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Transit, touted as a solution to urban mobility problems, cannot match the

addictive flexibility of the automobile. 86% of all trips in the U.S. are in personal

vehicles. A more recent approach to reduce automobile dependence is through the

use of Vehicle Sharing Programs (VSPs). A VSP involves a fleet of vehicles located

strategically at stations across the transportation network. In its most flexible form,

users are free to check out vehicles at any station and return the vehicle at a station

close to their destination. Vehicle fleets are comprised of bicycles, cars or electric

vehicles. Such systems offer innovative solutions to the larger mobility problem

and can have positive impacts on the transportation system as a whole by reduc-

ing urban congestion. This dissertation employs a network modeling framework

to quantitatively facilitate design and operate VSPs. At the strategic level, the

problem of determining the optimal VSP configuration is studied. A bilevel opti-

mization model and associated solution methods are developed and implemented

for a large-scale case study in Washington D.C. The model explicitly considers the



intermodalism, and views the VSP as a ‘last-mile’ connection of an existing transit

network. At the operational level, by transferring control of vehicles to the user

for improved system flexibility, exceptional logistical challenges are placed on oper-

ators who must ensure adequate vehicle stock (and parking slots) at each station

to service all demand. Since demand in the short-term can be asymmetric (flow

from one station to another is seldom equal to flow in the opposing direction),

service providers need to redistribute vehicles to correct this imbalance. A chance-

constrained program is developed that generates least-cost redistribution plans such

that most demand in the near future is met. Since the program has a non-convex

feasible region, two methods for its solution are developed. The model is applied

to a real-world car-sharing system in Singapore where the value of accounting for

inherent stochasticities is demonstrated. The framework is used to characterize the

efficiency of Vélib’, a large-scale bicycle sharing system in Paris, France.
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5.1 Spatial distribution of Vélib’ stations . . . . . . . . . . . . . . . . . . 114
5.2 Temporal distribution of trips . . . . . . . . . . . . . . . . . . . . . . 115
5.3 Cumulative distribution of travel characteristics . . . . . . . . . . . . 115
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Chapter 1: The Thesis

Vehicle sharing programs (VSPs) have been gaining ground around the world

for providing an environment-friendly, socially responsible and economical mode of

transport. These programs involve a fleet of vehicles positioned strategically at

stations across the transportation network. In its most flexible form, users are free

to lease a vehicle to complete a trip and drop the vehicle at a station close to their

destination. The shared vehicle fleet can be comprised of cars, electric vehicles or

bicycles. Such systems offer innovative solutions to the larger mobility problem

and can have positive impacts on the transportation system as a whole by affecting

modal choice. They do so in multiple ways. For short trips, these systems can be

construed as an alternate mode of transport. Users enrolled in sharing programs

have been shown to undertake fewer trips [46]. When viewed in conjunction with

transit networks, a VSP can serve to increase transit use.

Compared to the automobile, transit services in the United States (US) do not

enjoy high levels of patronage, in part due to low accessibility, and lack of flexibility

and convenience. The US has also been behind the trend in transit adoption when

compared with other industrialized countries. VSPs have the potential to improve

the accessibility of a public transit system by offering a competitive ‘last mile’ con-

nection, the lack of which dissuades potential transit riders. The effective catchment

area of a transit line is increased by providing a vital leg of an intermodal route. By

transferring control of vehicles to the user, the system becomes vastly more flexible,

offering more choices with regard to departure time, destinations and transit routes.
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These projected improvements can serve to attract new transit ridership.

Vehicle sharing arose from social experiments in sustainable transportation

and now finds willing private participants (even a company like Exxon Mobil has

a pilot project in Baltimore City called AltCar [25]). Public agencies positioned to

leverage this increased interest from the private sector profit, because this form of

transportation provides net social benefit. The predominant revenue source for car

and electric vehicle programs are from customer usage fees, while advertising rev-

enue supports bicycle sharing programs. As opposed to central, structured, resource-

intensive solutions that are typically employed to alleviate congestion, proponents

of vehicle sharing schemes claim it offers a distributed, unstructured, sustainable,

and economical solution. In essence, VSPs provide a market opportunity for private

entities that aid in achieving public goals of affecting a modal shift from road to

transit. To maximize transit mode share, a public-private partnership can be forged

that shares the same objective of increased ridership. Several design decisions are

critical for the success of such systems (e.g. pricing, station locations, fleet com-

position and size). Determining the optimal system configuration is vital to their

success.

This dissertation formulates models and develops associated solution algo-

rithms that quantitatively facilitate design, assessment, and operation of vehicle

sharing systems based on probabilistic information on demand, modal preferences,

and the existing transit system configuration. A network modeling framework is

employed as a basis to support the formulation and analysis.

The principle components of the research include the following. The key de-
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mand and supply processes, and their interaction, are characterized. The VSP

design is approached from the perspective of intermodalism, whereby the existing

transit network is viewed as the backbone with VSPs serving as a ‘last-mile’ con-

nection. Fleet management strategies for system operators are devised that account

for the stochastic nature of demand. The tradeoffs between level-of-service and op-

erating costs are examined within the context of a specific strategy. Critical design

parameters are evaluated for real-world systems under a wide range of scenarios to

assess performance.

1.1 Motivation and Background

Transit, touted as a solution to urban mobility problems, cannot match the

addictive flexibility of the automobile. 86.5% of all trips in the U.S. are in personal

vehicles [55]. Public transit does not compare favorably when attributes that influ-

ence mode choice (travel times, costs, accessibility, convenience and flexibility) are

considered and accounts for just 1.5% of all trips and 4.7% of all commute trips.

Additionally, the majority of federal investment in transportation infrastructure is

used for capital improvements to existing highways. Despite the increasing disutility

of automobiles (worsening congestion, price of gasoline and the supply of infrastruc-

ture that has been outpaced by demand), transit continues to be underappreciated

as a viable alternative [52].

Transit is efficient and offers low negative socio-environmental external costs

(defined as the collective adverse impact of transport not borne by the user, e.g. pol-
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lution) [20]. Planners have strived to improve transit patronage through measures

that increase transit utility by alleviating its shortcomings. To increase accessibility,

transit is integrated with other modes, such as cars (in the form of park-and-ride),

bicycles [54], and other slow mode connections [42, 47]. The emphasis on the inter-

face of transit to other modes has been demonstrated to increase catchment areas

of transit lines and provide viable intermodal solutions.

A more recent approach to reduce automobile dependence is through the use

of VSPs. For a user, a shared vehicle reduces cost of ownership minimally impacting

flexibility. Vehicles, viewed as a resource, spend most of their time idle and depreci-

ating in value. More efficient use of this resource implies lower costs. Shared vehicle

fleets offer a mechanism for exploiting this down-time. In addition to cost benefits

to individual users, there are system-wide benefits from a decrease in motor vehi-

cles in the system (recent European study estimates one shared vehicle leads to a

reduction of between four and 10 privately owned cars; estimates for North America

range from six to 23 cars [45]). These programs typically have pricing structures

that charge based on usage, which has been shown to reduce travel amongst partic-

ipants [46]. In essence, a smaller fleet of vehicles offers a comparable level of service

to users as vehicle ownership, and provides system-wide benefits.

Users around the world have found VSPs to be profitable. As of 2007, car

sharing programs exist in 600 cities around the world [45], and bicycle sharing

programs in 102 cities [12]. By membership, North America accounts for 35% of

car sharing programs worldwide. Vélib’, the bicycle sharing program in Paris, has

20,600 bicycles spread over 1,450 stations across the city with an average of 120,000

4



trips daily [21].

VSPs build on para-transit concepts of on-demand ‘peer-to-peer’ transport

with flexible routes and no schedules. The principle difference is that VSPs transfer

control of vehicles to users. Para-transit aims, as articulated in [30], to be an

intermediate solution between the flexibility of automobiles and the rigidness of

transit. A unimodal view of paratransit is espoused by Kirby [30] as shown in Figure

1.1, where the appeal of different modes is limited to specific distance windows.

When the true intermodal nature of transport is considered, these limitations are

not insurmountable. These limitations depend solely on the ease with which users

can interface between different modes.

Figure 1.1: A Unimodal View of Urban Transport, adapted from [30]

The weak enthusiam for transit and other non-automobile based modes is

partly a result of an auto-centric culture. The true cost of automotive travel is not

borne by drivers. Several cost components can be shown to be effectively subsidized.

One example is parking, where business owners are forced to offer subsidized (or free)

parking to lure customers, recuperating the costs through higher commodity prices
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[57]. These factors make the transport market an uneven playing field. With fewer

resources, transit operators are expected to match the level-of-service of automobiles.

VSPs offer a mechanism for private players to participate in aiding public goals of

modal shift. As on-demand feeder services, VSPs can help realize the economies of

scale that transit offers.

Earlier generations of VSPs, mainly bicycles, were plagued by theft and van-

dalism. VSP operators now have substantial Information Technology (IT) infras-

tructure for various functions, including tracking of vehicles for theft prevention,

smart cards for member access, vehicle availability across the network, charging

consoles for electric vehicles, payment systems, and online traveler information ser-

vices. This data-rich environment provides a real-time awareness of the system that

can be leveraged for better fleet management. These technologies, taken together,

have proven to be a great enabler. System managers have real-time information

on the location of the fleet, and users can be made more accountable (though the

Vélib’ in Paris reports losing 3,000 bicycles annually, or around 15% of its fleet).

This reliance on real-time information lends the system to data-intensive operations

research methods to provide decision support. Thus, technology is a key driver of

current innovations.

The literature on VSPs is dominated by qualitative demand-side studies that

predominately aim at market potential and feasibility aspects of the system. These

studies are discussed in relevant chapters. The supply side of the equation relating

to design and operations has by contrast received very limited attention. The tools

developed herein address this gap in the literature. From a theoretical perspective,
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the relevance of this research is in analyzing innovative transport solutions that fall

outside the traditional realms. From a societal perspective, as urban communities

grapple with finding ways to provide efficient, sustainable mobility to their populace,

the developed tools provide a quantitative framework for the analysis of one strategy,

namely the shared-vehicle program.

1.2 Research Objectives

Driven by the gap in literature, unique challenges associated with VSPs, the

need for sustainable urban mobility solutions, and the increased interest in VSPs

across the world, this research has the following objectives.

Address vital strategic network design needs of VSP operators. The research

seeks to determine the optimal VSP configuration. Two distinct perspectives under-

line the model development. From the perspective of users seeking to optimize travel

itineraries, the sharing program must offer value-added service, either as a mode or

by making transit more attractive by serving as a ‘last-mile’ connection. From the

perspective of VSP service providers who benefit from increased usage, resources

are directed to areas with a critical mass of users that warrant the investment.

Develop operational strategies for VSPs. From an operational standpoint, the

operator reliquishes control of vehicles to users (who decide where to check out

vehicles, how long to use them, and where they are returned). This makes the

system highly uncertain and places exceptional logistical challenges on operators.

This research seeks to answer the following key questions. (1) Given the uncertainty
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of user demand, what operational strategies ensure adequate levels-of-service? (2)

What fleet management strategies can minimize cost to operators?

Develop a network-based conceptual framework for VSP strategic design and

operations. Mathematical models for the identified problems are formulated that

account for inherent uncertainty, multiple stakeholder objectives, and equilibrium

conditions, and explicitly model intermodalism. The models yield (1) the optimal

VSP configuration (locations of stations, vehicle inventory, and station sizes), and

(2) operational fleet management plans that aid in maintaining desired level-of-

service at minimal cost to operators.

Develop exact and heuristic solution approaches for identified problems. The

developed bilevel and chance-constrained programming models are computationally

challenging to solve. Several exact algorithmic approaches and a meta-heuristic

scheme are developed for their solution.

Demonstrate applicability of developed models and solution algorithms to real-

world instances. The developed methodologies are implemented for several real-

world case studies and on synthetic networks to demonstrate the value of a network

optimization based approach to analyze VSPs. The strategic network design model

is implemented for a large-scale model in Washington D.C. and several synthetic net-

works. The operational model is implemented for a car-sharing system in Singapore,

and a bike-sharing system in Paris.
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1.3 Specific Problems Addressed

1.3.1 Strategic Level: Equilibrium Network Design

Taking the perspective of a VSP service provider working with a public transit

agency to increase transit mode share, the primary aim of this work is to determine

optimal configuration of VSP resources (in terms of where to locate stations, the

size of stations, and the vehicle fleet) to increase transit share. To quantify the

effects of VSPs, a network representation of the system and models of underlying

processes that govern mobility within the system are conceptualized. The principle

components of this framework, models of the demand-side process, and supply of

transport (links, modes and interfaces) are developed. Since response of potential

users to innovative transport solutions is inherently uncertain, simple quantative

measures are used to depict preferences of system users.

A bilevel, mixed-integer, equilibrium network design model is developed to

determine the optimal VSP system configuration. The model uses a leader-follower

framework to consider the differing objectives. Within this framework, the VSP

operator (leader) provides the system configuration that users (followers) utilize to

improve their travel utilities. In the overall network modeling framework, the pres-

ence of a sharing program alters the supply conditions and, therefore, demand for the

service is revised. This supply-demand interaction iteratively equilibrates to a VSP

design that supports the estimated demand based on the offered level-of-service.

The optimal VSP configuration, therefore, represents a supply-demand equilibrium,

where the VSP configuration (supply) supports its utilization (demand). The de-
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sign of a VSP pertains to location and size of stations and estimation of resource

requirements to achieve target level-of-service.

Bilevel programs, in general are computationally challenging to solve due to a

non-convex feasible region. An exact technique is proposed that uses the Karush-

Kuhn Tucker conditions of the lower-level to transform the problem to a generalized

linear complementarity problem. Using additional transformations, the program

is converted to a mixed-integer program that is more readily solvable by existing

optimization suites.

1.3.2 Operational Level: Fleet Management

Operational fleet management strategies under demand uncertainty are de-

veloped. Specifically, a mixed-integer, chance-constrained, stochastic program for

anticipative fleet redistribution in VSPs is formulated that generates least-cost fleet

plans such that most near-term demand is met. By transferring control of vehicles to

the user, exceptional logistical challenges are placed on operators who must ensure

adequate vehicle stock (and parking slots) at each station to service all demand.

Since demand in the short-term can be asymmetric (flow from one station to an-

other is seldom equal to flow in the opposing direction), service providers need to

redistribute vehicles to correct this imbalance. The developed model accounts for

demand uncertainty and generates partial redistribution plans when resources are

insufficient.

Chance-constrained programs are difficult to solve due to a non-convex feasible
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region. Two exact solution techniques are developed that exploit the discrete-valued

nature of demand using the theory of p-efficient points. A equal failure apportion-

ment bound is also presented.

1.3.3 Case Studies

The strategic and operational models are implemented for several synthetic

networks and three real-world case studies. The strategic network design model is

employed to aid the District of Columbia (D.C.) Department of Transportation in

expanding their bicycle sharing program. The operational model is employed on

a carsharing system in Singapore. A framework used for the operational model is

used to characterize Vélib’, a large-scale bicycle sharing system in Paris. These real-

world case studies demonstrate the applicability of developed models and methods

to real-world instances.

1.4 Contributions

This thesis makes the following contributions to the literature on sustainable

transportation solutions for urban mobility problems.

At the strategic level, a network modeling framework for the discrete equi-

librium network design problem is formulated as a mixed-integer bilevel program.

This framework explicitly considers the modal interface of VSPs with other modes.

Bilevel programs are intractable and their solution presents a significant computa-

tional hurdle. An exact solution approach is developed that exploits the convex-
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ity of the lower level. The Karush-Kuhn Tucker conditions are used to transform

the bilevel program into an mathematical program with equilibrium constraints

(MPEC). Using an additional transformation, the MPEC is transformed to a mixed-

integer linear program that can be readily solved through the application of off-the-

shelf optimization suites such as CPLEX. This exact solution approach is tested

on several synthetic networks. A metaheuristic approach using concepts of genetic

algorithm is developed for large networks and is applied to aid the D.C. Department

of Transportation in designing their bicycle sharing program expansion.

At the operational level, a chance-constrained stochastic program to generate

fleet management strategies is developed. When resources are insufficient, the pro-

gram recovers partial redistribution plans that utilize the available resources in the

most efficient manner. Two solution algorithms are developed for exact solution of

the problem. The first method solves multiple MIPs for special realizations of the

random vector called p-efficient points (PEP). This method relies on the enumeration

of PEPs where a novel divide-and-conquer PEP generation is presented, a contri-

bution that transcends the current application. A second cone generation method

employs concepts from the column generation approach in linear programming to

probabilistically constrained programs. The method uses a slave optimization model

to determine promising PEPs to consider in the master problem.

Three large-scale, real-world case studies are implemented for the proposed

models to demonstrate the efficacy and applicability of the conducted research. The

strategic network design model is implemented for a new bike-sharing system in

Washington, D.C. The model outputs a near-optimal VSP configuration, quanti-
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fying the flows between stations and the improvement in transit accessibility for

various neighborhoods within the District. The forecast inter-station flows and ef-

fects on transit accessibility are measures that have not been previously studied in

the context of VSPs and they are studied herein.

The operational model is implemented for a car-sharing system in Singapore,

and the framework used to analyze a bicycle sharing system in Paris. A simulation

framework is developed for the analysis of various redistribution plans. The benefit

of accounting for inherent uncertainty (‘value of stochastic solution’) is demonstrated

by a comparative analysis with static methods.

1.5 Dissertation Outline

Chapter 2 describes the strategic equilibrium discrete network design problem.

Chapter 3 presents the fleet management models and the case study for the Singa-

pore carsharing system. Chapter 4 documents the design of a bicycle sharing system

for Washington, D.C. Chapter 5 presents the application of the fleet management

model to characterize a large-scale bicycle sharing system in Paris. The research

conclusions are summarized in Chapter 6.
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Chapter 2: System Design

2.1 Introduction

Since established transport solutions are unsustainable, changes in the way

transport is supplied and consumed are imminent. Planners have long embraced

the idea that transit will solve urban mobility woes. However, data on users travel

choices shows transit to be a losing proposition [55]. Transit simply cannot match the

flexibility of the automobile. In recent years, shared-vehicle systems have garnered

the interest of urban communities as an integral component in the basket of mobility

solutions for the future.

The focus of this chapter is on the design of flexible shared-vehicle systems

that allow users to check out vehicles (bicycles, electric vehicles, or cars) close to

their origins and drop them off at VSP stations near their destinations. The system

is envisioned to be utilized in two ways. For short trips, the shared-vehicles serve

as an individual modal alternative. For longer trips, they serve as a vital leg of

an intermodal route. In the latter case, VSPs increase travel utility by improving

flexibility, offering greater departure time choice, and increasing transit accessibility.

The existing transit network is viewed as the backbone of a hierarchical network,

with the shared-vehicle system serving as a feeder system (see Figure 2.1). When

viewed in conjunction with transit networks, shared-vehicle systems offer a compet-

itive ‘last-mile’ connection, the lack of which dissuades potential riders.

For the purposes of this chapter, the term ‘VSP operator’ is designated as
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Figure 2.1: Hierarchical transit-VSP network

the entity responsible for designing the VSP system. In practice, the organizational

structure behind the design and operation of VSPs varies considerably for different

cities. The primary stakeholders involved with the design tasks can include public

transportation agencies, public transit authorites, non-profit organizations, private

for-profit companies, and advertising companies. Local transportation agencies typ-

ically initiate the process by developing operating standards. These standards can

pertain to location of VSP stations, shared-vehicle inventories, integration of pay-

ment systems, and desired level-of-service. The agency may then work with external

service providers (non-profit entities, commercial providers, advertising agencies) to

build out the system and operate it. These external service providers are paid

through revenue-sharing agreements with the city or through other means, such as

advertising rights at VSP stations and vehicles. Another business model involves

private companies solely determining the configuration of the system, choosing to

provide services where they may be most utilized. Given the myriad forms in which

the organizational roles can be structured, the VSP operator can therefore be either
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a public agency, or a private participator.

VSP operators want to decide (1) where to locate stations, (2) how many slots

to locate, and (3) how many vehicles to place at each station. In this chapter, a

bilevel programming model is developed that optimally determines a VSP configu-

ration. The model recognizes the operator’s lack of control over the utilization of

the system, since the usage of the VSP is driven by myopic decisions on the part of

patrons who seek to maximize their travel utility. The framework also incorporates

the intermodal nature of transport and links the shared-vehicle system to existing

transit. At the upper level, the VSP operator determines the optimal configuration

of the system (supply). At the lower level, users respond to the VSP configuration

and optimize their personal itineraries (demand). The VSP operator in turn adjusts

the VSP configuration to maximize ridership. At equilibrium, the optimal configu-

ration is one that supports travellers who derive utility from using the shared-vehicle

to complete trips. Since bilevel programs are computationally challenging to solve,

two solution approaches, one exact and the other heuristic, are developed. The ex-

act technique exploits the convex nature of the lower level problem to derive a large

mixed-integer program (MIP) that can be solved using existing MIP solvers. The

second meta-heuristic based approach that is developed is suitable for the solution

of large instances, as would arise in the real-world. It is presented in Chapter 4.

The literature on design of shared-vehicle systems is very limited. Many stud-

ies focus on the qualitative characteristics that aim at determining the feasibility of

such systems [23, 53] and the market potential based on surveys and demographic

information [28, 46]. Awasthi et al. [3, 4] present a multicriteria decision mak-
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ing tool based on the analytic hierarchy process (AHP). Their framework relies on

experts ranking stations based on various criterion, including landuse, population

density, vehicle ownership, transit access, and presence of target groups. Another

pertinent aspect of the literature is the integration of transit with other modes for

improving mobility. Several works have studied the role of ‘feeder’ modes to transit

lines [42, 50, 48, 47, 54]. The main focus of these studies have been in integrating

bicycles and other slow modes with transit to provide better accessibility. From

a conceptual standpoint, the developed model is strongly aligned with the access

network design problem, which arises in other sectors, such as telecommunications

[5, 11], computer networks [37], and capacity expansion problems in various in-

dustries. These previous studies are tailored to problems where the same entity

allocates the resources and then determines how it is utilized. In the case of VSPs,

however, the operator who designs the network has little control over the fleet of

vehicles. Users independently decide where to check out vehicles, the duration of

the trip, and where to return them. The control of the resource effectively rests

in the hands of users. This important distinction precludes the use of previously

proposed models and warrants the development of problem specific tools.

It appears that no previous work has studied the design of shared-vehicle sys-

tems from a quantitative, network-based approach. The main contribution of this

work is developing a quantitative framework for designing a shared-vehicle system

that works in conjunction with existing transit services and infrastructure. While

the high level of flexibility of VSPs is a boon for users, operators often rely on quali-

tative information to decide on the best utilization of their shared-vehicle fleet. The
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work presented herein closes this gap in the literature by providing a quantitative

framework for designing shared-vehicle systems.

2.2 Formulation

Given (a) an existing transit network configuration, (b) a set of candidate sites

for sharing stations, (c) resource and other site and equity constraints for the VSP

operator, (d) behavioral assumptions of transit riders, and (e) static demand, we

seek an optimal VSP system configuration that maximizes ridership on the shared-

vehicle system.

The VSP system configuration is defined by where VSP stations are located,

the capacity (or slots) at each station and the number of vehicles at the station.

The role of VSPs within the overall context of urban transportation is explicitly

considered. While for shorter trips VSPs can be construed as a modal alternative,

longer intermodal trips can involve the use of shared-vehicle segments for access to

transit-based services. Since users act independently of the VSP operator, a leader-

follower framework is developed to model the differing objectives. The resulting

optimal VSP configuration respresents a supply-demand equilibrium, where the VSP

configuration (supply) supports its utilization (demand). The framework relies on

a network representation of demand and supply processes which are described next.

18



2.2.1 Supply Processes

To explicitly consider the interaction of VSPs with transit, the network repre-

sentation of supply stems from the unique characteristics of transit systems. Transit

networks possess characteristics that differ from highway networks mainly due to

the manner in which users navigate through the system. A transit network must

account for walk access, waiting at transit stops, and intermodal paths, and ad-

ditionally model various services that allow users to reach their destinations. The

introduction of a new shared-vehicle system to access the transit network adds an

additional means of access. Users moving from origins to destinations could poten-

tially use the VSP to complete their trips should the VSP provide greater travel

utility than using transit. Alternatively, users could couple the VSP with transit to

generate an intermodal route that maximizes travel utility. This coupling is achieved

through the provision of efficient modal interfaces between VSP and transit systems.

In practice, a quick transfer from VSP to transit would imply physical proximity

of shared stations to transit stations, unified payment systems for VSP and transit

for quick transfers, and adequate VSP station capacity near transit stations to en-

sure level-of-service. The resulting network has a hierarchical structure as shown in

Figure 2.2.

The network is represented by a graph G(V, A), where V is a set of nodes and

A is a set of arcs connecting nodes of the network. The set A includes a subset of

non-frequency based arcs denoted by A. These include all sharing links, transfer

links, and walk links. For frequency-based links that represent transit services, each
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Figure 2.2: Network configuration

link has an associated frequency parameter fij , (i, j) ∈ A \ A. Each arc (i, j) ∈ A

is characterized by a pair (cij , gij), where cij is a nonnegative travel time (or cost)

and gij is the distribution function for the waiting time for transit service [51]. For

arcs where no waiting is involved, gij = 0.

A VSP operator aims to configure a shared-vehicle system around existing

transit lines. The graph G(V, A) includes all candidate sites that a VSP operator

considers. The sharing sub-network is denoted as Gs(Vs, As), where Vs is the set of

candidate sharing sites and Vs ⊆ V . Since users of shared vehicles can potentially

return vehicles at any station, Gs is a strongly connected graph. The shared-vehicle

edge set As can be construed in two ways, either as having a single arc for each

pair of sharing stations, or as a set of arcs that link each sharing station to the

transport network. Similar to each arc in G, each arc in the sharing network Gs has

an associated travel cost (or time).
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2.2.2 Demand Processes

The core of any system designed to provide and improve mobility is its users.

Users are assumed to behave in a myopic manner to maximize their personal travel

utilities. Demand for VSP services is determined by value addition of shared-vehicles

to existing routes. Should the VSP configuration provide users with improved trip

times (or lower costs), the VSP would attract trips. From a modeling perspective,

the demand aspect is incorporated by explicitly considering this utility-maximizing

user behavior. However, two considerations limit the sophistication with which user

behavior can be incorporated. First, VSPs are a novel and innovative mobility

solution. The reaction of users to innovation is inherently uncertain and difficult

to ascertain. To this extent, the user reaction is based solely on trip attributes of

travel time and cost, while the alternative specific utility (or disutility) is omitted. In

the context of mode choice models, alternative specific utilities quantify the innate

preferences of users for specific modal alternatives. Secondly, with the inclusion of

transit networks, a model of how users navigate through transit is needed. Over the

past few decades, several works have focused on transit assignment problems that

deal with this issue. More recent developments such as those that apply optimal

strategies [51], hyperpaths [35, 24, 59, 33], and dynamic intermodal paths [60, 32],

incorporate the probabilistic aspect by which users choose transit services. These

models aim to increase the realism of transit-based trips, where waiting users may

adapt paths during travel to take advantage of more frequent services.

In this chapter, the optimal strategy concept of Spiess and Florian [51] is
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extended to include the VSP component. An optimal strategy is defined by a set

of arcs denoted by Ā. A strategy can include any number of simple paths and

defines elements of the user’s route/service choice until the destination is reached.

Users waiting at a transit stop with multiple service lines choose the service that is

more frequent, thereby reducing waiting time. This approach is used in state-of-the-

practice transit assignment software, such as EMME/2. The problem of finding an

optimal strategy can be formulated as a linear program. In this work, the optimal

strategy is developed that considers VSP access links and capacity constraints on

the VSP portion of the strategy.

2.2.3 Model Development

With a network representation of supply and the characterization of demand

through optimal strategies, the problem faced by the VSP operator is formulated.

The VSP operator has at its disposal shared-vehicle resources that need to be allo-

cated to various parts of the existing network. A ‘good’ allocation leads to better

utilization of VSP resources and presumably more revenue for the operator. How-

ever, VSP utilization is governed by users who will employ shared-vehicles in their

trips only if there is increase in travel utility.

The model uses a leader-follower paradigm to accomodate differing objectives

and the VSP operator’s lack of control over system resources. VSP operators take on

the role of leaders supplying a VSP configuration (VSP stations and vehicles). Users,

or the followers, respond to the VSP configuration by adjusting travel itineraries.
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The leader can then adjust the configuration to maximize their objective, which

can result in new flow patterns of users. At an optimal solution, equilibrium is

reached between the objectives of the leader and followers. For the VSP operator,

the equilibrium solution represents a configuration that is designed for flows that

users will generate following their myopic objectives.

From the set of candidate sites, the VSP operator must decide where to build

new VSP stations. Additionally, the operator must determine the capacity of each

built station and the base inventory of vehicles at each station that is available at

the start of any time period. The VSP operator’s decision variables are xi, a binary

variable on whether or not to build at site i, i ∈ Vs; yi, an integer variable on the

capacity at node i; and zi, the number of vehicles located at i. The location and

capacities of shared-vehicles are determined by equilibrium flows, which in turn are

determined by where the shared-vehicles are located. A shared-system configuration

is characterized by the tuple (x, y, z).

The upper-level problem faced by the VSP operator is to determine the optimal

VSP configuration (x, y, z) such that the shared-vehicle flows are maximized. The

VSP operator is subject to site limitations for each candidate site, budget constraints

that limit the number of stations that can be built, and additional political or equity

constraints. The total available budget is denoted by C. The cost components

include station setup costs cs, additional cost for an additional parking slot cp, and

unit cost of a vehicle cv.

The flows of shared-vehicles are determined by the lower-level problem by users

who have different objectives from the upper-level VSP operator. Users traveling
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between various origin-destination (OD) pairs minimize their travel and waiting

time. OD pairs are denoted by the set K (indexed by k). A link from node i to j

has an associated flow for each OD pair denoted by vijk. Additionally, each node of

the transit network has an associated quantity wik, representing the total waiting

time experienced by users in OD pair k at node i. The flows (v) and waiting times

(w) are continuous decision variables of the lower-level model. The notation used is

summarized next.

Sets

V Set of nodes, includes candidate sharing stations

Vs Set of candidate sharing stations

A Set of all arcs

As Set of all sharing arcs

A Set of all non-frequency arcs (e.g. walk access)

K Set of OD pairs

Indices

i, j Index to set of nodes V or Vs

k Index into set of OD pairs K

(i, j) Index to any set of arcs

VSP operator inputs

cs Fixed costs associated with opening one station

cp Incremental cost of providing a vehicle slot
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cv Cost of one vehicle

C Total budget

yub Maximum allowable capacity of sharing station due to site limita-

tions

VSP operator decision variables

xi Binary variable indicating if station is located at node i

yi Capacity of station at i in terms of number of slots

zi Number of vehicles located at node i

Lower level parameters

cij Cost (or time) incurred in traversing arc (i, j)

gik Demand from node i to destination node associated with OD pair

k

fij Frequency parameter associated with transit service link (i, j)

a Checkout-returns replacement ratio. a = 1 implies avaiable capac-

ity must meet both checkouts and returns. a > 1 implies returns

may exceed capacity in anticipation of future checkouts.

Lower level decision variables

vijk Flow on link (i, j) for OD pair k

wik Total waiting at node i from users on OD pair k

Other

M A large constant
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α,β,γ,.. Dual variables for lower level problem

ul
. Binary decision variable used to model complementarity constraints

With these preliminaries, the bilevel network design problem (BLNDP) can

be formulated as follows.

Upper level:

max
x,y,z

∑
k

∑
(i,j)∈As

vijk (2.1)

subject to

∑
i∈Vs

csxi + cpyi + cvzi ≤ C (2.2)

Mxi ≥ yi i ∈ Vs (2.3)

zi ≤ yi i ∈ Vs (2.4)

yi ≤ yub i ∈ Vs (2.5)

xi ∈ {0, 1} (2.6)

yi, zi ∈ Z
n
+ (2.7)

lower-level:

min
u,v

∑
k

⎛
⎝ ∑

(i,j)∈A

cijvijk +
∑
i∈V

wik

⎞
⎠ (2.8)
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subject to

∑
j,(i,j)∈A

vijk −
∑

j,(j,i)∈A

vjik = gik i ∈ V, k ∈ K (αik) (2.9)

vijk ≤ fijwik (i, j) ∈ A \ A, k ∈ K (βijk) (2.10)

Mxi ≥
∑

k

vijk (i, j) ∈ As (γij) (2.11)

Mxj ≥
∑

k

vijk (i, j) ∈ As (δij) (2.12)

∑
k

∑
j,(i,j)∈As

vijk ≤ zi i ∈ Vs (ζi) (2.13)

∑
k

∑
j,(j,i)∈As

vjik ≤ a(yi − zi) i ∈ Vs (ηi) (2.14)

wik ≥ 0 i ∈ V, k ∈ K (λik) (2.15)

vijk ≥ 0 (i, j) ∈ A, k ∈ K (μijk) (2.16)

The VSP operator seeks to maximize flow through the sharing network (2.1).

The flow, however, is not determined by the operator. The operator provides a

network configuration (x, y, z) subject to budget constraint (2.2). Constraints (2.3)

state that slots can be available only if a station exists at the site. Constraints

(2.4) restrict the number of vehicles assigned to a particular site to be less than

the site capacity. The site limitations are stated in constraints (2.5). Constraints

(2.6) restrict the location variables xi to be binary and constraints (2.7) restrict the

decision variables yi and zi to be integer.

In the lower-level problem, users react to a VSP configuration (x, y, z) by

minimizing their travel costs and waiting times (2.8). The set of flow conservation

relations for each node are given by constraints (2.9) . Constraints (2.10) relate the

travel time and waiting time for frequency based links. The detailed derivation of
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this set of constraints from the optimal strategies concept is presented in Spiess and

Florian [51]. Constraints (2.11) and (2.12) restrict flow on sharing arcs that have

stations to support the travel. Constraints (2.13) and (2.14) are capacity constraints

of the sharing stations. Flow and waiting times must be non-negative as enforced

by constraints (2.16) and (2.15). Note that the upper-level formulation has an

objective involving lower-level variables. In addition, the dual variables for each of

the lower-level constraints are indicated in parenthesis.

The equilibrium network design problem is a bilevel, mixed-integer program.

Programs of this class typically have non-convex feasible regions rendering them in-

tractable for most cases. For cases when the lower-level portion of the formulation is

convex, transformation techniques have been presented in the literature that convert

bilevel programs to mathematical programs with equilibrium constraints (MPEC).

The optimal strategies formulation possesses the required convexity property moti-

vating its use in the presented formulation. The lower-level convexity is exploited

for an exact solution approach presented next.

2.3 Solution Algorithm

The presented bilevel program is transformed to a large mixed integer pro-

gram (MIP) that can be solved using off-the-shelf MIP solvers. The transformation

outlined in this section exploits the convexity of the lower-level problem.
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2.3.1 An Exact Solution Approach

The basic solution concept follows methods proposed in the literature [2, 14].

For a given design tuple (x, y, z), the lower level problem is a program with linear

objective and linear constraints. This is equivalent to the optimal strategy pro-

gram of Spiess and Florian [51] with the additional constraints to model VSP flows

and capacities. Since it is a convex program and satisfies linear constraint qualifi-

cations (CQ), the Karush-Kuhn-Tucker (KKT) conditions are both necessary and

sufficient. The lower level optimization problem can be replaced by the KKT condi-

tions to yield a mathematical program with equilibrium constraints (MPEC). The

only nonlinearities are due to the presence of complementarity constraints, which

can be transformed to a set of linear disjunctive constraints using auxilary binary

variables. The resulting program is a large MIP that can be solved using existing

MIP solvers.

2.3.1.1 KKT Conditions for Lower Level

Before deriving the KKT conditions for the lower level program defined by

Equations (2.8)–(2.16), the existence of a solution needs to be demonstrated.

Proposition 2.3.1 If the subgraph G′(V ′, A′), where V ′ = V \ Vs and A′ = {(i, j) |

i, j ∈ V ′, (i, j) ∈ A}, is strongly connected, the lower level problem defined by Equa-

tions (2.8)–(2.16) is feasible for all design vectors (x, y, z).

Proof If the subgraph G′(V ′, A′) is strongly connected, there exists a feasible transit

path from every origin to every destination. Since there are no capacity constraints
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on transit links, the optimal strategy for each OD pair is never infeasible, as it can

involve at least one feasible transit path. This is independent of the design vector

(x, y, z). A set of path flows uniquely determines arc flows (Theorem 3.5 Ahuja et

al. [1]), therefore, the lower level program is always feasible.

Using the strongly connected property, the KKT conditions are derived for the

lower level program defined by objective (2.8) and constraint set (2.9)–(2.16). For

brevity, the conditions are merely stated, since the derivation from the Lagrangian

function is straighforward (but tedious).

The stationarity conditions are

1 − λik − A = 0 i ∈ V, k ∈ K (2.17)

and

cij + αik − αjk − μijk + B + C = 0 (i, j) ∈ A, k ∈ K, (2.18)

where

A =

⎧⎪⎪⎨
⎪⎪⎩
∑
k∈K

βijkfij if(i, j) ∈ A \ A

0 o.w.

B =

⎧⎪⎪⎨
⎪⎪⎩

βijk if(i, j) ∈ A \ A

0 o.w.

C =

⎧⎪⎪⎨
⎪⎪⎩

γij + δij + ζi + ηj if(i, j) ∈ As

0 o.w.
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The primal feasibility constraints are (2.9)–(2.16). Dual feasibility implies the

following.

βijk ≥ 0 (i, j) ∈ A \ A, k ∈ K (2.19)

γij, δij ≥ 0 (i, j) ∈ As (2.20)

ζi, ηi ≥ 0 i ∈ Vs (2.21)

λik ≥ 0 i ∈ V, k ∈ K (2.22)

μijk ≥ 0 (i, j) ∈ A, k ∈ K (2.23)

The set of complementarity conditions are as follows.

βijk (vijk − fijwik) = 0 (i, j) ∈ A \ A, k ∈ K (u1
ijk)(2.24)

γij

(∑
k

vijk − Mxi

)
= 0 (i, j) ∈ As (u2

ij) (2.25)

δij

(∑
k

vijk − Mxj

)
= 0 (i, j) ∈ As (u3

ij) (2.26)

ζi

⎛
⎝∑

k

∑
j,(i,j)∈As

vijk − zi

⎞
⎠ = 0 i ∈ Is (u4

i ) (2.27)

ηi

⎛
⎝∑

k

∑
j,(i,j)∈As

vijk − a(yi − zi)

⎞
⎠ = 0 i ∈ Is (u5

i ) (2.28)

λikwik = 0 i ∈ V, k ∈ K (u6
ik) (2.29)

μijkvijk = 0 (i, j) ∈ A, k ∈ K (u7
ijk)(2.30)

The MPEC is defined by objective (2.1), upper-level constraints (2.2)–(2.7),

KKT primal feasibility constraints (2.9)–(2.16), KKT stationarity conditions (2.18)

and (2.17), dual feasibility constraints (2.19)–(2.23), and complementarity con-

straints (2.24)–(2.30). All functions involved are linear, with decision variables that
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are both integer and continuous. The only problematic nonlinear constraint set is

the complementarity constraint set (2.24)–(2.30).

2.3.1.2 Dealing with Complementarity

The complementarity constraints can be made linear by using a binary vari-

able. In general, a complementarity constraint of the form z(q + Qz) = 0 can

be modeled as two linear constraints using a binary variable, u, as z ≤ Mu and

q+Qz ≤ M(1−u) , where M is a large constant that provably exists [2]. Using this

transformation, all complementarity constraints can be reduced to linear constraints

as follows.

βijk ≤ Mu1
ijk (i, j) ∈ A \ A, k ∈ K (2.31)

vijk − fijwik ≤ M(1 − u1
ijk) (i, j) ∈ A \ A, k ∈ K (2.32)

γij ≤ Mu2
ij (i, j) ∈ As (2.33)

∑
k

vijk − Mxi ≤ M(1 − u2
ijk) (i, j) ∈ As (2.34)

δij ≤ Mu3
ijk (i, j) ∈ As (2.35)

∑
k

vijk − Mxj ≤ M(1 − u3
ijk) (i, j) ∈ As (2.36)
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ζi ≤ Mu4
ijk i ∈ Vs (2.37)

∑
k

∑
j,(i,j)∈As

vijk − zi ≤ M(1 − u4
ijk) i ∈ Vs (2.38)

ηi ≤ Mu5
i i ∈ Vs (2.39)

∑
k

∑
j,(i,j)∈As

vijk − a(yi − zi) ≤ M(1 − u5
i ) i ∈ Vs (2.40)

λik ≤ Mu6
i i ∈ V, k ∈ K (2.41)

wik ≤ M(1 − u6
i ) i ∈ V, k ∈ K (2.42)

μijk ≤ Mu7
i (i, j) ∈ A, k ∈ K (2.43)

vijk ≤ M(1 − u7
i ) (i, j) ∈ A, k ∈ K (2.44)

The BiLevel Network Design Problem (BLNDP) can, therefore, be expressed

as a mixed integer program (MIP). The BLNDP is defined by objective (2.1) upper-

level constraints (2.2)–(2.7), KKT primal feasibility constraints (2.9)–(2.16), KKT

stationarity conditions (2.18) and (2.17), dual feasibility constraints (2.19)–(2.23),

and transformed complementarity constraints (2.31)–(2.44). This large MIP can be

solved exactly by using existing MIP solvers, such as CPLEX.

The large constant M must be chosen apriori and is critical from a computa-

tional standpoint. A very large value for M introduces numerical stability issues.

An M that is too small risks cutting off the optimal solution. In the implementation,

the M was computed as a factor of maximum possible flow times a factor of 2.5.
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2.4 Experimental Results

The proposed transformation scheme is implemented in Java and solved using

the CPLEX 11.2 solver. The model is tested on five randomly generated transit

networks for varying problem parameters. The random networks are built by gen-

erating random coordinates for nodes within the unit kilometer interval. Nodes can

represent VSP candidate sites, transit stops, transit service, or origin/destination

nodes. Links representing transit service, walk access, VSP acess, modal transfers,

and origin/destination connectors are generated by randomly connecting pertinent

nodes. Each node is assigned a degree greater than two, to ensure that the network

is strongly connected. The links are classified into three categories. Walk links are

assumed to be traversed at a speed of 4.5 km/h. Shared-vehicle links are traversed

at a speed of 12 km/h. Transit service links run at 30 km/h. Users are assumed to

minimize travel time in going from origin to destination. Figure 2.3 depicts the five

tested networks.

For each instance, the four problem parameters (budget, cost of stations, cost

of vehicles, and cost of slots) are varied to test sensitivity of the model. The solution

of one run is used as a starting solution of the next to provide a warm start to the

CPLEX solver. The solver finds good solutions (MIP gap < 5%) relatively early

in the branch-and-bound tree for most instances. However proving optimality for

some instances takes considerable time. Therefore, each run is limited to a run time

of one hour and the resulting MIP gap is reported.

The main outputs of the models are the VSP design configuration, the shared-
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(a) 24 Nodes (b) 35 Nodes (c) 46 Nodes

(d) 50 Nodes (e) 64 Nodes

Figure 2.3: Random transit networks tested

flows that result for each budget scenario, and the effect of various cost components

on the optimal design. The results of runs are summarized in Tables (2.1)–(2.5).

The tables show the input cost vector (cs, cp, cv), along with total budget C for

various runs. The summary shows the shared-flow captured increases as a result of

larger budgets. The variation of various cost components shows an interesting trend.

When station setup costs are high and parking slots costs are comparatively low (as

is the case for bicycle sharing systems), more stations are built than compared to

the alternate scenario, where the setup costs are low, but costs of parking slots are

high (as is the case for car sharing systems). Thus, the higher cost of parking slots
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presents agglomeration effects for the system where available resources are pooled

at fewer stations.

cs cp cv C
∑

xi

∑
yi

∑
zi Shared flow MIP Gap (%) Run time (sec)

5 1 2 0 0 0 0 0 - 5.58
50 2 18 11 10.5 3.343% 35.63

100 3 39 23 23 2.174% 175.3
150 4 59 35 35 1.504% 3537.45
200 6 77 46 46 2.975% 3576.95
300 8 118 71 70.5 0.426% 13.63

1 4 2 0 0 0 0 0 - 4.5
50 2 9 5 5 10% 152.17

100 2 19 11 11 2.02% 623.98
150 3 28 17 16.5 2.831% 73.47
200 4 38 22 22 3.238% 3591.67
300 4 57 34 34 0.452% 320.27

Table 2.1: Results for Instance24 (24 nodes × 129 links)

cs cp cv C
∑

xi

∑
yi

∑
zi Shared flow MIP Gap (%) Run time (sec)

5 1 2 0 0 0 0 0 - 1.52
50 2 18 11 10.5 4.762% 16.2

100 3 39 23 23 0.791% 158.59
150 4 60 35 35 1.504% 3577.91
200 6 77 46 46 1.902% 3582.02
300 8 118 71 70.5 0.784% 3592.83

1 4 2 0 0 0 0 0 - 1.52
50 2 9 5 5 10% 60.97

100 2 19 11 11 3.567% 3.36
150 3 28 17 16.5 3.03% 1221.72
200 4 38 22 22 3.322% 3578.01
300 5 56 34 33 3.567% 3596.55

Table 2.2: Results for Instance35 (35 nodes × 200 links)

The flow patterns and VSP configuration are graphically summarized in Figure

2.4 for the 46 node instance when the cost of stations cs = 5 and cost of parking

slots cp = 1. The results from other instances follow similar characteristics and are
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cs cp cv C
∑

xi

∑
yi

∑
zi Shared flow MIP Gap (%) Run time (sec)

5 1 2 0 0 0 0 0 - 0.53
50 2 18 11 10.5 4.762% 81.13

100 3 39 23 23 2.174% 203.83
150 4 60 35 35 1.504% 3563.33
200 6 77 46 46 2.975% 3603.69
300 8 118 71 70.5 0.784% 3609.06

1 4 2 0 0 0 0 0 - 0.52
50 3 9 5 5 10.286% 3599.44

100 2 19 11 11 3.567% 3.27
150 4 28 17 16.5 3.03% 1152.38
200 4 38 22 22 3.322% 3612.47
300 8 56 34 33 3.567% 3610.06

Table 2.3: Results for Instance46 (46 nodes × 221 links)

omitted. The VSP stations chosen for construction are highlighted along with the

associated number of slots and vehicles in parenthesis. The VSP configuration can

be seen to grow in terms of number of stations when a larger budget is presumed.

However, comparing the budget scenarios in Figures 2.4(b) and 2.4(c), though the

budget increases by 50 units, the number of stations chosen for construction is

reduced. However the capacities at the two stations is augmented so as to maximize

shared-flow. When the budget is 300 units, the budgetary constraint is no longer

binding, leading to configurations where stations are chosen for construction, but

without capacity. The shared-flow corresponding to this budget scenario represents

the maximum shared-flow that can be captured.

2.5 Conclusions

The design of a shared-vehicle system in conjunction with a transit network

is formulated as a bilevel program. The problem is transformed to a more readily
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(a) Budget = 0

(2,0)

(4,2)
(3,3)

(b) Budget = 50

(8,0)(11,11)

(c) Budget = 100

(10,0)

(15,15)

(5,0)(8,7)

(d) Budget = 200

(15,15)

(1,1)

(6,0)

(0,0)

(15,9)

(0,0)

(10,0)

(9,9)

(e) Budget = 300

Figure 2.4: Flow patterns and VSP configuration for 46 node instance
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cs cp cv C
∑

xi

∑
yi

∑
zi Shared flow MIP Gap (%) Run time (sec)

5 1 2 0 0 0 0 0 - 2.91
50 2 18 11 10.5 4.762% 345.5

100 3 39 23 23 2.174% 249.02
150 5 57 34 34 4.489% 3608.41
200 6 77 46 46 2.975% 3610.16
300 9 117 69 69 2.975% 3610.97

1 4 2 0 0 0 0 0 - 2.89
50 4 6 4 1 465.385% 3613.75

100 2 19 11 11 3.533% 30.56
150 3 28 17 16.5 3.473% 3610.61
200 7 37 22 22 3.567% 3612.42
300 4 57 34 34 0.521% 211.02

Table 2.4: Results for Instance50 (50 nodes × 263 links)

solvable mixed integer program. Tests on random networks illustrate the applica-

bility of the model for determining optimal VSP configurations and yield insights

into optimal system configurations. These include agglomeration effects for various

cost inputs. When station setup costs are low and parking slot costs are high (as is

the case in car sharing systems), fewer stations are developed and resources are ag-

gregated. The proposed model incorporates the transit assignment routine of Spiess

and Florian, though any transit assignment routine can be explored as alternatives

in the lower level of the formulation. The proposed model can be extended along

several dimensions. Though the fixed-demand assumption is common in practice

for strategic design problems, a framework where variable demand is considered as

a function of VSP level-of-service can yield additional insights. Congestion effects

on transit networks can be incorporated despite the relatively low volumes of tran-

sit flows in the US. An extension of this work could consider joint optimization of

prices and design (see [13] for example) and include price sensitivity of users in route
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cs cp cv C
∑

xi

∑
yi

∑
zi Shared flow MIP Gap (%) Run time (sec)

5 1 2 0 0 0 0 0 - 1144.78
50 2 18 11 10.5 4.762% 1719.56

100 3 39 23 23 2.174% 786.23
150 4 59 35 35 1.504% 3609.42
200 6 78 46 46 2.975% 3605.58
300 8 118 71 70.5 0.784% 3602.3

1 4 2 0 0 0 0 0 - 1149.23
50 3 9 5 5 13.146% 3613.61

100 2 19 11 11 3.567% 11.47
150 4 28 17 16.5 3.475% 3606.94
200 4 38 22 22 3.497% 3604.56
300 7 56 34 33 3.497% 3604.25

Table 2.5: Results for Instance64 (64 nodes × 365 links)

choice.
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Chapter 3: Operational Models

3.1 Introduction

This chapter deals with operational strategies of fleet management that VSP

operators can pursue to maintain desired levels-of-service. To match automobile

flexibility, VSPs transfer control of vehicles to users. This places exceptional logisti-

cal challenges on operators who must ensure that demand in the near future is met.

For the shared-vehicle user, good service is defined by adequate stock of vehicles

at intended station of origin and adequate parking slots at the intended destina-

tion station. Since flow from one station to another is seldom equal to flow in the

opposing direction, the VSP fleet can become spatially imbalanced. To meet near-

future demand, operators must then redistribute vehicles to correct this asymmetry.

The focus of this chapter is to provide models that generate efficient, cost-effective

operational strategies for fleet management.

The management of VSP fleets differs from previously studied models in re-

lated areas. These differences preclude the direct application of prior work and

motivate the development of problem specific tools. Firstly, since users determine

the trip characteristics, critical system attributes (where vehicles are checked out

and returned, and the duration of lease) are beyond the control of operators. Sec-

ondly, there is a ‘duality’ of demand between vehicles and slots. A successful trip

needs a vehicle available at the origin station and an available docking slot at the

destination. A vehicle checkout reduces vehicle inventory at a station, but increases
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the slot inventory. This duality has significant implications and reduces the range of

acceptable inventory levels for vehicles. Thirdly, the inventory is never consumed,

but is merely moved. The fleet management strategy involves correcting imbalances

at the various stations.

Supply-side analyses of VSPs are predominantly qualitative and the literature

dealing specifically with fleet management for VSP’s is limited. [7] proposed three

strategies to generate redistribution plans. These are based on immediate demand,

expected demand and perfect demand information. The time period looks 20 min-

utes into the future and uses simulation to evaluate the redistribution strategies.

No details on how redistribution plans are generated are presented. [8] studied the

redistribution problem, but attempt to shift the burden of redistribution on users

through two mechanisms of ride splitting and joining. [29] used a mixed-integer

program (MIP) to generate redistribution plans and allocate operator staff to redis-

tribution and maintenance activities. Their model uses a time-expanded network,

with static, known demand. Unserviced demand is penalized by a penalty cost in

the objective function. A simulation model is used to evaluate the redistribution

strategy. In these works, the redistribution plans are based on static demand.

In this chapter, the problem of fleet management for shared-vehicle systems is

formulated considering demand uncertainty (Section 3.2). The management strategy

involves anticipative fleet redistribution that operators initiate to correct short-term

demand asymmetry (since flow from one station to another is seldom equal to flow in

the opposite direction). When operators have inadequate resources to meet demand,

then the model generates partial redistribution plans. The model takes a form of
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a stochastic MIP with joint chance constraints. Stochastic programs of this class

have non-convex feasible regions. Two solution methods are presented (Section

3.3). When demand at stations is correlated, the first approach deals with the

problem non-convexity using the concept of p-efficient points (PEPs) to transform

the problem to a disjunctive MIP that is more readily solvable. A divide-and-conquer

algorithm to generate PEPs is designed to reduce the computational burden of

existing methods (Section 3.3.1). The algorithm can be applied to any problem with

joint chance constraints given that the vector of random variables is discrete. This

contribution transcends the current application. A second cone generation solution

method (Section 3.3.2), akin to the column generation procedure, is developed when

the demand at each station is assumed to be independent. Under this limiting

assumption, this method provides quick solutions even for shared systems with large

numbers of stations. Additionally, an equal-apportionment bound is derived for the

problem that is valid even when demand is correlated (Section 3.4). We compare

various redistribution strategies in a real-world application to a car sharing system

in Singapore (Section 3.5). Extensive computational experiments and simulation

studies show that when the redistribution strategies developed herein are employed,

the system operates at a reliability level that would otherwise be possible only with

capital improvements to the system.

In the next section, the model formulation is outlined. Section 3.2 describes the

model formulation and a solution algorithm is presented in Section 3.3. Section 3.4

describes a failure apportionment bound for the model. A real-world application for

a system in Singapore is described in Section 3.5 along with results. The conclusions
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are presented in Section 3.6.

3.2 Problem Formulation

Given (a) the system configuration (stations, capacities, fleet size), (b) current

inventory levels at each station, (c) relocation costs, and (d) a probabilistic charac-

terization of demand at each station, we wish to find a least-cost fleet redistribution

plan such that most near future demand scenarios are satisfied.

VSP operators have substantial ITS infrastructure for various functions, in-

cluding tracking of vehicles for theft prevention, smart cards for member access, ve-

hicle availability across the network, charging consoles for electric vehicles, payment

systems, and traveler information services. This data-rich environment provides a

real-time awareness of the system that can be leveraged for fleet management. Since

individual users decide where and when trips are made, demand at each station is

uncertain from a system perspective. The aim of operators is to serve all demand.

However, it is typically cost-prohibitive to design the system to satisfy all possible

demand realizations and operators can expect demand to outstrip supply in high-

demand scenarios. By characterizing demand probabilistically, as can be done using

historical information, operators can quantify the existing level-of-service. If the

desired level-of-service at a station is not met, then a fleet redistribution action can

be initiated to bring the system to an acceptable state.

The VSP system can be defined on a network of n stations. Each station i has

capacity, Ci, the maximum number of vehicles it can accommodate. The capacity
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represents parking bays for car-sharing, docking slots in bike-sharing systems, or

charging stations for electric vehicles. The number of vehicles at station i, termed the

station inventory, is denoted by Vi. The cost of relocating vehicles from station i to

station j, i �= j, is denoted by aij. There is a penalty δ to move each vehicle between

two stations. The system operator has perfect information on available inventories

at each station. The system operator plans for a fixed short-term planning horizon

for which demand is known probabilistically. Redistribution tasks are assumed

to be completed before the planning period commences. The operator considers

redistribution actions periodically throughout the day. At each station i, there are

two types of demand processes, one to check out vehicles, ξ1
i , and the other to

return vehicles, ξ2
i . Both ξ1

j and ξ2
j are random variables with known probability

distributions. The operator seeks a least-cost redistribution plan that would make

the system p-reliable during the planning period. That is, the system satisfies all

demand at every station (1, . . . , n), for p proportion of all possible realizations. This

can be described by the following joint-chance constraint.

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Available vehicles at stn 1 ≥ ξ1
1 , Available spaces at stn 1 ≥ ξ2

1

Available vehicles at stn 2 ≥ ξ1
2 , Available spaces at stn 2 ≥ ξ2

2

...
...

Available vehicles at stn n ≥ ξ1
n, Available spaces at stn n ≥ ξ2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ p.

(3.1)

Equation (3.1) represents a level-of-service constraint for the operator who

seeks a p-reliable system. To achieve this, the operator looks at available inventory

at each station. If the available resources, both vehicles and free spaces, are adequate
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to satisfy p-proportion of all possible demand scenarios, then no further corrective

actions are necessary. If the available vehicles are insufficient, then vehicles can be

‘borrowed’ from adjacent stations. If available spaces are inadequate, then vehicles

can be ‘lent out’ to other stations to free up spaces. Since there are costs involved in

these actions, the operator seeks an optimal method to perform this redistribution.

To derive the level-of-service constraint, we note that the available vehicle

inventory at each station depends on the current inventory and the number of returns

and checkouts during the time period. If the redistribution plan calls for vehicles

to be relocated into (or out of) the station, then these vehicles are assumed to be

available (or unavailable) at the start of the planning period. This assumption is

not restrictive, since redistribution tasks can commence well before the planning

period begins. Similarly, the available spaces inventory at each station depends on

the current inventory, the number of returns, and the number of vehicles relocated

in and out of the station during the planning period. Therefore,

Available vehicles at Stn i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vehicle inventory at i (Vi)

+

Returns at i (ξ2
i )

+

Vehicles relocated to i (
∑

j yji)

−

Vehicles relocated out of i (
∑

j yij)

(3.2)
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Available spaces at Stn i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Spaces inventory at i (Ci − Vi)

+

Checkouts at i (ξ1
i )

+

Vehicles relocated out of i (
∑

j yij)

−

Vehicles relocated to i (
∑

j yji).

(3.3)

It is assumed that redistribution is completed before the planning period.

Therefore, return (ξ2
i ) and checkout(ξ1

i ) random variables are for the future planning

period, while the inventory (Vi) and redistribution variables (yij) denote operator

actions before the planning period commences. The current vehicle inventory, Vi, is

known, as is the corresponding spaces inventory, Ci − Vi. Let xij denote a binary

decision variable indicating if vehicles are moved from i to j in anticipation of fu-

ture demand. Let yij denote an integer decision variable indicating the number of

vehicles moved from i to j. In terms of decision variables yij , the level-of-service

constraint (3.1) can be written as

P

⎛
⎜⎜⎜⎝

Vi +
n∑

j=1

(yji − yij) + ξ2
i ≥ ξ1

i , i = 1, ..n

Ci − Vi +
n∑

j=1

(yij − yji) + ξ1
i ≥ ξ2

i , i = 1, ..n

⎞
⎟⎟⎟⎠ ≥ p. (3.4)

Let ξi to be the net demand at a station i for the planning period. That

is, ξi = ξ1
i − ξ2

i . The two types of demand (vehicles and spaces) exhibit duality

(reduction of one type implies an increase of the other), so the net demand ξi

encodes both types of demand in one random variable and represents the imbalance
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between demand for vehicles and checkouts. For a particular time period, if the

realization of ξi is positive, there are more checkouts than returns. Similarly, if ξi is

negative, there are more returns than checkouts.

The level-of-service constraint (3.4) cannot be met for every demand realiza-

tion. For example, in scenarios where the demand outstrips available resources, this

constraint is infeasible. To recover partial redistribution plans that help operators

make the best possible use of available resources (though still shy of the desired

level-of-service), phantom vehicle and space variables are introduced. For each sta-

tion, let wi be the number of phantom vehicles and zi be the number of phantom

spaces. Additionally, let γ be a large penalty cost that forces the use of phantom re-

sources only if necessary. The variables wi and zi relax the level-of-service constraint

as shown in constraint (3.6). This relaxation allows the model to generate partial

redistribution plans and maintains feasibility even if resources are inadequate. The

optimal fleet redistribution plan can be formulated as a chance constrained model

with desired reliability p (CCM-p) as follows.

(CCM − p) min

n∑
i=1

n∑
j=1

(aijxij + δyij) +

n∑
i=1

γ (wi + zi) , (3.5)

s.t. P

⎛
⎜⎜⎜⎝

Vi +
n∑

j=1

(yji − yij) + wi ≥ ξi, i = 1, . . . , n

Ci − Vi +
n∑

j=1

(yij − yji) + zi ≥ −ξi, i = 1, . . . , n

⎞
⎟⎟⎟⎠ ≥ p, (3.6)
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n∑
j=1

yij ≤ Vi i = 1, . . . , n, (3.7)

n∑
j=1

yji ≤ Ci − Vi i = 1, . . . , n, (3.8)

yij ≤ M · xij i = 1, . . . , n, j = 1, . . . , n, (3.9)

yij, wi, zj ∈ Z+ i = 1, . . . , n, j = 1, . . . , n, (3.10)

xij ∈ [0, 1] i = 1, . . . , n, j = 1, . . . , n. (3.11)

The objective (3.5) represents the fixed cost for relocating vehicles, the cost of

moving additional vehicles, and the penalty costs for utilizing phantom resources.

Fixed cost of redistribution between two stations can be based on distance. The

operator seeks to minimize the total cost of redistribution. The probabilistic level-of-

service constraint (3.6) states that the redistribution plan must result in inventories

that satisfy p proportion of all demand scenarios in the planning horizon. If available

resources are insufficient, then this constraint is relaxed using phantom resources.

There are capacity constraints (3.7) that limit the number of vehicles relocated out

of a station to be no greater than the vehicles available at the start of the planning

period. Similarly, there are capacity constraints (3.8) for slots at a station stating

that the number of vehicles relocated to a station does not exceed the number of

slots available. Constraints (3.9) relates the decision variables. All decision variables

are non-negative integer valued (3.10), except xij which is binary (3.11).

Program CCM-p is a stochastic MIP for determining the optimal redistribution

plan to satisfy p proportion of demand. In situations where available resources are

inadequate to match anticipated demand, the program yields a partial redistribution
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plan. In this case, the phantom resources are utilized (wi > 0 or zi > 0) and the

system is no longer p-reliable. The true reliability must be recomputed as shown in

Section 3.3.1.2. If phantom resources are not utilized, the joint chance constraint

(3.6) states that the probability that demand (in terms of vehicles and slots) exceeds

supply is no greater than 1 − p.

Unless the joint distribution of ξ is log-concave, this stochastic MIP may have

a non-convex feasible region, making it computationally challenging to solve. The

next section presents two specialized techniques for a solution that deals with this

non-convexity. These techniques are applicable when the random vector is only on

the right-hand side (RHS) and is discrete as is the case in this application.

3.3 Solving Program CCM-p

CCM-p is a stochastic MIP with joint chance constraints. In general, these

programs are difficult to solve, but since the random vectors are discrete and appear

only in the RHS of the constraints, a specialized technique involving p-efficient

points (PEPs) can be employed. Two solution procedures are presented. In the

first method (Section 3.3.1), the main idea is to transform the non-convex feasible

space to a disjunctive set of convex spaces. This transformation leads to a family of

MIPs, one for each convex set. A single PEP characterizes one such convex set by

substituting the chance constraint by linear constraints. A PEP is formally defined

shortly, but generally speaking, a PEP is the smallest possible (non-dominated)

vector for which the joint chance constraint is valid. For example, if v is a PEP,
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then the chance constraint P(Ax ≥ ξ) ≥ p can be substituted by a linear constraint

Ax ≥ v, since v represents a realization of ξ that ensures that the chance constraint

is met (see Figure 3.1). Solving the family of MIPs yields a set of solutions, the best

amongst which is optimal for the original non-convex program.

To generate the family of MIPs, the set of PEPs needs to be enumerated. When

the dimension of the random vector is large, enumerating PEPs can be problematic,

since the set of PEPs can be very large. Once the set of PEPs is enumerated, the

family of MIPs is solved using existing MIP solvers. While this method is not new,

our contribution is a PEP enumeration algorithm that aims to address the major

bottleneck in the enumeration phase of the algorithm. The proposed divide-and-

conquer procedure is more efficient than existing methods [40, 41, 10]. Additionally,

we extend the PEP concept to dual-bounded chance constraints.

The second solution method (Section 3.3.2) reduces the computational burden

of PEP enumeration, but makes a limiting assumption on the independence of the

random vector. The main idea is similar to column generation, where only necessary

columns (or PEPs) that improve the objective are generated. The master problem is

a convexified linear approximation of the CCM-p. The simplex multipliers from the

master problem are used in the subproblem to direct the PEP enumeration phase

of the algorithm.

The idea of PEPs was first proposed by Prekopa [38] who also presented ways

to deal with the chance constraint if the marginal distribution of the random vec-

tor is log-concave [39]. Beraldi et al. [9] documents an application. Prekopa et

al. [40] presented a nested algorithm for generating PEPs. The main idea is to
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recursively explore the search space while keeping certain dimensions fixed. Beraldi

et al. [10] proposed two enumeration schemes, backward and forward, along with

hybrid schemes that attempt to avoid complete enumeration of PEPs under some

restrictive conditions on the properties of the random vector. Their scheme targets

the non-convexity due to integral variables by reducing the number of MIPs to be

solved. They also derived conditional bounds that aid in determining if a candidate

vector is a PEP. Saxena [43] combined the enumeration scheme with the solution

phase to avoid explicit enumeration. They introduced the concept of p-inefficiency

to reduce constraints in the resulting program. Dentcheva et al. [18, 19] proposed

hybrid methods, called convexification and cone generation methods, with the aim

of avoiding explicit PEP enumeration. Though the cone generation method assumes

independence of the random vector, this approach is very attractive, since only a

limited number of PEPs need to be generated. In this chapter, their approach is

adapted to deal with dual-bounded constraints and is presented in Section 3.3.2.

For a joint chance constraint of the form P(Ax ≥ ξ) ≥ p, where ξ is discrete,

the enumeration of PEPs is challenging, since the search space includes all possible

realizations of the discrete random vector. The performance of any enumeration

scheme depends on (a) the dimensionality of the random vector, (b) the support of

the random vector, (c) complexity of evaluating the joint distribution function, and

(d) the value of p. Increasing the dimensionality causes a combinatorial explosion

in the search space. Increasing the support of the random vector also increases

the search space, although not combinatorially. All enumeration schemes must

evaluate the joint distribution function repeatedly. Thus, even moderate complexity
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in calculating the distribution function negatively impacts performance. Lastly, if

the value of p is closer to either 0 or 1, the number of possible PEPs is considerably

less than if it is close to 0.5, because there are fewer combinations along different

dimensions of the random vector.

3.3.1 Solution based on PEP Enumeration

Since a MIP needs to be solved for each PEP, the solution procedure is designed

to reduce the number of MIPs that need to be solved using some problem specific

properties. First, as complete redistribution plans are preferable to partial ones,

conditions for which a particular PEP will yield a guaranteed sub-optimal (partial)

solution are derived in Section 3.3.1.2. If a complete redistribution plan has been

found, these infeasibility conditions help in screening PEPs that will yield partial

solutions, thereby reducing the number of MIPs to be solved. Second, a zero-cost

redistribution plan implies that no imbalance exists, so this forms the absolute

lower bound on the problem. Third, since the set of PEPs, denoted by Sp, is large,

it may preclude a complete enumeration and alternate termination criteria can be

used to settle on an acceptable solution. A partial enumeration provides a solution

that is not guaranteed to be optimal. The algorithm for solving CCM-p, given the

inventories Vi, i = 1, . . . , n at each station and the desired reliability level p, is as

follows.

Algorithm ENUM-p:

Step 0. Initalization. Initialize the objective value of best solution zopt = ∞. Set
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the PEP counter k = 1. Let CR be a boolean flag that is true if a complete

redistribution plan exists. Set CR = false.

Step 1. PEP Enumeration. Generate the set of all PEPs Sp (see Section 3.3.1.1).

Step 2. For the k-th PEP (uk, vk) ∈ Sp proceed to Step 3.

Step 3. Feasibility Test. If CR = true, check all n + 2 feasibility conditions (3.14),

(3.15), and (3.16) (see section 3.3.1.2) for (uk, vk). If feasible or if CR = false,

proceed to Step 4; otherwise, set k = k + 1 and return to Step 2.

Step 4. Solve Deterministic Equivalent. For a PEP (uk, vk), solve the program

(3.5)–(3.11) by replacing the joint chance constraint (3.6) by the two linear

constraints

Vi +

n∑
j=1

(yji − yij) + wi ≥ vk and (3.12)

−
(

Ci − Vi +
n∑

j=1

(yij − yji) + zi

)
≤ uk. (3.13)

Step 5. Solution Check. If the objective value zk < zopt, then zopt = zk and save

the redistribution plan corresponding to zk as optimal. If this redistribution

plan does not use phantom resources, set CR =true. If zk = 0, absolute lower

bound reached, terminate.

Step 5. If termination criteria are met, stop; else k = k + 1 and return to Step 2.
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3.3.1.1 A Divide-and-Conquer PEP Enumeration Algorithm

As all past developments of PEPs have dealt with random vectors having an

upper or lower bound but not both, the concept is extended to the case when the

random vector is dual-bounded as is the case in constraint (3.6). Essentially, the

procedure is developed for chance constraints of the form P(A′x ≤ ξ ≤ Ax) ≥ p,

but also applies to the classical chance constraint P(Ax ≥ ξ) ≥ p. The principle

difference in the treatment of dual-bounded constraints is that PEPs are expressed as

vector pairs and the cumulative distribution function is replaced by a function g(u, v)

that handles dual bounds. Barring these distinctions, the following development

emulates concepts proposed by [41] and others [10, 19].

Definition For p ∈ (0, 1) a vector pair(u, v), u ∈ Z
n and v ∈ Z

n, is said to be a

p-efficient point (PEP) if g(u, v) ≥ p, where g(u, v) = P(ui ≤ ξi ≤ vi, ∀i = 1, .., n)

and there exists no vectors y and z such that g(y, z) ≥ p, z ≤ v, and y ≥ u.

For dual-bounded chance constraints, the definition employs a function g(u, v)

instead of the cumulative distribution function to ensure that the lower bound is

also met as shown in Figure 3.1.

For this modified dual-bounded case, we first derive a bound that will serve to

test if a candidate vector is a PEP similar to the bounds based on the conditional

marginal distribution derived by [10].

Proposition 3.3.1 A vector pair (u, v) is PEP if and only if l(u) = u and h(v) = v,
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ξ
u

f(ξ)

p

(a) Standard definition when Ax ≥ u ⇒ P(Ax ≥ ξ) ≥ p

ξ
u v

f(ξ)

p

(b) Modified dual-bounded definition when A′x ≤ u

and Ax ≥ v ⇒ P(A′x ≤ ξ ≤ Ax) ≥ p

Figure 3.1: Illustration of PEP definitions for a single dimension

where

li(u) = arg max {k | g(u, v) ≥ p, ui = k} , i = 1, .., n and

hi(v) = arg min {k | g(u, v) ≥ p, vi = k} , i = 1, .., n

for g(u, v) = P(ui ≤ ξi ≤ vi, ∀i = 1, .., n).

Proof Bounds ⇒ PEP. The proof is by contradiction and is shown for the lower

bound only. Similar arguments can be applied to the upper bound. Assume a pair

of vectors (u, v), where l(u) = u and h(v) = v. Take a vector pair (y, v) that is

PEP, such that y ≤ u with yk < uk for an arbitrary dimension k. Since g(u, v)

monotonically decreases in u, g(y, v) ≥ g(u, v) since y ≤ u. The bounds l(u) = u

and h(v) = v imply that g(u, v) ≥ p. Therefore, (y, v) cannot be PEP, since there

exists a larger vector u such that g(u, v) ≥ p. Now assume another vector pair (y, z)

that is a PEP, such that y ≥ u. For an arbitrary dimension k, where yk > uk,
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construct a new vector w such that wi = ui, ∀i, i �= k and wi = yi, i = k. We know

g(y, z) ≥ p as (y, z) is a PEP. Since y ≥ u and the function g(w, z) monotonically

decreases in w, g(w, z) ≥ p. Therefore, lk(u) ≤ yi, which implies (y, z) is not a PEP,

contradicting our assumption.

PEP ⇒ Bounds. Follows from the definition, since if (u, v) is PEP, then

there exists no larger vector y such that (y, v) is PEP and no smaller vector z such

that (u, z) is PEP.

This bound is used to check if a candidate vector is PEP. The concept of the

proposed enumeration algorithm is that instead of a linear traversal suggested by

previous methods, we exploit the monotonic property of the cumulative distribution

function (or g(u, v)) to allow us to focus on areas of the search space that contain

the p-frontier where g(u, v) = p. The function g(u, v) monotonically increases with v

and monotonically decreases with u. The search space can be construed as a lattice,

since the random vector takes only discrete values. Any arbitrary hyper-rectangle

within the search space can be defined by two ‘corner’ points. The ‘low’ corner

point, consisting of the smallest possible v component and the largest possible u

component within the hyper-rectangle and is denoted by (us, vs). The ‘high’ corner

point consists of the largest v and the smallest u components within the hyper-

rectangle and is denoted by (ue, ve). All lattice points within the hyper-rectangle

are candidate PEPs. Due to the monotonic nature of g(u, v), the lowest possible

value within the hyper-rectangle is g(us, vs) and the highest possible value it can

take is g(ue, ve).
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Based on the two corner points, three cases may occur as illustrated in Figure

3.2.

Case 1. If g(ue, ve) < p, then the entire hyper-rectangle can be ignored, since it is

guaranteed not to contain a PEP.

Case 2. If g(us, vs) > p then the hyper-rectangle is ‘above’ the p-frontier. The only

possible PEP is the corner point (us, vs). If the corner point is PEP, then

it is the sole PEP in the hyper-rectangle, since it would dominate all other

candidate solutions. If it is not PEP, then no other PEPs exist within the

hyper-rectangle, since they would be dominated by (us, vs).

Case 3. If g(us, vs) ≤ p ≤ g(ue, ve), then the hyper-rectangle may contain one or more

PEPs and is marked for further exploration.

Figure 3.2: Three cases for arbitrary hyper-rectangles in 2-dimensions

Large swaths of the search space can be disregarded quickly using Cases 1 and

2. When the hyper-rectangle is marked for further exploration (Case 3), it can be
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partitioned arbitrarily with the same cases applied recursively. With each iteration,

the partitions get smaller until they can no longer be divided. The terminal partition

is a hyper-rectangle with at most two lattice points along any dimension. For an n-

dimensional random vector, enumeration of PEPs in the terminal partition could, in

the worst-case, require examination of 22n candidate vector pairs. The PEPs in this

case can be completely enumerated using existing enumeration schemes [40, 41, 10].

This procedure obviates the need for complete enumeration by focusing on

areas of the search space that contain the p-frontier where g(u, v) = p. Only two

evaluations of g(u, v) are needed to determine if a candidate hyper-rectangle contains

the p-frontier. Complete enumeration is saved for portions of the search space that

are promising. The procedure has a small memory footprint, since the algorithm

only keeps track of two vector pairs for each hyper-rectangle. While Prékopa’s

procedure [40] nests the search along the different dimensions of the random vector,

here we nest in the domain of each component of the vector.

The recursive PEP enumeration algorithm is presented for a random vector

ξ = (ξ1, ξ2, . . . , ξr). Each component of the random vector ξi can take values between

li and ui.

Step 0. Initialization. Define the starting corner vector pairs (us, vs) and (ue, ve),

where us
i = ve

i = ui and vs
i = ue

i = li. Initialize the set of PEPs Sp = ∅ and p

the desired probability level.

Step 1. p-Frontier check. For two vector pairs (us, vs) (start) and (ue, ve) (end) if

g(us, vs) ≤ p ≤ g(ue, ve) then proceed to Step 2, otherwise, terminate.
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Step 2. Partition. Along an arbitrary dimension k, k = 1, ..., 2r, determine a scalar

wk that partitions the hyper-rectangle defined by (us, vs) and (ue, ve) into two

non-empty, non-overlapping hyper-rectangles. If no partition exists, then go

to Step 4.

Step 3. Recurse. If k ≤ r, then construct s = (ue
1, u

e
2, . . . , wk, . . . , u

e
k). Go to Step 1

first with the vector pairs (us, vs), (s, ve) and then again with the vector pairs

(s, vs), (ue, ve). If k > r, then construct s = (ve
1, v

e
2, . . . , wk, . . . , v

e
r) and go to

Step 1 first with vector pairs (us, vs), (ue, s) and then with (us, s)(ue, ve).

Step 4. Enumerate. For each candidate vector pair (u, v) in the hyper-rectangle,

compute the conditional bounds l(u) and h(v). If l(u) = u and l(v) = v, add

to set of PEPs Sp = Sp ∪ (u, v). Stop.

This procedure terminates with the set Sp required in the solution procedure

of CCM-p (Section 3.3.1).

3.3.1.2 Reducing Computational Effort

Conditions that provide a quick test on whether a PEP (u, v) will provide a

sub-optimal solution (without solving the MIP) are derived. These conditions are

based on the premise that the cost of a partial redistribution plan always exceeds

that of a complete redistribution plan, since the phantom resources (the decision

variables wi and zi) are utilized with a high penalty (γ). As the solution algorithm

involves determining redistribution for a series of PEPs, if a complete plan has been

found (that is not necessarily optimal), then all successive PEPs that lead to partial
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solutions can be safely ignored. A partial plan is used only when resources are

outstripped by demand and operators cannot cover p-proportion of demand. These

conditions utilize the physical signifance of a PEP pair (u, v). vi represents the

number of vehicles (if positive) needed at station i for the desired level-of-service

and ui, if negative, represents the required number of spaces.

At any station the total number of spaces and vehicles needed cannot exceed

the capacity. This condition is termed the capacity infeasibility condition and can

be expressed as

− min(ui, 0) + max(vi, 0) > ci i = 1, . . . , n. (3.14)

These capacity constraints are ‘local’, since they are applied to each station.

There are ‘global’ supply infeasibility conditions when the available inventory in the

system is insufficient for the operator to meet anticipated demand. These supply

infeasibilities can be expressed as

n∑
i=1

Vi <

n∑
i=1

max (vi, 0) and (3.15)

n∑
i=1

(Ci − Vi) < −
n∑

i=1

min (ui, 0) . (3.16)

Eq. (3.15) states that the total inventory of vehicles available across the net-

work is exceeded by total anticipated demand across the entire network. Eq. (3.16)

states the same principle for spaces.

When the model suggests partial redistribution, the system operates at reli-

ability levels that are lower than the desired p. The true system reliability in this

case can be computed as follows. Let (u∗, v∗) be the PEP for which the (partial)
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redistribution plan is optimal. Let w∗
i and z∗i be the optimal values of the phantom

resources. Then, the true system reliability p̂ can be expressed as

p̂ = P (u∗
i + w∗

i ≤ ξi ≤ v∗
i − z∗i , i = 1, . . . , n) (3.17)

= g(u∗ + w∗, v∗ − z∗)

3.3.2 A Cone Generation Method

When demand across stations is assumed to be independent, the cone gener-

ation method proposed by Dentcheva et al. [18, 19] can be employed. The solution

algorithm presented here mirrors their procedure, but proposes a new subproblem

formulation to deal with the dual-bounded chance constraint. The method can

generate redistribution plans quickly and is suitable for large systems where PEP

enumeration is prohibitive. The master problem is an approximation of CCM-p and

the subproblem generates p-efficient points as needed. The basic idea is similar to

column generation, where each PEP can be viewed as a column.

Algorithm CGM-p:

Step 0. Initialization. Choose an arbitrary starting PEP pair (u0, v0) and set k = 0,

Jk = 0.

Step 1. Master problem. Convexify CCM-p (Eqs. (3.5)-(3.11)) relaxing integral

constraints and solve the resulting linear program

min

n∑
i=1

n∑
j=1

(aijxij + δyij) +

n∑
i=1

γ (wi + zi) , (3.18)
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Vi +

n∑
j=1

(yji − yij) + wi ≥
∑
j∈Jk

μjv
j
i i = 1, . . . , n, (3.19)

Ci − Vi +

n∑
j=1

(yij − yji) + zi ≥ −
∑
j∈Jk

μju
j
i i = 1, . . . , n, (3.20)

∑
j∈Jk

μj = 1, (3.21)

n∑
j=1

yij ≤ Vi i = 1, . . . , n, (3.22)

n∑
j=1

yji ≤ Ci − Vi i = 1, . . . , n, (3.23)

yij ≤ M · xij i = 1, . . . , n, j = 1, . . . , n, (3.24)

xij , yij, wi, zj ≥ 0 i = 1, . . . , n, j = 1, . . . , n, (3.25)

μj ≥ 0 j ∈ Jk (3.26)

Let λk
v and λk

u be the simplex multipliers of constraints (3.19) and (3.20),

respectively.

Step 2. Upper bound. Calculate the bound for the subproblem over the set of gen-

erated PEPs.

d̄(uk, vk) = min
j∈Jk

(λk
v)

T · vj − (λk
u)

T · uj (3.27)

Step 3. Solve subproblem. Find the PEP pair (uk+1, vk+1) by solving

min
{
(λk

v)
T · vk+1 − (λk

u)
T · uk+1 | g(uk+1, vk+1) ≥ p

}
, (3.28)

and compute d(uk, vk) = (vk+1)T · λk
v − (uk+1)T · λk

u.
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Step 4. Termination Condition. If d(uk, vk) = d̄(uk, vk), then stop; otherwise, set

Jk+1 = Jk ∪ (k + 1), k = k + 1 and goto Step 1.

The subproblem in Step 3 has a nonlinear constraint g(u, v) ≥ p. When

demand at each station is assumed to be independent, this constraint can be written

as

ln(g(uk, vk)) =

n∑
i=1

ln(gi(u
k
i , v

k
i )) ≥ ln p. (3.29)

If each component of the random vector ξi takes values between li and bi, the

subproblem can formulated as an MIP. Denote yijk as a binary decision variable

that is one if for the i-th dimension of ξ, ui = j and vi = k and zero otherwise. For

a given set of multipliers (λk
u, λ

k
v) and a desired probability level p, the subproblem

can be written as

min

n∑
i=1

bi∑
j=li

bi∑
k=li

(λv
i k − λu

i j) yijk (3.30)

subject to

n∑
i=1

bi∑
j=li

bi∑
k=li

ln(qijk)yijk ≥ ln(p) (3.31)

bi∑
j=li

bi∑
k=li

yijk = 1 i = 1, . . . , n (3.32)

yijk ∈ [0, 1], (3.33)

where qijk = gi(j, k) = P(j ≤ ξi ≤ k). The subproblem yields a PEP that can be

reconstructed from the decision variables. When yijk = 1, the i-th component of

the PEP is given by ui = j and vi = k. The resulting PEP is then added to the
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master problem as a column and the procedure terminates when the PEP leading

to the best solution has been found.

3.4 A Failure Apportionment Bound

If the systemwide reliability level can be translated to a component-level mea-

sure, the joint chance constraint can be decoupled to give linear constraints. These

constraints provide a bound on the original problem. This transformation requires

no assumption of independence across stations. The VSP stations can be viewed

as being ‘in series’, since the unserviced demand at any station implies lower reli-

ability. A system that is p-reliable has an acceptable failure rate of at most 1 − p.

The Boole-Bonferroni inequality [39] implies that the sum of the station failure rates

cannot exceed the systemwide failure rate.

n∑
i=1

(1 − pi) ≤ 1 − p. (3.34)

Under an equal apportionment of failure we have 1−pi = (1−p)/n. Decoupling

the joint chance constraint (3.6) results in n joint constraints:

P

⎛
⎜⎜⎜⎜⎝

−
[
Ci − Vi +

n∑
j=1

(yij − yji) + zi

]
≤ ξi

Vi +
n∑

j=1

(yji − yij) + wi ≥ ξi

⎞
⎟⎟⎟⎟⎠ ≥ pi i = 1, . . . , n, (3.35)

where pi = (n − 1 + p)/n. This set of n joint chance constraints can be further

reduced by allowing the acceptable failure rate to be divided among unserviced

demand for vehicles and unserviced demand for spaces. This is shown in Figure 3.3.
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pi

(1 − pi)/2(1 − pi)/2

ξi

−
(

Ci − Vi +
n∑

j=1
(yij − yji) + zi

)
Vi +

n∑
j=1

(yji − yij) + wi ci−ci

Figure 3.3: Demand scenarios covered by the chance constraint at one station

This results in 2n chance constraints:

P

(
Vi +

n∑
j=1

(yji − yij) + wi ≥ ξi

)
≤ 1 − pi

2
i = 1, . . . , n,(3.36)

P

(
−
[
Ci − Vi +

n∑
j=1

(yij − yji) + zi

]
≤ ξi

)
≤ 1 − pi

2
i = 1, . . . , n.(3.37)

In terms of the inverse marginal distribution, the constraints (3.36) and (3.37)

can be derived as

Vi +

n∑
j=1

(yji − yij) + wi ≥ F−1
ξi

(
1 + pi

2

)
i = 1, . . . , n, (3.38)

−
[
Ci − Vi +

n∑
j=1

(yij − yji) + zi

]
≤ F−1

ξi

(
1 − pi

2

)
i = 1, . . . , n. (3.39)

The solution to the MIP defined by the objective (3.5) and constraints (3.7),

(3.8), (3.9), (3.10), (3.11), (3.38), (3.39) provides a bound on the optimal solution.

3.5 Application

The Intelligent Community Vehicle System (ICVS) operated by the Honda

Motor company in Singapore City, Singapore was a car-sharing system with 14

stations mainly in the downtown region and one at the Changi Airport. The system
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was also studied by [29]. The program is no longer operational. Data from the

program available from March 2003 through January 2006 documents 45, 570 trips.

Across the 14 stations, the system had an assumed capacity of 202 spaces, with 94

vehicles spread around the network. The characteristics of the fleet are not known

and are assumed to be homogeneous. The trip characteristics are summarized in

Figures 3.4 and 3.5. Figure 3.6 shows the inter and intra station flow patterns.

While most trips start and terminate at the same station, a considerable proportion

of flows are oneway. Also note that inter-station flows between any two stations are

asymmetric and not equal.

The realized demand process is assumed to be the true demand process. This

implies that extreme demand scenarios are not represented in the inputs (since they

are never observed). The demand-supply interaction is ignored and treated as exoge-

nous and inelastic. Each day is divided into four time periods when redistribution is

considered. During each time period at each station, the number of vehicles checked

out and the number returned were found to be Poisson distributed. Of all 112 input

distributions (one for each station and each period during the day for checkouts

and returns), 28 failed the χ2 test due to the low number of observations. Sample

distributions for two stations are shown in Figure 3.7.

For each station j and time period t, the Poisson vehicle checkout rate (λ1
tj)

and the Poisson vehicle return rate (λ2
tj) are determined. Since the random variable

ξi in program CCM-p is the difference of the two, the distribution of the difference

is needed. When two random variates are Poisson distributed with means λ1
tj and

λ2
tj , their difference ξtj is Skellam distributed with pmf

67



0 3 6 9 12 15 18 21 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Haw Par Centre
Wisma Atria
Millenia Walk
Market Street
Raffles City
Temasek Tower
StarHub Centre
United Square

Changi Airport
Park Mall
Orchard Hotel

Tanjong Pagar
Golden Shoe Car Park
HDB Hub

(a) Average Number of Checkouts

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6
Wisma Atria
Millenia Walk
Market Street
Raffles City
Temasek Tower
StarHub Centre
United Square
Changi Airport
Park Mall
Orchard Hotel
Tanjong Pagar
Golden Shoe Car Park
HDB Hub

(b) Distribution of Daily Imbalance

Figure 3.4: Characteristics of the IVCS Singapore system
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Figure 3.5: Trip characteristics
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Figure 3.6: Relative inter and intra station flows
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P(ξtj = k) = e−(λ1
tj+λ2

tj)

(
λ1

tj

λ2
tj

)k/2

Ik(2
√

λ1
tjλ

2
tj), (3.40)

where Ik(z) is the modified Bessel function of the first kind. Since this is a discrete

distribution, F−1
ξ (p) exists when we define the inverse function as the infimum and

when 0 < p < 1. Figure 3.8 shows the Skellam distribution for some sample values.

3.5.1 Computational Experiments

Nine strategies for redistribution based on expected value, doing nothing, the

enumeration-based solution method, the cone generation method, and the failure

apportionment bound are tested. A single day is divided into four planning peri-

ods and a redistribution plan is generated for each period using each of the nine

strategies. Starting from base inventories in the first period (common for all so-

lution methods), the different redistribution plans are enacted. Consequently, the

state of the system at subsequent periods across the different solution methods may

not be the same. A demand scenario is randomly generated and the fleet invento-

ries are adjusted to serve as the start point to generate a new redistribution plan.

The performance of the system is measured in terms of actualized or true reliabil-

ity p̂, redistribution cost (without the penalties for phantom resources, since this

component of the objective functions is what operators will experience) involved in

implementing the redistribution plan, and the robustness of the plan over a wide

range of demand scenarios.

A do-nothing (DN) approach is when operators relocate only once before the
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start of each day, but do not redistribute during the day. An expected value approach

(AVG) generates redistribution based on the expected value of demand. The PEP

enumeration based solution approach (ENUM-p) is used to generate strategies for

three values of p (0.8, 0.9, and 1.0). Since the support of the Skellam distribution

is Z, for the last case p is very close to, but not equal to, 1.0. The cone generation

method (CGM-p) is run for p = 0.8, 0.9. The results for CGM-1.0 and ENUM-1.0

are exactly the same, since only one PEP is considered. Therefore, only results from

ENUM-1.0 are reported. The failure apportionment bounds (FAB-p) presented in

Section 3.4 are computed for two values of p: 0.8 and 0.9. The proposed procedures

(DN, AVG, ENUM-p, CGM-p, FAB-p) were implemented in MATLAB 2009a, java,

and CPLEX 11.2. All experiments were run on an Intel Xeon processor running

at 3.00 GHz with 16GB of RAM. Since for ENUM-p, the PEP enumeration phase

(Step 1) of the algorithm is needed only once, the PEP generation procedure was

allowed to run for 24 hours for each stage using p = 0.8 and 0.9 (for p = 1.0, there is

only one PEP). The number of PEPs generated for each period are shown in Table

3.1.

State Time Period (hrs) # PEPs p = 0.8 # PEPs p = 0.9

1 0 ≤ t < 9 50.10 9.41
2 9 ≤ t < 12 37.60 22.68
3 12 ≤ t < 18 64.60 173.80
4 18 ≤ t < 24 77.20 202.00

Table 3.1: Number of PEPs for each stage (in millions)

Since the set of PEPs is extremely large, the run time for ENUM-p experi-

ments at each time period was restricted to one hour. Consequently, the solutions
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presented next are not guaranteed to be optimal. Should the ENUM procedures run

to completion, the results would be exact and match those obtained via the CGM-p

method. Since demand at each station is assumed to be independent, the results

from CGM-p (where independence is forced) can be directly compared with other

strategies.

Results are presented for a 2-day period. Figure 3.9 shows the actualized

reliability p̂ (averaged over time periods) versus the total relocation costs over the

entire day. The relocation costs are computed as the value of the objective function

minus the penalties for using the phantom resources. For ENUM-p methods, the

family of solutions is depicted for p = 0.8, 0.9. CGM-p methods with p = 0.8 or 0.9

provide the best actualized reliability at the lowest cost. For the same reliability level

p, CGM methods outperform ENUM, since by terminating prematurely all PEPs

are not explored for ENUM and, therefore, optimality is not necessarily achieved.

FAB-p strategies provide high reliability, but are expensive to implement. The

ENUM-1.0 and CGM-1.0 (not reported) methods yield the same results and both

perform poorly. Since the resource requirements to satisfy such a high level-of-

service are extraordinary, the redistribution plan that the model achieves in this

case is always partial, since phantom variables must be utilized. The actualized

reliability achieved for this case is very low.

Snapshots of the system at the start of each period illustrate the role of com-

plete and partial redistribution plans. Figure 3.10 shows the actualized reliability

and redistribution costs dissaggregated by period for Day 1. After starting at base

inventory levels in the first period, the system state at each subsequent period is
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different for various strategies as the enacted redistribution plans vary across strate-

gies. Hence, the solutions at each snapshot are not commensurate and should be

viewed as a time slice through an evolving system. Nonetheless, these figures il-

lustrate that when resources are adequate at the start of the day (Figures 3.10(a)

and 3.10(b)), most strategies provide complete redistribution plans. When inven-

tories are low (Figure 3.10(d)), a complete redistribution plan is only achieved by

the CGM-0.8 strategy. Under these circumstances, all other solutions show drops

in true reliability and represent partial redistribution plans. When the plans are

complete, the FAB-p solutions cost more than the ENUM-p and CGM-p strategies

(for a comparable p). When the plans are partial, this need not be the case, since

the penalty costs are not included. This is also illustrated in Figure 3.11, where

FAB strategies involve the largest number of redistributed vehicles.

To determine the value of considering stochasticity in generating redistribution

plans, simulation is employed. The strength of a particular system configuration can

be tested over a range of demand realizations. The number of unserviced users, or

dropped demand, is measured for each realization. Given a random realization of

demand ξ̄, the dropped demand for vehicles dv and spaces ds can be computed as

dv =

n∑
i=1

max(0, ξ̄i − Vi), (3.41)

ds = −
n∑

i=1

min(0, ξ̄i + Ci − Vi). (3.42)

These quantities are computed for all the strategies and time periods for two

days over 100, 000 realizations. Results are summarized in Tables 3.2 and 3.3. The

ENUM-0.8, ENUM-0.9, and CGM-p strategies do not drop any demand for a high
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proportion of realizations, regardless of resource availability. When resources are

adequate, at the start of the day, all strategies do well. During later time periods,

the AVG, ENUM-1.0, and DN approaches are more likely to leave demand unser-

viced. The FAB strategies perform as well as CGM, but these are more expensive

to implement. Tables 3.2 and 3.3 also show the worst-case demand realization for

each algorithm. The CGM-p methods consistently drop fewer number of demand

requests for vehicles and spaces compared to other methods even in the worst-case

realization, indicative of robustness of the redistribution strategy.

The solutions yield additional insights on system characteristics. Since the

PEPs have a physical interpretation, for the PEP that resulted in the best known

solution, the system resource requirements can be computed (see Table 3.4). These

numbers directly relate the desired level-of-service with the resources. For example,

in Day 1, to achieve a systemwide reliability of 0.9 requires 77 vehicles during the

18:00-24:00 Hours (Hrs) time period for the CGM and ENUM methods. A reliability

of 0.8 requires eight fewer vehicles for the same period. These values are contin-

gent on starting inventories, thus, their purpose is illustrative. In a similar vein,

the stations which have frequent local infeasibilities can be the target of capacity

improvements, because local infeasibilities indicate recurrent imbalance in flows.

In summary, fleet management strategies that explicitly account for demand

stochasticity offer greater reliability than plans based on static methods. Redistri-

bution strategies based on the proposed stochastic MIP also weather scenarios in

which demand outstrips supply. In simulation studies, the CGM-p, and even the po-
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Time
(Hrs)

Algorithm Probability
of no
dropped
ve-
hicle
de-
mands

Average
num-
ber of
dropped
vehicle
demands

Number
of
dropped
vehicle
demands
for
worst-
case

Probability
of no
dropped
spaces

Average
num-
ber of
dropped
space
demands

Number
of
dropped
space
de-
mands
for
worst-
case

Partial
Re-
dis-
tri-
bu-
tion

Relocation
Costs

p̂

0-9 DN 0.998 0.00 2 1.000 0.00 3 - 0.00 0.599
AVG 0.998 0.00 2 1.000 0.00 3 - 0.00 0.599
FAB-0.9 0.998 0.00 3 1.000 0.00 2 No 38817.33 0.994
FAB-0.8 1.000 0.00 2 1.000 0.00 2 No 36291.29 0.992
ENUM-1.0 0.998 0.00 2 1.000 0.00 3 Yes 0.00 0.599
ENUM-0.9 1.000 0.00 3 1.000 0.00 3 No 11590.26 0.984
ENUM-0.8 1.000 0.00 2 1.000 0.00 3 No 10749.17 0.961
CGM-0.9 0.999 0.00 2 1.000 0.00 3 No 10250.17 0.954
CGM-0.8 0.999 0.00 2 0.999 0.00 3 No 10077.12 0.910

9-12 DN 0.487 0.80 8 0.391 1.16 9 - 0.00 0.289
AVG 0.754 0.34 7 0.423 1.06 9 - 1495.01 0.483
FAB-0.9 0.988 0.01 4 0.990 0.01 4 No 11335.09 0.988
FAB-0.8 0.997 0.00 3 0.986 0.02 4 No 5294.02 0.995
ENUM-1.0 0.487 0.80 8 0.391 1.16 9 Yes 1279.01 0.289
ENUM-0.9 0.985 0.02 4 0.970 0.04 5 No 3626.02 0.978
ENUM-0.8 0.998 0.00 3 0.822 0.24 6 No 3959.04 0.984
CGM-0.9 0.990 0.01 4 0.944 0.07 5 No 5294.04 0.982
CGM-0.8 0.989 0.01 4 0.817 0.24 6 No 1668.03 0.959

12-
18

DN 0.121 2.94 16 0.219 2.42 16 - 0.00 0.044

AVG 0.323 1.66 14 0.328 1.75 14 - 592.01 0.168
FAB-0.9 0.773 0.40 11 0.882 0.18 8 Yes 34089.16 0.767
FAB-0.8 0.854 0.24 10 0.829 0.27 9 Yes 28025.11 0.840
ENUM-1.0 0.121 2.94 16 0.226 2.38 16 Yes 0.00 0.045
ENUM-0.9 0.852 0.24 10 0.773 0.37 9 Yes 29310.14 0.843
ENUM-0.8 0.866 0.21 7 0.835 0.26 9 No 30574.13 0.853
CGM-0.9 0.954 0.06 7 0.710 0.50 10 Yes 28554.15 0.912
CGM-0.8 0.934 0.09 7 0.690 0.53 10 No 6043.06 0.876

18-
24

DN 0.022 4.86 18 0.024 4.88 20 - 0.00 0.018

AVG 0.156 2.68 15 0.220 2.34 17 - 4175.05 0.140
FAB-0.9 0.924 0.11 7 0.477 1.12 13 Yes 25102.27 0.919
FAB-0.8 0.919 0.12 7 0.480 1.10 13 Yes 22069.24 0.915
ENUM-1.0 0.022 4.86 18 0.026 4.78 20 Yes 0.00 0.019
ENUM-0.9 0.912 0.13 7 0.473 1.13 13 Yes 16865.20 0.908
ENUM-0.8 0.841 0.25 9 0.602 0.75 11 Yes 10984.16 0.839
CGM-0.9 0.950 0.07 7 0.398 1.39 14 Yes 14639.17 0.945
CGM-0.8 0.906 0.13 8 0.458 1.14 12 No 13413.16 0.887

Table 3.2: Summary of 100,000 simulation runs for Day 1
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Time
(Hrs)

Algorithm Probability
of no
dropped
ve-
hicle
de-
mands

Average
num-
ber of
dropped
vehicle
demands

Number
of
dropped
vehicle
demands
for
worst-
case

Probability
of no
dropped
spaces

Average
num-
ber of
dropped
space
demands

Number
of
dropped
space
de-
mands
for
worst-
case

Partial
Re-
dis-
tri-
bu-
tion

Relocation
Costs

p̂

0-9 DN 0.998 0.00 3 1.000 0.00 2 - 0.00 0.599
AVG 0.998 0.00 3 1.000 0.00 2 - 0.00 0.599
FAB-0.9 0.998 0.00 3 1.000 0.00 1 No 38817.33 0.994
FAB-0.8 1.000 0.00 1 1.000 0.00 1 No 36291.29 0.992
ENUM-1.0 0.998 0.00 3 1.000 0.00 2 Yes 0.00 0.599
ENUM-0.9 1.000 0.00 1 1.000 0.00 2 No 11590.25 0.985
ENUM-0.8 0.999 0.00 3 1.000 0.00 2 No 10575.22 0.957
CGM-0.9 0.999 0.00 3 1.000 0.00 2 No 10250.17 0.954
CGM-0.8 0.999 0.00 3 0.999 0.00 2 No 10077.12 0.910

9-12 DN 0.965 0.04 4 0.332 1.33 11 - 0.00 0.341
AVG 0.965 0.04 4 0.332 1.33 11 - 0.00 0.341
FAB-0.9 0.995 0.01 3 0.998 0.00 3 No 4950.03 0.995
FAB-0.8 0.999 0.00 3 0.989 0.01 4 No 1125.02 0.997
ENUM-1.0 0.965 0.04 4 0.332 1.33 11 Yes 0.00 0.341
ENUM-0.9 0.999 0.00 2 0.975 0.03 5 No 0.00 0.987
ENUM-0.8 0.999 0.00 2 0.979 0.02 4 No 2542.03 0.974
CGM-0.9 0.991 0.01 4 0.958 0.05 5 No 2501.02 0.967
CGM-0.8 0.989 0.01 4 0.908 0.12 6 No 1641.03 0.932

12-
18

DN 0.494 1.05 11 0.089 3.95 21 - 0.00 0.098

AVG 0.495 1.05 11 0.115 3.50 20 - 1125.01 0.116
FAB-0.9 0.896 0.16 7 0.846 0.24 9 Yes 13059.07 0.859
FAB-0.8 0.947 0.08 7 0.780 0.36 10 Yes 11480.08 0.893
ENUM-1.0 0.494 1.05 11 0.089 3.95 21 Yes 0.00 0.098
ENUM-0.9 0.946 0.08 6 0.789 0.35 10 Yes 13418.09 0.910
ENUM-0.8 0.888 0.17 8 0.841 0.25 10 No 12392.19 0.874
CGM-0.9 0.963 0.05 6 0.671 0.59 11 Yes 12119.17 0.910
CGM-0.8 0.955 0.06 6 0.632 0.68 11 No 8908.14 0.887

18-
24

DN 0.052 3.76 20 0.005 7.28 27 - 0.00 0.031

AVG 0.330 1.60 16 0.083 3.80 23 - 4577.07 0.262
FAB-0.9 0.917 0.12 10 0.485 1.09 15 Yes 26147.22 0.913
FAB-0.8 0.927 0.11 9 0.400 1.39 17 Yes 20664.19 0.922
ENUM-1.0 0.052 3.76 20 0.005 7.28 27 Yes 0.00 0.031
ENUM-0.9 0.914 0.12 10 0.536 0.94 15 Yes 19417.15 0.909
ENUM-0.8 0.844 0.24 11 0.629 0.69 13 No 19441.17 0.841
CGM-0.9 0.952 0.07 9 0.395 1.42 17 Yes 18299.14 0.944
CGM-0.8 0.910 0.13 10 0.501 1.04 16 No 13766.12 0.904

Table 3.3: Summary of 100,000 simulation runs for Day 2
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Day 1 Required Vehicles Required Spaces Local Infeasibility

Strategy p 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24

AVG - 2.49 8.97 25.73 27.15 14.55 6.72 17.79 10.47 0 0 0 0
FAB 0.8 22 47 76 84 74 51 69 54 0 0 8 6
FAB 0.9 19 41 71 79 68 48 63 48 0 0 5 2

ENUM 1.0 137 149 245 240 161 141 228 207 13 13 13 13
ENUM 0.9 21 45 71 77 67 46 66 54 0 0 5 2
ENUM 0.8 20 41 62 69 61 48 62 51 0 0 0 0

CGM 0.9 17 39 77 77 53 32 51 34 0 0 0 0
CGM 0.8 14 36 63 69 46 26 41 28 0 0 0 0

Day 2 Required Vehicles Required Spaces Local Infeasibility

Strategy p 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24

AVG - 2.49 8.97 25.73 27.15 14.55 6.72 17.79 10.47 0 0 0 0
FAB 0.8 22 47 76 84 74 51 69 54 0 0 8 6
FAB 0.9 19 41 71 79 68 48 63 48 0 0 5 2

ENUM 1.0 137 149 245 240 161 141 228 207 13 13 13 13
ENUM 0.9 22 48 71 76 65 46 68 57 0 0 5 3
ENUM 0.8 21 45 63 70 60 44 63 52 0 0 0 0

CGM 0.9 17 39 76 77 53 32 53 34 0 0 0 0
CGM 0.8 14 36 63 69 46 26 41 28 0 0 0 0

Table 3.4: Systemwide resource needs based on various strategies with the number
of stations with local capacity infeasibilities

tentially suboptimal ENUM-0.9 and ENUM-0.8 strategies, demonstrate robustness

over all sampled demand scenarios.

3.6 Conclusions

Fleet management strategies that explicitly consider demand stochasticity are

developed for vehicle sharing systems. In developing these management strategies,

no assumptions are made on the specific operational characteristics and demand

processes of a particular system. However, system specific attributes can be in-

corporated with relative ease. For example, if a sharing system allows advance

reservations of vehicles, then the demand process splits into a static known compo-

nent and an uncertain one. By adjusting start inventories at each stage, the static
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portion can be guaranteed service.

The main contributions of this work are in formulating the VSP fleet man-

agement problem as a stochastic MIP. The approach taken herein overcomes the

limitations of prior works that assume static or known demand. The proposed

framework quantifies the systemwide level-of-service offered based on a probabilistic

characterization of demand. Two solution techniques, one based on enumeration and

the other on cone generation, are presented. For the enumeration-based technique,

the PEP enumeration algorithm improves on existing tools by using a divide-and-

conquer paradigm that is able to quickly eliminate areas of the search space that are

guaranteed not to contain PEPs. Our technique has a smaller memory and compu-

tational footprint than previously proposed methods. Additionally, the concept of

PEP is extended to include dual-bounded chance constraints. For a more restrictive

case when demand is assumed to be independent across stations, a second solution

technique can be employed which is quick even for large systems. An equal-failure

apportionment bound is also derived that is applicable even when demand across

stations is correlated. Under these limiting assumptions (independence or equal fail-

ure probability), exact solutions can be quickly obtained. In an application of the

proposed framework to a system in Singapore, the operational strategies were found

to be robust in simulation studies. Additionally, trade-offs between redistribution

costs and level-of-service were explored.

Future work along this direction could relax some assumptions, namely im-

mediate fleet relocation, incorporate staff availability to perform redistribution, and

tackle heterogeneous fleets. To address large-scale systems, such as the bicycle-
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sharing system in Paris, faster heuristics can be developed. The exact solution

techniques proposed herein can be used to provide benchmark solutions for use in

evaluating these heuristics. One might also study the assignment and routing of

relocation teams to carry out fleet redistribution.
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Figure 3.8: The Skellam distribution function for sample λ combinations.
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Figure 3.9: Average actualized reliabilty vs. relocation costs over entire day
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Figure 3.10: System snapshots for various time periods (Day 1)
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Figure 3.11: Number of vehicles relocated
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Chapter 4: System Design For Washington D.C.

4.1 Introduction

The Washington D.C. metropolitan region ranks second in traffic congestion

in the U.S. [44]. To address the growing transportation problems in the region, the

District of Columbia Department of Transportation (DDOT) has actively promoted

the use of alternate solutions to highway congestion. These strategies include facili-

tating increased bicycle use, improvement of pedestrian facilities, and the promotion

of shared-vehicle systems. These goals are being met through the innovative use of

transportation related policy. In the North American context, DDOT has pioneered

the use of on-street parking for shared cars to increase the utility of shared vehicles

for users. The Washington Metropolitan Area Transit Authority (WMATA) exclu-

sively reserves several parking spots at its transit stations to integrate shared-vehicle

and transit use.

In August, 2008, Washington D.C. was the first city in the US to implement a

bicycle sharing program named SmartBikeDC. As a public-private partnership, the

program started with 10 stations, with capacities ranging from 10 to 15 bicycles in

the downtown areas of Washington. Following the success of this initial system, in

March 2010, DDOT in collaboration with neighboring Arlington County, announced

a new system of 100 stations and 1000 bicycles that will supersede SmartBikeDC.

The new system will be operational in the Fall of 2010 and will use the ‘Bixi’

modular concept already in place in cities like Montreal. The Bixi concept was
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developed for Montreal to overcome some design and implementation issues faced by

earlier generation of systems. By making solar-powered stations and using wireless

communications, the setup costs are reduced since utilities need not be extended to

each station. This also allows for quick installation, easy removal of stations over

the winter, and capacity enhancements.

In this chapter, based on the framework introduced in Chapter 2, an optimal

configuration for the proposed bike sharing system is determined. In discussions

with DDOT representatives, several site and equity constraints were established.

The new program, termed Capital BikeShare, spans Washington D.C. and Arlington

County, Virginia. Several program characteristics were determined in negotiations

between the city and the service provider. The program is to have 114 stations,

with 100 stations in the District of Columbia and 14 stations in Arlington County.

Tentative pricing information released indicates an annual membership of $80 that

would allow for unlimited number of rides under 30 minutes. Trips lasting more

than 30 minutes will be charged a yet undecided fee for every additional half-hour.

Day-use memberships with a cost of $5 and monthly memberships for $30 are also

planned.

The main contributions of this chapter are in extending the bilevel VSP net-

work design problem presented in Chapter 2 for a real-world case study for Wash-

ington D.C. The proposed bicycle sharing program expansion has problem specific

characteristics that are incorporated into the VSP design problem. A Genetic Algo-

rithm (GA) based meta-heuristic approach is developed for its solution. In addition

to determining the near-optimal VSP configuration, the system usage patterns are
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forecasted and flow potential between stations is quantified. Improvement in travel

times through the use of shared-vehicles is also estimated.

4.1.1 Setting

As the nation’s captial, Washington D.C. is home to several large federal insti-

tutions, museums, foreign embassies, and relatively dense residential neighborhoods.

Key relevant social and urban characteristics of the city are summarized in Figures

4.1 and 4.2.

(a) Percent Black (Darker = Higher) (b) Percent Caucasian (Darker = Higher)

Figure 4.1: Social characteristics of Washington D.C.

Transportation related issues for the greater Washington region are handled

through the Metropolitan Washington Council of Governments (MWCOG), a re-

gional planning entity that serves the Greater Washington metropolitan area, in-
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(a) Population Density (Darker = Higher) (b) Landuse

Figure 4.2: Urban characteristics of Washington D.C.

cluding D.C., Maryland, and Virginia. The main transit agency for the region is

WMATA that runs a metro system with six lines, 88 stations, and 106 miles of

transit lines. In addition, WMATA operates the Metrobus service consisting of 319

routes, serving 12,227 bus stops across the region. Transit plays a vital role in the

region, especially in the urban core, where 42% of all work-based trips use transit

[58]. As shown in Figure 4.3, access to metro stations in the downtown region of

D.C. are predominantly by walk or bicycle, while stations in the outer suburban ar-

eas have large parking facilities that attract park-and-ride users from the suburban

residential communities [36].
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Figure 4.3: Access modes of passengers to metro stations

4.1.2 Model Components

Following the conceptual developments in Chapter 2, the key supply and de-

mand characteristics need to be represented in a network modeling framework. The

network is defined by a set of nodes that represent various elements in the tran-

sit and VSP system. Nodes can represent transit stops, transit services, origins,

destinations, link intersections for walk, bicycle and road networks, and candidate

VSP stations. Network links are used to connect the nodes and can represent walk

links, shared-vehicle movement, transit services, transit access and egress, waiting

links, bicycle links, and road links. The case study network uses data collected from
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various sources. The transit information is based on data from WMATA, while

the walk and bicycle network information are from the D.C. Office of Planning.

DDOT provided information on VSP candidate stations. The data attributes and

its limitations are described in greater detail next.

4.1.2.1 VSP Candidate Stations

Washington, D.C. consists of eight wards. Wards are political districts used to

elect members to the City Council. The design of any public system faces equity con-

cerns regarding the distribution of facilities across wards. Therefore, in determining

the candidate shared-bicycle stations, an adequate number of candidate facilities

must be considered for each ward. To generate the set of candidate stations, all ma-

jor transit stations within the D.C. jurisdiction were considered. Additionally, from

the 1,403 signalized intersections in D.C., a randomly selected subset was chosen

to serve as candidate VSP sites. Signalized intersections are chosen as candidate

sites, since they tend to have greater visibility in an urban setting. Figure 4.4 shows

the candidate stations along with ward boundaries. A total of 455 candidate sites

for VSP stations are considered. The modular Bixi bicycle sharing technology uses

solar-powered stations and wireless communications. Since the proposed VSP sta-

tions are self-supporting, the selection of VSP candidate stations is limited only by

physical space and not by site accessibility to electricity or communication utilities.

Site accessibility to utilities is not considered in determining candidate sites.
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Figure 4.4: Candidate VSP stations with ward boundaries

4.1.2.2 Travel Demand

The VSP design is based on flow patterns in the region. The demand for travel

for the analysis is based on the Maryland Statewide Transportation Model (MSTM)

[15]. The MSTM has 89 zones within D.C and uses the four-step transportation

planning process to determine flows between zone pairs for base year 2000. Starting

from landuse patterns, the models use trip generation, distribution, and mode choice.

Additionally, MSTM performs a temporal allocation for four different time periods

during the day. Inputs from a coarser regional model that has visitor and long-

distance travel models are also incorporated.

For the purposes of this study, the total demand (without the mode choice
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component) from the MSTM model provides input to determine flow potential of

the proposed shared-bicycle network. An ideal representation of the demand pro-

cess would include the transit-based flows along with utility functions that could be

used to estimate the fraction of automobile trips that are induced due to the im-

proved service from the presence of VSPs. However, three reasons preclude such a

detailed representation. First, the fraction of auto users that shift to VSPs requires

detailed stated preference information that is typically gleaned from surveys. Such

an analysis is beyond the resources available for this study and is outside the focus

of this research. Second, the response of users to new and innovative programs is

highly uncertain and difficult to predict. In this light, the value of stated preference

surveys can be limited. Third, transit flows from MSTM are undergoing revisions

to address quality issues while this research was being conducted. Should better

estimates of demand be available, these can be easily incorporated.

Since the state-wide model includes long distance trips from outside the region,

five external zones were defined that serve as proxy zones for all external zones. Each

zone outside D.C. is assigned to one of the external zones. Only inter-zonal flows

that generate more than 20 trips/hour are considered. This corresponds to 1,000

origin-destination pairs. Each zone is associated with a centroid, where the flows

are assumed to originate. Each zone centroid is linked to the walk network to allow

flows to access transit services.
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4.1.2.3 Transit Network

The transit component of the network is built from the Google Transit Feed

Specification (GTFS) data from WMATA. While the data includes stops, service,

and schedule information for all WMATA services in the region, computational issues

involved in modeling a large transit network preclude the use of the entire network.

Instead only the main transit services are considered including the metrorail lines.

For these services, travel times and frequencies are computed from the schedule

information. Each transit stop within D.C. is associated with a VSP candidate

station.

4.1.2.4 Walk and Bicycle Network

Transit access is considered through walk and bicycle modes. Based on avail-

able data for metro access, for regions within D.C., a large majority of transit based

trips are accessed by these two modes (see Figure 4.3). Transit and bicycle access

networks are based on the network data provided by the D.C. Office of Planning.

The network information includes information on bicycle lanes, travel times, and

metro entry points, thereby providing reasonably accurate estimates of access times.

The VSP candidate stations are located on the bicycle network and topologically

linked to the bicycle network.
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4.2 Formulation

The problem faced by D.C. Department of Transportation (DDOT) is to deter-

mine locations of VSP stations that provide an efficient and equitable configuration

so as to maximize the flow potential of the proposed system. The number of stations

to be located is known a priori ; however their locations are to be determined. Unlike

the network design problem addressed in Chapter 2, the station capacities and base

vehicle inventories at each station are not considered for the following reasons. The

technology used by DDOT for the proposed system developed by Bixi is modular in

design. This implies that vehicle and slot inventories can be easily altered to better

match demand. Secondly, many of the program parameters (number of stations,

pricing, and technology) have already been determined by policy makers, so the

value of this case study is in determining the optimal locations for VSP stations.

Given (a) an existing transit configuration, (b) the bicycle and walk network,

(c) a set of candidate bicycle sharing stations, (d) equity and resource constraints

for DDOT, (e) behavioral assumption of users, and (f) fixed demand, DDOT seeks

an optimal VSP configuration that maximizes VSP flow potential.

Following the notation and development of Chapter 2, the VSP operator deci-

sion variable is xi, i ∈ Vs, which is a binary variable indicating if the bicycle sharing

station is located at node i and Vs is the set of candidate sharing stations. Let p

represent the number of stations to be located and W be the set of wards in the

district (indexed by w). Define δiw, w ∈ W, i ∈ Vs, as an indicator variable that is

set to one if the VSP station candidate i is located in ward w. Additionally, denote
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wmin as the minimum number of stations at each ward that represents an equitable

resource allocation.

The model presented in this chapter and used for the D.C. case study is a

variant of the BLNDP (Chapter 2, Section 2.2) and is denoted by BLNDP-DC.

At the upper level, VSP operators decide the optimal locations for VSP stations

subject to equity constraints and the number of stations. DDOT seeks to maximize

the potential shared-flow on the proposed bicycle sharing system. The lower level

model mirrors the one presented in Section 2.2. OD pairs are denoted by the set

K (indexed by k). A link from node i to j has an associated flow for each OD pair

denoted by vijk. Additionally, each node of the transit network has an associated

quantity wik, representing the total waiting time experienced by users in OD pair k

at node i. The flows (v) and waiting times (w) are continuous decision variables of

the lower level model.

The network design problem, BLNDP-DC, can be formulated as a bilevel

mixed-integer program as follows.

Upper level:

max
x,y,z

∑
k

∑
(i,j)∈As

vijk (4.1)

subject to

∑
i∈Vs

xi = p (4.2)

∑
i∈Vs

δiwxi ≥ wmin w ∈ W (4.3)

xi ∈ {0, 1} (4.4)
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Lower level:

min
u,v

∑
k

⎛
⎝ ∑

(i,j)∈A

cijvijk +
∑
i∈V

wik

⎞
⎠ (4.5)

subject to

∑
j,(i,j)∈A

vijk −
∑

j,(j,i)∈A

vjik = gik i ∈ V, k ∈ K (4.6)

vijk ≤ fijwik (i, j) ∈ A \ A, k ∈ K (4.7)

Mxi ≥
∑

k

vijk (i, j) ∈ As (4.8)

Mxj ≥
∑

k

vijk (i, j) ∈ As (4.9)

wik ≥ 0 i ∈ V, k ∈ K (4.10)

vijk ≥ 0 (i, j) ∈ A, k ∈ K (4.11)

The BLNDP-DC is defined by the upper level objective for DDOT of max-

imizing VSP flow potential (4.1). Constraint (4.2) limits the number of bicycle

sharing stations chosen for construction to the maximum allowable number of sta-

tions, which is determined a priori and is equal to 100. Constraints (4.3) ensure

that each ward in D.C. receives a minimum number of stations for the configuration

to be equitable. The upper level decision variables are restricted to be binary (4.4).

The lower level program is formulated from the perspective of users who seek

to minimize their travel time. Objective 4.5 minimizes the travel time and waiting

time for transit services for all OD pairs. Constraints (4.6) are the flow conservation

constraints. Constraints (4.7) relate waiting time at nodes to frequency of services on

transit links servicing that node. Constraints (4.8) permit flow on links originating

from a candidate VSP station only if a station exists. Similarly, constraints (4.9)

ensure that shared-bicycle flows terminate at a node only if a station exists at the
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node. The flow and waiting variables are non-negative and continuous as required

by constraints (4.10) and (4.11).

This model differs from the one presented in Section 2.2 on the following as-

pects. The VSP configuration is simply defined by station locations. Therefore, the

upper level problem is solely a location problem. The station capacities and vehicle

fleet inventories are not considered in this case study for two reasons. First, accu-

rate estimates of demand were unavailable for this study (for reasons documented in

Section 4.1.2.2). Since the vehicle inventory and VSP station sizes serve as capacity

constraints in the BLNDP formulation, their inclusion could result in suboptimal

configurations in the face of ‘true’ demand. Therefore, this variant recognizes limi-

tations of the available data. Second, the Bixi technology is highly modular. This

implies that stations can easily be reconfigured to match observed demand levels.

The value of determining VSP station sizes and vehicle inventories is therefore lim-

ited. VSP station locations, on the other hand, are less flexible. Frequent users

expecting a bicycle sharing station at a particular location are likely to be surprised

if the entire station is relocated. Therefore, changes to VSP stations can only be

done judiciously. Instead of total VSP system flows, the BLNDP-DC problem mea-

sures flow potential that represents the market potential of the VSP system at a

particular configuration. Despite the fewer VSP configuration design variables, the

size of the network precludes the direct application of the exact solution method

presented in Section 2.3. A metaheuristic scheme for the solution of the problem is

presented next.
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4.3 Genetic Algorithm Based Solution Method

A GA is proposed for the solution to the BLNDP-DC. The use of a GA is moti-

vated by the computational challenges that bilevel mixed-integer programs present.

In addition, the size of a real-world instance such as that involving the proposed

bicycle sharing program in D.C. make the exact solution method presented in Sec-

tion 2.3 impractical. Details of GAs have been comprehensively discussed elsewhere

[26, 27] and are omitted here. The basic concept in the context of optimization

involves a set of solutions (termed a population). Each solution is represented by a

vector (termed a chromosome) that encodes a solution to the problem. A solution

vector can be a vector of real numbers, a list of nodes, a path, or a bit string. The

representation of the solution is highly problem-dependent and can be determined

by the algorithm designer. The algorithm progresses by ranking the chromosomes

based on a fitness function. At each generation, chromosomes reproduce through a

variety of operators to create a new set of chromosomes. Chromosomes with good

fitness values are preferred to ones with poor fitness values. With subsequent gener-

ations, the chromosomes evolve towards the optimal solution. The exact nature of

operators to use, the proportion of the population to use them on, and the manner

in which newly create chromosomes are included or disregarded are left to the algo-

rithm designer. Some typical operators include elitism, whereby the best solution

(or solutions) are retained and directly carried over to the next generation; muta-

tion, which involves random changes to a chromosome; and crossover, where two

chromosomes are combined to generate two or more new solutions. For constrained
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programs, such as the upper-level program in BLNDP-DC, several techniques exist

to address the feasibility of solutions. The penalty method involves penalizing in-

feasible solutions to drive them to extinction. Alternatively, the operators can be

designed in a manner that no infeasible solution is generated. Finally, the algorithm

terminates when there is inadequate improvement in the fitness function.

The main idea behind the GA developed herein is that the two levels of the

bilevel program can be solved separately. The mutual dependence of the two levels

can be replaced by a scheme where the upper-level variables are generated externally

and the resulting flows recorded by solving the lower-level problem. The generation

of upper-level location variables can be performed in a genetic algorithmic frame-

work. The design vector is encoded as a genome and uses the lower-level transit

assignment based model to evaluate the fitness of the design vector. A design config-

uration that maximizes the shared-vehicle flow is considered as propogated through

the generations to yield an near-optimal configuration. The advantage of such an

approach is that the optimization component of the problem is reduced to solving

multiple linear programs (as opposed to MIPs), while the GA operators are used to

deal with the integrality constraints. Steps in developing a GA for the BLNDP-DC

are presented next.

4.3.1 Solution Representation

The chromosome is characterized simply by the location variables x and is

represented by a bit string. If the candidate VSP site is to be constructed, the
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respective bit has the value 1, and 0 otherwise. The entire chromsome is a bit

string that has the length equal to the number of candidate sites. This represen-

tation is straightforward and allows for operates to verify feasibility of a particular

chromosome easily.

4.3.2 Initialization

The initial population is generated by solving multiple times the binary integer

program

max
∑

i

ξixi (4.12)

s.t. Constraints (4.2),(4.3),(4.4) ,

where ξi is a randomly generated coefficient in the unit interval. By changing the

objective coefficient, the value of each station varies randomly, thereby generating a

diverse set of starting solutions. By this method, all generated initial solutions are

feasible, since all constraints of the BLNDP-DC are explicitly considered.

4.3.3 Evaluation

To evaluate the fitness of a particular solution, the lower-level portion of the

BLNDP-DC, i.e. (4.5)–(4.11), needs to be solved. Note that when the design

vector x is fixed, the lower-level problem is a linear program that represents a

transit assignment model with side constraints to deal with shared-vehicle flows. The

evaluation step requires the solution of a linear program. If a network has m links,

n nodes, and k OD pairs, the number of continuous variables in this formulation is
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k(n + m). If the network is large with many OD pairs, as is the case with the D.C.

network, this may result in millions of variables. For such cases, the problem can

be solved independently for each OD pair and the link flows on each link summed

across all OD pairs. This dissaggregated approach is employed for this case study.

For smaller networks, where the lower-level model is solved jointly for all OD pairs,

one additional insight aids in reducing run times. Since the design vector occurs only

on the right hand side of the lower-level model, the optimal basis from one function

evaluation can saved as a starting basis for the next evaluation after changing the

right hand side. For large networks this may be computationally advantageous

since new problem instances need not be recreated and few simplex iterations may

be needed to find the optimal solution.

4.3.4 Evolution

To evolve the population of solutions from one generation to the next, three

operators are utilitized. Methods for handling infeasibilities are presented, along

with the description of the operators.

Crossover: The crossover operator works on two solution strings jointly. A solu-

tion substring, representing the location configuration for a randomly selected ward,

is swapped between the two solutions. Essentially, a spatially proximate subset of

the VSP configuration is exchanged between the solutions. Two new solutions are

generated whose feasibility is not guaranteed, since the total number of stations in

the configuration may not equal the number of required stations p. To rectify po-
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tential infeasibilities, two corrective procedures are initiated. For the new solution,

if the number of VSP stations exceeds the designated number of stations p, then

the required number of VSP stations are randomly dropped in a manner so as not

to violate the minimum number of stations in each ward wmin. If the number of

VSP stations is less than the designated p, then the required number of stations is

randomly added to the solution string.

Mutation: The mutation operator is applied to one randomly selected solution in

the population. Two VSP candidate sites within a ward, one with and the other

without a VSP station, are selected and swapped. This operator effectively relocates

one VSP station from one candidate site to another. By selecting two candidate sites

within the same ward the total number of VSP stations within the ward remains

unchanged. Therefore, if the original solution is feasible, the result of the mutation

operator is also feasible.

Elitism: The elite, a small percentage of chromosomes that have the best fitness

function value, are directly moved to the subsequent generation.

4.3.5 Termination Criteria

Several criteria are considered jointly to terminate the algorithm. If any one

of the criterion are met, the procedure terminates. The maximum number of gen-

erations is limited to 100. The number of stall generations, defined as the number

of generations that are evaluated without an improvement in objective function, is

set to 5. The amount of time without improvement in objective function is set to
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10, 000 seconds.

The proposed GA is implemented in MATLAB with the lower-level transit

assignment routines run using CPLEX 11.2 accessed through Java. Results and

analysis from the GA are presented next.

4.4 Analysis

The D.C. study area resulted in a network with 10, 380 nodes and 32, 402 links

as summarized in Table 4.4. Flows between 1, 000 OD pairs were considered. The

chosen OD pairs generate 20 trips/day or more. The metaheuristic solution method

described ran to termination in 41 generations. The procedure terminates since

there is no improvement in objective function over 5 generations. The values for

the best upper-level objective function and its corresponding lower-level objective at

each generation are shown in Figure 4.5. Note that at termination, the final solution

for the upper-level does not correspond to the best lower-level solution. A better

lower-level solution is found at generation 30 (Figure 4.5(b)) though this does not

lead to a better VSP configuration for the VSP operator. This demonstrates that

the objectives are not complementary and that what is best for the VSP operator

is not necessarily the best for individual system users. Additionally, the lower-level

objective represents the total travel and waiting time for all OD pairs and is not

weighted by demand for travel for that OD pair, which is taking into account only

at the upper level.

Next, the VSP configuration chosen by the GA upon termination is discussed.
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Nodes Links

Type # Num Type # Num

VSP candidates 455 Bicycle network 28,502
Origins/destinations 89 Transit services 226
Transit stops 88 Transit access 454
Transit services 236 Walk network 2,226
Bike network 9514 VSP station connector 910

VSP-transit modal interface 84

Total 10,382 Total 32,402

Table 4.1: Summary of network component for Washington D.C.
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Figure 4.5: Best solution at each generation of GA
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The map of recommended VSP stations along with induced flows are presented in

Figure 4.6. Of the 100 stations, the near-optimal solution locates 19 stations at

metro stations for VSP integration with transit. In comparison, the base flows are

shown in Figure 4.7.

The improvements in travel times for users can be dissaggregated by zone

to see the effects of introducing the bicycle sharing system. Figure 4.8 shows the

average travel time reduction for trips by origin and destination zone with darker

zones indicating higher improvements.

In addition to the configuration of the bicycle sharing program, the inter-

station flows can be forecasted. The results of the lower-level model include path

information. All intermodal paths that use a shared-vehicle component are examined

and the origin and destination VSP stations are recorded. These statistics are

aggregated across all OD pairs. The result is a large matrix of inter-station flows. To

discern flow patterns, the matrix of flows is plotted as a circular diagram using Circos

[31] as shown in Figure 4.9. The stations are represented along the circumference

of the diagram. The length of each arc represents the flow potential at each station

relative to the system. The bands between two stations are wider when the flow

potential is greater. Based on Figure 4.9 the flow potential at transit stations and

commuter hubs (such as Union station) are largest. This provides a key insight into

the configuration of VSP stations and the important of VSP-transit integration.

There are considerable asymmetries in flow potential from one station to another.

Table 4.2 shows the number of stations per ward associated with the solution.

The number of stations for each ward satisfies the upper-level equity constraints
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Figure 4.6: Transit-based flows with VSP showing recommended VSP configuration
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Figure 4.7: Transit-based flows without VSP
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(a) for trips originating from zone (b) for trips terminating in zone

Figure 4.8: Average travel time reduction in minutes

Ward # VSP Stns

1 11
2 24
3 12
4 10
5 13
6 18
7 7
8 5

Table 4.2: Number of VSP stations by ward

(4.3). This equity constraint is binding only for Ward 8. Should the equity con-

straints be relaxed, it is beneficial to the VSP operator to relocation VSP stations

from within Ward 8 to other parts of the network. Therefore, the utilization of

the stations located in Ward 8 can be expected to be lower than in the rest of the

network.
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Figure 4.9: Flow potential between designed stations
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4.5 Conclusions

A bilevel mixed-integer program for the design of a bicycle sharing system

in Washington D.C. is developed. A GA, designed for the solution of large real-

world problem instances, is proposed. The metaheuristic solution recommends a

VSP system configuration that provides several insights. 19% of all stations are

located at metro stations indicating that optimal VSP configurations integrate with

existing transit facilities to maximize flows on the shared-vehicle segments. The

improvement in travel times as the result of VSP introduction is quantified. From

the case study analysis, the average travel time for a trip can be reduced by 3.55

minutes solely due to the use of the shared-bicycle program. In addition to the

effects on the environment of using a green mode, such information can potentially

be used for economic analysis to justify (or oppose) investment in shared-vehicle

systems. The analysis results also provide forecasts of flows between the proposed

stations. Since the flows are asymmetric, operational policies can be developed for

newly designed systems that can employ such information to maintain a desired

level-of-service.

Several extensions of this research warrant further investigation. Since the

genetic algorithm-based solution method separates the two levels of the bilevel pro-

gram, the lower-level linear program can be sustituted by computationally more

efficient transit assignment procedures, such as one that employs a hyperpath formu-

lation (eg. [24, 35]). A new hyperpath procedure that accounts for the probabilistic

availability of vehicles at VSP stations can also be developed. Large flow asymme-
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tries between proposed stations imply larger operational costs involved in relocating

bicycles. An alternate formulation could include the future operational costs into

the design process so that asymmetries are avoided. The proposed framework can

be placed in the context of the larger transportation problem by the inclusion of

various modal alternatives, mode choice functions, and congestion effects.
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Chapter 5: Vélib’ Case Study

5.1 Setting

The draft strategic plan of the United States (US) Department of Transporta-

tion (DOT) seeks to diversify the transportation landscape in the US [56] through

new livable community initiatives. With coordinated policies and investment strate-

gies across federal entities in housing and the environment, the strategic plan refo-

cuses the goal of providing safe, clean, and sustainable transport. Amongst several

initiatives that aim to reduce automobile dependence, the draft strategic plan also

places greater credence on pedestrian and bicycle modes. These federal level initia-

tives mirror the efforts of some local DOT’s who grapple with increasing congestion

and mobility problems. Though transit has long been preferred by transportation

planners as a solution to congestion woes, data on traveler choices in the US shows

it to be a losing proposition with just 1.5% of all trips and 4.7% of all commute

trips [55]. A more recent approach to reduce automobile dependence in urban areas

is through the use of shared-vehicle programs.

Shared-vehicle programs involve a network of strategically located stations that

host a fleet of vehicles (bicycles, cars, or electric vehicles). In its most flexible form,

users making a trip can check out a vehicle close to their origin and return it close to

their destination. A shared-vehicle system can be construed as an individual mode

(for short trips), or as a vital segment of an intermodal route (for longer trips). In

the latter case, it serves as a vital ‘last-mile’ connection, the lack of which dissuades
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potential riders. In this role, shared-vehicle systems increase transit accessibility.

They are strongly aligned with integrated transit systems explored in the past that

also aim to increase the catchment area of transit ([54, 42, 47]).

The emphasis on livability at the federal level, growing urban mobility prob-

lems at the local level, and the potential benefits of shared-vehicles in alleviating

some of the problems have lead to an increased interest in these systems for the U.S.

The widespread adoption of such innovations in the urban transport sector is hin-

dered to some extent by the uncertainty surrounding the response of the traveling

public to such systems. Though bicycle sharing systems exist in over 100 cities [12],

in the U.S. context, local transportation agencies and policymakers have limited

precedent to aid in developing such systems for their communities. Several papers

have studied the shared-vehicle system through the prism of marketing aspects [16],

policy considerations [49], environmental concerns [28], technology challenges [54],

growth trends [45], political issues [17], and user response [46]. The focus of this

paper is on system configuration and operational aspects. Using trip information

from the pioneering Vélib’ bicycle sharing system in Paris, France, key system de-

sign aspects are highlighted. The system accounts for as many as 120,000 trips daily

[21] and is considered very successful.

For users, shared-bicycles offer increased travel utility through flexibility and

cost. They are free to choose their departure time, routes, and destinations. Com-

pared to other modes, these systems are attractively priced. For the Vélib’ system,

a nominal annual membership fee ($37.50 as of July, 2010) entitles a member to

and unlimited number of free trips that last 30 minutes or less for a year. To ensure
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circulation, trips lasting longer are charged for every additional half hour accrued.

Vélib’ also offers daily or weekly passes. Additionally, transit fare passes (Passe

Navigo) also work on the Vélib’,though there are no preferential fares for transit

customers using Vélib’.

Increased flexibility of shared-bicycles places an exceptional logistical challenge

on Vélib’ operators who need to ensure future short-term demand for vehicles and

parking slots are met. Since flow from one station to another is seldom equal to flow

in the opposing direction, the VSP fleet can become spatially imbalanced over time.

To meet near-future demand, operators must then redistribute vehicles between

stations to correct this asymmetry. Since future demand is not known exactly and

is highly variable (as shown in later sections), the challenges faced by operators is

amplified. There is limited literature on fleet management for shared vehicles. A

variety of approaches have been studied including approaches that employ simulation

[7], mixed-integer programming [29], and multi-stage stochastic programming with

recourse [22]. The mixed-integer chance-constrained program presented in Chapter

3 generates redistribution plans to meet a target reliability level. Should resources in

the system be insufficient to meet the desired levels of reliability, the model generates

partial redistribution plans that utilize existing resources at lower levels-of-service.

While generating redistribution plans is not the focus of this chapter, the chance

constrained program provides a probabilistic characterization of the system. Such

a characterization quantifies key system performance measures that elucidates the

efficiency of stations in dealing with uncertain demand. These measures allow for a

quantitative, reliability-based analysis that is performed on the Vélib’ system.
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In this chapter key attributes of the Vélib’ bicycle sharing program pertain-

ing to system configuration and utilization are discussed. The public transit-Vélib’

connection is explored. Flow patterns based on observed data and the extent of

flow asymmetries between stations are presented. The demand for bicycles and

parking slots is characterized probabilistically. Using the chance-constrained fleet

management model from prior work [34] described above, several reliability-based

performance measures are quantified to provide insights into the workings of a suc-

cessful bicycle sharing system.

5.2 System Characteristics

As one of the largest bicycle sharing programs in the world, Vélib’ has a fleet

of 20,000 bicycles spread across 1,450 stations. Figure 5.1 shows the map of all

stations in the Paris region. The operator of the system, JCDeaux, has provided

trip data for a four month period from 1st March, 2009 through 9th July, 2009. Due

to the proprietary nature of the dataset, the scale of some descriptive statistics are

not presented though patterns suggested by the data are highlighted. The system

logged 10,392,808 trips during this period, at an average of 79,945 trips per day.

The temporal distribution of trips over the course of a day is plotted in Figure 5.2,

showing that usage on a weekday follows familiar travel patterns with two peaks.

The morning rush hour is shorter in duration than the evening one. The weekend

use is void of commuter peaks and shows a different pattern.

The system is designed for a quick turnaround of bicycles and the pricing
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Figure 5.1: Spatial distribution of Vélib’ stations

structure discourages long term rentals. Figure 5.3(a) shows that majority of trips

are concluded within the alloted free time of 30 minutes. A subset of stations,

called Vélib’+ are located in areas of low bicycle accessibility (high altitude or in

the outskirts of Paris). The allotted maximum free travel time to these stations is

increased to 45 minutes to allow for the additional travel time. Figure 5.3(a) shows

98% of all trips are completed within 45 minutes. Therefore, the overage charge is

incurred by a marginal proportion of users.

5.2.1 Transit-Vélib’ Interaction

The Paris Métro is one of the busiest transit systems in the world. The system

consists of 16 underground lines and 300 stations. With a high density of stations

within the urban core of Paris, it offers good transit accessibility and high levels-
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Figure 5.3: Cumulative distribution of travel characteristics

of-service. For transit users, the Vélib’ offers a potential segment of transit-based

intermodal trips. The configuration of the metro system and Vélib’ are juxtaposed to

evaluated the effectiveness of modal transfers between the two systems. Accessibility

is used as a proxy for ease with which users can transfer between the systems. The

nearest transit stop to each Vélib’ station is determined. Figure 5.4 shows the

distribution of distances of Vélib’ stations and their corresponding closest transit

stops. With the majority of the Vélib’ stations being well within the pedestrian

catchment area for transit (the zone defined by the maximum distance a transit
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Figure 5.4: Distribution of distances from Vélib’ stations to closest transit stops

user would walk to reach transit services) considered to be around 400 meters, Vélib’

appears to be deeply coupled with the Paris Métro. By evaluating the utilization

of Vélib’ stations for the study period, the effectiveness of placing bicycle sharing

stations close to transit stops hypothesized herein can be confirmed.

From the trip data, the stations are ranked based on utilization. The top

20 ranked stations are reported in Table 5.1 for incoming flows and Table 5.2 for

outgoing flows. It can be seen that highly ranked Vélib’ stations typically have

spatially proximate transit stops and services. The exception to the rule being the

Vélib’ station ‘Francs Bourgeois’ located in the Marais district that houses several

hotels.

Further evidence of the importance of the close coupling of transit and Vélib’

is shown in Figure 5.5. Stations are represented as segments along the circumference

with the size of the segment proportional to flows (both incoming and outgoing) han-

dled by a particular station. Therefore, a large segment implies a Vélib’ station with
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Rank Vélib’ station Closest metro stop (line) Distance (m)

1 BEAUBOURG RAMBUTEAU Rambuteau (m11) 139.87
2 FAUBOURG DU TEMPLE

PLACE DE LA REPUBLIQUE
Republique (m3-5-8-9-11) 118.59

3 SAINT PAUL PAVÉE Saint-Paul (m1) 79.00
4 QUAI DE LA LOIRE Jaures (m2-5-7bis) 61.06
5 HOTEL DE VILLE Hotel de Ville (m1-11) 84.83
6 LES HALLES SAINT EUSTACHE Chatelet - Les Halles (rA-

B-D) /m(1-4-7-11-14)
173.93

7 TRAVERSIERE Ledru-Rollin (m8) 97.69
8 BASTILLE RICHARD LENOIR Bastille (m1-5-8) 59.35
9 FAIDHERBE CHALIGNY Faidherbe - Chaligny (m8) 132.59
10 TURENNE BRETAGNE Filles du Calvaire (m8) 67.32
11 FRANCS BOURGEOIS Saint-Paul (m1) 443.80
12 BOULEVARD VOLTAIRE Voltaire (m9) 131.04
13 TOLBIAC NATIONALE Olympiades (m14) 55.92
14 BASTILLE Bastille (m1-5-8) 81.18
15 LOBAU Hotel de Ville (m1-11) 83.84
16 RIVOLI SAINT DENIS Chatelet (m1-4-7-11-14) 145.02
17 GARE DE LYON VAN GOGH Gare de Lyon (m1-14)(rA-

D)
44.68

18 CROZATIER Ledru-Rollin (m8) 113.67
19 JACQUES BONSERGENT Jacques Bonsergent (m5) 138.03
20 ODEON QUATRE VENTS Odeon (m4-10) 26.13

Table 5.1: Top 20 Vélib’ stations with highest inflows with distance to closest transit
stop

high utilization. Figure 5.5 shows all inter-station flows that average 10 trips/day

or more. The major Vélib’ stations, as depicted by the size of the segment on the

circumference, can be seen to have close correspondence to transit stops (denoted

by ‘M’). Though not presented here, the data also reveals the existence of secondary

Vélib’ stations that serve as a buffer to major ones when they are full.

5.2.2 Flow Asymmetry at Stations

By completing trips from one station to another, users shift bicycle inventory

from one portion of the network to another. For operators, this presents a logisti-
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Figure 5.5: Average inter-station flows exceeding 10 trips/day highlighting Vélib’

stations within 100 meters of Métro station
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Rank Vélib’ station Closest metro stop (line) Distance (m)

1 BEAUBOURG RAMBUTEAU Rambuteau (m11) 139.87
2 FAUBOURG DU TEMPLE

PLACE DE LA REPUBLIQUE
Republique (m3-5-8-9-11) 118.59

3 SAINT PAUL PAVEE Saint-Paul (m1) 79.00
4 QUAI DE LA LOIRE Jaures (m2-5-7bis) 61.06
5 HOTEL DE VILLE Hotel de Ville (m1-11) 84.83
6 HALLES SAINT EUSTACHE Chatelet - Les Halles (rA-

B-D) /m(1-4-7-11-14)
173.93

7 TRAVERSIERE Ledru-Rollin (m8) 97.68
8 BASTILLE RICHARD LENOIR Bastille (m1-5-8) 59.35
9 FAIDHERBE CHALIGNY Faidherbe - Chaligny (m8) 132.59
10 TURENNE BRETAGNE Filles du Calvaire (m8) 67.32
11 FRANCS BOURGEOIS Saint-Paul (m1) 443.80
12 BOULEVARD VOLTAIRE Voltaire (m9) 131.04
13 TOLBIAC NATIONALE Olympiades (m14) 55.91
14 BASTILLE Bastille (m1-5-8) 81.18
15 GARE DE LYON VAN GOGH Gare de Lyon (m1-14)(rA-

D)
44.68

16 RIVOLI SAINT DENIS Chatelet (m1-4-7-11-14) 145.02
17 LOBAU Hotel de Ville (m1-11) 83.83
18 CROZATIER Ledru-Rollin (m8) 113.67
19 JACQUES BONSERGENT Jacques Bonsergent (m5) 138.03
20 ODEON QUATRE VENTS Odeon (m4-10) 26.13

Table 5.2: Top 20 Vélib’ stations with highest outflows with distance to closest
transit stop

cal problem, since they must initiate corrective actions to redistribute bicycles to

stations to ensure that short-term future demands are met. It could potentially be

cost-prohibitive to satisfy all demand needs, thus operators need to maintain ade-

quate inventories such that levels-of-service are maintained. For policymakers and

transportation agencies developing new systems, the extent of operational cost and

associated personnel is difficult to forecast. The purpose of this section is to high-

light the extent of flow asymmetries in the Vélib’ system. Vélib’ operates several

teams for redistribution and maintenance activities, including a team on barges that

move up and down the river Siene.
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The general mobility patterns of urban residents are reflected in the use of

the Vélib’ system. There is considerable directionality in movement of bicycles in

both the spatial and temporal dimensions. As an example, Figure 5.6 highlights

the sources and destinations of Vélib’ traffic for a single Vélib’ station during two

different time periods. The width of connecting segments represents the flow as

a proportion of total incoming (or outgoing) flows for that time period. Several

observations are worth noting. By comparing Figures 5.6(a) and 5.6(b), inflows and

outflows for the same period are from different stations. Figures 5.6(c) and 5.6(d)

show flows during the evening rush hour with flows from a greater variety of stations

than in the morning. Figure 5.6(d) also shows two heavily utilized routes denoted

by the two thick ribbons connect the segments.

5.3 Fleet Management

To match flexibility of other modes, shared-vehicle programs transfer control

of bicycles to users. This places exceptional logistical challenges on operators who

must ensure demand in the near future is met. For the shared-vehicle users, good

service is defined by an adequate stock of vehicles at the intended stations of origin

and adequate parking slots at the intended destination stations. Thus users seek two

types of resources from the system. As shown in the previous section, flow from one

station to another is seldom equal to flow in the opposing direction and the bicycle

fleet can become spatially imbalanced. To meet near-future demand, operators must

then redistribute vehicles to correct this asymmetry. Redistribution plans can be
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(a) Average 8-9am inflows (b) Average 8-9am outflows

(c) Average 4-5pm inflows (d) Average 4-5pm outflows

Figure 5.6: Flows to and from Les Halles Vélib’ station

121



based on historical information for services at particular stations. In the event of a

‘stock out’ when there is an absence of either bicycles or spaces, users need to seek

out the nearest alternate station with sufficient resources. This process involves a

loss in level-of-service, since travel times are increased and repeated stock-outs harm

the perception of the system.

The two types of demand for bicycles and parking slots are related. The

increase in one implies a reduction in the other. Users checking out bicycles free up

parking spaces for other users to return them. Therefore, at the station-level, the

task of the operator is to maintain the vehicle inventory within acceptable limits.

Too few bicycles leads to unserviced demand as does having too many bicycles at a

station. During the process of redistribution, resources from stations having excess

bicycles are transferred to those approaching the ‘stock-out’ condition. This action

balances the fleet across all the stations in the network.

Three aspects limit the extent to which redistribution can be carried out. The

task of redistributing vehicles implies operational costs for the operator. Redistribu-

tion activities can only be done judiciously to minimize operational costs. Secondly,

during high-demand scenarios, the resources in the system could potentially be in-

adequate to meet future demand. No amount of redistribution can address the

shortfall. In these cases, there is a drop in system performance. Therefore, the

operator’s goal is to meet most future demand scenarios.

To determine what constitutes most demand scenarios, the demand for ser-

vices is probabilistically characterized based on historical information. This allows

operators to quantify the state of the system in a reliability measure and allows the
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operator to set target levels-of-service that need to be met using redistribution. The

development presented herein employs concepts from Chapter 3. Next, the demand

processes are described, followed by the system representation and a brief summary

of the analytical framework used.

5.3.1 Probabilistic Characterization of Demand

Demand processes at each Vélib’ station are for bicycles and spaces. It is

assumed that at a particular station demand for bicycles is independent of demand

for spaces. The operator is interested in knowing the probability distribution of

the number of vehicle and parking slot requests for a future time period, termed

the planning period. Based on the observed trip patterns, the aggregate resource

requests at each station is tabulated. Note that no assumptions are made on trip

characteristics determined by users (origins, destinations, and duration). Several

distributions were fitted on the observed data on bicycle check outs and returns at

each station and the demand process is closest matched by the negative binomial

distribution. This distribution is related to the Poisson process, though it exhibits

higher dispersion. The Poisson distribution requires the mean and variance to be

equal. Negative binomial distribution has a variance that is larger than the mean.

This implies that there is high variability in demand for vehicles and spaces.

If a variate x follows the negative binomial distribution, then the probability

of x taking a value k is given by
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P (x = k) =

(
r + k − 1

k

)
pr(1 − p)k, (5.1)

where r and p are the parameters of the distribution. This is denoted by x ∼

NB(r, p).

The two demand processes exhibit duality so the random variable of interest

is the difference of the two demand processes. The inherent assumption is that

vehicle returns and withdrawals cancel each other out for short planning periods.

An ‘aggregate’ demand random variable is defined to be the difference of demand for

vehicles and demand for spaces. This encodes both types of demand in one random

variable. When the aggregate demand is positive, then there is greater number

of vehicle requests than returns. The redistribution plan could potentially direct

bicycles to the station to meet this higher demand. When the aggregate demand

is negative, there are more requests for spaces. The operator can free up parking

capacity by moving bicycles out of the station to other locations.

If x is a random variable that represents the number of vehicle requests, and y

is a random variable that represents the number of return requests, then aggregate

demand z is defined as z = x−y. z follows the distribution defined by the difference

of two negative binomial variates. It can be shown that if x ∼ NB(rx, px) and

y ∼ NB(ry, py), then the distribution of z = x − y can be expressed as

P (z = k) =

⎧⎪⎪⎨
⎪⎪⎩

prx
x p

ry
y (1 − px)

k (rx)k

k!
F (rx + k, ry; k + 1; (1 − px)(1 − py)) k ≥ 0

prx
x p

ry
y (1 − py)

k
(ry)|k|
|k|! F (rx, ry + |k|; |k| + 1; (1 − px)(1 − py)) k < 0

(5.2)
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where

F (α, β; γ; z) =

∞∑
0

(α)n(α)n

(γ)n

zn

n!
(5.3)

is the hypergeometric function [6] and (a)n = Γ(a + n)/Γ(a). There is no known

closed-form solution for the inverse of this four parameter distribution, which allows

for the computation of reliability. Therefore, simulation is employed to calculate

the distribution. Figure 5.7 shows the fitted demand distribution for vehicles and

spaces along with the simulated four parameter difference distribution for selected

stations. In comparison with the Singapore car sharing system presented in Section

3.5, where the aggregate demand distribution was found to be Skellam distributed,

the four parameter distribution for Vélib’ has greater dispersion. This indicates

higher demand variability.

5.3.2 Framework

Following the concepts presented in Chapter 3, the Vélib’ system is depicted

as a network of n stations represented as nodes (indexed by i) and all links between

all station pairs (a complete graph in graph theory parlance). Each Vélib’ station

i is associated with a ‘aggregate demand’ random variable, denoted by ξi, and a

capacity, denoted by ci. As shown above, the ξi random variable can be described

by a four parameter distribution. At any given point in time, the system operator

is aware of the inventory of bicycles at each station, denoted by vi. The inventory

of parking spaces is correspondingly ci − vi.

The operator considers near-term future demand during the planning period
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Figure 5.7: Theoretical demand distribution for selected Vélib’ stations
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(assumed here to be one hour). For this period period, the probability that the

current number of bicycles at a station i, termed vehicle inventory, and the number

of free parking slots, termed the spaces inventory, can satisfy demand during the

planning period can be written as

pi = P (−(ci − vi) ≤ ξi ≤ vi). (5.4)

Here, pi is termed the component-level reliability, since it measures the reliability

level at the Vélib’ station level. Figure 5.8 shows the component reliability for all

bicycle inventory levels at selected stations. If demands for bicycles and spaces are

assumed to be independent across stations, the systemwide reliability measure can

be expressed as

p = P (−(ci − vi) ≤ ξi ≤ vi , i = 1, . . . , n) =
n∏

i=1

pi. (5.5)

The operator can quantitatively set target levels-of-service using the mea-

sure p for systemwide reliability, or pi for component level measures. With a large

like Vélib’, p can be very small, since it involves the product of component-level

measures. In this case, an average component reliability measure can be used to

aggregate component-level measures.

To generate redistribution plans for bicycles, these component-level measures

can be used to set the desired number of bicycles at all stations. If the operator

defines a systemwide reliability level to be met, then the component-level measures

can be derived using several techniques outlined in Chapter 3. The most straight-

forward approach involves the equal apportionment of failure. In this approach,
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the acceptable failure rate is divided amongst all stations. Other methods first de-

termine an optimal set of component-level reliabilities, such that the systemwide

reliability is met. To generate redistribution plans, an optimization model is used

to relocate bicycles from stations with excess bicycles to ones with inadequate stock.

Bicycles can also be relocated to free up parking slots should the number of bicycles

at a station be too high.

The target level-of-service is constrained by physical capacity. There are de-

mand scenarios that cannot be met with any amount of redistribution. The desired

level of service needs to be relaxed and partial redistribution carried out that max-

imizes the utilization of available resources. Vélib’ stations with low capacity or

high demands that persistently do not meet target reliability levels can be subject

to capacity improvements.

5.4 Analysis

The component level reliability for selected stations is plotted in Figure 5.8.

At stations with low demand levels such as station 15103, a wide range of bicycle

stocks have high reliability. For the Vélib’ station 1008, during the busy period

of 4-5pm, at no level of bicycle inventory is teh component reliability greater than

0.5. This implies that capacity limitations exist at this station. Note that even

when stations are empty the component reliability is non-zero since the station still

services demands for spaces.

Redistribution plans for the Vélib’ system are generated for various systemwide
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(a) 8-9am (b) 4-5pm

Figure 5.8: Component reliability pi for selected stations and two planning periods

reliability levels p. Over a period of five days, redistribution is considered for two

planning periods, one from 8-9am and the other from 4-5pm. Table 5.3 summarizes

the component reliability measures for two cases when redistribution is performed

and when it is not. Redistribution is shown to improve the average component

reliability in every simulated instance. Additional insights can be gleaned from the

model as well by assessing the infeasibility of location stations in handling demand.

Stations that experience persistent low levels-of-service can be identified, and the

extent of capacity improvements needed can be assessed. Figure 5.9 shows that the

majority of stations have sufficient capacity to handle demand uncertainty. However,

some key stations require capacity enhancements.

5.5 Conclusions

An empirical analysis of the pioneering Vélib’ bicycle sharing system in Paris,

France is presented. The analysis provides key insights on the functioning of such
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Figure 5.9: Stations with persistent shortages
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Improvement in
Average pi Minimum pi avg(pi) through

Day Period p No Redistr. With Redistr. No Redistr. With Redistr. redistribution

1 8-9am 0.5 0.78 0.844 0.237 0.254 0.064
0.7 0.78 0.84 0.237 0.254 0.06
0.8 0.78 0.836 0.237 0.254 0.056
0.9 0.78 0.831 0.237 0.254 0.05

4-5pm 0.5 0.85 0.938 0.054 0.371 0.088
0.7 0.846 0.932 0.054 0.338 0.086
0.8 0.844 0.929 0.054 0.338 0.085
0.9 0.841 0.922 0.054 0.338 0.081

2 8-9am 0.5 0.795 0.838 0.254 0.254 0.043
0.7 0.791 0.831 0.254 0.254 0.04
0.8 0.788 0.827 0.254 0.254 0.039
0.9 0.784 0.82 0.251 0.279 0.037

4-5pm 0.5 0.847 0.929 0.054 0.366 0.083
0.7 0.844 0.922 0.054 0.356 0.078
0.8 0.84 0.917 0.054 0.356 0.077
0.9 0.834 0.909 0.054 0.356 0.074

3 8-9am 0.5 0.796 0.824 0.269 0.279 0.028
0.7 0.792 0.819 0.269 0.279 0.026
0.8 0.789 0.814 0.269 0.279 0.025
0.9 0.784 0.807 0.269 0.279 0.023

4-5pm 0.5 0.838 0.908 0.267 0.371 0.07
0.7 0.835 0.9 0.267 0.356 0.065
0.8 0.832 0.895 0.267 0.338 0.063
0.9 0.828 0.886 0.267 0.338 0.058

4 8-9am 0.5 0.794 0.814 0.237 0.279 0.02
0.7 0.79 0.81 0.237 0.279 0.02
0.8 0.787 0.806 0.237 0.279 0.019
0.9 0.781 0.798 0.237 0.279 0.017

4-5pm 0.5 0.833 0.885 0.054 0.371 0.051
0.7 0.831 0.878 0.054 0.356 0.047
0.8 0.829 0.872 0.054 0.356 0.043
0.9 0.822 0.864 0.054 0.356 0.042

5 8-9am 0.5 0.789 0.799 0.237 0.279 0.01
0.7 0.785 0.798 0.237 0.279 0.012
0.8 0.783 0.796 0.237 0.279 0.013
0.9 0.781 0.795 0.237 0.279 0.014

4-5pm 0.5 0.824 0.872 0.338 0.371 0.048
0.7 0.824 0.866 0.338 0.356 0.042
0.8 0.825 0.863 0.338 0.356 0.038
0.9 0.824 0.856 0.338 0.356 0.032

Table 5.3: Summray of Vélib’ simulation results over five days and two time periods
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systems and serves to inform policy makers in other urban communities wanting

to explore bicycle sharing systems. This paper studies the Vélib’ system from sev-

eral aspects, including system characteristics, utilization patterns, the connection

between public transit and bicycle sharing systems, and flow imbalances between

stations.

The close coupling of transit stops with the bicycle sharing system corresponds

with higher utilization of bicycle sharing. This confirms the hypothesis that inter-

modal trips with shared-vehicle segments provide value addition for users. Policies

that seek to integrate the two systems are, therefore, profitable. Examples of such

policies include seamless fare collection, preferential fares for transit users, and prime

location of shared-bicycle stations.

From the operator’s perspective, the Vélib’ system is shown to have highly

variable demand. By characterizing the demand probabilistically, the target relia-

bility levels at the component or system level can be set and the required fleet and

parking slot capacity calculated. Redistribution plans are generated based on these

target levels showing related improvement in component-level reliability.
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Chapter 6: Conclusions

This dissertation proposes models and associated algorithms for the design

and operation of shared-vehicle systems. Using the developed framework, three real-

world case studies were conducted to analyze system characteristics and demonstrate

the efficacy of proposed models and methods. The analysis of these real-world sys-

tems provides vital insights for policy makers and transportation agencies wanting

to develop shared-vehicle programs for their communities.

A strategic network design model is developed that takes the form of a bilevel

mixed-integer program. The problem is solved using exact and heuristic approaches

for synthetic networks and a large real-world case study for Washington, D.C. The

output of the model is the optimal design configuration for shared-vehicle systems.

For the Washington, D.C. case, 19% of all shared-vehicle stations are located at

candidate sites that are at transit stops. Thus, policies that push transit-VSP

integration are profitable. Such policies could include seamless fare collection, prime

location of shared-vehicles within the confines of transit stops, and preferential fares.

The average transit-based trip within Washington, D.C. experiences a reduced travel

time of 3.55 minutes solely due to the introduction of the shared-vehicle system.

At the operational level, a fleet management model that generated anticipative

fleet redistribution plans is formulated. Two exact solution techniques are also

proposed for its solution. The model characterizes demand probabilistically and

serves to generate least cost fleet relocation directives that meet most future demand

scenarios. Using a car sharing system in Singapore, the efficacy of the formulated
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model, and the efficiency of the solution methods is demonstrated. The value of

accounting for inherent stochasticities is also quantified. Using the same framework

for a large-scale bicycle sharing system in Paris, France, several key insights on the

nature of system configuration, utilization patterns, and capacity bottlenecks are

identified. The system maintains high levels of service at most locations.

6.1 Benefits to Society

With growing urban congestion problems, rising transportation costs, and a

degrading environment, changes in the way transportation resources are supplied

and consumed are imminent. This thesis explores one innovation in shared-vehicle

systems. As urban communities around the globe are beginning to consider and

implement these shared vehicle systems as viable options for reducing congestion,

several cities in the US have started, or are planning to start, car sharing and bicy-

cle sharing programs, most notably in Washington, D.C., Boston and Denver. This

follows the success of similar programs internationally in cities like Paris, Barcelona

and Montreal. While shared-vehicle systems alone will not solve urban congestion

woes, they have a place in the basket of mobility solutions for the future. Using

optimization tools presented herein, such systems can offer a value added proposi-

tion to users through high levels-of-service. As demonstrated in the Vélib’ system

analysis, shared-vehicle systems are closely coupled with transit. This intermodal

combination presents an economical and sustainable solution.
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6.2 Extensions

The conducted research opens avenues in several promising directions. An

economic analysis based on system costs, economic benefit to users and society in

terms of reduced travel times and environmental impacts can provide vital input

for policy makers. Such an analysis could use principles from network economics to

evaluate the scale at which such programs should be implemented. In this respect,

the shared-vehicle system is similar to other networked technologies, like commu-

nication devices or social networks, where the value of the system increases when

there are greater numbers of users and stations. A greater number of users would

imply more circulation of vehicle stock. The addition of a single shared-vehicle

station increases the value of all other shared-vehicle stations, since the users have

more destination choice. Equilibrium effects incorporating rational user behavior

also presents a promising direction.

The role of pricing in attracting and retaining a user base can be explored.

Given the high cost of automobile ownership, the key question faced by the system

operator is what to charge users. Models and methods could include joint system

design and pricing of a shared-vehicle system, variable pricing as a demand man-

agement tool, or directional pricing to offset operator redistribution costs by having

the users perform redistribution.

From the methodological perspective, several extensions can be the focus of fu-

ture research. At the strategic level, the model assumptions can be relaxed to better

represent the existing demand and supply processes. For example, the fixed-demand
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assumption can be relaxed to demand that varies as a function of level-of-service.

Congestion effects on transit and shared-vehicle links can be incorporated. The use

of travel times can be replaced by econometric functions of utility that capture var-

ious attributes that users consider in mode and route choice. The strategic model

can use the expected value of future operational costs in designing the system. Al-

ternate solution methods for solving large-scale instances can be developed. These

techniques could use computationally efficient methods that employ hyperpaths.

The operational level model can be extended to include multi-period relo-

cation costs. Stochastic programs with recourse present an alternate model form

for multiple period extension, where current redistribution decisions are the first

state variables, and the future redistribution decisions are recourse variables. Re-

distribution costs at the present period can be reduced if the operator accounts for

uncertainty from future periods. A variant of the problem could consider the vehicle

routing of redistribution teams through the system. Such work would build on priod

advances in the pick-up and drop-off problem in the literature. An online version

of the model would trigger redistribution requests by constantly monitoring system

state.

As a sustainable solution to urban mobility that uses existing proven technolo-

gies, shared-vehicle programs will play a greater role in the years to come.
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