0

yi

i!
ti +∑∞

i�0

ϕ cn, cn+1, . . . , cn+i( )
i + n( )! ti+n. (3.51)

3.3 The LRPS method for solving singular-
value problems

This section presents the LRPS method’s procedure for handling
singular-value problems. To do this, let us consider the following
singular-value problem:

1
tk

dny

dtn
� f t, y t( ), dy

dt
,
d2y

dt2
, . . . ,

dn−1y
dtn−1

( ), t ∈ I,m, k ∈ N. (3.52)

Subject to the ICs

y 0( ) � y0, y′ 0( ) � y1, . . . , y
n−1( ) 0( ) � yn−1. (3.53)

To solve the initial-singular value problems (3.52) and (3.53), we
first multiply Eq. 3.52 by tk to get

dny

dtn
� tkf t, y t( ), dy

dt
,
d2y

dt2
, . . . ,

dn−1y
dtn−1

( ). (3.54)

Now applying LT to Eq. 3.54 and using ICs (3.53), we get

Y s( ) � ∑n−1
i�0

yi

si+1

+ 1
sn
L L−1 k!

sk+1
[ ]L−1 Ψ s, Y s( ), dY

ds
,
d2Y

ds2
, . . . ,

dmY

dsm
( )[ ][ ], s> 0.

(3.55)

Now, suppose that the function Y(s) can be expressed in the
form of the expansion of (3.4), and so on. We can complete the steps
described in the previous Section 3.2 to obtain the required solution.

4 Applications to linear and non-linear
problems

This section presents seven interesting problems with wide
applications in physics and other sciences that are discussed and
solved by the LRPS method.

Problem 4.1: consider the following composite oscillation
equation:

d2y

dt2
− a

dy

dt
− by t( ) � 8, t≥ 0, (4.1)

with respect to the initial condition

y 0( ) � 0, y′ 0( ) � 0. (4.2)
Comparing Eq. 4.1 with Eq. 1.1 concludes that a1(t) �

a, a0(t) � b, and g(x) � 8. Using the results obtained in Section
3.1, we can deduce λ10 � a, λ11 � λ12 � λ13 � . . . � 0 and
λ00 � b, λ01 � λ02 � λ03 � . . . � 0. According to the recurrence
relation in Eq. 3.29, we can see that c2 � 8, c3 � 8a,
c4 � 8(b + a2), c5 � 8(a3 + 2ab), c6 � 8(a4 + 3a2b + b2), c7 �
8(a5 + 4a3b + 3ab2), c8 � 8(a6 + 5a4b + 6a2b2 + b3), c9 �
8(a7 + 6a5b + 10a3b2 + 4ab3), and c10 � 8(a8 + 7a6b+

TABLE 2 The exact and the 10th approximate solutions of the IVP (4.7) and (4.8)
and the actual and relative errors.

t y10(t) y(t) Act. err.(t) Rel. err.(t)
0.0 1 1 0 0

0.1 0.889966 0.889966 9.16853 × 10−14 1.03021 × 10−13

0.2 0.759453 0.759453 3.85420 × 10−10 5.07496 × 10−10

0.3 0.607144 0.607144 5.23038 × 10−8 8.61472 × 10−8

0.4 0.430542 0.430540 1.76504 × 10−6 4.09960 × 10−6

0.5 0.225375 0.225347 2.81962 × 10−5 1.25123 × 10−4

0.6 −0.015603 −0.015888 2.85811 × 10−4 1.79887 × 10−2

0.7 −0.304937 −0.307110 2.17319 × 10−3 7.07626 × 10−3

0.8 −0.664860 −0.678886 1.40298 × 10−2 2.06658 × 10−2

0.9 −1.135230 −1.224997 8.97720 × 10−2 7.32834 × 10−2
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15a4b2 + 10a2b3 + b4). Therefore, the 10th approximation of the
solution of the IVP (4.1) and (4.2) will be as follows:

y10 t( ) � 8
2!
t2 + 8a

3!
t3 + 8 b + a2( )

4!
t4 + 8 a3 + 2ab( )

5!
t5

+ 8 a4 + 3a2b + b2( )
6!

t6 + 8 a5 + 4a3b + 3ab2( )
7!

t7

+ 8 a6 + 5a4b + 6a2b2 + b3( )
8!

t8 + 8 a7 + 6a5b + 10a3b2 + 4ab3( )t9
9!

+ 8 a8 + 7a6b + 15a4b2 + 10a2b3 + b4( )t10
10!

.

(4.3)

It is easy to check if the exact solution of Eq. 4.1 and Eq. 4.2 is as
follows:

y t( ) � 4
bc

c + a( )e12 a−c( )t + c − a( )e12 a+c( )t( ) − 8
b
, c � �������

a2 + 4b.
√

(4.4)

To analyze the accuracy of the approximate solution in Eq. 4.3
and determine the interval of convergence, we introduce and
compute two types of error, actual and relative errors that are
defined, respectively, as follows:

Act.Err. t( ) � y t( ) − y10 t( )∣∣∣∣ ∣∣∣∣ (4.5)
and

Rel.Err. t( ) � y t( ) − y10 t( )
y t( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (4.6)

For analysis and comparison of the exact and approximate
solutions of IVP (4.1) and (4.2), Table 1 shows the numerical
results of this problem. It displays the exact and approximate
results in addition to the actual and relative errors at different
values of t within the interval [0, 1]. The results indicate that the
errors increase when the value of t increases. It is known that by
increasing the number of terms in the series solution, the error
decreases and the convergence period of the truncated series
increases. It should be noted that we can extend the convergence
period using the multi-stage technique.

Problem 4.2: consider the following Bessel’s equation:

1 − t2( )y″ t( ) − 2ty′ t( ) + 2y t( ) � 0. (4.7)
Subject to the ICs,

y 0( ) � 1, y′ 0( ) � −1. (4.8)
According to the existence and uniqueness theorem, it is clear

that the IVPs (4.7) and (4.8) have a unique solution in the interval
(−1, 1), so we seek to get this solution via the LRPS method. To
reach our goal and be able to rely on the construction obtained in
Section 3.1, it is necessary to rewrite Eq. 4.7 as follows:

y″ t( ) � 2t
1 − t2( )y′ t( ) − 2

1 − t2( )y t( ), 0≤ t< 1. (4.9)

Comparing Eq. 4.7 with Eq. 1.1, we find that

Lt � 2t
1 − t2( )

d

dt
− 2

1 − t2( ), a1 t( ) � 2t
1 − t2( ), a0 t( ) � −2

1 − t2( ),
(4.10)

where a0(t) and a1(t) are analytic functions on [0, 1).
Since the coefficients of the linear operator in Eq. 4.10 are analytic

functions, they can be expressed as McLaurin expansions as follows:

a0 t( ) � ∑∞
j�0
−2t2j, a1 t( ) � ∑∞

j�0
2t2j+1. (4.11)

So, according to Eq. 4.11 and Eq. 3.14, we have

λ0 2j( ) �
a

2j( )
0 0( )
2j( )! � −2, λ0 2j+1( ) �

a
2j+1( )

0 0( )
2j + 1( )! � 0, j � 0, 1, 2, . . .

λ1 2j( ) �
a

2j( )
1 0( )
2j( )! � 0, λ1 2j+1( ) �

a
2j+1( )

1 0( )
2j + 1( )! � 2, j � 0, 1, 2, . . .

.

(4.12)
Comparing with the general formula (3.29), we can find the

values of the coefficients as follows:

c2 � λ00y0 + λ10y1 � −2,
c3 � c2 λ10 + λ01y0 + λ11y1 + λ00y1 � 0,
c4 � c3 λ10 + c2λ00 + 2!c2 λ11 + 2 λ02y0 + λ12y1 + λ01y1( ) � −8,
c5 � c4 λ10 + c3 λ00 + 3c3 λ11 + 3c2 λ01 + 6c2 λ12 + 6 λ03y0 + λ13y1 + λ02y1( ) � 0
c6 � c5 λ10 + c4 λ00 + 4c4 λ11 + 4c3 λ01 + 12c3 λ12 + 12c2 λ02 + 24c2 λ13+24 λ04y0 + λ14y1 + λ03y1( ) � −144
c7 � c6 λ10 + c5 λ00 + 5c5 λ11 + 5c4 λ01 + 20c4λ12 + 20c3λ02 + 60c3λ13 + 60c2λ03

+ 120c2λ14 + 120 λ04y1 + λ05y0 + λ15y1( )� 0
c8 � c7λ10 + c6λ00 + 6c6λ11 + 6c5λ01 + 30c5λ12 + 30c4λ02 + 120c4λ13 + 120c3λ03+360c3λ14 + 360c2λ04 + 720c2λ15 + 720 λ05y1 + λ06y0 + λ16y1( ) � −5760
c9 � c7λ00 + 7c6λ01 + 42c5λ02 + 210c4λ03 + 840c3λ04 + 2520c2λ05 + c8λ10+7c7λ11 + 42c6λ12 + 210c5λ13 + 840c4λ14 + 2520c3λ15 + 5040c2λ16+5040 λ07y0 + λ17y1 + λ06y1( ) � 0
c10 � c8λ00 + 8c7λ01 + 56c6λ02 + 336c5λ03 + 1680c4λ04 + 6720c3λ05

+ 20160c2λ06 + c9λ10 + 8c8λ11 + 56c7λ12 + 336c6λ13 + 1680c5λ14

+ 6720c4λ15 + 20160c3λ16 + 40320c2λ17 + 40320 λ08y0 + λ18y1 + λ07y1( )
� −403200.

Therefore, the LRPS solution to Problem 4.2 can be expressed in
the following series form:

y t( ) � 1 − t − t t + t3

3
+ t5

5
+ t7

7
+ t9

9
+ . . .( ). (4.13)

TABLE 3 The 10th approximate LRPS solution of the IVP (4.24) and (4.25) and the
residual and relative errors.

t y10(t) Res. err.(t) Rel. err.(t)
0.0 1 0 0

0.1 0.990008 1.49429 × 10−20 4.90918 × 10−9

0.2 0.960133 6.11918 × 10−17 3.23767 × 10−7

0.3 0.910671 7.93635 × 10−15 3.88428 × 10−6

0.4 0.842113 2.50409 × 10−13 2.35678 × 10−5

0.5 0.755133 3.64141 × 10−12 1.00077 × 10−4

0.6 0.650575 3.24397 × 10−11 3.46087 × 10−4

0.7 0.529442 2.06065 × 10−10 1.06956 × 10−3

0.8 0.392875 1.02189 × 10−9 3.20192 × 10−3

0.9 0.242133 4.19437 × 10−9 1.04964 × 10−2

1.0 0.078569 1.48293 × 10−8 6.06363 × 10−2
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The expansion in (4.13) is the same expansion as that of the
function tan−1(t). Therefore, the exact solution of the IVP (4.7) and
(4.8) has the following closed form:

y t( ) � 1 − t − ttan−1 t( ), 0≤ t< 1. (4.14)
Table 2 shows the numerical results of Problem 4.2. It shows the

exact and approximate results in addition to the actual and relative
errors at different values of t ∈ [0, 09]. The displayed data are
acceptable and can be improved by increasing the order of the
approximation.

Problem 4.3: consider the following non-linear
nonhomogeneous ODE:

y 3( ) t( ) + y2 t( ) + cos ty′ t( ) � 1 − cos t. (4.15)
Subject to the ICs,

y 0( ) � 0, y′ 0( ) � 1, y″ 0( ) � 0. (4.16)
Similar to the previous problems, we operate the LT on both

sides of Eq. 4.15 and employ the ICs (4.16). Then, we obtain the
following equation in the Laplace space:

Y s( ) � 1
s2
− 1
s3
L L−1 Y s( )[ ]( )2[ ] − 1

s3
L L−1 s

1 + s2
[ ]L−1 sY s( )[ ][ ]

+ 1
s4
− 1
s2 1 + s2( ), s> 0.

(4.17)
We assume that the solution of Eq. 4.17 has the same LS

expansion as in Eq. 3.4. According to ICs (4.16), the kth-
truncated series of Y(s) becomes

Yk s( ) � 1
s2
+∑k

i�3

ci
s1+i

, s> 0. (4.18)

To set the value of the unknown coefficients in series (4.18), we
utilize the kth LRF of Eq. 3.17, which is defined as

LResk s( ) � Yk s( ) − 1

s2
+ 1

s3
L L−1 Yk s( )[ ]( )2[ ]

+ 1

s3
L L−1 s

1 + s2
[ ]L−1 sYk s( )[ ][ ] − 1

s4

+ 1

s2 1 + s2( ), s> 0.
(4.19)

To determine the coefficient c3, we substitute Y3(s) � 1
s2 + c3

s4 into
LRes3(s) and run the operators in Eq. 4.19 to get the following
rational function:

LRes3 s( ) � c3
s4
− 1
s4
+ 2
s2 1 + s2( ) +

2
s6
+ 8c3

s8

+ c3
1 + s2( )3 −

3c3
s2 1 + s2( )3 +

20c23
s10

. (4.20)

Employing fact (3.10), the solution of the equation
lim
s→∞ s4LRes3(s) � 0 for c3 introduces c3 � −1.

Similarly, to find out the value of the second unknown
coefficient c4, we substitute Y4(s) � 1

s2 + 1
s4 + c4

s5 into the 4th-LRF to
get the following:

LRes4 s( ) � c3
s5
+ 2

s6
− 8

s8
+ 20

s10
− 1

1 + s2( )3 +
3

s2 1 + s2( )3 −
2

s4 + s6
− 70c3

s11

+10c3
s9

+ c3

s3 1 + s2( )4 −
6c3

s 1 + s2( )4 +
sc3

1 + s2( )4
+70c

2
3

s12
, s> 0. (4.21)

Utilizing fact (3.10) via Eq. 4.21 gives c4 � 0. Using the same
procedure as mentioned above, we can find more coefficients for
series (4.18). Some of them are c5 � 1, c6 � 0, c7 � −1, c8 � 0, c9 �
1, c10 � 0, c11 � −1. So, the series solution to Eq. 4.31 has the
following LS:

Y s( ) � 1
s2
− 1
s4
+ 1
s6
− 1
s8
+ 1
s10

− 1
s12

+ . . . . (4.22)

Therefore, the LRPS solution to Eq. 4.15 and Eq. 4.16 can be
expressed in the following series form:

y t( ) � t − t3

3!
+ t5

5!
− t7

7!
+ t9

9!
− t11

11!
+ . . . , (4.23)

which is the expansion of the exact solution y(t) � sin(t).

Problem 4.4: consider the following non-linear pantograph
equation:

d2y

dt2
� −2y2 t

2
( ), t≥ 0. (4.24)

Subject to the ICs,

y 0( ) � 1, y′ 0( ) � 0. (4.25)
Following the same procedure as in the previous problems, we

can express the LRPS solution to IVP (4.24) and (4.25) in the form

y t( ) � 1 − t2 + t4

12
− 7t6

1440
+ 127t8

1290240
− 10879t10

7431782400
+ . . . . (4.26)

Since we cannot predict the pattern in the coefficients of the
series solution in Eq. 4.26, we cannot reach the exact solution.

TABLE 4 The 8th approximate LRPS solution of the IVP (4.40) and (4.41) and the
residual and relative errors.

t y10(t) Res. err.(t) Rel. err.(t)
0.0 3.141592 0 0

0.1 3.143436 6.17550 × 10−12 3.88412 × 10−9

0.2 3.149766 3.46550 × 10−9 2.54577 × 10−7

0.3 3.162007 1.47389 × 10−7 2.96588 × 10−6

0.4 3.181938 2.19032 × 10−6 1.70131 × 10−5

0.5 3.211770 1.83429 × 10−5 6.60961 × 10−5

0.6 3.254229 1.07003 × 10−4 2.00356 × 10−4

0.7 3.312664 4.86480 × 10−4 5.10802 × 10−4

0.8 3.391178 1.84223 × 10−3 1.14494 × 10−3

0.9 3.494777 6.06308 × 10−3 2.32075 × 10−3

1.0 3.629549 1.78494 × 10−2 4.33494 × 10−3
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Therefore, we test the results using the residual and relative errors,
which are defined as follows, respectively:

Res.Err. t( ) � L−1 LResk s( )[ ]∣∣∣∣ ∣∣∣∣ � d2yk

dt2
+ 2y2

k

t

2
( )∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, (4.27)

Rel.Err. t( ) � yk t( ) − yk/2 t( )
yk t( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (4.28)

Table 3 shows the numerical results of Problem 4.4. It displays
the 10th approximate solution in addition to the residual and
relative errors at different values of t within the interval [0, 1].
The results indicate that the LRPS solution is acceptable
mathematically in the period [0, 1].

Problem 4.5: consider the following homogenous linear
singular ODE:

sin t( )y″ − 2 cos t( )y′ − sin t( )y � 0, 0< t< π, (4.29)
with respect to the ICs:

y 0( ) � 2, y′ 0( ) � 0. (4.30)
We apply the LT on both sides of Eq. 4.29 and use the ICs in Eq.

4.30 to obtain the following symbolic algebraic equation in the
Laplace space:

L L−1 1

1 + s2
[ ]L−1 s2Y s( ) − 2s[ ][ ] − 2L L−1 1

1 + s2
[ ]L−1 sY s( ) − 2[ ][ ]

−L L−1 1

1 + s2
[ ]L−1 Y s( )[ ][ ] � 0, s> 0.

(4.31)
Suppose that the solution of Eq. 4.31 has a LS expansion as in Eq.

3.4. According to ICs (4.30), the kth-truncated series (3.6) can be
expressed as

Yk s( ) � 2
s
+∑k

i�2

ci
s1+i

, s> 0. (4.32)

To set the unknown coefficient in series (4.32), we define the kth
LRF of Eq. 4.31 as follows:

LResk s( ) � L L−1 1

1 + s2
[ ]L−1 s2Yk s( ) − 2s[ ][ ]

−2L L−1 1

1 + s2
[ ]L−1 sYk s( ) − 2[ ][ ]

−L L−1 1

1 + s2
[ ]L−1 Yk s( )[ ][ ], s> 0.

(4.34)

We substituteY2(s) � 2
s + c2

s3 into LRes2(s) and run the operators
in Eq. 4.34 to get the following function:

LRes2 s( ) � − 2

1 + s2( )3 +
4c2

1 + s2( )3 −
4s2

1 + s2( )3 −
c2s2

1 + s2( )3

− 2s4

1 + s2( )3 −
c2s4

1 + s2( )3. (4.35)

Solving the equation lim
s→∞ s2LRes2(s) � 0 gives c2 � −2. Thus, the

first approximation of the solution of Eq. 4.31 is Y2(s) � 2
s − 2

s3.
Again, we substitute 3rd-truncated series, Y3(s) � 2

s − 2
s3 + c3

s4 , into
the 3rd LRF to get the following:

LRes3 s( ) � −10
1 + s2( )4 +

12c3s

1 + s2( )4 −
12s2

1 + s2( )4 +
4c3s3

1 + s2( )4 −
2s4

1 + s2( )4.
(4.36)

Consequently, the equation lim
s→∞ s3LRes3(s) � 0 gives c3 � 0.

Likewise, we substitute the 4th-truncated series,
Y4(s) � 2

s − 2
s3 + c4

s5, into the 4th LRF to get the following:

LRes4 s( ) � −10
1 + s2( )5 −

4c4

1 + s2( )5 −
22s2

1 + s2( )5 +
21c4s

2

1 + s2( )5 −
14s4

1 + s2( )5
+ 10c4s

4

1 + s2( )5 −
2s6

1 + s2( )5 +
c4s

6

1 + s2( )5. (4.37)

Solving the equation lim
s→∞ s4LRes4(s) � 0 gives c4 � 2. Applying

the same procedure for k � 5, 6, 7, 8 leads to c5 � 0, c6 � −2, c7 � 0,
and c8 � 2. Thus, we conclude that the solution of Eq. 4.31 has the
following expansion:

Y s( ) � 2
s
− 2
s3
+ 2
s5
− 2
s7
+ 2
s9
− . . . . (4.38)

Applying the inverse LT to Eq. 4.38 gives the LRPS solution to
the IVP (4.29) and (4.30) in the following PS form:

y t( ) � 2 1 − t2

2!
+ t4

4!
− t6

6!
+ t8

8!
− . . .( ). (4.39)

It is clear that the closed form of the exact solution of IVP (4.50)
and (4.51) is y(t) � 2 cos(t).

Problem 4.6: consider the following non-homogeneous nonlinear
Lane–Emden singular ODE:

y″ t( ) + 2
t
y′ t( ) − t siny t( ) � e2t , t ∈ 0, 2( ), (4.40)

considering the ICs:

y 0( ) � π, y′ 0( ) � 0. (4.41)

TABLE 5 The 10th approximate LRPS solution of the IVP (4.46) and (4.47) and the
residual and relative errors.

t y10(t) Res. err.(t) Rel. err.(t)
0.0 0 0 0

0.1 1.66589 × 10−4 2.79119 × 10−12 1.21224 × 10−8

0.2 1.33102 × 10−3 1.07260 × 10−9 2.99609 × 10−7

0.3 4.48384 × 10−3 2.75171 × 10−8 1.60237 × 10−6

0.4 1.06044 × 10−2 1.83659 × 10−7 3.90207 × 10−6

0.5 2.06612 × 10−2 4.28369 × 10−9 3.15208 × 10−6

0.6 3.56173 × 10−2 7.03832 × 10−6 1.40973 × 10−5

0.7 5.64404 × 10−2 5.66213 × 10−5 7.81978 × 10−5

0.8 8.41213 × 10−2 2.83838 × 10−4 2.45959 × 10−4

0.9 1.19699 × 10−1 1.09913 × 10−3 6.12036 × 10−4

1.0 1.64304 × 10−1 3.57492 × 10−3 1.32164 × 10−3
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Using similar arguments to the previous problem, one can obtain
the series solution of the LT of the IVP (4.40) and (4.41) as follows:

Y s( ) � π

s
+

1
3

s3
+ 1
s4
+

12
5

s5
+

14
3

s6
+

60
7

s7
+ 15
s8

+ 28
s9

+
2588
45

s10
+ . . . . (4.42)

Applying the inverse LT on Eq. 4.42 gives the LRPS solution of
the IVP (4.40) (4.41) in the following series form:

y t( ) � π + t2

6
+ t3

6
+ t4

10
+ 7t5

180
+ t6

84
+ t7

336
+ t8

1440
+ 647t9

4082400
+ . . . .

(4.43)
There is no pattern between the series terms in Eq. 4.43. So, it is

difficult to predict the exact solution formula. Thus, we suffice with
the approximate solution we got for Problem 4.6. It is worth noting
that the more terms we calculate for the LRPS solution, the longer
the series convergence interval and the higher the accuracy of the
solution. Therefore, we test the 8th approximate LRPS solution for
Problem 4.6 using the residual and relative errors, which are defined
as follows, respectively:

Res.Err. t( ) � L−1 LRes8 s( )[ ]∣∣∣∣ ∣∣∣∣
� t − ⅇ2tt + 2t2 + 2t3 + 4t4

3
+ 2t5

3

∣∣∣∣∣∣∣∣
+4t

6

15
+ 4t7

45
+ 8t8

315
+ t9

1512
− 13t10

4320
− 1003t11

255150
− 113221t12

32659200
|,
(4.44)

Rel.Err. t( ) � y8 t( ) − y4 t( )
y8 t( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

�
t6

84 + t7

336 + t8

1440 + 647t9

4082400

π + t2

6 + t3

6 + t4

10 + 7t5
180 + t6

84 + t7

336 + t8

1440 + 647t9
4082400

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣. (4.45)

Table 4 shows the numerical results of Problem 4.6. It illustrates
the 8th approximate solution in addition to the residual and relative
errors at different values of t within the interval [0, 1]. Similar to the
results in the previous tables, the data are good for the period [0, 1].

Problem 4.7: We consider the following micro-electromechanical
system (MEMS) [52]:

y″ + y + θ

y − 1
� 0, θ > 0, (4.46)

with the ICs:

y 0( ) � y′ 0( ) � 0. (4.47)
This dynamic differential equation is used to describe the wire’s

movement as a point mass, where y is the dimensionless distance
and θ is a voltage-related parameter.

Simulating the previous examples, the LT of the IVP (4.46) and
(4.47) is given by the following algebraic equation:

L L−1 s2Y s( )[ ]L−1 Y s( )[ ][ ] − s2Y s( ) + L L−1 Y s( )[ ]( )2[ ] − Y s( ) + 1
s2

� 0, s> 0.
(4.48)

Applying the arguments and processes of the LRPS method, one
can obtain the LRPS solution to the algebraic Eq. 4.48 as follows:

Y s( ) � θ

s3
+ θ θ − 1( )

s5
+ θ 1 − 2θ + 7θ2( )

s7
− θ 1 − 3θ + 39θ2 − 127θ3( )

s9

+θ 1 − 4θ + 168θ2 − 1678θ3 + 4369θ4( )
s11

+ . . . .

(4.49)

Applying the inverse LT to Eq. 4.49 gives the LRPS solution of
the IVP (4.46) (4.47) as follows:

y t( ) � θt2

2
+ θ θ − 1( )t4

4!
+ θ 1 − 2θ + 7θ2( )t6

6!
− θ 1 − 3θ + 39θ2 − 127θ3( )t8

8!

+θ 1 − 4θ + 168θ2 − 1678θ3 + 4369θ4( )t10
10!

+ . . . .

(4.50)

To test the accuracy of the obtained solution given in (4.50), we
compute the residual and relative errors to the 10th approximation of the
solution. Table 5 shows the 10th approximate solution in addition to the
residual and relative errors at different values of twithin the interval [0, 1].
The results indicate that the obtained solution is acceptable
mathematically.

On the other hand, what specialists in MEMS system
implementations are most interested in is the pull-in phenomenon
analysis. The MEMS system in Eq. 4.46 and Eq. 4.47 conducts either
periodically or unsteadily. This behavior depends on the value of the
voltage-related parameter, θ. At small values of θ, the solution of the
system is stable and periodic, whereas at large values of θ, it becomes

FIGURE 1
Phase trajectories at different values of θ. (A) Solid line: θ � 0.2; dotted line: θ � 0.203; and dashed line: θ � 0.203632188. (B) Solid line: θ � 0.2037;
dotted line: θ � 0.25; and dashed line: θ � 0.3.
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unstable, called pull-in instability. Figure 1 shows that the system is
stable and periodic at θ values less than or equal to the critical value
(θ � 0.203632188) [52], and it becomes unstable at θ values greater
than the critical one.

5 Conclusion

This study aims to test the efficiency of the LRPS method in finding
series solutions for ODEs, which are difficult to solve in the analytical
methods. We have succeeded in providing a solution to the general form
of linear ODEs whose coefficients are analytical functions as an exact
solution in a PS form. We also dealt with non-linear ODEs in the
proposed technique and found approximate solutions with high accuracy.
The biggest surprise is the success of the LRPSmethod in providing series
solutions for the equations about the singular points that coincidewith the
exact results in some examples. Using the LRPSmethod, there is no longer
an obstacle to obtaining a PS solution for a broad class of ODEs. In
addition, the idea of the method circumvented the use of the LT to solve
non-linear equations to which the LT is difficult to apply. In addition to
themethod’s efficiency in arriving at exact solutions, LRPS is easy and fast
in finding the coefficients of a series solution. There is no doubt that we
can use the new method to solve other sets of equations that we did not
have to deal with in previous studies, such as using it to solve partial
differential equations, integral equations, integrodifferential equations, and
linear or non-linear, as well as algebraic equations. We should not forget
that the method has not been applied to solve differential equations with
boundary conditions. All these and other topics will be under research by
our research team in the next stage.
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